xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision 36db6e8484ed455bbb320d89a119378897ae991c)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (c) 2009, Microsoft Corporation.
4   *
5   * Authors:
6   *   Haiyang Zhang <haiyangz@microsoft.com>
7   *   Hank Janssen  <hjanssen@microsoft.com>
8   *   K. Y. Srinivasan <kys@microsoft.com>
9   */
10  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11  
12  #include <linux/init.h>
13  #include <linux/module.h>
14  #include <linux/device.h>
15  #include <linux/platform_device.h>
16  #include <linux/interrupt.h>
17  #include <linux/sysctl.h>
18  #include <linux/slab.h>
19  #include <linux/acpi.h>
20  #include <linux/completion.h>
21  #include <linux/hyperv.h>
22  #include <linux/kernel_stat.h>
23  #include <linux/of_address.h>
24  #include <linux/clockchips.h>
25  #include <linux/cpu.h>
26  #include <linux/sched/isolation.h>
27  #include <linux/sched/task_stack.h>
28  
29  #include <linux/delay.h>
30  #include <linux/panic_notifier.h>
31  #include <linux/ptrace.h>
32  #include <linux/screen_info.h>
33  #include <linux/efi.h>
34  #include <linux/random.h>
35  #include <linux/kernel.h>
36  #include <linux/syscore_ops.h>
37  #include <linux/dma-map-ops.h>
38  #include <linux/pci.h>
39  #include <clocksource/hyperv_timer.h>
40  #include <asm/mshyperv.h>
41  #include "hyperv_vmbus.h"
42  
43  struct vmbus_dynid {
44  	struct list_head node;
45  	struct hv_vmbus_device_id id;
46  };
47  
48  static struct device  *hv_dev;
49  
50  static int hyperv_cpuhp_online;
51  
52  static long __percpu *vmbus_evt;
53  
54  /* Values parsed from ACPI DSDT */
55  int vmbus_irq;
56  int vmbus_interrupt;
57  
58  /*
59   * The panic notifier below is responsible solely for unloading the
60   * vmbus connection, which is necessary in a panic event.
61   *
62   * Notice an intrincate relation of this notifier with Hyper-V
63   * framebuffer panic notifier exists - we need vmbus connection alive
64   * there in order to succeed, so we need to order both with each other
65   * [see hvfb_on_panic()] - this is done using notifiers' priorities.
66   */
hv_panic_vmbus_unload(struct notifier_block * nb,unsigned long val,void * args)67  static int hv_panic_vmbus_unload(struct notifier_block *nb, unsigned long val,
68  			      void *args)
69  {
70  	vmbus_initiate_unload(true);
71  	return NOTIFY_DONE;
72  }
73  static struct notifier_block hyperv_panic_vmbus_unload_block = {
74  	.notifier_call	= hv_panic_vmbus_unload,
75  	.priority	= INT_MIN + 1, /* almost the latest one to execute */
76  };
77  
78  static const char *fb_mmio_name = "fb_range";
79  static struct resource *fb_mmio;
80  static struct resource *hyperv_mmio;
81  static DEFINE_MUTEX(hyperv_mmio_lock);
82  
vmbus_exists(void)83  static int vmbus_exists(void)
84  {
85  	if (hv_dev == NULL)
86  		return -ENODEV;
87  
88  	return 0;
89  }
90  
channel_monitor_group(const struct vmbus_channel * channel)91  static u8 channel_monitor_group(const struct vmbus_channel *channel)
92  {
93  	return (u8)channel->offermsg.monitorid / 32;
94  }
95  
channel_monitor_offset(const struct vmbus_channel * channel)96  static u8 channel_monitor_offset(const struct vmbus_channel *channel)
97  {
98  	return (u8)channel->offermsg.monitorid % 32;
99  }
100  
channel_pending(const struct vmbus_channel * channel,const struct hv_monitor_page * monitor_page)101  static u32 channel_pending(const struct vmbus_channel *channel,
102  			   const struct hv_monitor_page *monitor_page)
103  {
104  	u8 monitor_group = channel_monitor_group(channel);
105  
106  	return monitor_page->trigger_group[monitor_group].pending;
107  }
108  
channel_latency(const struct vmbus_channel * channel,const struct hv_monitor_page * monitor_page)109  static u32 channel_latency(const struct vmbus_channel *channel,
110  			   const struct hv_monitor_page *monitor_page)
111  {
112  	u8 monitor_group = channel_monitor_group(channel);
113  	u8 monitor_offset = channel_monitor_offset(channel);
114  
115  	return monitor_page->latency[monitor_group][monitor_offset];
116  }
117  
channel_conn_id(struct vmbus_channel * channel,struct hv_monitor_page * monitor_page)118  static u32 channel_conn_id(struct vmbus_channel *channel,
119  			   struct hv_monitor_page *monitor_page)
120  {
121  	u8 monitor_group = channel_monitor_group(channel);
122  	u8 monitor_offset = channel_monitor_offset(channel);
123  
124  	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
125  }
126  
id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)127  static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
128  		       char *buf)
129  {
130  	struct hv_device *hv_dev = device_to_hv_device(dev);
131  
132  	if (!hv_dev->channel)
133  		return -ENODEV;
134  	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
135  }
136  static DEVICE_ATTR_RO(id);
137  
state_show(struct device * dev,struct device_attribute * dev_attr,char * buf)138  static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
139  			  char *buf)
140  {
141  	struct hv_device *hv_dev = device_to_hv_device(dev);
142  
143  	if (!hv_dev->channel)
144  		return -ENODEV;
145  	return sprintf(buf, "%d\n", hv_dev->channel->state);
146  }
147  static DEVICE_ATTR_RO(state);
148  
monitor_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)149  static ssize_t monitor_id_show(struct device *dev,
150  			       struct device_attribute *dev_attr, char *buf)
151  {
152  	struct hv_device *hv_dev = device_to_hv_device(dev);
153  
154  	if (!hv_dev->channel)
155  		return -ENODEV;
156  	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
157  }
158  static DEVICE_ATTR_RO(monitor_id);
159  
class_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)160  static ssize_t class_id_show(struct device *dev,
161  			       struct device_attribute *dev_attr, char *buf)
162  {
163  	struct hv_device *hv_dev = device_to_hv_device(dev);
164  
165  	if (!hv_dev->channel)
166  		return -ENODEV;
167  	return sprintf(buf, "{%pUl}\n",
168  		       &hv_dev->channel->offermsg.offer.if_type);
169  }
170  static DEVICE_ATTR_RO(class_id);
171  
device_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)172  static ssize_t device_id_show(struct device *dev,
173  			      struct device_attribute *dev_attr, char *buf)
174  {
175  	struct hv_device *hv_dev = device_to_hv_device(dev);
176  
177  	if (!hv_dev->channel)
178  		return -ENODEV;
179  	return sprintf(buf, "{%pUl}\n",
180  		       &hv_dev->channel->offermsg.offer.if_instance);
181  }
182  static DEVICE_ATTR_RO(device_id);
183  
modalias_show(struct device * dev,struct device_attribute * dev_attr,char * buf)184  static ssize_t modalias_show(struct device *dev,
185  			     struct device_attribute *dev_attr, char *buf)
186  {
187  	struct hv_device *hv_dev = device_to_hv_device(dev);
188  
189  	return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
190  }
191  static DEVICE_ATTR_RO(modalias);
192  
193  #ifdef CONFIG_NUMA
numa_node_show(struct device * dev,struct device_attribute * attr,char * buf)194  static ssize_t numa_node_show(struct device *dev,
195  			      struct device_attribute *attr, char *buf)
196  {
197  	struct hv_device *hv_dev = device_to_hv_device(dev);
198  
199  	if (!hv_dev->channel)
200  		return -ENODEV;
201  
202  	return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
203  }
204  static DEVICE_ATTR_RO(numa_node);
205  #endif
206  
server_monitor_pending_show(struct device * dev,struct device_attribute * dev_attr,char * buf)207  static ssize_t server_monitor_pending_show(struct device *dev,
208  					   struct device_attribute *dev_attr,
209  					   char *buf)
210  {
211  	struct hv_device *hv_dev = device_to_hv_device(dev);
212  
213  	if (!hv_dev->channel)
214  		return -ENODEV;
215  	return sprintf(buf, "%d\n",
216  		       channel_pending(hv_dev->channel,
217  				       vmbus_connection.monitor_pages[0]));
218  }
219  static DEVICE_ATTR_RO(server_monitor_pending);
220  
client_monitor_pending_show(struct device * dev,struct device_attribute * dev_attr,char * buf)221  static ssize_t client_monitor_pending_show(struct device *dev,
222  					   struct device_attribute *dev_attr,
223  					   char *buf)
224  {
225  	struct hv_device *hv_dev = device_to_hv_device(dev);
226  
227  	if (!hv_dev->channel)
228  		return -ENODEV;
229  	return sprintf(buf, "%d\n",
230  		       channel_pending(hv_dev->channel,
231  				       vmbus_connection.monitor_pages[1]));
232  }
233  static DEVICE_ATTR_RO(client_monitor_pending);
234  
server_monitor_latency_show(struct device * dev,struct device_attribute * dev_attr,char * buf)235  static ssize_t server_monitor_latency_show(struct device *dev,
236  					   struct device_attribute *dev_attr,
237  					   char *buf)
238  {
239  	struct hv_device *hv_dev = device_to_hv_device(dev);
240  
241  	if (!hv_dev->channel)
242  		return -ENODEV;
243  	return sprintf(buf, "%d\n",
244  		       channel_latency(hv_dev->channel,
245  				       vmbus_connection.monitor_pages[0]));
246  }
247  static DEVICE_ATTR_RO(server_monitor_latency);
248  
client_monitor_latency_show(struct device * dev,struct device_attribute * dev_attr,char * buf)249  static ssize_t client_monitor_latency_show(struct device *dev,
250  					   struct device_attribute *dev_attr,
251  					   char *buf)
252  {
253  	struct hv_device *hv_dev = device_to_hv_device(dev);
254  
255  	if (!hv_dev->channel)
256  		return -ENODEV;
257  	return sprintf(buf, "%d\n",
258  		       channel_latency(hv_dev->channel,
259  				       vmbus_connection.monitor_pages[1]));
260  }
261  static DEVICE_ATTR_RO(client_monitor_latency);
262  
server_monitor_conn_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)263  static ssize_t server_monitor_conn_id_show(struct device *dev,
264  					   struct device_attribute *dev_attr,
265  					   char *buf)
266  {
267  	struct hv_device *hv_dev = device_to_hv_device(dev);
268  
269  	if (!hv_dev->channel)
270  		return -ENODEV;
271  	return sprintf(buf, "%d\n",
272  		       channel_conn_id(hv_dev->channel,
273  				       vmbus_connection.monitor_pages[0]));
274  }
275  static DEVICE_ATTR_RO(server_monitor_conn_id);
276  
client_monitor_conn_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)277  static ssize_t client_monitor_conn_id_show(struct device *dev,
278  					   struct device_attribute *dev_attr,
279  					   char *buf)
280  {
281  	struct hv_device *hv_dev = device_to_hv_device(dev);
282  
283  	if (!hv_dev->channel)
284  		return -ENODEV;
285  	return sprintf(buf, "%d\n",
286  		       channel_conn_id(hv_dev->channel,
287  				       vmbus_connection.monitor_pages[1]));
288  }
289  static DEVICE_ATTR_RO(client_monitor_conn_id);
290  
out_intr_mask_show(struct device * dev,struct device_attribute * dev_attr,char * buf)291  static ssize_t out_intr_mask_show(struct device *dev,
292  				  struct device_attribute *dev_attr, char *buf)
293  {
294  	struct hv_device *hv_dev = device_to_hv_device(dev);
295  	struct hv_ring_buffer_debug_info outbound;
296  	int ret;
297  
298  	if (!hv_dev->channel)
299  		return -ENODEV;
300  
301  	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
302  					  &outbound);
303  	if (ret < 0)
304  		return ret;
305  
306  	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
307  }
308  static DEVICE_ATTR_RO(out_intr_mask);
309  
out_read_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)310  static ssize_t out_read_index_show(struct device *dev,
311  				   struct device_attribute *dev_attr, char *buf)
312  {
313  	struct hv_device *hv_dev = device_to_hv_device(dev);
314  	struct hv_ring_buffer_debug_info outbound;
315  	int ret;
316  
317  	if (!hv_dev->channel)
318  		return -ENODEV;
319  
320  	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
321  					  &outbound);
322  	if (ret < 0)
323  		return ret;
324  	return sprintf(buf, "%d\n", outbound.current_read_index);
325  }
326  static DEVICE_ATTR_RO(out_read_index);
327  
out_write_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)328  static ssize_t out_write_index_show(struct device *dev,
329  				    struct device_attribute *dev_attr,
330  				    char *buf)
331  {
332  	struct hv_device *hv_dev = device_to_hv_device(dev);
333  	struct hv_ring_buffer_debug_info outbound;
334  	int ret;
335  
336  	if (!hv_dev->channel)
337  		return -ENODEV;
338  
339  	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
340  					  &outbound);
341  	if (ret < 0)
342  		return ret;
343  	return sprintf(buf, "%d\n", outbound.current_write_index);
344  }
345  static DEVICE_ATTR_RO(out_write_index);
346  
out_read_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)347  static ssize_t out_read_bytes_avail_show(struct device *dev,
348  					 struct device_attribute *dev_attr,
349  					 char *buf)
350  {
351  	struct hv_device *hv_dev = device_to_hv_device(dev);
352  	struct hv_ring_buffer_debug_info outbound;
353  	int ret;
354  
355  	if (!hv_dev->channel)
356  		return -ENODEV;
357  
358  	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
359  					  &outbound);
360  	if (ret < 0)
361  		return ret;
362  	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
363  }
364  static DEVICE_ATTR_RO(out_read_bytes_avail);
365  
out_write_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)366  static ssize_t out_write_bytes_avail_show(struct device *dev,
367  					  struct device_attribute *dev_attr,
368  					  char *buf)
369  {
370  	struct hv_device *hv_dev = device_to_hv_device(dev);
371  	struct hv_ring_buffer_debug_info outbound;
372  	int ret;
373  
374  	if (!hv_dev->channel)
375  		return -ENODEV;
376  
377  	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
378  					  &outbound);
379  	if (ret < 0)
380  		return ret;
381  	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
382  }
383  static DEVICE_ATTR_RO(out_write_bytes_avail);
384  
in_intr_mask_show(struct device * dev,struct device_attribute * dev_attr,char * buf)385  static ssize_t in_intr_mask_show(struct device *dev,
386  				 struct device_attribute *dev_attr, char *buf)
387  {
388  	struct hv_device *hv_dev = device_to_hv_device(dev);
389  	struct hv_ring_buffer_debug_info inbound;
390  	int ret;
391  
392  	if (!hv_dev->channel)
393  		return -ENODEV;
394  
395  	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
396  	if (ret < 0)
397  		return ret;
398  
399  	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
400  }
401  static DEVICE_ATTR_RO(in_intr_mask);
402  
in_read_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)403  static ssize_t in_read_index_show(struct device *dev,
404  				  struct device_attribute *dev_attr, char *buf)
405  {
406  	struct hv_device *hv_dev = device_to_hv_device(dev);
407  	struct hv_ring_buffer_debug_info inbound;
408  	int ret;
409  
410  	if (!hv_dev->channel)
411  		return -ENODEV;
412  
413  	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
414  	if (ret < 0)
415  		return ret;
416  
417  	return sprintf(buf, "%d\n", inbound.current_read_index);
418  }
419  static DEVICE_ATTR_RO(in_read_index);
420  
in_write_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)421  static ssize_t in_write_index_show(struct device *dev,
422  				   struct device_attribute *dev_attr, char *buf)
423  {
424  	struct hv_device *hv_dev = device_to_hv_device(dev);
425  	struct hv_ring_buffer_debug_info inbound;
426  	int ret;
427  
428  	if (!hv_dev->channel)
429  		return -ENODEV;
430  
431  	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
432  	if (ret < 0)
433  		return ret;
434  
435  	return sprintf(buf, "%d\n", inbound.current_write_index);
436  }
437  static DEVICE_ATTR_RO(in_write_index);
438  
in_read_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)439  static ssize_t in_read_bytes_avail_show(struct device *dev,
440  					struct device_attribute *dev_attr,
441  					char *buf)
442  {
443  	struct hv_device *hv_dev = device_to_hv_device(dev);
444  	struct hv_ring_buffer_debug_info inbound;
445  	int ret;
446  
447  	if (!hv_dev->channel)
448  		return -ENODEV;
449  
450  	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
451  	if (ret < 0)
452  		return ret;
453  
454  	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
455  }
456  static DEVICE_ATTR_RO(in_read_bytes_avail);
457  
in_write_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)458  static ssize_t in_write_bytes_avail_show(struct device *dev,
459  					 struct device_attribute *dev_attr,
460  					 char *buf)
461  {
462  	struct hv_device *hv_dev = device_to_hv_device(dev);
463  	struct hv_ring_buffer_debug_info inbound;
464  	int ret;
465  
466  	if (!hv_dev->channel)
467  		return -ENODEV;
468  
469  	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
470  	if (ret < 0)
471  		return ret;
472  
473  	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
474  }
475  static DEVICE_ATTR_RO(in_write_bytes_avail);
476  
channel_vp_mapping_show(struct device * dev,struct device_attribute * dev_attr,char * buf)477  static ssize_t channel_vp_mapping_show(struct device *dev,
478  				       struct device_attribute *dev_attr,
479  				       char *buf)
480  {
481  	struct hv_device *hv_dev = device_to_hv_device(dev);
482  	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
483  	int buf_size = PAGE_SIZE, n_written, tot_written;
484  	struct list_head *cur;
485  
486  	if (!channel)
487  		return -ENODEV;
488  
489  	mutex_lock(&vmbus_connection.channel_mutex);
490  
491  	tot_written = snprintf(buf, buf_size, "%u:%u\n",
492  		channel->offermsg.child_relid, channel->target_cpu);
493  
494  	list_for_each(cur, &channel->sc_list) {
495  		if (tot_written >= buf_size - 1)
496  			break;
497  
498  		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
499  		n_written = scnprintf(buf + tot_written,
500  				     buf_size - tot_written,
501  				     "%u:%u\n",
502  				     cur_sc->offermsg.child_relid,
503  				     cur_sc->target_cpu);
504  		tot_written += n_written;
505  	}
506  
507  	mutex_unlock(&vmbus_connection.channel_mutex);
508  
509  	return tot_written;
510  }
511  static DEVICE_ATTR_RO(channel_vp_mapping);
512  
vendor_show(struct device * dev,struct device_attribute * dev_attr,char * buf)513  static ssize_t vendor_show(struct device *dev,
514  			   struct device_attribute *dev_attr,
515  			   char *buf)
516  {
517  	struct hv_device *hv_dev = device_to_hv_device(dev);
518  
519  	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
520  }
521  static DEVICE_ATTR_RO(vendor);
522  
device_show(struct device * dev,struct device_attribute * dev_attr,char * buf)523  static ssize_t device_show(struct device *dev,
524  			   struct device_attribute *dev_attr,
525  			   char *buf)
526  {
527  	struct hv_device *hv_dev = device_to_hv_device(dev);
528  
529  	return sprintf(buf, "0x%x\n", hv_dev->device_id);
530  }
531  static DEVICE_ATTR_RO(device);
532  
driver_override_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)533  static ssize_t driver_override_store(struct device *dev,
534  				     struct device_attribute *attr,
535  				     const char *buf, size_t count)
536  {
537  	struct hv_device *hv_dev = device_to_hv_device(dev);
538  	int ret;
539  
540  	ret = driver_set_override(dev, &hv_dev->driver_override, buf, count);
541  	if (ret)
542  		return ret;
543  
544  	return count;
545  }
546  
driver_override_show(struct device * dev,struct device_attribute * attr,char * buf)547  static ssize_t driver_override_show(struct device *dev,
548  				    struct device_attribute *attr, char *buf)
549  {
550  	struct hv_device *hv_dev = device_to_hv_device(dev);
551  	ssize_t len;
552  
553  	device_lock(dev);
554  	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
555  	device_unlock(dev);
556  
557  	return len;
558  }
559  static DEVICE_ATTR_RW(driver_override);
560  
561  /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
562  static struct attribute *vmbus_dev_attrs[] = {
563  	&dev_attr_id.attr,
564  	&dev_attr_state.attr,
565  	&dev_attr_monitor_id.attr,
566  	&dev_attr_class_id.attr,
567  	&dev_attr_device_id.attr,
568  	&dev_attr_modalias.attr,
569  #ifdef CONFIG_NUMA
570  	&dev_attr_numa_node.attr,
571  #endif
572  	&dev_attr_server_monitor_pending.attr,
573  	&dev_attr_client_monitor_pending.attr,
574  	&dev_attr_server_monitor_latency.attr,
575  	&dev_attr_client_monitor_latency.attr,
576  	&dev_attr_server_monitor_conn_id.attr,
577  	&dev_attr_client_monitor_conn_id.attr,
578  	&dev_attr_out_intr_mask.attr,
579  	&dev_attr_out_read_index.attr,
580  	&dev_attr_out_write_index.attr,
581  	&dev_attr_out_read_bytes_avail.attr,
582  	&dev_attr_out_write_bytes_avail.attr,
583  	&dev_attr_in_intr_mask.attr,
584  	&dev_attr_in_read_index.attr,
585  	&dev_attr_in_write_index.attr,
586  	&dev_attr_in_read_bytes_avail.attr,
587  	&dev_attr_in_write_bytes_avail.attr,
588  	&dev_attr_channel_vp_mapping.attr,
589  	&dev_attr_vendor.attr,
590  	&dev_attr_device.attr,
591  	&dev_attr_driver_override.attr,
592  	NULL,
593  };
594  
595  /*
596   * Device-level attribute_group callback function. Returns the permission for
597   * each attribute, and returns 0 if an attribute is not visible.
598   */
vmbus_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)599  static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
600  					 struct attribute *attr, int idx)
601  {
602  	struct device *dev = kobj_to_dev(kobj);
603  	const struct hv_device *hv_dev = device_to_hv_device(dev);
604  
605  	/* Hide the monitor attributes if the monitor mechanism is not used. */
606  	if (!hv_dev->channel->offermsg.monitor_allocated &&
607  	    (attr == &dev_attr_monitor_id.attr ||
608  	     attr == &dev_attr_server_monitor_pending.attr ||
609  	     attr == &dev_attr_client_monitor_pending.attr ||
610  	     attr == &dev_attr_server_monitor_latency.attr ||
611  	     attr == &dev_attr_client_monitor_latency.attr ||
612  	     attr == &dev_attr_server_monitor_conn_id.attr ||
613  	     attr == &dev_attr_client_monitor_conn_id.attr))
614  		return 0;
615  
616  	return attr->mode;
617  }
618  
619  static const struct attribute_group vmbus_dev_group = {
620  	.attrs = vmbus_dev_attrs,
621  	.is_visible = vmbus_dev_attr_is_visible
622  };
623  __ATTRIBUTE_GROUPS(vmbus_dev);
624  
625  /* Set up the attribute for /sys/bus/vmbus/hibernation */
hibernation_show(const struct bus_type * bus,char * buf)626  static ssize_t hibernation_show(const struct bus_type *bus, char *buf)
627  {
628  	return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
629  }
630  
631  static BUS_ATTR_RO(hibernation);
632  
633  static struct attribute *vmbus_bus_attrs[] = {
634  	&bus_attr_hibernation.attr,
635  	NULL,
636  };
637  static const struct attribute_group vmbus_bus_group = {
638  	.attrs = vmbus_bus_attrs,
639  };
640  __ATTRIBUTE_GROUPS(vmbus_bus);
641  
642  /*
643   * vmbus_uevent - add uevent for our device
644   *
645   * This routine is invoked when a device is added or removed on the vmbus to
646   * generate a uevent to udev in the userspace. The udev will then look at its
647   * rule and the uevent generated here to load the appropriate driver
648   *
649   * The alias string will be of the form vmbus:guid where guid is the string
650   * representation of the device guid (each byte of the guid will be
651   * represented with two hex characters.
652   */
vmbus_uevent(const struct device * device,struct kobj_uevent_env * env)653  static int vmbus_uevent(const struct device *device, struct kobj_uevent_env *env)
654  {
655  	const struct hv_device *dev = device_to_hv_device(device);
656  	const char *format = "MODALIAS=vmbus:%*phN";
657  
658  	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
659  }
660  
661  static const struct hv_vmbus_device_id *
hv_vmbus_dev_match(const struct hv_vmbus_device_id * id,const guid_t * guid)662  hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
663  {
664  	if (id == NULL)
665  		return NULL; /* empty device table */
666  
667  	for (; !guid_is_null(&id->guid); id++)
668  		if (guid_equal(&id->guid, guid))
669  			return id;
670  
671  	return NULL;
672  }
673  
674  static const struct hv_vmbus_device_id *
hv_vmbus_dynid_match(struct hv_driver * drv,const guid_t * guid)675  hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
676  {
677  	const struct hv_vmbus_device_id *id = NULL;
678  	struct vmbus_dynid *dynid;
679  
680  	spin_lock(&drv->dynids.lock);
681  	list_for_each_entry(dynid, &drv->dynids.list, node) {
682  		if (guid_equal(&dynid->id.guid, guid)) {
683  			id = &dynid->id;
684  			break;
685  		}
686  	}
687  	spin_unlock(&drv->dynids.lock);
688  
689  	return id;
690  }
691  
692  static const struct hv_vmbus_device_id vmbus_device_null;
693  
694  /*
695   * Return a matching hv_vmbus_device_id pointer.
696   * If there is no match, return NULL.
697   */
hv_vmbus_get_id(struct hv_driver * drv,struct hv_device * dev)698  static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
699  							struct hv_device *dev)
700  {
701  	const guid_t *guid = &dev->dev_type;
702  	const struct hv_vmbus_device_id *id;
703  
704  	/* When driver_override is set, only bind to the matching driver */
705  	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
706  		return NULL;
707  
708  	/* Look at the dynamic ids first, before the static ones */
709  	id = hv_vmbus_dynid_match(drv, guid);
710  	if (!id)
711  		id = hv_vmbus_dev_match(drv->id_table, guid);
712  
713  	/* driver_override will always match, send a dummy id */
714  	if (!id && dev->driver_override)
715  		id = &vmbus_device_null;
716  
717  	return id;
718  }
719  
720  /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
vmbus_add_dynid(struct hv_driver * drv,guid_t * guid)721  static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
722  {
723  	struct vmbus_dynid *dynid;
724  
725  	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
726  	if (!dynid)
727  		return -ENOMEM;
728  
729  	dynid->id.guid = *guid;
730  
731  	spin_lock(&drv->dynids.lock);
732  	list_add_tail(&dynid->node, &drv->dynids.list);
733  	spin_unlock(&drv->dynids.lock);
734  
735  	return driver_attach(&drv->driver);
736  }
737  
vmbus_free_dynids(struct hv_driver * drv)738  static void vmbus_free_dynids(struct hv_driver *drv)
739  {
740  	struct vmbus_dynid *dynid, *n;
741  
742  	spin_lock(&drv->dynids.lock);
743  	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
744  		list_del(&dynid->node);
745  		kfree(dynid);
746  	}
747  	spin_unlock(&drv->dynids.lock);
748  }
749  
750  /*
751   * store_new_id - sysfs frontend to vmbus_add_dynid()
752   *
753   * Allow GUIDs to be added to an existing driver via sysfs.
754   */
new_id_store(struct device_driver * driver,const char * buf,size_t count)755  static ssize_t new_id_store(struct device_driver *driver, const char *buf,
756  			    size_t count)
757  {
758  	struct hv_driver *drv = drv_to_hv_drv(driver);
759  	guid_t guid;
760  	ssize_t retval;
761  
762  	retval = guid_parse(buf, &guid);
763  	if (retval)
764  		return retval;
765  
766  	if (hv_vmbus_dynid_match(drv, &guid))
767  		return -EEXIST;
768  
769  	retval = vmbus_add_dynid(drv, &guid);
770  	if (retval)
771  		return retval;
772  	return count;
773  }
774  static DRIVER_ATTR_WO(new_id);
775  
776  /*
777   * store_remove_id - remove a PCI device ID from this driver
778   *
779   * Removes a dynamic pci device ID to this driver.
780   */
remove_id_store(struct device_driver * driver,const char * buf,size_t count)781  static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
782  			       size_t count)
783  {
784  	struct hv_driver *drv = drv_to_hv_drv(driver);
785  	struct vmbus_dynid *dynid, *n;
786  	guid_t guid;
787  	ssize_t retval;
788  
789  	retval = guid_parse(buf, &guid);
790  	if (retval)
791  		return retval;
792  
793  	retval = -ENODEV;
794  	spin_lock(&drv->dynids.lock);
795  	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
796  		struct hv_vmbus_device_id *id = &dynid->id;
797  
798  		if (guid_equal(&id->guid, &guid)) {
799  			list_del(&dynid->node);
800  			kfree(dynid);
801  			retval = count;
802  			break;
803  		}
804  	}
805  	spin_unlock(&drv->dynids.lock);
806  
807  	return retval;
808  }
809  static DRIVER_ATTR_WO(remove_id);
810  
811  static struct attribute *vmbus_drv_attrs[] = {
812  	&driver_attr_new_id.attr,
813  	&driver_attr_remove_id.attr,
814  	NULL,
815  };
816  ATTRIBUTE_GROUPS(vmbus_drv);
817  
818  
819  /*
820   * vmbus_match - Attempt to match the specified device to the specified driver
821   */
vmbus_match(struct device * device,struct device_driver * driver)822  static int vmbus_match(struct device *device, struct device_driver *driver)
823  {
824  	struct hv_driver *drv = drv_to_hv_drv(driver);
825  	struct hv_device *hv_dev = device_to_hv_device(device);
826  
827  	/* The hv_sock driver handles all hv_sock offers. */
828  	if (is_hvsock_channel(hv_dev->channel))
829  		return drv->hvsock;
830  
831  	if (hv_vmbus_get_id(drv, hv_dev))
832  		return 1;
833  
834  	return 0;
835  }
836  
837  /*
838   * vmbus_probe - Add the new vmbus's child device
839   */
vmbus_probe(struct device * child_device)840  static int vmbus_probe(struct device *child_device)
841  {
842  	int ret = 0;
843  	struct hv_driver *drv =
844  			drv_to_hv_drv(child_device->driver);
845  	struct hv_device *dev = device_to_hv_device(child_device);
846  	const struct hv_vmbus_device_id *dev_id;
847  
848  	dev_id = hv_vmbus_get_id(drv, dev);
849  	if (drv->probe) {
850  		ret = drv->probe(dev, dev_id);
851  		if (ret != 0)
852  			pr_err("probe failed for device %s (%d)\n",
853  			       dev_name(child_device), ret);
854  
855  	} else {
856  		pr_err("probe not set for driver %s\n",
857  		       dev_name(child_device));
858  		ret = -ENODEV;
859  	}
860  	return ret;
861  }
862  
863  /*
864   * vmbus_dma_configure -- Configure DMA coherence for VMbus device
865   */
vmbus_dma_configure(struct device * child_device)866  static int vmbus_dma_configure(struct device *child_device)
867  {
868  	/*
869  	 * On ARM64, propagate the DMA coherence setting from the top level
870  	 * VMbus ACPI device to the child VMbus device being added here.
871  	 * On x86/x64 coherence is assumed and these calls have no effect.
872  	 */
873  	hv_setup_dma_ops(child_device,
874  		device_get_dma_attr(hv_dev) == DEV_DMA_COHERENT);
875  	return 0;
876  }
877  
878  /*
879   * vmbus_remove - Remove a vmbus device
880   */
vmbus_remove(struct device * child_device)881  static void vmbus_remove(struct device *child_device)
882  {
883  	struct hv_driver *drv;
884  	struct hv_device *dev = device_to_hv_device(child_device);
885  
886  	if (child_device->driver) {
887  		drv = drv_to_hv_drv(child_device->driver);
888  		if (drv->remove)
889  			drv->remove(dev);
890  	}
891  }
892  
893  /*
894   * vmbus_shutdown - Shutdown a vmbus device
895   */
vmbus_shutdown(struct device * child_device)896  static void vmbus_shutdown(struct device *child_device)
897  {
898  	struct hv_driver *drv;
899  	struct hv_device *dev = device_to_hv_device(child_device);
900  
901  
902  	/* The device may not be attached yet */
903  	if (!child_device->driver)
904  		return;
905  
906  	drv = drv_to_hv_drv(child_device->driver);
907  
908  	if (drv->shutdown)
909  		drv->shutdown(dev);
910  }
911  
912  #ifdef CONFIG_PM_SLEEP
913  /*
914   * vmbus_suspend - Suspend a vmbus device
915   */
vmbus_suspend(struct device * child_device)916  static int vmbus_suspend(struct device *child_device)
917  {
918  	struct hv_driver *drv;
919  	struct hv_device *dev = device_to_hv_device(child_device);
920  
921  	/* The device may not be attached yet */
922  	if (!child_device->driver)
923  		return 0;
924  
925  	drv = drv_to_hv_drv(child_device->driver);
926  	if (!drv->suspend)
927  		return -EOPNOTSUPP;
928  
929  	return drv->suspend(dev);
930  }
931  
932  /*
933   * vmbus_resume - Resume a vmbus device
934   */
vmbus_resume(struct device * child_device)935  static int vmbus_resume(struct device *child_device)
936  {
937  	struct hv_driver *drv;
938  	struct hv_device *dev = device_to_hv_device(child_device);
939  
940  	/* The device may not be attached yet */
941  	if (!child_device->driver)
942  		return 0;
943  
944  	drv = drv_to_hv_drv(child_device->driver);
945  	if (!drv->resume)
946  		return -EOPNOTSUPP;
947  
948  	return drv->resume(dev);
949  }
950  #else
951  #define vmbus_suspend NULL
952  #define vmbus_resume NULL
953  #endif /* CONFIG_PM_SLEEP */
954  
955  /*
956   * vmbus_device_release - Final callback release of the vmbus child device
957   */
vmbus_device_release(struct device * device)958  static void vmbus_device_release(struct device *device)
959  {
960  	struct hv_device *hv_dev = device_to_hv_device(device);
961  	struct vmbus_channel *channel = hv_dev->channel;
962  
963  	hv_debug_rm_dev_dir(hv_dev);
964  
965  	mutex_lock(&vmbus_connection.channel_mutex);
966  	hv_process_channel_removal(channel);
967  	mutex_unlock(&vmbus_connection.channel_mutex);
968  	kfree(hv_dev);
969  }
970  
971  /*
972   * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
973   *
974   * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
975   * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
976   * is no way to wake up a Generation-2 VM.
977   *
978   * The other 4 ops are for hibernation.
979   */
980  
981  static const struct dev_pm_ops vmbus_pm = {
982  	.suspend_noirq	= NULL,
983  	.resume_noirq	= NULL,
984  	.freeze_noirq	= vmbus_suspend,
985  	.thaw_noirq	= vmbus_resume,
986  	.poweroff_noirq	= vmbus_suspend,
987  	.restore_noirq	= vmbus_resume,
988  };
989  
990  /* The one and only one */
991  static struct bus_type  hv_bus = {
992  	.name =		"vmbus",
993  	.match =		vmbus_match,
994  	.shutdown =		vmbus_shutdown,
995  	.remove =		vmbus_remove,
996  	.probe =		vmbus_probe,
997  	.uevent =		vmbus_uevent,
998  	.dma_configure =	vmbus_dma_configure,
999  	.dev_groups =		vmbus_dev_groups,
1000  	.drv_groups =		vmbus_drv_groups,
1001  	.bus_groups =		vmbus_bus_groups,
1002  	.pm =			&vmbus_pm,
1003  };
1004  
1005  struct onmessage_work_context {
1006  	struct work_struct work;
1007  	struct {
1008  		struct hv_message_header header;
1009  		u8 payload[];
1010  	} msg;
1011  };
1012  
vmbus_onmessage_work(struct work_struct * work)1013  static void vmbus_onmessage_work(struct work_struct *work)
1014  {
1015  	struct onmessage_work_context *ctx;
1016  
1017  	/* Do not process messages if we're in DISCONNECTED state */
1018  	if (vmbus_connection.conn_state == DISCONNECTED)
1019  		return;
1020  
1021  	ctx = container_of(work, struct onmessage_work_context,
1022  			   work);
1023  	vmbus_onmessage((struct vmbus_channel_message_header *)
1024  			&ctx->msg.payload);
1025  	kfree(ctx);
1026  }
1027  
vmbus_on_msg_dpc(unsigned long data)1028  void vmbus_on_msg_dpc(unsigned long data)
1029  {
1030  	struct hv_per_cpu_context *hv_cpu = (void *)data;
1031  	void *page_addr = hv_cpu->synic_message_page;
1032  	struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1033  				  VMBUS_MESSAGE_SINT;
1034  	struct vmbus_channel_message_header *hdr;
1035  	enum vmbus_channel_message_type msgtype;
1036  	const struct vmbus_channel_message_table_entry *entry;
1037  	struct onmessage_work_context *ctx;
1038  	__u8 payload_size;
1039  	u32 message_type;
1040  
1041  	/*
1042  	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1043  	 * it is being used in 'struct vmbus_channel_message_header' definition
1044  	 * which is supposed to match hypervisor ABI.
1045  	 */
1046  	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1047  
1048  	/*
1049  	 * Since the message is in memory shared with the host, an erroneous or
1050  	 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1051  	 * or individual message handlers are executing; to prevent this, copy
1052  	 * the message into private memory.
1053  	 */
1054  	memcpy(&msg_copy, msg, sizeof(struct hv_message));
1055  
1056  	message_type = msg_copy.header.message_type;
1057  	if (message_type == HVMSG_NONE)
1058  		/* no msg */
1059  		return;
1060  
1061  	hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1062  	msgtype = hdr->msgtype;
1063  
1064  	trace_vmbus_on_msg_dpc(hdr);
1065  
1066  	if (msgtype >= CHANNELMSG_COUNT) {
1067  		WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1068  		goto msg_handled;
1069  	}
1070  
1071  	payload_size = msg_copy.header.payload_size;
1072  	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1073  		WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1074  		goto msg_handled;
1075  	}
1076  
1077  	entry = &channel_message_table[msgtype];
1078  
1079  	if (!entry->message_handler)
1080  		goto msg_handled;
1081  
1082  	if (payload_size < entry->min_payload_len) {
1083  		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1084  		goto msg_handled;
1085  	}
1086  
1087  	if (entry->handler_type	== VMHT_BLOCKING) {
1088  		ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
1089  		if (ctx == NULL)
1090  			return;
1091  
1092  		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1093  		ctx->msg.header = msg_copy.header;
1094  		memcpy(&ctx->msg.payload, msg_copy.u.payload, payload_size);
1095  
1096  		/*
1097  		 * The host can generate a rescind message while we
1098  		 * may still be handling the original offer. We deal with
1099  		 * this condition by relying on the synchronization provided
1100  		 * by offer_in_progress and by channel_mutex.  See also the
1101  		 * inline comments in vmbus_onoffer_rescind().
1102  		 */
1103  		switch (msgtype) {
1104  		case CHANNELMSG_RESCIND_CHANNELOFFER:
1105  			/*
1106  			 * If we are handling the rescind message;
1107  			 * schedule the work on the global work queue.
1108  			 *
1109  			 * The OFFER message and the RESCIND message should
1110  			 * not be handled by the same serialized work queue,
1111  			 * because the OFFER handler may call vmbus_open(),
1112  			 * which tries to open the channel by sending an
1113  			 * OPEN_CHANNEL message to the host and waits for
1114  			 * the host's response; however, if the host has
1115  			 * rescinded the channel before it receives the
1116  			 * OPEN_CHANNEL message, the host just silently
1117  			 * ignores the OPEN_CHANNEL message; as a result,
1118  			 * the guest's OFFER handler hangs for ever, if we
1119  			 * handle the RESCIND message in the same serialized
1120  			 * work queue: the RESCIND handler can not start to
1121  			 * run before the OFFER handler finishes.
1122  			 */
1123  			if (vmbus_connection.ignore_any_offer_msg)
1124  				break;
1125  			queue_work(vmbus_connection.rescind_work_queue, &ctx->work);
1126  			break;
1127  
1128  		case CHANNELMSG_OFFERCHANNEL:
1129  			/*
1130  			 * The host sends the offer message of a given channel
1131  			 * before sending the rescind message of the same
1132  			 * channel.  These messages are sent to the guest's
1133  			 * connect CPU; the guest then starts processing them
1134  			 * in the tasklet handler on this CPU:
1135  			 *
1136  			 * VMBUS_CONNECT_CPU
1137  			 *
1138  			 * [vmbus_on_msg_dpc()]
1139  			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1140  			 * queue_work()
1141  			 * ...
1142  			 * [vmbus_on_msg_dpc()]
1143  			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1144  			 *
1145  			 * We rely on the memory-ordering properties of the
1146  			 * queue_work() and schedule_work() primitives, which
1147  			 * guarantee that the atomic increment will be visible
1148  			 * to the CPUs which will execute the offer & rescind
1149  			 * works by the time these works will start execution.
1150  			 */
1151  			if (vmbus_connection.ignore_any_offer_msg)
1152  				break;
1153  			atomic_inc(&vmbus_connection.offer_in_progress);
1154  			fallthrough;
1155  
1156  		default:
1157  			queue_work(vmbus_connection.work_queue, &ctx->work);
1158  		}
1159  	} else
1160  		entry->message_handler(hdr);
1161  
1162  msg_handled:
1163  	vmbus_signal_eom(msg, message_type);
1164  }
1165  
1166  #ifdef CONFIG_PM_SLEEP
1167  /*
1168   * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1169   * hibernation, because hv_sock connections can not persist across hibernation.
1170   */
vmbus_force_channel_rescinded(struct vmbus_channel * channel)1171  static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1172  {
1173  	struct onmessage_work_context *ctx;
1174  	struct vmbus_channel_rescind_offer *rescind;
1175  
1176  	WARN_ON(!is_hvsock_channel(channel));
1177  
1178  	/*
1179  	 * Allocation size is small and the allocation should really not fail,
1180  	 * otherwise the state of the hv_sock connections ends up in limbo.
1181  	 */
1182  	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1183  		      GFP_KERNEL | __GFP_NOFAIL);
1184  
1185  	/*
1186  	 * So far, these are not really used by Linux. Just set them to the
1187  	 * reasonable values conforming to the definitions of the fields.
1188  	 */
1189  	ctx->msg.header.message_type = 1;
1190  	ctx->msg.header.payload_size = sizeof(*rescind);
1191  
1192  	/* These values are actually used by Linux. */
1193  	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1194  	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1195  	rescind->child_relid = channel->offermsg.child_relid;
1196  
1197  	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1198  
1199  	queue_work(vmbus_connection.work_queue, &ctx->work);
1200  }
1201  #endif /* CONFIG_PM_SLEEP */
1202  
1203  /*
1204   * Schedule all channels with events pending
1205   */
vmbus_chan_sched(struct hv_per_cpu_context * hv_cpu)1206  static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1207  {
1208  	unsigned long *recv_int_page;
1209  	u32 maxbits, relid;
1210  
1211  	/*
1212  	 * The event page can be directly checked to get the id of
1213  	 * the channel that has the interrupt pending.
1214  	 */
1215  	void *page_addr = hv_cpu->synic_event_page;
1216  	union hv_synic_event_flags *event
1217  		= (union hv_synic_event_flags *)page_addr +
1218  					 VMBUS_MESSAGE_SINT;
1219  
1220  	maxbits = HV_EVENT_FLAGS_COUNT;
1221  	recv_int_page = event->flags;
1222  
1223  	if (unlikely(!recv_int_page))
1224  		return;
1225  
1226  	for_each_set_bit(relid, recv_int_page, maxbits) {
1227  		void (*callback_fn)(void *context);
1228  		struct vmbus_channel *channel;
1229  
1230  		if (!sync_test_and_clear_bit(relid, recv_int_page))
1231  			continue;
1232  
1233  		/* Special case - vmbus channel protocol msg */
1234  		if (relid == 0)
1235  			continue;
1236  
1237  		/*
1238  		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1239  		 * Guarantees that the channel data structure doesn't
1240  		 * get freed while the channel pointer below is being
1241  		 * dereferenced.
1242  		 */
1243  		rcu_read_lock();
1244  
1245  		/* Find channel based on relid */
1246  		channel = relid2channel(relid);
1247  		if (channel == NULL)
1248  			goto sched_unlock_rcu;
1249  
1250  		if (channel->rescind)
1251  			goto sched_unlock_rcu;
1252  
1253  		/*
1254  		 * Make sure that the ring buffer data structure doesn't get
1255  		 * freed while we dereference the ring buffer pointer.  Test
1256  		 * for the channel's onchannel_callback being NULL within a
1257  		 * sched_lock critical section.  See also the inline comments
1258  		 * in vmbus_reset_channel_cb().
1259  		 */
1260  		spin_lock(&channel->sched_lock);
1261  
1262  		callback_fn = channel->onchannel_callback;
1263  		if (unlikely(callback_fn == NULL))
1264  			goto sched_unlock;
1265  
1266  		trace_vmbus_chan_sched(channel);
1267  
1268  		++channel->interrupts;
1269  
1270  		switch (channel->callback_mode) {
1271  		case HV_CALL_ISR:
1272  			(*callback_fn)(channel->channel_callback_context);
1273  			break;
1274  
1275  		case HV_CALL_BATCHED:
1276  			hv_begin_read(&channel->inbound);
1277  			fallthrough;
1278  		case HV_CALL_DIRECT:
1279  			tasklet_schedule(&channel->callback_event);
1280  		}
1281  
1282  sched_unlock:
1283  		spin_unlock(&channel->sched_lock);
1284  sched_unlock_rcu:
1285  		rcu_read_unlock();
1286  	}
1287  }
1288  
vmbus_isr(void)1289  static void vmbus_isr(void)
1290  {
1291  	struct hv_per_cpu_context *hv_cpu
1292  		= this_cpu_ptr(hv_context.cpu_context);
1293  	void *page_addr;
1294  	struct hv_message *msg;
1295  
1296  	vmbus_chan_sched(hv_cpu);
1297  
1298  	page_addr = hv_cpu->synic_message_page;
1299  	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1300  
1301  	/* Check if there are actual msgs to be processed */
1302  	if (msg->header.message_type != HVMSG_NONE) {
1303  		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1304  			hv_stimer0_isr();
1305  			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1306  		} else
1307  			tasklet_schedule(&hv_cpu->msg_dpc);
1308  	}
1309  
1310  	add_interrupt_randomness(vmbus_interrupt);
1311  }
1312  
vmbus_percpu_isr(int irq,void * dev_id)1313  static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1314  {
1315  	vmbus_isr();
1316  	return IRQ_HANDLED;
1317  }
1318  
1319  /*
1320   * vmbus_bus_init -Main vmbus driver initialization routine.
1321   *
1322   * Here, we
1323   *	- initialize the vmbus driver context
1324   *	- invoke the vmbus hv main init routine
1325   *	- retrieve the channel offers
1326   */
vmbus_bus_init(void)1327  static int vmbus_bus_init(void)
1328  {
1329  	int ret;
1330  
1331  	ret = hv_init();
1332  	if (ret != 0) {
1333  		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1334  		return ret;
1335  	}
1336  
1337  	ret = bus_register(&hv_bus);
1338  	if (ret)
1339  		return ret;
1340  
1341  	/*
1342  	 * VMbus interrupts are best modeled as per-cpu interrupts. If
1343  	 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1344  	 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1345  	 * If not on such an architecture (e.g., x86/x64), then rely on
1346  	 * code in the arch-specific portion of the code tree to connect
1347  	 * the VMbus interrupt handler.
1348  	 */
1349  
1350  	if (vmbus_irq == -1) {
1351  		hv_setup_vmbus_handler(vmbus_isr);
1352  	} else {
1353  		vmbus_evt = alloc_percpu(long);
1354  		ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1355  				"Hyper-V VMbus", vmbus_evt);
1356  		if (ret) {
1357  			pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1358  					vmbus_irq, ret);
1359  			free_percpu(vmbus_evt);
1360  			goto err_setup;
1361  		}
1362  	}
1363  
1364  	ret = hv_synic_alloc();
1365  	if (ret)
1366  		goto err_alloc;
1367  
1368  	/*
1369  	 * Initialize the per-cpu interrupt state and stimer state.
1370  	 * Then connect to the host.
1371  	 */
1372  	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1373  				hv_synic_init, hv_synic_cleanup);
1374  	if (ret < 0)
1375  		goto err_alloc;
1376  	hyperv_cpuhp_online = ret;
1377  
1378  	ret = vmbus_connect();
1379  	if (ret)
1380  		goto err_connect;
1381  
1382  	/*
1383  	 * Always register the vmbus unload panic notifier because we
1384  	 * need to shut the VMbus channel connection on panic.
1385  	 */
1386  	atomic_notifier_chain_register(&panic_notifier_list,
1387  			       &hyperv_panic_vmbus_unload_block);
1388  
1389  	vmbus_request_offers();
1390  
1391  	return 0;
1392  
1393  err_connect:
1394  	cpuhp_remove_state(hyperv_cpuhp_online);
1395  err_alloc:
1396  	hv_synic_free();
1397  	if (vmbus_irq == -1) {
1398  		hv_remove_vmbus_handler();
1399  	} else {
1400  		free_percpu_irq(vmbus_irq, vmbus_evt);
1401  		free_percpu(vmbus_evt);
1402  	}
1403  err_setup:
1404  	bus_unregister(&hv_bus);
1405  	return ret;
1406  }
1407  
1408  /**
1409   * __vmbus_driver_register() - Register a vmbus's driver
1410   * @hv_driver: Pointer to driver structure you want to register
1411   * @owner: owner module of the drv
1412   * @mod_name: module name string
1413   *
1414   * Registers the given driver with Linux through the 'driver_register()' call
1415   * and sets up the hyper-v vmbus handling for this driver.
1416   * It will return the state of the 'driver_register()' call.
1417   *
1418   */
__vmbus_driver_register(struct hv_driver * hv_driver,struct module * owner,const char * mod_name)1419  int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1420  {
1421  	int ret;
1422  
1423  	pr_info("registering driver %s\n", hv_driver->name);
1424  
1425  	ret = vmbus_exists();
1426  	if (ret < 0)
1427  		return ret;
1428  
1429  	hv_driver->driver.name = hv_driver->name;
1430  	hv_driver->driver.owner = owner;
1431  	hv_driver->driver.mod_name = mod_name;
1432  	hv_driver->driver.bus = &hv_bus;
1433  
1434  	spin_lock_init(&hv_driver->dynids.lock);
1435  	INIT_LIST_HEAD(&hv_driver->dynids.list);
1436  
1437  	ret = driver_register(&hv_driver->driver);
1438  
1439  	return ret;
1440  }
1441  EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1442  
1443  /**
1444   * vmbus_driver_unregister() - Unregister a vmbus's driver
1445   * @hv_driver: Pointer to driver structure you want to
1446   *             un-register
1447   *
1448   * Un-register the given driver that was previous registered with a call to
1449   * vmbus_driver_register()
1450   */
vmbus_driver_unregister(struct hv_driver * hv_driver)1451  void vmbus_driver_unregister(struct hv_driver *hv_driver)
1452  {
1453  	pr_info("unregistering driver %s\n", hv_driver->name);
1454  
1455  	if (!vmbus_exists()) {
1456  		driver_unregister(&hv_driver->driver);
1457  		vmbus_free_dynids(hv_driver);
1458  	}
1459  }
1460  EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1461  
1462  
1463  /*
1464   * Called when last reference to channel is gone.
1465   */
vmbus_chan_release(struct kobject * kobj)1466  static void vmbus_chan_release(struct kobject *kobj)
1467  {
1468  	struct vmbus_channel *channel
1469  		= container_of(kobj, struct vmbus_channel, kobj);
1470  
1471  	kfree_rcu(channel, rcu);
1472  }
1473  
1474  struct vmbus_chan_attribute {
1475  	struct attribute attr;
1476  	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1477  	ssize_t (*store)(struct vmbus_channel *chan,
1478  			 const char *buf, size_t count);
1479  };
1480  #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1481  	struct vmbus_chan_attribute chan_attr_##_name \
1482  		= __ATTR(_name, _mode, _show, _store)
1483  #define VMBUS_CHAN_ATTR_RW(_name) \
1484  	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1485  #define VMBUS_CHAN_ATTR_RO(_name) \
1486  	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1487  #define VMBUS_CHAN_ATTR_WO(_name) \
1488  	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1489  
vmbus_chan_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1490  static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1491  				    struct attribute *attr, char *buf)
1492  {
1493  	const struct vmbus_chan_attribute *attribute
1494  		= container_of(attr, struct vmbus_chan_attribute, attr);
1495  	struct vmbus_channel *chan
1496  		= container_of(kobj, struct vmbus_channel, kobj);
1497  
1498  	if (!attribute->show)
1499  		return -EIO;
1500  
1501  	return attribute->show(chan, buf);
1502  }
1503  
vmbus_chan_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1504  static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1505  				     struct attribute *attr, const char *buf,
1506  				     size_t count)
1507  {
1508  	const struct vmbus_chan_attribute *attribute
1509  		= container_of(attr, struct vmbus_chan_attribute, attr);
1510  	struct vmbus_channel *chan
1511  		= container_of(kobj, struct vmbus_channel, kobj);
1512  
1513  	if (!attribute->store)
1514  		return -EIO;
1515  
1516  	return attribute->store(chan, buf, count);
1517  }
1518  
1519  static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1520  	.show = vmbus_chan_attr_show,
1521  	.store = vmbus_chan_attr_store,
1522  };
1523  
out_mask_show(struct vmbus_channel * channel,char * buf)1524  static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1525  {
1526  	struct hv_ring_buffer_info *rbi = &channel->outbound;
1527  	ssize_t ret;
1528  
1529  	mutex_lock(&rbi->ring_buffer_mutex);
1530  	if (!rbi->ring_buffer) {
1531  		mutex_unlock(&rbi->ring_buffer_mutex);
1532  		return -EINVAL;
1533  	}
1534  
1535  	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1536  	mutex_unlock(&rbi->ring_buffer_mutex);
1537  	return ret;
1538  }
1539  static VMBUS_CHAN_ATTR_RO(out_mask);
1540  
in_mask_show(struct vmbus_channel * channel,char * buf)1541  static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1542  {
1543  	struct hv_ring_buffer_info *rbi = &channel->inbound;
1544  	ssize_t ret;
1545  
1546  	mutex_lock(&rbi->ring_buffer_mutex);
1547  	if (!rbi->ring_buffer) {
1548  		mutex_unlock(&rbi->ring_buffer_mutex);
1549  		return -EINVAL;
1550  	}
1551  
1552  	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1553  	mutex_unlock(&rbi->ring_buffer_mutex);
1554  	return ret;
1555  }
1556  static VMBUS_CHAN_ATTR_RO(in_mask);
1557  
read_avail_show(struct vmbus_channel * channel,char * buf)1558  static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1559  {
1560  	struct hv_ring_buffer_info *rbi = &channel->inbound;
1561  	ssize_t ret;
1562  
1563  	mutex_lock(&rbi->ring_buffer_mutex);
1564  	if (!rbi->ring_buffer) {
1565  		mutex_unlock(&rbi->ring_buffer_mutex);
1566  		return -EINVAL;
1567  	}
1568  
1569  	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1570  	mutex_unlock(&rbi->ring_buffer_mutex);
1571  	return ret;
1572  }
1573  static VMBUS_CHAN_ATTR_RO(read_avail);
1574  
write_avail_show(struct vmbus_channel * channel,char * buf)1575  static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1576  {
1577  	struct hv_ring_buffer_info *rbi = &channel->outbound;
1578  	ssize_t ret;
1579  
1580  	mutex_lock(&rbi->ring_buffer_mutex);
1581  	if (!rbi->ring_buffer) {
1582  		mutex_unlock(&rbi->ring_buffer_mutex);
1583  		return -EINVAL;
1584  	}
1585  
1586  	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1587  	mutex_unlock(&rbi->ring_buffer_mutex);
1588  	return ret;
1589  }
1590  static VMBUS_CHAN_ATTR_RO(write_avail);
1591  
target_cpu_show(struct vmbus_channel * channel,char * buf)1592  static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1593  {
1594  	return sprintf(buf, "%u\n", channel->target_cpu);
1595  }
target_cpu_store(struct vmbus_channel * channel,const char * buf,size_t count)1596  static ssize_t target_cpu_store(struct vmbus_channel *channel,
1597  				const char *buf, size_t count)
1598  {
1599  	u32 target_cpu, origin_cpu;
1600  	ssize_t ret = count;
1601  
1602  	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1603  		return -EIO;
1604  
1605  	if (sscanf(buf, "%uu", &target_cpu) != 1)
1606  		return -EIO;
1607  
1608  	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1609  	if (target_cpu >= nr_cpumask_bits)
1610  		return -EINVAL;
1611  
1612  	if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ)))
1613  		return -EINVAL;
1614  
1615  	/* No CPUs should come up or down during this. */
1616  	cpus_read_lock();
1617  
1618  	if (!cpu_online(target_cpu)) {
1619  		cpus_read_unlock();
1620  		return -EINVAL;
1621  	}
1622  
1623  	/*
1624  	 * Synchronizes target_cpu_store() and channel closure:
1625  	 *
1626  	 * { Initially: state = CHANNEL_OPENED }
1627  	 *
1628  	 * CPU1				CPU2
1629  	 *
1630  	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
1631  	 *
1632  	 * LOCK channel_mutex		LOCK channel_mutex
1633  	 * LOAD r1 = state		LOAD r2 = state
1634  	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1635  	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1636  	 *   [...]			  SEND CLOSECHANNEL
1637  	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1638  	 *
1639  	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1640  	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1641  	 *
1642  	 * Note.  The host processes the channel messages "sequentially", in
1643  	 * the order in which they are received on a per-partition basis.
1644  	 */
1645  	mutex_lock(&vmbus_connection.channel_mutex);
1646  
1647  	/*
1648  	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1649  	 * avoid sending the message and fail here for such channels.
1650  	 */
1651  	if (channel->state != CHANNEL_OPENED_STATE) {
1652  		ret = -EIO;
1653  		goto cpu_store_unlock;
1654  	}
1655  
1656  	origin_cpu = channel->target_cpu;
1657  	if (target_cpu == origin_cpu)
1658  		goto cpu_store_unlock;
1659  
1660  	if (vmbus_send_modifychannel(channel,
1661  				     hv_cpu_number_to_vp_number(target_cpu))) {
1662  		ret = -EIO;
1663  		goto cpu_store_unlock;
1664  	}
1665  
1666  	/*
1667  	 * For version before VERSION_WIN10_V5_3, the following warning holds:
1668  	 *
1669  	 * Warning.  At this point, there is *no* guarantee that the host will
1670  	 * have successfully processed the vmbus_send_modifychannel() request.
1671  	 * See the header comment of vmbus_send_modifychannel() for more info.
1672  	 *
1673  	 * Lags in the processing of the above vmbus_send_modifychannel() can
1674  	 * result in missed interrupts if the "old" target CPU is taken offline
1675  	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1676  	 * But apart from this offlining scenario, the code tolerates such
1677  	 * lags.  It will function correctly even if a channel interrupt comes
1678  	 * in on a CPU that is different from the channel target_cpu value.
1679  	 */
1680  
1681  	channel->target_cpu = target_cpu;
1682  
1683  	/* See init_vp_index(). */
1684  	if (hv_is_perf_channel(channel))
1685  		hv_update_allocated_cpus(origin_cpu, target_cpu);
1686  
1687  	/* Currently set only for storvsc channels. */
1688  	if (channel->change_target_cpu_callback) {
1689  		(*channel->change_target_cpu_callback)(channel,
1690  				origin_cpu, target_cpu);
1691  	}
1692  
1693  cpu_store_unlock:
1694  	mutex_unlock(&vmbus_connection.channel_mutex);
1695  	cpus_read_unlock();
1696  	return ret;
1697  }
1698  static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1699  
channel_pending_show(struct vmbus_channel * channel,char * buf)1700  static ssize_t channel_pending_show(struct vmbus_channel *channel,
1701  				    char *buf)
1702  {
1703  	return sprintf(buf, "%d\n",
1704  		       channel_pending(channel,
1705  				       vmbus_connection.monitor_pages[1]));
1706  }
1707  static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1708  
channel_latency_show(struct vmbus_channel * channel,char * buf)1709  static ssize_t channel_latency_show(struct vmbus_channel *channel,
1710  				    char *buf)
1711  {
1712  	return sprintf(buf, "%d\n",
1713  		       channel_latency(channel,
1714  				       vmbus_connection.monitor_pages[1]));
1715  }
1716  static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1717  
channel_interrupts_show(struct vmbus_channel * channel,char * buf)1718  static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1719  {
1720  	return sprintf(buf, "%llu\n", channel->interrupts);
1721  }
1722  static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1723  
channel_events_show(struct vmbus_channel * channel,char * buf)1724  static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1725  {
1726  	return sprintf(buf, "%llu\n", channel->sig_events);
1727  }
1728  static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1729  
channel_intr_in_full_show(struct vmbus_channel * channel,char * buf)1730  static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1731  					 char *buf)
1732  {
1733  	return sprintf(buf, "%llu\n",
1734  		       (unsigned long long)channel->intr_in_full);
1735  }
1736  static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1737  
channel_intr_out_empty_show(struct vmbus_channel * channel,char * buf)1738  static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1739  					   char *buf)
1740  {
1741  	return sprintf(buf, "%llu\n",
1742  		       (unsigned long long)channel->intr_out_empty);
1743  }
1744  static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1745  
channel_out_full_first_show(struct vmbus_channel * channel,char * buf)1746  static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1747  					   char *buf)
1748  {
1749  	return sprintf(buf, "%llu\n",
1750  		       (unsigned long long)channel->out_full_first);
1751  }
1752  static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1753  
channel_out_full_total_show(struct vmbus_channel * channel,char * buf)1754  static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1755  					   char *buf)
1756  {
1757  	return sprintf(buf, "%llu\n",
1758  		       (unsigned long long)channel->out_full_total);
1759  }
1760  static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1761  
subchannel_monitor_id_show(struct vmbus_channel * channel,char * buf)1762  static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1763  					  char *buf)
1764  {
1765  	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1766  }
1767  static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1768  
subchannel_id_show(struct vmbus_channel * channel,char * buf)1769  static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1770  				  char *buf)
1771  {
1772  	return sprintf(buf, "%u\n",
1773  		       channel->offermsg.offer.sub_channel_index);
1774  }
1775  static VMBUS_CHAN_ATTR_RO(subchannel_id);
1776  
1777  static struct attribute *vmbus_chan_attrs[] = {
1778  	&chan_attr_out_mask.attr,
1779  	&chan_attr_in_mask.attr,
1780  	&chan_attr_read_avail.attr,
1781  	&chan_attr_write_avail.attr,
1782  	&chan_attr_cpu.attr,
1783  	&chan_attr_pending.attr,
1784  	&chan_attr_latency.attr,
1785  	&chan_attr_interrupts.attr,
1786  	&chan_attr_events.attr,
1787  	&chan_attr_intr_in_full.attr,
1788  	&chan_attr_intr_out_empty.attr,
1789  	&chan_attr_out_full_first.attr,
1790  	&chan_attr_out_full_total.attr,
1791  	&chan_attr_monitor_id.attr,
1792  	&chan_attr_subchannel_id.attr,
1793  	NULL
1794  };
1795  
1796  /*
1797   * Channel-level attribute_group callback function. Returns the permission for
1798   * each attribute, and returns 0 if an attribute is not visible.
1799   */
vmbus_chan_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)1800  static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1801  					  struct attribute *attr, int idx)
1802  {
1803  	const struct vmbus_channel *channel =
1804  		container_of(kobj, struct vmbus_channel, kobj);
1805  
1806  	/* Hide the monitor attributes if the monitor mechanism is not used. */
1807  	if (!channel->offermsg.monitor_allocated &&
1808  	    (attr == &chan_attr_pending.attr ||
1809  	     attr == &chan_attr_latency.attr ||
1810  	     attr == &chan_attr_monitor_id.attr))
1811  		return 0;
1812  
1813  	return attr->mode;
1814  }
1815  
1816  static struct attribute_group vmbus_chan_group = {
1817  	.attrs = vmbus_chan_attrs,
1818  	.is_visible = vmbus_chan_attr_is_visible
1819  };
1820  
1821  static struct kobj_type vmbus_chan_ktype = {
1822  	.sysfs_ops = &vmbus_chan_sysfs_ops,
1823  	.release = vmbus_chan_release,
1824  };
1825  
1826  /*
1827   * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1828   */
vmbus_add_channel_kobj(struct hv_device * dev,struct vmbus_channel * channel)1829  int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1830  {
1831  	const struct device *device = &dev->device;
1832  	struct kobject *kobj = &channel->kobj;
1833  	u32 relid = channel->offermsg.child_relid;
1834  	int ret;
1835  
1836  	kobj->kset = dev->channels_kset;
1837  	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1838  				   "%u", relid);
1839  	if (ret) {
1840  		kobject_put(kobj);
1841  		return ret;
1842  	}
1843  
1844  	ret = sysfs_create_group(kobj, &vmbus_chan_group);
1845  
1846  	if (ret) {
1847  		/*
1848  		 * The calling functions' error handling paths will cleanup the
1849  		 * empty channel directory.
1850  		 */
1851  		kobject_put(kobj);
1852  		dev_err(device, "Unable to set up channel sysfs files\n");
1853  		return ret;
1854  	}
1855  
1856  	kobject_uevent(kobj, KOBJ_ADD);
1857  
1858  	return 0;
1859  }
1860  
1861  /*
1862   * vmbus_remove_channel_attr_group - remove the channel's attribute group
1863   */
vmbus_remove_channel_attr_group(struct vmbus_channel * channel)1864  void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1865  {
1866  	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1867  }
1868  
1869  /*
1870   * vmbus_device_create - Creates and registers a new child device
1871   * on the vmbus.
1872   */
vmbus_device_create(const guid_t * type,const guid_t * instance,struct vmbus_channel * channel)1873  struct hv_device *vmbus_device_create(const guid_t *type,
1874  				      const guid_t *instance,
1875  				      struct vmbus_channel *channel)
1876  {
1877  	struct hv_device *child_device_obj;
1878  
1879  	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1880  	if (!child_device_obj) {
1881  		pr_err("Unable to allocate device object for child device\n");
1882  		return NULL;
1883  	}
1884  
1885  	child_device_obj->channel = channel;
1886  	guid_copy(&child_device_obj->dev_type, type);
1887  	guid_copy(&child_device_obj->dev_instance, instance);
1888  	child_device_obj->vendor_id = PCI_VENDOR_ID_MICROSOFT;
1889  
1890  	return child_device_obj;
1891  }
1892  
1893  /*
1894   * vmbus_device_register - Register the child device
1895   */
vmbus_device_register(struct hv_device * child_device_obj)1896  int vmbus_device_register(struct hv_device *child_device_obj)
1897  {
1898  	struct kobject *kobj = &child_device_obj->device.kobj;
1899  	int ret;
1900  
1901  	dev_set_name(&child_device_obj->device, "%pUl",
1902  		     &child_device_obj->channel->offermsg.offer.if_instance);
1903  
1904  	child_device_obj->device.bus = &hv_bus;
1905  	child_device_obj->device.parent = hv_dev;
1906  	child_device_obj->device.release = vmbus_device_release;
1907  
1908  	child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
1909  	child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
1910  	dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
1911  
1912  	/*
1913  	 * Register with the LDM. This will kick off the driver/device
1914  	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1915  	 */
1916  	ret = device_register(&child_device_obj->device);
1917  	if (ret) {
1918  		pr_err("Unable to register child device\n");
1919  		put_device(&child_device_obj->device);
1920  		return ret;
1921  	}
1922  
1923  	child_device_obj->channels_kset = kset_create_and_add("channels",
1924  							      NULL, kobj);
1925  	if (!child_device_obj->channels_kset) {
1926  		ret = -ENOMEM;
1927  		goto err_dev_unregister;
1928  	}
1929  
1930  	ret = vmbus_add_channel_kobj(child_device_obj,
1931  				     child_device_obj->channel);
1932  	if (ret) {
1933  		pr_err("Unable to register primary channeln");
1934  		goto err_kset_unregister;
1935  	}
1936  	hv_debug_add_dev_dir(child_device_obj);
1937  
1938  	return 0;
1939  
1940  err_kset_unregister:
1941  	kset_unregister(child_device_obj->channels_kset);
1942  
1943  err_dev_unregister:
1944  	device_unregister(&child_device_obj->device);
1945  	return ret;
1946  }
1947  
1948  /*
1949   * vmbus_device_unregister - Remove the specified child device
1950   * from the vmbus.
1951   */
vmbus_device_unregister(struct hv_device * device_obj)1952  void vmbus_device_unregister(struct hv_device *device_obj)
1953  {
1954  	pr_debug("child device %s unregistered\n",
1955  		dev_name(&device_obj->device));
1956  
1957  	kset_unregister(device_obj->channels_kset);
1958  
1959  	/*
1960  	 * Kick off the process of unregistering the device.
1961  	 * This will call vmbus_remove() and eventually vmbus_device_release()
1962  	 */
1963  	device_unregister(&device_obj->device);
1964  }
1965  EXPORT_SYMBOL_GPL(vmbus_device_unregister);
1966  
1967  #ifdef CONFIG_ACPI
1968  /*
1969   * VMBUS is an acpi enumerated device. Get the information we
1970   * need from DSDT.
1971   */
vmbus_walk_resources(struct acpi_resource * res,void * ctx)1972  static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1973  {
1974  	resource_size_t start = 0;
1975  	resource_size_t end = 0;
1976  	struct resource *new_res;
1977  	struct resource **old_res = &hyperv_mmio;
1978  	struct resource **prev_res = NULL;
1979  	struct resource r;
1980  
1981  	switch (res->type) {
1982  
1983  	/*
1984  	 * "Address" descriptors are for bus windows. Ignore
1985  	 * "memory" descriptors, which are for registers on
1986  	 * devices.
1987  	 */
1988  	case ACPI_RESOURCE_TYPE_ADDRESS32:
1989  		start = res->data.address32.address.minimum;
1990  		end = res->data.address32.address.maximum;
1991  		break;
1992  
1993  	case ACPI_RESOURCE_TYPE_ADDRESS64:
1994  		start = res->data.address64.address.minimum;
1995  		end = res->data.address64.address.maximum;
1996  		break;
1997  
1998  	/*
1999  	 * The IRQ information is needed only on ARM64, which Hyper-V
2000  	 * sets up in the extended format. IRQ information is present
2001  	 * on x86/x64 in the non-extended format but it is not used by
2002  	 * Linux. So don't bother checking for the non-extended format.
2003  	 */
2004  	case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2005  		if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2006  			pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2007  			return AE_ERROR;
2008  		}
2009  		/* ARM64 INTID for VMbus */
2010  		vmbus_interrupt = res->data.extended_irq.interrupts[0];
2011  		/* Linux IRQ number */
2012  		vmbus_irq = r.start;
2013  		return AE_OK;
2014  
2015  	default:
2016  		/* Unused resource type */
2017  		return AE_OK;
2018  
2019  	}
2020  	/*
2021  	 * Ignore ranges that are below 1MB, as they're not
2022  	 * necessary or useful here.
2023  	 */
2024  	if (end < 0x100000)
2025  		return AE_OK;
2026  
2027  	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2028  	if (!new_res)
2029  		return AE_NO_MEMORY;
2030  
2031  	/* If this range overlaps the virtual TPM, truncate it. */
2032  	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2033  		end = VTPM_BASE_ADDRESS;
2034  
2035  	new_res->name = "hyperv mmio";
2036  	new_res->flags = IORESOURCE_MEM;
2037  	new_res->start = start;
2038  	new_res->end = end;
2039  
2040  	/*
2041  	 * If two ranges are adjacent, merge them.
2042  	 */
2043  	do {
2044  		if (!*old_res) {
2045  			*old_res = new_res;
2046  			break;
2047  		}
2048  
2049  		if (((*old_res)->end + 1) == new_res->start) {
2050  			(*old_res)->end = new_res->end;
2051  			kfree(new_res);
2052  			break;
2053  		}
2054  
2055  		if ((*old_res)->start == new_res->end + 1) {
2056  			(*old_res)->start = new_res->start;
2057  			kfree(new_res);
2058  			break;
2059  		}
2060  
2061  		if ((*old_res)->start > new_res->end) {
2062  			new_res->sibling = *old_res;
2063  			if (prev_res)
2064  				(*prev_res)->sibling = new_res;
2065  			*old_res = new_res;
2066  			break;
2067  		}
2068  
2069  		prev_res = old_res;
2070  		old_res = &(*old_res)->sibling;
2071  
2072  	} while (1);
2073  
2074  	return AE_OK;
2075  }
2076  #endif
2077  
vmbus_mmio_remove(void)2078  static void vmbus_mmio_remove(void)
2079  {
2080  	struct resource *cur_res;
2081  	struct resource *next_res;
2082  
2083  	if (hyperv_mmio) {
2084  		if (fb_mmio) {
2085  			__release_region(hyperv_mmio, fb_mmio->start,
2086  					 resource_size(fb_mmio));
2087  			fb_mmio = NULL;
2088  		}
2089  
2090  		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2091  			next_res = cur_res->sibling;
2092  			kfree(cur_res);
2093  		}
2094  	}
2095  }
2096  
vmbus_reserve_fb(void)2097  static void __maybe_unused vmbus_reserve_fb(void)
2098  {
2099  	resource_size_t start = 0, size;
2100  	struct pci_dev *pdev;
2101  
2102  	if (efi_enabled(EFI_BOOT)) {
2103  		/* Gen2 VM: get FB base from EFI framebuffer */
2104  		start = screen_info.lfb_base;
2105  		size = max_t(__u32, screen_info.lfb_size, 0x800000);
2106  	} else {
2107  		/* Gen1 VM: get FB base from PCI */
2108  		pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT,
2109  				      PCI_DEVICE_ID_HYPERV_VIDEO, NULL);
2110  		if (!pdev)
2111  			return;
2112  
2113  		if (pdev->resource[0].flags & IORESOURCE_MEM) {
2114  			start = pci_resource_start(pdev, 0);
2115  			size = pci_resource_len(pdev, 0);
2116  		}
2117  
2118  		/*
2119  		 * Release the PCI device so hyperv_drm or hyperv_fb driver can
2120  		 * grab it later.
2121  		 */
2122  		pci_dev_put(pdev);
2123  	}
2124  
2125  	if (!start)
2126  		return;
2127  
2128  	/*
2129  	 * Make a claim for the frame buffer in the resource tree under the
2130  	 * first node, which will be the one below 4GB.  The length seems to
2131  	 * be underreported, particularly in a Generation 1 VM.  So start out
2132  	 * reserving a larger area and make it smaller until it succeeds.
2133  	 */
2134  	for (; !fb_mmio && (size >= 0x100000); size >>= 1)
2135  		fb_mmio = __request_region(hyperv_mmio, start, size, fb_mmio_name, 0);
2136  }
2137  
2138  /**
2139   * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2140   * @new:		If successful, supplied a pointer to the
2141   *			allocated MMIO space.
2142   * @device_obj:		Identifies the caller
2143   * @min:		Minimum guest physical address of the
2144   *			allocation
2145   * @max:		Maximum guest physical address
2146   * @size:		Size of the range to be allocated
2147   * @align:		Alignment of the range to be allocated
2148   * @fb_overlap_ok:	Whether this allocation can be allowed
2149   *			to overlap the video frame buffer.
2150   *
2151   * This function walks the resources granted to VMBus by the
2152   * _CRS object in the ACPI namespace underneath the parent
2153   * "bridge" whether that's a root PCI bus in the Generation 1
2154   * case or a Module Device in the Generation 2 case.  It then
2155   * attempts to allocate from the global MMIO pool in a way that
2156   * matches the constraints supplied in these parameters and by
2157   * that _CRS.
2158   *
2159   * Return: 0 on success, -errno on failure
2160   */
vmbus_allocate_mmio(struct resource ** new,struct hv_device * device_obj,resource_size_t min,resource_size_t max,resource_size_t size,resource_size_t align,bool fb_overlap_ok)2161  int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2162  			resource_size_t min, resource_size_t max,
2163  			resource_size_t size, resource_size_t align,
2164  			bool fb_overlap_ok)
2165  {
2166  	struct resource *iter, *shadow;
2167  	resource_size_t range_min, range_max, start, end;
2168  	const char *dev_n = dev_name(&device_obj->device);
2169  	int retval;
2170  
2171  	retval = -ENXIO;
2172  	mutex_lock(&hyperv_mmio_lock);
2173  
2174  	/*
2175  	 * If overlaps with frame buffers are allowed, then first attempt to
2176  	 * make the allocation from within the reserved region.  Because it
2177  	 * is already reserved, no shadow allocation is necessary.
2178  	 */
2179  	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2180  	    !(max < fb_mmio->start)) {
2181  
2182  		range_min = fb_mmio->start;
2183  		range_max = fb_mmio->end;
2184  		start = (range_min + align - 1) & ~(align - 1);
2185  		for (; start + size - 1 <= range_max; start += align) {
2186  			*new = request_mem_region_exclusive(start, size, dev_n);
2187  			if (*new) {
2188  				retval = 0;
2189  				goto exit;
2190  			}
2191  		}
2192  	}
2193  
2194  	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2195  		if ((iter->start >= max) || (iter->end <= min))
2196  			continue;
2197  
2198  		range_min = iter->start;
2199  		range_max = iter->end;
2200  		start = (range_min + align - 1) & ~(align - 1);
2201  		for (; start + size - 1 <= range_max; start += align) {
2202  			end = start + size - 1;
2203  
2204  			/* Skip the whole fb_mmio region if not fb_overlap_ok */
2205  			if (!fb_overlap_ok && fb_mmio &&
2206  			    (((start >= fb_mmio->start) && (start <= fb_mmio->end)) ||
2207  			     ((end >= fb_mmio->start) && (end <= fb_mmio->end))))
2208  				continue;
2209  
2210  			shadow = __request_region(iter, start, size, NULL,
2211  						  IORESOURCE_BUSY);
2212  			if (!shadow)
2213  				continue;
2214  
2215  			*new = request_mem_region_exclusive(start, size, dev_n);
2216  			if (*new) {
2217  				shadow->name = (char *)*new;
2218  				retval = 0;
2219  				goto exit;
2220  			}
2221  
2222  			__release_region(iter, start, size);
2223  		}
2224  	}
2225  
2226  exit:
2227  	mutex_unlock(&hyperv_mmio_lock);
2228  	return retval;
2229  }
2230  EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2231  
2232  /**
2233   * vmbus_free_mmio() - Free a memory-mapped I/O range.
2234   * @start:		Base address of region to release.
2235   * @size:		Size of the range to be allocated
2236   *
2237   * This function releases anything requested by
2238   * vmbus_mmio_allocate().
2239   */
vmbus_free_mmio(resource_size_t start,resource_size_t size)2240  void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2241  {
2242  	struct resource *iter;
2243  
2244  	mutex_lock(&hyperv_mmio_lock);
2245  
2246  	/*
2247  	 * If all bytes of the MMIO range to be released are within the
2248  	 * special case fb_mmio shadow region, skip releasing the shadow
2249  	 * region since no corresponding __request_region() was done
2250  	 * in vmbus_allocate_mmio().
2251  	 */
2252  	if (fb_mmio && start >= fb_mmio->start &&
2253  	    (start + size - 1 <= fb_mmio->end))
2254  		goto skip_shadow_release;
2255  
2256  	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2257  		if ((iter->start >= start + size) || (iter->end <= start))
2258  			continue;
2259  
2260  		__release_region(iter, start, size);
2261  	}
2262  
2263  skip_shadow_release:
2264  	release_mem_region(start, size);
2265  	mutex_unlock(&hyperv_mmio_lock);
2266  
2267  }
2268  EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2269  
2270  #ifdef CONFIG_ACPI
vmbus_acpi_add(struct platform_device * pdev)2271  static int vmbus_acpi_add(struct platform_device *pdev)
2272  {
2273  	acpi_status result;
2274  	int ret_val = -ENODEV;
2275  	struct acpi_device *ancestor;
2276  	struct acpi_device *device = ACPI_COMPANION(&pdev->dev);
2277  
2278  	hv_dev = &device->dev;
2279  
2280  	/*
2281  	 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2282  	 * method on the top level VMbus device in the DSDT. But devices
2283  	 * are hardware coherent in all current Hyper-V use cases, so fix
2284  	 * up the ACPI device to behave as if _CCA is present and indicates
2285  	 * hardware coherence.
2286  	 */
2287  	ACPI_COMPANION_SET(&device->dev, device);
2288  	if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2289  	    device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
2290  		pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2291  		device->flags.cca_seen = true;
2292  		device->flags.coherent_dma = true;
2293  	}
2294  
2295  	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2296  					vmbus_walk_resources, NULL);
2297  
2298  	if (ACPI_FAILURE(result))
2299  		goto acpi_walk_err;
2300  	/*
2301  	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2302  	 * firmware) is the VMOD that has the mmio ranges. Get that.
2303  	 */
2304  	for (ancestor = acpi_dev_parent(device);
2305  	     ancestor && ancestor->handle != ACPI_ROOT_OBJECT;
2306  	     ancestor = acpi_dev_parent(ancestor)) {
2307  		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2308  					     vmbus_walk_resources, NULL);
2309  
2310  		if (ACPI_FAILURE(result))
2311  			continue;
2312  		if (hyperv_mmio) {
2313  			vmbus_reserve_fb();
2314  			break;
2315  		}
2316  	}
2317  	ret_val = 0;
2318  
2319  acpi_walk_err:
2320  	if (ret_val)
2321  		vmbus_mmio_remove();
2322  	return ret_val;
2323  }
2324  #else
vmbus_acpi_add(struct platform_device * pdev)2325  static int vmbus_acpi_add(struct platform_device *pdev)
2326  {
2327  	return 0;
2328  }
2329  #endif
2330  
vmbus_device_add(struct platform_device * pdev)2331  static int vmbus_device_add(struct platform_device *pdev)
2332  {
2333  	struct resource **cur_res = &hyperv_mmio;
2334  	struct of_range range;
2335  	struct of_range_parser parser;
2336  	struct device_node *np = pdev->dev.of_node;
2337  	int ret;
2338  
2339  	hv_dev = &pdev->dev;
2340  
2341  	ret = of_range_parser_init(&parser, np);
2342  	if (ret)
2343  		return ret;
2344  
2345  	for_each_of_range(&parser, &range) {
2346  		struct resource *res;
2347  
2348  		res = kzalloc(sizeof(*res), GFP_KERNEL);
2349  		if (!res) {
2350  			vmbus_mmio_remove();
2351  			return -ENOMEM;
2352  		}
2353  
2354  		res->name = "hyperv mmio";
2355  		res->flags = range.flags;
2356  		res->start = range.cpu_addr;
2357  		res->end = range.cpu_addr + range.size;
2358  
2359  		*cur_res = res;
2360  		cur_res = &res->sibling;
2361  	}
2362  
2363  	return ret;
2364  }
2365  
vmbus_platform_driver_probe(struct platform_device * pdev)2366  static int vmbus_platform_driver_probe(struct platform_device *pdev)
2367  {
2368  	if (acpi_disabled)
2369  		return vmbus_device_add(pdev);
2370  	else
2371  		return vmbus_acpi_add(pdev);
2372  }
2373  
vmbus_platform_driver_remove(struct platform_device * pdev)2374  static int vmbus_platform_driver_remove(struct platform_device *pdev)
2375  {
2376  	vmbus_mmio_remove();
2377  	return 0;
2378  }
2379  
2380  #ifdef CONFIG_PM_SLEEP
vmbus_bus_suspend(struct device * dev)2381  static int vmbus_bus_suspend(struct device *dev)
2382  {
2383  	struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(
2384  			hv_context.cpu_context, VMBUS_CONNECT_CPU);
2385  	struct vmbus_channel *channel, *sc;
2386  
2387  	tasklet_disable(&hv_cpu->msg_dpc);
2388  	vmbus_connection.ignore_any_offer_msg = true;
2389  	/* The tasklet_enable() takes care of providing a memory barrier */
2390  	tasklet_enable(&hv_cpu->msg_dpc);
2391  
2392  	/* Drain all the workqueues as we are in suspend */
2393  	drain_workqueue(vmbus_connection.rescind_work_queue);
2394  	drain_workqueue(vmbus_connection.work_queue);
2395  	drain_workqueue(vmbus_connection.handle_primary_chan_wq);
2396  	drain_workqueue(vmbus_connection.handle_sub_chan_wq);
2397  
2398  	mutex_lock(&vmbus_connection.channel_mutex);
2399  	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2400  		if (!is_hvsock_channel(channel))
2401  			continue;
2402  
2403  		vmbus_force_channel_rescinded(channel);
2404  	}
2405  	mutex_unlock(&vmbus_connection.channel_mutex);
2406  
2407  	/*
2408  	 * Wait until all the sub-channels and hv_sock channels have been
2409  	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2410  	 * they would conflict with the new sub-channels that will be created
2411  	 * in the resume path. hv_sock channels should also be destroyed, but
2412  	 * a hv_sock channel of an established hv_sock connection can not be
2413  	 * really destroyed since it may still be referenced by the userspace
2414  	 * application, so we just force the hv_sock channel to be rescinded
2415  	 * by vmbus_force_channel_rescinded(), and the userspace application
2416  	 * will thoroughly destroy the channel after hibernation.
2417  	 *
2418  	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2419  	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2420  	 */
2421  	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2422  		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2423  
2424  	if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2425  		pr_err("Can not suspend due to a previous failed resuming\n");
2426  		return -EBUSY;
2427  	}
2428  
2429  	mutex_lock(&vmbus_connection.channel_mutex);
2430  
2431  	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2432  		/*
2433  		 * Remove the channel from the array of channels and invalidate
2434  		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2435  		 * up the relid (and other fields, if necessary) and add the
2436  		 * channel back to the array.
2437  		 */
2438  		vmbus_channel_unmap_relid(channel);
2439  		channel->offermsg.child_relid = INVALID_RELID;
2440  
2441  		if (is_hvsock_channel(channel)) {
2442  			if (!channel->rescind) {
2443  				pr_err("hv_sock channel not rescinded!\n");
2444  				WARN_ON_ONCE(1);
2445  			}
2446  			continue;
2447  		}
2448  
2449  		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2450  			pr_err("Sub-channel not deleted!\n");
2451  			WARN_ON_ONCE(1);
2452  		}
2453  
2454  		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2455  	}
2456  
2457  	mutex_unlock(&vmbus_connection.channel_mutex);
2458  
2459  	vmbus_initiate_unload(false);
2460  
2461  	/* Reset the event for the next resume. */
2462  	reinit_completion(&vmbus_connection.ready_for_resume_event);
2463  
2464  	return 0;
2465  }
2466  
vmbus_bus_resume(struct device * dev)2467  static int vmbus_bus_resume(struct device *dev)
2468  {
2469  	struct vmbus_channel_msginfo *msginfo;
2470  	size_t msgsize;
2471  	int ret;
2472  
2473  	vmbus_connection.ignore_any_offer_msg = false;
2474  
2475  	/*
2476  	 * We only use the 'vmbus_proto_version', which was in use before
2477  	 * hibernation, to re-negotiate with the host.
2478  	 */
2479  	if (!vmbus_proto_version) {
2480  		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2481  		return -EINVAL;
2482  	}
2483  
2484  	msgsize = sizeof(*msginfo) +
2485  		  sizeof(struct vmbus_channel_initiate_contact);
2486  
2487  	msginfo = kzalloc(msgsize, GFP_KERNEL);
2488  
2489  	if (msginfo == NULL)
2490  		return -ENOMEM;
2491  
2492  	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2493  
2494  	kfree(msginfo);
2495  
2496  	if (ret != 0)
2497  		return ret;
2498  
2499  	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2500  
2501  	vmbus_request_offers();
2502  
2503  	if (wait_for_completion_timeout(
2504  		&vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2505  		pr_err("Some vmbus device is missing after suspending?\n");
2506  
2507  	/* Reset the event for the next suspend. */
2508  	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2509  
2510  	return 0;
2511  }
2512  #else
2513  #define vmbus_bus_suspend NULL
2514  #define vmbus_bus_resume NULL
2515  #endif /* CONFIG_PM_SLEEP */
2516  
2517  static const __maybe_unused struct of_device_id vmbus_of_match[] = {
2518  	{
2519  		.compatible = "microsoft,vmbus",
2520  	},
2521  	{
2522  		/* sentinel */
2523  	},
2524  };
2525  MODULE_DEVICE_TABLE(of, vmbus_of_match);
2526  
2527  static const __maybe_unused struct acpi_device_id vmbus_acpi_device_ids[] = {
2528  	{"VMBUS", 0},
2529  	{"VMBus", 0},
2530  	{"", 0},
2531  };
2532  MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2533  
2534  /*
2535   * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2536   * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2537   * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2538   * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2539   * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2540   * resume callback must also run via the "noirq" ops.
2541   *
2542   * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2543   * earlier in this file before vmbus_pm.
2544   */
2545  
2546  static const struct dev_pm_ops vmbus_bus_pm = {
2547  	.suspend_noirq	= NULL,
2548  	.resume_noirq	= NULL,
2549  	.freeze_noirq	= vmbus_bus_suspend,
2550  	.thaw_noirq	= vmbus_bus_resume,
2551  	.poweroff_noirq	= vmbus_bus_suspend,
2552  	.restore_noirq	= vmbus_bus_resume
2553  };
2554  
2555  static struct platform_driver vmbus_platform_driver = {
2556  	.probe = vmbus_platform_driver_probe,
2557  	.remove = vmbus_platform_driver_remove,
2558  	.driver = {
2559  		.name = "vmbus",
2560  		.acpi_match_table = ACPI_PTR(vmbus_acpi_device_ids),
2561  		.of_match_table = of_match_ptr(vmbus_of_match),
2562  		.pm = &vmbus_bus_pm,
2563  		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2564  	}
2565  };
2566  
hv_kexec_handler(void)2567  static void hv_kexec_handler(void)
2568  {
2569  	hv_stimer_global_cleanup();
2570  	vmbus_initiate_unload(false);
2571  	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2572  	mb();
2573  	cpuhp_remove_state(hyperv_cpuhp_online);
2574  };
2575  
hv_crash_handler(struct pt_regs * regs)2576  static void hv_crash_handler(struct pt_regs *regs)
2577  {
2578  	int cpu;
2579  
2580  	vmbus_initiate_unload(true);
2581  	/*
2582  	 * In crash handler we can't schedule synic cleanup for all CPUs,
2583  	 * doing the cleanup for current CPU only. This should be sufficient
2584  	 * for kdump.
2585  	 */
2586  	cpu = smp_processor_id();
2587  	hv_stimer_cleanup(cpu);
2588  	hv_synic_disable_regs(cpu);
2589  };
2590  
hv_synic_suspend(void)2591  static int hv_synic_suspend(void)
2592  {
2593  	/*
2594  	 * When we reach here, all the non-boot CPUs have been offlined.
2595  	 * If we're in a legacy configuration where stimer Direct Mode is
2596  	 * not enabled, the stimers on the non-boot CPUs have been unbound
2597  	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2598  	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2599  	 *
2600  	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2601  	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2602  	 * 1) it's unnecessary as interrupts remain disabled between
2603  	 * syscore_suspend() and syscore_resume(): see create_image() and
2604  	 * resume_target_kernel()
2605  	 * 2) the stimer on CPU0 is automatically disabled later by
2606  	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2607  	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2608  	 * 3) a warning would be triggered if we call
2609  	 * clockevents_unbind_device(), which may sleep, in an
2610  	 * interrupts-disabled context.
2611  	 */
2612  
2613  	hv_synic_disable_regs(0);
2614  
2615  	return 0;
2616  }
2617  
hv_synic_resume(void)2618  static void hv_synic_resume(void)
2619  {
2620  	hv_synic_enable_regs(0);
2621  
2622  	/*
2623  	 * Note: we don't need to call hv_stimer_init(0), because the timer
2624  	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2625  	 * automatically re-enabled in timekeeping_resume().
2626  	 */
2627  }
2628  
2629  /* The callbacks run only on CPU0, with irqs_disabled. */
2630  static struct syscore_ops hv_synic_syscore_ops = {
2631  	.suspend = hv_synic_suspend,
2632  	.resume = hv_synic_resume,
2633  };
2634  
hv_acpi_init(void)2635  static int __init hv_acpi_init(void)
2636  {
2637  	int ret;
2638  
2639  	if (!hv_is_hyperv_initialized())
2640  		return -ENODEV;
2641  
2642  	if (hv_root_partition && !hv_nested)
2643  		return 0;
2644  
2645  	/*
2646  	 * Get ACPI resources first.
2647  	 */
2648  	ret = platform_driver_register(&vmbus_platform_driver);
2649  	if (ret)
2650  		return ret;
2651  
2652  	if (!hv_dev) {
2653  		ret = -ENODEV;
2654  		goto cleanup;
2655  	}
2656  
2657  	/*
2658  	 * If we're on an architecture with a hardcoded hypervisor
2659  	 * vector (i.e. x86/x64), override the VMbus interrupt found
2660  	 * in the ACPI tables. Ensure vmbus_irq is not set since the
2661  	 * normal Linux IRQ mechanism is not used in this case.
2662  	 */
2663  #ifdef HYPERVISOR_CALLBACK_VECTOR
2664  	vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2665  	vmbus_irq = -1;
2666  #endif
2667  
2668  	hv_debug_init();
2669  
2670  	ret = vmbus_bus_init();
2671  	if (ret)
2672  		goto cleanup;
2673  
2674  	hv_setup_kexec_handler(hv_kexec_handler);
2675  	hv_setup_crash_handler(hv_crash_handler);
2676  
2677  	register_syscore_ops(&hv_synic_syscore_ops);
2678  
2679  	return 0;
2680  
2681  cleanup:
2682  	platform_driver_unregister(&vmbus_platform_driver);
2683  	hv_dev = NULL;
2684  	return ret;
2685  }
2686  
vmbus_exit(void)2687  static void __exit vmbus_exit(void)
2688  {
2689  	int cpu;
2690  
2691  	unregister_syscore_ops(&hv_synic_syscore_ops);
2692  
2693  	hv_remove_kexec_handler();
2694  	hv_remove_crash_handler();
2695  	vmbus_connection.conn_state = DISCONNECTED;
2696  	hv_stimer_global_cleanup();
2697  	vmbus_disconnect();
2698  	if (vmbus_irq == -1) {
2699  		hv_remove_vmbus_handler();
2700  	} else {
2701  		free_percpu_irq(vmbus_irq, vmbus_evt);
2702  		free_percpu(vmbus_evt);
2703  	}
2704  	for_each_online_cpu(cpu) {
2705  		struct hv_per_cpu_context *hv_cpu
2706  			= per_cpu_ptr(hv_context.cpu_context, cpu);
2707  
2708  		tasklet_kill(&hv_cpu->msg_dpc);
2709  	}
2710  	hv_debug_rm_all_dir();
2711  
2712  	vmbus_free_channels();
2713  	kfree(vmbus_connection.channels);
2714  
2715  	/*
2716  	 * The vmbus panic notifier is always registered, hence we should
2717  	 * also unconditionally unregister it here as well.
2718  	 */
2719  	atomic_notifier_chain_unregister(&panic_notifier_list,
2720  					&hyperv_panic_vmbus_unload_block);
2721  
2722  	bus_unregister(&hv_bus);
2723  
2724  	cpuhp_remove_state(hyperv_cpuhp_online);
2725  	hv_synic_free();
2726  	platform_driver_unregister(&vmbus_platform_driver);
2727  }
2728  
2729  
2730  MODULE_LICENSE("GPL");
2731  MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2732  
2733  subsys_initcall(hv_acpi_init);
2734  module_exit(vmbus_exit);
2735