1 /*
2 * Linux syscalls
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "tcg/startup.h"
27 #include "target_mman.h"
28 #include "exec/page-protection.h"
29 #include <elf.h>
30 #include <endian.h>
31 #include <grp.h>
32 #include <sys/ipc.h>
33 #include <sys/msg.h>
34 #include <sys/wait.h>
35 #include <sys/mount.h>
36 #include <sys/file.h>
37 #include <sys/fsuid.h>
38 #include <sys/personality.h>
39 #include <sys/prctl.h>
40 #include <sys/resource.h>
41 #include <sys/swap.h>
42 #include <linux/capability.h>
43 #include <sched.h>
44 #include <sys/timex.h>
45 #include <sys/socket.h>
46 #include <linux/sockios.h>
47 #include <sys/un.h>
48 #include <sys/uio.h>
49 #include <poll.h>
50 #include <sys/times.h>
51 #include <sys/shm.h>
52 #include <sys/sem.h>
53 #include <sys/statfs.h>
54 #include <utime.h>
55 #include <sys/sysinfo.h>
56 #include <sys/signalfd.h>
57 //#include <sys/user.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 #include <netinet/udp.h>
62 #include <linux/wireless.h>
63 #include <linux/icmp.h>
64 #include <linux/icmpv6.h>
65 #include <linux/if_tun.h>
66 #include <linux/in6.h>
67 #include <linux/errqueue.h>
68 #include <linux/random.h>
69 #ifdef CONFIG_TIMERFD
70 #include <sys/timerfd.h>
71 #endif
72 #ifdef CONFIG_EVENTFD
73 #include <sys/eventfd.h>
74 #endif
75 #ifdef CONFIG_EPOLL
76 #include <sys/epoll.h>
77 #endif
78 #ifdef CONFIG_ATTR
79 #include "qemu/xattr.h"
80 #endif
81 #ifdef CONFIG_SENDFILE
82 #include <sys/sendfile.h>
83 #endif
84 #ifdef HAVE_SYS_KCOV_H
85 #include <sys/kcov.h>
86 #endif
87
88 #define termios host_termios
89 #define winsize host_winsize
90 #define termio host_termio
91 #define sgttyb host_sgttyb /* same as target */
92 #define tchars host_tchars /* same as target */
93 #define ltchars host_ltchars /* same as target */
94
95 #include <linux/termios.h>
96 #include <linux/unistd.h>
97 #include <linux/cdrom.h>
98 #include <linux/hdreg.h>
99 #include <linux/soundcard.h>
100 #include <linux/kd.h>
101 #include <linux/mtio.h>
102 #include <linux/fs.h>
103 #include <linux/fd.h>
104 #if defined(CONFIG_FIEMAP)
105 #include <linux/fiemap.h>
106 #endif
107 #include <linux/fb.h>
108 #if defined(CONFIG_USBFS)
109 #include <linux/usbdevice_fs.h>
110 #include <linux/usb/ch9.h>
111 #endif
112 #include <linux/vt.h>
113 #include <linux/dm-ioctl.h>
114 #include <linux/reboot.h>
115 #include <linux/route.h>
116 #include <linux/filter.h>
117 #include <linux/blkpg.h>
118 #include <netpacket/packet.h>
119 #include <linux/netlink.h>
120 #include <linux/if_alg.h>
121 #include <linux/rtc.h>
122 #include <sound/asound.h>
123 #ifdef HAVE_BTRFS_H
124 #include <linux/btrfs.h>
125 #endif
126 #ifdef HAVE_DRM_H
127 #include <libdrm/drm.h>
128 #include <libdrm/i915_drm.h>
129 #endif
130 #include "linux_loop.h"
131 #include "uname.h"
132
133 #include "qemu.h"
134 #include "user-internals.h"
135 #include "strace.h"
136 #include "signal-common.h"
137 #include "loader.h"
138 #include "user-mmap.h"
139 #include "user/safe-syscall.h"
140 #include "qemu/guest-random.h"
141 #include "qemu/selfmap.h"
142 #include "user/syscall-trace.h"
143 #include "special-errno.h"
144 #include "qapi/error.h"
145 #include "fd-trans.h"
146 #include "cpu_loop-common.h"
147
148 #ifndef CLONE_IO
149 #define CLONE_IO 0x80000000 /* Clone io context */
150 #endif
151
152 /* We can't directly call the host clone syscall, because this will
153 * badly confuse libc (breaking mutexes, for example). So we must
154 * divide clone flags into:
155 * * flag combinations that look like pthread_create()
156 * * flag combinations that look like fork()
157 * * flags we can implement within QEMU itself
158 * * flags we can't support and will return an error for
159 */
160 /* For thread creation, all these flags must be present; for
161 * fork, none must be present.
162 */
163 #define CLONE_THREAD_FLAGS \
164 (CLONE_VM | CLONE_FS | CLONE_FILES | \
165 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
166
167 /* These flags are ignored:
168 * CLONE_DETACHED is now ignored by the kernel;
169 * CLONE_IO is just an optimisation hint to the I/O scheduler
170 */
171 #define CLONE_IGNORED_FLAGS \
172 (CLONE_DETACHED | CLONE_IO)
173
174 #ifndef CLONE_PIDFD
175 # define CLONE_PIDFD 0x00001000
176 #endif
177
178 /* Flags for fork which we can implement within QEMU itself */
179 #define CLONE_OPTIONAL_FORK_FLAGS \
180 (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
181 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
182
183 /* Flags for thread creation which we can implement within QEMU itself */
184 #define CLONE_OPTIONAL_THREAD_FLAGS \
185 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
186 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
187
188 #define CLONE_INVALID_FORK_FLAGS \
189 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
190
191 #define CLONE_INVALID_THREAD_FLAGS \
192 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
193 CLONE_IGNORED_FLAGS))
194
195 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
196 * have almost all been allocated. We cannot support any of
197 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
198 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
199 * The checks against the invalid thread masks above will catch these.
200 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
201 */
202
203 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
204 * once. This exercises the codepaths for restart.
205 */
206 //#define DEBUG_ERESTARTSYS
207
208 //#include <linux/msdos_fs.h>
209 #define VFAT_IOCTL_READDIR_BOTH \
210 _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
211 #define VFAT_IOCTL_READDIR_SHORT \
212 _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
213
214 #undef _syscall0
215 #undef _syscall1
216 #undef _syscall2
217 #undef _syscall3
218 #undef _syscall4
219 #undef _syscall5
220 #undef _syscall6
221
222 #define _syscall0(type,name) \
223 static type name (void) \
224 { \
225 return syscall(__NR_##name); \
226 }
227
228 #define _syscall1(type,name,type1,arg1) \
229 static type name (type1 arg1) \
230 { \
231 return syscall(__NR_##name, arg1); \
232 }
233
234 #define _syscall2(type,name,type1,arg1,type2,arg2) \
235 static type name (type1 arg1,type2 arg2) \
236 { \
237 return syscall(__NR_##name, arg1, arg2); \
238 }
239
240 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
241 static type name (type1 arg1,type2 arg2,type3 arg3) \
242 { \
243 return syscall(__NR_##name, arg1, arg2, arg3); \
244 }
245
246 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
247 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
248 { \
249 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
250 }
251
252 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
253 type5,arg5) \
254 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
255 { \
256 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
257 }
258
259
260 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
261 type5,arg5,type6,arg6) \
262 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
263 type6 arg6) \
264 { \
265 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
266 }
267
268
269 #define __NR_sys_uname __NR_uname
270 #define __NR_sys_getcwd1 __NR_getcwd
271 #define __NR_sys_getdents __NR_getdents
272 #define __NR_sys_getdents64 __NR_getdents64
273 #define __NR_sys_getpriority __NR_getpriority
274 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
275 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
276 #define __NR_sys_syslog __NR_syslog
277 #if defined(__NR_futex)
278 # define __NR_sys_futex __NR_futex
279 #endif
280 #if defined(__NR_futex_time64)
281 # define __NR_sys_futex_time64 __NR_futex_time64
282 #endif
283 #define __NR_sys_statx __NR_statx
284
285 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
286 #define __NR__llseek __NR_lseek
287 #endif
288
289 /* Newer kernel ports have llseek() instead of _llseek() */
290 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
291 #define TARGET_NR__llseek TARGET_NR_llseek
292 #endif
293
294 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
295 #ifndef TARGET_O_NONBLOCK_MASK
296 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
297 #endif
298
299 #define __NR_sys_gettid __NR_gettid
300 _syscall0(int, sys_gettid)
301
302 /* For the 64-bit guest on 32-bit host case we must emulate
303 * getdents using getdents64, because otherwise the host
304 * might hand us back more dirent records than we can fit
305 * into the guest buffer after structure format conversion.
306 * Otherwise we emulate getdents with getdents if the host has it.
307 */
308 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
309 #define EMULATE_GETDENTS_WITH_GETDENTS
310 #endif
311
312 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
313 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count);
314 #endif
315 #if (defined(TARGET_NR_getdents) && \
316 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
317 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
318 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count);
319 #endif
320 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
321 _syscall5(int, _llseek, unsigned int, fd, unsigned long, hi, unsigned long, lo,
322 loff_t *, res, unsigned int, wh);
323 #endif
324 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
325 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
326 siginfo_t *, uinfo)
327 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
328 #ifdef __NR_exit_group
329 _syscall1(int,exit_group,int,error_code)
330 #endif
331 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
332 #define __NR_sys_close_range __NR_close_range
333 _syscall3(int,sys_close_range,int,first,int,last,int,flags)
334 #ifndef CLOSE_RANGE_CLOEXEC
335 #define CLOSE_RANGE_CLOEXEC (1U << 2)
336 #endif
337 #endif
338 #if defined(__NR_futex)
339 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
340 const struct timespec *,timeout,int *,uaddr2,int,val3)
341 #endif
342 #if defined(__NR_futex_time64)
343 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
344 const struct timespec *,timeout,int *,uaddr2,int,val3)
345 #endif
346 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
347 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
348 #endif
349 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
350 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
351 unsigned int, flags);
352 #endif
353 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
354 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
355 #endif
356 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
357 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
358 unsigned long *, user_mask_ptr);
359 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
360 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
361 unsigned long *, user_mask_ptr);
362 /* sched_attr is not defined in glibc */
363 struct sched_attr {
364 uint32_t size;
365 uint32_t sched_policy;
366 uint64_t sched_flags;
367 int32_t sched_nice;
368 uint32_t sched_priority;
369 uint64_t sched_runtime;
370 uint64_t sched_deadline;
371 uint64_t sched_period;
372 uint32_t sched_util_min;
373 uint32_t sched_util_max;
374 };
375 #define __NR_sys_sched_getattr __NR_sched_getattr
376 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
377 unsigned int, size, unsigned int, flags);
378 #define __NR_sys_sched_setattr __NR_sched_setattr
379 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
380 unsigned int, flags);
381 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
382 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
383 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
384 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
385 const struct sched_param *, param);
386 #define __NR_sys_sched_getparam __NR_sched_getparam
387 _syscall2(int, sys_sched_getparam, pid_t, pid,
388 struct sched_param *, param);
389 #define __NR_sys_sched_setparam __NR_sched_setparam
390 _syscall2(int, sys_sched_setparam, pid_t, pid,
391 const struct sched_param *, param);
392 #define __NR_sys_getcpu __NR_getcpu
393 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
394 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
395 void *, arg);
396 _syscall2(int, capget, struct __user_cap_header_struct *, header,
397 struct __user_cap_data_struct *, data);
398 _syscall2(int, capset, struct __user_cap_header_struct *, header,
399 struct __user_cap_data_struct *, data);
400 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
401 _syscall2(int, ioprio_get, int, which, int, who)
402 #endif
403 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
404 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
405 #endif
406 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
407 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
408 #endif
409
410 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
411 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
412 unsigned long, idx1, unsigned long, idx2)
413 #endif
414
415 /*
416 * It is assumed that struct statx is architecture independent.
417 */
418 #if defined(TARGET_NR_statx) && defined(__NR_statx)
419 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
420 unsigned int, mask, struct target_statx *, statxbuf)
421 #endif
422 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
423 _syscall2(int, membarrier, int, cmd, int, flags)
424 #endif
425
426 static const bitmask_transtbl fcntl_flags_tbl[] = {
427 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, },
428 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, },
429 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, },
430 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, },
431 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, },
432 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, },
433 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, },
434 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, },
435 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, },
436 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, },
437 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, },
438 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
439 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, },
440 #if defined(O_DIRECT)
441 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, },
442 #endif
443 #if defined(O_NOATIME)
444 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME },
445 #endif
446 #if defined(O_CLOEXEC)
447 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC },
448 #endif
449 #if defined(O_PATH)
450 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH },
451 #endif
452 #if defined(O_TMPFILE)
453 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE },
454 #endif
455 /* Don't terminate the list prematurely on 64-bit host+guest. */
456 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
457 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
458 #endif
459 };
460
461 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
462
463 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
464 #if defined(__NR_utimensat)
465 #define __NR_sys_utimensat __NR_utimensat
466 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
467 const struct timespec *,tsp,int,flags)
468 #else
469 static int sys_utimensat(int dirfd, const char *pathname,
470 const struct timespec times[2], int flags)
471 {
472 errno = ENOSYS;
473 return -1;
474 }
475 #endif
476 #endif /* TARGET_NR_utimensat */
477
478 #ifdef TARGET_NR_renameat2
479 #if defined(__NR_renameat2)
480 #define __NR_sys_renameat2 __NR_renameat2
481 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
482 const char *, new, unsigned int, flags)
483 #else
484 static int sys_renameat2(int oldfd, const char *old,
485 int newfd, const char *new, int flags)
486 {
487 if (flags == 0) {
488 return renameat(oldfd, old, newfd, new);
489 }
490 errno = ENOSYS;
491 return -1;
492 }
493 #endif
494 #endif /* TARGET_NR_renameat2 */
495
496 #ifdef CONFIG_INOTIFY
497 #include <sys/inotify.h>
498 #else
499 /* Userspace can usually survive runtime without inotify */
500 #undef TARGET_NR_inotify_init
501 #undef TARGET_NR_inotify_init1
502 #undef TARGET_NR_inotify_add_watch
503 #undef TARGET_NR_inotify_rm_watch
504 #endif /* CONFIG_INOTIFY */
505
506 #if defined(TARGET_NR_prlimit64)
507 #ifndef __NR_prlimit64
508 # define __NR_prlimit64 -1
509 #endif
510 #define __NR_sys_prlimit64 __NR_prlimit64
511 /* The glibc rlimit structure may not be that used by the underlying syscall */
512 struct host_rlimit64 {
513 uint64_t rlim_cur;
514 uint64_t rlim_max;
515 };
516 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
517 const struct host_rlimit64 *, new_limit,
518 struct host_rlimit64 *, old_limit)
519 #endif
520
521
522 #if defined(TARGET_NR_timer_create)
523 /* Maximum of 32 active POSIX timers allowed at any one time. */
524 #define GUEST_TIMER_MAX 32
525 static timer_t g_posix_timers[GUEST_TIMER_MAX];
526 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
527
next_free_host_timer(void)528 static inline int next_free_host_timer(void)
529 {
530 int k;
531 for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
532 if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
533 return k;
534 }
535 }
536 return -1;
537 }
538
free_host_timer_slot(int id)539 static inline void free_host_timer_slot(int id)
540 {
541 qatomic_store_release(g_posix_timer_allocated + id, 0);
542 }
543 #endif
544
host_to_target_errno(int host_errno)545 static inline int host_to_target_errno(int host_errno)
546 {
547 switch (host_errno) {
548 #define E(X) case X: return TARGET_##X;
549 #include "errnos.c.inc"
550 #undef E
551 default:
552 return host_errno;
553 }
554 }
555
target_to_host_errno(int target_errno)556 static inline int target_to_host_errno(int target_errno)
557 {
558 switch (target_errno) {
559 #define E(X) case TARGET_##X: return X;
560 #include "errnos.c.inc"
561 #undef E
562 default:
563 return target_errno;
564 }
565 }
566
get_errno(abi_long ret)567 abi_long get_errno(abi_long ret)
568 {
569 if (ret == -1)
570 return -host_to_target_errno(errno);
571 else
572 return ret;
573 }
574
target_strerror(int err)575 const char *target_strerror(int err)
576 {
577 if (err == QEMU_ERESTARTSYS) {
578 return "To be restarted";
579 }
580 if (err == QEMU_ESIGRETURN) {
581 return "Successful exit from sigreturn";
582 }
583
584 return strerror(target_to_host_errno(err));
585 }
586
check_zeroed_user(abi_long addr,size_t ksize,size_t usize)587 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
588 {
589 int i;
590 uint8_t b;
591 if (usize <= ksize) {
592 return 1;
593 }
594 for (i = ksize; i < usize; i++) {
595 if (get_user_u8(b, addr + i)) {
596 return -TARGET_EFAULT;
597 }
598 if (b != 0) {
599 return 0;
600 }
601 }
602 return 1;
603 }
604
605 #define safe_syscall0(type, name) \
606 static type safe_##name(void) \
607 { \
608 return safe_syscall(__NR_##name); \
609 }
610
611 #define safe_syscall1(type, name, type1, arg1) \
612 static type safe_##name(type1 arg1) \
613 { \
614 return safe_syscall(__NR_##name, arg1); \
615 }
616
617 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
618 static type safe_##name(type1 arg1, type2 arg2) \
619 { \
620 return safe_syscall(__NR_##name, arg1, arg2); \
621 }
622
623 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
624 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
625 { \
626 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
627 }
628
629 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
630 type4, arg4) \
631 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
632 { \
633 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
634 }
635
636 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
637 type4, arg4, type5, arg5) \
638 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
639 type5 arg5) \
640 { \
641 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
642 }
643
644 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
645 type4, arg4, type5, arg5, type6, arg6) \
646 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
647 type5 arg5, type6 arg6) \
648 { \
649 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
650 }
651
safe_syscall3(ssize_t,read,int,fd,void *,buff,size_t,count)652 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
653 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
654 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
655 int, flags, mode_t, mode)
656 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
657 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
658 struct rusage *, rusage)
659 #endif
660 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
661 int, options, struct rusage *, rusage)
662 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
663 safe_syscall5(int, execveat, int, dirfd, const char *, filename,
664 char **, argv, char **, envp, int, flags)
665 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
666 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
667 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
668 fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
669 #endif
670 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
671 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
672 struct timespec *, tsp, const sigset_t *, sigmask,
673 size_t, sigsetsize)
674 #endif
675 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
676 int, maxevents, int, timeout, const sigset_t *, sigmask,
677 size_t, sigsetsize)
678 #if defined(__NR_futex)
679 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
680 const struct timespec *,timeout,int *,uaddr2,int,val3)
681 #endif
682 #if defined(__NR_futex_time64)
683 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
684 const struct timespec *,timeout,int *,uaddr2,int,val3)
685 #endif
686 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
687 safe_syscall2(int, kill, pid_t, pid, int, sig)
688 safe_syscall2(int, tkill, int, tid, int, sig)
689 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
690 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
691 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
692 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
693 unsigned long, pos_l, unsigned long, pos_h)
694 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
695 unsigned long, pos_l, unsigned long, pos_h)
696 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
697 socklen_t, addrlen)
698 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
699 int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
700 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
701 int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
702 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
703 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
704 safe_syscall2(int, flock, int, fd, int, operation)
705 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
706 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
707 const struct timespec *, uts, size_t, sigsetsize)
708 #endif
709 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
710 int, flags)
711 #if defined(TARGET_NR_nanosleep)
712 safe_syscall2(int, nanosleep, const struct timespec *, req,
713 struct timespec *, rem)
714 #endif
715 #if defined(TARGET_NR_clock_nanosleep) || \
716 defined(TARGET_NR_clock_nanosleep_time64)
717 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
718 const struct timespec *, req, struct timespec *, rem)
719 #endif
720 #ifdef __NR_ipc
721 #ifdef __s390x__
722 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
723 void *, ptr)
724 #else
725 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
726 void *, ptr, long, fifth)
727 #endif
728 #endif
729 #ifdef __NR_msgsnd
730 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
731 int, flags)
732 #endif
733 #ifdef __NR_msgrcv
734 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
735 long, msgtype, int, flags)
736 #endif
737 #ifdef __NR_semtimedop
738 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
739 unsigned, nsops, const struct timespec *, timeout)
740 #endif
741 #if defined(TARGET_NR_mq_timedsend) || \
742 defined(TARGET_NR_mq_timedsend_time64)
743 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
744 size_t, len, unsigned, prio, const struct timespec *, timeout)
745 #endif
746 #if defined(TARGET_NR_mq_timedreceive) || \
747 defined(TARGET_NR_mq_timedreceive_time64)
748 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
749 size_t, len, unsigned *, prio, const struct timespec *, timeout)
750 #endif
751 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
752 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
753 int, outfd, loff_t *, poutoff, size_t, length,
754 unsigned int, flags)
755 #endif
756
757 /* We do ioctl like this rather than via safe_syscall3 to preserve the
758 * "third argument might be integer or pointer or not present" behaviour of
759 * the libc function.
760 */
761 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
762 /* Similarly for fcntl. Note that callers must always:
763 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
764 * use the flock64 struct rather than unsuffixed flock
765 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
766 */
767 #ifdef __NR_fcntl64
768 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
769 #else
770 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
771 #endif
772
773 static inline int host_to_target_sock_type(int host_type)
774 {
775 int target_type;
776
777 switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
778 case SOCK_DGRAM:
779 target_type = TARGET_SOCK_DGRAM;
780 break;
781 case SOCK_STREAM:
782 target_type = TARGET_SOCK_STREAM;
783 break;
784 default:
785 target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
786 break;
787 }
788
789 #if defined(SOCK_CLOEXEC)
790 if (host_type & SOCK_CLOEXEC) {
791 target_type |= TARGET_SOCK_CLOEXEC;
792 }
793 #endif
794
795 #if defined(SOCK_NONBLOCK)
796 if (host_type & SOCK_NONBLOCK) {
797 target_type |= TARGET_SOCK_NONBLOCK;
798 }
799 #endif
800
801 return target_type;
802 }
803
804 static abi_ulong target_brk, initial_target_brk;
805
target_set_brk(abi_ulong new_brk)806 void target_set_brk(abi_ulong new_brk)
807 {
808 target_brk = TARGET_PAGE_ALIGN(new_brk);
809 initial_target_brk = target_brk;
810 }
811
812 /* do_brk() must return target values and target errnos. */
do_brk(abi_ulong brk_val)813 abi_long do_brk(abi_ulong brk_val)
814 {
815 abi_long mapped_addr;
816 abi_ulong new_brk;
817 abi_ulong old_brk;
818
819 /* brk pointers are always untagged */
820
821 /* do not allow to shrink below initial brk value */
822 if (brk_val < initial_target_brk) {
823 return target_brk;
824 }
825
826 new_brk = TARGET_PAGE_ALIGN(brk_val);
827 old_brk = TARGET_PAGE_ALIGN(target_brk);
828
829 /* new and old target_brk might be on the same page */
830 if (new_brk == old_brk) {
831 target_brk = brk_val;
832 return target_brk;
833 }
834
835 /* Release heap if necessary */
836 if (new_brk < old_brk) {
837 target_munmap(new_brk, old_brk - new_brk);
838
839 target_brk = brk_val;
840 return target_brk;
841 }
842
843 mapped_addr = target_mmap(old_brk, new_brk - old_brk,
844 PROT_READ | PROT_WRITE,
845 MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE,
846 -1, 0);
847
848 if (mapped_addr == old_brk) {
849 target_brk = brk_val;
850 return target_brk;
851 }
852
853 #if defined(TARGET_ALPHA)
854 /* We (partially) emulate OSF/1 on Alpha, which requires we
855 return a proper errno, not an unchanged brk value. */
856 return -TARGET_ENOMEM;
857 #endif
858 /* For everything else, return the previous break. */
859 return target_brk;
860 }
861
862 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
863 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
copy_from_user_fdset(fd_set * fds,abi_ulong target_fds_addr,int n)864 static inline abi_long copy_from_user_fdset(fd_set *fds,
865 abi_ulong target_fds_addr,
866 int n)
867 {
868 int i, nw, j, k;
869 abi_ulong b, *target_fds;
870
871 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
872 if (!(target_fds = lock_user(VERIFY_READ,
873 target_fds_addr,
874 sizeof(abi_ulong) * nw,
875 1)))
876 return -TARGET_EFAULT;
877
878 FD_ZERO(fds);
879 k = 0;
880 for (i = 0; i < nw; i++) {
881 /* grab the abi_ulong */
882 __get_user(b, &target_fds[i]);
883 for (j = 0; j < TARGET_ABI_BITS; j++) {
884 /* check the bit inside the abi_ulong */
885 if ((b >> j) & 1)
886 FD_SET(k, fds);
887 k++;
888 }
889 }
890
891 unlock_user(target_fds, target_fds_addr, 0);
892
893 return 0;
894 }
895
copy_from_user_fdset_ptr(fd_set * fds,fd_set ** fds_ptr,abi_ulong target_fds_addr,int n)896 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
897 abi_ulong target_fds_addr,
898 int n)
899 {
900 if (target_fds_addr) {
901 if (copy_from_user_fdset(fds, target_fds_addr, n))
902 return -TARGET_EFAULT;
903 *fds_ptr = fds;
904 } else {
905 *fds_ptr = NULL;
906 }
907 return 0;
908 }
909
copy_to_user_fdset(abi_ulong target_fds_addr,const fd_set * fds,int n)910 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
911 const fd_set *fds,
912 int n)
913 {
914 int i, nw, j, k;
915 abi_long v;
916 abi_ulong *target_fds;
917
918 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
919 if (!(target_fds = lock_user(VERIFY_WRITE,
920 target_fds_addr,
921 sizeof(abi_ulong) * nw,
922 0)))
923 return -TARGET_EFAULT;
924
925 k = 0;
926 for (i = 0; i < nw; i++) {
927 v = 0;
928 for (j = 0; j < TARGET_ABI_BITS; j++) {
929 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
930 k++;
931 }
932 __put_user(v, &target_fds[i]);
933 }
934
935 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
936
937 return 0;
938 }
939 #endif
940
941 #if defined(__alpha__)
942 #define HOST_HZ 1024
943 #else
944 #define HOST_HZ 100
945 #endif
946
host_to_target_clock_t(long ticks)947 static inline abi_long host_to_target_clock_t(long ticks)
948 {
949 #if HOST_HZ == TARGET_HZ
950 return ticks;
951 #else
952 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
953 #endif
954 }
955
host_to_target_rusage(abi_ulong target_addr,const struct rusage * rusage)956 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
957 const struct rusage *rusage)
958 {
959 struct target_rusage *target_rusage;
960
961 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
962 return -TARGET_EFAULT;
963 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
964 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
965 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
966 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
967 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
968 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
969 target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
970 target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
971 target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
972 target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
973 target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
974 target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
975 target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
976 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
977 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
978 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
979 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
980 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
981 unlock_user_struct(target_rusage, target_addr, 1);
982
983 return 0;
984 }
985
986 #ifdef TARGET_NR_setrlimit
target_to_host_rlim(abi_ulong target_rlim)987 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
988 {
989 abi_ulong target_rlim_swap;
990 rlim_t result;
991
992 target_rlim_swap = tswapal(target_rlim);
993 if (target_rlim_swap == TARGET_RLIM_INFINITY)
994 return RLIM_INFINITY;
995
996 result = target_rlim_swap;
997 if (target_rlim_swap != (rlim_t)result)
998 return RLIM_INFINITY;
999
1000 return result;
1001 }
1002 #endif
1003
1004 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
host_to_target_rlim(rlim_t rlim)1005 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1006 {
1007 abi_ulong target_rlim_swap;
1008 abi_ulong result;
1009
1010 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1011 target_rlim_swap = TARGET_RLIM_INFINITY;
1012 else
1013 target_rlim_swap = rlim;
1014 result = tswapal(target_rlim_swap);
1015
1016 return result;
1017 }
1018 #endif
1019
target_to_host_resource(int code)1020 static inline int target_to_host_resource(int code)
1021 {
1022 switch (code) {
1023 case TARGET_RLIMIT_AS:
1024 return RLIMIT_AS;
1025 case TARGET_RLIMIT_CORE:
1026 return RLIMIT_CORE;
1027 case TARGET_RLIMIT_CPU:
1028 return RLIMIT_CPU;
1029 case TARGET_RLIMIT_DATA:
1030 return RLIMIT_DATA;
1031 case TARGET_RLIMIT_FSIZE:
1032 return RLIMIT_FSIZE;
1033 case TARGET_RLIMIT_LOCKS:
1034 return RLIMIT_LOCKS;
1035 case TARGET_RLIMIT_MEMLOCK:
1036 return RLIMIT_MEMLOCK;
1037 case TARGET_RLIMIT_MSGQUEUE:
1038 return RLIMIT_MSGQUEUE;
1039 case TARGET_RLIMIT_NICE:
1040 return RLIMIT_NICE;
1041 case TARGET_RLIMIT_NOFILE:
1042 return RLIMIT_NOFILE;
1043 case TARGET_RLIMIT_NPROC:
1044 return RLIMIT_NPROC;
1045 case TARGET_RLIMIT_RSS:
1046 return RLIMIT_RSS;
1047 case TARGET_RLIMIT_RTPRIO:
1048 return RLIMIT_RTPRIO;
1049 #ifdef RLIMIT_RTTIME
1050 case TARGET_RLIMIT_RTTIME:
1051 return RLIMIT_RTTIME;
1052 #endif
1053 case TARGET_RLIMIT_SIGPENDING:
1054 return RLIMIT_SIGPENDING;
1055 case TARGET_RLIMIT_STACK:
1056 return RLIMIT_STACK;
1057 default:
1058 return code;
1059 }
1060 }
1061
copy_from_user_timeval(struct timeval * tv,abi_ulong target_tv_addr)1062 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1063 abi_ulong target_tv_addr)
1064 {
1065 struct target_timeval *target_tv;
1066
1067 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1068 return -TARGET_EFAULT;
1069 }
1070
1071 __get_user(tv->tv_sec, &target_tv->tv_sec);
1072 __get_user(tv->tv_usec, &target_tv->tv_usec);
1073
1074 unlock_user_struct(target_tv, target_tv_addr, 0);
1075
1076 return 0;
1077 }
1078
copy_to_user_timeval(abi_ulong target_tv_addr,const struct timeval * tv)1079 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1080 const struct timeval *tv)
1081 {
1082 struct target_timeval *target_tv;
1083
1084 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1085 return -TARGET_EFAULT;
1086 }
1087
1088 __put_user(tv->tv_sec, &target_tv->tv_sec);
1089 __put_user(tv->tv_usec, &target_tv->tv_usec);
1090
1091 unlock_user_struct(target_tv, target_tv_addr, 1);
1092
1093 return 0;
1094 }
1095
1096 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
copy_from_user_timeval64(struct timeval * tv,abi_ulong target_tv_addr)1097 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1098 abi_ulong target_tv_addr)
1099 {
1100 struct target__kernel_sock_timeval *target_tv;
1101
1102 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1103 return -TARGET_EFAULT;
1104 }
1105
1106 __get_user(tv->tv_sec, &target_tv->tv_sec);
1107 __get_user(tv->tv_usec, &target_tv->tv_usec);
1108
1109 unlock_user_struct(target_tv, target_tv_addr, 0);
1110
1111 return 0;
1112 }
1113 #endif
1114
copy_to_user_timeval64(abi_ulong target_tv_addr,const struct timeval * tv)1115 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1116 const struct timeval *tv)
1117 {
1118 struct target__kernel_sock_timeval *target_tv;
1119
1120 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1121 return -TARGET_EFAULT;
1122 }
1123
1124 __put_user(tv->tv_sec, &target_tv->tv_sec);
1125 __put_user(tv->tv_usec, &target_tv->tv_usec);
1126
1127 unlock_user_struct(target_tv, target_tv_addr, 1);
1128
1129 return 0;
1130 }
1131
1132 #if defined(TARGET_NR_futex) || \
1133 defined(TARGET_NR_rt_sigtimedwait) || \
1134 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1135 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1136 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1137 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1138 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1139 defined(TARGET_NR_timer_settime) || \
1140 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
target_to_host_timespec(struct timespec * host_ts,abi_ulong target_addr)1141 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1142 abi_ulong target_addr)
1143 {
1144 struct target_timespec *target_ts;
1145
1146 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1147 return -TARGET_EFAULT;
1148 }
1149 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1150 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1151 unlock_user_struct(target_ts, target_addr, 0);
1152 return 0;
1153 }
1154 #endif
1155
1156 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1157 defined(TARGET_NR_timer_settime64) || \
1158 defined(TARGET_NR_mq_timedsend_time64) || \
1159 defined(TARGET_NR_mq_timedreceive_time64) || \
1160 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1161 defined(TARGET_NR_clock_nanosleep_time64) || \
1162 defined(TARGET_NR_rt_sigtimedwait_time64) || \
1163 defined(TARGET_NR_utimensat) || \
1164 defined(TARGET_NR_utimensat_time64) || \
1165 defined(TARGET_NR_semtimedop_time64) || \
1166 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
target_to_host_timespec64(struct timespec * host_ts,abi_ulong target_addr)1167 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1168 abi_ulong target_addr)
1169 {
1170 struct target__kernel_timespec *target_ts;
1171
1172 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1173 return -TARGET_EFAULT;
1174 }
1175 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1176 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1177 /* in 32bit mode, this drops the padding */
1178 host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1179 unlock_user_struct(target_ts, target_addr, 0);
1180 return 0;
1181 }
1182 #endif
1183
host_to_target_timespec(abi_ulong target_addr,struct timespec * host_ts)1184 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1185 struct timespec *host_ts)
1186 {
1187 struct target_timespec *target_ts;
1188
1189 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1190 return -TARGET_EFAULT;
1191 }
1192 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1193 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1194 unlock_user_struct(target_ts, target_addr, 1);
1195 return 0;
1196 }
1197
host_to_target_timespec64(abi_ulong target_addr,struct timespec * host_ts)1198 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1199 struct timespec *host_ts)
1200 {
1201 struct target__kernel_timespec *target_ts;
1202
1203 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1204 return -TARGET_EFAULT;
1205 }
1206 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1207 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1208 unlock_user_struct(target_ts, target_addr, 1);
1209 return 0;
1210 }
1211
1212 #if defined(TARGET_NR_gettimeofday)
copy_to_user_timezone(abi_ulong target_tz_addr,struct timezone * tz)1213 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1214 struct timezone *tz)
1215 {
1216 struct target_timezone *target_tz;
1217
1218 if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1219 return -TARGET_EFAULT;
1220 }
1221
1222 __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1223 __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1224
1225 unlock_user_struct(target_tz, target_tz_addr, 1);
1226
1227 return 0;
1228 }
1229 #endif
1230
1231 #if defined(TARGET_NR_settimeofday)
copy_from_user_timezone(struct timezone * tz,abi_ulong target_tz_addr)1232 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1233 abi_ulong target_tz_addr)
1234 {
1235 struct target_timezone *target_tz;
1236
1237 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1238 return -TARGET_EFAULT;
1239 }
1240
1241 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1242 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1243
1244 unlock_user_struct(target_tz, target_tz_addr, 0);
1245
1246 return 0;
1247 }
1248 #endif
1249
1250 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1251 #include <mqueue.h>
1252
copy_from_user_mq_attr(struct mq_attr * attr,abi_ulong target_mq_attr_addr)1253 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1254 abi_ulong target_mq_attr_addr)
1255 {
1256 struct target_mq_attr *target_mq_attr;
1257
1258 if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1259 target_mq_attr_addr, 1))
1260 return -TARGET_EFAULT;
1261
1262 __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1263 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1264 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1265 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1266
1267 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1268
1269 return 0;
1270 }
1271
copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,const struct mq_attr * attr)1272 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1273 const struct mq_attr *attr)
1274 {
1275 struct target_mq_attr *target_mq_attr;
1276
1277 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1278 target_mq_attr_addr, 0))
1279 return -TARGET_EFAULT;
1280
1281 __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1282 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1283 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1284 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1285
1286 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1287
1288 return 0;
1289 }
1290 #endif
1291
1292 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1293 /* do_select() must return target values and target errnos. */
do_select(int n,abi_ulong rfd_addr,abi_ulong wfd_addr,abi_ulong efd_addr,abi_ulong target_tv_addr)1294 static abi_long do_select(int n,
1295 abi_ulong rfd_addr, abi_ulong wfd_addr,
1296 abi_ulong efd_addr, abi_ulong target_tv_addr)
1297 {
1298 fd_set rfds, wfds, efds;
1299 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1300 struct timeval tv;
1301 struct timespec ts, *ts_ptr;
1302 abi_long ret;
1303
1304 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1305 if (ret) {
1306 return ret;
1307 }
1308 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1309 if (ret) {
1310 return ret;
1311 }
1312 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1313 if (ret) {
1314 return ret;
1315 }
1316
1317 if (target_tv_addr) {
1318 if (copy_from_user_timeval(&tv, target_tv_addr))
1319 return -TARGET_EFAULT;
1320 ts.tv_sec = tv.tv_sec;
1321 ts.tv_nsec = tv.tv_usec * 1000;
1322 ts_ptr = &ts;
1323 } else {
1324 ts_ptr = NULL;
1325 }
1326
1327 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1328 ts_ptr, NULL));
1329
1330 if (!is_error(ret)) {
1331 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1332 return -TARGET_EFAULT;
1333 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1334 return -TARGET_EFAULT;
1335 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1336 return -TARGET_EFAULT;
1337
1338 if (target_tv_addr) {
1339 tv.tv_sec = ts.tv_sec;
1340 tv.tv_usec = ts.tv_nsec / 1000;
1341 if (copy_to_user_timeval(target_tv_addr, &tv)) {
1342 return -TARGET_EFAULT;
1343 }
1344 }
1345 }
1346
1347 return ret;
1348 }
1349
1350 #if defined(TARGET_WANT_OLD_SYS_SELECT)
do_old_select(abi_ulong arg1)1351 static abi_long do_old_select(abi_ulong arg1)
1352 {
1353 struct target_sel_arg_struct *sel;
1354 abi_ulong inp, outp, exp, tvp;
1355 long nsel;
1356
1357 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1358 return -TARGET_EFAULT;
1359 }
1360
1361 nsel = tswapal(sel->n);
1362 inp = tswapal(sel->inp);
1363 outp = tswapal(sel->outp);
1364 exp = tswapal(sel->exp);
1365 tvp = tswapal(sel->tvp);
1366
1367 unlock_user_struct(sel, arg1, 0);
1368
1369 return do_select(nsel, inp, outp, exp, tvp);
1370 }
1371 #endif
1372 #endif
1373
1374 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
do_pselect6(abi_long arg1,abi_long arg2,abi_long arg3,abi_long arg4,abi_long arg5,abi_long arg6,bool time64)1375 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1376 abi_long arg4, abi_long arg5, abi_long arg6,
1377 bool time64)
1378 {
1379 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1380 fd_set rfds, wfds, efds;
1381 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1382 struct timespec ts, *ts_ptr;
1383 abi_long ret;
1384
1385 /*
1386 * The 6th arg is actually two args smashed together,
1387 * so we cannot use the C library.
1388 */
1389 struct {
1390 sigset_t *set;
1391 size_t size;
1392 } sig, *sig_ptr;
1393
1394 abi_ulong arg_sigset, arg_sigsize, *arg7;
1395
1396 n = arg1;
1397 rfd_addr = arg2;
1398 wfd_addr = arg3;
1399 efd_addr = arg4;
1400 ts_addr = arg5;
1401
1402 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1403 if (ret) {
1404 return ret;
1405 }
1406 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1407 if (ret) {
1408 return ret;
1409 }
1410 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1411 if (ret) {
1412 return ret;
1413 }
1414
1415 /*
1416 * This takes a timespec, and not a timeval, so we cannot
1417 * use the do_select() helper ...
1418 */
1419 if (ts_addr) {
1420 if (time64) {
1421 if (target_to_host_timespec64(&ts, ts_addr)) {
1422 return -TARGET_EFAULT;
1423 }
1424 } else {
1425 if (target_to_host_timespec(&ts, ts_addr)) {
1426 return -TARGET_EFAULT;
1427 }
1428 }
1429 ts_ptr = &ts;
1430 } else {
1431 ts_ptr = NULL;
1432 }
1433
1434 /* Extract the two packed args for the sigset */
1435 sig_ptr = NULL;
1436 if (arg6) {
1437 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1438 if (!arg7) {
1439 return -TARGET_EFAULT;
1440 }
1441 arg_sigset = tswapal(arg7[0]);
1442 arg_sigsize = tswapal(arg7[1]);
1443 unlock_user(arg7, arg6, 0);
1444
1445 if (arg_sigset) {
1446 ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1447 if (ret != 0) {
1448 return ret;
1449 }
1450 sig_ptr = &sig;
1451 sig.size = SIGSET_T_SIZE;
1452 }
1453 }
1454
1455 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1456 ts_ptr, sig_ptr));
1457
1458 if (sig_ptr) {
1459 finish_sigsuspend_mask(ret);
1460 }
1461
1462 if (!is_error(ret)) {
1463 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1464 return -TARGET_EFAULT;
1465 }
1466 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1467 return -TARGET_EFAULT;
1468 }
1469 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1470 return -TARGET_EFAULT;
1471 }
1472 if (time64) {
1473 if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1474 return -TARGET_EFAULT;
1475 }
1476 } else {
1477 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1478 return -TARGET_EFAULT;
1479 }
1480 }
1481 }
1482 return ret;
1483 }
1484 #endif
1485
1486 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1487 defined(TARGET_NR_ppoll_time64)
do_ppoll(abi_long arg1,abi_long arg2,abi_long arg3,abi_long arg4,abi_long arg5,bool ppoll,bool time64)1488 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1489 abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1490 {
1491 struct target_pollfd *target_pfd;
1492 unsigned int nfds = arg2;
1493 struct pollfd *pfd;
1494 unsigned int i;
1495 abi_long ret;
1496
1497 pfd = NULL;
1498 target_pfd = NULL;
1499 if (nfds) {
1500 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1501 return -TARGET_EINVAL;
1502 }
1503 target_pfd = lock_user(VERIFY_WRITE, arg1,
1504 sizeof(struct target_pollfd) * nfds, 1);
1505 if (!target_pfd) {
1506 return -TARGET_EFAULT;
1507 }
1508
1509 pfd = alloca(sizeof(struct pollfd) * nfds);
1510 for (i = 0; i < nfds; i++) {
1511 pfd[i].fd = tswap32(target_pfd[i].fd);
1512 pfd[i].events = tswap16(target_pfd[i].events);
1513 }
1514 }
1515 if (ppoll) {
1516 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1517 sigset_t *set = NULL;
1518
1519 if (arg3) {
1520 if (time64) {
1521 if (target_to_host_timespec64(timeout_ts, arg3)) {
1522 unlock_user(target_pfd, arg1, 0);
1523 return -TARGET_EFAULT;
1524 }
1525 } else {
1526 if (target_to_host_timespec(timeout_ts, arg3)) {
1527 unlock_user(target_pfd, arg1, 0);
1528 return -TARGET_EFAULT;
1529 }
1530 }
1531 } else {
1532 timeout_ts = NULL;
1533 }
1534
1535 if (arg4) {
1536 ret = process_sigsuspend_mask(&set, arg4, arg5);
1537 if (ret != 0) {
1538 unlock_user(target_pfd, arg1, 0);
1539 return ret;
1540 }
1541 }
1542
1543 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1544 set, SIGSET_T_SIZE));
1545
1546 if (set) {
1547 finish_sigsuspend_mask(ret);
1548 }
1549 if (!is_error(ret) && arg3) {
1550 if (time64) {
1551 if (host_to_target_timespec64(arg3, timeout_ts)) {
1552 return -TARGET_EFAULT;
1553 }
1554 } else {
1555 if (host_to_target_timespec(arg3, timeout_ts)) {
1556 return -TARGET_EFAULT;
1557 }
1558 }
1559 }
1560 } else {
1561 struct timespec ts, *pts;
1562
1563 if (arg3 >= 0) {
1564 /* Convert ms to secs, ns */
1565 ts.tv_sec = arg3 / 1000;
1566 ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1567 pts = &ts;
1568 } else {
1569 /* -ve poll() timeout means "infinite" */
1570 pts = NULL;
1571 }
1572 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1573 }
1574
1575 if (!is_error(ret)) {
1576 for (i = 0; i < nfds; i++) {
1577 target_pfd[i].revents = tswap16(pfd[i].revents);
1578 }
1579 }
1580 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1581 return ret;
1582 }
1583 #endif
1584
do_pipe(CPUArchState * cpu_env,abi_ulong pipedes,int flags,int is_pipe2)1585 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1586 int flags, int is_pipe2)
1587 {
1588 int host_pipe[2];
1589 abi_long ret;
1590 ret = pipe2(host_pipe, flags);
1591
1592 if (is_error(ret))
1593 return get_errno(ret);
1594
1595 /* Several targets have special calling conventions for the original
1596 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1597 if (!is_pipe2) {
1598 #if defined(TARGET_ALPHA)
1599 cpu_env->ir[IR_A4] = host_pipe[1];
1600 return host_pipe[0];
1601 #elif defined(TARGET_MIPS)
1602 cpu_env->active_tc.gpr[3] = host_pipe[1];
1603 return host_pipe[0];
1604 #elif defined(TARGET_SH4)
1605 cpu_env->gregs[1] = host_pipe[1];
1606 return host_pipe[0];
1607 #elif defined(TARGET_SPARC)
1608 cpu_env->regwptr[1] = host_pipe[1];
1609 return host_pipe[0];
1610 #endif
1611 }
1612
1613 if (put_user_s32(host_pipe[0], pipedes)
1614 || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1615 return -TARGET_EFAULT;
1616 return get_errno(ret);
1617 }
1618
target_to_host_sockaddr(int fd,struct sockaddr * addr,abi_ulong target_addr,socklen_t len)1619 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1620 abi_ulong target_addr,
1621 socklen_t len)
1622 {
1623 const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1624 sa_family_t sa_family;
1625 struct target_sockaddr *target_saddr;
1626
1627 if (fd_trans_target_to_host_addr(fd)) {
1628 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1629 }
1630
1631 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1632 if (!target_saddr)
1633 return -TARGET_EFAULT;
1634
1635 sa_family = tswap16(target_saddr->sa_family);
1636
1637 /* Oops. The caller might send a incomplete sun_path; sun_path
1638 * must be terminated by \0 (see the manual page), but
1639 * unfortunately it is quite common to specify sockaddr_un
1640 * length as "strlen(x->sun_path)" while it should be
1641 * "strlen(...) + 1". We'll fix that here if needed.
1642 * Linux kernel has a similar feature.
1643 */
1644
1645 if (sa_family == AF_UNIX) {
1646 if (len < unix_maxlen && len > 0) {
1647 char *cp = (char*)target_saddr;
1648
1649 if ( cp[len-1] && !cp[len] )
1650 len++;
1651 }
1652 if (len > unix_maxlen)
1653 len = unix_maxlen;
1654 }
1655
1656 memcpy(addr, target_saddr, len);
1657 addr->sa_family = sa_family;
1658 if (sa_family == AF_NETLINK) {
1659 struct sockaddr_nl *nladdr;
1660
1661 nladdr = (struct sockaddr_nl *)addr;
1662 nladdr->nl_pid = tswap32(nladdr->nl_pid);
1663 nladdr->nl_groups = tswap32(nladdr->nl_groups);
1664 } else if (sa_family == AF_PACKET) {
1665 struct target_sockaddr_ll *lladdr;
1666
1667 lladdr = (struct target_sockaddr_ll *)addr;
1668 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1669 lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1670 } else if (sa_family == AF_INET6) {
1671 struct sockaddr_in6 *in6addr;
1672
1673 in6addr = (struct sockaddr_in6 *)addr;
1674 in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id);
1675 }
1676 unlock_user(target_saddr, target_addr, 0);
1677
1678 return 0;
1679 }
1680
host_to_target_sockaddr(abi_ulong target_addr,struct sockaddr * addr,socklen_t len)1681 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1682 struct sockaddr *addr,
1683 socklen_t len)
1684 {
1685 struct target_sockaddr *target_saddr;
1686
1687 if (len == 0) {
1688 return 0;
1689 }
1690 assert(addr);
1691
1692 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1693 if (!target_saddr)
1694 return -TARGET_EFAULT;
1695 memcpy(target_saddr, addr, len);
1696 if (len >= offsetof(struct target_sockaddr, sa_family) +
1697 sizeof(target_saddr->sa_family)) {
1698 target_saddr->sa_family = tswap16(addr->sa_family);
1699 }
1700 if (addr->sa_family == AF_NETLINK &&
1701 len >= sizeof(struct target_sockaddr_nl)) {
1702 struct target_sockaddr_nl *target_nl =
1703 (struct target_sockaddr_nl *)target_saddr;
1704 target_nl->nl_pid = tswap32(target_nl->nl_pid);
1705 target_nl->nl_groups = tswap32(target_nl->nl_groups);
1706 } else if (addr->sa_family == AF_PACKET) {
1707 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1708 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1709 target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1710 } else if (addr->sa_family == AF_INET6 &&
1711 len >= sizeof(struct target_sockaddr_in6)) {
1712 struct target_sockaddr_in6 *target_in6 =
1713 (struct target_sockaddr_in6 *)target_saddr;
1714 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1715 }
1716 unlock_user(target_saddr, target_addr, len);
1717
1718 return 0;
1719 }
1720
target_to_host_cmsg(struct msghdr * msgh,struct target_msghdr * target_msgh)1721 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1722 struct target_msghdr *target_msgh)
1723 {
1724 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1725 abi_long msg_controllen;
1726 abi_ulong target_cmsg_addr;
1727 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1728 socklen_t space = 0;
1729
1730 msg_controllen = tswapal(target_msgh->msg_controllen);
1731 if (msg_controllen < sizeof (struct target_cmsghdr))
1732 goto the_end;
1733 target_cmsg_addr = tswapal(target_msgh->msg_control);
1734 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1735 target_cmsg_start = target_cmsg;
1736 if (!target_cmsg)
1737 return -TARGET_EFAULT;
1738
1739 while (cmsg && target_cmsg) {
1740 void *data = CMSG_DATA(cmsg);
1741 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1742
1743 int len = tswapal(target_cmsg->cmsg_len)
1744 - sizeof(struct target_cmsghdr);
1745
1746 space += CMSG_SPACE(len);
1747 if (space > msgh->msg_controllen) {
1748 space -= CMSG_SPACE(len);
1749 /* This is a QEMU bug, since we allocated the payload
1750 * area ourselves (unlike overflow in host-to-target
1751 * conversion, which is just the guest giving us a buffer
1752 * that's too small). It can't happen for the payload types
1753 * we currently support; if it becomes an issue in future
1754 * we would need to improve our allocation strategy to
1755 * something more intelligent than "twice the size of the
1756 * target buffer we're reading from".
1757 */
1758 qemu_log_mask(LOG_UNIMP,
1759 ("Unsupported ancillary data %d/%d: "
1760 "unhandled msg size\n"),
1761 tswap32(target_cmsg->cmsg_level),
1762 tswap32(target_cmsg->cmsg_type));
1763 break;
1764 }
1765
1766 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1767 cmsg->cmsg_level = SOL_SOCKET;
1768 } else {
1769 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1770 }
1771 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1772 cmsg->cmsg_len = CMSG_LEN(len);
1773
1774 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1775 int *fd = (int *)data;
1776 int *target_fd = (int *)target_data;
1777 int i, numfds = len / sizeof(int);
1778
1779 for (i = 0; i < numfds; i++) {
1780 __get_user(fd[i], target_fd + i);
1781 }
1782 } else if (cmsg->cmsg_level == SOL_SOCKET
1783 && cmsg->cmsg_type == SCM_CREDENTIALS) {
1784 struct ucred *cred = (struct ucred *)data;
1785 struct target_ucred *target_cred =
1786 (struct target_ucred *)target_data;
1787
1788 __get_user(cred->pid, &target_cred->pid);
1789 __get_user(cred->uid, &target_cred->uid);
1790 __get_user(cred->gid, &target_cred->gid);
1791 } else if (cmsg->cmsg_level == SOL_ALG) {
1792 uint32_t *dst = (uint32_t *)data;
1793
1794 memcpy(dst, target_data, len);
1795 /* fix endianness of first 32-bit word */
1796 if (len >= sizeof(uint32_t)) {
1797 *dst = tswap32(*dst);
1798 }
1799 } else {
1800 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1801 cmsg->cmsg_level, cmsg->cmsg_type);
1802 memcpy(data, target_data, len);
1803 }
1804
1805 cmsg = CMSG_NXTHDR(msgh, cmsg);
1806 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1807 target_cmsg_start);
1808 }
1809 unlock_user(target_cmsg, target_cmsg_addr, 0);
1810 the_end:
1811 msgh->msg_controllen = space;
1812 return 0;
1813 }
1814
host_to_target_cmsg(struct target_msghdr * target_msgh,struct msghdr * msgh)1815 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1816 struct msghdr *msgh)
1817 {
1818 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1819 abi_long msg_controllen;
1820 abi_ulong target_cmsg_addr;
1821 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1822 socklen_t space = 0;
1823
1824 msg_controllen = tswapal(target_msgh->msg_controllen);
1825 if (msg_controllen < sizeof (struct target_cmsghdr))
1826 goto the_end;
1827 target_cmsg_addr = tswapal(target_msgh->msg_control);
1828 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1829 target_cmsg_start = target_cmsg;
1830 if (!target_cmsg)
1831 return -TARGET_EFAULT;
1832
1833 while (cmsg && target_cmsg) {
1834 void *data = CMSG_DATA(cmsg);
1835 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1836
1837 int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1838 int tgt_len, tgt_space;
1839
1840 /* We never copy a half-header but may copy half-data;
1841 * this is Linux's behaviour in put_cmsg(). Note that
1842 * truncation here is a guest problem (which we report
1843 * to the guest via the CTRUNC bit), unlike truncation
1844 * in target_to_host_cmsg, which is a QEMU bug.
1845 */
1846 if (msg_controllen < sizeof(struct target_cmsghdr)) {
1847 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1848 break;
1849 }
1850
1851 if (cmsg->cmsg_level == SOL_SOCKET) {
1852 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1853 } else {
1854 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1855 }
1856 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1857
1858 /* Payload types which need a different size of payload on
1859 * the target must adjust tgt_len here.
1860 */
1861 tgt_len = len;
1862 switch (cmsg->cmsg_level) {
1863 case SOL_SOCKET:
1864 switch (cmsg->cmsg_type) {
1865 case SO_TIMESTAMP:
1866 tgt_len = sizeof(struct target_timeval);
1867 break;
1868 default:
1869 break;
1870 }
1871 break;
1872 default:
1873 break;
1874 }
1875
1876 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1877 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1878 tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1879 }
1880
1881 /* We must now copy-and-convert len bytes of payload
1882 * into tgt_len bytes of destination space. Bear in mind
1883 * that in both source and destination we may be dealing
1884 * with a truncated value!
1885 */
1886 switch (cmsg->cmsg_level) {
1887 case SOL_SOCKET:
1888 switch (cmsg->cmsg_type) {
1889 case SCM_RIGHTS:
1890 {
1891 int *fd = (int *)data;
1892 int *target_fd = (int *)target_data;
1893 int i, numfds = tgt_len / sizeof(int);
1894
1895 for (i = 0; i < numfds; i++) {
1896 __put_user(fd[i], target_fd + i);
1897 }
1898 break;
1899 }
1900 case SO_TIMESTAMP:
1901 {
1902 struct timeval *tv = (struct timeval *)data;
1903 struct target_timeval *target_tv =
1904 (struct target_timeval *)target_data;
1905
1906 if (len != sizeof(struct timeval) ||
1907 tgt_len != sizeof(struct target_timeval)) {
1908 goto unimplemented;
1909 }
1910
1911 /* copy struct timeval to target */
1912 __put_user(tv->tv_sec, &target_tv->tv_sec);
1913 __put_user(tv->tv_usec, &target_tv->tv_usec);
1914 break;
1915 }
1916 case SCM_CREDENTIALS:
1917 {
1918 struct ucred *cred = (struct ucred *)data;
1919 struct target_ucred *target_cred =
1920 (struct target_ucred *)target_data;
1921
1922 __put_user(cred->pid, &target_cred->pid);
1923 __put_user(cred->uid, &target_cred->uid);
1924 __put_user(cred->gid, &target_cred->gid);
1925 break;
1926 }
1927 default:
1928 goto unimplemented;
1929 }
1930 break;
1931
1932 case SOL_IP:
1933 switch (cmsg->cmsg_type) {
1934 case IP_TTL:
1935 {
1936 uint32_t *v = (uint32_t *)data;
1937 uint32_t *t_int = (uint32_t *)target_data;
1938
1939 if (len != sizeof(uint32_t) ||
1940 tgt_len != sizeof(uint32_t)) {
1941 goto unimplemented;
1942 }
1943 __put_user(*v, t_int);
1944 break;
1945 }
1946 case IP_RECVERR:
1947 {
1948 struct errhdr_t {
1949 struct sock_extended_err ee;
1950 struct sockaddr_in offender;
1951 };
1952 struct errhdr_t *errh = (struct errhdr_t *)data;
1953 struct errhdr_t *target_errh =
1954 (struct errhdr_t *)target_data;
1955
1956 if (len != sizeof(struct errhdr_t) ||
1957 tgt_len != sizeof(struct errhdr_t)) {
1958 goto unimplemented;
1959 }
1960 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1961 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1962 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
1963 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1964 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1965 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1966 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1967 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1968 (void *) &errh->offender, sizeof(errh->offender));
1969 break;
1970 }
1971 default:
1972 goto unimplemented;
1973 }
1974 break;
1975
1976 case SOL_IPV6:
1977 switch (cmsg->cmsg_type) {
1978 case IPV6_HOPLIMIT:
1979 {
1980 uint32_t *v = (uint32_t *)data;
1981 uint32_t *t_int = (uint32_t *)target_data;
1982
1983 if (len != sizeof(uint32_t) ||
1984 tgt_len != sizeof(uint32_t)) {
1985 goto unimplemented;
1986 }
1987 __put_user(*v, t_int);
1988 break;
1989 }
1990 case IPV6_RECVERR:
1991 {
1992 struct errhdr6_t {
1993 struct sock_extended_err ee;
1994 struct sockaddr_in6 offender;
1995 };
1996 struct errhdr6_t *errh = (struct errhdr6_t *)data;
1997 struct errhdr6_t *target_errh =
1998 (struct errhdr6_t *)target_data;
1999
2000 if (len != sizeof(struct errhdr6_t) ||
2001 tgt_len != sizeof(struct errhdr6_t)) {
2002 goto unimplemented;
2003 }
2004 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2005 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2006 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
2007 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2008 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2009 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2010 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2011 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2012 (void *) &errh->offender, sizeof(errh->offender));
2013 break;
2014 }
2015 default:
2016 goto unimplemented;
2017 }
2018 break;
2019
2020 default:
2021 unimplemented:
2022 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2023 cmsg->cmsg_level, cmsg->cmsg_type);
2024 memcpy(target_data, data, MIN(len, tgt_len));
2025 if (tgt_len > len) {
2026 memset(target_data + len, 0, tgt_len - len);
2027 }
2028 }
2029
2030 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2031 tgt_space = TARGET_CMSG_SPACE(tgt_len);
2032 if (msg_controllen < tgt_space) {
2033 tgt_space = msg_controllen;
2034 }
2035 msg_controllen -= tgt_space;
2036 space += tgt_space;
2037 cmsg = CMSG_NXTHDR(msgh, cmsg);
2038 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2039 target_cmsg_start);
2040 }
2041 unlock_user(target_cmsg, target_cmsg_addr, space);
2042 the_end:
2043 target_msgh->msg_controllen = tswapal(space);
2044 return 0;
2045 }
2046
2047 /* do_setsockopt() Must return target values and target errnos. */
do_setsockopt(int sockfd,int level,int optname,abi_ulong optval_addr,socklen_t optlen)2048 static abi_long do_setsockopt(int sockfd, int level, int optname,
2049 abi_ulong optval_addr, socklen_t optlen)
2050 {
2051 abi_long ret;
2052 int val;
2053
2054 switch(level) {
2055 case SOL_TCP:
2056 case SOL_UDP:
2057 /* TCP and UDP options all take an 'int' value. */
2058 if (optlen < sizeof(uint32_t))
2059 return -TARGET_EINVAL;
2060
2061 if (get_user_u32(val, optval_addr))
2062 return -TARGET_EFAULT;
2063 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2064 break;
2065 case SOL_IP:
2066 switch(optname) {
2067 case IP_TOS:
2068 case IP_TTL:
2069 case IP_HDRINCL:
2070 case IP_ROUTER_ALERT:
2071 case IP_RECVOPTS:
2072 case IP_RETOPTS:
2073 case IP_PKTINFO:
2074 case IP_MTU_DISCOVER:
2075 case IP_RECVERR:
2076 case IP_RECVTTL:
2077 case IP_RECVTOS:
2078 #ifdef IP_FREEBIND
2079 case IP_FREEBIND:
2080 #endif
2081 case IP_MULTICAST_TTL:
2082 case IP_MULTICAST_LOOP:
2083 val = 0;
2084 if (optlen >= sizeof(uint32_t)) {
2085 if (get_user_u32(val, optval_addr))
2086 return -TARGET_EFAULT;
2087 } else if (optlen >= 1) {
2088 if (get_user_u8(val, optval_addr))
2089 return -TARGET_EFAULT;
2090 }
2091 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2092 break;
2093 case IP_ADD_MEMBERSHIP:
2094 case IP_DROP_MEMBERSHIP:
2095 {
2096 struct ip_mreqn ip_mreq;
2097 struct target_ip_mreqn *target_smreqn;
2098
2099 QEMU_BUILD_BUG_ON(sizeof(struct ip_mreq) !=
2100 sizeof(struct target_ip_mreq));
2101
2102 if (optlen < sizeof (struct target_ip_mreq) ||
2103 optlen > sizeof (struct target_ip_mreqn)) {
2104 return -TARGET_EINVAL;
2105 }
2106
2107 target_smreqn = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2108 if (!target_smreqn) {
2109 return -TARGET_EFAULT;
2110 }
2111 ip_mreq.imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
2112 ip_mreq.imr_address.s_addr = target_smreqn->imr_address.s_addr;
2113 if (optlen == sizeof(struct target_ip_mreqn)) {
2114 ip_mreq.imr_ifindex = tswapal(target_smreqn->imr_ifindex);
2115 optlen = sizeof(struct ip_mreqn);
2116 }
2117 unlock_user(target_smreqn, optval_addr, 0);
2118
2119 ret = get_errno(setsockopt(sockfd, level, optname, &ip_mreq, optlen));
2120 break;
2121 }
2122 case IP_BLOCK_SOURCE:
2123 case IP_UNBLOCK_SOURCE:
2124 case IP_ADD_SOURCE_MEMBERSHIP:
2125 case IP_DROP_SOURCE_MEMBERSHIP:
2126 {
2127 struct ip_mreq_source *ip_mreq_source;
2128
2129 if (optlen != sizeof (struct target_ip_mreq_source))
2130 return -TARGET_EINVAL;
2131
2132 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2133 if (!ip_mreq_source) {
2134 return -TARGET_EFAULT;
2135 }
2136 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2137 unlock_user (ip_mreq_source, optval_addr, 0);
2138 break;
2139 }
2140 default:
2141 goto unimplemented;
2142 }
2143 break;
2144 case SOL_IPV6:
2145 switch (optname) {
2146 case IPV6_MTU_DISCOVER:
2147 case IPV6_MTU:
2148 case IPV6_V6ONLY:
2149 case IPV6_RECVPKTINFO:
2150 case IPV6_UNICAST_HOPS:
2151 case IPV6_MULTICAST_HOPS:
2152 case IPV6_MULTICAST_LOOP:
2153 case IPV6_RECVERR:
2154 case IPV6_RECVHOPLIMIT:
2155 case IPV6_2292HOPLIMIT:
2156 case IPV6_CHECKSUM:
2157 case IPV6_ADDRFORM:
2158 case IPV6_2292PKTINFO:
2159 case IPV6_RECVTCLASS:
2160 case IPV6_RECVRTHDR:
2161 case IPV6_2292RTHDR:
2162 case IPV6_RECVHOPOPTS:
2163 case IPV6_2292HOPOPTS:
2164 case IPV6_RECVDSTOPTS:
2165 case IPV6_2292DSTOPTS:
2166 case IPV6_TCLASS:
2167 case IPV6_ADDR_PREFERENCES:
2168 #ifdef IPV6_RECVPATHMTU
2169 case IPV6_RECVPATHMTU:
2170 #endif
2171 #ifdef IPV6_TRANSPARENT
2172 case IPV6_TRANSPARENT:
2173 #endif
2174 #ifdef IPV6_FREEBIND
2175 case IPV6_FREEBIND:
2176 #endif
2177 #ifdef IPV6_RECVORIGDSTADDR
2178 case IPV6_RECVORIGDSTADDR:
2179 #endif
2180 val = 0;
2181 if (optlen < sizeof(uint32_t)) {
2182 return -TARGET_EINVAL;
2183 }
2184 if (get_user_u32(val, optval_addr)) {
2185 return -TARGET_EFAULT;
2186 }
2187 ret = get_errno(setsockopt(sockfd, level, optname,
2188 &val, sizeof(val)));
2189 break;
2190 case IPV6_PKTINFO:
2191 {
2192 struct in6_pktinfo pki;
2193
2194 if (optlen < sizeof(pki)) {
2195 return -TARGET_EINVAL;
2196 }
2197
2198 if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2199 return -TARGET_EFAULT;
2200 }
2201
2202 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2203
2204 ret = get_errno(setsockopt(sockfd, level, optname,
2205 &pki, sizeof(pki)));
2206 break;
2207 }
2208 case IPV6_ADD_MEMBERSHIP:
2209 case IPV6_DROP_MEMBERSHIP:
2210 {
2211 struct ipv6_mreq ipv6mreq;
2212
2213 if (optlen < sizeof(ipv6mreq)) {
2214 return -TARGET_EINVAL;
2215 }
2216
2217 if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2218 return -TARGET_EFAULT;
2219 }
2220
2221 ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2222
2223 ret = get_errno(setsockopt(sockfd, level, optname,
2224 &ipv6mreq, sizeof(ipv6mreq)));
2225 break;
2226 }
2227 default:
2228 goto unimplemented;
2229 }
2230 break;
2231 case SOL_ICMPV6:
2232 switch (optname) {
2233 case ICMPV6_FILTER:
2234 {
2235 struct icmp6_filter icmp6f;
2236
2237 if (optlen > sizeof(icmp6f)) {
2238 optlen = sizeof(icmp6f);
2239 }
2240
2241 if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2242 return -TARGET_EFAULT;
2243 }
2244
2245 for (val = 0; val < 8; val++) {
2246 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2247 }
2248
2249 ret = get_errno(setsockopt(sockfd, level, optname,
2250 &icmp6f, optlen));
2251 break;
2252 }
2253 default:
2254 goto unimplemented;
2255 }
2256 break;
2257 case SOL_RAW:
2258 switch (optname) {
2259 case ICMP_FILTER:
2260 case IPV6_CHECKSUM:
2261 /* those take an u32 value */
2262 if (optlen < sizeof(uint32_t)) {
2263 return -TARGET_EINVAL;
2264 }
2265
2266 if (get_user_u32(val, optval_addr)) {
2267 return -TARGET_EFAULT;
2268 }
2269 ret = get_errno(setsockopt(sockfd, level, optname,
2270 &val, sizeof(val)));
2271 break;
2272
2273 default:
2274 goto unimplemented;
2275 }
2276 break;
2277 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2278 case SOL_ALG:
2279 switch (optname) {
2280 case ALG_SET_KEY:
2281 {
2282 char *alg_key = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2283 if (!alg_key) {
2284 return -TARGET_EFAULT;
2285 }
2286 ret = get_errno(setsockopt(sockfd, level, optname,
2287 alg_key, optlen));
2288 unlock_user(alg_key, optval_addr, optlen);
2289 break;
2290 }
2291 case ALG_SET_AEAD_AUTHSIZE:
2292 {
2293 ret = get_errno(setsockopt(sockfd, level, optname,
2294 NULL, optlen));
2295 break;
2296 }
2297 default:
2298 goto unimplemented;
2299 }
2300 break;
2301 #endif
2302 case TARGET_SOL_SOCKET:
2303 switch (optname) {
2304 case TARGET_SO_RCVTIMEO:
2305 case TARGET_SO_SNDTIMEO:
2306 {
2307 struct timeval tv;
2308
2309 if (optlen != sizeof(struct target_timeval)) {
2310 return -TARGET_EINVAL;
2311 }
2312
2313 if (copy_from_user_timeval(&tv, optval_addr)) {
2314 return -TARGET_EFAULT;
2315 }
2316
2317 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2318 optname == TARGET_SO_RCVTIMEO ?
2319 SO_RCVTIMEO : SO_SNDTIMEO,
2320 &tv, sizeof(tv)));
2321 return ret;
2322 }
2323 case TARGET_SO_ATTACH_FILTER:
2324 {
2325 struct target_sock_fprog *tfprog;
2326 struct target_sock_filter *tfilter;
2327 struct sock_fprog fprog;
2328 struct sock_filter *filter;
2329 int i;
2330
2331 if (optlen != sizeof(*tfprog)) {
2332 return -TARGET_EINVAL;
2333 }
2334 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2335 return -TARGET_EFAULT;
2336 }
2337 if (!lock_user_struct(VERIFY_READ, tfilter,
2338 tswapal(tfprog->filter), 0)) {
2339 unlock_user_struct(tfprog, optval_addr, 1);
2340 return -TARGET_EFAULT;
2341 }
2342
2343 fprog.len = tswap16(tfprog->len);
2344 filter = g_try_new(struct sock_filter, fprog.len);
2345 if (filter == NULL) {
2346 unlock_user_struct(tfilter, tfprog->filter, 1);
2347 unlock_user_struct(tfprog, optval_addr, 1);
2348 return -TARGET_ENOMEM;
2349 }
2350 for (i = 0; i < fprog.len; i++) {
2351 filter[i].code = tswap16(tfilter[i].code);
2352 filter[i].jt = tfilter[i].jt;
2353 filter[i].jf = tfilter[i].jf;
2354 filter[i].k = tswap32(tfilter[i].k);
2355 }
2356 fprog.filter = filter;
2357
2358 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2359 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2360 g_free(filter);
2361
2362 unlock_user_struct(tfilter, tfprog->filter, 1);
2363 unlock_user_struct(tfprog, optval_addr, 1);
2364 return ret;
2365 }
2366 case TARGET_SO_BINDTODEVICE:
2367 {
2368 char *dev_ifname, *addr_ifname;
2369
2370 if (optlen > IFNAMSIZ - 1) {
2371 optlen = IFNAMSIZ - 1;
2372 }
2373 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2374 if (!dev_ifname) {
2375 return -TARGET_EFAULT;
2376 }
2377 optname = SO_BINDTODEVICE;
2378 addr_ifname = alloca(IFNAMSIZ);
2379 memcpy(addr_ifname, dev_ifname, optlen);
2380 addr_ifname[optlen] = 0;
2381 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2382 addr_ifname, optlen));
2383 unlock_user (dev_ifname, optval_addr, 0);
2384 return ret;
2385 }
2386 case TARGET_SO_LINGER:
2387 {
2388 struct linger lg;
2389 struct target_linger *tlg;
2390
2391 if (optlen != sizeof(struct target_linger)) {
2392 return -TARGET_EINVAL;
2393 }
2394 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2395 return -TARGET_EFAULT;
2396 }
2397 __get_user(lg.l_onoff, &tlg->l_onoff);
2398 __get_user(lg.l_linger, &tlg->l_linger);
2399 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2400 &lg, sizeof(lg)));
2401 unlock_user_struct(tlg, optval_addr, 0);
2402 return ret;
2403 }
2404 /* Options with 'int' argument. */
2405 case TARGET_SO_DEBUG:
2406 optname = SO_DEBUG;
2407 break;
2408 case TARGET_SO_REUSEADDR:
2409 optname = SO_REUSEADDR;
2410 break;
2411 #ifdef SO_REUSEPORT
2412 case TARGET_SO_REUSEPORT:
2413 optname = SO_REUSEPORT;
2414 break;
2415 #endif
2416 case TARGET_SO_TYPE:
2417 optname = SO_TYPE;
2418 break;
2419 case TARGET_SO_ERROR:
2420 optname = SO_ERROR;
2421 break;
2422 case TARGET_SO_DONTROUTE:
2423 optname = SO_DONTROUTE;
2424 break;
2425 case TARGET_SO_BROADCAST:
2426 optname = SO_BROADCAST;
2427 break;
2428 case TARGET_SO_SNDBUF:
2429 optname = SO_SNDBUF;
2430 break;
2431 case TARGET_SO_SNDBUFFORCE:
2432 optname = SO_SNDBUFFORCE;
2433 break;
2434 case TARGET_SO_RCVBUF:
2435 optname = SO_RCVBUF;
2436 break;
2437 case TARGET_SO_RCVBUFFORCE:
2438 optname = SO_RCVBUFFORCE;
2439 break;
2440 case TARGET_SO_KEEPALIVE:
2441 optname = SO_KEEPALIVE;
2442 break;
2443 case TARGET_SO_OOBINLINE:
2444 optname = SO_OOBINLINE;
2445 break;
2446 case TARGET_SO_NO_CHECK:
2447 optname = SO_NO_CHECK;
2448 break;
2449 case TARGET_SO_PRIORITY:
2450 optname = SO_PRIORITY;
2451 break;
2452 #ifdef SO_BSDCOMPAT
2453 case TARGET_SO_BSDCOMPAT:
2454 optname = SO_BSDCOMPAT;
2455 break;
2456 #endif
2457 case TARGET_SO_PASSCRED:
2458 optname = SO_PASSCRED;
2459 break;
2460 case TARGET_SO_PASSSEC:
2461 optname = SO_PASSSEC;
2462 break;
2463 case TARGET_SO_TIMESTAMP:
2464 optname = SO_TIMESTAMP;
2465 break;
2466 case TARGET_SO_RCVLOWAT:
2467 optname = SO_RCVLOWAT;
2468 break;
2469 default:
2470 goto unimplemented;
2471 }
2472 if (optlen < sizeof(uint32_t))
2473 return -TARGET_EINVAL;
2474
2475 if (get_user_u32(val, optval_addr))
2476 return -TARGET_EFAULT;
2477 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2478 break;
2479 #ifdef SOL_NETLINK
2480 case SOL_NETLINK:
2481 switch (optname) {
2482 case NETLINK_PKTINFO:
2483 case NETLINK_ADD_MEMBERSHIP:
2484 case NETLINK_DROP_MEMBERSHIP:
2485 case NETLINK_BROADCAST_ERROR:
2486 case NETLINK_NO_ENOBUFS:
2487 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2488 case NETLINK_LISTEN_ALL_NSID:
2489 case NETLINK_CAP_ACK:
2490 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2491 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2492 case NETLINK_EXT_ACK:
2493 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2494 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2495 case NETLINK_GET_STRICT_CHK:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2497 break;
2498 default:
2499 goto unimplemented;
2500 }
2501 val = 0;
2502 if (optlen < sizeof(uint32_t)) {
2503 return -TARGET_EINVAL;
2504 }
2505 if (get_user_u32(val, optval_addr)) {
2506 return -TARGET_EFAULT;
2507 }
2508 ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2509 sizeof(val)));
2510 break;
2511 #endif /* SOL_NETLINK */
2512 default:
2513 unimplemented:
2514 qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2515 level, optname);
2516 ret = -TARGET_ENOPROTOOPT;
2517 }
2518 return ret;
2519 }
2520
2521 /* do_getsockopt() Must return target values and target errnos. */
do_getsockopt(int sockfd,int level,int optname,abi_ulong optval_addr,abi_ulong optlen)2522 static abi_long do_getsockopt(int sockfd, int level, int optname,
2523 abi_ulong optval_addr, abi_ulong optlen)
2524 {
2525 abi_long ret;
2526 int len, val;
2527 socklen_t lv;
2528
2529 switch(level) {
2530 case TARGET_SOL_SOCKET:
2531 level = SOL_SOCKET;
2532 switch (optname) {
2533 /* These don't just return a single integer */
2534 case TARGET_SO_PEERNAME:
2535 goto unimplemented;
2536 case TARGET_SO_RCVTIMEO: {
2537 struct timeval tv;
2538 socklen_t tvlen;
2539
2540 optname = SO_RCVTIMEO;
2541
2542 get_timeout:
2543 if (get_user_u32(len, optlen)) {
2544 return -TARGET_EFAULT;
2545 }
2546 if (len < 0) {
2547 return -TARGET_EINVAL;
2548 }
2549
2550 tvlen = sizeof(tv);
2551 ret = get_errno(getsockopt(sockfd, level, optname,
2552 &tv, &tvlen));
2553 if (ret < 0) {
2554 return ret;
2555 }
2556 if (len > sizeof(struct target_timeval)) {
2557 len = sizeof(struct target_timeval);
2558 }
2559 if (copy_to_user_timeval(optval_addr, &tv)) {
2560 return -TARGET_EFAULT;
2561 }
2562 if (put_user_u32(len, optlen)) {
2563 return -TARGET_EFAULT;
2564 }
2565 break;
2566 }
2567 case TARGET_SO_SNDTIMEO:
2568 optname = SO_SNDTIMEO;
2569 goto get_timeout;
2570 case TARGET_SO_PEERCRED: {
2571 struct ucred cr;
2572 socklen_t crlen;
2573 struct target_ucred *tcr;
2574
2575 if (get_user_u32(len, optlen)) {
2576 return -TARGET_EFAULT;
2577 }
2578 if (len < 0) {
2579 return -TARGET_EINVAL;
2580 }
2581
2582 crlen = sizeof(cr);
2583 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2584 &cr, &crlen));
2585 if (ret < 0) {
2586 return ret;
2587 }
2588 if (len > crlen) {
2589 len = crlen;
2590 }
2591 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2592 return -TARGET_EFAULT;
2593 }
2594 __put_user(cr.pid, &tcr->pid);
2595 __put_user(cr.uid, &tcr->uid);
2596 __put_user(cr.gid, &tcr->gid);
2597 unlock_user_struct(tcr, optval_addr, 1);
2598 if (put_user_u32(len, optlen)) {
2599 return -TARGET_EFAULT;
2600 }
2601 break;
2602 }
2603 case TARGET_SO_PEERSEC: {
2604 char *name;
2605
2606 if (get_user_u32(len, optlen)) {
2607 return -TARGET_EFAULT;
2608 }
2609 if (len < 0) {
2610 return -TARGET_EINVAL;
2611 }
2612 name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2613 if (!name) {
2614 return -TARGET_EFAULT;
2615 }
2616 lv = len;
2617 ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2618 name, &lv));
2619 if (put_user_u32(lv, optlen)) {
2620 ret = -TARGET_EFAULT;
2621 }
2622 unlock_user(name, optval_addr, lv);
2623 break;
2624 }
2625 case TARGET_SO_LINGER:
2626 {
2627 struct linger lg;
2628 socklen_t lglen;
2629 struct target_linger *tlg;
2630
2631 if (get_user_u32(len, optlen)) {
2632 return -TARGET_EFAULT;
2633 }
2634 if (len < 0) {
2635 return -TARGET_EINVAL;
2636 }
2637
2638 lglen = sizeof(lg);
2639 ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2640 &lg, &lglen));
2641 if (ret < 0) {
2642 return ret;
2643 }
2644 if (len > lglen) {
2645 len = lglen;
2646 }
2647 if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2648 return -TARGET_EFAULT;
2649 }
2650 __put_user(lg.l_onoff, &tlg->l_onoff);
2651 __put_user(lg.l_linger, &tlg->l_linger);
2652 unlock_user_struct(tlg, optval_addr, 1);
2653 if (put_user_u32(len, optlen)) {
2654 return -TARGET_EFAULT;
2655 }
2656 break;
2657 }
2658 /* Options with 'int' argument. */
2659 case TARGET_SO_DEBUG:
2660 optname = SO_DEBUG;
2661 goto int_case;
2662 case TARGET_SO_REUSEADDR:
2663 optname = SO_REUSEADDR;
2664 goto int_case;
2665 #ifdef SO_REUSEPORT
2666 case TARGET_SO_REUSEPORT:
2667 optname = SO_REUSEPORT;
2668 goto int_case;
2669 #endif
2670 case TARGET_SO_TYPE:
2671 optname = SO_TYPE;
2672 goto int_case;
2673 case TARGET_SO_ERROR:
2674 optname = SO_ERROR;
2675 goto int_case;
2676 case TARGET_SO_DONTROUTE:
2677 optname = SO_DONTROUTE;
2678 goto int_case;
2679 case TARGET_SO_BROADCAST:
2680 optname = SO_BROADCAST;
2681 goto int_case;
2682 case TARGET_SO_SNDBUF:
2683 optname = SO_SNDBUF;
2684 goto int_case;
2685 case TARGET_SO_RCVBUF:
2686 optname = SO_RCVBUF;
2687 goto int_case;
2688 case TARGET_SO_KEEPALIVE:
2689 optname = SO_KEEPALIVE;
2690 goto int_case;
2691 case TARGET_SO_OOBINLINE:
2692 optname = SO_OOBINLINE;
2693 goto int_case;
2694 case TARGET_SO_NO_CHECK:
2695 optname = SO_NO_CHECK;
2696 goto int_case;
2697 case TARGET_SO_PRIORITY:
2698 optname = SO_PRIORITY;
2699 goto int_case;
2700 #ifdef SO_BSDCOMPAT
2701 case TARGET_SO_BSDCOMPAT:
2702 optname = SO_BSDCOMPAT;
2703 goto int_case;
2704 #endif
2705 case TARGET_SO_PASSCRED:
2706 optname = SO_PASSCRED;
2707 goto int_case;
2708 case TARGET_SO_TIMESTAMP:
2709 optname = SO_TIMESTAMP;
2710 goto int_case;
2711 case TARGET_SO_RCVLOWAT:
2712 optname = SO_RCVLOWAT;
2713 goto int_case;
2714 case TARGET_SO_ACCEPTCONN:
2715 optname = SO_ACCEPTCONN;
2716 goto int_case;
2717 case TARGET_SO_PROTOCOL:
2718 optname = SO_PROTOCOL;
2719 goto int_case;
2720 case TARGET_SO_DOMAIN:
2721 optname = SO_DOMAIN;
2722 goto int_case;
2723 default:
2724 goto int_case;
2725 }
2726 break;
2727 case SOL_TCP:
2728 case SOL_UDP:
2729 /* TCP and UDP options all take an 'int' value. */
2730 int_case:
2731 if (get_user_u32(len, optlen))
2732 return -TARGET_EFAULT;
2733 if (len < 0)
2734 return -TARGET_EINVAL;
2735 lv = sizeof(lv);
2736 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2737 if (ret < 0)
2738 return ret;
2739 switch (optname) {
2740 case SO_TYPE:
2741 val = host_to_target_sock_type(val);
2742 break;
2743 case SO_ERROR:
2744 val = host_to_target_errno(val);
2745 break;
2746 }
2747 if (len > lv)
2748 len = lv;
2749 if (len == 4) {
2750 if (put_user_u32(val, optval_addr))
2751 return -TARGET_EFAULT;
2752 } else {
2753 if (put_user_u8(val, optval_addr))
2754 return -TARGET_EFAULT;
2755 }
2756 if (put_user_u32(len, optlen))
2757 return -TARGET_EFAULT;
2758 break;
2759 case SOL_IP:
2760 switch(optname) {
2761 case IP_TOS:
2762 case IP_TTL:
2763 case IP_HDRINCL:
2764 case IP_ROUTER_ALERT:
2765 case IP_RECVOPTS:
2766 case IP_RETOPTS:
2767 case IP_PKTINFO:
2768 case IP_MTU_DISCOVER:
2769 case IP_RECVERR:
2770 case IP_RECVTOS:
2771 #ifdef IP_FREEBIND
2772 case IP_FREEBIND:
2773 #endif
2774 case IP_MULTICAST_TTL:
2775 case IP_MULTICAST_LOOP:
2776 if (get_user_u32(len, optlen))
2777 return -TARGET_EFAULT;
2778 if (len < 0)
2779 return -TARGET_EINVAL;
2780 lv = sizeof(lv);
2781 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2782 if (ret < 0)
2783 return ret;
2784 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2785 len = 1;
2786 if (put_user_u32(len, optlen)
2787 || put_user_u8(val, optval_addr))
2788 return -TARGET_EFAULT;
2789 } else {
2790 if (len > sizeof(int))
2791 len = sizeof(int);
2792 if (put_user_u32(len, optlen)
2793 || put_user_u32(val, optval_addr))
2794 return -TARGET_EFAULT;
2795 }
2796 break;
2797 default:
2798 ret = -TARGET_ENOPROTOOPT;
2799 break;
2800 }
2801 break;
2802 case SOL_IPV6:
2803 switch (optname) {
2804 case IPV6_MTU_DISCOVER:
2805 case IPV6_MTU:
2806 case IPV6_V6ONLY:
2807 case IPV6_RECVPKTINFO:
2808 case IPV6_UNICAST_HOPS:
2809 case IPV6_MULTICAST_HOPS:
2810 case IPV6_MULTICAST_LOOP:
2811 case IPV6_RECVERR:
2812 case IPV6_RECVHOPLIMIT:
2813 case IPV6_2292HOPLIMIT:
2814 case IPV6_CHECKSUM:
2815 case IPV6_ADDRFORM:
2816 case IPV6_2292PKTINFO:
2817 case IPV6_RECVTCLASS:
2818 case IPV6_RECVRTHDR:
2819 case IPV6_2292RTHDR:
2820 case IPV6_RECVHOPOPTS:
2821 case IPV6_2292HOPOPTS:
2822 case IPV6_RECVDSTOPTS:
2823 case IPV6_2292DSTOPTS:
2824 case IPV6_TCLASS:
2825 case IPV6_ADDR_PREFERENCES:
2826 #ifdef IPV6_RECVPATHMTU
2827 case IPV6_RECVPATHMTU:
2828 #endif
2829 #ifdef IPV6_TRANSPARENT
2830 case IPV6_TRANSPARENT:
2831 #endif
2832 #ifdef IPV6_FREEBIND
2833 case IPV6_FREEBIND:
2834 #endif
2835 #ifdef IPV6_RECVORIGDSTADDR
2836 case IPV6_RECVORIGDSTADDR:
2837 #endif
2838 if (get_user_u32(len, optlen))
2839 return -TARGET_EFAULT;
2840 if (len < 0)
2841 return -TARGET_EINVAL;
2842 lv = sizeof(lv);
2843 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2844 if (ret < 0)
2845 return ret;
2846 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2847 len = 1;
2848 if (put_user_u32(len, optlen)
2849 || put_user_u8(val, optval_addr))
2850 return -TARGET_EFAULT;
2851 } else {
2852 if (len > sizeof(int))
2853 len = sizeof(int);
2854 if (put_user_u32(len, optlen)
2855 || put_user_u32(val, optval_addr))
2856 return -TARGET_EFAULT;
2857 }
2858 break;
2859 default:
2860 ret = -TARGET_ENOPROTOOPT;
2861 break;
2862 }
2863 break;
2864 #ifdef SOL_NETLINK
2865 case SOL_NETLINK:
2866 switch (optname) {
2867 case NETLINK_PKTINFO:
2868 case NETLINK_BROADCAST_ERROR:
2869 case NETLINK_NO_ENOBUFS:
2870 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2871 case NETLINK_LISTEN_ALL_NSID:
2872 case NETLINK_CAP_ACK:
2873 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2874 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2875 case NETLINK_EXT_ACK:
2876 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2877 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2878 case NETLINK_GET_STRICT_CHK:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2880 if (get_user_u32(len, optlen)) {
2881 return -TARGET_EFAULT;
2882 }
2883 if (len != sizeof(val)) {
2884 return -TARGET_EINVAL;
2885 }
2886 lv = len;
2887 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2888 if (ret < 0) {
2889 return ret;
2890 }
2891 if (put_user_u32(lv, optlen)
2892 || put_user_u32(val, optval_addr)) {
2893 return -TARGET_EFAULT;
2894 }
2895 break;
2896 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2897 case NETLINK_LIST_MEMBERSHIPS:
2898 {
2899 uint32_t *results;
2900 int i;
2901 if (get_user_u32(len, optlen)) {
2902 return -TARGET_EFAULT;
2903 }
2904 if (len < 0) {
2905 return -TARGET_EINVAL;
2906 }
2907 results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2908 if (!results && len > 0) {
2909 return -TARGET_EFAULT;
2910 }
2911 lv = len;
2912 ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2913 if (ret < 0) {
2914 unlock_user(results, optval_addr, 0);
2915 return ret;
2916 }
2917 /* swap host endianness to target endianness. */
2918 for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2919 results[i] = tswap32(results[i]);
2920 }
2921 if (put_user_u32(lv, optlen)) {
2922 return -TARGET_EFAULT;
2923 }
2924 unlock_user(results, optval_addr, 0);
2925 break;
2926 }
2927 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2928 default:
2929 goto unimplemented;
2930 }
2931 break;
2932 #endif /* SOL_NETLINK */
2933 default:
2934 unimplemented:
2935 qemu_log_mask(LOG_UNIMP,
2936 "getsockopt level=%d optname=%d not yet supported\n",
2937 level, optname);
2938 ret = -TARGET_EOPNOTSUPP;
2939 break;
2940 }
2941 return ret;
2942 }
2943
2944 /* Convert target low/high pair representing file offset into the host
2945 * low/high pair. This function doesn't handle offsets bigger than 64 bits
2946 * as the kernel doesn't handle them either.
2947 */
target_to_host_low_high(abi_ulong tlow,abi_ulong thigh,unsigned long * hlow,unsigned long * hhigh)2948 static void target_to_host_low_high(abi_ulong tlow,
2949 abi_ulong thigh,
2950 unsigned long *hlow,
2951 unsigned long *hhigh)
2952 {
2953 uint64_t off = tlow |
2954 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2955 TARGET_LONG_BITS / 2;
2956
2957 *hlow = off;
2958 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2959 }
2960
lock_iovec(int type,abi_ulong target_addr,abi_ulong count,int copy)2961 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2962 abi_ulong count, int copy)
2963 {
2964 struct target_iovec *target_vec;
2965 struct iovec *vec;
2966 abi_ulong total_len, max_len;
2967 int i;
2968 int err = 0;
2969 bool bad_address = false;
2970
2971 if (count == 0) {
2972 errno = 0;
2973 return NULL;
2974 }
2975 if (count > IOV_MAX) {
2976 errno = EINVAL;
2977 return NULL;
2978 }
2979
2980 vec = g_try_new0(struct iovec, count);
2981 if (vec == NULL) {
2982 errno = ENOMEM;
2983 return NULL;
2984 }
2985
2986 target_vec = lock_user(VERIFY_READ, target_addr,
2987 count * sizeof(struct target_iovec), 1);
2988 if (target_vec == NULL) {
2989 err = EFAULT;
2990 goto fail2;
2991 }
2992
2993 /* ??? If host page size > target page size, this will result in a
2994 value larger than what we can actually support. */
2995 max_len = 0x7fffffff & TARGET_PAGE_MASK;
2996 total_len = 0;
2997
2998 for (i = 0; i < count; i++) {
2999 abi_ulong base = tswapal(target_vec[i].iov_base);
3000 abi_long len = tswapal(target_vec[i].iov_len);
3001
3002 if (len < 0) {
3003 err = EINVAL;
3004 goto fail;
3005 } else if (len == 0) {
3006 /* Zero length pointer is ignored. */
3007 vec[i].iov_base = 0;
3008 } else {
3009 vec[i].iov_base = lock_user(type, base, len, copy);
3010 /* If the first buffer pointer is bad, this is a fault. But
3011 * subsequent bad buffers will result in a partial write; this
3012 * is realized by filling the vector with null pointers and
3013 * zero lengths. */
3014 if (!vec[i].iov_base) {
3015 if (i == 0) {
3016 err = EFAULT;
3017 goto fail;
3018 } else {
3019 bad_address = true;
3020 }
3021 }
3022 if (bad_address) {
3023 len = 0;
3024 }
3025 if (len > max_len - total_len) {
3026 len = max_len - total_len;
3027 }
3028 }
3029 vec[i].iov_len = len;
3030 total_len += len;
3031 }
3032
3033 unlock_user(target_vec, target_addr, 0);
3034 return vec;
3035
3036 fail:
3037 while (--i >= 0) {
3038 if (tswapal(target_vec[i].iov_len) > 0) {
3039 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3040 }
3041 }
3042 unlock_user(target_vec, target_addr, 0);
3043 fail2:
3044 g_free(vec);
3045 errno = err;
3046 return NULL;
3047 }
3048
unlock_iovec(struct iovec * vec,abi_ulong target_addr,abi_ulong count,int copy)3049 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3050 abi_ulong count, int copy)
3051 {
3052 struct target_iovec *target_vec;
3053 int i;
3054
3055 target_vec = lock_user(VERIFY_READ, target_addr,
3056 count * sizeof(struct target_iovec), 1);
3057 if (target_vec) {
3058 for (i = 0; i < count; i++) {
3059 abi_ulong base = tswapal(target_vec[i].iov_base);
3060 abi_long len = tswapal(target_vec[i].iov_len);
3061 if (len < 0) {
3062 break;
3063 }
3064 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3065 }
3066 unlock_user(target_vec, target_addr, 0);
3067 }
3068
3069 g_free(vec);
3070 }
3071
target_to_host_sock_type(int * type)3072 static inline int target_to_host_sock_type(int *type)
3073 {
3074 int host_type = 0;
3075 int target_type = *type;
3076
3077 switch (target_type & TARGET_SOCK_TYPE_MASK) {
3078 case TARGET_SOCK_DGRAM:
3079 host_type = SOCK_DGRAM;
3080 break;
3081 case TARGET_SOCK_STREAM:
3082 host_type = SOCK_STREAM;
3083 break;
3084 default:
3085 host_type = target_type & TARGET_SOCK_TYPE_MASK;
3086 break;
3087 }
3088 if (target_type & TARGET_SOCK_CLOEXEC) {
3089 #if defined(SOCK_CLOEXEC)
3090 host_type |= SOCK_CLOEXEC;
3091 #else
3092 return -TARGET_EINVAL;
3093 #endif
3094 }
3095 if (target_type & TARGET_SOCK_NONBLOCK) {
3096 #if defined(SOCK_NONBLOCK)
3097 host_type |= SOCK_NONBLOCK;
3098 #elif !defined(O_NONBLOCK)
3099 return -TARGET_EINVAL;
3100 #endif
3101 }
3102 *type = host_type;
3103 return 0;
3104 }
3105
3106 /* Try to emulate socket type flags after socket creation. */
sock_flags_fixup(int fd,int target_type)3107 static int sock_flags_fixup(int fd, int target_type)
3108 {
3109 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3110 if (target_type & TARGET_SOCK_NONBLOCK) {
3111 int flags = fcntl(fd, F_GETFL);
3112 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3113 close(fd);
3114 return -TARGET_EINVAL;
3115 }
3116 }
3117 #endif
3118 return fd;
3119 }
3120
3121 /* do_socket() Must return target values and target errnos. */
do_socket(int domain,int type,int protocol)3122 static abi_long do_socket(int domain, int type, int protocol)
3123 {
3124 int target_type = type;
3125 int ret;
3126
3127 ret = target_to_host_sock_type(&type);
3128 if (ret) {
3129 return ret;
3130 }
3131
3132 if (domain == PF_NETLINK && !(
3133 #ifdef CONFIG_RTNETLINK
3134 protocol == NETLINK_ROUTE ||
3135 #endif
3136 protocol == NETLINK_KOBJECT_UEVENT ||
3137 protocol == NETLINK_AUDIT)) {
3138 return -TARGET_EPROTONOSUPPORT;
3139 }
3140
3141 if (domain == AF_PACKET ||
3142 (domain == AF_INET && type == SOCK_PACKET)) {
3143 protocol = tswap16(protocol);
3144 }
3145
3146 ret = get_errno(socket(domain, type, protocol));
3147 if (ret >= 0) {
3148 ret = sock_flags_fixup(ret, target_type);
3149 if (type == SOCK_PACKET) {
3150 /* Manage an obsolete case :
3151 * if socket type is SOCK_PACKET, bind by name
3152 */
3153 fd_trans_register(ret, &target_packet_trans);
3154 } else if (domain == PF_NETLINK) {
3155 switch (protocol) {
3156 #ifdef CONFIG_RTNETLINK
3157 case NETLINK_ROUTE:
3158 fd_trans_register(ret, &target_netlink_route_trans);
3159 break;
3160 #endif
3161 case NETLINK_KOBJECT_UEVENT:
3162 /* nothing to do: messages are strings */
3163 break;
3164 case NETLINK_AUDIT:
3165 fd_trans_register(ret, &target_netlink_audit_trans);
3166 break;
3167 default:
3168 g_assert_not_reached();
3169 }
3170 }
3171 }
3172 return ret;
3173 }
3174
3175 /* do_bind() Must return target values and target errnos. */
do_bind(int sockfd,abi_ulong target_addr,socklen_t addrlen)3176 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3177 socklen_t addrlen)
3178 {
3179 void *addr;
3180 abi_long ret;
3181
3182 if ((int)addrlen < 0) {
3183 return -TARGET_EINVAL;
3184 }
3185
3186 addr = alloca(addrlen+1);
3187
3188 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3189 if (ret)
3190 return ret;
3191
3192 return get_errno(bind(sockfd, addr, addrlen));
3193 }
3194
3195 /* do_connect() Must return target values and target errnos. */
do_connect(int sockfd,abi_ulong target_addr,socklen_t addrlen)3196 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3197 socklen_t addrlen)
3198 {
3199 void *addr;
3200 abi_long ret;
3201
3202 if ((int)addrlen < 0) {
3203 return -TARGET_EINVAL;
3204 }
3205
3206 addr = alloca(addrlen+1);
3207
3208 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3209 if (ret)
3210 return ret;
3211
3212 return get_errno(safe_connect(sockfd, addr, addrlen));
3213 }
3214
3215 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
do_sendrecvmsg_locked(int fd,struct target_msghdr * msgp,int flags,int send)3216 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3217 int flags, int send)
3218 {
3219 abi_long ret, len;
3220 struct msghdr msg;
3221 abi_ulong count;
3222 struct iovec *vec;
3223 abi_ulong target_vec;
3224
3225 if (msgp->msg_name) {
3226 msg.msg_namelen = tswap32(msgp->msg_namelen);
3227 msg.msg_name = alloca(msg.msg_namelen+1);
3228 ret = target_to_host_sockaddr(fd, msg.msg_name,
3229 tswapal(msgp->msg_name),
3230 msg.msg_namelen);
3231 if (ret == -TARGET_EFAULT) {
3232 /* For connected sockets msg_name and msg_namelen must
3233 * be ignored, so returning EFAULT immediately is wrong.
3234 * Instead, pass a bad msg_name to the host kernel, and
3235 * let it decide whether to return EFAULT or not.
3236 */
3237 msg.msg_name = (void *)-1;
3238 } else if (ret) {
3239 goto out2;
3240 }
3241 } else {
3242 msg.msg_name = NULL;
3243 msg.msg_namelen = 0;
3244 }
3245 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3246 msg.msg_control = alloca(msg.msg_controllen);
3247 memset(msg.msg_control, 0, msg.msg_controllen);
3248
3249 msg.msg_flags = tswap32(msgp->msg_flags);
3250
3251 count = tswapal(msgp->msg_iovlen);
3252 target_vec = tswapal(msgp->msg_iov);
3253
3254 if (count > IOV_MAX) {
3255 /* sendrcvmsg returns a different errno for this condition than
3256 * readv/writev, so we must catch it here before lock_iovec() does.
3257 */
3258 ret = -TARGET_EMSGSIZE;
3259 goto out2;
3260 }
3261
3262 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3263 target_vec, count, send);
3264 if (vec == NULL) {
3265 ret = -host_to_target_errno(errno);
3266 /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3267 if (!send || ret) {
3268 goto out2;
3269 }
3270 }
3271 msg.msg_iovlen = count;
3272 msg.msg_iov = vec;
3273
3274 if (send) {
3275 if (fd_trans_target_to_host_data(fd)) {
3276 void *host_msg;
3277
3278 host_msg = g_malloc(msg.msg_iov->iov_len);
3279 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3280 ret = fd_trans_target_to_host_data(fd)(host_msg,
3281 msg.msg_iov->iov_len);
3282 if (ret >= 0) {
3283 msg.msg_iov->iov_base = host_msg;
3284 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3285 }
3286 g_free(host_msg);
3287 } else {
3288 ret = target_to_host_cmsg(&msg, msgp);
3289 if (ret == 0) {
3290 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3291 }
3292 }
3293 } else {
3294 ret = get_errno(safe_recvmsg(fd, &msg, flags));
3295 if (!is_error(ret)) {
3296 len = ret;
3297 if (fd_trans_host_to_target_data(fd)) {
3298 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3299 MIN(msg.msg_iov->iov_len, len));
3300 }
3301 if (!is_error(ret)) {
3302 ret = host_to_target_cmsg(msgp, &msg);
3303 }
3304 if (!is_error(ret)) {
3305 msgp->msg_namelen = tswap32(msg.msg_namelen);
3306 msgp->msg_flags = tswap32(msg.msg_flags);
3307 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3308 ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3309 msg.msg_name, msg.msg_namelen);
3310 if (ret) {
3311 goto out;
3312 }
3313 }
3314
3315 ret = len;
3316 }
3317 }
3318 }
3319
3320 out:
3321 if (vec) {
3322 unlock_iovec(vec, target_vec, count, !send);
3323 }
3324 out2:
3325 return ret;
3326 }
3327
do_sendrecvmsg(int fd,abi_ulong target_msg,int flags,int send)3328 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3329 int flags, int send)
3330 {
3331 abi_long ret;
3332 struct target_msghdr *msgp;
3333
3334 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3335 msgp,
3336 target_msg,
3337 send ? 1 : 0)) {
3338 return -TARGET_EFAULT;
3339 }
3340 ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3341 unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3342 return ret;
3343 }
3344
3345 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3346 * so it might not have this *mmsg-specific flag either.
3347 */
3348 #ifndef MSG_WAITFORONE
3349 #define MSG_WAITFORONE 0x10000
3350 #endif
3351
do_sendrecvmmsg(int fd,abi_ulong target_msgvec,unsigned int vlen,unsigned int flags,int send)3352 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3353 unsigned int vlen, unsigned int flags,
3354 int send)
3355 {
3356 struct target_mmsghdr *mmsgp;
3357 abi_long ret = 0;
3358 int i;
3359
3360 if (vlen > UIO_MAXIOV) {
3361 vlen = UIO_MAXIOV;
3362 }
3363
3364 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3365 if (!mmsgp) {
3366 return -TARGET_EFAULT;
3367 }
3368
3369 for (i = 0; i < vlen; i++) {
3370 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3371 if (is_error(ret)) {
3372 break;
3373 }
3374 mmsgp[i].msg_len = tswap32(ret);
3375 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3376 if (flags & MSG_WAITFORONE) {
3377 flags |= MSG_DONTWAIT;
3378 }
3379 }
3380
3381 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3382
3383 /* Return number of datagrams sent if we sent any at all;
3384 * otherwise return the error.
3385 */
3386 if (i) {
3387 return i;
3388 }
3389 return ret;
3390 }
3391
3392 /* do_accept4() Must return target values and target errnos. */
do_accept4(int fd,abi_ulong target_addr,abi_ulong target_addrlen_addr,int flags)3393 static abi_long do_accept4(int fd, abi_ulong target_addr,
3394 abi_ulong target_addrlen_addr, int flags)
3395 {
3396 socklen_t addrlen, ret_addrlen;
3397 void *addr;
3398 abi_long ret;
3399 int host_flags;
3400
3401 if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) {
3402 return -TARGET_EINVAL;
3403 }
3404
3405 host_flags = 0;
3406 if (flags & TARGET_SOCK_NONBLOCK) {
3407 host_flags |= SOCK_NONBLOCK;
3408 }
3409 if (flags & TARGET_SOCK_CLOEXEC) {
3410 host_flags |= SOCK_CLOEXEC;
3411 }
3412
3413 if (target_addr == 0) {
3414 return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3415 }
3416
3417 /* linux returns EFAULT if addrlen pointer is invalid */
3418 if (get_user_u32(addrlen, target_addrlen_addr))
3419 return -TARGET_EFAULT;
3420
3421 if ((int)addrlen < 0) {
3422 return -TARGET_EINVAL;
3423 }
3424
3425 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3426 return -TARGET_EFAULT;
3427 }
3428
3429 addr = alloca(addrlen);
3430
3431 ret_addrlen = addrlen;
3432 ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3433 if (!is_error(ret)) {
3434 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3435 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3436 ret = -TARGET_EFAULT;
3437 }
3438 }
3439 return ret;
3440 }
3441
3442 /* do_getpeername() Must return target values and target errnos. */
do_getpeername(int fd,abi_ulong target_addr,abi_ulong target_addrlen_addr)3443 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3444 abi_ulong target_addrlen_addr)
3445 {
3446 socklen_t addrlen, ret_addrlen;
3447 void *addr;
3448 abi_long ret;
3449
3450 if (get_user_u32(addrlen, target_addrlen_addr))
3451 return -TARGET_EFAULT;
3452
3453 if ((int)addrlen < 0) {
3454 return -TARGET_EINVAL;
3455 }
3456
3457 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3458 return -TARGET_EFAULT;
3459 }
3460
3461 addr = alloca(addrlen);
3462
3463 ret_addrlen = addrlen;
3464 ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3465 if (!is_error(ret)) {
3466 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3467 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3468 ret = -TARGET_EFAULT;
3469 }
3470 }
3471 return ret;
3472 }
3473
3474 /* do_getsockname() Must return target values and target errnos. */
do_getsockname(int fd,abi_ulong target_addr,abi_ulong target_addrlen_addr)3475 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3476 abi_ulong target_addrlen_addr)
3477 {
3478 socklen_t addrlen, ret_addrlen;
3479 void *addr;
3480 abi_long ret;
3481
3482 if (get_user_u32(addrlen, target_addrlen_addr))
3483 return -TARGET_EFAULT;
3484
3485 if ((int)addrlen < 0) {
3486 return -TARGET_EINVAL;
3487 }
3488
3489 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3490 return -TARGET_EFAULT;
3491 }
3492
3493 addr = alloca(addrlen);
3494
3495 ret_addrlen = addrlen;
3496 ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3497 if (!is_error(ret)) {
3498 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3499 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3500 ret = -TARGET_EFAULT;
3501 }
3502 }
3503 return ret;
3504 }
3505
3506 /* do_socketpair() Must return target values and target errnos. */
do_socketpair(int domain,int type,int protocol,abi_ulong target_tab_addr)3507 static abi_long do_socketpair(int domain, int type, int protocol,
3508 abi_ulong target_tab_addr)
3509 {
3510 int tab[2];
3511 abi_long ret;
3512
3513 target_to_host_sock_type(&type);
3514
3515 ret = get_errno(socketpair(domain, type, protocol, tab));
3516 if (!is_error(ret)) {
3517 if (put_user_s32(tab[0], target_tab_addr)
3518 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3519 ret = -TARGET_EFAULT;
3520 }
3521 return ret;
3522 }
3523
3524 /* do_sendto() Must return target values and target errnos. */
do_sendto(int fd,abi_ulong msg,size_t len,int flags,abi_ulong target_addr,socklen_t addrlen)3525 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3526 abi_ulong target_addr, socklen_t addrlen)
3527 {
3528 void *addr;
3529 void *host_msg;
3530 void *copy_msg = NULL;
3531 abi_long ret;
3532
3533 if ((int)addrlen < 0) {
3534 return -TARGET_EINVAL;
3535 }
3536
3537 host_msg = lock_user(VERIFY_READ, msg, len, 1);
3538 if (!host_msg)
3539 return -TARGET_EFAULT;
3540 if (fd_trans_target_to_host_data(fd)) {
3541 copy_msg = host_msg;
3542 host_msg = g_malloc(len);
3543 memcpy(host_msg, copy_msg, len);
3544 ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3545 if (ret < 0) {
3546 goto fail;
3547 }
3548 }
3549 if (target_addr) {
3550 addr = alloca(addrlen+1);
3551 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3552 if (ret) {
3553 goto fail;
3554 }
3555 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3556 } else {
3557 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3558 }
3559 fail:
3560 if (copy_msg) {
3561 g_free(host_msg);
3562 host_msg = copy_msg;
3563 }
3564 unlock_user(host_msg, msg, 0);
3565 return ret;
3566 }
3567
3568 /* do_recvfrom() Must return target values and target errnos. */
do_recvfrom(int fd,abi_ulong msg,size_t len,int flags,abi_ulong target_addr,abi_ulong target_addrlen)3569 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3570 abi_ulong target_addr,
3571 abi_ulong target_addrlen)
3572 {
3573 socklen_t addrlen, ret_addrlen;
3574 void *addr;
3575 void *host_msg;
3576 abi_long ret;
3577
3578 if (!msg) {
3579 host_msg = NULL;
3580 } else {
3581 host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3582 if (!host_msg) {
3583 return -TARGET_EFAULT;
3584 }
3585 }
3586 if (target_addr) {
3587 if (get_user_u32(addrlen, target_addrlen)) {
3588 ret = -TARGET_EFAULT;
3589 goto fail;
3590 }
3591 if ((int)addrlen < 0) {
3592 ret = -TARGET_EINVAL;
3593 goto fail;
3594 }
3595 addr = alloca(addrlen);
3596 ret_addrlen = addrlen;
3597 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3598 addr, &ret_addrlen));
3599 } else {
3600 addr = NULL; /* To keep compiler quiet. */
3601 addrlen = 0; /* To keep compiler quiet. */
3602 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3603 }
3604 if (!is_error(ret)) {
3605 if (fd_trans_host_to_target_data(fd)) {
3606 abi_long trans;
3607 trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3608 if (is_error(trans)) {
3609 ret = trans;
3610 goto fail;
3611 }
3612 }
3613 if (target_addr) {
3614 host_to_target_sockaddr(target_addr, addr,
3615 MIN(addrlen, ret_addrlen));
3616 if (put_user_u32(ret_addrlen, target_addrlen)) {
3617 ret = -TARGET_EFAULT;
3618 goto fail;
3619 }
3620 }
3621 unlock_user(host_msg, msg, len);
3622 } else {
3623 fail:
3624 unlock_user(host_msg, msg, 0);
3625 }
3626 return ret;
3627 }
3628
3629 #ifdef TARGET_NR_socketcall
3630 /* do_socketcall() must return target values and target errnos. */
do_socketcall(int num,abi_ulong vptr)3631 static abi_long do_socketcall(int num, abi_ulong vptr)
3632 {
3633 static const unsigned nargs[] = { /* number of arguments per operation */
3634 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */
3635 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */
3636 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */
3637 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */
3638 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */
3639 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3640 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3641 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */
3642 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */
3643 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */
3644 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */
3645 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */
3646 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */
3647 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
3648 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
3649 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */
3650 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */
3651 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */
3652 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */
3653 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */
3654 };
3655 abi_long a[6]; /* max 6 args */
3656 unsigned i;
3657
3658 /* check the range of the first argument num */
3659 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3660 if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3661 return -TARGET_EINVAL;
3662 }
3663 /* ensure we have space for args */
3664 if (nargs[num] > ARRAY_SIZE(a)) {
3665 return -TARGET_EINVAL;
3666 }
3667 /* collect the arguments in a[] according to nargs[] */
3668 for (i = 0; i < nargs[num]; ++i) {
3669 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3670 return -TARGET_EFAULT;
3671 }
3672 }
3673 /* now when we have the args, invoke the appropriate underlying function */
3674 switch (num) {
3675 case TARGET_SYS_SOCKET: /* domain, type, protocol */
3676 return do_socket(a[0], a[1], a[2]);
3677 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3678 return do_bind(a[0], a[1], a[2]);
3679 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3680 return do_connect(a[0], a[1], a[2]);
3681 case TARGET_SYS_LISTEN: /* sockfd, backlog */
3682 return get_errno(listen(a[0], a[1]));
3683 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3684 return do_accept4(a[0], a[1], a[2], 0);
3685 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3686 return do_getsockname(a[0], a[1], a[2]);
3687 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3688 return do_getpeername(a[0], a[1], a[2]);
3689 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3690 return do_socketpair(a[0], a[1], a[2], a[3]);
3691 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3692 return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3693 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3694 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3695 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3696 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3697 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3698 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3699 case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3700 return get_errno(shutdown(a[0], a[1]));
3701 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3702 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3703 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3704 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3705 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3706 return do_sendrecvmsg(a[0], a[1], a[2], 1);
3707 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3708 return do_sendrecvmsg(a[0], a[1], a[2], 0);
3709 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3710 return do_accept4(a[0], a[1], a[2], a[3]);
3711 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3712 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3713 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3714 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3715 default:
3716 qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3717 return -TARGET_EINVAL;
3718 }
3719 }
3720 #endif
3721
3722 #ifndef TARGET_SEMID64_DS
3723 /* asm-generic version of this struct */
3724 struct target_semid64_ds
3725 {
3726 struct target_ipc_perm sem_perm;
3727 abi_ulong sem_otime;
3728 #if TARGET_ABI_BITS == 32
3729 abi_ulong __unused1;
3730 #endif
3731 abi_ulong sem_ctime;
3732 #if TARGET_ABI_BITS == 32
3733 abi_ulong __unused2;
3734 #endif
3735 abi_ulong sem_nsems;
3736 abi_ulong __unused3;
3737 abi_ulong __unused4;
3738 };
3739 #endif
3740
target_to_host_ipc_perm(struct ipc_perm * host_ip,abi_ulong target_addr)3741 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3742 abi_ulong target_addr)
3743 {
3744 struct target_ipc_perm *target_ip;
3745 struct target_semid64_ds *target_sd;
3746
3747 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3748 return -TARGET_EFAULT;
3749 target_ip = &(target_sd->sem_perm);
3750 host_ip->__key = tswap32(target_ip->__key);
3751 host_ip->uid = tswap32(target_ip->uid);
3752 host_ip->gid = tswap32(target_ip->gid);
3753 host_ip->cuid = tswap32(target_ip->cuid);
3754 host_ip->cgid = tswap32(target_ip->cgid);
3755 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3756 host_ip->mode = tswap32(target_ip->mode);
3757 #else
3758 host_ip->mode = tswap16(target_ip->mode);
3759 #endif
3760 #if defined(TARGET_PPC)
3761 host_ip->__seq = tswap32(target_ip->__seq);
3762 #else
3763 host_ip->__seq = tswap16(target_ip->__seq);
3764 #endif
3765 unlock_user_struct(target_sd, target_addr, 0);
3766 return 0;
3767 }
3768
host_to_target_ipc_perm(abi_ulong target_addr,struct ipc_perm * host_ip)3769 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3770 struct ipc_perm *host_ip)
3771 {
3772 struct target_ipc_perm *target_ip;
3773 struct target_semid64_ds *target_sd;
3774
3775 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3776 return -TARGET_EFAULT;
3777 target_ip = &(target_sd->sem_perm);
3778 target_ip->__key = tswap32(host_ip->__key);
3779 target_ip->uid = tswap32(host_ip->uid);
3780 target_ip->gid = tswap32(host_ip->gid);
3781 target_ip->cuid = tswap32(host_ip->cuid);
3782 target_ip->cgid = tswap32(host_ip->cgid);
3783 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3784 target_ip->mode = tswap32(host_ip->mode);
3785 #else
3786 target_ip->mode = tswap16(host_ip->mode);
3787 #endif
3788 #if defined(TARGET_PPC)
3789 target_ip->__seq = tswap32(host_ip->__seq);
3790 #else
3791 target_ip->__seq = tswap16(host_ip->__seq);
3792 #endif
3793 unlock_user_struct(target_sd, target_addr, 1);
3794 return 0;
3795 }
3796
target_to_host_semid_ds(struct semid_ds * host_sd,abi_ulong target_addr)3797 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3798 abi_ulong target_addr)
3799 {
3800 struct target_semid64_ds *target_sd;
3801
3802 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3803 return -TARGET_EFAULT;
3804 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3805 return -TARGET_EFAULT;
3806 host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3807 host_sd->sem_otime = tswapal(target_sd->sem_otime);
3808 host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3809 unlock_user_struct(target_sd, target_addr, 0);
3810 return 0;
3811 }
3812
host_to_target_semid_ds(abi_ulong target_addr,struct semid_ds * host_sd)3813 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3814 struct semid_ds *host_sd)
3815 {
3816 struct target_semid64_ds *target_sd;
3817
3818 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3819 return -TARGET_EFAULT;
3820 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3821 return -TARGET_EFAULT;
3822 target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3823 target_sd->sem_otime = tswapal(host_sd->sem_otime);
3824 target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3825 unlock_user_struct(target_sd, target_addr, 1);
3826 return 0;
3827 }
3828
3829 struct target_seminfo {
3830 int semmap;
3831 int semmni;
3832 int semmns;
3833 int semmnu;
3834 int semmsl;
3835 int semopm;
3836 int semume;
3837 int semusz;
3838 int semvmx;
3839 int semaem;
3840 };
3841
host_to_target_seminfo(abi_ulong target_addr,struct seminfo * host_seminfo)3842 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3843 struct seminfo *host_seminfo)
3844 {
3845 struct target_seminfo *target_seminfo;
3846 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3847 return -TARGET_EFAULT;
3848 __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3849 __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3850 __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3851 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3852 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3853 __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3854 __put_user(host_seminfo->semume, &target_seminfo->semume);
3855 __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3856 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3857 __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3858 unlock_user_struct(target_seminfo, target_addr, 1);
3859 return 0;
3860 }
3861
3862 union semun {
3863 int val;
3864 struct semid_ds *buf;
3865 unsigned short *array;
3866 struct seminfo *__buf;
3867 };
3868
3869 union target_semun {
3870 int val;
3871 abi_ulong buf;
3872 abi_ulong array;
3873 abi_ulong __buf;
3874 };
3875
target_to_host_semarray(int semid,unsigned short ** host_array,abi_ulong target_addr)3876 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3877 abi_ulong target_addr)
3878 {
3879 int nsems;
3880 unsigned short *array;
3881 union semun semun;
3882 struct semid_ds semid_ds;
3883 int i, ret;
3884
3885 semun.buf = &semid_ds;
3886
3887 ret = semctl(semid, 0, IPC_STAT, semun);
3888 if (ret == -1)
3889 return get_errno(ret);
3890
3891 nsems = semid_ds.sem_nsems;
3892
3893 *host_array = g_try_new(unsigned short, nsems);
3894 if (!*host_array) {
3895 return -TARGET_ENOMEM;
3896 }
3897 array = lock_user(VERIFY_READ, target_addr,
3898 nsems*sizeof(unsigned short), 1);
3899 if (!array) {
3900 g_free(*host_array);
3901 return -TARGET_EFAULT;
3902 }
3903
3904 for(i=0; i<nsems; i++) {
3905 __get_user((*host_array)[i], &array[i]);
3906 }
3907 unlock_user(array, target_addr, 0);
3908
3909 return 0;
3910 }
3911
host_to_target_semarray(int semid,abi_ulong target_addr,unsigned short ** host_array)3912 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3913 unsigned short **host_array)
3914 {
3915 int nsems;
3916 unsigned short *array;
3917 union semun semun;
3918 struct semid_ds semid_ds;
3919 int i, ret;
3920
3921 semun.buf = &semid_ds;
3922
3923 ret = semctl(semid, 0, IPC_STAT, semun);
3924 if (ret == -1)
3925 return get_errno(ret);
3926
3927 nsems = semid_ds.sem_nsems;
3928
3929 array = lock_user(VERIFY_WRITE, target_addr,
3930 nsems*sizeof(unsigned short), 0);
3931 if (!array)
3932 return -TARGET_EFAULT;
3933
3934 for(i=0; i<nsems; i++) {
3935 __put_user((*host_array)[i], &array[i]);
3936 }
3937 g_free(*host_array);
3938 unlock_user(array, target_addr, 1);
3939
3940 return 0;
3941 }
3942
do_semctl(int semid,int semnum,int cmd,abi_ulong target_arg)3943 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3944 abi_ulong target_arg)
3945 {
3946 union target_semun target_su = { .buf = target_arg };
3947 union semun arg;
3948 struct semid_ds dsarg;
3949 unsigned short *array = NULL;
3950 struct seminfo seminfo;
3951 abi_long ret = -TARGET_EINVAL;
3952 abi_long err;
3953 cmd &= 0xff;
3954
3955 switch( cmd ) {
3956 case GETVAL:
3957 case SETVAL:
3958 /* In 64 bit cross-endian situations, we will erroneously pick up
3959 * the wrong half of the union for the "val" element. To rectify
3960 * this, the entire 8-byte structure is byteswapped, followed by
3961 * a swap of the 4 byte val field. In other cases, the data is
3962 * already in proper host byte order. */
3963 if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3964 target_su.buf = tswapal(target_su.buf);
3965 arg.val = tswap32(target_su.val);
3966 } else {
3967 arg.val = target_su.val;
3968 }
3969 ret = get_errno(semctl(semid, semnum, cmd, arg));
3970 break;
3971 case GETALL:
3972 case SETALL:
3973 err = target_to_host_semarray(semid, &array, target_su.array);
3974 if (err)
3975 return err;
3976 arg.array = array;
3977 ret = get_errno(semctl(semid, semnum, cmd, arg));
3978 err = host_to_target_semarray(semid, target_su.array, &array);
3979 if (err)
3980 return err;
3981 break;
3982 case IPC_STAT:
3983 case IPC_SET:
3984 case SEM_STAT:
3985 err = target_to_host_semid_ds(&dsarg, target_su.buf);
3986 if (err)
3987 return err;
3988 arg.buf = &dsarg;
3989 ret = get_errno(semctl(semid, semnum, cmd, arg));
3990 err = host_to_target_semid_ds(target_su.buf, &dsarg);
3991 if (err)
3992 return err;
3993 break;
3994 case IPC_INFO:
3995 case SEM_INFO:
3996 arg.__buf = &seminfo;
3997 ret = get_errno(semctl(semid, semnum, cmd, arg));
3998 err = host_to_target_seminfo(target_su.__buf, &seminfo);
3999 if (err)
4000 return err;
4001 break;
4002 case IPC_RMID:
4003 case GETPID:
4004 case GETNCNT:
4005 case GETZCNT:
4006 ret = get_errno(semctl(semid, semnum, cmd, NULL));
4007 break;
4008 }
4009
4010 return ret;
4011 }
4012
4013 struct target_sembuf {
4014 unsigned short sem_num;
4015 short sem_op;
4016 short sem_flg;
4017 };
4018
target_to_host_sembuf(struct sembuf * host_sembuf,abi_ulong target_addr,unsigned nsops)4019 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4020 abi_ulong target_addr,
4021 unsigned nsops)
4022 {
4023 struct target_sembuf *target_sembuf;
4024 int i;
4025
4026 target_sembuf = lock_user(VERIFY_READ, target_addr,
4027 nsops*sizeof(struct target_sembuf), 1);
4028 if (!target_sembuf)
4029 return -TARGET_EFAULT;
4030
4031 for(i=0; i<nsops; i++) {
4032 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4033 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4034 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4035 }
4036
4037 unlock_user(target_sembuf, target_addr, 0);
4038
4039 return 0;
4040 }
4041
4042 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4043 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4044
4045 /*
4046 * This macro is required to handle the s390 variants, which passes the
4047 * arguments in a different order than default.
4048 */
4049 #ifdef __s390x__
4050 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4051 (__nsops), (__timeout), (__sops)
4052 #else
4053 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4054 (__nsops), 0, (__sops), (__timeout)
4055 #endif
4056
do_semtimedop(int semid,abi_long ptr,unsigned nsops,abi_long timeout,bool time64)4057 static inline abi_long do_semtimedop(int semid,
4058 abi_long ptr,
4059 unsigned nsops,
4060 abi_long timeout, bool time64)
4061 {
4062 struct sembuf *sops;
4063 struct timespec ts, *pts = NULL;
4064 abi_long ret;
4065
4066 if (timeout) {
4067 pts = &ts;
4068 if (time64) {
4069 if (target_to_host_timespec64(pts, timeout)) {
4070 return -TARGET_EFAULT;
4071 }
4072 } else {
4073 if (target_to_host_timespec(pts, timeout)) {
4074 return -TARGET_EFAULT;
4075 }
4076 }
4077 }
4078
4079 if (nsops > TARGET_SEMOPM) {
4080 return -TARGET_E2BIG;
4081 }
4082
4083 sops = g_new(struct sembuf, nsops);
4084
4085 if (target_to_host_sembuf(sops, ptr, nsops)) {
4086 g_free(sops);
4087 return -TARGET_EFAULT;
4088 }
4089
4090 ret = -TARGET_ENOSYS;
4091 #ifdef __NR_semtimedop
4092 ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4093 #endif
4094 #ifdef __NR_ipc
4095 if (ret == -TARGET_ENOSYS) {
4096 ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4097 SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4098 }
4099 #endif
4100 g_free(sops);
4101 return ret;
4102 }
4103 #endif
4104
4105 struct target_msqid_ds
4106 {
4107 struct target_ipc_perm msg_perm;
4108 abi_ulong msg_stime;
4109 #if TARGET_ABI_BITS == 32
4110 abi_ulong __unused1;
4111 #endif
4112 abi_ulong msg_rtime;
4113 #if TARGET_ABI_BITS == 32
4114 abi_ulong __unused2;
4115 #endif
4116 abi_ulong msg_ctime;
4117 #if TARGET_ABI_BITS == 32
4118 abi_ulong __unused3;
4119 #endif
4120 abi_ulong __msg_cbytes;
4121 abi_ulong msg_qnum;
4122 abi_ulong msg_qbytes;
4123 abi_ulong msg_lspid;
4124 abi_ulong msg_lrpid;
4125 abi_ulong __unused4;
4126 abi_ulong __unused5;
4127 };
4128
target_to_host_msqid_ds(struct msqid_ds * host_md,abi_ulong target_addr)4129 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4130 abi_ulong target_addr)
4131 {
4132 struct target_msqid_ds *target_md;
4133
4134 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4135 return -TARGET_EFAULT;
4136 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4137 return -TARGET_EFAULT;
4138 host_md->msg_stime = tswapal(target_md->msg_stime);
4139 host_md->msg_rtime = tswapal(target_md->msg_rtime);
4140 host_md->msg_ctime = tswapal(target_md->msg_ctime);
4141 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4142 host_md->msg_qnum = tswapal(target_md->msg_qnum);
4143 host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4144 host_md->msg_lspid = tswapal(target_md->msg_lspid);
4145 host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4146 unlock_user_struct(target_md, target_addr, 0);
4147 return 0;
4148 }
4149
host_to_target_msqid_ds(abi_ulong target_addr,struct msqid_ds * host_md)4150 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4151 struct msqid_ds *host_md)
4152 {
4153 struct target_msqid_ds *target_md;
4154
4155 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4156 return -TARGET_EFAULT;
4157 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4158 return -TARGET_EFAULT;
4159 target_md->msg_stime = tswapal(host_md->msg_stime);
4160 target_md->msg_rtime = tswapal(host_md->msg_rtime);
4161 target_md->msg_ctime = tswapal(host_md->msg_ctime);
4162 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4163 target_md->msg_qnum = tswapal(host_md->msg_qnum);
4164 target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4165 target_md->msg_lspid = tswapal(host_md->msg_lspid);
4166 target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4167 unlock_user_struct(target_md, target_addr, 1);
4168 return 0;
4169 }
4170
4171 struct target_msginfo {
4172 int msgpool;
4173 int msgmap;
4174 int msgmax;
4175 int msgmnb;
4176 int msgmni;
4177 int msgssz;
4178 int msgtql;
4179 unsigned short int msgseg;
4180 };
4181
host_to_target_msginfo(abi_ulong target_addr,struct msginfo * host_msginfo)4182 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4183 struct msginfo *host_msginfo)
4184 {
4185 struct target_msginfo *target_msginfo;
4186 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4187 return -TARGET_EFAULT;
4188 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4189 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4190 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4191 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4192 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4193 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4194 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4195 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4196 unlock_user_struct(target_msginfo, target_addr, 1);
4197 return 0;
4198 }
4199
do_msgctl(int msgid,int cmd,abi_long ptr)4200 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4201 {
4202 struct msqid_ds dsarg;
4203 struct msginfo msginfo;
4204 abi_long ret = -TARGET_EINVAL;
4205
4206 cmd &= 0xff;
4207
4208 switch (cmd) {
4209 case IPC_STAT:
4210 case IPC_SET:
4211 case MSG_STAT:
4212 if (target_to_host_msqid_ds(&dsarg,ptr))
4213 return -TARGET_EFAULT;
4214 ret = get_errno(msgctl(msgid, cmd, &dsarg));
4215 if (host_to_target_msqid_ds(ptr,&dsarg))
4216 return -TARGET_EFAULT;
4217 break;
4218 case IPC_RMID:
4219 ret = get_errno(msgctl(msgid, cmd, NULL));
4220 break;
4221 case IPC_INFO:
4222 case MSG_INFO:
4223 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4224 if (host_to_target_msginfo(ptr, &msginfo))
4225 return -TARGET_EFAULT;
4226 break;
4227 }
4228
4229 return ret;
4230 }
4231
4232 struct target_msgbuf {
4233 abi_long mtype;
4234 char mtext[1];
4235 };
4236
do_msgsnd(int msqid,abi_long msgp,ssize_t msgsz,int msgflg)4237 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4238 ssize_t msgsz, int msgflg)
4239 {
4240 struct target_msgbuf *target_mb;
4241 struct msgbuf *host_mb;
4242 abi_long ret = 0;
4243
4244 if (msgsz < 0) {
4245 return -TARGET_EINVAL;
4246 }
4247
4248 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4249 return -TARGET_EFAULT;
4250 host_mb = g_try_malloc(msgsz + sizeof(long));
4251 if (!host_mb) {
4252 unlock_user_struct(target_mb, msgp, 0);
4253 return -TARGET_ENOMEM;
4254 }
4255 host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4256 memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4257 ret = -TARGET_ENOSYS;
4258 #ifdef __NR_msgsnd
4259 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4260 #endif
4261 #ifdef __NR_ipc
4262 if (ret == -TARGET_ENOSYS) {
4263 #ifdef __s390x__
4264 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4265 host_mb));
4266 #else
4267 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4268 host_mb, 0));
4269 #endif
4270 }
4271 #endif
4272 g_free(host_mb);
4273 unlock_user_struct(target_mb, msgp, 0);
4274
4275 return ret;
4276 }
4277
4278 #ifdef __NR_ipc
4279 #if defined(__sparc__)
4280 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */
4281 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4282 #elif defined(__s390x__)
4283 /* The s390 sys_ipc variant has only five parameters. */
4284 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4285 ((long int[]){(long int)__msgp, __msgtyp})
4286 #else
4287 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4288 ((long int[]){(long int)__msgp, __msgtyp}), 0
4289 #endif
4290 #endif
4291
do_msgrcv(int msqid,abi_long msgp,ssize_t msgsz,abi_long msgtyp,int msgflg)4292 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4293 ssize_t msgsz, abi_long msgtyp,
4294 int msgflg)
4295 {
4296 struct target_msgbuf *target_mb;
4297 char *target_mtext;
4298 struct msgbuf *host_mb;
4299 abi_long ret = 0;
4300
4301 if (msgsz < 0) {
4302 return -TARGET_EINVAL;
4303 }
4304
4305 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4306 return -TARGET_EFAULT;
4307
4308 host_mb = g_try_malloc(msgsz + sizeof(long));
4309 if (!host_mb) {
4310 ret = -TARGET_ENOMEM;
4311 goto end;
4312 }
4313 ret = -TARGET_ENOSYS;
4314 #ifdef __NR_msgrcv
4315 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4316 #endif
4317 #ifdef __NR_ipc
4318 if (ret == -TARGET_ENOSYS) {
4319 ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4320 msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4321 }
4322 #endif
4323
4324 if (ret > 0) {
4325 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4326 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4327 if (!target_mtext) {
4328 ret = -TARGET_EFAULT;
4329 goto end;
4330 }
4331 memcpy(target_mb->mtext, host_mb->mtext, ret);
4332 unlock_user(target_mtext, target_mtext_addr, ret);
4333 }
4334
4335 target_mb->mtype = tswapal(host_mb->mtype);
4336
4337 end:
4338 if (target_mb)
4339 unlock_user_struct(target_mb, msgp, 1);
4340 g_free(host_mb);
4341 return ret;
4342 }
4343
target_to_host_shmid_ds(struct shmid_ds * host_sd,abi_ulong target_addr)4344 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4345 abi_ulong target_addr)
4346 {
4347 struct target_shmid_ds *target_sd;
4348
4349 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4350 return -TARGET_EFAULT;
4351 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4352 return -TARGET_EFAULT;
4353 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4354 __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4355 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4356 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4357 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4358 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4359 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4360 unlock_user_struct(target_sd, target_addr, 0);
4361 return 0;
4362 }
4363
host_to_target_shmid_ds(abi_ulong target_addr,struct shmid_ds * host_sd)4364 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4365 struct shmid_ds *host_sd)
4366 {
4367 struct target_shmid_ds *target_sd;
4368
4369 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4370 return -TARGET_EFAULT;
4371 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4372 return -TARGET_EFAULT;
4373 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4374 __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4375 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4376 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4377 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4378 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4379 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4380 unlock_user_struct(target_sd, target_addr, 1);
4381 return 0;
4382 }
4383
4384 struct target_shminfo {
4385 abi_ulong shmmax;
4386 abi_ulong shmmin;
4387 abi_ulong shmmni;
4388 abi_ulong shmseg;
4389 abi_ulong shmall;
4390 };
4391
host_to_target_shminfo(abi_ulong target_addr,struct shminfo * host_shminfo)4392 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4393 struct shminfo *host_shminfo)
4394 {
4395 struct target_shminfo *target_shminfo;
4396 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4397 return -TARGET_EFAULT;
4398 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4399 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4400 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4401 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4402 __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4403 unlock_user_struct(target_shminfo, target_addr, 1);
4404 return 0;
4405 }
4406
4407 struct target_shm_info {
4408 int used_ids;
4409 abi_ulong shm_tot;
4410 abi_ulong shm_rss;
4411 abi_ulong shm_swp;
4412 abi_ulong swap_attempts;
4413 abi_ulong swap_successes;
4414 };
4415
host_to_target_shm_info(abi_ulong target_addr,struct shm_info * host_shm_info)4416 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4417 struct shm_info *host_shm_info)
4418 {
4419 struct target_shm_info *target_shm_info;
4420 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4421 return -TARGET_EFAULT;
4422 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4423 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4424 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4425 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4426 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4427 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4428 unlock_user_struct(target_shm_info, target_addr, 1);
4429 return 0;
4430 }
4431
do_shmctl(int shmid,int cmd,abi_long buf)4432 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4433 {
4434 struct shmid_ds dsarg;
4435 struct shminfo shminfo;
4436 struct shm_info shm_info;
4437 abi_long ret = -TARGET_EINVAL;
4438
4439 cmd &= 0xff;
4440
4441 switch(cmd) {
4442 case IPC_STAT:
4443 case IPC_SET:
4444 case SHM_STAT:
4445 if (target_to_host_shmid_ds(&dsarg, buf))
4446 return -TARGET_EFAULT;
4447 ret = get_errno(shmctl(shmid, cmd, &dsarg));
4448 if (host_to_target_shmid_ds(buf, &dsarg))
4449 return -TARGET_EFAULT;
4450 break;
4451 case IPC_INFO:
4452 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4453 if (host_to_target_shminfo(buf, &shminfo))
4454 return -TARGET_EFAULT;
4455 break;
4456 case SHM_INFO:
4457 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4458 if (host_to_target_shm_info(buf, &shm_info))
4459 return -TARGET_EFAULT;
4460 break;
4461 case IPC_RMID:
4462 case SHM_LOCK:
4463 case SHM_UNLOCK:
4464 ret = get_errno(shmctl(shmid, cmd, NULL));
4465 break;
4466 }
4467
4468 return ret;
4469 }
4470
4471 #ifdef TARGET_NR_ipc
4472 /* ??? This only works with linear mappings. */
4473 /* do_ipc() must return target values and target errnos. */
do_ipc(CPUArchState * cpu_env,unsigned int call,abi_long first,abi_long second,abi_long third,abi_long ptr,abi_long fifth)4474 static abi_long do_ipc(CPUArchState *cpu_env,
4475 unsigned int call, abi_long first,
4476 abi_long second, abi_long third,
4477 abi_long ptr, abi_long fifth)
4478 {
4479 int version;
4480 abi_long ret = 0;
4481
4482 version = call >> 16;
4483 call &= 0xffff;
4484
4485 switch (call) {
4486 case IPCOP_semop:
4487 ret = do_semtimedop(first, ptr, second, 0, false);
4488 break;
4489 case IPCOP_semtimedop:
4490 /*
4491 * The s390 sys_ipc variant has only five parameters instead of six
4492 * (as for default variant) and the only difference is the handling of
4493 * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4494 * to a struct timespec where the generic variant uses fifth parameter.
4495 */
4496 #if defined(TARGET_S390X)
4497 ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4498 #else
4499 ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4500 #endif
4501 break;
4502
4503 case IPCOP_semget:
4504 ret = get_errno(semget(first, second, third));
4505 break;
4506
4507 case IPCOP_semctl: {
4508 /* The semun argument to semctl is passed by value, so dereference the
4509 * ptr argument. */
4510 abi_ulong atptr;
4511 get_user_ual(atptr, ptr);
4512 ret = do_semctl(first, second, third, atptr);
4513 break;
4514 }
4515
4516 case IPCOP_msgget:
4517 ret = get_errno(msgget(first, second));
4518 break;
4519
4520 case IPCOP_msgsnd:
4521 ret = do_msgsnd(first, ptr, second, third);
4522 break;
4523
4524 case IPCOP_msgctl:
4525 ret = do_msgctl(first, second, ptr);
4526 break;
4527
4528 case IPCOP_msgrcv:
4529 switch (version) {
4530 case 0:
4531 {
4532 struct target_ipc_kludge {
4533 abi_long msgp;
4534 abi_long msgtyp;
4535 } *tmp;
4536
4537 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4538 ret = -TARGET_EFAULT;
4539 break;
4540 }
4541
4542 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4543
4544 unlock_user_struct(tmp, ptr, 0);
4545 break;
4546 }
4547 default:
4548 ret = do_msgrcv(first, ptr, second, fifth, third);
4549 }
4550 break;
4551
4552 case IPCOP_shmat:
4553 switch (version) {
4554 default:
4555 {
4556 abi_ulong raddr;
4557 raddr = target_shmat(cpu_env, first, ptr, second);
4558 if (is_error(raddr))
4559 return get_errno(raddr);
4560 if (put_user_ual(raddr, third))
4561 return -TARGET_EFAULT;
4562 break;
4563 }
4564 case 1:
4565 ret = -TARGET_EINVAL;
4566 break;
4567 }
4568 break;
4569 case IPCOP_shmdt:
4570 ret = target_shmdt(ptr);
4571 break;
4572
4573 case IPCOP_shmget:
4574 /* IPC_* flag values are the same on all linux platforms */
4575 ret = get_errno(shmget(first, second, third));
4576 break;
4577
4578 /* IPC_* and SHM_* command values are the same on all linux platforms */
4579 case IPCOP_shmctl:
4580 ret = do_shmctl(first, second, ptr);
4581 break;
4582 default:
4583 qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4584 call, version);
4585 ret = -TARGET_ENOSYS;
4586 break;
4587 }
4588 return ret;
4589 }
4590 #endif
4591
4592 /* kernel structure types definitions */
4593
4594 #define STRUCT(name, ...) STRUCT_ ## name,
4595 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4596 enum {
4597 #include "syscall_types.h"
4598 STRUCT_MAX
4599 };
4600 #undef STRUCT
4601 #undef STRUCT_SPECIAL
4602
4603 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
4604 #define STRUCT_SPECIAL(name)
4605 #include "syscall_types.h"
4606 #undef STRUCT
4607 #undef STRUCT_SPECIAL
4608
4609 #define MAX_STRUCT_SIZE 4096
4610
4611 #ifdef CONFIG_FIEMAP
4612 /* So fiemap access checks don't overflow on 32 bit systems.
4613 * This is very slightly smaller than the limit imposed by
4614 * the underlying kernel.
4615 */
4616 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
4617 / sizeof(struct fiemap_extent))
4618
do_ioctl_fs_ioc_fiemap(const IOCTLEntry * ie,uint8_t * buf_temp,int fd,int cmd,abi_long arg)4619 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4620 int fd, int cmd, abi_long arg)
4621 {
4622 /* The parameter for this ioctl is a struct fiemap followed
4623 * by an array of struct fiemap_extent whose size is set
4624 * in fiemap->fm_extent_count. The array is filled in by the
4625 * ioctl.
4626 */
4627 int target_size_in, target_size_out;
4628 struct fiemap *fm;
4629 const argtype *arg_type = ie->arg_type;
4630 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4631 void *argptr, *p;
4632 abi_long ret;
4633 int i, extent_size = thunk_type_size(extent_arg_type, 0);
4634 uint32_t outbufsz;
4635 int free_fm = 0;
4636
4637 assert(arg_type[0] == TYPE_PTR);
4638 assert(ie->access == IOC_RW);
4639 arg_type++;
4640 target_size_in = thunk_type_size(arg_type, 0);
4641 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4642 if (!argptr) {
4643 return -TARGET_EFAULT;
4644 }
4645 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4646 unlock_user(argptr, arg, 0);
4647 fm = (struct fiemap *)buf_temp;
4648 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4649 return -TARGET_EINVAL;
4650 }
4651
4652 outbufsz = sizeof (*fm) +
4653 (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4654
4655 if (outbufsz > MAX_STRUCT_SIZE) {
4656 /* We can't fit all the extents into the fixed size buffer.
4657 * Allocate one that is large enough and use it instead.
4658 */
4659 fm = g_try_malloc(outbufsz);
4660 if (!fm) {
4661 return -TARGET_ENOMEM;
4662 }
4663 memcpy(fm, buf_temp, sizeof(struct fiemap));
4664 free_fm = 1;
4665 }
4666 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4667 if (!is_error(ret)) {
4668 target_size_out = target_size_in;
4669 /* An extent_count of 0 means we were only counting the extents
4670 * so there are no structs to copy
4671 */
4672 if (fm->fm_extent_count != 0) {
4673 target_size_out += fm->fm_mapped_extents * extent_size;
4674 }
4675 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4676 if (!argptr) {
4677 ret = -TARGET_EFAULT;
4678 } else {
4679 /* Convert the struct fiemap */
4680 thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4681 if (fm->fm_extent_count != 0) {
4682 p = argptr + target_size_in;
4683 /* ...and then all the struct fiemap_extents */
4684 for (i = 0; i < fm->fm_mapped_extents; i++) {
4685 thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4686 THUNK_TARGET);
4687 p += extent_size;
4688 }
4689 }
4690 unlock_user(argptr, arg, target_size_out);
4691 }
4692 }
4693 if (free_fm) {
4694 g_free(fm);
4695 }
4696 return ret;
4697 }
4698 #endif
4699
do_ioctl_ifconf(const IOCTLEntry * ie,uint8_t * buf_temp,int fd,int cmd,abi_long arg)4700 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4701 int fd, int cmd, abi_long arg)
4702 {
4703 const argtype *arg_type = ie->arg_type;
4704 int target_size;
4705 void *argptr;
4706 int ret;
4707 struct ifconf *host_ifconf;
4708 uint32_t outbufsz;
4709 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4710 const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4711 int target_ifreq_size;
4712 int nb_ifreq;
4713 int free_buf = 0;
4714 int i;
4715 int target_ifc_len;
4716 abi_long target_ifc_buf;
4717 int host_ifc_len;
4718 char *host_ifc_buf;
4719
4720 assert(arg_type[0] == TYPE_PTR);
4721 assert(ie->access == IOC_RW);
4722
4723 arg_type++;
4724 target_size = thunk_type_size(arg_type, 0);
4725
4726 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4727 if (!argptr)
4728 return -TARGET_EFAULT;
4729 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4730 unlock_user(argptr, arg, 0);
4731
4732 host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4733 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4734 target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4735
4736 if (target_ifc_buf != 0) {
4737 target_ifc_len = host_ifconf->ifc_len;
4738 nb_ifreq = target_ifc_len / target_ifreq_size;
4739 host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4740
4741 outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4742 if (outbufsz > MAX_STRUCT_SIZE) {
4743 /*
4744 * We can't fit all the extents into the fixed size buffer.
4745 * Allocate one that is large enough and use it instead.
4746 */
4747 host_ifconf = g_try_malloc(outbufsz);
4748 if (!host_ifconf) {
4749 return -TARGET_ENOMEM;
4750 }
4751 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4752 free_buf = 1;
4753 }
4754 host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4755
4756 host_ifconf->ifc_len = host_ifc_len;
4757 } else {
4758 host_ifc_buf = NULL;
4759 }
4760 host_ifconf->ifc_buf = host_ifc_buf;
4761
4762 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4763 if (!is_error(ret)) {
4764 /* convert host ifc_len to target ifc_len */
4765
4766 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4767 target_ifc_len = nb_ifreq * target_ifreq_size;
4768 host_ifconf->ifc_len = target_ifc_len;
4769
4770 /* restore target ifc_buf */
4771
4772 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4773
4774 /* copy struct ifconf to target user */
4775
4776 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4777 if (!argptr)
4778 return -TARGET_EFAULT;
4779 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4780 unlock_user(argptr, arg, target_size);
4781
4782 if (target_ifc_buf != 0) {
4783 /* copy ifreq[] to target user */
4784 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4785 for (i = 0; i < nb_ifreq ; i++) {
4786 thunk_convert(argptr + i * target_ifreq_size,
4787 host_ifc_buf + i * sizeof(struct ifreq),
4788 ifreq_arg_type, THUNK_TARGET);
4789 }
4790 unlock_user(argptr, target_ifc_buf, target_ifc_len);
4791 }
4792 }
4793
4794 if (free_buf) {
4795 g_free(host_ifconf);
4796 }
4797
4798 return ret;
4799 }
4800
4801 #if defined(CONFIG_USBFS)
4802 #if HOST_LONG_BITS > 64
4803 #error USBDEVFS thunks do not support >64 bit hosts yet.
4804 #endif
4805 struct live_urb {
4806 uint64_t target_urb_adr;
4807 uint64_t target_buf_adr;
4808 char *target_buf_ptr;
4809 struct usbdevfs_urb host_urb;
4810 };
4811
usbdevfs_urb_hashtable(void)4812 static GHashTable *usbdevfs_urb_hashtable(void)
4813 {
4814 static GHashTable *urb_hashtable;
4815
4816 if (!urb_hashtable) {
4817 urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4818 }
4819 return urb_hashtable;
4820 }
4821
urb_hashtable_insert(struct live_urb * urb)4822 static void urb_hashtable_insert(struct live_urb *urb)
4823 {
4824 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4825 g_hash_table_insert(urb_hashtable, urb, urb);
4826 }
4827
urb_hashtable_lookup(uint64_t target_urb_adr)4828 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4829 {
4830 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4831 return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4832 }
4833
urb_hashtable_remove(struct live_urb * urb)4834 static void urb_hashtable_remove(struct live_urb *urb)
4835 {
4836 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4837 g_hash_table_remove(urb_hashtable, urb);
4838 }
4839
4840 static abi_long
do_ioctl_usbdevfs_reapurb(const IOCTLEntry * ie,uint8_t * buf_temp,int fd,int cmd,abi_long arg)4841 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4842 int fd, int cmd, abi_long arg)
4843 {
4844 const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4845 const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4846 struct live_urb *lurb;
4847 void *argptr;
4848 uint64_t hurb;
4849 int target_size;
4850 uintptr_t target_urb_adr;
4851 abi_long ret;
4852
4853 target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4854
4855 memset(buf_temp, 0, sizeof(uint64_t));
4856 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4857 if (is_error(ret)) {
4858 return ret;
4859 }
4860
4861 memcpy(&hurb, buf_temp, sizeof(uint64_t));
4862 lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4863 if (!lurb->target_urb_adr) {
4864 return -TARGET_EFAULT;
4865 }
4866 urb_hashtable_remove(lurb);
4867 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4868 lurb->host_urb.buffer_length);
4869 lurb->target_buf_ptr = NULL;
4870
4871 /* restore the guest buffer pointer */
4872 lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4873
4874 /* update the guest urb struct */
4875 argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4876 if (!argptr) {
4877 g_free(lurb);
4878 return -TARGET_EFAULT;
4879 }
4880 thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
4881 unlock_user(argptr, lurb->target_urb_adr, target_size);
4882
4883 target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
4884 /* write back the urb handle */
4885 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4886 if (!argptr) {
4887 g_free(lurb);
4888 return -TARGET_EFAULT;
4889 }
4890
4891 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4892 target_urb_adr = lurb->target_urb_adr;
4893 thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
4894 unlock_user(argptr, arg, target_size);
4895
4896 g_free(lurb);
4897 return ret;
4898 }
4899
4900 static abi_long
do_ioctl_usbdevfs_discardurb(const IOCTLEntry * ie,uint8_t * buf_temp,int fd,int cmd,abi_long arg)4901 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
4902 uint8_t *buf_temp __attribute__((unused)),
4903 int fd, int cmd, abi_long arg)
4904 {
4905 struct live_urb *lurb;
4906
4907 /* map target address back to host URB with metadata. */
4908 lurb = urb_hashtable_lookup(arg);
4909 if (!lurb) {
4910 return -TARGET_EFAULT;
4911 }
4912 return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4913 }
4914
4915 static abi_long
do_ioctl_usbdevfs_submiturb(const IOCTLEntry * ie,uint8_t * buf_temp,int fd,int cmd,abi_long arg)4916 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
4917 int fd, int cmd, abi_long arg)
4918 {
4919 const argtype *arg_type = ie->arg_type;
4920 int target_size;
4921 abi_long ret;
4922 void *argptr;
4923 int rw_dir;
4924 struct live_urb *lurb;
4925
4926 /*
4927 * each submitted URB needs to map to a unique ID for the
4928 * kernel, and that unique ID needs to be a pointer to
4929 * host memory. hence, we need to malloc for each URB.
4930 * isochronous transfers have a variable length struct.
4931 */
4932 arg_type++;
4933 target_size = thunk_type_size(arg_type, THUNK_TARGET);
4934
4935 /* construct host copy of urb and metadata */
4936 lurb = g_try_new0(struct live_urb, 1);
4937 if (!lurb) {
4938 return -TARGET_ENOMEM;
4939 }
4940
4941 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4942 if (!argptr) {
4943 g_free(lurb);
4944 return -TARGET_EFAULT;
4945 }
4946 thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
4947 unlock_user(argptr, arg, 0);
4948
4949 lurb->target_urb_adr = arg;
4950 lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
4951
4952 /* buffer space used depends on endpoint type so lock the entire buffer */
4953 /* control type urbs should check the buffer contents for true direction */
4954 rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
4955 lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
4956 lurb->host_urb.buffer_length, 1);
4957 if (lurb->target_buf_ptr == NULL) {
4958 g_free(lurb);
4959 return -TARGET_EFAULT;
4960 }
4961
4962 /* update buffer pointer in host copy */
4963 lurb->host_urb.buffer = lurb->target_buf_ptr;
4964
4965 ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4966 if (is_error(ret)) {
4967 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
4968 g_free(lurb);
4969 } else {
4970 urb_hashtable_insert(lurb);
4971 }
4972
4973 return ret;
4974 }
4975 #endif /* CONFIG_USBFS */
4976
do_ioctl_dm(const IOCTLEntry * ie,uint8_t * buf_temp,int fd,int cmd,abi_long arg)4977 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4978 int cmd, abi_long arg)
4979 {
4980 void *argptr;
4981 struct dm_ioctl *host_dm;
4982 abi_long guest_data;
4983 uint32_t guest_data_size;
4984 int target_size;
4985 const argtype *arg_type = ie->arg_type;
4986 abi_long ret;
4987 void *big_buf = NULL;
4988 char *host_data;
4989
4990 arg_type++;
4991 target_size = thunk_type_size(arg_type, 0);
4992 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4993 if (!argptr) {
4994 ret = -TARGET_EFAULT;
4995 goto out;
4996 }
4997 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4998 unlock_user(argptr, arg, 0);
4999
5000 /* buf_temp is too small, so fetch things into a bigger buffer */
5001 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5002 memcpy(big_buf, buf_temp, target_size);
5003 buf_temp = big_buf;
5004 host_dm = big_buf;
5005
5006 guest_data = arg + host_dm->data_start;
5007 if ((guest_data - arg) < 0) {
5008 ret = -TARGET_EINVAL;
5009 goto out;
5010 }
5011 guest_data_size = host_dm->data_size - host_dm->data_start;
5012 host_data = (char*)host_dm + host_dm->data_start;
5013
5014 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5015 if (!argptr) {
5016 ret = -TARGET_EFAULT;
5017 goto out;
5018 }
5019
5020 switch (ie->host_cmd) {
5021 case DM_REMOVE_ALL:
5022 case DM_LIST_DEVICES:
5023 case DM_DEV_CREATE:
5024 case DM_DEV_REMOVE:
5025 case DM_DEV_SUSPEND:
5026 case DM_DEV_STATUS:
5027 case DM_DEV_WAIT:
5028 case DM_TABLE_STATUS:
5029 case DM_TABLE_CLEAR:
5030 case DM_TABLE_DEPS:
5031 case DM_LIST_VERSIONS:
5032 /* no input data */
5033 break;
5034 case DM_DEV_RENAME:
5035 case DM_DEV_SET_GEOMETRY:
5036 /* data contains only strings */
5037 memcpy(host_data, argptr, guest_data_size);
5038 break;
5039 case DM_TARGET_MSG:
5040 memcpy(host_data, argptr, guest_data_size);
5041 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5042 break;
5043 case DM_TABLE_LOAD:
5044 {
5045 void *gspec = argptr;
5046 void *cur_data = host_data;
5047 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5048 int spec_size = thunk_type_size(dm_arg_type, 0);
5049 int i;
5050
5051 for (i = 0; i < host_dm->target_count; i++) {
5052 struct dm_target_spec *spec = cur_data;
5053 uint32_t next;
5054 int slen;
5055
5056 thunk_convert(spec, gspec, dm_arg_type, THUNK_HOST);
5057 slen = strlen((char*)gspec + spec_size) + 1;
5058 next = spec->next;
5059 spec->next = sizeof(*spec) + slen;
5060 strcpy((char*)&spec[1], gspec + spec_size);
5061 gspec += next;
5062 cur_data += spec->next;
5063 }
5064 break;
5065 }
5066 default:
5067 ret = -TARGET_EINVAL;
5068 unlock_user(argptr, guest_data, 0);
5069 goto out;
5070 }
5071 unlock_user(argptr, guest_data, 0);
5072
5073 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5074 if (!is_error(ret)) {
5075 guest_data = arg + host_dm->data_start;
5076 guest_data_size = host_dm->data_size - host_dm->data_start;
5077 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5078 switch (ie->host_cmd) {
5079 case DM_REMOVE_ALL:
5080 case DM_DEV_CREATE:
5081 case DM_DEV_REMOVE:
5082 case DM_DEV_RENAME:
5083 case DM_DEV_SUSPEND:
5084 case DM_DEV_STATUS:
5085 case DM_TABLE_LOAD:
5086 case DM_TABLE_CLEAR:
5087 case DM_TARGET_MSG:
5088 case DM_DEV_SET_GEOMETRY:
5089 /* no return data */
5090 break;
5091 case DM_LIST_DEVICES:
5092 {
5093 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5094 uint32_t remaining_data = guest_data_size;
5095 void *cur_data = argptr;
5096 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5097 int nl_size = 12; /* can't use thunk_size due to alignment */
5098
5099 while (1) {
5100 uint32_t next = nl->next;
5101 if (next) {
5102 nl->next = nl_size + (strlen(nl->name) + 1);
5103 }
5104 if (remaining_data < nl->next) {
5105 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5106 break;
5107 }
5108 thunk_convert(cur_data, nl, dm_arg_type, THUNK_TARGET);
5109 strcpy(cur_data + nl_size, nl->name);
5110 cur_data += nl->next;
5111 remaining_data -= nl->next;
5112 if (!next) {
5113 break;
5114 }
5115 nl = (void*)nl + next;
5116 }
5117 break;
5118 }
5119 case DM_DEV_WAIT:
5120 case DM_TABLE_STATUS:
5121 {
5122 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5123 void *cur_data = argptr;
5124 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5125 int spec_size = thunk_type_size(dm_arg_type, 0);
5126 int i;
5127
5128 for (i = 0; i < host_dm->target_count; i++) {
5129 uint32_t next = spec->next;
5130 int slen = strlen((char*)&spec[1]) + 1;
5131 spec->next = (cur_data - argptr) + spec_size + slen;
5132 if (guest_data_size < spec->next) {
5133 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5134 break;
5135 }
5136 thunk_convert(cur_data, spec, dm_arg_type, THUNK_TARGET);
5137 strcpy(cur_data + spec_size, (char*)&spec[1]);
5138 cur_data = argptr + spec->next;
5139 spec = (void*)host_dm + host_dm->data_start + next;
5140 }
5141 break;
5142 }
5143 case DM_TABLE_DEPS:
5144 {
5145 void *hdata = (void*)host_dm + host_dm->data_start;
5146 int count = *(uint32_t*)hdata;
5147 uint64_t *hdev = hdata + 8;
5148 uint64_t *gdev = argptr + 8;
5149 int i;
5150
5151 *(uint32_t*)argptr = tswap32(count);
5152 for (i = 0; i < count; i++) {
5153 *gdev = tswap64(*hdev);
5154 gdev++;
5155 hdev++;
5156 }
5157 break;
5158 }
5159 case DM_LIST_VERSIONS:
5160 {
5161 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5162 uint32_t remaining_data = guest_data_size;
5163 void *cur_data = argptr;
5164 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5165 int vers_size = thunk_type_size(dm_arg_type, 0);
5166
5167 while (1) {
5168 uint32_t next = vers->next;
5169 if (next) {
5170 vers->next = vers_size + (strlen(vers->name) + 1);
5171 }
5172 if (remaining_data < vers->next) {
5173 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5174 break;
5175 }
5176 thunk_convert(cur_data, vers, dm_arg_type, THUNK_TARGET);
5177 strcpy(cur_data + vers_size, vers->name);
5178 cur_data += vers->next;
5179 remaining_data -= vers->next;
5180 if (!next) {
5181 break;
5182 }
5183 vers = (void*)vers + next;
5184 }
5185 break;
5186 }
5187 default:
5188 unlock_user(argptr, guest_data, 0);
5189 ret = -TARGET_EINVAL;
5190 goto out;
5191 }
5192 unlock_user(argptr, guest_data, guest_data_size);
5193
5194 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5195 if (!argptr) {
5196 ret = -TARGET_EFAULT;
5197 goto out;
5198 }
5199 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5200 unlock_user(argptr, arg, target_size);
5201 }
5202 out:
5203 g_free(big_buf);
5204 return ret;
5205 }
5206
do_ioctl_blkpg(const IOCTLEntry * ie,uint8_t * buf_temp,int fd,int cmd,abi_long arg)5207 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5208 int cmd, abi_long arg)
5209 {
5210 void *argptr;
5211 int target_size;
5212 const argtype *arg_type = ie->arg_type;
5213 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5214 abi_long ret;
5215
5216 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5217 struct blkpg_partition host_part;
5218
5219 /* Read and convert blkpg */
5220 arg_type++;
5221 target_size = thunk_type_size(arg_type, 0);
5222 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5223 if (!argptr) {
5224 ret = -TARGET_EFAULT;
5225 goto out;
5226 }
5227 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5228 unlock_user(argptr, arg, 0);
5229
5230 switch (host_blkpg->op) {
5231 case BLKPG_ADD_PARTITION:
5232 case BLKPG_DEL_PARTITION:
5233 /* payload is struct blkpg_partition */
5234 break;
5235 default:
5236 /* Unknown opcode */
5237 ret = -TARGET_EINVAL;
5238 goto out;
5239 }
5240
5241 /* Read and convert blkpg->data */
5242 arg = (abi_long)(uintptr_t)host_blkpg->data;
5243 target_size = thunk_type_size(part_arg_type, 0);
5244 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5245 if (!argptr) {
5246 ret = -TARGET_EFAULT;
5247 goto out;
5248 }
5249 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5250 unlock_user(argptr, arg, 0);
5251
5252 /* Swizzle the data pointer to our local copy and call! */
5253 host_blkpg->data = &host_part;
5254 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5255
5256 out:
5257 return ret;
5258 }
5259
do_ioctl_rt(const IOCTLEntry * ie,uint8_t * buf_temp,int fd,int cmd,abi_long arg)5260 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5261 int fd, int cmd, abi_long arg)
5262 {
5263 const argtype *arg_type = ie->arg_type;
5264 const StructEntry *se;
5265 const argtype *field_types;
5266 const int *dst_offsets, *src_offsets;
5267 int target_size;
5268 void *argptr;
5269 abi_ulong *target_rt_dev_ptr = NULL;
5270 unsigned long *host_rt_dev_ptr = NULL;
5271 abi_long ret;
5272 int i;
5273
5274 assert(ie->access == IOC_W);
5275 assert(*arg_type == TYPE_PTR);
5276 arg_type++;
5277 assert(*arg_type == TYPE_STRUCT);
5278 target_size = thunk_type_size(arg_type, 0);
5279 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5280 if (!argptr) {
5281 return -TARGET_EFAULT;
5282 }
5283 arg_type++;
5284 assert(*arg_type == (int)STRUCT_rtentry);
5285 se = struct_entries + *arg_type++;
5286 assert(se->convert[0] == NULL);
5287 /* convert struct here to be able to catch rt_dev string */
5288 field_types = se->field_types;
5289 dst_offsets = se->field_offsets[THUNK_HOST];
5290 src_offsets = se->field_offsets[THUNK_TARGET];
5291 for (i = 0; i < se->nb_fields; i++) {
5292 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5293 assert(*field_types == TYPE_PTRVOID);
5294 target_rt_dev_ptr = argptr + src_offsets[i];
5295 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5296 if (*target_rt_dev_ptr != 0) {
5297 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5298 tswapal(*target_rt_dev_ptr));
5299 if (!*host_rt_dev_ptr) {
5300 unlock_user(argptr, arg, 0);
5301 return -TARGET_EFAULT;
5302 }
5303 } else {
5304 *host_rt_dev_ptr = 0;
5305 }
5306 field_types++;
5307 continue;
5308 }
5309 field_types = thunk_convert(buf_temp + dst_offsets[i],
5310 argptr + src_offsets[i],
5311 field_types, THUNK_HOST);
5312 }
5313 unlock_user(argptr, arg, 0);
5314
5315 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5316
5317 assert(host_rt_dev_ptr != NULL);
5318 assert(target_rt_dev_ptr != NULL);
5319 if (*host_rt_dev_ptr != 0) {
5320 unlock_user((void *)*host_rt_dev_ptr,
5321 *target_rt_dev_ptr, 0);
5322 }
5323 return ret;
5324 }
5325
do_ioctl_kdsigaccept(const IOCTLEntry * ie,uint8_t * buf_temp,int fd,int cmd,abi_long arg)5326 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5327 int fd, int cmd, abi_long arg)
5328 {
5329 int sig = target_to_host_signal(arg);
5330 return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5331 }
5332
do_ioctl_SIOCGSTAMP(const IOCTLEntry * ie,uint8_t * buf_temp,int fd,int cmd,abi_long arg)5333 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5334 int fd, int cmd, abi_long arg)
5335 {
5336 struct timeval tv;
5337 abi_long ret;
5338
5339 ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5340 if (is_error(ret)) {
5341 return ret;
5342 }
5343
5344 if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5345 if (copy_to_user_timeval(arg, &tv)) {
5346 return -TARGET_EFAULT;
5347 }
5348 } else {
5349 if (copy_to_user_timeval64(arg, &tv)) {
5350 return -TARGET_EFAULT;
5351 }
5352 }
5353
5354 return ret;
5355 }
5356
do_ioctl_SIOCGSTAMPNS(const IOCTLEntry * ie,uint8_t * buf_temp,int fd,int cmd,abi_long arg)5357 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5358 int fd, int cmd, abi_long arg)
5359 {
5360 struct timespec ts;
5361 abi_long ret;
5362
5363 ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5364 if (is_error(ret)) {
5365 return ret;
5366 }
5367
5368 if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5369 if (host_to_target_timespec(arg, &ts)) {
5370 return -TARGET_EFAULT;
5371 }
5372 } else{
5373 if (host_to_target_timespec64(arg, &ts)) {
5374 return -TARGET_EFAULT;
5375 }
5376 }
5377
5378 return ret;
5379 }
5380
5381 #ifdef TIOCGPTPEER
do_ioctl_tiocgptpeer(const IOCTLEntry * ie,uint8_t * buf_temp,int fd,int cmd,abi_long arg)5382 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5383 int fd, int cmd, abi_long arg)
5384 {
5385 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5386 return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5387 }
5388 #endif
5389
5390 #ifdef HAVE_DRM_H
5391
unlock_drm_version(struct drm_version * host_ver,struct target_drm_version * target_ver,bool copy)5392 static void unlock_drm_version(struct drm_version *host_ver,
5393 struct target_drm_version *target_ver,
5394 bool copy)
5395 {
5396 unlock_user(host_ver->name, target_ver->name,
5397 copy ? host_ver->name_len : 0);
5398 unlock_user(host_ver->date, target_ver->date,
5399 copy ? host_ver->date_len : 0);
5400 unlock_user(host_ver->desc, target_ver->desc,
5401 copy ? host_ver->desc_len : 0);
5402 }
5403
target_to_host_drmversion(struct drm_version * host_ver,struct target_drm_version * target_ver)5404 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5405 struct target_drm_version *target_ver)
5406 {
5407 memset(host_ver, 0, sizeof(*host_ver));
5408
5409 __get_user(host_ver->name_len, &target_ver->name_len);
5410 if (host_ver->name_len) {
5411 host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5412 target_ver->name_len, 0);
5413 if (!host_ver->name) {
5414 return -EFAULT;
5415 }
5416 }
5417
5418 __get_user(host_ver->date_len, &target_ver->date_len);
5419 if (host_ver->date_len) {
5420 host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5421 target_ver->date_len, 0);
5422 if (!host_ver->date) {
5423 goto err;
5424 }
5425 }
5426
5427 __get_user(host_ver->desc_len, &target_ver->desc_len);
5428 if (host_ver->desc_len) {
5429 host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5430 target_ver->desc_len, 0);
5431 if (!host_ver->desc) {
5432 goto err;
5433 }
5434 }
5435
5436 return 0;
5437 err:
5438 unlock_drm_version(host_ver, target_ver, false);
5439 return -EFAULT;
5440 }
5441
host_to_target_drmversion(struct target_drm_version * target_ver,struct drm_version * host_ver)5442 static inline void host_to_target_drmversion(
5443 struct target_drm_version *target_ver,
5444 struct drm_version *host_ver)
5445 {
5446 __put_user(host_ver->version_major, &target_ver->version_major);
5447 __put_user(host_ver->version_minor, &target_ver->version_minor);
5448 __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5449 __put_user(host_ver->name_len, &target_ver->name_len);
5450 __put_user(host_ver->date_len, &target_ver->date_len);
5451 __put_user(host_ver->desc_len, &target_ver->desc_len);
5452 unlock_drm_version(host_ver, target_ver, true);
5453 }
5454
do_ioctl_drm(const IOCTLEntry * ie,uint8_t * buf_temp,int fd,int cmd,abi_long arg)5455 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5456 int fd, int cmd, abi_long arg)
5457 {
5458 struct drm_version *ver;
5459 struct target_drm_version *target_ver;
5460 abi_long ret;
5461
5462 switch (ie->host_cmd) {
5463 case DRM_IOCTL_VERSION:
5464 if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5465 return -TARGET_EFAULT;
5466 }
5467 ver = (struct drm_version *)buf_temp;
5468 ret = target_to_host_drmversion(ver, target_ver);
5469 if (!is_error(ret)) {
5470 ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5471 if (is_error(ret)) {
5472 unlock_drm_version(ver, target_ver, false);
5473 } else {
5474 host_to_target_drmversion(target_ver, ver);
5475 }
5476 }
5477 unlock_user_struct(target_ver, arg, 0);
5478 return ret;
5479 }
5480 return -TARGET_ENOSYS;
5481 }
5482
do_ioctl_drm_i915_getparam(const IOCTLEntry * ie,struct drm_i915_getparam * gparam,int fd,abi_long arg)5483 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5484 struct drm_i915_getparam *gparam,
5485 int fd, abi_long arg)
5486 {
5487 abi_long ret;
5488 int value;
5489 struct target_drm_i915_getparam *target_gparam;
5490
5491 if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5492 return -TARGET_EFAULT;
5493 }
5494
5495 __get_user(gparam->param, &target_gparam->param);
5496 gparam->value = &value;
5497 ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5498 put_user_s32(value, target_gparam->value);
5499
5500 unlock_user_struct(target_gparam, arg, 0);
5501 return ret;
5502 }
5503
do_ioctl_drm_i915(const IOCTLEntry * ie,uint8_t * buf_temp,int fd,int cmd,abi_long arg)5504 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5505 int fd, int cmd, abi_long arg)
5506 {
5507 switch (ie->host_cmd) {
5508 case DRM_IOCTL_I915_GETPARAM:
5509 return do_ioctl_drm_i915_getparam(ie,
5510 (struct drm_i915_getparam *)buf_temp,
5511 fd, arg);
5512 default:
5513 return -TARGET_ENOSYS;
5514 }
5515 }
5516
5517 #endif
5518
do_ioctl_TUNSETTXFILTER(const IOCTLEntry * ie,uint8_t * buf_temp,int fd,int cmd,abi_long arg)5519 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5520 int fd, int cmd, abi_long arg)
5521 {
5522 struct tun_filter *filter = (struct tun_filter *)buf_temp;
5523 struct tun_filter *target_filter;
5524 char *target_addr;
5525
5526 assert(ie->access == IOC_W);
5527
5528 target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5529 if (!target_filter) {
5530 return -TARGET_EFAULT;
5531 }
5532 filter->flags = tswap16(target_filter->flags);
5533 filter->count = tswap16(target_filter->count);
5534 unlock_user(target_filter, arg, 0);
5535
5536 if (filter->count) {
5537 if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5538 MAX_STRUCT_SIZE) {
5539 return -TARGET_EFAULT;
5540 }
5541
5542 target_addr = lock_user(VERIFY_READ,
5543 arg + offsetof(struct tun_filter, addr),
5544 filter->count * ETH_ALEN, 1);
5545 if (!target_addr) {
5546 return -TARGET_EFAULT;
5547 }
5548 memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5549 unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5550 }
5551
5552 return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5553 }
5554
5555 IOCTLEntry ioctl_entries[] = {
5556 #define IOCTL(cmd, access, ...) \
5557 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5558 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5559 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5560 #define IOCTL_IGNORE(cmd) \
5561 { TARGET_ ## cmd, 0, #cmd },
5562 #include "ioctls.h"
5563 { 0, 0, },
5564 };
5565
5566 /* ??? Implement proper locking for ioctls. */
5567 /* do_ioctl() Must return target values and target errnos. */
do_ioctl(int fd,int cmd,abi_long arg)5568 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5569 {
5570 const IOCTLEntry *ie;
5571 const argtype *arg_type;
5572 abi_long ret;
5573 uint8_t buf_temp[MAX_STRUCT_SIZE];
5574 int target_size;
5575 void *argptr;
5576
5577 ie = ioctl_entries;
5578 for(;;) {
5579 if (ie->target_cmd == 0) {
5580 qemu_log_mask(
5581 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5582 return -TARGET_ENOTTY;
5583 }
5584 if (ie->target_cmd == cmd)
5585 break;
5586 ie++;
5587 }
5588 arg_type = ie->arg_type;
5589 if (ie->do_ioctl) {
5590 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5591 } else if (!ie->host_cmd) {
5592 /* Some architectures define BSD ioctls in their headers
5593 that are not implemented in Linux. */
5594 return -TARGET_ENOTTY;
5595 }
5596
5597 switch(arg_type[0]) {
5598 case TYPE_NULL:
5599 /* no argument */
5600 ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5601 break;
5602 case TYPE_PTRVOID:
5603 case TYPE_INT:
5604 case TYPE_LONG:
5605 case TYPE_ULONG:
5606 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5607 break;
5608 case TYPE_PTR:
5609 arg_type++;
5610 target_size = thunk_type_size(arg_type, 0);
5611 switch(ie->access) {
5612 case IOC_R:
5613 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5614 if (!is_error(ret)) {
5615 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5616 if (!argptr)
5617 return -TARGET_EFAULT;
5618 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5619 unlock_user(argptr, arg, target_size);
5620 }
5621 break;
5622 case IOC_W:
5623 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5624 if (!argptr)
5625 return -TARGET_EFAULT;
5626 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5627 unlock_user(argptr, arg, 0);
5628 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5629 break;
5630 default:
5631 case IOC_RW:
5632 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5633 if (!argptr)
5634 return -TARGET_EFAULT;
5635 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5636 unlock_user(argptr, arg, 0);
5637 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5638 if (!is_error(ret)) {
5639 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5640 if (!argptr)
5641 return -TARGET_EFAULT;
5642 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5643 unlock_user(argptr, arg, target_size);
5644 }
5645 break;
5646 }
5647 break;
5648 default:
5649 qemu_log_mask(LOG_UNIMP,
5650 "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5651 (long)cmd, arg_type[0]);
5652 ret = -TARGET_ENOTTY;
5653 break;
5654 }
5655 return ret;
5656 }
5657
5658 static const bitmask_transtbl iflag_tbl[] = {
5659 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5660 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5661 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5662 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5663 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5664 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5665 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5666 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5667 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5668 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5669 { TARGET_IXON, TARGET_IXON, IXON, IXON },
5670 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5671 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5672 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5673 { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5674 };
5675
5676 static const bitmask_transtbl oflag_tbl[] = {
5677 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5678 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5679 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5680 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5681 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5682 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5683 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5684 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5685 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5686 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5687 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5688 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5689 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5690 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5691 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5692 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5693 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5694 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5695 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5696 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5697 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5698 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5699 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5700 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5701 };
5702
5703 static const bitmask_transtbl cflag_tbl[] = {
5704 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5705 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5706 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5707 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5708 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5709 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5710 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5711 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5712 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5713 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5714 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5715 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5716 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5717 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5718 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5719 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5720 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5721 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5722 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5723 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5724 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5725 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5726 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5727 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5728 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5729 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5730 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5731 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5732 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5733 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5734 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5735 };
5736
5737 static const bitmask_transtbl lflag_tbl[] = {
5738 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5739 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5740 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5741 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5742 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5743 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5744 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5745 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5746 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5747 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5748 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5749 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5750 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5751 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5752 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5753 { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5754 };
5755
target_to_host_termios(void * dst,const void * src)5756 static void target_to_host_termios (void *dst, const void *src)
5757 {
5758 struct host_termios *host = dst;
5759 const struct target_termios *target = src;
5760
5761 host->c_iflag =
5762 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5763 host->c_oflag =
5764 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5765 host->c_cflag =
5766 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5767 host->c_lflag =
5768 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5769 host->c_line = target->c_line;
5770
5771 memset(host->c_cc, 0, sizeof(host->c_cc));
5772 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5773 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5774 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5775 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5776 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5777 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5778 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5779 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5780 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5781 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5782 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5783 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5784 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5785 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5786 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5787 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5788 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5789 }
5790
host_to_target_termios(void * dst,const void * src)5791 static void host_to_target_termios (void *dst, const void *src)
5792 {
5793 struct target_termios *target = dst;
5794 const struct host_termios *host = src;
5795
5796 target->c_iflag =
5797 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5798 target->c_oflag =
5799 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5800 target->c_cflag =
5801 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5802 target->c_lflag =
5803 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5804 target->c_line = host->c_line;
5805
5806 memset(target->c_cc, 0, sizeof(target->c_cc));
5807 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5808 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5809 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5810 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5811 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5812 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5813 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5814 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5815 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5816 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5817 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5818 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5819 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5820 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5821 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5822 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5823 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5824 }
5825
5826 static const StructEntry struct_termios_def = {
5827 .convert = { host_to_target_termios, target_to_host_termios },
5828 .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5829 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5830 .print = print_termios,
5831 };
5832
5833 /* If the host does not provide these bits, they may be safely discarded. */
5834 #ifndef MAP_SYNC
5835 #define MAP_SYNC 0
5836 #endif
5837 #ifndef MAP_UNINITIALIZED
5838 #define MAP_UNINITIALIZED 0
5839 #endif
5840
5841 static const bitmask_transtbl mmap_flags_tbl[] = {
5842 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5843 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5844 MAP_ANONYMOUS, MAP_ANONYMOUS },
5845 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5846 MAP_GROWSDOWN, MAP_GROWSDOWN },
5847 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5848 MAP_DENYWRITE, MAP_DENYWRITE },
5849 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5850 MAP_EXECUTABLE, MAP_EXECUTABLE },
5851 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5852 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5853 MAP_NORESERVE, MAP_NORESERVE },
5854 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5855 /* MAP_STACK had been ignored by the kernel for quite some time.
5856 Recognize it for the target insofar as we do not want to pass
5857 it through to the host. */
5858 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5859 { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK },
5860 { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE },
5861 { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE,
5862 MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE },
5863 { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED,
5864 MAP_UNINITIALIZED, MAP_UNINITIALIZED },
5865 };
5866
5867 /*
5868 * Arrange for legacy / undefined architecture specific flags to be
5869 * ignored by mmap handling code.
5870 */
5871 #ifndef TARGET_MAP_32BIT
5872 #define TARGET_MAP_32BIT 0
5873 #endif
5874 #ifndef TARGET_MAP_HUGE_2MB
5875 #define TARGET_MAP_HUGE_2MB 0
5876 #endif
5877 #ifndef TARGET_MAP_HUGE_1GB
5878 #define TARGET_MAP_HUGE_1GB 0
5879 #endif
5880
do_mmap(abi_ulong addr,abi_ulong len,int prot,int target_flags,int fd,off_t offset)5881 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot,
5882 int target_flags, int fd, off_t offset)
5883 {
5884 /*
5885 * The historical set of flags that all mmap types implicitly support.
5886 */
5887 enum {
5888 TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED
5889 | TARGET_MAP_PRIVATE
5890 | TARGET_MAP_FIXED
5891 | TARGET_MAP_ANONYMOUS
5892 | TARGET_MAP_DENYWRITE
5893 | TARGET_MAP_EXECUTABLE
5894 | TARGET_MAP_UNINITIALIZED
5895 | TARGET_MAP_GROWSDOWN
5896 | TARGET_MAP_LOCKED
5897 | TARGET_MAP_NORESERVE
5898 | TARGET_MAP_POPULATE
5899 | TARGET_MAP_NONBLOCK
5900 | TARGET_MAP_STACK
5901 | TARGET_MAP_HUGETLB
5902 | TARGET_MAP_32BIT
5903 | TARGET_MAP_HUGE_2MB
5904 | TARGET_MAP_HUGE_1GB
5905 };
5906 int host_flags;
5907
5908 switch (target_flags & TARGET_MAP_TYPE) {
5909 case TARGET_MAP_PRIVATE:
5910 host_flags = MAP_PRIVATE;
5911 break;
5912 case TARGET_MAP_SHARED:
5913 host_flags = MAP_SHARED;
5914 break;
5915 case TARGET_MAP_SHARED_VALIDATE:
5916 /*
5917 * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
5918 * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
5919 */
5920 if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) {
5921 return -TARGET_EOPNOTSUPP;
5922 }
5923 host_flags = MAP_SHARED_VALIDATE;
5924 if (target_flags & TARGET_MAP_SYNC) {
5925 host_flags |= MAP_SYNC;
5926 }
5927 break;
5928 default:
5929 return -TARGET_EINVAL;
5930 }
5931 host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl);
5932
5933 return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset));
5934 }
5935
5936 /*
5937 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5938 * TARGET_I386 is defined if TARGET_X86_64 is defined
5939 */
5940 #if defined(TARGET_I386)
5941
5942 /* NOTE: there is really one LDT for all the threads */
5943 static uint8_t *ldt_table;
5944
read_ldt(abi_ulong ptr,unsigned long bytecount)5945 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5946 {
5947 int size;
5948 void *p;
5949
5950 if (!ldt_table)
5951 return 0;
5952 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5953 if (size > bytecount)
5954 size = bytecount;
5955 p = lock_user(VERIFY_WRITE, ptr, size, 0);
5956 if (!p)
5957 return -TARGET_EFAULT;
5958 /* ??? Should this by byteswapped? */
5959 memcpy(p, ldt_table, size);
5960 unlock_user(p, ptr, size);
5961 return size;
5962 }
5963
5964 /* XXX: add locking support */
write_ldt(CPUX86State * env,abi_ulong ptr,unsigned long bytecount,int oldmode)5965 static abi_long write_ldt(CPUX86State *env,
5966 abi_ulong ptr, unsigned long bytecount, int oldmode)
5967 {
5968 struct target_modify_ldt_ldt_s ldt_info;
5969 struct target_modify_ldt_ldt_s *target_ldt_info;
5970 int seg_32bit, contents, read_exec_only, limit_in_pages;
5971 int seg_not_present, useable, lm;
5972 uint32_t *lp, entry_1, entry_2;
5973
5974 if (bytecount != sizeof(ldt_info))
5975 return -TARGET_EINVAL;
5976 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5977 return -TARGET_EFAULT;
5978 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5979 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5980 ldt_info.limit = tswap32(target_ldt_info->limit);
5981 ldt_info.flags = tswap32(target_ldt_info->flags);
5982 unlock_user_struct(target_ldt_info, ptr, 0);
5983
5984 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5985 return -TARGET_EINVAL;
5986 seg_32bit = ldt_info.flags & 1;
5987 contents = (ldt_info.flags >> 1) & 3;
5988 read_exec_only = (ldt_info.flags >> 3) & 1;
5989 limit_in_pages = (ldt_info.flags >> 4) & 1;
5990 seg_not_present = (ldt_info.flags >> 5) & 1;
5991 useable = (ldt_info.flags >> 6) & 1;
5992 #ifdef TARGET_ABI32
5993 lm = 0;
5994 #else
5995 lm = (ldt_info.flags >> 7) & 1;
5996 #endif
5997 if (contents == 3) {
5998 if (oldmode)
5999 return -TARGET_EINVAL;
6000 if (seg_not_present == 0)
6001 return -TARGET_EINVAL;
6002 }
6003 /* allocate the LDT */
6004 if (!ldt_table) {
6005 env->ldt.base = target_mmap(0,
6006 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6007 PROT_READ|PROT_WRITE,
6008 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6009 if (env->ldt.base == -1)
6010 return -TARGET_ENOMEM;
6011 memset(g2h_untagged(env->ldt.base), 0,
6012 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6013 env->ldt.limit = 0xffff;
6014 ldt_table = g2h_untagged(env->ldt.base);
6015 }
6016
6017 /* NOTE: same code as Linux kernel */
6018 /* Allow LDTs to be cleared by the user. */
6019 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6020 if (oldmode ||
6021 (contents == 0 &&
6022 read_exec_only == 1 &&
6023 seg_32bit == 0 &&
6024 limit_in_pages == 0 &&
6025 seg_not_present == 1 &&
6026 useable == 0 )) {
6027 entry_1 = 0;
6028 entry_2 = 0;
6029 goto install;
6030 }
6031 }
6032
6033 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6034 (ldt_info.limit & 0x0ffff);
6035 entry_2 = (ldt_info.base_addr & 0xff000000) |
6036 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6037 (ldt_info.limit & 0xf0000) |
6038 ((read_exec_only ^ 1) << 9) |
6039 (contents << 10) |
6040 ((seg_not_present ^ 1) << 15) |
6041 (seg_32bit << 22) |
6042 (limit_in_pages << 23) |
6043 (lm << 21) |
6044 0x7000;
6045 if (!oldmode)
6046 entry_2 |= (useable << 20);
6047
6048 /* Install the new entry ... */
6049 install:
6050 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6051 lp[0] = tswap32(entry_1);
6052 lp[1] = tswap32(entry_2);
6053 return 0;
6054 }
6055
6056 /* specific and weird i386 syscalls */
do_modify_ldt(CPUX86State * env,int func,abi_ulong ptr,unsigned long bytecount)6057 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6058 unsigned long bytecount)
6059 {
6060 abi_long ret;
6061
6062 switch (func) {
6063 case 0:
6064 ret = read_ldt(ptr, bytecount);
6065 break;
6066 case 1:
6067 ret = write_ldt(env, ptr, bytecount, 1);
6068 break;
6069 case 0x11:
6070 ret = write_ldt(env, ptr, bytecount, 0);
6071 break;
6072 default:
6073 ret = -TARGET_ENOSYS;
6074 break;
6075 }
6076 return ret;
6077 }
6078
6079 #if defined(TARGET_ABI32)
do_set_thread_area(CPUX86State * env,abi_ulong ptr)6080 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6081 {
6082 uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6083 struct target_modify_ldt_ldt_s ldt_info;
6084 struct target_modify_ldt_ldt_s *target_ldt_info;
6085 int seg_32bit, contents, read_exec_only, limit_in_pages;
6086 int seg_not_present, useable, lm;
6087 uint32_t *lp, entry_1, entry_2;
6088 int i;
6089
6090 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6091 if (!target_ldt_info)
6092 return -TARGET_EFAULT;
6093 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6094 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6095 ldt_info.limit = tswap32(target_ldt_info->limit);
6096 ldt_info.flags = tswap32(target_ldt_info->flags);
6097 if (ldt_info.entry_number == -1) {
6098 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6099 if (gdt_table[i] == 0) {
6100 ldt_info.entry_number = i;
6101 target_ldt_info->entry_number = tswap32(i);
6102 break;
6103 }
6104 }
6105 }
6106 unlock_user_struct(target_ldt_info, ptr, 1);
6107
6108 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6109 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6110 return -TARGET_EINVAL;
6111 seg_32bit = ldt_info.flags & 1;
6112 contents = (ldt_info.flags >> 1) & 3;
6113 read_exec_only = (ldt_info.flags >> 3) & 1;
6114 limit_in_pages = (ldt_info.flags >> 4) & 1;
6115 seg_not_present = (ldt_info.flags >> 5) & 1;
6116 useable = (ldt_info.flags >> 6) & 1;
6117 #ifdef TARGET_ABI32
6118 lm = 0;
6119 #else
6120 lm = (ldt_info.flags >> 7) & 1;
6121 #endif
6122
6123 if (contents == 3) {
6124 if (seg_not_present == 0)
6125 return -TARGET_EINVAL;
6126 }
6127
6128 /* NOTE: same code as Linux kernel */
6129 /* Allow LDTs to be cleared by the user. */
6130 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6131 if ((contents == 0 &&
6132 read_exec_only == 1 &&
6133 seg_32bit == 0 &&
6134 limit_in_pages == 0 &&
6135 seg_not_present == 1 &&
6136 useable == 0 )) {
6137 entry_1 = 0;
6138 entry_2 = 0;
6139 goto install;
6140 }
6141 }
6142
6143 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6144 (ldt_info.limit & 0x0ffff);
6145 entry_2 = (ldt_info.base_addr & 0xff000000) |
6146 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6147 (ldt_info.limit & 0xf0000) |
6148 ((read_exec_only ^ 1) << 9) |
6149 (contents << 10) |
6150 ((seg_not_present ^ 1) << 15) |
6151 (seg_32bit << 22) |
6152 (limit_in_pages << 23) |
6153 (useable << 20) |
6154 (lm << 21) |
6155 0x7000;
6156
6157 /* Install the new entry ... */
6158 install:
6159 lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6160 lp[0] = tswap32(entry_1);
6161 lp[1] = tswap32(entry_2);
6162 return 0;
6163 }
6164
do_get_thread_area(CPUX86State * env,abi_ulong ptr)6165 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6166 {
6167 struct target_modify_ldt_ldt_s *target_ldt_info;
6168 uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6169 uint32_t base_addr, limit, flags;
6170 int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6171 int seg_not_present, useable, lm;
6172 uint32_t *lp, entry_1, entry_2;
6173
6174 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6175 if (!target_ldt_info)
6176 return -TARGET_EFAULT;
6177 idx = tswap32(target_ldt_info->entry_number);
6178 if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6179 idx > TARGET_GDT_ENTRY_TLS_MAX) {
6180 unlock_user_struct(target_ldt_info, ptr, 1);
6181 return -TARGET_EINVAL;
6182 }
6183 lp = (uint32_t *)(gdt_table + idx);
6184 entry_1 = tswap32(lp[0]);
6185 entry_2 = tswap32(lp[1]);
6186
6187 read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6188 contents = (entry_2 >> 10) & 3;
6189 seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6190 seg_32bit = (entry_2 >> 22) & 1;
6191 limit_in_pages = (entry_2 >> 23) & 1;
6192 useable = (entry_2 >> 20) & 1;
6193 #ifdef TARGET_ABI32
6194 lm = 0;
6195 #else
6196 lm = (entry_2 >> 21) & 1;
6197 #endif
6198 flags = (seg_32bit << 0) | (contents << 1) |
6199 (read_exec_only << 3) | (limit_in_pages << 4) |
6200 (seg_not_present << 5) | (useable << 6) | (lm << 7);
6201 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000);
6202 base_addr = (entry_1 >> 16) |
6203 (entry_2 & 0xff000000) |
6204 ((entry_2 & 0xff) << 16);
6205 target_ldt_info->base_addr = tswapal(base_addr);
6206 target_ldt_info->limit = tswap32(limit);
6207 target_ldt_info->flags = tswap32(flags);
6208 unlock_user_struct(target_ldt_info, ptr, 1);
6209 return 0;
6210 }
6211
do_arch_prctl(CPUX86State * env,int code,abi_ulong addr)6212 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6213 {
6214 return -TARGET_ENOSYS;
6215 }
6216 #else
do_arch_prctl(CPUX86State * env,int code,abi_ulong addr)6217 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6218 {
6219 abi_long ret = 0;
6220 abi_ulong val;
6221 int idx;
6222
6223 switch(code) {
6224 case TARGET_ARCH_SET_GS:
6225 case TARGET_ARCH_SET_FS:
6226 if (code == TARGET_ARCH_SET_GS)
6227 idx = R_GS;
6228 else
6229 idx = R_FS;
6230 cpu_x86_load_seg(env, idx, 0);
6231 env->segs[idx].base = addr;
6232 break;
6233 case TARGET_ARCH_GET_GS:
6234 case TARGET_ARCH_GET_FS:
6235 if (code == TARGET_ARCH_GET_GS)
6236 idx = R_GS;
6237 else
6238 idx = R_FS;
6239 val = env->segs[idx].base;
6240 if (put_user(val, addr, abi_ulong))
6241 ret = -TARGET_EFAULT;
6242 break;
6243 default:
6244 ret = -TARGET_EINVAL;
6245 break;
6246 }
6247 return ret;
6248 }
6249 #endif /* defined(TARGET_ABI32 */
6250 #endif /* defined(TARGET_I386) */
6251
6252 /*
6253 * These constants are generic. Supply any that are missing from the host.
6254 */
6255 #ifndef PR_SET_NAME
6256 # define PR_SET_NAME 15
6257 # define PR_GET_NAME 16
6258 #endif
6259 #ifndef PR_SET_FP_MODE
6260 # define PR_SET_FP_MODE 45
6261 # define PR_GET_FP_MODE 46
6262 # define PR_FP_MODE_FR (1 << 0)
6263 # define PR_FP_MODE_FRE (1 << 1)
6264 #endif
6265 #ifndef PR_SVE_SET_VL
6266 # define PR_SVE_SET_VL 50
6267 # define PR_SVE_GET_VL 51
6268 # define PR_SVE_VL_LEN_MASK 0xffff
6269 # define PR_SVE_VL_INHERIT (1 << 17)
6270 #endif
6271 #ifndef PR_PAC_RESET_KEYS
6272 # define PR_PAC_RESET_KEYS 54
6273 # define PR_PAC_APIAKEY (1 << 0)
6274 # define PR_PAC_APIBKEY (1 << 1)
6275 # define PR_PAC_APDAKEY (1 << 2)
6276 # define PR_PAC_APDBKEY (1 << 3)
6277 # define PR_PAC_APGAKEY (1 << 4)
6278 #endif
6279 #ifndef PR_SET_TAGGED_ADDR_CTRL
6280 # define PR_SET_TAGGED_ADDR_CTRL 55
6281 # define PR_GET_TAGGED_ADDR_CTRL 56
6282 # define PR_TAGGED_ADDR_ENABLE (1UL << 0)
6283 #endif
6284 #ifndef PR_SET_IO_FLUSHER
6285 # define PR_SET_IO_FLUSHER 57
6286 # define PR_GET_IO_FLUSHER 58
6287 #endif
6288 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6289 # define PR_SET_SYSCALL_USER_DISPATCH 59
6290 #endif
6291 #ifndef PR_SME_SET_VL
6292 # define PR_SME_SET_VL 63
6293 # define PR_SME_GET_VL 64
6294 # define PR_SME_VL_LEN_MASK 0xffff
6295 # define PR_SME_VL_INHERIT (1 << 17)
6296 #endif
6297
6298 #include "target_prctl.h"
6299
do_prctl_inval0(CPUArchState * env)6300 static abi_long do_prctl_inval0(CPUArchState *env)
6301 {
6302 return -TARGET_EINVAL;
6303 }
6304
do_prctl_inval1(CPUArchState * env,abi_long arg2)6305 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6306 {
6307 return -TARGET_EINVAL;
6308 }
6309
6310 #ifndef do_prctl_get_fp_mode
6311 #define do_prctl_get_fp_mode do_prctl_inval0
6312 #endif
6313 #ifndef do_prctl_set_fp_mode
6314 #define do_prctl_set_fp_mode do_prctl_inval1
6315 #endif
6316 #ifndef do_prctl_sve_get_vl
6317 #define do_prctl_sve_get_vl do_prctl_inval0
6318 #endif
6319 #ifndef do_prctl_sve_set_vl
6320 #define do_prctl_sve_set_vl do_prctl_inval1
6321 #endif
6322 #ifndef do_prctl_reset_keys
6323 #define do_prctl_reset_keys do_prctl_inval1
6324 #endif
6325 #ifndef do_prctl_set_tagged_addr_ctrl
6326 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6327 #endif
6328 #ifndef do_prctl_get_tagged_addr_ctrl
6329 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6330 #endif
6331 #ifndef do_prctl_get_unalign
6332 #define do_prctl_get_unalign do_prctl_inval1
6333 #endif
6334 #ifndef do_prctl_set_unalign
6335 #define do_prctl_set_unalign do_prctl_inval1
6336 #endif
6337 #ifndef do_prctl_sme_get_vl
6338 #define do_prctl_sme_get_vl do_prctl_inval0
6339 #endif
6340 #ifndef do_prctl_sme_set_vl
6341 #define do_prctl_sme_set_vl do_prctl_inval1
6342 #endif
6343
do_prctl(CPUArchState * env,abi_long option,abi_long arg2,abi_long arg3,abi_long arg4,abi_long arg5)6344 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6345 abi_long arg3, abi_long arg4, abi_long arg5)
6346 {
6347 abi_long ret;
6348
6349 switch (option) {
6350 case PR_GET_PDEATHSIG:
6351 {
6352 int deathsig;
6353 ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6354 arg3, arg4, arg5));
6355 if (!is_error(ret) &&
6356 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6357 return -TARGET_EFAULT;
6358 }
6359 return ret;
6360 }
6361 case PR_SET_PDEATHSIG:
6362 return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6363 arg3, arg4, arg5));
6364 case PR_GET_NAME:
6365 {
6366 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6367 if (!name) {
6368 return -TARGET_EFAULT;
6369 }
6370 ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6371 arg3, arg4, arg5));
6372 unlock_user(name, arg2, 16);
6373 return ret;
6374 }
6375 case PR_SET_NAME:
6376 {
6377 void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6378 if (!name) {
6379 return -TARGET_EFAULT;
6380 }
6381 ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6382 arg3, arg4, arg5));
6383 unlock_user(name, arg2, 0);
6384 return ret;
6385 }
6386 case PR_GET_FP_MODE:
6387 return do_prctl_get_fp_mode(env);
6388 case PR_SET_FP_MODE:
6389 return do_prctl_set_fp_mode(env, arg2);
6390 case PR_SVE_GET_VL:
6391 return do_prctl_sve_get_vl(env);
6392 case PR_SVE_SET_VL:
6393 return do_prctl_sve_set_vl(env, arg2);
6394 case PR_SME_GET_VL:
6395 return do_prctl_sme_get_vl(env);
6396 case PR_SME_SET_VL:
6397 return do_prctl_sme_set_vl(env, arg2);
6398 case PR_PAC_RESET_KEYS:
6399 if (arg3 || arg4 || arg5) {
6400 return -TARGET_EINVAL;
6401 }
6402 return do_prctl_reset_keys(env, arg2);
6403 case PR_SET_TAGGED_ADDR_CTRL:
6404 if (arg3 || arg4 || arg5) {
6405 return -TARGET_EINVAL;
6406 }
6407 return do_prctl_set_tagged_addr_ctrl(env, arg2);
6408 case PR_GET_TAGGED_ADDR_CTRL:
6409 if (arg2 || arg3 || arg4 || arg5) {
6410 return -TARGET_EINVAL;
6411 }
6412 return do_prctl_get_tagged_addr_ctrl(env);
6413
6414 case PR_GET_UNALIGN:
6415 return do_prctl_get_unalign(env, arg2);
6416 case PR_SET_UNALIGN:
6417 return do_prctl_set_unalign(env, arg2);
6418
6419 case PR_CAP_AMBIENT:
6420 case PR_CAPBSET_READ:
6421 case PR_CAPBSET_DROP:
6422 case PR_GET_DUMPABLE:
6423 case PR_SET_DUMPABLE:
6424 case PR_GET_KEEPCAPS:
6425 case PR_SET_KEEPCAPS:
6426 case PR_GET_SECUREBITS:
6427 case PR_SET_SECUREBITS:
6428 case PR_GET_TIMING:
6429 case PR_SET_TIMING:
6430 case PR_GET_TIMERSLACK:
6431 case PR_SET_TIMERSLACK:
6432 case PR_MCE_KILL:
6433 case PR_MCE_KILL_GET:
6434 case PR_GET_NO_NEW_PRIVS:
6435 case PR_SET_NO_NEW_PRIVS:
6436 case PR_GET_IO_FLUSHER:
6437 case PR_SET_IO_FLUSHER:
6438 case PR_SET_CHILD_SUBREAPER:
6439 case PR_GET_SPECULATION_CTRL:
6440 case PR_SET_SPECULATION_CTRL:
6441 /* Some prctl options have no pointer arguments and we can pass on. */
6442 return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6443
6444 case PR_GET_CHILD_SUBREAPER:
6445 {
6446 int val;
6447 ret = get_errno(prctl(PR_GET_CHILD_SUBREAPER, &val,
6448 arg3, arg4, arg5));
6449 if (!is_error(ret) && put_user_s32(val, arg2)) {
6450 return -TARGET_EFAULT;
6451 }
6452 return ret;
6453 }
6454
6455 case PR_GET_TID_ADDRESS:
6456 {
6457 TaskState *ts = get_task_state(env_cpu(env));
6458 return put_user_ual(ts->child_tidptr, arg2);
6459 }
6460
6461 case PR_GET_FPEXC:
6462 case PR_SET_FPEXC:
6463 /* Was used for SPE on PowerPC. */
6464 return -TARGET_EINVAL;
6465
6466 case PR_GET_ENDIAN:
6467 case PR_SET_ENDIAN:
6468 case PR_GET_FPEMU:
6469 case PR_SET_FPEMU:
6470 case PR_SET_MM:
6471 case PR_GET_SECCOMP:
6472 case PR_SET_SECCOMP:
6473 case PR_SET_SYSCALL_USER_DISPATCH:
6474 case PR_GET_THP_DISABLE:
6475 case PR_SET_THP_DISABLE:
6476 case PR_GET_TSC:
6477 case PR_SET_TSC:
6478 /* Disable to prevent the target disabling stuff we need. */
6479 return -TARGET_EINVAL;
6480
6481 default:
6482 qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6483 option);
6484 return -TARGET_EINVAL;
6485 }
6486 }
6487
6488 #define NEW_STACK_SIZE 0x40000
6489
6490
6491 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6492 typedef struct {
6493 CPUArchState *env;
6494 pthread_mutex_t mutex;
6495 pthread_cond_t cond;
6496 pthread_t thread;
6497 uint32_t tid;
6498 abi_ulong child_tidptr;
6499 abi_ulong parent_tidptr;
6500 sigset_t sigmask;
6501 } new_thread_info;
6502
clone_func(void * arg)6503 static void *clone_func(void *arg)
6504 {
6505 new_thread_info *info = arg;
6506 CPUArchState *env;
6507 CPUState *cpu;
6508 TaskState *ts;
6509
6510 rcu_register_thread();
6511 tcg_register_thread();
6512 env = info->env;
6513 cpu = env_cpu(env);
6514 thread_cpu = cpu;
6515 ts = get_task_state(cpu);
6516 info->tid = sys_gettid();
6517 task_settid(ts);
6518 if (info->child_tidptr)
6519 put_user_u32(info->tid, info->child_tidptr);
6520 if (info->parent_tidptr)
6521 put_user_u32(info->tid, info->parent_tidptr);
6522 qemu_guest_random_seed_thread_part2(cpu->random_seed);
6523 /* Enable signals. */
6524 sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6525 /* Signal to the parent that we're ready. */
6526 pthread_mutex_lock(&info->mutex);
6527 pthread_cond_broadcast(&info->cond);
6528 pthread_mutex_unlock(&info->mutex);
6529 /* Wait until the parent has finished initializing the tls state. */
6530 pthread_mutex_lock(&clone_lock);
6531 pthread_mutex_unlock(&clone_lock);
6532 cpu_loop(env);
6533 /* never exits */
6534 return NULL;
6535 }
6536
6537 /* do_fork() Must return host values and target errnos (unlike most
6538 do_*() functions). */
do_fork(CPUArchState * env,unsigned int flags,abi_ulong newsp,abi_ulong parent_tidptr,target_ulong newtls,abi_ulong child_tidptr)6539 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6540 abi_ulong parent_tidptr, target_ulong newtls,
6541 abi_ulong child_tidptr)
6542 {
6543 CPUState *cpu = env_cpu(env);
6544 int ret;
6545 TaskState *ts;
6546 CPUState *new_cpu;
6547 CPUArchState *new_env;
6548 sigset_t sigmask;
6549
6550 flags &= ~CLONE_IGNORED_FLAGS;
6551
6552 /* Emulate vfork() with fork() */
6553 if (flags & CLONE_VFORK)
6554 flags &= ~(CLONE_VFORK | CLONE_VM);
6555
6556 if (flags & CLONE_VM) {
6557 TaskState *parent_ts = get_task_state(cpu);
6558 new_thread_info info;
6559 pthread_attr_t attr;
6560
6561 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6562 (flags & CLONE_INVALID_THREAD_FLAGS)) {
6563 return -TARGET_EINVAL;
6564 }
6565
6566 ts = g_new0(TaskState, 1);
6567 init_task_state(ts);
6568
6569 /* Grab a mutex so that thread setup appears atomic. */
6570 pthread_mutex_lock(&clone_lock);
6571
6572 /*
6573 * If this is our first additional thread, we need to ensure we
6574 * generate code for parallel execution and flush old translations.
6575 * Do this now so that the copy gets CF_PARALLEL too.
6576 */
6577 if (!tcg_cflags_has(cpu, CF_PARALLEL)) {
6578 tcg_cflags_set(cpu, CF_PARALLEL);
6579 tb_flush(cpu);
6580 }
6581
6582 /* we create a new CPU instance. */
6583 new_env = cpu_copy(env);
6584 /* Init regs that differ from the parent. */
6585 cpu_clone_regs_child(new_env, newsp, flags);
6586 cpu_clone_regs_parent(env, flags);
6587 new_cpu = env_cpu(new_env);
6588 new_cpu->opaque = ts;
6589 ts->bprm = parent_ts->bprm;
6590 ts->info = parent_ts->info;
6591 ts->signal_mask = parent_ts->signal_mask;
6592
6593 if (flags & CLONE_CHILD_CLEARTID) {
6594 ts->child_tidptr = child_tidptr;
6595 }
6596
6597 if (flags & CLONE_SETTLS) {
6598 cpu_set_tls (new_env, newtls);
6599 }
6600
6601 memset(&info, 0, sizeof(info));
6602 pthread_mutex_init(&info.mutex, NULL);
6603 pthread_mutex_lock(&info.mutex);
6604 pthread_cond_init(&info.cond, NULL);
6605 info.env = new_env;
6606 if (flags & CLONE_CHILD_SETTID) {
6607 info.child_tidptr = child_tidptr;
6608 }
6609 if (flags & CLONE_PARENT_SETTID) {
6610 info.parent_tidptr = parent_tidptr;
6611 }
6612
6613 ret = pthread_attr_init(&attr);
6614 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6615 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6616 /* It is not safe to deliver signals until the child has finished
6617 initializing, so temporarily block all signals. */
6618 sigfillset(&sigmask);
6619 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6620 cpu->random_seed = qemu_guest_random_seed_thread_part1();
6621
6622 ret = pthread_create(&info.thread, &attr, clone_func, &info);
6623 /* TODO: Free new CPU state if thread creation failed. */
6624
6625 sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6626 pthread_attr_destroy(&attr);
6627 if (ret == 0) {
6628 /* Wait for the child to initialize. */
6629 pthread_cond_wait(&info.cond, &info.mutex);
6630 ret = info.tid;
6631 } else {
6632 ret = -1;
6633 }
6634 pthread_mutex_unlock(&info.mutex);
6635 pthread_cond_destroy(&info.cond);
6636 pthread_mutex_destroy(&info.mutex);
6637 pthread_mutex_unlock(&clone_lock);
6638 } else {
6639 /* if no CLONE_VM, we consider it is a fork */
6640 if (flags & CLONE_INVALID_FORK_FLAGS) {
6641 return -TARGET_EINVAL;
6642 }
6643
6644 /* We can't support custom termination signals */
6645 if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6646 return -TARGET_EINVAL;
6647 }
6648
6649 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6650 if (flags & CLONE_PIDFD) {
6651 return -TARGET_EINVAL;
6652 }
6653 #endif
6654
6655 /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6656 if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) {
6657 return -TARGET_EINVAL;
6658 }
6659
6660 if (block_signals()) {
6661 return -QEMU_ERESTARTSYS;
6662 }
6663
6664 fork_start();
6665 ret = fork();
6666 if (ret == 0) {
6667 /* Child Process. */
6668 cpu_clone_regs_child(env, newsp, flags);
6669 fork_end(ret);
6670 /* There is a race condition here. The parent process could
6671 theoretically read the TID in the child process before the child
6672 tid is set. This would require using either ptrace
6673 (not implemented) or having *_tidptr to point at a shared memory
6674 mapping. We can't repeat the spinlock hack used above because
6675 the child process gets its own copy of the lock. */
6676 if (flags & CLONE_CHILD_SETTID)
6677 put_user_u32(sys_gettid(), child_tidptr);
6678 if (flags & CLONE_PARENT_SETTID)
6679 put_user_u32(sys_gettid(), parent_tidptr);
6680 ts = get_task_state(cpu);
6681 if (flags & CLONE_SETTLS)
6682 cpu_set_tls (env, newtls);
6683 if (flags & CLONE_CHILD_CLEARTID)
6684 ts->child_tidptr = child_tidptr;
6685 } else {
6686 cpu_clone_regs_parent(env, flags);
6687 if (flags & CLONE_PIDFD) {
6688 int pid_fd = 0;
6689 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6690 int pid_child = ret;
6691 pid_fd = pidfd_open(pid_child, 0);
6692 if (pid_fd >= 0) {
6693 fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL)
6694 | FD_CLOEXEC);
6695 } else {
6696 pid_fd = 0;
6697 }
6698 #endif
6699 put_user_u32(pid_fd, parent_tidptr);
6700 }
6701 fork_end(ret);
6702 }
6703 g_assert(!cpu_in_exclusive_context(cpu));
6704 }
6705 return ret;
6706 }
6707
6708 /* warning : doesn't handle linux specific flags... */
target_to_host_fcntl_cmd(int cmd)6709 static int target_to_host_fcntl_cmd(int cmd)
6710 {
6711 int ret;
6712
6713 switch(cmd) {
6714 case TARGET_F_DUPFD:
6715 case TARGET_F_GETFD:
6716 case TARGET_F_SETFD:
6717 case TARGET_F_GETFL:
6718 case TARGET_F_SETFL:
6719 case TARGET_F_OFD_GETLK:
6720 case TARGET_F_OFD_SETLK:
6721 case TARGET_F_OFD_SETLKW:
6722 ret = cmd;
6723 break;
6724 case TARGET_F_GETLK:
6725 ret = F_GETLK64;
6726 break;
6727 case TARGET_F_SETLK:
6728 ret = F_SETLK64;
6729 break;
6730 case TARGET_F_SETLKW:
6731 ret = F_SETLKW64;
6732 break;
6733 case TARGET_F_GETOWN:
6734 ret = F_GETOWN;
6735 break;
6736 case TARGET_F_SETOWN:
6737 ret = F_SETOWN;
6738 break;
6739 case TARGET_F_GETSIG:
6740 ret = F_GETSIG;
6741 break;
6742 case TARGET_F_SETSIG:
6743 ret = F_SETSIG;
6744 break;
6745 #if TARGET_ABI_BITS == 32
6746 case TARGET_F_GETLK64:
6747 ret = F_GETLK64;
6748 break;
6749 case TARGET_F_SETLK64:
6750 ret = F_SETLK64;
6751 break;
6752 case TARGET_F_SETLKW64:
6753 ret = F_SETLKW64;
6754 break;
6755 #endif
6756 case TARGET_F_SETLEASE:
6757 ret = F_SETLEASE;
6758 break;
6759 case TARGET_F_GETLEASE:
6760 ret = F_GETLEASE;
6761 break;
6762 #ifdef F_DUPFD_CLOEXEC
6763 case TARGET_F_DUPFD_CLOEXEC:
6764 ret = F_DUPFD_CLOEXEC;
6765 break;
6766 #endif
6767 case TARGET_F_NOTIFY:
6768 ret = F_NOTIFY;
6769 break;
6770 #ifdef F_GETOWN_EX
6771 case TARGET_F_GETOWN_EX:
6772 ret = F_GETOWN_EX;
6773 break;
6774 #endif
6775 #ifdef F_SETOWN_EX
6776 case TARGET_F_SETOWN_EX:
6777 ret = F_SETOWN_EX;
6778 break;
6779 #endif
6780 #ifdef F_SETPIPE_SZ
6781 case TARGET_F_SETPIPE_SZ:
6782 ret = F_SETPIPE_SZ;
6783 break;
6784 case TARGET_F_GETPIPE_SZ:
6785 ret = F_GETPIPE_SZ;
6786 break;
6787 #endif
6788 #ifdef F_ADD_SEALS
6789 case TARGET_F_ADD_SEALS:
6790 ret = F_ADD_SEALS;
6791 break;
6792 case TARGET_F_GET_SEALS:
6793 ret = F_GET_SEALS;
6794 break;
6795 #endif
6796 default:
6797 ret = -TARGET_EINVAL;
6798 break;
6799 }
6800
6801 #if defined(__powerpc64__)
6802 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6803 * is not supported by kernel. The glibc fcntl call actually adjusts
6804 * them to 5, 6 and 7 before making the syscall(). Since we make the
6805 * syscall directly, adjust to what is supported by the kernel.
6806 */
6807 if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6808 ret -= F_GETLK64 - 5;
6809 }
6810 #endif
6811
6812 return ret;
6813 }
6814
6815 #define FLOCK_TRANSTBL \
6816 switch (type) { \
6817 TRANSTBL_CONVERT(F_RDLCK); \
6818 TRANSTBL_CONVERT(F_WRLCK); \
6819 TRANSTBL_CONVERT(F_UNLCK); \
6820 }
6821
target_to_host_flock(int type)6822 static int target_to_host_flock(int type)
6823 {
6824 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6825 FLOCK_TRANSTBL
6826 #undef TRANSTBL_CONVERT
6827 return -TARGET_EINVAL;
6828 }
6829
host_to_target_flock(int type)6830 static int host_to_target_flock(int type)
6831 {
6832 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6833 FLOCK_TRANSTBL
6834 #undef TRANSTBL_CONVERT
6835 /* if we don't know how to convert the value coming
6836 * from the host we copy to the target field as-is
6837 */
6838 return type;
6839 }
6840
copy_from_user_flock(struct flock64 * fl,abi_ulong target_flock_addr)6841 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6842 abi_ulong target_flock_addr)
6843 {
6844 struct target_flock *target_fl;
6845 int l_type;
6846
6847 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6848 return -TARGET_EFAULT;
6849 }
6850
6851 __get_user(l_type, &target_fl->l_type);
6852 l_type = target_to_host_flock(l_type);
6853 if (l_type < 0) {
6854 return l_type;
6855 }
6856 fl->l_type = l_type;
6857 __get_user(fl->l_whence, &target_fl->l_whence);
6858 __get_user(fl->l_start, &target_fl->l_start);
6859 __get_user(fl->l_len, &target_fl->l_len);
6860 __get_user(fl->l_pid, &target_fl->l_pid);
6861 unlock_user_struct(target_fl, target_flock_addr, 0);
6862 return 0;
6863 }
6864
copy_to_user_flock(abi_ulong target_flock_addr,const struct flock64 * fl)6865 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6866 const struct flock64 *fl)
6867 {
6868 struct target_flock *target_fl;
6869 short l_type;
6870
6871 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6872 return -TARGET_EFAULT;
6873 }
6874
6875 l_type = host_to_target_flock(fl->l_type);
6876 __put_user(l_type, &target_fl->l_type);
6877 __put_user(fl->l_whence, &target_fl->l_whence);
6878 __put_user(fl->l_start, &target_fl->l_start);
6879 __put_user(fl->l_len, &target_fl->l_len);
6880 __put_user(fl->l_pid, &target_fl->l_pid);
6881 unlock_user_struct(target_fl, target_flock_addr, 1);
6882 return 0;
6883 }
6884
6885 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6886 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6887
6888 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6889 struct target_oabi_flock64 {
6890 abi_short l_type;
6891 abi_short l_whence;
6892 abi_llong l_start;
6893 abi_llong l_len;
6894 abi_int l_pid;
6895 } QEMU_PACKED;
6896
copy_from_user_oabi_flock64(struct flock64 * fl,abi_ulong target_flock_addr)6897 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6898 abi_ulong target_flock_addr)
6899 {
6900 struct target_oabi_flock64 *target_fl;
6901 int l_type;
6902
6903 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6904 return -TARGET_EFAULT;
6905 }
6906
6907 __get_user(l_type, &target_fl->l_type);
6908 l_type = target_to_host_flock(l_type);
6909 if (l_type < 0) {
6910 return l_type;
6911 }
6912 fl->l_type = l_type;
6913 __get_user(fl->l_whence, &target_fl->l_whence);
6914 __get_user(fl->l_start, &target_fl->l_start);
6915 __get_user(fl->l_len, &target_fl->l_len);
6916 __get_user(fl->l_pid, &target_fl->l_pid);
6917 unlock_user_struct(target_fl, target_flock_addr, 0);
6918 return 0;
6919 }
6920
copy_to_user_oabi_flock64(abi_ulong target_flock_addr,const struct flock64 * fl)6921 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6922 const struct flock64 *fl)
6923 {
6924 struct target_oabi_flock64 *target_fl;
6925 short l_type;
6926
6927 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6928 return -TARGET_EFAULT;
6929 }
6930
6931 l_type = host_to_target_flock(fl->l_type);
6932 __put_user(l_type, &target_fl->l_type);
6933 __put_user(fl->l_whence, &target_fl->l_whence);
6934 __put_user(fl->l_start, &target_fl->l_start);
6935 __put_user(fl->l_len, &target_fl->l_len);
6936 __put_user(fl->l_pid, &target_fl->l_pid);
6937 unlock_user_struct(target_fl, target_flock_addr, 1);
6938 return 0;
6939 }
6940 #endif
6941
copy_from_user_flock64(struct flock64 * fl,abi_ulong target_flock_addr)6942 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6943 abi_ulong target_flock_addr)
6944 {
6945 struct target_flock64 *target_fl;
6946 int l_type;
6947
6948 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6949 return -TARGET_EFAULT;
6950 }
6951
6952 __get_user(l_type, &target_fl->l_type);
6953 l_type = target_to_host_flock(l_type);
6954 if (l_type < 0) {
6955 return l_type;
6956 }
6957 fl->l_type = l_type;
6958 __get_user(fl->l_whence, &target_fl->l_whence);
6959 __get_user(fl->l_start, &target_fl->l_start);
6960 __get_user(fl->l_len, &target_fl->l_len);
6961 __get_user(fl->l_pid, &target_fl->l_pid);
6962 unlock_user_struct(target_fl, target_flock_addr, 0);
6963 return 0;
6964 }
6965
copy_to_user_flock64(abi_ulong target_flock_addr,const struct flock64 * fl)6966 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6967 const struct flock64 *fl)
6968 {
6969 struct target_flock64 *target_fl;
6970 short l_type;
6971
6972 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6973 return -TARGET_EFAULT;
6974 }
6975
6976 l_type = host_to_target_flock(fl->l_type);
6977 __put_user(l_type, &target_fl->l_type);
6978 __put_user(fl->l_whence, &target_fl->l_whence);
6979 __put_user(fl->l_start, &target_fl->l_start);
6980 __put_user(fl->l_len, &target_fl->l_len);
6981 __put_user(fl->l_pid, &target_fl->l_pid);
6982 unlock_user_struct(target_fl, target_flock_addr, 1);
6983 return 0;
6984 }
6985
do_fcntl(int fd,int cmd,abi_ulong arg)6986 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6987 {
6988 struct flock64 fl64;
6989 #ifdef F_GETOWN_EX
6990 struct f_owner_ex fox;
6991 struct target_f_owner_ex *target_fox;
6992 #endif
6993 abi_long ret;
6994 int host_cmd = target_to_host_fcntl_cmd(cmd);
6995
6996 if (host_cmd == -TARGET_EINVAL)
6997 return host_cmd;
6998
6999 switch(cmd) {
7000 case TARGET_F_GETLK:
7001 ret = copy_from_user_flock(&fl64, arg);
7002 if (ret) {
7003 return ret;
7004 }
7005 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7006 if (ret == 0) {
7007 ret = copy_to_user_flock(arg, &fl64);
7008 }
7009 break;
7010
7011 case TARGET_F_SETLK:
7012 case TARGET_F_SETLKW:
7013 ret = copy_from_user_flock(&fl64, arg);
7014 if (ret) {
7015 return ret;
7016 }
7017 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7018 break;
7019
7020 case TARGET_F_GETLK64:
7021 case TARGET_F_OFD_GETLK:
7022 ret = copy_from_user_flock64(&fl64, arg);
7023 if (ret) {
7024 return ret;
7025 }
7026 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7027 if (ret == 0) {
7028 ret = copy_to_user_flock64(arg, &fl64);
7029 }
7030 break;
7031 case TARGET_F_SETLK64:
7032 case TARGET_F_SETLKW64:
7033 case TARGET_F_OFD_SETLK:
7034 case TARGET_F_OFD_SETLKW:
7035 ret = copy_from_user_flock64(&fl64, arg);
7036 if (ret) {
7037 return ret;
7038 }
7039 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7040 break;
7041
7042 case TARGET_F_GETFL:
7043 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7044 if (ret >= 0) {
7045 ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7046 /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7047 if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) {
7048 ret |= TARGET_O_LARGEFILE;
7049 }
7050 }
7051 break;
7052
7053 case TARGET_F_SETFL:
7054 ret = get_errno(safe_fcntl(fd, host_cmd,
7055 target_to_host_bitmask(arg,
7056 fcntl_flags_tbl)));
7057 break;
7058
7059 #ifdef F_GETOWN_EX
7060 case TARGET_F_GETOWN_EX:
7061 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7062 if (ret >= 0) {
7063 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7064 return -TARGET_EFAULT;
7065 target_fox->type = tswap32(fox.type);
7066 target_fox->pid = tswap32(fox.pid);
7067 unlock_user_struct(target_fox, arg, 1);
7068 }
7069 break;
7070 #endif
7071
7072 #ifdef F_SETOWN_EX
7073 case TARGET_F_SETOWN_EX:
7074 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7075 return -TARGET_EFAULT;
7076 fox.type = tswap32(target_fox->type);
7077 fox.pid = tswap32(target_fox->pid);
7078 unlock_user_struct(target_fox, arg, 0);
7079 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7080 break;
7081 #endif
7082
7083 case TARGET_F_SETSIG:
7084 ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7085 break;
7086
7087 case TARGET_F_GETSIG:
7088 ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7089 break;
7090
7091 case TARGET_F_SETOWN:
7092 case TARGET_F_GETOWN:
7093 case TARGET_F_SETLEASE:
7094 case TARGET_F_GETLEASE:
7095 case TARGET_F_SETPIPE_SZ:
7096 case TARGET_F_GETPIPE_SZ:
7097 case TARGET_F_ADD_SEALS:
7098 case TARGET_F_GET_SEALS:
7099 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7100 break;
7101
7102 default:
7103 ret = get_errno(safe_fcntl(fd, cmd, arg));
7104 break;
7105 }
7106 return ret;
7107 }
7108
7109 #ifdef USE_UID16
7110
high2lowuid(int uid)7111 static inline int high2lowuid(int uid)
7112 {
7113 if (uid > 65535)
7114 return 65534;
7115 else
7116 return uid;
7117 }
7118
high2lowgid(int gid)7119 static inline int high2lowgid(int gid)
7120 {
7121 if (gid > 65535)
7122 return 65534;
7123 else
7124 return gid;
7125 }
7126
low2highuid(int uid)7127 static inline int low2highuid(int uid)
7128 {
7129 if ((int16_t)uid == -1)
7130 return -1;
7131 else
7132 return uid;
7133 }
7134
low2highgid(int gid)7135 static inline int low2highgid(int gid)
7136 {
7137 if ((int16_t)gid == -1)
7138 return -1;
7139 else
7140 return gid;
7141 }
tswapid(int id)7142 static inline int tswapid(int id)
7143 {
7144 return tswap16(id);
7145 }
7146
7147 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7148
7149 #else /* !USE_UID16 */
high2lowuid(int uid)7150 static inline int high2lowuid(int uid)
7151 {
7152 return uid;
7153 }
high2lowgid(int gid)7154 static inline int high2lowgid(int gid)
7155 {
7156 return gid;
7157 }
low2highuid(int uid)7158 static inline int low2highuid(int uid)
7159 {
7160 return uid;
7161 }
low2highgid(int gid)7162 static inline int low2highgid(int gid)
7163 {
7164 return gid;
7165 }
tswapid(int id)7166 static inline int tswapid(int id)
7167 {
7168 return tswap32(id);
7169 }
7170
7171 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7172
7173 #endif /* USE_UID16 */
7174
7175 /* We must do direct syscalls for setting UID/GID, because we want to
7176 * implement the Linux system call semantics of "change only for this thread",
7177 * not the libc/POSIX semantics of "change for all threads in process".
7178 * (See http://ewontfix.com/17/ for more details.)
7179 * We use the 32-bit version of the syscalls if present; if it is not
7180 * then either the host architecture supports 32-bit UIDs natively with
7181 * the standard syscall, or the 16-bit UID is the best we can do.
7182 */
7183 #ifdef __NR_setuid32
7184 #define __NR_sys_setuid __NR_setuid32
7185 #else
7186 #define __NR_sys_setuid __NR_setuid
7187 #endif
7188 #ifdef __NR_setgid32
7189 #define __NR_sys_setgid __NR_setgid32
7190 #else
7191 #define __NR_sys_setgid __NR_setgid
7192 #endif
7193 #ifdef __NR_setresuid32
7194 #define __NR_sys_setresuid __NR_setresuid32
7195 #else
7196 #define __NR_sys_setresuid __NR_setresuid
7197 #endif
7198 #ifdef __NR_setresgid32
7199 #define __NR_sys_setresgid __NR_setresgid32
7200 #else
7201 #define __NR_sys_setresgid __NR_setresgid
7202 #endif
7203 #ifdef __NR_setgroups32
7204 #define __NR_sys_setgroups __NR_setgroups32
7205 #else
7206 #define __NR_sys_setgroups __NR_setgroups
7207 #endif
7208
_syscall1(int,sys_setuid,uid_t,uid)7209 _syscall1(int, sys_setuid, uid_t, uid)
7210 _syscall1(int, sys_setgid, gid_t, gid)
7211 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7212 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7213 _syscall2(int, sys_setgroups, int, size, gid_t *, grouplist)
7214
7215 void syscall_init(void)
7216 {
7217 IOCTLEntry *ie;
7218 const argtype *arg_type;
7219 int size;
7220
7221 thunk_init(STRUCT_MAX);
7222
7223 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7224 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7225 #include "syscall_types.h"
7226 #undef STRUCT
7227 #undef STRUCT_SPECIAL
7228
7229 /* we patch the ioctl size if necessary. We rely on the fact that
7230 no ioctl has all the bits at '1' in the size field */
7231 ie = ioctl_entries;
7232 while (ie->target_cmd != 0) {
7233 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7234 TARGET_IOC_SIZEMASK) {
7235 arg_type = ie->arg_type;
7236 if (arg_type[0] != TYPE_PTR) {
7237 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7238 ie->target_cmd);
7239 exit(1);
7240 }
7241 arg_type++;
7242 size = thunk_type_size(arg_type, 0);
7243 ie->target_cmd = (ie->target_cmd &
7244 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7245 (size << TARGET_IOC_SIZESHIFT);
7246 }
7247
7248 /* automatic consistency check if same arch */
7249 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7250 (defined(__x86_64__) && defined(TARGET_X86_64))
7251 if (unlikely(ie->target_cmd != ie->host_cmd)) {
7252 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7253 ie->name, ie->target_cmd, ie->host_cmd);
7254 }
7255 #endif
7256 ie++;
7257 }
7258 }
7259
7260 #ifdef TARGET_NR_truncate64
target_truncate64(CPUArchState * cpu_env,const char * arg1,abi_long arg2,abi_long arg3,abi_long arg4)7261 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7262 abi_long arg2,
7263 abi_long arg3,
7264 abi_long arg4)
7265 {
7266 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7267 arg2 = arg3;
7268 arg3 = arg4;
7269 }
7270 return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7271 }
7272 #endif
7273
7274 #ifdef TARGET_NR_ftruncate64
target_ftruncate64(CPUArchState * cpu_env,abi_long arg1,abi_long arg2,abi_long arg3,abi_long arg4)7275 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7276 abi_long arg2,
7277 abi_long arg3,
7278 abi_long arg4)
7279 {
7280 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7281 arg2 = arg3;
7282 arg3 = arg4;
7283 }
7284 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7285 }
7286 #endif
7287
7288 #if defined(TARGET_NR_timer_settime) || \
7289 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
target_to_host_itimerspec(struct itimerspec * host_its,abi_ulong target_addr)7290 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7291 abi_ulong target_addr)
7292 {
7293 if (target_to_host_timespec(&host_its->it_interval, target_addr +
7294 offsetof(struct target_itimerspec,
7295 it_interval)) ||
7296 target_to_host_timespec(&host_its->it_value, target_addr +
7297 offsetof(struct target_itimerspec,
7298 it_value))) {
7299 return -TARGET_EFAULT;
7300 }
7301
7302 return 0;
7303 }
7304 #endif
7305
7306 #if defined(TARGET_NR_timer_settime64) || \
7307 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
target_to_host_itimerspec64(struct itimerspec * host_its,abi_ulong target_addr)7308 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7309 abi_ulong target_addr)
7310 {
7311 if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7312 offsetof(struct target__kernel_itimerspec,
7313 it_interval)) ||
7314 target_to_host_timespec64(&host_its->it_value, target_addr +
7315 offsetof(struct target__kernel_itimerspec,
7316 it_value))) {
7317 return -TARGET_EFAULT;
7318 }
7319
7320 return 0;
7321 }
7322 #endif
7323
7324 #if ((defined(TARGET_NR_timerfd_gettime) || \
7325 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7326 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
host_to_target_itimerspec(abi_ulong target_addr,struct itimerspec * host_its)7327 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7328 struct itimerspec *host_its)
7329 {
7330 if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7331 it_interval),
7332 &host_its->it_interval) ||
7333 host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7334 it_value),
7335 &host_its->it_value)) {
7336 return -TARGET_EFAULT;
7337 }
7338 return 0;
7339 }
7340 #endif
7341
7342 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7343 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7344 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
host_to_target_itimerspec64(abi_ulong target_addr,struct itimerspec * host_its)7345 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7346 struct itimerspec *host_its)
7347 {
7348 if (host_to_target_timespec64(target_addr +
7349 offsetof(struct target__kernel_itimerspec,
7350 it_interval),
7351 &host_its->it_interval) ||
7352 host_to_target_timespec64(target_addr +
7353 offsetof(struct target__kernel_itimerspec,
7354 it_value),
7355 &host_its->it_value)) {
7356 return -TARGET_EFAULT;
7357 }
7358 return 0;
7359 }
7360 #endif
7361
7362 #if defined(TARGET_NR_adjtimex) || \
7363 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
target_to_host_timex(struct timex * host_tx,abi_long target_addr)7364 static inline abi_long target_to_host_timex(struct timex *host_tx,
7365 abi_long target_addr)
7366 {
7367 struct target_timex *target_tx;
7368
7369 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7370 return -TARGET_EFAULT;
7371 }
7372
7373 __get_user(host_tx->modes, &target_tx->modes);
7374 __get_user(host_tx->offset, &target_tx->offset);
7375 __get_user(host_tx->freq, &target_tx->freq);
7376 __get_user(host_tx->maxerror, &target_tx->maxerror);
7377 __get_user(host_tx->esterror, &target_tx->esterror);
7378 __get_user(host_tx->status, &target_tx->status);
7379 __get_user(host_tx->constant, &target_tx->constant);
7380 __get_user(host_tx->precision, &target_tx->precision);
7381 __get_user(host_tx->tolerance, &target_tx->tolerance);
7382 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7383 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7384 __get_user(host_tx->tick, &target_tx->tick);
7385 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7386 __get_user(host_tx->jitter, &target_tx->jitter);
7387 __get_user(host_tx->shift, &target_tx->shift);
7388 __get_user(host_tx->stabil, &target_tx->stabil);
7389 __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7390 __get_user(host_tx->calcnt, &target_tx->calcnt);
7391 __get_user(host_tx->errcnt, &target_tx->errcnt);
7392 __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7393 __get_user(host_tx->tai, &target_tx->tai);
7394
7395 unlock_user_struct(target_tx, target_addr, 0);
7396 return 0;
7397 }
7398
host_to_target_timex(abi_long target_addr,struct timex * host_tx)7399 static inline abi_long host_to_target_timex(abi_long target_addr,
7400 struct timex *host_tx)
7401 {
7402 struct target_timex *target_tx;
7403
7404 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7405 return -TARGET_EFAULT;
7406 }
7407
7408 __put_user(host_tx->modes, &target_tx->modes);
7409 __put_user(host_tx->offset, &target_tx->offset);
7410 __put_user(host_tx->freq, &target_tx->freq);
7411 __put_user(host_tx->maxerror, &target_tx->maxerror);
7412 __put_user(host_tx->esterror, &target_tx->esterror);
7413 __put_user(host_tx->status, &target_tx->status);
7414 __put_user(host_tx->constant, &target_tx->constant);
7415 __put_user(host_tx->precision, &target_tx->precision);
7416 __put_user(host_tx->tolerance, &target_tx->tolerance);
7417 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7418 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7419 __put_user(host_tx->tick, &target_tx->tick);
7420 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7421 __put_user(host_tx->jitter, &target_tx->jitter);
7422 __put_user(host_tx->shift, &target_tx->shift);
7423 __put_user(host_tx->stabil, &target_tx->stabil);
7424 __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7425 __put_user(host_tx->calcnt, &target_tx->calcnt);
7426 __put_user(host_tx->errcnt, &target_tx->errcnt);
7427 __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7428 __put_user(host_tx->tai, &target_tx->tai);
7429
7430 unlock_user_struct(target_tx, target_addr, 1);
7431 return 0;
7432 }
7433 #endif
7434
7435
7436 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
target_to_host_timex64(struct timex * host_tx,abi_long target_addr)7437 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7438 abi_long target_addr)
7439 {
7440 struct target__kernel_timex *target_tx;
7441
7442 if (copy_from_user_timeval64(&host_tx->time, target_addr +
7443 offsetof(struct target__kernel_timex,
7444 time))) {
7445 return -TARGET_EFAULT;
7446 }
7447
7448 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7449 return -TARGET_EFAULT;
7450 }
7451
7452 __get_user(host_tx->modes, &target_tx->modes);
7453 __get_user(host_tx->offset, &target_tx->offset);
7454 __get_user(host_tx->freq, &target_tx->freq);
7455 __get_user(host_tx->maxerror, &target_tx->maxerror);
7456 __get_user(host_tx->esterror, &target_tx->esterror);
7457 __get_user(host_tx->status, &target_tx->status);
7458 __get_user(host_tx->constant, &target_tx->constant);
7459 __get_user(host_tx->precision, &target_tx->precision);
7460 __get_user(host_tx->tolerance, &target_tx->tolerance);
7461 __get_user(host_tx->tick, &target_tx->tick);
7462 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7463 __get_user(host_tx->jitter, &target_tx->jitter);
7464 __get_user(host_tx->shift, &target_tx->shift);
7465 __get_user(host_tx->stabil, &target_tx->stabil);
7466 __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7467 __get_user(host_tx->calcnt, &target_tx->calcnt);
7468 __get_user(host_tx->errcnt, &target_tx->errcnt);
7469 __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7470 __get_user(host_tx->tai, &target_tx->tai);
7471
7472 unlock_user_struct(target_tx, target_addr, 0);
7473 return 0;
7474 }
7475
host_to_target_timex64(abi_long target_addr,struct timex * host_tx)7476 static inline abi_long host_to_target_timex64(abi_long target_addr,
7477 struct timex *host_tx)
7478 {
7479 struct target__kernel_timex *target_tx;
7480
7481 if (copy_to_user_timeval64(target_addr +
7482 offsetof(struct target__kernel_timex, time),
7483 &host_tx->time)) {
7484 return -TARGET_EFAULT;
7485 }
7486
7487 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7488 return -TARGET_EFAULT;
7489 }
7490
7491 __put_user(host_tx->modes, &target_tx->modes);
7492 __put_user(host_tx->offset, &target_tx->offset);
7493 __put_user(host_tx->freq, &target_tx->freq);
7494 __put_user(host_tx->maxerror, &target_tx->maxerror);
7495 __put_user(host_tx->esterror, &target_tx->esterror);
7496 __put_user(host_tx->status, &target_tx->status);
7497 __put_user(host_tx->constant, &target_tx->constant);
7498 __put_user(host_tx->precision, &target_tx->precision);
7499 __put_user(host_tx->tolerance, &target_tx->tolerance);
7500 __put_user(host_tx->tick, &target_tx->tick);
7501 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7502 __put_user(host_tx->jitter, &target_tx->jitter);
7503 __put_user(host_tx->shift, &target_tx->shift);
7504 __put_user(host_tx->stabil, &target_tx->stabil);
7505 __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7506 __put_user(host_tx->calcnt, &target_tx->calcnt);
7507 __put_user(host_tx->errcnt, &target_tx->errcnt);
7508 __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7509 __put_user(host_tx->tai, &target_tx->tai);
7510
7511 unlock_user_struct(target_tx, target_addr, 1);
7512 return 0;
7513 }
7514 #endif
7515
7516 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7517 #define sigev_notify_thread_id _sigev_un._tid
7518 #endif
7519
target_to_host_sigevent(struct sigevent * host_sevp,abi_ulong target_addr)7520 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7521 abi_ulong target_addr)
7522 {
7523 struct target_sigevent *target_sevp;
7524
7525 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7526 return -TARGET_EFAULT;
7527 }
7528
7529 /* This union is awkward on 64 bit systems because it has a 32 bit
7530 * integer and a pointer in it; we follow the conversion approach
7531 * used for handling sigval types in signal.c so the guest should get
7532 * the correct value back even if we did a 64 bit byteswap and it's
7533 * using the 32 bit integer.
7534 */
7535 host_sevp->sigev_value.sival_ptr =
7536 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7537 host_sevp->sigev_signo =
7538 target_to_host_signal(tswap32(target_sevp->sigev_signo));
7539 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7540 host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7541
7542 unlock_user_struct(target_sevp, target_addr, 1);
7543 return 0;
7544 }
7545
7546 #if defined(TARGET_NR_mlockall)
target_to_host_mlockall_arg(int arg)7547 static inline int target_to_host_mlockall_arg(int arg)
7548 {
7549 int result = 0;
7550
7551 if (arg & TARGET_MCL_CURRENT) {
7552 result |= MCL_CURRENT;
7553 }
7554 if (arg & TARGET_MCL_FUTURE) {
7555 result |= MCL_FUTURE;
7556 }
7557 #ifdef MCL_ONFAULT
7558 if (arg & TARGET_MCL_ONFAULT) {
7559 result |= MCL_ONFAULT;
7560 }
7561 #endif
7562
7563 return result;
7564 }
7565 #endif
7566
target_to_host_msync_arg(abi_long arg)7567 static inline int target_to_host_msync_arg(abi_long arg)
7568 {
7569 return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) |
7570 ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) |
7571 ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) |
7572 (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC));
7573 }
7574
7575 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \
7576 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \
7577 defined(TARGET_NR_newfstatat))
host_to_target_stat64(CPUArchState * cpu_env,abi_ulong target_addr,struct stat * host_st)7578 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7579 abi_ulong target_addr,
7580 struct stat *host_st)
7581 {
7582 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7583 if (cpu_env->eabi) {
7584 struct target_eabi_stat64 *target_st;
7585
7586 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7587 return -TARGET_EFAULT;
7588 memset(target_st, 0, sizeof(struct target_eabi_stat64));
7589 __put_user(host_st->st_dev, &target_st->st_dev);
7590 __put_user(host_st->st_ino, &target_st->st_ino);
7591 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7592 __put_user(host_st->st_ino, &target_st->__st_ino);
7593 #endif
7594 __put_user(host_st->st_mode, &target_st->st_mode);
7595 __put_user(host_st->st_nlink, &target_st->st_nlink);
7596 __put_user(host_st->st_uid, &target_st->st_uid);
7597 __put_user(host_st->st_gid, &target_st->st_gid);
7598 __put_user(host_st->st_rdev, &target_st->st_rdev);
7599 __put_user(host_st->st_size, &target_st->st_size);
7600 __put_user(host_st->st_blksize, &target_st->st_blksize);
7601 __put_user(host_st->st_blocks, &target_st->st_blocks);
7602 __put_user(host_st->st_atime, &target_st->target_st_atime);
7603 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7604 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7605 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7606 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7607 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7608 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7609 #endif
7610 unlock_user_struct(target_st, target_addr, 1);
7611 } else
7612 #endif
7613 {
7614 #if defined(TARGET_HAS_STRUCT_STAT64)
7615 struct target_stat64 *target_st;
7616 #else
7617 struct target_stat *target_st;
7618 #endif
7619
7620 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7621 return -TARGET_EFAULT;
7622 memset(target_st, 0, sizeof(*target_st));
7623 __put_user(host_st->st_dev, &target_st->st_dev);
7624 __put_user(host_st->st_ino, &target_st->st_ino);
7625 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7626 __put_user(host_st->st_ino, &target_st->__st_ino);
7627 #endif
7628 __put_user(host_st->st_mode, &target_st->st_mode);
7629 __put_user(host_st->st_nlink, &target_st->st_nlink);
7630 __put_user(host_st->st_uid, &target_st->st_uid);
7631 __put_user(host_st->st_gid, &target_st->st_gid);
7632 __put_user(host_st->st_rdev, &target_st->st_rdev);
7633 /* XXX: better use of kernel struct */
7634 __put_user(host_st->st_size, &target_st->st_size);
7635 __put_user(host_st->st_blksize, &target_st->st_blksize);
7636 __put_user(host_st->st_blocks, &target_st->st_blocks);
7637 __put_user(host_st->st_atime, &target_st->target_st_atime);
7638 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7639 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7640 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7641 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7642 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7643 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7644 #endif
7645 unlock_user_struct(target_st, target_addr, 1);
7646 }
7647
7648 return 0;
7649 }
7650 #endif
7651
7652 #if defined(TARGET_NR_statx) && defined(__NR_statx)
host_to_target_statx(struct target_statx * host_stx,abi_ulong target_addr)7653 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7654 abi_ulong target_addr)
7655 {
7656 struct target_statx *target_stx;
7657
7658 if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr, 0)) {
7659 return -TARGET_EFAULT;
7660 }
7661 memset(target_stx, 0, sizeof(*target_stx));
7662
7663 __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7664 __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7665 __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7666 __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7667 __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7668 __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7669 __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7670 __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7671 __put_user(host_stx->stx_size, &target_stx->stx_size);
7672 __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7673 __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7674 __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7675 __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7676 __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7677 __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7678 __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7679 __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7680 __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7681 __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7682 __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7683 __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7684 __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7685 __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7686
7687 unlock_user_struct(target_stx, target_addr, 1);
7688
7689 return 0;
7690 }
7691 #endif
7692
do_sys_futex(int * uaddr,int op,int val,const struct timespec * timeout,int * uaddr2,int val3)7693 static int do_sys_futex(int *uaddr, int op, int val,
7694 const struct timespec *timeout, int *uaddr2,
7695 int val3)
7696 {
7697 #if HOST_LONG_BITS == 64
7698 #if defined(__NR_futex)
7699 /* always a 64-bit time_t, it doesn't define _time64 version */
7700 return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7701
7702 #endif
7703 #else /* HOST_LONG_BITS == 64 */
7704 #if defined(__NR_futex_time64)
7705 if (sizeof(timeout->tv_sec) == 8) {
7706 /* _time64 function on 32bit arch */
7707 return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7708 }
7709 #endif
7710 #if defined(__NR_futex)
7711 /* old function on 32bit arch */
7712 return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7713 #endif
7714 #endif /* HOST_LONG_BITS == 64 */
7715 g_assert_not_reached();
7716 }
7717
do_safe_futex(int * uaddr,int op,int val,const struct timespec * timeout,int * uaddr2,int val3)7718 static int do_safe_futex(int *uaddr, int op, int val,
7719 const struct timespec *timeout, int *uaddr2,
7720 int val3)
7721 {
7722 #if HOST_LONG_BITS == 64
7723 #if defined(__NR_futex)
7724 /* always a 64-bit time_t, it doesn't define _time64 version */
7725 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7726 #endif
7727 #else /* HOST_LONG_BITS == 64 */
7728 #if defined(__NR_futex_time64)
7729 if (sizeof(timeout->tv_sec) == 8) {
7730 /* _time64 function on 32bit arch */
7731 return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7732 val3));
7733 }
7734 #endif
7735 #if defined(__NR_futex)
7736 /* old function on 32bit arch */
7737 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7738 #endif
7739 #endif /* HOST_LONG_BITS == 64 */
7740 return -TARGET_ENOSYS;
7741 }
7742
7743 /* ??? Using host futex calls even when target atomic operations
7744 are not really atomic probably breaks things. However implementing
7745 futexes locally would make futexes shared between multiple processes
7746 tricky. However they're probably useless because guest atomic
7747 operations won't work either. */
7748 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
do_futex(CPUState * cpu,bool time64,target_ulong uaddr,int op,int val,target_ulong timeout,target_ulong uaddr2,int val3)7749 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7750 int op, int val, target_ulong timeout,
7751 target_ulong uaddr2, int val3)
7752 {
7753 struct timespec ts, *pts = NULL;
7754 void *haddr2 = NULL;
7755 int base_op;
7756
7757 /* We assume FUTEX_* constants are the same on both host and target. */
7758 #ifdef FUTEX_CMD_MASK
7759 base_op = op & FUTEX_CMD_MASK;
7760 #else
7761 base_op = op;
7762 #endif
7763 switch (base_op) {
7764 case FUTEX_WAIT:
7765 case FUTEX_WAIT_BITSET:
7766 val = tswap32(val);
7767 break;
7768 case FUTEX_WAIT_REQUEUE_PI:
7769 val = tswap32(val);
7770 haddr2 = g2h(cpu, uaddr2);
7771 break;
7772 case FUTEX_LOCK_PI:
7773 case FUTEX_LOCK_PI2:
7774 break;
7775 case FUTEX_WAKE:
7776 case FUTEX_WAKE_BITSET:
7777 case FUTEX_TRYLOCK_PI:
7778 case FUTEX_UNLOCK_PI:
7779 timeout = 0;
7780 break;
7781 case FUTEX_FD:
7782 val = target_to_host_signal(val);
7783 timeout = 0;
7784 break;
7785 case FUTEX_CMP_REQUEUE:
7786 case FUTEX_CMP_REQUEUE_PI:
7787 val3 = tswap32(val3);
7788 /* fall through */
7789 case FUTEX_REQUEUE:
7790 case FUTEX_WAKE_OP:
7791 /*
7792 * For these, the 4th argument is not TIMEOUT, but VAL2.
7793 * But the prototype of do_safe_futex takes a pointer, so
7794 * insert casts to satisfy the compiler. We do not need
7795 * to tswap VAL2 since it's not compared to guest memory.
7796 */
7797 pts = (struct timespec *)(uintptr_t)timeout;
7798 timeout = 0;
7799 haddr2 = g2h(cpu, uaddr2);
7800 break;
7801 default:
7802 return -TARGET_ENOSYS;
7803 }
7804 if (timeout) {
7805 pts = &ts;
7806 if (time64
7807 ? target_to_host_timespec64(pts, timeout)
7808 : target_to_host_timespec(pts, timeout)) {
7809 return -TARGET_EFAULT;
7810 }
7811 }
7812 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7813 }
7814 #endif
7815
7816 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
do_name_to_handle_at(abi_long dirfd,abi_long pathname,abi_long handle,abi_long mount_id,abi_long flags)7817 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7818 abi_long handle, abi_long mount_id,
7819 abi_long flags)
7820 {
7821 struct file_handle *target_fh;
7822 struct file_handle *fh;
7823 int mid = 0;
7824 abi_long ret;
7825 char *name;
7826 unsigned int size, total_size;
7827
7828 if (get_user_s32(size, handle)) {
7829 return -TARGET_EFAULT;
7830 }
7831
7832 name = lock_user_string(pathname);
7833 if (!name) {
7834 return -TARGET_EFAULT;
7835 }
7836
7837 total_size = sizeof(struct file_handle) + size;
7838 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7839 if (!target_fh) {
7840 unlock_user(name, pathname, 0);
7841 return -TARGET_EFAULT;
7842 }
7843
7844 fh = g_malloc0(total_size);
7845 fh->handle_bytes = size;
7846
7847 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7848 unlock_user(name, pathname, 0);
7849
7850 /* man name_to_handle_at(2):
7851 * Other than the use of the handle_bytes field, the caller should treat
7852 * the file_handle structure as an opaque data type
7853 */
7854
7855 memcpy(target_fh, fh, total_size);
7856 target_fh->handle_bytes = tswap32(fh->handle_bytes);
7857 target_fh->handle_type = tswap32(fh->handle_type);
7858 g_free(fh);
7859 unlock_user(target_fh, handle, total_size);
7860
7861 if (put_user_s32(mid, mount_id)) {
7862 return -TARGET_EFAULT;
7863 }
7864
7865 return ret;
7866
7867 }
7868 #endif
7869
7870 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
do_open_by_handle_at(abi_long mount_fd,abi_long handle,abi_long flags)7871 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7872 abi_long flags)
7873 {
7874 struct file_handle *target_fh;
7875 struct file_handle *fh;
7876 unsigned int size, total_size;
7877 abi_long ret;
7878
7879 if (get_user_s32(size, handle)) {
7880 return -TARGET_EFAULT;
7881 }
7882
7883 total_size = sizeof(struct file_handle) + size;
7884 target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7885 if (!target_fh) {
7886 return -TARGET_EFAULT;
7887 }
7888
7889 fh = g_memdup(target_fh, total_size);
7890 fh->handle_bytes = size;
7891 fh->handle_type = tswap32(target_fh->handle_type);
7892
7893 ret = get_errno(open_by_handle_at(mount_fd, fh,
7894 target_to_host_bitmask(flags, fcntl_flags_tbl)));
7895
7896 g_free(fh);
7897
7898 unlock_user(target_fh, handle, total_size);
7899
7900 return ret;
7901 }
7902 #endif
7903
7904 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7905
do_signalfd4(int fd,abi_long mask,int flags)7906 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7907 {
7908 int host_flags;
7909 target_sigset_t *target_mask;
7910 sigset_t host_mask;
7911 abi_long ret;
7912
7913 if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7914 return -TARGET_EINVAL;
7915 }
7916 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7917 return -TARGET_EFAULT;
7918 }
7919
7920 target_to_host_sigset(&host_mask, target_mask);
7921
7922 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7923
7924 ret = get_errno(signalfd(fd, &host_mask, host_flags));
7925 if (ret >= 0) {
7926 fd_trans_register(ret, &target_signalfd_trans);
7927 }
7928
7929 unlock_user_struct(target_mask, mask, 0);
7930
7931 return ret;
7932 }
7933 #endif
7934
7935 /* Map host to target signal numbers for the wait family of syscalls.
7936 Assume all other status bits are the same. */
host_to_target_waitstatus(int status)7937 int host_to_target_waitstatus(int status)
7938 {
7939 if (WIFSIGNALED(status)) {
7940 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7941 }
7942 if (WIFSTOPPED(status)) {
7943 return (host_to_target_signal(WSTOPSIG(status)) << 8)
7944 | (status & 0xff);
7945 }
7946 return status;
7947 }
7948
open_self_cmdline(CPUArchState * cpu_env,int fd)7949 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
7950 {
7951 CPUState *cpu = env_cpu(cpu_env);
7952 struct linux_binprm *bprm = get_task_state(cpu)->bprm;
7953 int i;
7954
7955 for (i = 0; i < bprm->argc; i++) {
7956 size_t len = strlen(bprm->argv[i]) + 1;
7957
7958 if (write(fd, bprm->argv[i], len) != len) {
7959 return -1;
7960 }
7961 }
7962
7963 return 0;
7964 }
7965
7966 struct open_self_maps_data {
7967 TaskState *ts;
7968 IntervalTreeRoot *host_maps;
7969 int fd;
7970 bool smaps;
7971 };
7972
7973 /*
7974 * Subroutine to output one line of /proc/self/maps,
7975 * or one region of /proc/self/smaps.
7976 */
7977
7978 #ifdef TARGET_HPPA
7979 # define test_stack(S, E, L) (E == L)
7980 #else
7981 # define test_stack(S, E, L) (S == L)
7982 #endif
7983
open_self_maps_4(const struct open_self_maps_data * d,const MapInfo * mi,abi_ptr start,abi_ptr end,unsigned flags)7984 static void open_self_maps_4(const struct open_self_maps_data *d,
7985 const MapInfo *mi, abi_ptr start,
7986 abi_ptr end, unsigned flags)
7987 {
7988 const struct image_info *info = d->ts->info;
7989 const char *path = mi->path;
7990 uint64_t offset;
7991 int fd = d->fd;
7992 int count;
7993
7994 if (test_stack(start, end, info->stack_limit)) {
7995 path = "[stack]";
7996 } else if (start == info->brk) {
7997 path = "[heap]";
7998 } else if (start == info->vdso) {
7999 path = "[vdso]";
8000 #ifdef TARGET_X86_64
8001 } else if (start == TARGET_VSYSCALL_PAGE) {
8002 path = "[vsyscall]";
8003 #endif
8004 }
8005
8006 /* Except null device (MAP_ANON), adjust offset for this fragment. */
8007 offset = mi->offset;
8008 if (mi->dev) {
8009 uintptr_t hstart = (uintptr_t)g2h_untagged(start);
8010 offset += hstart - mi->itree.start;
8011 }
8012
8013 count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8014 " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64,
8015 start, end,
8016 (flags & PAGE_READ) ? 'r' : '-',
8017 (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8018 (flags & PAGE_EXEC) ? 'x' : '-',
8019 mi->is_priv ? 'p' : 's',
8020 offset, major(mi->dev), minor(mi->dev),
8021 (uint64_t)mi->inode);
8022 if (path) {
8023 dprintf(fd, "%*s%s\n", 73 - count, "", path);
8024 } else {
8025 dprintf(fd, "\n");
8026 }
8027
8028 if (d->smaps) {
8029 unsigned long size = end - start;
8030 unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10;
8031 unsigned long size_kb = size >> 10;
8032
8033 dprintf(fd, "Size: %lu kB\n"
8034 "KernelPageSize: %lu kB\n"
8035 "MMUPageSize: %lu kB\n"
8036 "Rss: 0 kB\n"
8037 "Pss: 0 kB\n"
8038 "Pss_Dirty: 0 kB\n"
8039 "Shared_Clean: 0 kB\n"
8040 "Shared_Dirty: 0 kB\n"
8041 "Private_Clean: 0 kB\n"
8042 "Private_Dirty: 0 kB\n"
8043 "Referenced: 0 kB\n"
8044 "Anonymous: %lu kB\n"
8045 "LazyFree: 0 kB\n"
8046 "AnonHugePages: 0 kB\n"
8047 "ShmemPmdMapped: 0 kB\n"
8048 "FilePmdMapped: 0 kB\n"
8049 "Shared_Hugetlb: 0 kB\n"
8050 "Private_Hugetlb: 0 kB\n"
8051 "Swap: 0 kB\n"
8052 "SwapPss: 0 kB\n"
8053 "Locked: 0 kB\n"
8054 "THPeligible: 0\n"
8055 "VmFlags:%s%s%s%s%s%s%s%s\n",
8056 size_kb, page_size_kb, page_size_kb,
8057 (flags & PAGE_ANON ? size_kb : 0),
8058 (flags & PAGE_READ) ? " rd" : "",
8059 (flags & PAGE_WRITE_ORG) ? " wr" : "",
8060 (flags & PAGE_EXEC) ? " ex" : "",
8061 mi->is_priv ? "" : " sh",
8062 (flags & PAGE_READ) ? " mr" : "",
8063 (flags & PAGE_WRITE_ORG) ? " mw" : "",
8064 (flags & PAGE_EXEC) ? " me" : "",
8065 mi->is_priv ? "" : " ms");
8066 }
8067 }
8068
8069 /*
8070 * Callback for walk_memory_regions, when read_self_maps() fails.
8071 * Proceed without the benefit of host /proc/self/maps cross-check.
8072 */
open_self_maps_3(void * opaque,target_ulong guest_start,target_ulong guest_end,unsigned long flags)8073 static int open_self_maps_3(void *opaque, target_ulong guest_start,
8074 target_ulong guest_end, unsigned long flags)
8075 {
8076 static const MapInfo mi = { .is_priv = true };
8077
8078 open_self_maps_4(opaque, &mi, guest_start, guest_end, flags);
8079 return 0;
8080 }
8081
8082 /*
8083 * Callback for walk_memory_regions, when read_self_maps() succeeds.
8084 */
open_self_maps_2(void * opaque,target_ulong guest_start,target_ulong guest_end,unsigned long flags)8085 static int open_self_maps_2(void *opaque, target_ulong guest_start,
8086 target_ulong guest_end, unsigned long flags)
8087 {
8088 const struct open_self_maps_data *d = opaque;
8089 uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start);
8090 uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1);
8091
8092 #ifdef TARGET_X86_64
8093 /*
8094 * Because of the extremely high position of the page within the guest
8095 * virtual address space, this is not backed by host memory at all.
8096 * Therefore the loop below would fail. This is the only instance
8097 * of not having host backing memory.
8098 */
8099 if (guest_start == TARGET_VSYSCALL_PAGE) {
8100 return open_self_maps_3(opaque, guest_start, guest_end, flags);
8101 }
8102 #endif
8103
8104 while (1) {
8105 IntervalTreeNode *n =
8106 interval_tree_iter_first(d->host_maps, host_start, host_start);
8107 MapInfo *mi = container_of(n, MapInfo, itree);
8108 uintptr_t this_hlast = MIN(host_last, n->last);
8109 target_ulong this_gend = h2g(this_hlast) + 1;
8110
8111 open_self_maps_4(d, mi, guest_start, this_gend, flags);
8112
8113 if (this_hlast == host_last) {
8114 return 0;
8115 }
8116 host_start = this_hlast + 1;
8117 guest_start = h2g(host_start);
8118 }
8119 }
8120
open_self_maps_1(CPUArchState * env,int fd,bool smaps)8121 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps)
8122 {
8123 struct open_self_maps_data d = {
8124 .ts = get_task_state(env_cpu(env)),
8125 .host_maps = read_self_maps(),
8126 .fd = fd,
8127 .smaps = smaps
8128 };
8129
8130 if (d.host_maps) {
8131 walk_memory_regions(&d, open_self_maps_2);
8132 free_self_maps(d.host_maps);
8133 } else {
8134 walk_memory_regions(&d, open_self_maps_3);
8135 }
8136 return 0;
8137 }
8138
open_self_maps(CPUArchState * cpu_env,int fd)8139 static int open_self_maps(CPUArchState *cpu_env, int fd)
8140 {
8141 return open_self_maps_1(cpu_env, fd, false);
8142 }
8143
open_self_smaps(CPUArchState * cpu_env,int fd)8144 static int open_self_smaps(CPUArchState *cpu_env, int fd)
8145 {
8146 return open_self_maps_1(cpu_env, fd, true);
8147 }
8148
open_self_stat(CPUArchState * cpu_env,int fd)8149 static int open_self_stat(CPUArchState *cpu_env, int fd)
8150 {
8151 CPUState *cpu = env_cpu(cpu_env);
8152 TaskState *ts = get_task_state(cpu);
8153 g_autoptr(GString) buf = g_string_new(NULL);
8154 int i;
8155
8156 for (i = 0; i < 44; i++) {
8157 if (i == 0) {
8158 /* pid */
8159 g_string_printf(buf, FMT_pid " ", getpid());
8160 } else if (i == 1) {
8161 /* app name */
8162 gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8163 bin = bin ? bin + 1 : ts->bprm->argv[0];
8164 g_string_printf(buf, "(%.15s) ", bin);
8165 } else if (i == 2) {
8166 /* task state */
8167 g_string_assign(buf, "R "); /* we are running right now */
8168 } else if (i == 3) {
8169 /* ppid */
8170 g_string_printf(buf, FMT_pid " ", getppid());
8171 } else if (i == 19) {
8172 /* num_threads */
8173 int cpus = 0;
8174 WITH_RCU_READ_LOCK_GUARD() {
8175 CPUState *cpu_iter;
8176 CPU_FOREACH(cpu_iter) {
8177 cpus++;
8178 }
8179 }
8180 g_string_printf(buf, "%d ", cpus);
8181 } else if (i == 21) {
8182 /* starttime */
8183 g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8184 } else if (i == 27) {
8185 /* stack bottom */
8186 g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8187 } else {
8188 /* for the rest, there is MasterCard */
8189 g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8190 }
8191
8192 if (write(fd, buf->str, buf->len) != buf->len) {
8193 return -1;
8194 }
8195 }
8196
8197 return 0;
8198 }
8199
open_self_auxv(CPUArchState * cpu_env,int fd)8200 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8201 {
8202 CPUState *cpu = env_cpu(cpu_env);
8203 TaskState *ts = get_task_state(cpu);
8204 abi_ulong auxv = ts->info->saved_auxv;
8205 abi_ulong len = ts->info->auxv_len;
8206 char *ptr;
8207
8208 /*
8209 * Auxiliary vector is stored in target process stack.
8210 * read in whole auxv vector and copy it to file
8211 */
8212 ptr = lock_user(VERIFY_READ, auxv, len, 0);
8213 if (ptr != NULL) {
8214 while (len > 0) {
8215 ssize_t r;
8216 r = write(fd, ptr, len);
8217 if (r <= 0) {
8218 break;
8219 }
8220 len -= r;
8221 ptr += r;
8222 }
8223 lseek(fd, 0, SEEK_SET);
8224 unlock_user(ptr, auxv, len);
8225 }
8226
8227 return 0;
8228 }
8229
is_proc_myself(const char * filename,const char * entry)8230 static int is_proc_myself(const char *filename, const char *entry)
8231 {
8232 if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8233 filename += strlen("/proc/");
8234 if (!strncmp(filename, "self/", strlen("self/"))) {
8235 filename += strlen("self/");
8236 } else if (*filename >= '1' && *filename <= '9') {
8237 char myself[80];
8238 snprintf(myself, sizeof(myself), "%d/", getpid());
8239 if (!strncmp(filename, myself, strlen(myself))) {
8240 filename += strlen(myself);
8241 } else {
8242 return 0;
8243 }
8244 } else {
8245 return 0;
8246 }
8247 if (!strcmp(filename, entry)) {
8248 return 1;
8249 }
8250 }
8251 return 0;
8252 }
8253
excp_dump_file(FILE * logfile,CPUArchState * env,const char * fmt,int code)8254 static void excp_dump_file(FILE *logfile, CPUArchState *env,
8255 const char *fmt, int code)
8256 {
8257 if (logfile) {
8258 CPUState *cs = env_cpu(env);
8259
8260 fprintf(logfile, fmt, code);
8261 fprintf(logfile, "Failing executable: %s\n", exec_path);
8262 cpu_dump_state(cs, logfile, 0);
8263 open_self_maps(env, fileno(logfile));
8264 }
8265 }
8266
target_exception_dump(CPUArchState * env,const char * fmt,int code)8267 void target_exception_dump(CPUArchState *env, const char *fmt, int code)
8268 {
8269 /* dump to console */
8270 excp_dump_file(stderr, env, fmt, code);
8271
8272 /* dump to log file */
8273 if (qemu_log_separate()) {
8274 FILE *logfile = qemu_log_trylock();
8275
8276 excp_dump_file(logfile, env, fmt, code);
8277 qemu_log_unlock(logfile);
8278 }
8279 }
8280
8281 #include "target_proc.h"
8282
8283 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8284 defined(HAVE_ARCH_PROC_CPUINFO) || \
8285 defined(HAVE_ARCH_PROC_HARDWARE)
is_proc(const char * filename,const char * entry)8286 static int is_proc(const char *filename, const char *entry)
8287 {
8288 return strcmp(filename, entry) == 0;
8289 }
8290 #endif
8291
8292 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
open_net_route(CPUArchState * cpu_env,int fd)8293 static int open_net_route(CPUArchState *cpu_env, int fd)
8294 {
8295 FILE *fp;
8296 char *line = NULL;
8297 size_t len = 0;
8298 ssize_t read;
8299
8300 fp = fopen("/proc/net/route", "r");
8301 if (fp == NULL) {
8302 return -1;
8303 }
8304
8305 /* read header */
8306
8307 read = getline(&line, &len, fp);
8308 dprintf(fd, "%s", line);
8309
8310 /* read routes */
8311
8312 while ((read = getline(&line, &len, fp)) != -1) {
8313 char iface[16];
8314 uint32_t dest, gw, mask;
8315 unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8316 int fields;
8317
8318 fields = sscanf(line,
8319 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8320 iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8321 &mask, &mtu, &window, &irtt);
8322 if (fields != 11) {
8323 continue;
8324 }
8325 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8326 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8327 metric, tswap32(mask), mtu, window, irtt);
8328 }
8329
8330 free(line);
8331 fclose(fp);
8332
8333 return 0;
8334 }
8335 #endif
8336
do_guest_openat(CPUArchState * cpu_env,int dirfd,const char * fname,int flags,mode_t mode,bool safe)8337 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname,
8338 int flags, mode_t mode, bool safe)
8339 {
8340 g_autofree char *proc_name = NULL;
8341 const char *pathname;
8342 struct fake_open {
8343 const char *filename;
8344 int (*fill)(CPUArchState *cpu_env, int fd);
8345 int (*cmp)(const char *s1, const char *s2);
8346 };
8347 const struct fake_open *fake_open;
8348 static const struct fake_open fakes[] = {
8349 { "maps", open_self_maps, is_proc_myself },
8350 { "smaps", open_self_smaps, is_proc_myself },
8351 { "stat", open_self_stat, is_proc_myself },
8352 { "auxv", open_self_auxv, is_proc_myself },
8353 { "cmdline", open_self_cmdline, is_proc_myself },
8354 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8355 { "/proc/net/route", open_net_route, is_proc },
8356 #endif
8357 #if defined(HAVE_ARCH_PROC_CPUINFO)
8358 { "/proc/cpuinfo", open_cpuinfo, is_proc },
8359 #endif
8360 #if defined(HAVE_ARCH_PROC_HARDWARE)
8361 { "/proc/hardware", open_hardware, is_proc },
8362 #endif
8363 { NULL, NULL, NULL }
8364 };
8365
8366 /* if this is a file from /proc/ filesystem, expand full name */
8367 proc_name = realpath(fname, NULL);
8368 if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) {
8369 pathname = proc_name;
8370 } else {
8371 pathname = fname;
8372 }
8373
8374 if (is_proc_myself(pathname, "exe")) {
8375 if (safe) {
8376 return safe_openat(dirfd, exec_path, flags, mode);
8377 } else {
8378 return openat(dirfd, exec_path, flags, mode);
8379 }
8380 }
8381
8382 for (fake_open = fakes; fake_open->filename; fake_open++) {
8383 if (fake_open->cmp(pathname, fake_open->filename)) {
8384 break;
8385 }
8386 }
8387
8388 if (fake_open->filename) {
8389 const char *tmpdir;
8390 char filename[PATH_MAX];
8391 int fd, r;
8392
8393 fd = memfd_create("qemu-open", 0);
8394 if (fd < 0) {
8395 if (errno != ENOSYS) {
8396 return fd;
8397 }
8398 /* create temporary file to map stat to */
8399 tmpdir = getenv("TMPDIR");
8400 if (!tmpdir)
8401 tmpdir = "/tmp";
8402 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8403 fd = mkstemp(filename);
8404 if (fd < 0) {
8405 return fd;
8406 }
8407 unlink(filename);
8408 }
8409
8410 if ((r = fake_open->fill(cpu_env, fd))) {
8411 int e = errno;
8412 close(fd);
8413 errno = e;
8414 return r;
8415 }
8416 lseek(fd, 0, SEEK_SET);
8417
8418 return fd;
8419 }
8420
8421 if (safe) {
8422 return safe_openat(dirfd, path(pathname), flags, mode);
8423 } else {
8424 return openat(dirfd, path(pathname), flags, mode);
8425 }
8426 }
8427
do_guest_readlink(const char * pathname,char * buf,size_t bufsiz)8428 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz)
8429 {
8430 ssize_t ret;
8431
8432 if (!pathname || !buf) {
8433 errno = EFAULT;
8434 return -1;
8435 }
8436
8437 if (!bufsiz) {
8438 /* Short circuit this for the magic exe check. */
8439 errno = EINVAL;
8440 return -1;
8441 }
8442
8443 if (is_proc_myself((const char *)pathname, "exe")) {
8444 /*
8445 * Don't worry about sign mismatch as earlier mapping
8446 * logic would have thrown a bad address error.
8447 */
8448 ret = MIN(strlen(exec_path), bufsiz);
8449 /* We cannot NUL terminate the string. */
8450 memcpy(buf, exec_path, ret);
8451 } else {
8452 ret = readlink(path(pathname), buf, bufsiz);
8453 }
8454
8455 return ret;
8456 }
8457
do_execv(CPUArchState * cpu_env,int dirfd,abi_long pathname,abi_long guest_argp,abi_long guest_envp,int flags,bool is_execveat)8458 static int do_execv(CPUArchState *cpu_env, int dirfd,
8459 abi_long pathname, abi_long guest_argp,
8460 abi_long guest_envp, int flags, bool is_execveat)
8461 {
8462 int ret;
8463 char **argp, **envp;
8464 int argc, envc;
8465 abi_ulong gp;
8466 abi_ulong addr;
8467 char **q;
8468 void *p;
8469
8470 argc = 0;
8471
8472 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8473 if (get_user_ual(addr, gp)) {
8474 return -TARGET_EFAULT;
8475 }
8476 if (!addr) {
8477 break;
8478 }
8479 argc++;
8480 }
8481 envc = 0;
8482 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8483 if (get_user_ual(addr, gp)) {
8484 return -TARGET_EFAULT;
8485 }
8486 if (!addr) {
8487 break;
8488 }
8489 envc++;
8490 }
8491
8492 argp = g_new0(char *, argc + 1);
8493 envp = g_new0(char *, envc + 1);
8494
8495 for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) {
8496 if (get_user_ual(addr, gp)) {
8497 goto execve_efault;
8498 }
8499 if (!addr) {
8500 break;
8501 }
8502 *q = lock_user_string(addr);
8503 if (!*q) {
8504 goto execve_efault;
8505 }
8506 }
8507 *q = NULL;
8508
8509 for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) {
8510 if (get_user_ual(addr, gp)) {
8511 goto execve_efault;
8512 }
8513 if (!addr) {
8514 break;
8515 }
8516 *q = lock_user_string(addr);
8517 if (!*q) {
8518 goto execve_efault;
8519 }
8520 }
8521 *q = NULL;
8522
8523 /*
8524 * Although execve() is not an interruptible syscall it is
8525 * a special case where we must use the safe_syscall wrapper:
8526 * if we allow a signal to happen before we make the host
8527 * syscall then we will 'lose' it, because at the point of
8528 * execve the process leaves QEMU's control. So we use the
8529 * safe syscall wrapper to ensure that we either take the
8530 * signal as a guest signal, or else it does not happen
8531 * before the execve completes and makes it the other
8532 * program's problem.
8533 */
8534 p = lock_user_string(pathname);
8535 if (!p) {
8536 goto execve_efault;
8537 }
8538
8539 const char *exe = p;
8540 if (is_proc_myself(p, "exe")) {
8541 exe = exec_path;
8542 }
8543 ret = is_execveat
8544 ? safe_execveat(dirfd, exe, argp, envp, flags)
8545 : safe_execve(exe, argp, envp);
8546 ret = get_errno(ret);
8547
8548 unlock_user(p, pathname, 0);
8549
8550 goto execve_end;
8551
8552 execve_efault:
8553 ret = -TARGET_EFAULT;
8554
8555 execve_end:
8556 for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) {
8557 if (get_user_ual(addr, gp) || !addr) {
8558 break;
8559 }
8560 unlock_user(*q, addr, 0);
8561 }
8562 for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) {
8563 if (get_user_ual(addr, gp) || !addr) {
8564 break;
8565 }
8566 unlock_user(*q, addr, 0);
8567 }
8568
8569 g_free(argp);
8570 g_free(envp);
8571 return ret;
8572 }
8573
8574 #define TIMER_MAGIC 0x0caf0000
8575 #define TIMER_MAGIC_MASK 0xffff0000
8576
8577 /* Convert QEMU provided timer ID back to internal 16bit index format */
get_timer_id(abi_long arg)8578 static target_timer_t get_timer_id(abi_long arg)
8579 {
8580 target_timer_t timerid = arg;
8581
8582 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8583 return -TARGET_EINVAL;
8584 }
8585
8586 timerid &= 0xffff;
8587
8588 if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8589 return -TARGET_EINVAL;
8590 }
8591
8592 return timerid;
8593 }
8594
target_to_host_cpu_mask(unsigned long * host_mask,size_t host_size,abi_ulong target_addr,size_t target_size)8595 static int target_to_host_cpu_mask(unsigned long *host_mask,
8596 size_t host_size,
8597 abi_ulong target_addr,
8598 size_t target_size)
8599 {
8600 unsigned target_bits = sizeof(abi_ulong) * 8;
8601 unsigned host_bits = sizeof(*host_mask) * 8;
8602 abi_ulong *target_mask;
8603 unsigned i, j;
8604
8605 assert(host_size >= target_size);
8606
8607 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8608 if (!target_mask) {
8609 return -TARGET_EFAULT;
8610 }
8611 memset(host_mask, 0, host_size);
8612
8613 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8614 unsigned bit = i * target_bits;
8615 abi_ulong val;
8616
8617 __get_user(val, &target_mask[i]);
8618 for (j = 0; j < target_bits; j++, bit++) {
8619 if (val & (1UL << j)) {
8620 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8621 }
8622 }
8623 }
8624
8625 unlock_user(target_mask, target_addr, 0);
8626 return 0;
8627 }
8628
host_to_target_cpu_mask(const unsigned long * host_mask,size_t host_size,abi_ulong target_addr,size_t target_size)8629 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8630 size_t host_size,
8631 abi_ulong target_addr,
8632 size_t target_size)
8633 {
8634 unsigned target_bits = sizeof(abi_ulong) * 8;
8635 unsigned host_bits = sizeof(*host_mask) * 8;
8636 abi_ulong *target_mask;
8637 unsigned i, j;
8638
8639 assert(host_size >= target_size);
8640
8641 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8642 if (!target_mask) {
8643 return -TARGET_EFAULT;
8644 }
8645
8646 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8647 unsigned bit = i * target_bits;
8648 abi_ulong val = 0;
8649
8650 for (j = 0; j < target_bits; j++, bit++) {
8651 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8652 val |= 1UL << j;
8653 }
8654 }
8655 __put_user(val, &target_mask[i]);
8656 }
8657
8658 unlock_user(target_mask, target_addr, target_size);
8659 return 0;
8660 }
8661
8662 #ifdef TARGET_NR_getdents
do_getdents(abi_long dirfd,abi_long arg2,abi_long count)8663 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8664 {
8665 g_autofree void *hdirp = NULL;
8666 void *tdirp;
8667 int hlen, hoff, toff;
8668 int hreclen, treclen;
8669 off64_t prev_diroff = 0;
8670
8671 hdirp = g_try_malloc(count);
8672 if (!hdirp) {
8673 return -TARGET_ENOMEM;
8674 }
8675
8676 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8677 hlen = sys_getdents(dirfd, hdirp, count);
8678 #else
8679 hlen = sys_getdents64(dirfd, hdirp, count);
8680 #endif
8681
8682 hlen = get_errno(hlen);
8683 if (is_error(hlen)) {
8684 return hlen;
8685 }
8686
8687 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8688 if (!tdirp) {
8689 return -TARGET_EFAULT;
8690 }
8691
8692 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8693 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8694 struct linux_dirent *hde = hdirp + hoff;
8695 #else
8696 struct linux_dirent64 *hde = hdirp + hoff;
8697 #endif
8698 struct target_dirent *tde = tdirp + toff;
8699 int namelen;
8700 uint8_t type;
8701
8702 namelen = strlen(hde->d_name);
8703 hreclen = hde->d_reclen;
8704 treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8705 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8706
8707 if (toff + treclen > count) {
8708 /*
8709 * If the host struct is smaller than the target struct, or
8710 * requires less alignment and thus packs into less space,
8711 * then the host can return more entries than we can pass
8712 * on to the guest.
8713 */
8714 if (toff == 0) {
8715 toff = -TARGET_EINVAL; /* result buffer is too small */
8716 break;
8717 }
8718 /*
8719 * Return what we have, resetting the file pointer to the
8720 * location of the first record not returned.
8721 */
8722 lseek64(dirfd, prev_diroff, SEEK_SET);
8723 break;
8724 }
8725
8726 prev_diroff = hde->d_off;
8727 tde->d_ino = tswapal(hde->d_ino);
8728 tde->d_off = tswapal(hde->d_off);
8729 tde->d_reclen = tswap16(treclen);
8730 memcpy(tde->d_name, hde->d_name, namelen + 1);
8731
8732 /*
8733 * The getdents type is in what was formerly a padding byte at the
8734 * end of the structure.
8735 */
8736 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8737 type = *((uint8_t *)hde + hreclen - 1);
8738 #else
8739 type = hde->d_type;
8740 #endif
8741 *((uint8_t *)tde + treclen - 1) = type;
8742 }
8743
8744 unlock_user(tdirp, arg2, toff);
8745 return toff;
8746 }
8747 #endif /* TARGET_NR_getdents */
8748
8749 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
do_getdents64(abi_long dirfd,abi_long arg2,abi_long count)8750 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8751 {
8752 g_autofree void *hdirp = NULL;
8753 void *tdirp;
8754 int hlen, hoff, toff;
8755 int hreclen, treclen;
8756 off64_t prev_diroff = 0;
8757
8758 hdirp = g_try_malloc(count);
8759 if (!hdirp) {
8760 return -TARGET_ENOMEM;
8761 }
8762
8763 hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8764 if (is_error(hlen)) {
8765 return hlen;
8766 }
8767
8768 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8769 if (!tdirp) {
8770 return -TARGET_EFAULT;
8771 }
8772
8773 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8774 struct linux_dirent64 *hde = hdirp + hoff;
8775 struct target_dirent64 *tde = tdirp + toff;
8776 int namelen;
8777
8778 namelen = strlen(hde->d_name) + 1;
8779 hreclen = hde->d_reclen;
8780 treclen = offsetof(struct target_dirent64, d_name) + namelen;
8781 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8782
8783 if (toff + treclen > count) {
8784 /*
8785 * If the host struct is smaller than the target struct, or
8786 * requires less alignment and thus packs into less space,
8787 * then the host can return more entries than we can pass
8788 * on to the guest.
8789 */
8790 if (toff == 0) {
8791 toff = -TARGET_EINVAL; /* result buffer is too small */
8792 break;
8793 }
8794 /*
8795 * Return what we have, resetting the file pointer to the
8796 * location of the first record not returned.
8797 */
8798 lseek64(dirfd, prev_diroff, SEEK_SET);
8799 break;
8800 }
8801
8802 prev_diroff = hde->d_off;
8803 tde->d_ino = tswap64(hde->d_ino);
8804 tde->d_off = tswap64(hde->d_off);
8805 tde->d_reclen = tswap16(treclen);
8806 tde->d_type = hde->d_type;
8807 memcpy(tde->d_name, hde->d_name, namelen);
8808 }
8809
8810 unlock_user(tdirp, arg2, toff);
8811 return toff;
8812 }
8813 #endif /* TARGET_NR_getdents64 */
8814
8815 #if defined(TARGET_NR_riscv_hwprobe)
8816
8817 #define RISCV_HWPROBE_KEY_MVENDORID 0
8818 #define RISCV_HWPROBE_KEY_MARCHID 1
8819 #define RISCV_HWPROBE_KEY_MIMPID 2
8820
8821 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8822 #define RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8823
8824 #define RISCV_HWPROBE_KEY_IMA_EXT_0 4
8825 #define RISCV_HWPROBE_IMA_FD (1 << 0)
8826 #define RISCV_HWPROBE_IMA_C (1 << 1)
8827 #define RISCV_HWPROBE_IMA_V (1 << 2)
8828 #define RISCV_HWPROBE_EXT_ZBA (1 << 3)
8829 #define RISCV_HWPROBE_EXT_ZBB (1 << 4)
8830 #define RISCV_HWPROBE_EXT_ZBS (1 << 5)
8831 #define RISCV_HWPROBE_EXT_ZICBOZ (1 << 6)
8832 #define RISCV_HWPROBE_EXT_ZBC (1 << 7)
8833 #define RISCV_HWPROBE_EXT_ZBKB (1 << 8)
8834 #define RISCV_HWPROBE_EXT_ZBKC (1 << 9)
8835 #define RISCV_HWPROBE_EXT_ZBKX (1 << 10)
8836 #define RISCV_HWPROBE_EXT_ZKND (1 << 11)
8837 #define RISCV_HWPROBE_EXT_ZKNE (1 << 12)
8838 #define RISCV_HWPROBE_EXT_ZKNH (1 << 13)
8839 #define RISCV_HWPROBE_EXT_ZKSED (1 << 14)
8840 #define RISCV_HWPROBE_EXT_ZKSH (1 << 15)
8841 #define RISCV_HWPROBE_EXT_ZKT (1 << 16)
8842 #define RISCV_HWPROBE_EXT_ZVBB (1 << 17)
8843 #define RISCV_HWPROBE_EXT_ZVBC (1 << 18)
8844 #define RISCV_HWPROBE_EXT_ZVKB (1 << 19)
8845 #define RISCV_HWPROBE_EXT_ZVKG (1 << 20)
8846 #define RISCV_HWPROBE_EXT_ZVKNED (1 << 21)
8847 #define RISCV_HWPROBE_EXT_ZVKNHA (1 << 22)
8848 #define RISCV_HWPROBE_EXT_ZVKNHB (1 << 23)
8849 #define RISCV_HWPROBE_EXT_ZVKSED (1 << 24)
8850 #define RISCV_HWPROBE_EXT_ZVKSH (1 << 25)
8851 #define RISCV_HWPROBE_EXT_ZVKT (1 << 26)
8852 #define RISCV_HWPROBE_EXT_ZFH (1 << 27)
8853 #define RISCV_HWPROBE_EXT_ZFHMIN (1 << 28)
8854 #define RISCV_HWPROBE_EXT_ZIHINTNTL (1 << 29)
8855 #define RISCV_HWPROBE_EXT_ZVFH (1 << 30)
8856 #define RISCV_HWPROBE_EXT_ZVFHMIN (1 << 31)
8857 #define RISCV_HWPROBE_EXT_ZFA (1ULL << 32)
8858 #define RISCV_HWPROBE_EXT_ZTSO (1ULL << 33)
8859 #define RISCV_HWPROBE_EXT_ZACAS (1ULL << 34)
8860 #define RISCV_HWPROBE_EXT_ZICOND (1ULL << 35)
8861
8862 #define RISCV_HWPROBE_KEY_CPUPERF_0 5
8863 #define RISCV_HWPROBE_MISALIGNED_UNKNOWN (0 << 0)
8864 #define RISCV_HWPROBE_MISALIGNED_EMULATED (1 << 0)
8865 #define RISCV_HWPROBE_MISALIGNED_SLOW (2 << 0)
8866 #define RISCV_HWPROBE_MISALIGNED_FAST (3 << 0)
8867 #define RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8868 #define RISCV_HWPROBE_MISALIGNED_MASK (7 << 0)
8869
8870 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6
8871
8872 struct riscv_hwprobe {
8873 abi_llong key;
8874 abi_ullong value;
8875 };
8876
risc_hwprobe_fill_pairs(CPURISCVState * env,struct riscv_hwprobe * pair,size_t pair_count)8877 static void risc_hwprobe_fill_pairs(CPURISCVState *env,
8878 struct riscv_hwprobe *pair,
8879 size_t pair_count)
8880 {
8881 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
8882
8883 for (; pair_count > 0; pair_count--, pair++) {
8884 abi_llong key;
8885 abi_ullong value;
8886 __put_user(0, &pair->value);
8887 __get_user(key, &pair->key);
8888 switch (key) {
8889 case RISCV_HWPROBE_KEY_MVENDORID:
8890 __put_user(cfg->mvendorid, &pair->value);
8891 break;
8892 case RISCV_HWPROBE_KEY_MARCHID:
8893 __put_user(cfg->marchid, &pair->value);
8894 break;
8895 case RISCV_HWPROBE_KEY_MIMPID:
8896 __put_user(cfg->mimpid, &pair->value);
8897 break;
8898 case RISCV_HWPROBE_KEY_BASE_BEHAVIOR:
8899 value = riscv_has_ext(env, RVI) &&
8900 riscv_has_ext(env, RVM) &&
8901 riscv_has_ext(env, RVA) ?
8902 RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0;
8903 __put_user(value, &pair->value);
8904 break;
8905 case RISCV_HWPROBE_KEY_IMA_EXT_0:
8906 value = riscv_has_ext(env, RVF) &&
8907 riscv_has_ext(env, RVD) ?
8908 RISCV_HWPROBE_IMA_FD : 0;
8909 value |= riscv_has_ext(env, RVC) ?
8910 RISCV_HWPROBE_IMA_C : 0;
8911 value |= riscv_has_ext(env, RVV) ?
8912 RISCV_HWPROBE_IMA_V : 0;
8913 value |= cfg->ext_zba ?
8914 RISCV_HWPROBE_EXT_ZBA : 0;
8915 value |= cfg->ext_zbb ?
8916 RISCV_HWPROBE_EXT_ZBB : 0;
8917 value |= cfg->ext_zbs ?
8918 RISCV_HWPROBE_EXT_ZBS : 0;
8919 value |= cfg->ext_zicboz ?
8920 RISCV_HWPROBE_EXT_ZICBOZ : 0;
8921 value |= cfg->ext_zbc ?
8922 RISCV_HWPROBE_EXT_ZBC : 0;
8923 value |= cfg->ext_zbkb ?
8924 RISCV_HWPROBE_EXT_ZBKB : 0;
8925 value |= cfg->ext_zbkc ?
8926 RISCV_HWPROBE_EXT_ZBKC : 0;
8927 value |= cfg->ext_zbkx ?
8928 RISCV_HWPROBE_EXT_ZBKX : 0;
8929 value |= cfg->ext_zknd ?
8930 RISCV_HWPROBE_EXT_ZKND : 0;
8931 value |= cfg->ext_zkne ?
8932 RISCV_HWPROBE_EXT_ZKNE : 0;
8933 value |= cfg->ext_zknh ?
8934 RISCV_HWPROBE_EXT_ZKNH : 0;
8935 value |= cfg->ext_zksed ?
8936 RISCV_HWPROBE_EXT_ZKSED : 0;
8937 value |= cfg->ext_zksh ?
8938 RISCV_HWPROBE_EXT_ZKSH : 0;
8939 value |= cfg->ext_zkt ?
8940 RISCV_HWPROBE_EXT_ZKT : 0;
8941 value |= cfg->ext_zvbb ?
8942 RISCV_HWPROBE_EXT_ZVBB : 0;
8943 value |= cfg->ext_zvbc ?
8944 RISCV_HWPROBE_EXT_ZVBC : 0;
8945 value |= cfg->ext_zvkb ?
8946 RISCV_HWPROBE_EXT_ZVKB : 0;
8947 value |= cfg->ext_zvkg ?
8948 RISCV_HWPROBE_EXT_ZVKG : 0;
8949 value |= cfg->ext_zvkned ?
8950 RISCV_HWPROBE_EXT_ZVKNED : 0;
8951 value |= cfg->ext_zvknha ?
8952 RISCV_HWPROBE_EXT_ZVKNHA : 0;
8953 value |= cfg->ext_zvknhb ?
8954 RISCV_HWPROBE_EXT_ZVKNHB : 0;
8955 value |= cfg->ext_zvksed ?
8956 RISCV_HWPROBE_EXT_ZVKSED : 0;
8957 value |= cfg->ext_zvksh ?
8958 RISCV_HWPROBE_EXT_ZVKSH : 0;
8959 value |= cfg->ext_zvkt ?
8960 RISCV_HWPROBE_EXT_ZVKT : 0;
8961 value |= cfg->ext_zfh ?
8962 RISCV_HWPROBE_EXT_ZFH : 0;
8963 value |= cfg->ext_zfhmin ?
8964 RISCV_HWPROBE_EXT_ZFHMIN : 0;
8965 value |= cfg->ext_zihintntl ?
8966 RISCV_HWPROBE_EXT_ZIHINTNTL : 0;
8967 value |= cfg->ext_zvfh ?
8968 RISCV_HWPROBE_EXT_ZVFH : 0;
8969 value |= cfg->ext_zvfhmin ?
8970 RISCV_HWPROBE_EXT_ZVFHMIN : 0;
8971 value |= cfg->ext_zfa ?
8972 RISCV_HWPROBE_EXT_ZFA : 0;
8973 value |= cfg->ext_ztso ?
8974 RISCV_HWPROBE_EXT_ZTSO : 0;
8975 value |= cfg->ext_zacas ?
8976 RISCV_HWPROBE_EXT_ZACAS : 0;
8977 value |= cfg->ext_zicond ?
8978 RISCV_HWPROBE_EXT_ZICOND : 0;
8979 __put_user(value, &pair->value);
8980 break;
8981 case RISCV_HWPROBE_KEY_CPUPERF_0:
8982 __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value);
8983 break;
8984 case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE:
8985 value = cfg->ext_zicboz ? cfg->cboz_blocksize : 0;
8986 __put_user(value, &pair->value);
8987 break;
8988 default:
8989 __put_user(-1, &pair->key);
8990 break;
8991 }
8992 }
8993 }
8994
cpu_set_valid(abi_long arg3,abi_long arg4)8995 static int cpu_set_valid(abi_long arg3, abi_long arg4)
8996 {
8997 int ret, i, tmp;
8998 size_t host_mask_size, target_mask_size;
8999 unsigned long *host_mask;
9000
9001 /*
9002 * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
9003 * arg3 contains the cpu count.
9004 */
9005 tmp = (8 * sizeof(abi_ulong));
9006 target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong);
9007 host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) &
9008 ~(sizeof(*host_mask) - 1);
9009
9010 host_mask = alloca(host_mask_size);
9011
9012 ret = target_to_host_cpu_mask(host_mask, host_mask_size,
9013 arg4, target_mask_size);
9014 if (ret != 0) {
9015 return ret;
9016 }
9017
9018 for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) {
9019 if (host_mask[i] != 0) {
9020 return 0;
9021 }
9022 }
9023 return -TARGET_EINVAL;
9024 }
9025
do_riscv_hwprobe(CPUArchState * cpu_env,abi_long arg1,abi_long arg2,abi_long arg3,abi_long arg4,abi_long arg5)9026 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1,
9027 abi_long arg2, abi_long arg3,
9028 abi_long arg4, abi_long arg5)
9029 {
9030 int ret;
9031 struct riscv_hwprobe *host_pairs;
9032
9033 /* flags must be 0 */
9034 if (arg5 != 0) {
9035 return -TARGET_EINVAL;
9036 }
9037
9038 /* check cpu_set */
9039 if (arg3 != 0) {
9040 ret = cpu_set_valid(arg3, arg4);
9041 if (ret != 0) {
9042 return ret;
9043 }
9044 } else if (arg4 != 0) {
9045 return -TARGET_EINVAL;
9046 }
9047
9048 /* no pairs */
9049 if (arg2 == 0) {
9050 return 0;
9051 }
9052
9053 host_pairs = lock_user(VERIFY_WRITE, arg1,
9054 sizeof(*host_pairs) * (size_t)arg2, 0);
9055 if (host_pairs == NULL) {
9056 return -TARGET_EFAULT;
9057 }
9058 risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2);
9059 unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2);
9060 return 0;
9061 }
9062 #endif /* TARGET_NR_riscv_hwprobe */
9063
9064 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
_syscall2(int,pivot_root,const char *,new_root,const char *,put_old)9065 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
9066 #endif
9067
9068 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9069 #define __NR_sys_open_tree __NR_open_tree
9070 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename,
9071 unsigned int, __flags)
9072 #endif
9073
9074 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9075 #define __NR_sys_move_mount __NR_move_mount
9076 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname,
9077 int, __to_dfd, const char *, __to_pathname, unsigned int, flag)
9078 #endif
9079
9080 /* This is an internal helper for do_syscall so that it is easier
9081 * to have a single return point, so that actions, such as logging
9082 * of syscall results, can be performed.
9083 * All errnos that do_syscall() returns must be -TARGET_<errcode>.
9084 */
9085 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
9086 abi_long arg2, abi_long arg3, abi_long arg4,
9087 abi_long arg5, abi_long arg6, abi_long arg7,
9088 abi_long arg8)
9089 {
9090 CPUState *cpu = env_cpu(cpu_env);
9091 abi_long ret;
9092 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
9093 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
9094 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
9095 || defined(TARGET_NR_statx)
9096 struct stat st;
9097 #endif
9098 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
9099 || defined(TARGET_NR_fstatfs)
9100 struct statfs stfs;
9101 #endif
9102 void *p;
9103
9104 switch(num) {
9105 case TARGET_NR_exit:
9106 /* In old applications this may be used to implement _exit(2).
9107 However in threaded applications it is used for thread termination,
9108 and _exit_group is used for application termination.
9109 Do thread termination if we have more then one thread. */
9110
9111 if (block_signals()) {
9112 return -QEMU_ERESTARTSYS;
9113 }
9114
9115 pthread_mutex_lock(&clone_lock);
9116
9117 if (CPU_NEXT(first_cpu)) {
9118 TaskState *ts = get_task_state(cpu);
9119
9120 if (ts->child_tidptr) {
9121 put_user_u32(0, ts->child_tidptr);
9122 do_sys_futex(g2h(cpu, ts->child_tidptr),
9123 FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
9124 }
9125
9126 object_unparent(OBJECT(cpu));
9127 object_unref(OBJECT(cpu));
9128 /*
9129 * At this point the CPU should be unrealized and removed
9130 * from cpu lists. We can clean-up the rest of the thread
9131 * data without the lock held.
9132 */
9133
9134 pthread_mutex_unlock(&clone_lock);
9135
9136 thread_cpu = NULL;
9137 g_free(ts);
9138 rcu_unregister_thread();
9139 pthread_exit(NULL);
9140 }
9141
9142 pthread_mutex_unlock(&clone_lock);
9143 preexit_cleanup(cpu_env, arg1);
9144 _exit(arg1);
9145 return 0; /* avoid warning */
9146 case TARGET_NR_read:
9147 if (arg2 == 0 && arg3 == 0) {
9148 return get_errno(safe_read(arg1, 0, 0));
9149 } else {
9150 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
9151 return -TARGET_EFAULT;
9152 ret = get_errno(safe_read(arg1, p, arg3));
9153 if (ret >= 0 &&
9154 fd_trans_host_to_target_data(arg1)) {
9155 ret = fd_trans_host_to_target_data(arg1)(p, ret);
9156 }
9157 unlock_user(p, arg2, ret);
9158 }
9159 return ret;
9160 case TARGET_NR_write:
9161 if (arg2 == 0 && arg3 == 0) {
9162 return get_errno(safe_write(arg1, 0, 0));
9163 }
9164 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
9165 return -TARGET_EFAULT;
9166 if (fd_trans_target_to_host_data(arg1)) {
9167 void *copy = g_malloc(arg3);
9168 memcpy(copy, p, arg3);
9169 ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
9170 if (ret >= 0) {
9171 ret = get_errno(safe_write(arg1, copy, ret));
9172 }
9173 g_free(copy);
9174 } else {
9175 ret = get_errno(safe_write(arg1, p, arg3));
9176 }
9177 unlock_user(p, arg2, 0);
9178 return ret;
9179
9180 #ifdef TARGET_NR_open
9181 case TARGET_NR_open:
9182 if (!(p = lock_user_string(arg1)))
9183 return -TARGET_EFAULT;
9184 ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p,
9185 target_to_host_bitmask(arg2, fcntl_flags_tbl),
9186 arg3, true));
9187 fd_trans_unregister(ret);
9188 unlock_user(p, arg1, 0);
9189 return ret;
9190 #endif
9191 case TARGET_NR_openat:
9192 if (!(p = lock_user_string(arg2)))
9193 return -TARGET_EFAULT;
9194 ret = get_errno(do_guest_openat(cpu_env, arg1, p,
9195 target_to_host_bitmask(arg3, fcntl_flags_tbl),
9196 arg4, true));
9197 fd_trans_unregister(ret);
9198 unlock_user(p, arg2, 0);
9199 return ret;
9200 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9201 case TARGET_NR_name_to_handle_at:
9202 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
9203 return ret;
9204 #endif
9205 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9206 case TARGET_NR_open_by_handle_at:
9207 ret = do_open_by_handle_at(arg1, arg2, arg3);
9208 fd_trans_unregister(ret);
9209 return ret;
9210 #endif
9211 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9212 case TARGET_NR_pidfd_open:
9213 return get_errno(pidfd_open(arg1, arg2));
9214 #endif
9215 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9216 case TARGET_NR_pidfd_send_signal:
9217 {
9218 siginfo_t uinfo, *puinfo;
9219
9220 if (arg3) {
9221 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9222 if (!p) {
9223 return -TARGET_EFAULT;
9224 }
9225 target_to_host_siginfo(&uinfo, p);
9226 unlock_user(p, arg3, 0);
9227 puinfo = &uinfo;
9228 } else {
9229 puinfo = NULL;
9230 }
9231 ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
9232 puinfo, arg4));
9233 }
9234 return ret;
9235 #endif
9236 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9237 case TARGET_NR_pidfd_getfd:
9238 return get_errno(pidfd_getfd(arg1, arg2, arg3));
9239 #endif
9240 case TARGET_NR_close:
9241 fd_trans_unregister(arg1);
9242 return get_errno(close(arg1));
9243 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9244 case TARGET_NR_close_range:
9245 ret = get_errno(sys_close_range(arg1, arg2, arg3));
9246 if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) {
9247 abi_long fd, maxfd;
9248 maxfd = MIN(arg2, target_fd_max);
9249 for (fd = arg1; fd < maxfd; fd++) {
9250 fd_trans_unregister(fd);
9251 }
9252 }
9253 return ret;
9254 #endif
9255
9256 case TARGET_NR_brk:
9257 return do_brk(arg1);
9258 #ifdef TARGET_NR_fork
9259 case TARGET_NR_fork:
9260 return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
9261 #endif
9262 #ifdef TARGET_NR_waitpid
9263 case TARGET_NR_waitpid:
9264 {
9265 int status;
9266 ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
9267 if (!is_error(ret) && arg2 && ret
9268 && put_user_s32(host_to_target_waitstatus(status), arg2))
9269 return -TARGET_EFAULT;
9270 }
9271 return ret;
9272 #endif
9273 #ifdef TARGET_NR_waitid
9274 case TARGET_NR_waitid:
9275 {
9276 struct rusage ru;
9277 siginfo_t info;
9278
9279 ret = get_errno(safe_waitid(arg1, arg2, (arg3 ? &info : NULL),
9280 arg4, (arg5 ? &ru : NULL)));
9281 if (!is_error(ret)) {
9282 if (arg3) {
9283 p = lock_user(VERIFY_WRITE, arg3,
9284 sizeof(target_siginfo_t), 0);
9285 if (!p) {
9286 return -TARGET_EFAULT;
9287 }
9288 host_to_target_siginfo(p, &info);
9289 unlock_user(p, arg3, sizeof(target_siginfo_t));
9290 }
9291 if (arg5 && host_to_target_rusage(arg5, &ru)) {
9292 return -TARGET_EFAULT;
9293 }
9294 }
9295 }
9296 return ret;
9297 #endif
9298 #ifdef TARGET_NR_creat /* not on alpha */
9299 case TARGET_NR_creat:
9300 if (!(p = lock_user_string(arg1)))
9301 return -TARGET_EFAULT;
9302 ret = get_errno(creat(p, arg2));
9303 fd_trans_unregister(ret);
9304 unlock_user(p, arg1, 0);
9305 return ret;
9306 #endif
9307 #ifdef TARGET_NR_link
9308 case TARGET_NR_link:
9309 {
9310 void * p2;
9311 p = lock_user_string(arg1);
9312 p2 = lock_user_string(arg2);
9313 if (!p || !p2)
9314 ret = -TARGET_EFAULT;
9315 else
9316 ret = get_errno(link(p, p2));
9317 unlock_user(p2, arg2, 0);
9318 unlock_user(p, arg1, 0);
9319 }
9320 return ret;
9321 #endif
9322 #if defined(TARGET_NR_linkat)
9323 case TARGET_NR_linkat:
9324 {
9325 void * p2 = NULL;
9326 if (!arg2 || !arg4)
9327 return -TARGET_EFAULT;
9328 p = lock_user_string(arg2);
9329 p2 = lock_user_string(arg4);
9330 if (!p || !p2)
9331 ret = -TARGET_EFAULT;
9332 else
9333 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
9334 unlock_user(p, arg2, 0);
9335 unlock_user(p2, arg4, 0);
9336 }
9337 return ret;
9338 #endif
9339 #ifdef TARGET_NR_unlink
9340 case TARGET_NR_unlink:
9341 if (!(p = lock_user_string(arg1)))
9342 return -TARGET_EFAULT;
9343 ret = get_errno(unlink(p));
9344 unlock_user(p, arg1, 0);
9345 return ret;
9346 #endif
9347 #if defined(TARGET_NR_unlinkat)
9348 case TARGET_NR_unlinkat:
9349 if (!(p = lock_user_string(arg2)))
9350 return -TARGET_EFAULT;
9351 ret = get_errno(unlinkat(arg1, p, arg3));
9352 unlock_user(p, arg2, 0);
9353 return ret;
9354 #endif
9355 case TARGET_NR_execveat:
9356 return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true);
9357 case TARGET_NR_execve:
9358 return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false);
9359 case TARGET_NR_chdir:
9360 if (!(p = lock_user_string(arg1)))
9361 return -TARGET_EFAULT;
9362 ret = get_errno(chdir(p));
9363 unlock_user(p, arg1, 0);
9364 return ret;
9365 #ifdef TARGET_NR_time
9366 case TARGET_NR_time:
9367 {
9368 time_t host_time;
9369 ret = get_errno(time(&host_time));
9370 if (!is_error(ret)
9371 && arg1
9372 && put_user_sal(host_time, arg1))
9373 return -TARGET_EFAULT;
9374 }
9375 return ret;
9376 #endif
9377 #ifdef TARGET_NR_mknod
9378 case TARGET_NR_mknod:
9379 if (!(p = lock_user_string(arg1)))
9380 return -TARGET_EFAULT;
9381 ret = get_errno(mknod(p, arg2, arg3));
9382 unlock_user(p, arg1, 0);
9383 return ret;
9384 #endif
9385 #if defined(TARGET_NR_mknodat)
9386 case TARGET_NR_mknodat:
9387 if (!(p = lock_user_string(arg2)))
9388 return -TARGET_EFAULT;
9389 ret = get_errno(mknodat(arg1, p, arg3, arg4));
9390 unlock_user(p, arg2, 0);
9391 return ret;
9392 #endif
9393 #ifdef TARGET_NR_chmod
9394 case TARGET_NR_chmod:
9395 if (!(p = lock_user_string(arg1)))
9396 return -TARGET_EFAULT;
9397 ret = get_errno(chmod(p, arg2));
9398 unlock_user(p, arg1, 0);
9399 return ret;
9400 #endif
9401 #ifdef TARGET_NR_lseek
9402 case TARGET_NR_lseek:
9403 return get_errno(lseek(arg1, arg2, arg3));
9404 #endif
9405 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9406 /* Alpha specific */
9407 case TARGET_NR_getxpid:
9408 cpu_env->ir[IR_A4] = getppid();
9409 return get_errno(getpid());
9410 #endif
9411 #ifdef TARGET_NR_getpid
9412 case TARGET_NR_getpid:
9413 return get_errno(getpid());
9414 #endif
9415 case TARGET_NR_mount:
9416 {
9417 /* need to look at the data field */
9418 void *p2, *p3;
9419
9420 if (arg1) {
9421 p = lock_user_string(arg1);
9422 if (!p) {
9423 return -TARGET_EFAULT;
9424 }
9425 } else {
9426 p = NULL;
9427 }
9428
9429 p2 = lock_user_string(arg2);
9430 if (!p2) {
9431 if (arg1) {
9432 unlock_user(p, arg1, 0);
9433 }
9434 return -TARGET_EFAULT;
9435 }
9436
9437 if (arg3) {
9438 p3 = lock_user_string(arg3);
9439 if (!p3) {
9440 if (arg1) {
9441 unlock_user(p, arg1, 0);
9442 }
9443 unlock_user(p2, arg2, 0);
9444 return -TARGET_EFAULT;
9445 }
9446 } else {
9447 p3 = NULL;
9448 }
9449
9450 /* FIXME - arg5 should be locked, but it isn't clear how to
9451 * do that since it's not guaranteed to be a NULL-terminated
9452 * string.
9453 */
9454 if (!arg5) {
9455 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
9456 } else {
9457 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
9458 }
9459 ret = get_errno(ret);
9460
9461 if (arg1) {
9462 unlock_user(p, arg1, 0);
9463 }
9464 unlock_user(p2, arg2, 0);
9465 if (arg3) {
9466 unlock_user(p3, arg3, 0);
9467 }
9468 }
9469 return ret;
9470 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9471 #if defined(TARGET_NR_umount)
9472 case TARGET_NR_umount:
9473 #endif
9474 #if defined(TARGET_NR_oldumount)
9475 case TARGET_NR_oldumount:
9476 #endif
9477 if (!(p = lock_user_string(arg1)))
9478 return -TARGET_EFAULT;
9479 ret = get_errno(umount(p));
9480 unlock_user(p, arg1, 0);
9481 return ret;
9482 #endif
9483 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9484 case TARGET_NR_move_mount:
9485 {
9486 void *p2, *p4;
9487
9488 if (!arg2 || !arg4) {
9489 return -TARGET_EFAULT;
9490 }
9491
9492 p2 = lock_user_string(arg2);
9493 if (!p2) {
9494 return -TARGET_EFAULT;
9495 }
9496
9497 p4 = lock_user_string(arg4);
9498 if (!p4) {
9499 unlock_user(p2, arg2, 0);
9500 return -TARGET_EFAULT;
9501 }
9502 ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5));
9503
9504 unlock_user(p2, arg2, 0);
9505 unlock_user(p4, arg4, 0);
9506
9507 return ret;
9508 }
9509 #endif
9510 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9511 case TARGET_NR_open_tree:
9512 {
9513 void *p2;
9514 int host_flags;
9515
9516 if (!arg2) {
9517 return -TARGET_EFAULT;
9518 }
9519
9520 p2 = lock_user_string(arg2);
9521 if (!p2) {
9522 return -TARGET_EFAULT;
9523 }
9524
9525 host_flags = arg3 & ~TARGET_O_CLOEXEC;
9526 if (arg3 & TARGET_O_CLOEXEC) {
9527 host_flags |= O_CLOEXEC;
9528 }
9529
9530 ret = get_errno(sys_open_tree(arg1, p2, host_flags));
9531
9532 unlock_user(p2, arg2, 0);
9533
9534 return ret;
9535 }
9536 #endif
9537 #ifdef TARGET_NR_stime /* not on alpha */
9538 case TARGET_NR_stime:
9539 {
9540 struct timespec ts;
9541 ts.tv_nsec = 0;
9542 if (get_user_sal(ts.tv_sec, arg1)) {
9543 return -TARGET_EFAULT;
9544 }
9545 return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9546 }
9547 #endif
9548 #ifdef TARGET_NR_alarm /* not on alpha */
9549 case TARGET_NR_alarm:
9550 return alarm(arg1);
9551 #endif
9552 #ifdef TARGET_NR_pause /* not on alpha */
9553 case TARGET_NR_pause:
9554 if (!block_signals()) {
9555 sigsuspend(&get_task_state(cpu)->signal_mask);
9556 }
9557 return -TARGET_EINTR;
9558 #endif
9559 #ifdef TARGET_NR_utime
9560 case TARGET_NR_utime:
9561 {
9562 struct utimbuf tbuf, *host_tbuf;
9563 struct target_utimbuf *target_tbuf;
9564 if (arg2) {
9565 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9566 return -TARGET_EFAULT;
9567 tbuf.actime = tswapal(target_tbuf->actime);
9568 tbuf.modtime = tswapal(target_tbuf->modtime);
9569 unlock_user_struct(target_tbuf, arg2, 0);
9570 host_tbuf = &tbuf;
9571 } else {
9572 host_tbuf = NULL;
9573 }
9574 if (!(p = lock_user_string(arg1)))
9575 return -TARGET_EFAULT;
9576 ret = get_errno(utime(p, host_tbuf));
9577 unlock_user(p, arg1, 0);
9578 }
9579 return ret;
9580 #endif
9581 #ifdef TARGET_NR_utimes
9582 case TARGET_NR_utimes:
9583 {
9584 struct timeval *tvp, tv[2];
9585 if (arg2) {
9586 if (copy_from_user_timeval(&tv[0], arg2)
9587 || copy_from_user_timeval(&tv[1],
9588 arg2 + sizeof(struct target_timeval)))
9589 return -TARGET_EFAULT;
9590 tvp = tv;
9591 } else {
9592 tvp = NULL;
9593 }
9594 if (!(p = lock_user_string(arg1)))
9595 return -TARGET_EFAULT;
9596 ret = get_errno(utimes(p, tvp));
9597 unlock_user(p, arg1, 0);
9598 }
9599 return ret;
9600 #endif
9601 #if defined(TARGET_NR_futimesat)
9602 case TARGET_NR_futimesat:
9603 {
9604 struct timeval *tvp, tv[2];
9605 if (arg3) {
9606 if (copy_from_user_timeval(&tv[0], arg3)
9607 || copy_from_user_timeval(&tv[1],
9608 arg3 + sizeof(struct target_timeval)))
9609 return -TARGET_EFAULT;
9610 tvp = tv;
9611 } else {
9612 tvp = NULL;
9613 }
9614 if (!(p = lock_user_string(arg2))) {
9615 return -TARGET_EFAULT;
9616 }
9617 ret = get_errno(futimesat(arg1, path(p), tvp));
9618 unlock_user(p, arg2, 0);
9619 }
9620 return ret;
9621 #endif
9622 #ifdef TARGET_NR_access
9623 case TARGET_NR_access:
9624 if (!(p = lock_user_string(arg1))) {
9625 return -TARGET_EFAULT;
9626 }
9627 ret = get_errno(access(path(p), arg2));
9628 unlock_user(p, arg1, 0);
9629 return ret;
9630 #endif
9631 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9632 case TARGET_NR_faccessat:
9633 if (!(p = lock_user_string(arg2))) {
9634 return -TARGET_EFAULT;
9635 }
9636 ret = get_errno(faccessat(arg1, p, arg3, 0));
9637 unlock_user(p, arg2, 0);
9638 return ret;
9639 #endif
9640 #if defined(TARGET_NR_faccessat2)
9641 case TARGET_NR_faccessat2:
9642 if (!(p = lock_user_string(arg2))) {
9643 return -TARGET_EFAULT;
9644 }
9645 ret = get_errno(faccessat(arg1, p, arg3, arg4));
9646 unlock_user(p, arg2, 0);
9647 return ret;
9648 #endif
9649 #ifdef TARGET_NR_nice /* not on alpha */
9650 case TARGET_NR_nice:
9651 return get_errno(nice(arg1));
9652 #endif
9653 case TARGET_NR_sync:
9654 sync();
9655 return 0;
9656 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9657 case TARGET_NR_syncfs:
9658 return get_errno(syncfs(arg1));
9659 #endif
9660 case TARGET_NR_kill:
9661 return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9662 #ifdef TARGET_NR_rename
9663 case TARGET_NR_rename:
9664 {
9665 void *p2;
9666 p = lock_user_string(arg1);
9667 p2 = lock_user_string(arg2);
9668 if (!p || !p2)
9669 ret = -TARGET_EFAULT;
9670 else
9671 ret = get_errno(rename(p, p2));
9672 unlock_user(p2, arg2, 0);
9673 unlock_user(p, arg1, 0);
9674 }
9675 return ret;
9676 #endif
9677 #if defined(TARGET_NR_renameat)
9678 case TARGET_NR_renameat:
9679 {
9680 void *p2;
9681 p = lock_user_string(arg2);
9682 p2 = lock_user_string(arg4);
9683 if (!p || !p2)
9684 ret = -TARGET_EFAULT;
9685 else
9686 ret = get_errno(renameat(arg1, p, arg3, p2));
9687 unlock_user(p2, arg4, 0);
9688 unlock_user(p, arg2, 0);
9689 }
9690 return ret;
9691 #endif
9692 #if defined(TARGET_NR_renameat2)
9693 case TARGET_NR_renameat2:
9694 {
9695 void *p2;
9696 p = lock_user_string(arg2);
9697 p2 = lock_user_string(arg4);
9698 if (!p || !p2) {
9699 ret = -TARGET_EFAULT;
9700 } else {
9701 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9702 }
9703 unlock_user(p2, arg4, 0);
9704 unlock_user(p, arg2, 0);
9705 }
9706 return ret;
9707 #endif
9708 #ifdef TARGET_NR_mkdir
9709 case TARGET_NR_mkdir:
9710 if (!(p = lock_user_string(arg1)))
9711 return -TARGET_EFAULT;
9712 ret = get_errno(mkdir(p, arg2));
9713 unlock_user(p, arg1, 0);
9714 return ret;
9715 #endif
9716 #if defined(TARGET_NR_mkdirat)
9717 case TARGET_NR_mkdirat:
9718 if (!(p = lock_user_string(arg2)))
9719 return -TARGET_EFAULT;
9720 ret = get_errno(mkdirat(arg1, p, arg3));
9721 unlock_user(p, arg2, 0);
9722 return ret;
9723 #endif
9724 #ifdef TARGET_NR_rmdir
9725 case TARGET_NR_rmdir:
9726 if (!(p = lock_user_string(arg1)))
9727 return -TARGET_EFAULT;
9728 ret = get_errno(rmdir(p));
9729 unlock_user(p, arg1, 0);
9730 return ret;
9731 #endif
9732 case TARGET_NR_dup:
9733 ret = get_errno(dup(arg1));
9734 if (ret >= 0) {
9735 fd_trans_dup(arg1, ret);
9736 }
9737 return ret;
9738 #ifdef TARGET_NR_pipe
9739 case TARGET_NR_pipe:
9740 return do_pipe(cpu_env, arg1, 0, 0);
9741 #endif
9742 #ifdef TARGET_NR_pipe2
9743 case TARGET_NR_pipe2:
9744 return do_pipe(cpu_env, arg1,
9745 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9746 #endif
9747 case TARGET_NR_times:
9748 {
9749 struct target_tms *tmsp;
9750 struct tms tms;
9751 ret = get_errno(times(&tms));
9752 if (arg1) {
9753 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9754 if (!tmsp)
9755 return -TARGET_EFAULT;
9756 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9757 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9758 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9759 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9760 }
9761 if (!is_error(ret))
9762 ret = host_to_target_clock_t(ret);
9763 }
9764 return ret;
9765 case TARGET_NR_acct:
9766 if (arg1 == 0) {
9767 ret = get_errno(acct(NULL));
9768 } else {
9769 if (!(p = lock_user_string(arg1))) {
9770 return -TARGET_EFAULT;
9771 }
9772 ret = get_errno(acct(path(p)));
9773 unlock_user(p, arg1, 0);
9774 }
9775 return ret;
9776 #ifdef TARGET_NR_umount2
9777 case TARGET_NR_umount2:
9778 if (!(p = lock_user_string(arg1)))
9779 return -TARGET_EFAULT;
9780 ret = get_errno(umount2(p, arg2));
9781 unlock_user(p, arg1, 0);
9782 return ret;
9783 #endif
9784 case TARGET_NR_ioctl:
9785 return do_ioctl(arg1, arg2, arg3);
9786 #ifdef TARGET_NR_fcntl
9787 case TARGET_NR_fcntl:
9788 return do_fcntl(arg1, arg2, arg3);
9789 #endif
9790 case TARGET_NR_setpgid:
9791 return get_errno(setpgid(arg1, arg2));
9792 case TARGET_NR_umask:
9793 return get_errno(umask(arg1));
9794 case TARGET_NR_chroot:
9795 if (!(p = lock_user_string(arg1)))
9796 return -TARGET_EFAULT;
9797 ret = get_errno(chroot(p));
9798 unlock_user(p, arg1, 0);
9799 return ret;
9800 #ifdef TARGET_NR_dup2
9801 case TARGET_NR_dup2:
9802 ret = get_errno(dup2(arg1, arg2));
9803 if (ret >= 0) {
9804 fd_trans_dup(arg1, arg2);
9805 }
9806 return ret;
9807 #endif
9808 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9809 case TARGET_NR_dup3:
9810 {
9811 int host_flags;
9812
9813 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9814 return -EINVAL;
9815 }
9816 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9817 ret = get_errno(dup3(arg1, arg2, host_flags));
9818 if (ret >= 0) {
9819 fd_trans_dup(arg1, arg2);
9820 }
9821 return ret;
9822 }
9823 #endif
9824 #ifdef TARGET_NR_getppid /* not on alpha */
9825 case TARGET_NR_getppid:
9826 return get_errno(getppid());
9827 #endif
9828 #ifdef TARGET_NR_getpgrp
9829 case TARGET_NR_getpgrp:
9830 return get_errno(getpgrp());
9831 #endif
9832 case TARGET_NR_setsid:
9833 return get_errno(setsid());
9834 #ifdef TARGET_NR_sigaction
9835 case TARGET_NR_sigaction:
9836 {
9837 #if defined(TARGET_MIPS)
9838 struct target_sigaction act, oact, *pact, *old_act;
9839
9840 if (arg2) {
9841 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9842 return -TARGET_EFAULT;
9843 act._sa_handler = old_act->_sa_handler;
9844 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9845 act.sa_flags = old_act->sa_flags;
9846 unlock_user_struct(old_act, arg2, 0);
9847 pact = &act;
9848 } else {
9849 pact = NULL;
9850 }
9851
9852 ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9853
9854 if (!is_error(ret) && arg3) {
9855 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9856 return -TARGET_EFAULT;
9857 old_act->_sa_handler = oact._sa_handler;
9858 old_act->sa_flags = oact.sa_flags;
9859 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9860 old_act->sa_mask.sig[1] = 0;
9861 old_act->sa_mask.sig[2] = 0;
9862 old_act->sa_mask.sig[3] = 0;
9863 unlock_user_struct(old_act, arg3, 1);
9864 }
9865 #else
9866 struct target_old_sigaction *old_act;
9867 struct target_sigaction act, oact, *pact;
9868 if (arg2) {
9869 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9870 return -TARGET_EFAULT;
9871 act._sa_handler = old_act->_sa_handler;
9872 target_siginitset(&act.sa_mask, old_act->sa_mask);
9873 act.sa_flags = old_act->sa_flags;
9874 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9875 act.sa_restorer = old_act->sa_restorer;
9876 #endif
9877 unlock_user_struct(old_act, arg2, 0);
9878 pact = &act;
9879 } else {
9880 pact = NULL;
9881 }
9882 ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9883 if (!is_error(ret) && arg3) {
9884 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9885 return -TARGET_EFAULT;
9886 old_act->_sa_handler = oact._sa_handler;
9887 old_act->sa_mask = oact.sa_mask.sig[0];
9888 old_act->sa_flags = oact.sa_flags;
9889 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9890 old_act->sa_restorer = oact.sa_restorer;
9891 #endif
9892 unlock_user_struct(old_act, arg3, 1);
9893 }
9894 #endif
9895 }
9896 return ret;
9897 #endif
9898 case TARGET_NR_rt_sigaction:
9899 {
9900 /*
9901 * For Alpha and SPARC this is a 5 argument syscall, with
9902 * a 'restorer' parameter which must be copied into the
9903 * sa_restorer field of the sigaction struct.
9904 * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9905 * and arg5 is the sigsetsize.
9906 */
9907 #if defined(TARGET_ALPHA)
9908 target_ulong sigsetsize = arg4;
9909 target_ulong restorer = arg5;
9910 #elif defined(TARGET_SPARC)
9911 target_ulong restorer = arg4;
9912 target_ulong sigsetsize = arg5;
9913 #else
9914 target_ulong sigsetsize = arg4;
9915 target_ulong restorer = 0;
9916 #endif
9917 struct target_sigaction *act = NULL;
9918 struct target_sigaction *oact = NULL;
9919
9920 if (sigsetsize != sizeof(target_sigset_t)) {
9921 return -TARGET_EINVAL;
9922 }
9923 if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9924 return -TARGET_EFAULT;
9925 }
9926 if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9927 ret = -TARGET_EFAULT;
9928 } else {
9929 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9930 if (oact) {
9931 unlock_user_struct(oact, arg3, 1);
9932 }
9933 }
9934 if (act) {
9935 unlock_user_struct(act, arg2, 0);
9936 }
9937 }
9938 return ret;
9939 #ifdef TARGET_NR_sgetmask /* not on alpha */
9940 case TARGET_NR_sgetmask:
9941 {
9942 sigset_t cur_set;
9943 abi_ulong target_set;
9944 ret = do_sigprocmask(0, NULL, &cur_set);
9945 if (!ret) {
9946 host_to_target_old_sigset(&target_set, &cur_set);
9947 ret = target_set;
9948 }
9949 }
9950 return ret;
9951 #endif
9952 #ifdef TARGET_NR_ssetmask /* not on alpha */
9953 case TARGET_NR_ssetmask:
9954 {
9955 sigset_t set, oset;
9956 abi_ulong target_set = arg1;
9957 target_to_host_old_sigset(&set, &target_set);
9958 ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9959 if (!ret) {
9960 host_to_target_old_sigset(&target_set, &oset);
9961 ret = target_set;
9962 }
9963 }
9964 return ret;
9965 #endif
9966 #ifdef TARGET_NR_sigprocmask
9967 case TARGET_NR_sigprocmask:
9968 {
9969 #if defined(TARGET_ALPHA)
9970 sigset_t set, oldset;
9971 abi_ulong mask;
9972 int how;
9973
9974 switch (arg1) {
9975 case TARGET_SIG_BLOCK:
9976 how = SIG_BLOCK;
9977 break;
9978 case TARGET_SIG_UNBLOCK:
9979 how = SIG_UNBLOCK;
9980 break;
9981 case TARGET_SIG_SETMASK:
9982 how = SIG_SETMASK;
9983 break;
9984 default:
9985 return -TARGET_EINVAL;
9986 }
9987 mask = arg2;
9988 target_to_host_old_sigset(&set, &mask);
9989
9990 ret = do_sigprocmask(how, &set, &oldset);
9991 if (!is_error(ret)) {
9992 host_to_target_old_sigset(&mask, &oldset);
9993 ret = mask;
9994 cpu_env->ir[IR_V0] = 0; /* force no error */
9995 }
9996 #else
9997 sigset_t set, oldset, *set_ptr;
9998 int how;
9999
10000 if (arg2) {
10001 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
10002 if (!p) {
10003 return -TARGET_EFAULT;
10004 }
10005 target_to_host_old_sigset(&set, p);
10006 unlock_user(p, arg2, 0);
10007 set_ptr = &set;
10008 switch (arg1) {
10009 case TARGET_SIG_BLOCK:
10010 how = SIG_BLOCK;
10011 break;
10012 case TARGET_SIG_UNBLOCK:
10013 how = SIG_UNBLOCK;
10014 break;
10015 case TARGET_SIG_SETMASK:
10016 how = SIG_SETMASK;
10017 break;
10018 default:
10019 return -TARGET_EINVAL;
10020 }
10021 } else {
10022 how = 0;
10023 set_ptr = NULL;
10024 }
10025 ret = do_sigprocmask(how, set_ptr, &oldset);
10026 if (!is_error(ret) && arg3) {
10027 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10028 return -TARGET_EFAULT;
10029 host_to_target_old_sigset(p, &oldset);
10030 unlock_user(p, arg3, sizeof(target_sigset_t));
10031 }
10032 #endif
10033 }
10034 return ret;
10035 #endif
10036 case TARGET_NR_rt_sigprocmask:
10037 {
10038 int how = arg1;
10039 sigset_t set, oldset, *set_ptr;
10040
10041 if (arg4 != sizeof(target_sigset_t)) {
10042 return -TARGET_EINVAL;
10043 }
10044
10045 if (arg2) {
10046 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
10047 if (!p) {
10048 return -TARGET_EFAULT;
10049 }
10050 target_to_host_sigset(&set, p);
10051 unlock_user(p, arg2, 0);
10052 set_ptr = &set;
10053 switch(how) {
10054 case TARGET_SIG_BLOCK:
10055 how = SIG_BLOCK;
10056 break;
10057 case TARGET_SIG_UNBLOCK:
10058 how = SIG_UNBLOCK;
10059 break;
10060 case TARGET_SIG_SETMASK:
10061 how = SIG_SETMASK;
10062 break;
10063 default:
10064 return -TARGET_EINVAL;
10065 }
10066 } else {
10067 how = 0;
10068 set_ptr = NULL;
10069 }
10070 ret = do_sigprocmask(how, set_ptr, &oldset);
10071 if (!is_error(ret) && arg3) {
10072 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10073 return -TARGET_EFAULT;
10074 host_to_target_sigset(p, &oldset);
10075 unlock_user(p, arg3, sizeof(target_sigset_t));
10076 }
10077 }
10078 return ret;
10079 #ifdef TARGET_NR_sigpending
10080 case TARGET_NR_sigpending:
10081 {
10082 sigset_t set;
10083 ret = get_errno(sigpending(&set));
10084 if (!is_error(ret)) {
10085 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10086 return -TARGET_EFAULT;
10087 host_to_target_old_sigset(p, &set);
10088 unlock_user(p, arg1, sizeof(target_sigset_t));
10089 }
10090 }
10091 return ret;
10092 #endif
10093 case TARGET_NR_rt_sigpending:
10094 {
10095 sigset_t set;
10096
10097 /* Yes, this check is >, not != like most. We follow the kernel's
10098 * logic and it does it like this because it implements
10099 * NR_sigpending through the same code path, and in that case
10100 * the old_sigset_t is smaller in size.
10101 */
10102 if (arg2 > sizeof(target_sigset_t)) {
10103 return -TARGET_EINVAL;
10104 }
10105
10106 ret = get_errno(sigpending(&set));
10107 if (!is_error(ret)) {
10108 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10109 return -TARGET_EFAULT;
10110 host_to_target_sigset(p, &set);
10111 unlock_user(p, arg1, sizeof(target_sigset_t));
10112 }
10113 }
10114 return ret;
10115 #ifdef TARGET_NR_sigsuspend
10116 case TARGET_NR_sigsuspend:
10117 {
10118 sigset_t *set;
10119
10120 #if defined(TARGET_ALPHA)
10121 TaskState *ts = get_task_state(cpu);
10122 /* target_to_host_old_sigset will bswap back */
10123 abi_ulong mask = tswapal(arg1);
10124 set = &ts->sigsuspend_mask;
10125 target_to_host_old_sigset(set, &mask);
10126 #else
10127 ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
10128 if (ret != 0) {
10129 return ret;
10130 }
10131 #endif
10132 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10133 finish_sigsuspend_mask(ret);
10134 }
10135 return ret;
10136 #endif
10137 case TARGET_NR_rt_sigsuspend:
10138 {
10139 sigset_t *set;
10140
10141 ret = process_sigsuspend_mask(&set, arg1, arg2);
10142 if (ret != 0) {
10143 return ret;
10144 }
10145 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10146 finish_sigsuspend_mask(ret);
10147 }
10148 return ret;
10149 #ifdef TARGET_NR_rt_sigtimedwait
10150 case TARGET_NR_rt_sigtimedwait:
10151 {
10152 sigset_t set;
10153 struct timespec uts, *puts;
10154 siginfo_t uinfo;
10155
10156 if (arg4 != sizeof(target_sigset_t)) {
10157 return -TARGET_EINVAL;
10158 }
10159
10160 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
10161 return -TARGET_EFAULT;
10162 target_to_host_sigset(&set, p);
10163 unlock_user(p, arg1, 0);
10164 if (arg3) {
10165 puts = &uts;
10166 if (target_to_host_timespec(puts, arg3)) {
10167 return -TARGET_EFAULT;
10168 }
10169 } else {
10170 puts = NULL;
10171 }
10172 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10173 SIGSET_T_SIZE));
10174 if (!is_error(ret)) {
10175 if (arg2) {
10176 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
10177 0);
10178 if (!p) {
10179 return -TARGET_EFAULT;
10180 }
10181 host_to_target_siginfo(p, &uinfo);
10182 unlock_user(p, arg2, sizeof(target_siginfo_t));
10183 }
10184 ret = host_to_target_signal(ret);
10185 }
10186 }
10187 return ret;
10188 #endif
10189 #ifdef TARGET_NR_rt_sigtimedwait_time64
10190 case TARGET_NR_rt_sigtimedwait_time64:
10191 {
10192 sigset_t set;
10193 struct timespec uts, *puts;
10194 siginfo_t uinfo;
10195
10196 if (arg4 != sizeof(target_sigset_t)) {
10197 return -TARGET_EINVAL;
10198 }
10199
10200 p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
10201 if (!p) {
10202 return -TARGET_EFAULT;
10203 }
10204 target_to_host_sigset(&set, p);
10205 unlock_user(p, arg1, 0);
10206 if (arg3) {
10207 puts = &uts;
10208 if (target_to_host_timespec64(puts, arg3)) {
10209 return -TARGET_EFAULT;
10210 }
10211 } else {
10212 puts = NULL;
10213 }
10214 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10215 SIGSET_T_SIZE));
10216 if (!is_error(ret)) {
10217 if (arg2) {
10218 p = lock_user(VERIFY_WRITE, arg2,
10219 sizeof(target_siginfo_t), 0);
10220 if (!p) {
10221 return -TARGET_EFAULT;
10222 }
10223 host_to_target_siginfo(p, &uinfo);
10224 unlock_user(p, arg2, sizeof(target_siginfo_t));
10225 }
10226 ret = host_to_target_signal(ret);
10227 }
10228 }
10229 return ret;
10230 #endif
10231 case TARGET_NR_rt_sigqueueinfo:
10232 {
10233 siginfo_t uinfo;
10234
10235 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
10236 if (!p) {
10237 return -TARGET_EFAULT;
10238 }
10239 target_to_host_siginfo(&uinfo, p);
10240 unlock_user(p, arg3, 0);
10241 ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
10242 }
10243 return ret;
10244 case TARGET_NR_rt_tgsigqueueinfo:
10245 {
10246 siginfo_t uinfo;
10247
10248 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
10249 if (!p) {
10250 return -TARGET_EFAULT;
10251 }
10252 target_to_host_siginfo(&uinfo, p);
10253 unlock_user(p, arg4, 0);
10254 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
10255 }
10256 return ret;
10257 #ifdef TARGET_NR_sigreturn
10258 case TARGET_NR_sigreturn:
10259 if (block_signals()) {
10260 return -QEMU_ERESTARTSYS;
10261 }
10262 return do_sigreturn(cpu_env);
10263 #endif
10264 case TARGET_NR_rt_sigreturn:
10265 if (block_signals()) {
10266 return -QEMU_ERESTARTSYS;
10267 }
10268 return do_rt_sigreturn(cpu_env);
10269 case TARGET_NR_sethostname:
10270 if (!(p = lock_user_string(arg1)))
10271 return -TARGET_EFAULT;
10272 ret = get_errno(sethostname(p, arg2));
10273 unlock_user(p, arg1, 0);
10274 return ret;
10275 #ifdef TARGET_NR_setrlimit
10276 case TARGET_NR_setrlimit:
10277 {
10278 int resource = target_to_host_resource(arg1);
10279 struct target_rlimit *target_rlim;
10280 struct rlimit rlim;
10281 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
10282 return -TARGET_EFAULT;
10283 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
10284 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
10285 unlock_user_struct(target_rlim, arg2, 0);
10286 /*
10287 * If we just passed through resource limit settings for memory then
10288 * they would also apply to QEMU's own allocations, and QEMU will
10289 * crash or hang or die if its allocations fail. Ideally we would
10290 * track the guest allocations in QEMU and apply the limits ourselves.
10291 * For now, just tell the guest the call succeeded but don't actually
10292 * limit anything.
10293 */
10294 if (resource != RLIMIT_AS &&
10295 resource != RLIMIT_DATA &&
10296 resource != RLIMIT_STACK) {
10297 return get_errno(setrlimit(resource, &rlim));
10298 } else {
10299 return 0;
10300 }
10301 }
10302 #endif
10303 #ifdef TARGET_NR_getrlimit
10304 case TARGET_NR_getrlimit:
10305 {
10306 int resource = target_to_host_resource(arg1);
10307 struct target_rlimit *target_rlim;
10308 struct rlimit rlim;
10309
10310 ret = get_errno(getrlimit(resource, &rlim));
10311 if (!is_error(ret)) {
10312 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10313 return -TARGET_EFAULT;
10314 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10315 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10316 unlock_user_struct(target_rlim, arg2, 1);
10317 }
10318 }
10319 return ret;
10320 #endif
10321 case TARGET_NR_getrusage:
10322 {
10323 struct rusage rusage;
10324 ret = get_errno(getrusage(arg1, &rusage));
10325 if (!is_error(ret)) {
10326 ret = host_to_target_rusage(arg2, &rusage);
10327 }
10328 }
10329 return ret;
10330 #if defined(TARGET_NR_gettimeofday)
10331 case TARGET_NR_gettimeofday:
10332 {
10333 struct timeval tv;
10334 struct timezone tz;
10335
10336 ret = get_errno(gettimeofday(&tv, &tz));
10337 if (!is_error(ret)) {
10338 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
10339 return -TARGET_EFAULT;
10340 }
10341 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
10342 return -TARGET_EFAULT;
10343 }
10344 }
10345 }
10346 return ret;
10347 #endif
10348 #if defined(TARGET_NR_settimeofday)
10349 case TARGET_NR_settimeofday:
10350 {
10351 struct timeval tv, *ptv = NULL;
10352 struct timezone tz, *ptz = NULL;
10353
10354 if (arg1) {
10355 if (copy_from_user_timeval(&tv, arg1)) {
10356 return -TARGET_EFAULT;
10357 }
10358 ptv = &tv;
10359 }
10360
10361 if (arg2) {
10362 if (copy_from_user_timezone(&tz, arg2)) {
10363 return -TARGET_EFAULT;
10364 }
10365 ptz = &tz;
10366 }
10367
10368 return get_errno(settimeofday(ptv, ptz));
10369 }
10370 #endif
10371 #if defined(TARGET_NR_select)
10372 case TARGET_NR_select:
10373 #if defined(TARGET_WANT_NI_OLD_SELECT)
10374 /* some architectures used to have old_select here
10375 * but now ENOSYS it.
10376 */
10377 ret = -TARGET_ENOSYS;
10378 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10379 ret = do_old_select(arg1);
10380 #else
10381 ret = do_select(arg1, arg2, arg3, arg4, arg5);
10382 #endif
10383 return ret;
10384 #endif
10385 #ifdef TARGET_NR_pselect6
10386 case TARGET_NR_pselect6:
10387 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
10388 #endif
10389 #ifdef TARGET_NR_pselect6_time64
10390 case TARGET_NR_pselect6_time64:
10391 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
10392 #endif
10393 #ifdef TARGET_NR_symlink
10394 case TARGET_NR_symlink:
10395 {
10396 void *p2;
10397 p = lock_user_string(arg1);
10398 p2 = lock_user_string(arg2);
10399 if (!p || !p2)
10400 ret = -TARGET_EFAULT;
10401 else
10402 ret = get_errno(symlink(p, p2));
10403 unlock_user(p2, arg2, 0);
10404 unlock_user(p, arg1, 0);
10405 }
10406 return ret;
10407 #endif
10408 #if defined(TARGET_NR_symlinkat)
10409 case TARGET_NR_symlinkat:
10410 {
10411 void *p2;
10412 p = lock_user_string(arg1);
10413 p2 = lock_user_string(arg3);
10414 if (!p || !p2)
10415 ret = -TARGET_EFAULT;
10416 else
10417 ret = get_errno(symlinkat(p, arg2, p2));
10418 unlock_user(p2, arg3, 0);
10419 unlock_user(p, arg1, 0);
10420 }
10421 return ret;
10422 #endif
10423 #ifdef TARGET_NR_readlink
10424 case TARGET_NR_readlink:
10425 {
10426 void *p2;
10427 p = lock_user_string(arg1);
10428 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10429 ret = get_errno(do_guest_readlink(p, p2, arg3));
10430 unlock_user(p2, arg2, ret);
10431 unlock_user(p, arg1, 0);
10432 }
10433 return ret;
10434 #endif
10435 #if defined(TARGET_NR_readlinkat)
10436 case TARGET_NR_readlinkat:
10437 {
10438 void *p2;
10439 p = lock_user_string(arg2);
10440 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10441 if (!p || !p2) {
10442 ret = -TARGET_EFAULT;
10443 } else if (!arg4) {
10444 /* Short circuit this for the magic exe check. */
10445 ret = -TARGET_EINVAL;
10446 } else if (is_proc_myself((const char *)p, "exe")) {
10447 /*
10448 * Don't worry about sign mismatch as earlier mapping
10449 * logic would have thrown a bad address error.
10450 */
10451 ret = MIN(strlen(exec_path), arg4);
10452 /* We cannot NUL terminate the string. */
10453 memcpy(p2, exec_path, ret);
10454 } else {
10455 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
10456 }
10457 unlock_user(p2, arg3, ret);
10458 unlock_user(p, arg2, 0);
10459 }
10460 return ret;
10461 #endif
10462 #ifdef TARGET_NR_swapon
10463 case TARGET_NR_swapon:
10464 if (!(p = lock_user_string(arg1)))
10465 return -TARGET_EFAULT;
10466 ret = get_errno(swapon(p, arg2));
10467 unlock_user(p, arg1, 0);
10468 return ret;
10469 #endif
10470 case TARGET_NR_reboot:
10471 if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
10472 /* arg4 must be ignored in all other cases */
10473 p = lock_user_string(arg4);
10474 if (!p) {
10475 return -TARGET_EFAULT;
10476 }
10477 ret = get_errno(reboot(arg1, arg2, arg3, p));
10478 unlock_user(p, arg4, 0);
10479 } else {
10480 ret = get_errno(reboot(arg1, arg2, arg3, NULL));
10481 }
10482 return ret;
10483 #ifdef TARGET_NR_mmap
10484 case TARGET_NR_mmap:
10485 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10486 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10487 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10488 || defined(TARGET_S390X)
10489 {
10490 abi_ulong *v;
10491 abi_ulong v1, v2, v3, v4, v5, v6;
10492 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
10493 return -TARGET_EFAULT;
10494 v1 = tswapal(v[0]);
10495 v2 = tswapal(v[1]);
10496 v3 = tswapal(v[2]);
10497 v4 = tswapal(v[3]);
10498 v5 = tswapal(v[4]);
10499 v6 = tswapal(v[5]);
10500 unlock_user(v, arg1, 0);
10501 return do_mmap(v1, v2, v3, v4, v5, v6);
10502 }
10503 #else
10504 /* mmap pointers are always untagged */
10505 return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6);
10506 #endif
10507 #endif
10508 #ifdef TARGET_NR_mmap2
10509 case TARGET_NR_mmap2:
10510 #ifndef MMAP_SHIFT
10511 #define MMAP_SHIFT 12
10512 #endif
10513 return do_mmap(arg1, arg2, arg3, arg4, arg5,
10514 (off_t)(abi_ulong)arg6 << MMAP_SHIFT);
10515 #endif
10516 case TARGET_NR_munmap:
10517 arg1 = cpu_untagged_addr(cpu, arg1);
10518 return get_errno(target_munmap(arg1, arg2));
10519 case TARGET_NR_mprotect:
10520 arg1 = cpu_untagged_addr(cpu, arg1);
10521 {
10522 TaskState *ts = get_task_state(cpu);
10523 /* Special hack to detect libc making the stack executable. */
10524 if ((arg3 & PROT_GROWSDOWN)
10525 && arg1 >= ts->info->stack_limit
10526 && arg1 <= ts->info->start_stack) {
10527 arg3 &= ~PROT_GROWSDOWN;
10528 arg2 = arg2 + arg1 - ts->info->stack_limit;
10529 arg1 = ts->info->stack_limit;
10530 }
10531 }
10532 return get_errno(target_mprotect(arg1, arg2, arg3));
10533 #ifdef TARGET_NR_mremap
10534 case TARGET_NR_mremap:
10535 arg1 = cpu_untagged_addr(cpu, arg1);
10536 /* mremap new_addr (arg5) is always untagged */
10537 return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10538 #endif
10539 /* ??? msync/mlock/munlock are broken for softmmu. */
10540 #ifdef TARGET_NR_msync
10541 case TARGET_NR_msync:
10542 return get_errno(msync(g2h(cpu, arg1), arg2,
10543 target_to_host_msync_arg(arg3)));
10544 #endif
10545 #ifdef TARGET_NR_mlock
10546 case TARGET_NR_mlock:
10547 return get_errno(mlock(g2h(cpu, arg1), arg2));
10548 #endif
10549 #ifdef TARGET_NR_munlock
10550 case TARGET_NR_munlock:
10551 return get_errno(munlock(g2h(cpu, arg1), arg2));
10552 #endif
10553 #ifdef TARGET_NR_mlockall
10554 case TARGET_NR_mlockall:
10555 return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10556 #endif
10557 #ifdef TARGET_NR_munlockall
10558 case TARGET_NR_munlockall:
10559 return get_errno(munlockall());
10560 #endif
10561 #ifdef TARGET_NR_truncate
10562 case TARGET_NR_truncate:
10563 if (!(p = lock_user_string(arg1)))
10564 return -TARGET_EFAULT;
10565 ret = get_errno(truncate(p, arg2));
10566 unlock_user(p, arg1, 0);
10567 return ret;
10568 #endif
10569 #ifdef TARGET_NR_ftruncate
10570 case TARGET_NR_ftruncate:
10571 return get_errno(ftruncate(arg1, arg2));
10572 #endif
10573 case TARGET_NR_fchmod:
10574 return get_errno(fchmod(arg1, arg2));
10575 #if defined(TARGET_NR_fchmodat)
10576 case TARGET_NR_fchmodat:
10577 if (!(p = lock_user_string(arg2)))
10578 return -TARGET_EFAULT;
10579 ret = get_errno(fchmodat(arg1, p, arg3, 0));
10580 unlock_user(p, arg2, 0);
10581 return ret;
10582 #endif
10583 case TARGET_NR_getpriority:
10584 /* Note that negative values are valid for getpriority, so we must
10585 differentiate based on errno settings. */
10586 errno = 0;
10587 ret = getpriority(arg1, arg2);
10588 if (ret == -1 && errno != 0) {
10589 return -host_to_target_errno(errno);
10590 }
10591 #ifdef TARGET_ALPHA
10592 /* Return value is the unbiased priority. Signal no error. */
10593 cpu_env->ir[IR_V0] = 0;
10594 #else
10595 /* Return value is a biased priority to avoid negative numbers. */
10596 ret = 20 - ret;
10597 #endif
10598 return ret;
10599 case TARGET_NR_setpriority:
10600 return get_errno(setpriority(arg1, arg2, arg3));
10601 #ifdef TARGET_NR_statfs
10602 case TARGET_NR_statfs:
10603 if (!(p = lock_user_string(arg1))) {
10604 return -TARGET_EFAULT;
10605 }
10606 ret = get_errno(statfs(path(p), &stfs));
10607 unlock_user(p, arg1, 0);
10608 convert_statfs:
10609 if (!is_error(ret)) {
10610 struct target_statfs *target_stfs;
10611
10612 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10613 return -TARGET_EFAULT;
10614 __put_user(stfs.f_type, &target_stfs->f_type);
10615 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10616 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10617 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10618 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10619 __put_user(stfs.f_files, &target_stfs->f_files);
10620 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10621 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10622 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10623 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10624 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10625 #ifdef _STATFS_F_FLAGS
10626 __put_user(stfs.f_flags, &target_stfs->f_flags);
10627 #else
10628 __put_user(0, &target_stfs->f_flags);
10629 #endif
10630 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10631 unlock_user_struct(target_stfs, arg2, 1);
10632 }
10633 return ret;
10634 #endif
10635 #ifdef TARGET_NR_fstatfs
10636 case TARGET_NR_fstatfs:
10637 ret = get_errno(fstatfs(arg1, &stfs));
10638 goto convert_statfs;
10639 #endif
10640 #ifdef TARGET_NR_statfs64
10641 case TARGET_NR_statfs64:
10642 if (!(p = lock_user_string(arg1))) {
10643 return -TARGET_EFAULT;
10644 }
10645 ret = get_errno(statfs(path(p), &stfs));
10646 unlock_user(p, arg1, 0);
10647 convert_statfs64:
10648 if (!is_error(ret)) {
10649 struct target_statfs64 *target_stfs;
10650
10651 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10652 return -TARGET_EFAULT;
10653 __put_user(stfs.f_type, &target_stfs->f_type);
10654 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10655 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10656 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10657 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10658 __put_user(stfs.f_files, &target_stfs->f_files);
10659 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10660 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10661 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10662 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10663 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10664 #ifdef _STATFS_F_FLAGS
10665 __put_user(stfs.f_flags, &target_stfs->f_flags);
10666 #else
10667 __put_user(0, &target_stfs->f_flags);
10668 #endif
10669 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10670 unlock_user_struct(target_stfs, arg3, 1);
10671 }
10672 return ret;
10673 case TARGET_NR_fstatfs64:
10674 ret = get_errno(fstatfs(arg1, &stfs));
10675 goto convert_statfs64;
10676 #endif
10677 #ifdef TARGET_NR_socketcall
10678 case TARGET_NR_socketcall:
10679 return do_socketcall(arg1, arg2);
10680 #endif
10681 #ifdef TARGET_NR_accept
10682 case TARGET_NR_accept:
10683 return do_accept4(arg1, arg2, arg3, 0);
10684 #endif
10685 #ifdef TARGET_NR_accept4
10686 case TARGET_NR_accept4:
10687 return do_accept4(arg1, arg2, arg3, arg4);
10688 #endif
10689 #ifdef TARGET_NR_bind
10690 case TARGET_NR_bind:
10691 return do_bind(arg1, arg2, arg3);
10692 #endif
10693 #ifdef TARGET_NR_connect
10694 case TARGET_NR_connect:
10695 return do_connect(arg1, arg2, arg3);
10696 #endif
10697 #ifdef TARGET_NR_getpeername
10698 case TARGET_NR_getpeername:
10699 return do_getpeername(arg1, arg2, arg3);
10700 #endif
10701 #ifdef TARGET_NR_getsockname
10702 case TARGET_NR_getsockname:
10703 return do_getsockname(arg1, arg2, arg3);
10704 #endif
10705 #ifdef TARGET_NR_getsockopt
10706 case TARGET_NR_getsockopt:
10707 return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10708 #endif
10709 #ifdef TARGET_NR_listen
10710 case TARGET_NR_listen:
10711 return get_errno(listen(arg1, arg2));
10712 #endif
10713 #ifdef TARGET_NR_recv
10714 case TARGET_NR_recv:
10715 return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10716 #endif
10717 #ifdef TARGET_NR_recvfrom
10718 case TARGET_NR_recvfrom:
10719 return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10720 #endif
10721 #ifdef TARGET_NR_recvmsg
10722 case TARGET_NR_recvmsg:
10723 return do_sendrecvmsg(arg1, arg2, arg3, 0);
10724 #endif
10725 #ifdef TARGET_NR_send
10726 case TARGET_NR_send:
10727 return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10728 #endif
10729 #ifdef TARGET_NR_sendmsg
10730 case TARGET_NR_sendmsg:
10731 return do_sendrecvmsg(arg1, arg2, arg3, 1);
10732 #endif
10733 #ifdef TARGET_NR_sendmmsg
10734 case TARGET_NR_sendmmsg:
10735 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10736 #endif
10737 #ifdef TARGET_NR_recvmmsg
10738 case TARGET_NR_recvmmsg:
10739 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10740 #endif
10741 #ifdef TARGET_NR_sendto
10742 case TARGET_NR_sendto:
10743 return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10744 #endif
10745 #ifdef TARGET_NR_shutdown
10746 case TARGET_NR_shutdown:
10747 return get_errno(shutdown(arg1, arg2));
10748 #endif
10749 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10750 case TARGET_NR_getrandom:
10751 p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10752 if (!p) {
10753 return -TARGET_EFAULT;
10754 }
10755 ret = get_errno(getrandom(p, arg2, arg3));
10756 unlock_user(p, arg1, ret);
10757 return ret;
10758 #endif
10759 #ifdef TARGET_NR_socket
10760 case TARGET_NR_socket:
10761 return do_socket(arg1, arg2, arg3);
10762 #endif
10763 #ifdef TARGET_NR_socketpair
10764 case TARGET_NR_socketpair:
10765 return do_socketpair(arg1, arg2, arg3, arg4);
10766 #endif
10767 #ifdef TARGET_NR_setsockopt
10768 case TARGET_NR_setsockopt:
10769 return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10770 #endif
10771 #if defined(TARGET_NR_syslog)
10772 case TARGET_NR_syslog:
10773 {
10774 int len = arg2;
10775
10776 switch (arg1) {
10777 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */
10778 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */
10779 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
10780 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */
10781 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */
10782 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10783 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */
10784 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */
10785 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10786 case TARGET_SYSLOG_ACTION_READ: /* Read from log */
10787 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */
10788 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */
10789 {
10790 if (len < 0) {
10791 return -TARGET_EINVAL;
10792 }
10793 if (len == 0) {
10794 return 0;
10795 }
10796 p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10797 if (!p) {
10798 return -TARGET_EFAULT;
10799 }
10800 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10801 unlock_user(p, arg2, arg3);
10802 }
10803 return ret;
10804 default:
10805 return -TARGET_EINVAL;
10806 }
10807 }
10808 break;
10809 #endif
10810 case TARGET_NR_setitimer:
10811 {
10812 struct itimerval value, ovalue, *pvalue;
10813
10814 if (arg2) {
10815 pvalue = &value;
10816 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10817 || copy_from_user_timeval(&pvalue->it_value,
10818 arg2 + sizeof(struct target_timeval)))
10819 return -TARGET_EFAULT;
10820 } else {
10821 pvalue = NULL;
10822 }
10823 ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10824 if (!is_error(ret) && arg3) {
10825 if (copy_to_user_timeval(arg3,
10826 &ovalue.it_interval)
10827 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10828 &ovalue.it_value))
10829 return -TARGET_EFAULT;
10830 }
10831 }
10832 return ret;
10833 case TARGET_NR_getitimer:
10834 {
10835 struct itimerval value;
10836
10837 ret = get_errno(getitimer(arg1, &value));
10838 if (!is_error(ret) && arg2) {
10839 if (copy_to_user_timeval(arg2,
10840 &value.it_interval)
10841 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10842 &value.it_value))
10843 return -TARGET_EFAULT;
10844 }
10845 }
10846 return ret;
10847 #ifdef TARGET_NR_stat
10848 case TARGET_NR_stat:
10849 if (!(p = lock_user_string(arg1))) {
10850 return -TARGET_EFAULT;
10851 }
10852 ret = get_errno(stat(path(p), &st));
10853 unlock_user(p, arg1, 0);
10854 goto do_stat;
10855 #endif
10856 #ifdef TARGET_NR_lstat
10857 case TARGET_NR_lstat:
10858 if (!(p = lock_user_string(arg1))) {
10859 return -TARGET_EFAULT;
10860 }
10861 ret = get_errno(lstat(path(p), &st));
10862 unlock_user(p, arg1, 0);
10863 goto do_stat;
10864 #endif
10865 #ifdef TARGET_NR_fstat
10866 case TARGET_NR_fstat:
10867 {
10868 ret = get_errno(fstat(arg1, &st));
10869 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10870 do_stat:
10871 #endif
10872 if (!is_error(ret)) {
10873 struct target_stat *target_st;
10874
10875 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10876 return -TARGET_EFAULT;
10877 memset(target_st, 0, sizeof(*target_st));
10878 __put_user(st.st_dev, &target_st->st_dev);
10879 __put_user(st.st_ino, &target_st->st_ino);
10880 __put_user(st.st_mode, &target_st->st_mode);
10881 __put_user(st.st_uid, &target_st->st_uid);
10882 __put_user(st.st_gid, &target_st->st_gid);
10883 __put_user(st.st_nlink, &target_st->st_nlink);
10884 __put_user(st.st_rdev, &target_st->st_rdev);
10885 __put_user(st.st_size, &target_st->st_size);
10886 __put_user(st.st_blksize, &target_st->st_blksize);
10887 __put_user(st.st_blocks, &target_st->st_blocks);
10888 __put_user(st.st_atime, &target_st->target_st_atime);
10889 __put_user(st.st_mtime, &target_st->target_st_mtime);
10890 __put_user(st.st_ctime, &target_st->target_st_ctime);
10891 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10892 __put_user(st.st_atim.tv_nsec,
10893 &target_st->target_st_atime_nsec);
10894 __put_user(st.st_mtim.tv_nsec,
10895 &target_st->target_st_mtime_nsec);
10896 __put_user(st.st_ctim.tv_nsec,
10897 &target_st->target_st_ctime_nsec);
10898 #endif
10899 unlock_user_struct(target_st, arg2, 1);
10900 }
10901 }
10902 return ret;
10903 #endif
10904 case TARGET_NR_vhangup:
10905 return get_errno(vhangup());
10906 #ifdef TARGET_NR_syscall
10907 case TARGET_NR_syscall:
10908 return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10909 arg6, arg7, arg8, 0);
10910 #endif
10911 #if defined(TARGET_NR_wait4)
10912 case TARGET_NR_wait4:
10913 {
10914 int status;
10915 abi_long status_ptr = arg2;
10916 struct rusage rusage, *rusage_ptr;
10917 abi_ulong target_rusage = arg4;
10918 abi_long rusage_err;
10919 if (target_rusage)
10920 rusage_ptr = &rusage;
10921 else
10922 rusage_ptr = NULL;
10923 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10924 if (!is_error(ret)) {
10925 if (status_ptr && ret) {
10926 status = host_to_target_waitstatus(status);
10927 if (put_user_s32(status, status_ptr))
10928 return -TARGET_EFAULT;
10929 }
10930 if (target_rusage) {
10931 rusage_err = host_to_target_rusage(target_rusage, &rusage);
10932 if (rusage_err) {
10933 ret = rusage_err;
10934 }
10935 }
10936 }
10937 }
10938 return ret;
10939 #endif
10940 #ifdef TARGET_NR_swapoff
10941 case TARGET_NR_swapoff:
10942 if (!(p = lock_user_string(arg1)))
10943 return -TARGET_EFAULT;
10944 ret = get_errno(swapoff(p));
10945 unlock_user(p, arg1, 0);
10946 return ret;
10947 #endif
10948 case TARGET_NR_sysinfo:
10949 {
10950 struct target_sysinfo *target_value;
10951 struct sysinfo value;
10952 ret = get_errno(sysinfo(&value));
10953 if (!is_error(ret) && arg1)
10954 {
10955 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10956 return -TARGET_EFAULT;
10957 __put_user(value.uptime, &target_value->uptime);
10958 __put_user(value.loads[0], &target_value->loads[0]);
10959 __put_user(value.loads[1], &target_value->loads[1]);
10960 __put_user(value.loads[2], &target_value->loads[2]);
10961 __put_user(value.totalram, &target_value->totalram);
10962 __put_user(value.freeram, &target_value->freeram);
10963 __put_user(value.sharedram, &target_value->sharedram);
10964 __put_user(value.bufferram, &target_value->bufferram);
10965 __put_user(value.totalswap, &target_value->totalswap);
10966 __put_user(value.freeswap, &target_value->freeswap);
10967 __put_user(value.procs, &target_value->procs);
10968 __put_user(value.totalhigh, &target_value->totalhigh);
10969 __put_user(value.freehigh, &target_value->freehigh);
10970 __put_user(value.mem_unit, &target_value->mem_unit);
10971 unlock_user_struct(target_value, arg1, 1);
10972 }
10973 }
10974 return ret;
10975 #ifdef TARGET_NR_ipc
10976 case TARGET_NR_ipc:
10977 return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10978 #endif
10979 #ifdef TARGET_NR_semget
10980 case TARGET_NR_semget:
10981 return get_errno(semget(arg1, arg2, arg3));
10982 #endif
10983 #ifdef TARGET_NR_semop
10984 case TARGET_NR_semop:
10985 return do_semtimedop(arg1, arg2, arg3, 0, false);
10986 #endif
10987 #ifdef TARGET_NR_semtimedop
10988 case TARGET_NR_semtimedop:
10989 return do_semtimedop(arg1, arg2, arg3, arg4, false);
10990 #endif
10991 #ifdef TARGET_NR_semtimedop_time64
10992 case TARGET_NR_semtimedop_time64:
10993 return do_semtimedop(arg1, arg2, arg3, arg4, true);
10994 #endif
10995 #ifdef TARGET_NR_semctl
10996 case TARGET_NR_semctl:
10997 return do_semctl(arg1, arg2, arg3, arg4);
10998 #endif
10999 #ifdef TARGET_NR_msgctl
11000 case TARGET_NR_msgctl:
11001 return do_msgctl(arg1, arg2, arg3);
11002 #endif
11003 #ifdef TARGET_NR_msgget
11004 case TARGET_NR_msgget:
11005 return get_errno(msgget(arg1, arg2));
11006 #endif
11007 #ifdef TARGET_NR_msgrcv
11008 case TARGET_NR_msgrcv:
11009 return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
11010 #endif
11011 #ifdef TARGET_NR_msgsnd
11012 case TARGET_NR_msgsnd:
11013 return do_msgsnd(arg1, arg2, arg3, arg4);
11014 #endif
11015 #ifdef TARGET_NR_shmget
11016 case TARGET_NR_shmget:
11017 return get_errno(shmget(arg1, arg2, arg3));
11018 #endif
11019 #ifdef TARGET_NR_shmctl
11020 case TARGET_NR_shmctl:
11021 return do_shmctl(arg1, arg2, arg3);
11022 #endif
11023 #ifdef TARGET_NR_shmat
11024 case TARGET_NR_shmat:
11025 return target_shmat(cpu_env, arg1, arg2, arg3);
11026 #endif
11027 #ifdef TARGET_NR_shmdt
11028 case TARGET_NR_shmdt:
11029 return target_shmdt(arg1);
11030 #endif
11031 case TARGET_NR_fsync:
11032 return get_errno(fsync(arg1));
11033 case TARGET_NR_clone:
11034 /* Linux manages to have three different orderings for its
11035 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
11036 * match the kernel's CONFIG_CLONE_* settings.
11037 * Microblaze is further special in that it uses a sixth
11038 * implicit argument to clone for the TLS pointer.
11039 */
11040 #if defined(TARGET_MICROBLAZE)
11041 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
11042 #elif defined(TARGET_CLONE_BACKWARDS)
11043 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
11044 #elif defined(TARGET_CLONE_BACKWARDS2)
11045 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
11046 #else
11047 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
11048 #endif
11049 return ret;
11050 #ifdef __NR_exit_group
11051 /* new thread calls */
11052 case TARGET_NR_exit_group:
11053 preexit_cleanup(cpu_env, arg1);
11054 return get_errno(exit_group(arg1));
11055 #endif
11056 case TARGET_NR_setdomainname:
11057 if (!(p = lock_user_string(arg1)))
11058 return -TARGET_EFAULT;
11059 ret = get_errno(setdomainname(p, arg2));
11060 unlock_user(p, arg1, 0);
11061 return ret;
11062 case TARGET_NR_uname:
11063 /* no need to transcode because we use the linux syscall */
11064 {
11065 struct new_utsname * buf;
11066
11067 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
11068 return -TARGET_EFAULT;
11069 ret = get_errno(sys_uname(buf));
11070 if (!is_error(ret)) {
11071 /* Overwrite the native machine name with whatever is being
11072 emulated. */
11073 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
11074 sizeof(buf->machine));
11075 /* Allow the user to override the reported release. */
11076 if (qemu_uname_release && *qemu_uname_release) {
11077 g_strlcpy(buf->release, qemu_uname_release,
11078 sizeof(buf->release));
11079 }
11080 }
11081 unlock_user_struct(buf, arg1, 1);
11082 }
11083 return ret;
11084 #ifdef TARGET_I386
11085 case TARGET_NR_modify_ldt:
11086 return do_modify_ldt(cpu_env, arg1, arg2, arg3);
11087 #if !defined(TARGET_X86_64)
11088 case TARGET_NR_vm86:
11089 return do_vm86(cpu_env, arg1, arg2);
11090 #endif
11091 #endif
11092 #if defined(TARGET_NR_adjtimex)
11093 case TARGET_NR_adjtimex:
11094 {
11095 struct timex host_buf;
11096
11097 if (target_to_host_timex(&host_buf, arg1) != 0) {
11098 return -TARGET_EFAULT;
11099 }
11100 ret = get_errno(adjtimex(&host_buf));
11101 if (!is_error(ret)) {
11102 if (host_to_target_timex(arg1, &host_buf) != 0) {
11103 return -TARGET_EFAULT;
11104 }
11105 }
11106 }
11107 return ret;
11108 #endif
11109 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
11110 case TARGET_NR_clock_adjtime:
11111 {
11112 struct timex htx;
11113
11114 if (target_to_host_timex(&htx, arg2) != 0) {
11115 return -TARGET_EFAULT;
11116 }
11117 ret = get_errno(clock_adjtime(arg1, &htx));
11118 if (!is_error(ret) && host_to_target_timex(arg2, &htx)) {
11119 return -TARGET_EFAULT;
11120 }
11121 }
11122 return ret;
11123 #endif
11124 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
11125 case TARGET_NR_clock_adjtime64:
11126 {
11127 struct timex htx;
11128
11129 if (target_to_host_timex64(&htx, arg2) != 0) {
11130 return -TARGET_EFAULT;
11131 }
11132 ret = get_errno(clock_adjtime(arg1, &htx));
11133 if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
11134 return -TARGET_EFAULT;
11135 }
11136 }
11137 return ret;
11138 #endif
11139 case TARGET_NR_getpgid:
11140 return get_errno(getpgid(arg1));
11141 case TARGET_NR_fchdir:
11142 return get_errno(fchdir(arg1));
11143 case TARGET_NR_personality:
11144 return get_errno(personality(arg1));
11145 #ifdef TARGET_NR__llseek /* Not on alpha */
11146 case TARGET_NR__llseek:
11147 {
11148 int64_t res;
11149 #if !defined(__NR_llseek)
11150 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
11151 if (res == -1) {
11152 ret = get_errno(res);
11153 } else {
11154 ret = 0;
11155 }
11156 #else
11157 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
11158 #endif
11159 if ((ret == 0) && put_user_s64(res, arg4)) {
11160 return -TARGET_EFAULT;
11161 }
11162 }
11163 return ret;
11164 #endif
11165 #ifdef TARGET_NR_getdents
11166 case TARGET_NR_getdents:
11167 return do_getdents(arg1, arg2, arg3);
11168 #endif /* TARGET_NR_getdents */
11169 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11170 case TARGET_NR_getdents64:
11171 return do_getdents64(arg1, arg2, arg3);
11172 #endif /* TARGET_NR_getdents64 */
11173 #if defined(TARGET_NR__newselect)
11174 case TARGET_NR__newselect:
11175 return do_select(arg1, arg2, arg3, arg4, arg5);
11176 #endif
11177 #ifdef TARGET_NR_poll
11178 case TARGET_NR_poll:
11179 return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
11180 #endif
11181 #ifdef TARGET_NR_ppoll
11182 case TARGET_NR_ppoll:
11183 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
11184 #endif
11185 #ifdef TARGET_NR_ppoll_time64
11186 case TARGET_NR_ppoll_time64:
11187 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
11188 #endif
11189 case TARGET_NR_flock:
11190 /* NOTE: the flock constant seems to be the same for every
11191 Linux platform */
11192 return get_errno(safe_flock(arg1, arg2));
11193 case TARGET_NR_readv:
11194 {
11195 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11196 if (vec != NULL) {
11197 ret = get_errno(safe_readv(arg1, vec, arg3));
11198 unlock_iovec(vec, arg2, arg3, 1);
11199 } else {
11200 ret = -host_to_target_errno(errno);
11201 }
11202 }
11203 return ret;
11204 case TARGET_NR_writev:
11205 {
11206 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11207 if (vec != NULL) {
11208 ret = get_errno(safe_writev(arg1, vec, arg3));
11209 unlock_iovec(vec, arg2, arg3, 0);
11210 } else {
11211 ret = -host_to_target_errno(errno);
11212 }
11213 }
11214 return ret;
11215 #if defined(TARGET_NR_preadv)
11216 case TARGET_NR_preadv:
11217 {
11218 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11219 if (vec != NULL) {
11220 unsigned long low, high;
11221
11222 target_to_host_low_high(arg4, arg5, &low, &high);
11223 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
11224 unlock_iovec(vec, arg2, arg3, 1);
11225 } else {
11226 ret = -host_to_target_errno(errno);
11227 }
11228 }
11229 return ret;
11230 #endif
11231 #if defined(TARGET_NR_pwritev)
11232 case TARGET_NR_pwritev:
11233 {
11234 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11235 if (vec != NULL) {
11236 unsigned long low, high;
11237
11238 target_to_host_low_high(arg4, arg5, &low, &high);
11239 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
11240 unlock_iovec(vec, arg2, arg3, 0);
11241 } else {
11242 ret = -host_to_target_errno(errno);
11243 }
11244 }
11245 return ret;
11246 #endif
11247 case TARGET_NR_getsid:
11248 return get_errno(getsid(arg1));
11249 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11250 case TARGET_NR_fdatasync:
11251 return get_errno(fdatasync(arg1));
11252 #endif
11253 case TARGET_NR_sched_getaffinity:
11254 {
11255 unsigned int mask_size;
11256 unsigned long *mask;
11257
11258 /*
11259 * sched_getaffinity needs multiples of ulong, so need to take
11260 * care of mismatches between target ulong and host ulong sizes.
11261 */
11262 if (arg2 & (sizeof(abi_ulong) - 1)) {
11263 return -TARGET_EINVAL;
11264 }
11265 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11266
11267 mask = alloca(mask_size);
11268 memset(mask, 0, mask_size);
11269 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
11270
11271 if (!is_error(ret)) {
11272 if (ret > arg2) {
11273 /* More data returned than the caller's buffer will fit.
11274 * This only happens if sizeof(abi_long) < sizeof(long)
11275 * and the caller passed us a buffer holding an odd number
11276 * of abi_longs. If the host kernel is actually using the
11277 * extra 4 bytes then fail EINVAL; otherwise we can just
11278 * ignore them and only copy the interesting part.
11279 */
11280 int numcpus = sysconf(_SC_NPROCESSORS_CONF);
11281 if (numcpus > arg2 * 8) {
11282 return -TARGET_EINVAL;
11283 }
11284 ret = arg2;
11285 }
11286
11287 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
11288 return -TARGET_EFAULT;
11289 }
11290 }
11291 }
11292 return ret;
11293 case TARGET_NR_sched_setaffinity:
11294 {
11295 unsigned int mask_size;
11296 unsigned long *mask;
11297
11298 /*
11299 * sched_setaffinity needs multiples of ulong, so need to take
11300 * care of mismatches between target ulong and host ulong sizes.
11301 */
11302 if (arg2 & (sizeof(abi_ulong) - 1)) {
11303 return -TARGET_EINVAL;
11304 }
11305 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11306 mask = alloca(mask_size);
11307
11308 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
11309 if (ret) {
11310 return ret;
11311 }
11312
11313 return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
11314 }
11315 case TARGET_NR_getcpu:
11316 {
11317 unsigned cpuid, node;
11318 ret = get_errno(sys_getcpu(arg1 ? &cpuid : NULL,
11319 arg2 ? &node : NULL,
11320 NULL));
11321 if (is_error(ret)) {
11322 return ret;
11323 }
11324 if (arg1 && put_user_u32(cpuid, arg1)) {
11325 return -TARGET_EFAULT;
11326 }
11327 if (arg2 && put_user_u32(node, arg2)) {
11328 return -TARGET_EFAULT;
11329 }
11330 }
11331 return ret;
11332 case TARGET_NR_sched_setparam:
11333 {
11334 struct target_sched_param *target_schp;
11335 struct sched_param schp;
11336
11337 if (arg2 == 0) {
11338 return -TARGET_EINVAL;
11339 }
11340 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
11341 return -TARGET_EFAULT;
11342 }
11343 schp.sched_priority = tswap32(target_schp->sched_priority);
11344 unlock_user_struct(target_schp, arg2, 0);
11345 return get_errno(sys_sched_setparam(arg1, &schp));
11346 }
11347 case TARGET_NR_sched_getparam:
11348 {
11349 struct target_sched_param *target_schp;
11350 struct sched_param schp;
11351
11352 if (arg2 == 0) {
11353 return -TARGET_EINVAL;
11354 }
11355 ret = get_errno(sys_sched_getparam(arg1, &schp));
11356 if (!is_error(ret)) {
11357 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
11358 return -TARGET_EFAULT;
11359 }
11360 target_schp->sched_priority = tswap32(schp.sched_priority);
11361 unlock_user_struct(target_schp, arg2, 1);
11362 }
11363 }
11364 return ret;
11365 case TARGET_NR_sched_setscheduler:
11366 {
11367 struct target_sched_param *target_schp;
11368 struct sched_param schp;
11369 if (arg3 == 0) {
11370 return -TARGET_EINVAL;
11371 }
11372 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
11373 return -TARGET_EFAULT;
11374 }
11375 schp.sched_priority = tswap32(target_schp->sched_priority);
11376 unlock_user_struct(target_schp, arg3, 0);
11377 return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
11378 }
11379 case TARGET_NR_sched_getscheduler:
11380 return get_errno(sys_sched_getscheduler(arg1));
11381 case TARGET_NR_sched_getattr:
11382 {
11383 struct target_sched_attr *target_scha;
11384 struct sched_attr scha;
11385 if (arg2 == 0) {
11386 return -TARGET_EINVAL;
11387 }
11388 if (arg3 > sizeof(scha)) {
11389 arg3 = sizeof(scha);
11390 }
11391 ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
11392 if (!is_error(ret)) {
11393 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11394 if (!target_scha) {
11395 return -TARGET_EFAULT;
11396 }
11397 target_scha->size = tswap32(scha.size);
11398 target_scha->sched_policy = tswap32(scha.sched_policy);
11399 target_scha->sched_flags = tswap64(scha.sched_flags);
11400 target_scha->sched_nice = tswap32(scha.sched_nice);
11401 target_scha->sched_priority = tswap32(scha.sched_priority);
11402 target_scha->sched_runtime = tswap64(scha.sched_runtime);
11403 target_scha->sched_deadline = tswap64(scha.sched_deadline);
11404 target_scha->sched_period = tswap64(scha.sched_period);
11405 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
11406 target_scha->sched_util_min = tswap32(scha.sched_util_min);
11407 target_scha->sched_util_max = tswap32(scha.sched_util_max);
11408 }
11409 unlock_user(target_scha, arg2, arg3);
11410 }
11411 return ret;
11412 }
11413 case TARGET_NR_sched_setattr:
11414 {
11415 struct target_sched_attr *target_scha;
11416 struct sched_attr scha;
11417 uint32_t size;
11418 int zeroed;
11419 if (arg2 == 0) {
11420 return -TARGET_EINVAL;
11421 }
11422 if (get_user_u32(size, arg2)) {
11423 return -TARGET_EFAULT;
11424 }
11425 if (!size) {
11426 size = offsetof(struct target_sched_attr, sched_util_min);
11427 }
11428 if (size < offsetof(struct target_sched_attr, sched_util_min)) {
11429 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11430 return -TARGET_EFAULT;
11431 }
11432 return -TARGET_E2BIG;
11433 }
11434
11435 zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
11436 if (zeroed < 0) {
11437 return zeroed;
11438 } else if (zeroed == 0) {
11439 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11440 return -TARGET_EFAULT;
11441 }
11442 return -TARGET_E2BIG;
11443 }
11444 if (size > sizeof(struct target_sched_attr)) {
11445 size = sizeof(struct target_sched_attr);
11446 }
11447
11448 target_scha = lock_user(VERIFY_READ, arg2, size, 1);
11449 if (!target_scha) {
11450 return -TARGET_EFAULT;
11451 }
11452 scha.size = size;
11453 scha.sched_policy = tswap32(target_scha->sched_policy);
11454 scha.sched_flags = tswap64(target_scha->sched_flags);
11455 scha.sched_nice = tswap32(target_scha->sched_nice);
11456 scha.sched_priority = tswap32(target_scha->sched_priority);
11457 scha.sched_runtime = tswap64(target_scha->sched_runtime);
11458 scha.sched_deadline = tswap64(target_scha->sched_deadline);
11459 scha.sched_period = tswap64(target_scha->sched_period);
11460 if (size > offsetof(struct target_sched_attr, sched_util_min)) {
11461 scha.sched_util_min = tswap32(target_scha->sched_util_min);
11462 scha.sched_util_max = tswap32(target_scha->sched_util_max);
11463 }
11464 unlock_user(target_scha, arg2, 0);
11465 return get_errno(sys_sched_setattr(arg1, &scha, arg3));
11466 }
11467 case TARGET_NR_sched_yield:
11468 return get_errno(sched_yield());
11469 case TARGET_NR_sched_get_priority_max:
11470 return get_errno(sched_get_priority_max(arg1));
11471 case TARGET_NR_sched_get_priority_min:
11472 return get_errno(sched_get_priority_min(arg1));
11473 #ifdef TARGET_NR_sched_rr_get_interval
11474 case TARGET_NR_sched_rr_get_interval:
11475 {
11476 struct timespec ts;
11477 ret = get_errno(sched_rr_get_interval(arg1, &ts));
11478 if (!is_error(ret)) {
11479 ret = host_to_target_timespec(arg2, &ts);
11480 }
11481 }
11482 return ret;
11483 #endif
11484 #ifdef TARGET_NR_sched_rr_get_interval_time64
11485 case TARGET_NR_sched_rr_get_interval_time64:
11486 {
11487 struct timespec ts;
11488 ret = get_errno(sched_rr_get_interval(arg1, &ts));
11489 if (!is_error(ret)) {
11490 ret = host_to_target_timespec64(arg2, &ts);
11491 }
11492 }
11493 return ret;
11494 #endif
11495 #if defined(TARGET_NR_nanosleep)
11496 case TARGET_NR_nanosleep:
11497 {
11498 struct timespec req, rem;
11499 target_to_host_timespec(&req, arg1);
11500 ret = get_errno(safe_nanosleep(&req, &rem));
11501 if (is_error(ret) && arg2) {
11502 host_to_target_timespec(arg2, &rem);
11503 }
11504 }
11505 return ret;
11506 #endif
11507 case TARGET_NR_prctl:
11508 return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11509 break;
11510 #ifdef TARGET_NR_arch_prctl
11511 case TARGET_NR_arch_prctl:
11512 return do_arch_prctl(cpu_env, arg1, arg2);
11513 #endif
11514 #ifdef TARGET_NR_pread64
11515 case TARGET_NR_pread64:
11516 if (regpairs_aligned(cpu_env, num)) {
11517 arg4 = arg5;
11518 arg5 = arg6;
11519 }
11520 if (arg2 == 0 && arg3 == 0) {
11521 /* Special-case NULL buffer and zero length, which should succeed */
11522 p = 0;
11523 } else {
11524 p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11525 if (!p) {
11526 return -TARGET_EFAULT;
11527 }
11528 }
11529 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11530 unlock_user(p, arg2, ret);
11531 return ret;
11532 case TARGET_NR_pwrite64:
11533 if (regpairs_aligned(cpu_env, num)) {
11534 arg4 = arg5;
11535 arg5 = arg6;
11536 }
11537 if (arg2 == 0 && arg3 == 0) {
11538 /* Special-case NULL buffer and zero length, which should succeed */
11539 p = 0;
11540 } else {
11541 p = lock_user(VERIFY_READ, arg2, arg3, 1);
11542 if (!p) {
11543 return -TARGET_EFAULT;
11544 }
11545 }
11546 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11547 unlock_user(p, arg2, 0);
11548 return ret;
11549 #endif
11550 case TARGET_NR_getcwd:
11551 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11552 return -TARGET_EFAULT;
11553 ret = get_errno(sys_getcwd1(p, arg2));
11554 unlock_user(p, arg1, ret);
11555 return ret;
11556 case TARGET_NR_capget:
11557 case TARGET_NR_capset:
11558 {
11559 struct target_user_cap_header *target_header;
11560 struct target_user_cap_data *target_data = NULL;
11561 struct __user_cap_header_struct header;
11562 struct __user_cap_data_struct data[2];
11563 struct __user_cap_data_struct *dataptr = NULL;
11564 int i, target_datalen;
11565 int data_items = 1;
11566
11567 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11568 return -TARGET_EFAULT;
11569 }
11570 header.version = tswap32(target_header->version);
11571 header.pid = tswap32(target_header->pid);
11572
11573 if (header.version != _LINUX_CAPABILITY_VERSION) {
11574 /* Version 2 and up takes pointer to two user_data structs */
11575 data_items = 2;
11576 }
11577
11578 target_datalen = sizeof(*target_data) * data_items;
11579
11580 if (arg2) {
11581 if (num == TARGET_NR_capget) {
11582 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11583 } else {
11584 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11585 }
11586 if (!target_data) {
11587 unlock_user_struct(target_header, arg1, 0);
11588 return -TARGET_EFAULT;
11589 }
11590
11591 if (num == TARGET_NR_capset) {
11592 for (i = 0; i < data_items; i++) {
11593 data[i].effective = tswap32(target_data[i].effective);
11594 data[i].permitted = tswap32(target_data[i].permitted);
11595 data[i].inheritable = tswap32(target_data[i].inheritable);
11596 }
11597 }
11598
11599 dataptr = data;
11600 }
11601
11602 if (num == TARGET_NR_capget) {
11603 ret = get_errno(capget(&header, dataptr));
11604 } else {
11605 ret = get_errno(capset(&header, dataptr));
11606 }
11607
11608 /* The kernel always updates version for both capget and capset */
11609 target_header->version = tswap32(header.version);
11610 unlock_user_struct(target_header, arg1, 1);
11611
11612 if (arg2) {
11613 if (num == TARGET_NR_capget) {
11614 for (i = 0; i < data_items; i++) {
11615 target_data[i].effective = tswap32(data[i].effective);
11616 target_data[i].permitted = tswap32(data[i].permitted);
11617 target_data[i].inheritable = tswap32(data[i].inheritable);
11618 }
11619 unlock_user(target_data, arg2, target_datalen);
11620 } else {
11621 unlock_user(target_data, arg2, 0);
11622 }
11623 }
11624 return ret;
11625 }
11626 case TARGET_NR_sigaltstack:
11627 return do_sigaltstack(arg1, arg2, cpu_env);
11628
11629 #ifdef CONFIG_SENDFILE
11630 #ifdef TARGET_NR_sendfile
11631 case TARGET_NR_sendfile:
11632 {
11633 off_t *offp = NULL;
11634 off_t off;
11635 if (arg3) {
11636 ret = get_user_sal(off, arg3);
11637 if (is_error(ret)) {
11638 return ret;
11639 }
11640 offp = &off;
11641 }
11642 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11643 if (!is_error(ret) && arg3) {
11644 abi_long ret2 = put_user_sal(off, arg3);
11645 if (is_error(ret2)) {
11646 ret = ret2;
11647 }
11648 }
11649 return ret;
11650 }
11651 #endif
11652 #ifdef TARGET_NR_sendfile64
11653 case TARGET_NR_sendfile64:
11654 {
11655 off_t *offp = NULL;
11656 off_t off;
11657 if (arg3) {
11658 ret = get_user_s64(off, arg3);
11659 if (is_error(ret)) {
11660 return ret;
11661 }
11662 offp = &off;
11663 }
11664 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11665 if (!is_error(ret) && arg3) {
11666 abi_long ret2 = put_user_s64(off, arg3);
11667 if (is_error(ret2)) {
11668 ret = ret2;
11669 }
11670 }
11671 return ret;
11672 }
11673 #endif
11674 #endif
11675 #ifdef TARGET_NR_vfork
11676 case TARGET_NR_vfork:
11677 return get_errno(do_fork(cpu_env,
11678 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11679 0, 0, 0, 0));
11680 #endif
11681 #ifdef TARGET_NR_ugetrlimit
11682 case TARGET_NR_ugetrlimit:
11683 {
11684 struct rlimit rlim;
11685 int resource = target_to_host_resource(arg1);
11686 ret = get_errno(getrlimit(resource, &rlim));
11687 if (!is_error(ret)) {
11688 struct target_rlimit *target_rlim;
11689 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11690 return -TARGET_EFAULT;
11691 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11692 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11693 unlock_user_struct(target_rlim, arg2, 1);
11694 }
11695 return ret;
11696 }
11697 #endif
11698 #ifdef TARGET_NR_truncate64
11699 case TARGET_NR_truncate64:
11700 if (!(p = lock_user_string(arg1)))
11701 return -TARGET_EFAULT;
11702 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11703 unlock_user(p, arg1, 0);
11704 return ret;
11705 #endif
11706 #ifdef TARGET_NR_ftruncate64
11707 case TARGET_NR_ftruncate64:
11708 return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11709 #endif
11710 #ifdef TARGET_NR_stat64
11711 case TARGET_NR_stat64:
11712 if (!(p = lock_user_string(arg1))) {
11713 return -TARGET_EFAULT;
11714 }
11715 ret = get_errno(stat(path(p), &st));
11716 unlock_user(p, arg1, 0);
11717 if (!is_error(ret))
11718 ret = host_to_target_stat64(cpu_env, arg2, &st);
11719 return ret;
11720 #endif
11721 #ifdef TARGET_NR_lstat64
11722 case TARGET_NR_lstat64:
11723 if (!(p = lock_user_string(arg1))) {
11724 return -TARGET_EFAULT;
11725 }
11726 ret = get_errno(lstat(path(p), &st));
11727 unlock_user(p, arg1, 0);
11728 if (!is_error(ret))
11729 ret = host_to_target_stat64(cpu_env, arg2, &st);
11730 return ret;
11731 #endif
11732 #ifdef TARGET_NR_fstat64
11733 case TARGET_NR_fstat64:
11734 ret = get_errno(fstat(arg1, &st));
11735 if (!is_error(ret))
11736 ret = host_to_target_stat64(cpu_env, arg2, &st);
11737 return ret;
11738 #endif
11739 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11740 #ifdef TARGET_NR_fstatat64
11741 case TARGET_NR_fstatat64:
11742 #endif
11743 #ifdef TARGET_NR_newfstatat
11744 case TARGET_NR_newfstatat:
11745 #endif
11746 if (!(p = lock_user_string(arg2))) {
11747 return -TARGET_EFAULT;
11748 }
11749 ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11750 unlock_user(p, arg2, 0);
11751 if (!is_error(ret))
11752 ret = host_to_target_stat64(cpu_env, arg3, &st);
11753 return ret;
11754 #endif
11755 #if defined(TARGET_NR_statx)
11756 case TARGET_NR_statx:
11757 {
11758 struct target_statx *target_stx;
11759 int dirfd = arg1;
11760 int flags = arg3;
11761
11762 p = lock_user_string(arg2);
11763 if (p == NULL) {
11764 return -TARGET_EFAULT;
11765 }
11766 #if defined(__NR_statx)
11767 {
11768 /*
11769 * It is assumed that struct statx is architecture independent.
11770 */
11771 struct target_statx host_stx;
11772 int mask = arg4;
11773
11774 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11775 if (!is_error(ret)) {
11776 if (host_to_target_statx(&host_stx, arg5) != 0) {
11777 unlock_user(p, arg2, 0);
11778 return -TARGET_EFAULT;
11779 }
11780 }
11781
11782 if (ret != -TARGET_ENOSYS) {
11783 unlock_user(p, arg2, 0);
11784 return ret;
11785 }
11786 }
11787 #endif
11788 ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11789 unlock_user(p, arg2, 0);
11790
11791 if (!is_error(ret)) {
11792 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11793 return -TARGET_EFAULT;
11794 }
11795 memset(target_stx, 0, sizeof(*target_stx));
11796 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11797 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11798 __put_user(st.st_ino, &target_stx->stx_ino);
11799 __put_user(st.st_mode, &target_stx->stx_mode);
11800 __put_user(st.st_uid, &target_stx->stx_uid);
11801 __put_user(st.st_gid, &target_stx->stx_gid);
11802 __put_user(st.st_nlink, &target_stx->stx_nlink);
11803 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11804 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11805 __put_user(st.st_size, &target_stx->stx_size);
11806 __put_user(st.st_blksize, &target_stx->stx_blksize);
11807 __put_user(st.st_blocks, &target_stx->stx_blocks);
11808 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11809 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11810 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11811 unlock_user_struct(target_stx, arg5, 1);
11812 }
11813 }
11814 return ret;
11815 #endif
11816 #ifdef TARGET_NR_lchown
11817 case TARGET_NR_lchown:
11818 if (!(p = lock_user_string(arg1)))
11819 return -TARGET_EFAULT;
11820 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11821 unlock_user(p, arg1, 0);
11822 return ret;
11823 #endif
11824 #ifdef TARGET_NR_getuid
11825 case TARGET_NR_getuid:
11826 return get_errno(high2lowuid(getuid()));
11827 #endif
11828 #ifdef TARGET_NR_getgid
11829 case TARGET_NR_getgid:
11830 return get_errno(high2lowgid(getgid()));
11831 #endif
11832 #ifdef TARGET_NR_geteuid
11833 case TARGET_NR_geteuid:
11834 return get_errno(high2lowuid(geteuid()));
11835 #endif
11836 #ifdef TARGET_NR_getegid
11837 case TARGET_NR_getegid:
11838 return get_errno(high2lowgid(getegid()));
11839 #endif
11840 case TARGET_NR_setreuid:
11841 return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11842 case TARGET_NR_setregid:
11843 return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11844 case TARGET_NR_getgroups:
11845 { /* the same code as for TARGET_NR_getgroups32 */
11846 int gidsetsize = arg1;
11847 target_id *target_grouplist;
11848 g_autofree gid_t *grouplist = NULL;
11849 int i;
11850
11851 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11852 return -TARGET_EINVAL;
11853 }
11854 if (gidsetsize > 0) {
11855 grouplist = g_try_new(gid_t, gidsetsize);
11856 if (!grouplist) {
11857 return -TARGET_ENOMEM;
11858 }
11859 }
11860 ret = get_errno(getgroups(gidsetsize, grouplist));
11861 if (!is_error(ret) && gidsetsize > 0) {
11862 target_grouplist = lock_user(VERIFY_WRITE, arg2,
11863 gidsetsize * sizeof(target_id), 0);
11864 if (!target_grouplist) {
11865 return -TARGET_EFAULT;
11866 }
11867 for (i = 0; i < ret; i++) {
11868 target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11869 }
11870 unlock_user(target_grouplist, arg2,
11871 gidsetsize * sizeof(target_id));
11872 }
11873 return ret;
11874 }
11875 case TARGET_NR_setgroups:
11876 { /* the same code as for TARGET_NR_setgroups32 */
11877 int gidsetsize = arg1;
11878 target_id *target_grouplist;
11879 g_autofree gid_t *grouplist = NULL;
11880 int i;
11881
11882 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11883 return -TARGET_EINVAL;
11884 }
11885 if (gidsetsize > 0) {
11886 grouplist = g_try_new(gid_t, gidsetsize);
11887 if (!grouplist) {
11888 return -TARGET_ENOMEM;
11889 }
11890 target_grouplist = lock_user(VERIFY_READ, arg2,
11891 gidsetsize * sizeof(target_id), 1);
11892 if (!target_grouplist) {
11893 return -TARGET_EFAULT;
11894 }
11895 for (i = 0; i < gidsetsize; i++) {
11896 grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11897 }
11898 unlock_user(target_grouplist, arg2,
11899 gidsetsize * sizeof(target_id));
11900 }
11901 return get_errno(sys_setgroups(gidsetsize, grouplist));
11902 }
11903 case TARGET_NR_fchown:
11904 return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11905 #if defined(TARGET_NR_fchownat)
11906 case TARGET_NR_fchownat:
11907 if (!(p = lock_user_string(arg2)))
11908 return -TARGET_EFAULT;
11909 ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11910 low2highgid(arg4), arg5));
11911 unlock_user(p, arg2, 0);
11912 return ret;
11913 #endif
11914 #ifdef TARGET_NR_setresuid
11915 case TARGET_NR_setresuid:
11916 return get_errno(sys_setresuid(low2highuid(arg1),
11917 low2highuid(arg2),
11918 low2highuid(arg3)));
11919 #endif
11920 #ifdef TARGET_NR_getresuid
11921 case TARGET_NR_getresuid:
11922 {
11923 uid_t ruid, euid, suid;
11924 ret = get_errno(getresuid(&ruid, &euid, &suid));
11925 if (!is_error(ret)) {
11926 if (put_user_id(high2lowuid(ruid), arg1)
11927 || put_user_id(high2lowuid(euid), arg2)
11928 || put_user_id(high2lowuid(suid), arg3))
11929 return -TARGET_EFAULT;
11930 }
11931 }
11932 return ret;
11933 #endif
11934 #ifdef TARGET_NR_getresgid
11935 case TARGET_NR_setresgid:
11936 return get_errno(sys_setresgid(low2highgid(arg1),
11937 low2highgid(arg2),
11938 low2highgid(arg3)));
11939 #endif
11940 #ifdef TARGET_NR_getresgid
11941 case TARGET_NR_getresgid:
11942 {
11943 gid_t rgid, egid, sgid;
11944 ret = get_errno(getresgid(&rgid, &egid, &sgid));
11945 if (!is_error(ret)) {
11946 if (put_user_id(high2lowgid(rgid), arg1)
11947 || put_user_id(high2lowgid(egid), arg2)
11948 || put_user_id(high2lowgid(sgid), arg3))
11949 return -TARGET_EFAULT;
11950 }
11951 }
11952 return ret;
11953 #endif
11954 #ifdef TARGET_NR_chown
11955 case TARGET_NR_chown:
11956 if (!(p = lock_user_string(arg1)))
11957 return -TARGET_EFAULT;
11958 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11959 unlock_user(p, arg1, 0);
11960 return ret;
11961 #endif
11962 case TARGET_NR_setuid:
11963 return get_errno(sys_setuid(low2highuid(arg1)));
11964 case TARGET_NR_setgid:
11965 return get_errno(sys_setgid(low2highgid(arg1)));
11966 case TARGET_NR_setfsuid:
11967 return get_errno(setfsuid(arg1));
11968 case TARGET_NR_setfsgid:
11969 return get_errno(setfsgid(arg1));
11970
11971 #ifdef TARGET_NR_lchown32
11972 case TARGET_NR_lchown32:
11973 if (!(p = lock_user_string(arg1)))
11974 return -TARGET_EFAULT;
11975 ret = get_errno(lchown(p, arg2, arg3));
11976 unlock_user(p, arg1, 0);
11977 return ret;
11978 #endif
11979 #ifdef TARGET_NR_getuid32
11980 case TARGET_NR_getuid32:
11981 return get_errno(getuid());
11982 #endif
11983
11984 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11985 /* Alpha specific */
11986 case TARGET_NR_getxuid:
11987 {
11988 uid_t euid;
11989 euid=geteuid();
11990 cpu_env->ir[IR_A4]=euid;
11991 }
11992 return get_errno(getuid());
11993 #endif
11994 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11995 /* Alpha specific */
11996 case TARGET_NR_getxgid:
11997 {
11998 uid_t egid;
11999 egid=getegid();
12000 cpu_env->ir[IR_A4]=egid;
12001 }
12002 return get_errno(getgid());
12003 #endif
12004 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
12005 /* Alpha specific */
12006 case TARGET_NR_osf_getsysinfo:
12007 ret = -TARGET_EOPNOTSUPP;
12008 switch (arg1) {
12009 case TARGET_GSI_IEEE_FP_CONTROL:
12010 {
12011 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
12012 uint64_t swcr = cpu_env->swcr;
12013
12014 swcr &= ~SWCR_STATUS_MASK;
12015 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
12016
12017 if (put_user_u64 (swcr, arg2))
12018 return -TARGET_EFAULT;
12019 ret = 0;
12020 }
12021 break;
12022
12023 /* case GSI_IEEE_STATE_AT_SIGNAL:
12024 -- Not implemented in linux kernel.
12025 case GSI_UACPROC:
12026 -- Retrieves current unaligned access state; not much used.
12027 case GSI_PROC_TYPE:
12028 -- Retrieves implver information; surely not used.
12029 case GSI_GET_HWRPB:
12030 -- Grabs a copy of the HWRPB; surely not used.
12031 */
12032 }
12033 return ret;
12034 #endif
12035 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
12036 /* Alpha specific */
12037 case TARGET_NR_osf_setsysinfo:
12038 ret = -TARGET_EOPNOTSUPP;
12039 switch (arg1) {
12040 case TARGET_SSI_IEEE_FP_CONTROL:
12041 {
12042 uint64_t swcr, fpcr;
12043
12044 if (get_user_u64 (swcr, arg2)) {
12045 return -TARGET_EFAULT;
12046 }
12047
12048 /*
12049 * The kernel calls swcr_update_status to update the
12050 * status bits from the fpcr at every point that it
12051 * could be queried. Therefore, we store the status
12052 * bits only in FPCR.
12053 */
12054 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
12055
12056 fpcr = cpu_alpha_load_fpcr(cpu_env);
12057 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
12058 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
12059 cpu_alpha_store_fpcr(cpu_env, fpcr);
12060 ret = 0;
12061 }
12062 break;
12063
12064 case TARGET_SSI_IEEE_RAISE_EXCEPTION:
12065 {
12066 uint64_t exc, fpcr, fex;
12067
12068 if (get_user_u64(exc, arg2)) {
12069 return -TARGET_EFAULT;
12070 }
12071 exc &= SWCR_STATUS_MASK;
12072 fpcr = cpu_alpha_load_fpcr(cpu_env);
12073
12074 /* Old exceptions are not signaled. */
12075 fex = alpha_ieee_fpcr_to_swcr(fpcr);
12076 fex = exc & ~fex;
12077 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
12078 fex &= (cpu_env)->swcr;
12079
12080 /* Update the hardware fpcr. */
12081 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
12082 cpu_alpha_store_fpcr(cpu_env, fpcr);
12083
12084 if (fex) {
12085 int si_code = TARGET_FPE_FLTUNK;
12086 target_siginfo_t info;
12087
12088 if (fex & SWCR_TRAP_ENABLE_DNO) {
12089 si_code = TARGET_FPE_FLTUND;
12090 }
12091 if (fex & SWCR_TRAP_ENABLE_INE) {
12092 si_code = TARGET_FPE_FLTRES;
12093 }
12094 if (fex & SWCR_TRAP_ENABLE_UNF) {
12095 si_code = TARGET_FPE_FLTUND;
12096 }
12097 if (fex & SWCR_TRAP_ENABLE_OVF) {
12098 si_code = TARGET_FPE_FLTOVF;
12099 }
12100 if (fex & SWCR_TRAP_ENABLE_DZE) {
12101 si_code = TARGET_FPE_FLTDIV;
12102 }
12103 if (fex & SWCR_TRAP_ENABLE_INV) {
12104 si_code = TARGET_FPE_FLTINV;
12105 }
12106
12107 info.si_signo = SIGFPE;
12108 info.si_errno = 0;
12109 info.si_code = si_code;
12110 info._sifields._sigfault._addr = (cpu_env)->pc;
12111 queue_signal(cpu_env, info.si_signo,
12112 QEMU_SI_FAULT, &info);
12113 }
12114 ret = 0;
12115 }
12116 break;
12117
12118 /* case SSI_NVPAIRS:
12119 -- Used with SSIN_UACPROC to enable unaligned accesses.
12120 case SSI_IEEE_STATE_AT_SIGNAL:
12121 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
12122 -- Not implemented in linux kernel
12123 */
12124 }
12125 return ret;
12126 #endif
12127 #ifdef TARGET_NR_osf_sigprocmask
12128 /* Alpha specific. */
12129 case TARGET_NR_osf_sigprocmask:
12130 {
12131 abi_ulong mask;
12132 int how;
12133 sigset_t set, oldset;
12134
12135 switch(arg1) {
12136 case TARGET_SIG_BLOCK:
12137 how = SIG_BLOCK;
12138 break;
12139 case TARGET_SIG_UNBLOCK:
12140 how = SIG_UNBLOCK;
12141 break;
12142 case TARGET_SIG_SETMASK:
12143 how = SIG_SETMASK;
12144 break;
12145 default:
12146 return -TARGET_EINVAL;
12147 }
12148 mask = arg2;
12149 target_to_host_old_sigset(&set, &mask);
12150 ret = do_sigprocmask(how, &set, &oldset);
12151 if (!ret) {
12152 host_to_target_old_sigset(&mask, &oldset);
12153 ret = mask;
12154 }
12155 }
12156 return ret;
12157 #endif
12158
12159 #ifdef TARGET_NR_getgid32
12160 case TARGET_NR_getgid32:
12161 return get_errno(getgid());
12162 #endif
12163 #ifdef TARGET_NR_geteuid32
12164 case TARGET_NR_geteuid32:
12165 return get_errno(geteuid());
12166 #endif
12167 #ifdef TARGET_NR_getegid32
12168 case TARGET_NR_getegid32:
12169 return get_errno(getegid());
12170 #endif
12171 #ifdef TARGET_NR_setreuid32
12172 case TARGET_NR_setreuid32:
12173 return get_errno(setreuid(arg1, arg2));
12174 #endif
12175 #ifdef TARGET_NR_setregid32
12176 case TARGET_NR_setregid32:
12177 return get_errno(setregid(arg1, arg2));
12178 #endif
12179 #ifdef TARGET_NR_getgroups32
12180 case TARGET_NR_getgroups32:
12181 { /* the same code as for TARGET_NR_getgroups */
12182 int gidsetsize = arg1;
12183 uint32_t *target_grouplist;
12184 g_autofree gid_t *grouplist = NULL;
12185 int i;
12186
12187 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12188 return -TARGET_EINVAL;
12189 }
12190 if (gidsetsize > 0) {
12191 grouplist = g_try_new(gid_t, gidsetsize);
12192 if (!grouplist) {
12193 return -TARGET_ENOMEM;
12194 }
12195 }
12196 ret = get_errno(getgroups(gidsetsize, grouplist));
12197 if (!is_error(ret) && gidsetsize > 0) {
12198 target_grouplist = lock_user(VERIFY_WRITE, arg2,
12199 gidsetsize * 4, 0);
12200 if (!target_grouplist) {
12201 return -TARGET_EFAULT;
12202 }
12203 for (i = 0; i < ret; i++) {
12204 target_grouplist[i] = tswap32(grouplist[i]);
12205 }
12206 unlock_user(target_grouplist, arg2, gidsetsize * 4);
12207 }
12208 return ret;
12209 }
12210 #endif
12211 #ifdef TARGET_NR_setgroups32
12212 case TARGET_NR_setgroups32:
12213 { /* the same code as for TARGET_NR_setgroups */
12214 int gidsetsize = arg1;
12215 uint32_t *target_grouplist;
12216 g_autofree gid_t *grouplist = NULL;
12217 int i;
12218
12219 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12220 return -TARGET_EINVAL;
12221 }
12222 if (gidsetsize > 0) {
12223 grouplist = g_try_new(gid_t, gidsetsize);
12224 if (!grouplist) {
12225 return -TARGET_ENOMEM;
12226 }
12227 target_grouplist = lock_user(VERIFY_READ, arg2,
12228 gidsetsize * 4, 1);
12229 if (!target_grouplist) {
12230 return -TARGET_EFAULT;
12231 }
12232 for (i = 0; i < gidsetsize; i++) {
12233 grouplist[i] = tswap32(target_grouplist[i]);
12234 }
12235 unlock_user(target_grouplist, arg2, 0);
12236 }
12237 return get_errno(sys_setgroups(gidsetsize, grouplist));
12238 }
12239 #endif
12240 #ifdef TARGET_NR_fchown32
12241 case TARGET_NR_fchown32:
12242 return get_errno(fchown(arg1, arg2, arg3));
12243 #endif
12244 #ifdef TARGET_NR_setresuid32
12245 case TARGET_NR_setresuid32:
12246 return get_errno(sys_setresuid(arg1, arg2, arg3));
12247 #endif
12248 #ifdef TARGET_NR_getresuid32
12249 case TARGET_NR_getresuid32:
12250 {
12251 uid_t ruid, euid, suid;
12252 ret = get_errno(getresuid(&ruid, &euid, &suid));
12253 if (!is_error(ret)) {
12254 if (put_user_u32(ruid, arg1)
12255 || put_user_u32(euid, arg2)
12256 || put_user_u32(suid, arg3))
12257 return -TARGET_EFAULT;
12258 }
12259 }
12260 return ret;
12261 #endif
12262 #ifdef TARGET_NR_setresgid32
12263 case TARGET_NR_setresgid32:
12264 return get_errno(sys_setresgid(arg1, arg2, arg3));
12265 #endif
12266 #ifdef TARGET_NR_getresgid32
12267 case TARGET_NR_getresgid32:
12268 {
12269 gid_t rgid, egid, sgid;
12270 ret = get_errno(getresgid(&rgid, &egid, &sgid));
12271 if (!is_error(ret)) {
12272 if (put_user_u32(rgid, arg1)
12273 || put_user_u32(egid, arg2)
12274 || put_user_u32(sgid, arg3))
12275 return -TARGET_EFAULT;
12276 }
12277 }
12278 return ret;
12279 #endif
12280 #ifdef TARGET_NR_chown32
12281 case TARGET_NR_chown32:
12282 if (!(p = lock_user_string(arg1)))
12283 return -TARGET_EFAULT;
12284 ret = get_errno(chown(p, arg2, arg3));
12285 unlock_user(p, arg1, 0);
12286 return ret;
12287 #endif
12288 #ifdef TARGET_NR_setuid32
12289 case TARGET_NR_setuid32:
12290 return get_errno(sys_setuid(arg1));
12291 #endif
12292 #ifdef TARGET_NR_setgid32
12293 case TARGET_NR_setgid32:
12294 return get_errno(sys_setgid(arg1));
12295 #endif
12296 #ifdef TARGET_NR_setfsuid32
12297 case TARGET_NR_setfsuid32:
12298 return get_errno(setfsuid(arg1));
12299 #endif
12300 #ifdef TARGET_NR_setfsgid32
12301 case TARGET_NR_setfsgid32:
12302 return get_errno(setfsgid(arg1));
12303 #endif
12304 #ifdef TARGET_NR_mincore
12305 case TARGET_NR_mincore:
12306 {
12307 void *a = lock_user(VERIFY_NONE, arg1, arg2, 0);
12308 if (!a) {
12309 return -TARGET_ENOMEM;
12310 }
12311 p = lock_user_string(arg3);
12312 if (!p) {
12313 ret = -TARGET_EFAULT;
12314 } else {
12315 ret = get_errno(mincore(a, arg2, p));
12316 unlock_user(p, arg3, ret);
12317 }
12318 unlock_user(a, arg1, 0);
12319 }
12320 return ret;
12321 #endif
12322 #ifdef TARGET_NR_arm_fadvise64_64
12323 case TARGET_NR_arm_fadvise64_64:
12324 /* arm_fadvise64_64 looks like fadvise64_64 but
12325 * with different argument order: fd, advice, offset, len
12326 * rather than the usual fd, offset, len, advice.
12327 * Note that offset and len are both 64-bit so appear as
12328 * pairs of 32-bit registers.
12329 */
12330 ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
12331 target_offset64(arg5, arg6), arg2);
12332 return -host_to_target_errno(ret);
12333 #endif
12334
12335 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12336
12337 #ifdef TARGET_NR_fadvise64_64
12338 case TARGET_NR_fadvise64_64:
12339 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12340 /* 6 args: fd, advice, offset (high, low), len (high, low) */
12341 ret = arg2;
12342 arg2 = arg3;
12343 arg3 = arg4;
12344 arg4 = arg5;
12345 arg5 = arg6;
12346 arg6 = ret;
12347 #else
12348 /* 6 args: fd, offset (high, low), len (high, low), advice */
12349 if (regpairs_aligned(cpu_env, num)) {
12350 /* offset is in (3,4), len in (5,6) and advice in 7 */
12351 arg2 = arg3;
12352 arg3 = arg4;
12353 arg4 = arg5;
12354 arg5 = arg6;
12355 arg6 = arg7;
12356 }
12357 #endif
12358 ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
12359 target_offset64(arg4, arg5), arg6);
12360 return -host_to_target_errno(ret);
12361 #endif
12362
12363 #ifdef TARGET_NR_fadvise64
12364 case TARGET_NR_fadvise64:
12365 /* 5 args: fd, offset (high, low), len, advice */
12366 if (regpairs_aligned(cpu_env, num)) {
12367 /* offset is in (3,4), len in 5 and advice in 6 */
12368 arg2 = arg3;
12369 arg3 = arg4;
12370 arg4 = arg5;
12371 arg5 = arg6;
12372 }
12373 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
12374 return -host_to_target_errno(ret);
12375 #endif
12376
12377 #else /* not a 32-bit ABI */
12378 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12379 #ifdef TARGET_NR_fadvise64_64
12380 case TARGET_NR_fadvise64_64:
12381 #endif
12382 #ifdef TARGET_NR_fadvise64
12383 case TARGET_NR_fadvise64:
12384 #endif
12385 #ifdef TARGET_S390X
12386 switch (arg4) {
12387 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
12388 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
12389 case 6: arg4 = POSIX_FADV_DONTNEED; break;
12390 case 7: arg4 = POSIX_FADV_NOREUSE; break;
12391 default: break;
12392 }
12393 #endif
12394 return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
12395 #endif
12396 #endif /* end of 64-bit ABI fadvise handling */
12397
12398 #ifdef TARGET_NR_madvise
12399 case TARGET_NR_madvise:
12400 return target_madvise(arg1, arg2, arg3);
12401 #endif
12402 #ifdef TARGET_NR_fcntl64
12403 case TARGET_NR_fcntl64:
12404 {
12405 int cmd;
12406 struct flock64 fl;
12407 from_flock64_fn *copyfrom = copy_from_user_flock64;
12408 to_flock64_fn *copyto = copy_to_user_flock64;
12409
12410 #ifdef TARGET_ARM
12411 if (!cpu_env->eabi) {
12412 copyfrom = copy_from_user_oabi_flock64;
12413 copyto = copy_to_user_oabi_flock64;
12414 }
12415 #endif
12416
12417 cmd = target_to_host_fcntl_cmd(arg2);
12418 if (cmd == -TARGET_EINVAL) {
12419 return cmd;
12420 }
12421
12422 switch(arg2) {
12423 case TARGET_F_GETLK64:
12424 ret = copyfrom(&fl, arg3);
12425 if (ret) {
12426 break;
12427 }
12428 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12429 if (ret == 0) {
12430 ret = copyto(arg3, &fl);
12431 }
12432 break;
12433
12434 case TARGET_F_SETLK64:
12435 case TARGET_F_SETLKW64:
12436 ret = copyfrom(&fl, arg3);
12437 if (ret) {
12438 break;
12439 }
12440 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12441 break;
12442 default:
12443 ret = do_fcntl(arg1, arg2, arg3);
12444 break;
12445 }
12446 return ret;
12447 }
12448 #endif
12449 #ifdef TARGET_NR_cacheflush
12450 case TARGET_NR_cacheflush:
12451 /* self-modifying code is handled automatically, so nothing needed */
12452 return 0;
12453 #endif
12454 #ifdef TARGET_NR_getpagesize
12455 case TARGET_NR_getpagesize:
12456 return TARGET_PAGE_SIZE;
12457 #endif
12458 case TARGET_NR_gettid:
12459 return get_errno(sys_gettid());
12460 #ifdef TARGET_NR_readahead
12461 case TARGET_NR_readahead:
12462 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12463 if (regpairs_aligned(cpu_env, num)) {
12464 arg2 = arg3;
12465 arg3 = arg4;
12466 arg4 = arg5;
12467 }
12468 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
12469 #else
12470 ret = get_errno(readahead(arg1, arg2, arg3));
12471 #endif
12472 return ret;
12473 #endif
12474 #ifdef CONFIG_ATTR
12475 #ifdef TARGET_NR_setxattr
12476 case TARGET_NR_listxattr:
12477 case TARGET_NR_llistxattr:
12478 {
12479 void *b = 0;
12480 if (arg2) {
12481 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12482 if (!b) {
12483 return -TARGET_EFAULT;
12484 }
12485 }
12486 p = lock_user_string(arg1);
12487 if (p) {
12488 if (num == TARGET_NR_listxattr) {
12489 ret = get_errno(listxattr(p, b, arg3));
12490 } else {
12491 ret = get_errno(llistxattr(p, b, arg3));
12492 }
12493 } else {
12494 ret = -TARGET_EFAULT;
12495 }
12496 unlock_user(p, arg1, 0);
12497 unlock_user(b, arg2, arg3);
12498 return ret;
12499 }
12500 case TARGET_NR_flistxattr:
12501 {
12502 void *b = 0;
12503 if (arg2) {
12504 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12505 if (!b) {
12506 return -TARGET_EFAULT;
12507 }
12508 }
12509 ret = get_errno(flistxattr(arg1, b, arg3));
12510 unlock_user(b, arg2, arg3);
12511 return ret;
12512 }
12513 case TARGET_NR_setxattr:
12514 case TARGET_NR_lsetxattr:
12515 {
12516 void *n, *v = 0;
12517 if (arg3) {
12518 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12519 if (!v) {
12520 return -TARGET_EFAULT;
12521 }
12522 }
12523 p = lock_user_string(arg1);
12524 n = lock_user_string(arg2);
12525 if (p && n) {
12526 if (num == TARGET_NR_setxattr) {
12527 ret = get_errno(setxattr(p, n, v, arg4, arg5));
12528 } else {
12529 ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12530 }
12531 } else {
12532 ret = -TARGET_EFAULT;
12533 }
12534 unlock_user(p, arg1, 0);
12535 unlock_user(n, arg2, 0);
12536 unlock_user(v, arg3, 0);
12537 }
12538 return ret;
12539 case TARGET_NR_fsetxattr:
12540 {
12541 void *n, *v = 0;
12542 if (arg3) {
12543 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12544 if (!v) {
12545 return -TARGET_EFAULT;
12546 }
12547 }
12548 n = lock_user_string(arg2);
12549 if (n) {
12550 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12551 } else {
12552 ret = -TARGET_EFAULT;
12553 }
12554 unlock_user(n, arg2, 0);
12555 unlock_user(v, arg3, 0);
12556 }
12557 return ret;
12558 case TARGET_NR_getxattr:
12559 case TARGET_NR_lgetxattr:
12560 {
12561 void *n, *v = 0;
12562 if (arg3) {
12563 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12564 if (!v) {
12565 return -TARGET_EFAULT;
12566 }
12567 }
12568 p = lock_user_string(arg1);
12569 n = lock_user_string(arg2);
12570 if (p && n) {
12571 if (num == TARGET_NR_getxattr) {
12572 ret = get_errno(getxattr(p, n, v, arg4));
12573 } else {
12574 ret = get_errno(lgetxattr(p, n, v, arg4));
12575 }
12576 } else {
12577 ret = -TARGET_EFAULT;
12578 }
12579 unlock_user(p, arg1, 0);
12580 unlock_user(n, arg2, 0);
12581 unlock_user(v, arg3, arg4);
12582 }
12583 return ret;
12584 case TARGET_NR_fgetxattr:
12585 {
12586 void *n, *v = 0;
12587 if (arg3) {
12588 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12589 if (!v) {
12590 return -TARGET_EFAULT;
12591 }
12592 }
12593 n = lock_user_string(arg2);
12594 if (n) {
12595 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12596 } else {
12597 ret = -TARGET_EFAULT;
12598 }
12599 unlock_user(n, arg2, 0);
12600 unlock_user(v, arg3, arg4);
12601 }
12602 return ret;
12603 case TARGET_NR_removexattr:
12604 case TARGET_NR_lremovexattr:
12605 {
12606 void *n;
12607 p = lock_user_string(arg1);
12608 n = lock_user_string(arg2);
12609 if (p && n) {
12610 if (num == TARGET_NR_removexattr) {
12611 ret = get_errno(removexattr(p, n));
12612 } else {
12613 ret = get_errno(lremovexattr(p, n));
12614 }
12615 } else {
12616 ret = -TARGET_EFAULT;
12617 }
12618 unlock_user(p, arg1, 0);
12619 unlock_user(n, arg2, 0);
12620 }
12621 return ret;
12622 case TARGET_NR_fremovexattr:
12623 {
12624 void *n;
12625 n = lock_user_string(arg2);
12626 if (n) {
12627 ret = get_errno(fremovexattr(arg1, n));
12628 } else {
12629 ret = -TARGET_EFAULT;
12630 }
12631 unlock_user(n, arg2, 0);
12632 }
12633 return ret;
12634 #endif
12635 #endif /* CONFIG_ATTR */
12636 #ifdef TARGET_NR_set_thread_area
12637 case TARGET_NR_set_thread_area:
12638 #if defined(TARGET_MIPS)
12639 cpu_env->active_tc.CP0_UserLocal = arg1;
12640 return 0;
12641 #elif defined(TARGET_CRIS)
12642 if (arg1 & 0xff)
12643 ret = -TARGET_EINVAL;
12644 else {
12645 cpu_env->pregs[PR_PID] = arg1;
12646 ret = 0;
12647 }
12648 return ret;
12649 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12650 return do_set_thread_area(cpu_env, arg1);
12651 #elif defined(TARGET_M68K)
12652 {
12653 TaskState *ts = get_task_state(cpu);
12654 ts->tp_value = arg1;
12655 return 0;
12656 }
12657 #else
12658 return -TARGET_ENOSYS;
12659 #endif
12660 #endif
12661 #ifdef TARGET_NR_get_thread_area
12662 case TARGET_NR_get_thread_area:
12663 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12664 return do_get_thread_area(cpu_env, arg1);
12665 #elif defined(TARGET_M68K)
12666 {
12667 TaskState *ts = get_task_state(cpu);
12668 return ts->tp_value;
12669 }
12670 #else
12671 return -TARGET_ENOSYS;
12672 #endif
12673 #endif
12674 #ifdef TARGET_NR_getdomainname
12675 case TARGET_NR_getdomainname:
12676 return -TARGET_ENOSYS;
12677 #endif
12678
12679 #ifdef TARGET_NR_clock_settime
12680 case TARGET_NR_clock_settime:
12681 {
12682 struct timespec ts;
12683
12684 ret = target_to_host_timespec(&ts, arg2);
12685 if (!is_error(ret)) {
12686 ret = get_errno(clock_settime(arg1, &ts));
12687 }
12688 return ret;
12689 }
12690 #endif
12691 #ifdef TARGET_NR_clock_settime64
12692 case TARGET_NR_clock_settime64:
12693 {
12694 struct timespec ts;
12695
12696 ret = target_to_host_timespec64(&ts, arg2);
12697 if (!is_error(ret)) {
12698 ret = get_errno(clock_settime(arg1, &ts));
12699 }
12700 return ret;
12701 }
12702 #endif
12703 #ifdef TARGET_NR_clock_gettime
12704 case TARGET_NR_clock_gettime:
12705 {
12706 struct timespec ts;
12707 ret = get_errno(clock_gettime(arg1, &ts));
12708 if (!is_error(ret)) {
12709 ret = host_to_target_timespec(arg2, &ts);
12710 }
12711 return ret;
12712 }
12713 #endif
12714 #ifdef TARGET_NR_clock_gettime64
12715 case TARGET_NR_clock_gettime64:
12716 {
12717 struct timespec ts;
12718 ret = get_errno(clock_gettime(arg1, &ts));
12719 if (!is_error(ret)) {
12720 ret = host_to_target_timespec64(arg2, &ts);
12721 }
12722 return ret;
12723 }
12724 #endif
12725 #ifdef TARGET_NR_clock_getres
12726 case TARGET_NR_clock_getres:
12727 {
12728 struct timespec ts;
12729 ret = get_errno(clock_getres(arg1, &ts));
12730 if (!is_error(ret)) {
12731 host_to_target_timespec(arg2, &ts);
12732 }
12733 return ret;
12734 }
12735 #endif
12736 #ifdef TARGET_NR_clock_getres_time64
12737 case TARGET_NR_clock_getres_time64:
12738 {
12739 struct timespec ts;
12740 ret = get_errno(clock_getres(arg1, &ts));
12741 if (!is_error(ret)) {
12742 host_to_target_timespec64(arg2, &ts);
12743 }
12744 return ret;
12745 }
12746 #endif
12747 #ifdef TARGET_NR_clock_nanosleep
12748 case TARGET_NR_clock_nanosleep:
12749 {
12750 struct timespec ts;
12751 if (target_to_host_timespec(&ts, arg3)) {
12752 return -TARGET_EFAULT;
12753 }
12754 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12755 &ts, arg4 ? &ts : NULL));
12756 /*
12757 * if the call is interrupted by a signal handler, it fails
12758 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12759 * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12760 */
12761 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12762 host_to_target_timespec(arg4, &ts)) {
12763 return -TARGET_EFAULT;
12764 }
12765
12766 return ret;
12767 }
12768 #endif
12769 #ifdef TARGET_NR_clock_nanosleep_time64
12770 case TARGET_NR_clock_nanosleep_time64:
12771 {
12772 struct timespec ts;
12773
12774 if (target_to_host_timespec64(&ts, arg3)) {
12775 return -TARGET_EFAULT;
12776 }
12777
12778 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12779 &ts, arg4 ? &ts : NULL));
12780
12781 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12782 host_to_target_timespec64(arg4, &ts)) {
12783 return -TARGET_EFAULT;
12784 }
12785 return ret;
12786 }
12787 #endif
12788
12789 #if defined(TARGET_NR_set_tid_address)
12790 case TARGET_NR_set_tid_address:
12791 {
12792 TaskState *ts = get_task_state(cpu);
12793 ts->child_tidptr = arg1;
12794 /* do not call host set_tid_address() syscall, instead return tid() */
12795 return get_errno(sys_gettid());
12796 }
12797 #endif
12798
12799 case TARGET_NR_tkill:
12800 return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12801
12802 case TARGET_NR_tgkill:
12803 return get_errno(safe_tgkill((int)arg1, (int)arg2,
12804 target_to_host_signal(arg3)));
12805
12806 #ifdef TARGET_NR_set_robust_list
12807 case TARGET_NR_set_robust_list:
12808 case TARGET_NR_get_robust_list:
12809 /* The ABI for supporting robust futexes has userspace pass
12810 * the kernel a pointer to a linked list which is updated by
12811 * userspace after the syscall; the list is walked by the kernel
12812 * when the thread exits. Since the linked list in QEMU guest
12813 * memory isn't a valid linked list for the host and we have
12814 * no way to reliably intercept the thread-death event, we can't
12815 * support these. Silently return ENOSYS so that guest userspace
12816 * falls back to a non-robust futex implementation (which should
12817 * be OK except in the corner case of the guest crashing while
12818 * holding a mutex that is shared with another process via
12819 * shared memory).
12820 */
12821 return -TARGET_ENOSYS;
12822 #endif
12823
12824 #if defined(TARGET_NR_utimensat)
12825 case TARGET_NR_utimensat:
12826 {
12827 struct timespec *tsp, ts[2];
12828 if (!arg3) {
12829 tsp = NULL;
12830 } else {
12831 if (target_to_host_timespec(ts, arg3)) {
12832 return -TARGET_EFAULT;
12833 }
12834 if (target_to_host_timespec(ts + 1, arg3 +
12835 sizeof(struct target_timespec))) {
12836 return -TARGET_EFAULT;
12837 }
12838 tsp = ts;
12839 }
12840 if (!arg2)
12841 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12842 else {
12843 if (!(p = lock_user_string(arg2))) {
12844 return -TARGET_EFAULT;
12845 }
12846 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12847 unlock_user(p, arg2, 0);
12848 }
12849 }
12850 return ret;
12851 #endif
12852 #ifdef TARGET_NR_utimensat_time64
12853 case TARGET_NR_utimensat_time64:
12854 {
12855 struct timespec *tsp, ts[2];
12856 if (!arg3) {
12857 tsp = NULL;
12858 } else {
12859 if (target_to_host_timespec64(ts, arg3)) {
12860 return -TARGET_EFAULT;
12861 }
12862 if (target_to_host_timespec64(ts + 1, arg3 +
12863 sizeof(struct target__kernel_timespec))) {
12864 return -TARGET_EFAULT;
12865 }
12866 tsp = ts;
12867 }
12868 if (!arg2)
12869 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12870 else {
12871 p = lock_user_string(arg2);
12872 if (!p) {
12873 return -TARGET_EFAULT;
12874 }
12875 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12876 unlock_user(p, arg2, 0);
12877 }
12878 }
12879 return ret;
12880 #endif
12881 #ifdef TARGET_NR_futex
12882 case TARGET_NR_futex:
12883 return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12884 #endif
12885 #ifdef TARGET_NR_futex_time64
12886 case TARGET_NR_futex_time64:
12887 return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12888 #endif
12889 #ifdef CONFIG_INOTIFY
12890 #if defined(TARGET_NR_inotify_init)
12891 case TARGET_NR_inotify_init:
12892 ret = get_errno(inotify_init());
12893 if (ret >= 0) {
12894 fd_trans_register(ret, &target_inotify_trans);
12895 }
12896 return ret;
12897 #endif
12898 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12899 case TARGET_NR_inotify_init1:
12900 ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
12901 fcntl_flags_tbl)));
12902 if (ret >= 0) {
12903 fd_trans_register(ret, &target_inotify_trans);
12904 }
12905 return ret;
12906 #endif
12907 #if defined(TARGET_NR_inotify_add_watch)
12908 case TARGET_NR_inotify_add_watch:
12909 p = lock_user_string(arg2);
12910 ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
12911 unlock_user(p, arg2, 0);
12912 return ret;
12913 #endif
12914 #if defined(TARGET_NR_inotify_rm_watch)
12915 case TARGET_NR_inotify_rm_watch:
12916 return get_errno(inotify_rm_watch(arg1, arg2));
12917 #endif
12918 #endif
12919
12920 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12921 case TARGET_NR_mq_open:
12922 {
12923 struct mq_attr posix_mq_attr;
12924 struct mq_attr *pposix_mq_attr;
12925 int host_flags;
12926
12927 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12928 pposix_mq_attr = NULL;
12929 if (arg4) {
12930 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12931 return -TARGET_EFAULT;
12932 }
12933 pposix_mq_attr = &posix_mq_attr;
12934 }
12935 p = lock_user_string(arg1 - 1);
12936 if (!p) {
12937 return -TARGET_EFAULT;
12938 }
12939 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12940 unlock_user (p, arg1, 0);
12941 }
12942 return ret;
12943
12944 case TARGET_NR_mq_unlink:
12945 p = lock_user_string(arg1 - 1);
12946 if (!p) {
12947 return -TARGET_EFAULT;
12948 }
12949 ret = get_errno(mq_unlink(p));
12950 unlock_user (p, arg1, 0);
12951 return ret;
12952
12953 #ifdef TARGET_NR_mq_timedsend
12954 case TARGET_NR_mq_timedsend:
12955 {
12956 struct timespec ts;
12957
12958 p = lock_user (VERIFY_READ, arg2, arg3, 1);
12959 if (arg5 != 0) {
12960 if (target_to_host_timespec(&ts, arg5)) {
12961 return -TARGET_EFAULT;
12962 }
12963 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12964 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12965 return -TARGET_EFAULT;
12966 }
12967 } else {
12968 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12969 }
12970 unlock_user (p, arg2, arg3);
12971 }
12972 return ret;
12973 #endif
12974 #ifdef TARGET_NR_mq_timedsend_time64
12975 case TARGET_NR_mq_timedsend_time64:
12976 {
12977 struct timespec ts;
12978
12979 p = lock_user(VERIFY_READ, arg2, arg3, 1);
12980 if (arg5 != 0) {
12981 if (target_to_host_timespec64(&ts, arg5)) {
12982 return -TARGET_EFAULT;
12983 }
12984 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12985 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12986 return -TARGET_EFAULT;
12987 }
12988 } else {
12989 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12990 }
12991 unlock_user(p, arg2, arg3);
12992 }
12993 return ret;
12994 #endif
12995
12996 #ifdef TARGET_NR_mq_timedreceive
12997 case TARGET_NR_mq_timedreceive:
12998 {
12999 struct timespec ts;
13000 unsigned int prio;
13001
13002 p = lock_user (VERIFY_READ, arg2, arg3, 1);
13003 if (arg5 != 0) {
13004 if (target_to_host_timespec(&ts, arg5)) {
13005 return -TARGET_EFAULT;
13006 }
13007 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13008 &prio, &ts));
13009 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
13010 return -TARGET_EFAULT;
13011 }
13012 } else {
13013 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13014 &prio, NULL));
13015 }
13016 unlock_user (p, arg2, arg3);
13017 if (arg4 != 0)
13018 put_user_u32(prio, arg4);
13019 }
13020 return ret;
13021 #endif
13022 #ifdef TARGET_NR_mq_timedreceive_time64
13023 case TARGET_NR_mq_timedreceive_time64:
13024 {
13025 struct timespec ts;
13026 unsigned int prio;
13027
13028 p = lock_user(VERIFY_READ, arg2, arg3, 1);
13029 if (arg5 != 0) {
13030 if (target_to_host_timespec64(&ts, arg5)) {
13031 return -TARGET_EFAULT;
13032 }
13033 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13034 &prio, &ts));
13035 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
13036 return -TARGET_EFAULT;
13037 }
13038 } else {
13039 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13040 &prio, NULL));
13041 }
13042 unlock_user(p, arg2, arg3);
13043 if (arg4 != 0) {
13044 put_user_u32(prio, arg4);
13045 }
13046 }
13047 return ret;
13048 #endif
13049
13050 /* Not implemented for now... */
13051 /* case TARGET_NR_mq_notify: */
13052 /* break; */
13053
13054 case TARGET_NR_mq_getsetattr:
13055 {
13056 struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
13057 ret = 0;
13058 if (arg2 != 0) {
13059 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
13060 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
13061 &posix_mq_attr_out));
13062 } else if (arg3 != 0) {
13063 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
13064 }
13065 if (ret == 0 && arg3 != 0) {
13066 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
13067 }
13068 }
13069 return ret;
13070 #endif
13071
13072 #ifdef CONFIG_SPLICE
13073 #ifdef TARGET_NR_tee
13074 case TARGET_NR_tee:
13075 {
13076 ret = get_errno(tee(arg1,arg2,arg3,arg4));
13077 }
13078 return ret;
13079 #endif
13080 #ifdef TARGET_NR_splice
13081 case TARGET_NR_splice:
13082 {
13083 loff_t loff_in, loff_out;
13084 loff_t *ploff_in = NULL, *ploff_out = NULL;
13085 if (arg2) {
13086 if (get_user_u64(loff_in, arg2)) {
13087 return -TARGET_EFAULT;
13088 }
13089 ploff_in = &loff_in;
13090 }
13091 if (arg4) {
13092 if (get_user_u64(loff_out, arg4)) {
13093 return -TARGET_EFAULT;
13094 }
13095 ploff_out = &loff_out;
13096 }
13097 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
13098 if (arg2) {
13099 if (put_user_u64(loff_in, arg2)) {
13100 return -TARGET_EFAULT;
13101 }
13102 }
13103 if (arg4) {
13104 if (put_user_u64(loff_out, arg4)) {
13105 return -TARGET_EFAULT;
13106 }
13107 }
13108 }
13109 return ret;
13110 #endif
13111 #ifdef TARGET_NR_vmsplice
13112 case TARGET_NR_vmsplice:
13113 {
13114 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
13115 if (vec != NULL) {
13116 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
13117 unlock_iovec(vec, arg2, arg3, 0);
13118 } else {
13119 ret = -host_to_target_errno(errno);
13120 }
13121 }
13122 return ret;
13123 #endif
13124 #endif /* CONFIG_SPLICE */
13125 #ifdef CONFIG_EVENTFD
13126 #if defined(TARGET_NR_eventfd)
13127 case TARGET_NR_eventfd:
13128 ret = get_errno(eventfd(arg1, 0));
13129 if (ret >= 0) {
13130 fd_trans_register(ret, &target_eventfd_trans);
13131 }
13132 return ret;
13133 #endif
13134 #if defined(TARGET_NR_eventfd2)
13135 case TARGET_NR_eventfd2:
13136 {
13137 int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
13138 if (arg2 & TARGET_O_NONBLOCK) {
13139 host_flags |= O_NONBLOCK;
13140 }
13141 if (arg2 & TARGET_O_CLOEXEC) {
13142 host_flags |= O_CLOEXEC;
13143 }
13144 ret = get_errno(eventfd(arg1, host_flags));
13145 if (ret >= 0) {
13146 fd_trans_register(ret, &target_eventfd_trans);
13147 }
13148 return ret;
13149 }
13150 #endif
13151 #endif /* CONFIG_EVENTFD */
13152 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13153 case TARGET_NR_fallocate:
13154 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13155 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
13156 target_offset64(arg5, arg6)));
13157 #else
13158 ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
13159 #endif
13160 return ret;
13161 #endif
13162 #if defined(CONFIG_SYNC_FILE_RANGE)
13163 #if defined(TARGET_NR_sync_file_range)
13164 case TARGET_NR_sync_file_range:
13165 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13166 #if defined(TARGET_MIPS)
13167 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13168 target_offset64(arg5, arg6), arg7));
13169 #else
13170 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
13171 target_offset64(arg4, arg5), arg6));
13172 #endif /* !TARGET_MIPS */
13173 #else
13174 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
13175 #endif
13176 return ret;
13177 #endif
13178 #if defined(TARGET_NR_sync_file_range2) || \
13179 defined(TARGET_NR_arm_sync_file_range)
13180 #if defined(TARGET_NR_sync_file_range2)
13181 case TARGET_NR_sync_file_range2:
13182 #endif
13183 #if defined(TARGET_NR_arm_sync_file_range)
13184 case TARGET_NR_arm_sync_file_range:
13185 #endif
13186 /* This is like sync_file_range but the arguments are reordered */
13187 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13188 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13189 target_offset64(arg5, arg6), arg2));
13190 #else
13191 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
13192 #endif
13193 return ret;
13194 #endif
13195 #endif
13196 #if defined(TARGET_NR_signalfd4)
13197 case TARGET_NR_signalfd4:
13198 return do_signalfd4(arg1, arg2, arg4);
13199 #endif
13200 #if defined(TARGET_NR_signalfd)
13201 case TARGET_NR_signalfd:
13202 return do_signalfd4(arg1, arg2, 0);
13203 #endif
13204 #if defined(CONFIG_EPOLL)
13205 #if defined(TARGET_NR_epoll_create)
13206 case TARGET_NR_epoll_create:
13207 return get_errno(epoll_create(arg1));
13208 #endif
13209 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13210 case TARGET_NR_epoll_create1:
13211 return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
13212 #endif
13213 #if defined(TARGET_NR_epoll_ctl)
13214 case TARGET_NR_epoll_ctl:
13215 {
13216 struct epoll_event ep;
13217 struct epoll_event *epp = 0;
13218 if (arg4) {
13219 if (arg2 != EPOLL_CTL_DEL) {
13220 struct target_epoll_event *target_ep;
13221 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
13222 return -TARGET_EFAULT;
13223 }
13224 ep.events = tswap32(target_ep->events);
13225 /*
13226 * The epoll_data_t union is just opaque data to the kernel,
13227 * so we transfer all 64 bits across and need not worry what
13228 * actual data type it is.
13229 */
13230 ep.data.u64 = tswap64(target_ep->data.u64);
13231 unlock_user_struct(target_ep, arg4, 0);
13232 }
13233 /*
13234 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13235 * non-null pointer, even though this argument is ignored.
13236 *
13237 */
13238 epp = &ep;
13239 }
13240 return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
13241 }
13242 #endif
13243
13244 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13245 #if defined(TARGET_NR_epoll_wait)
13246 case TARGET_NR_epoll_wait:
13247 #endif
13248 #if defined(TARGET_NR_epoll_pwait)
13249 case TARGET_NR_epoll_pwait:
13250 #endif
13251 {
13252 struct target_epoll_event *target_ep;
13253 struct epoll_event *ep;
13254 int epfd = arg1;
13255 int maxevents = arg3;
13256 int timeout = arg4;
13257
13258 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
13259 return -TARGET_EINVAL;
13260 }
13261
13262 target_ep = lock_user(VERIFY_WRITE, arg2,
13263 maxevents * sizeof(struct target_epoll_event), 1);
13264 if (!target_ep) {
13265 return -TARGET_EFAULT;
13266 }
13267
13268 ep = g_try_new(struct epoll_event, maxevents);
13269 if (!ep) {
13270 unlock_user(target_ep, arg2, 0);
13271 return -TARGET_ENOMEM;
13272 }
13273
13274 switch (num) {
13275 #if defined(TARGET_NR_epoll_pwait)
13276 case TARGET_NR_epoll_pwait:
13277 {
13278 sigset_t *set = NULL;
13279
13280 if (arg5) {
13281 ret = process_sigsuspend_mask(&set, arg5, arg6);
13282 if (ret != 0) {
13283 break;
13284 }
13285 }
13286
13287 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13288 set, SIGSET_T_SIZE));
13289
13290 if (set) {
13291 finish_sigsuspend_mask(ret);
13292 }
13293 break;
13294 }
13295 #endif
13296 #if defined(TARGET_NR_epoll_wait)
13297 case TARGET_NR_epoll_wait:
13298 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13299 NULL, 0));
13300 break;
13301 #endif
13302 default:
13303 ret = -TARGET_ENOSYS;
13304 }
13305 if (!is_error(ret)) {
13306 int i;
13307 for (i = 0; i < ret; i++) {
13308 target_ep[i].events = tswap32(ep[i].events);
13309 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
13310 }
13311 unlock_user(target_ep, arg2,
13312 ret * sizeof(struct target_epoll_event));
13313 } else {
13314 unlock_user(target_ep, arg2, 0);
13315 }
13316 g_free(ep);
13317 return ret;
13318 }
13319 #endif
13320 #endif
13321 #ifdef TARGET_NR_prlimit64
13322 case TARGET_NR_prlimit64:
13323 {
13324 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13325 struct target_rlimit64 *target_rnew, *target_rold;
13326 struct host_rlimit64 rnew, rold, *rnewp = 0;
13327 int resource = target_to_host_resource(arg2);
13328
13329 if (arg3 && (resource != RLIMIT_AS &&
13330 resource != RLIMIT_DATA &&
13331 resource != RLIMIT_STACK)) {
13332 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
13333 return -TARGET_EFAULT;
13334 }
13335 __get_user(rnew.rlim_cur, &target_rnew->rlim_cur);
13336 __get_user(rnew.rlim_max, &target_rnew->rlim_max);
13337 unlock_user_struct(target_rnew, arg3, 0);
13338 rnewp = &rnew;
13339 }
13340
13341 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
13342 if (!is_error(ret) && arg4) {
13343 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
13344 return -TARGET_EFAULT;
13345 }
13346 __put_user(rold.rlim_cur, &target_rold->rlim_cur);
13347 __put_user(rold.rlim_max, &target_rold->rlim_max);
13348 unlock_user_struct(target_rold, arg4, 1);
13349 }
13350 return ret;
13351 }
13352 #endif
13353 #ifdef TARGET_NR_gethostname
13354 case TARGET_NR_gethostname:
13355 {
13356 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
13357 if (name) {
13358 ret = get_errno(gethostname(name, arg2));
13359 unlock_user(name, arg1, arg2);
13360 } else {
13361 ret = -TARGET_EFAULT;
13362 }
13363 return ret;
13364 }
13365 #endif
13366 #ifdef TARGET_NR_atomic_cmpxchg_32
13367 case TARGET_NR_atomic_cmpxchg_32:
13368 {
13369 /* should use start_exclusive from main.c */
13370 abi_ulong mem_value;
13371 if (get_user_u32(mem_value, arg6)) {
13372 target_siginfo_t info;
13373 info.si_signo = SIGSEGV;
13374 info.si_errno = 0;
13375 info.si_code = TARGET_SEGV_MAPERR;
13376 info._sifields._sigfault._addr = arg6;
13377 queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
13378 ret = 0xdeadbeef;
13379
13380 }
13381 if (mem_value == arg2)
13382 put_user_u32(arg1, arg6);
13383 return mem_value;
13384 }
13385 #endif
13386 #ifdef TARGET_NR_atomic_barrier
13387 case TARGET_NR_atomic_barrier:
13388 /* Like the kernel implementation and the
13389 qemu arm barrier, no-op this? */
13390 return 0;
13391 #endif
13392
13393 #ifdef TARGET_NR_timer_create
13394 case TARGET_NR_timer_create:
13395 {
13396 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13397
13398 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
13399
13400 int clkid = arg1;
13401 int timer_index = next_free_host_timer();
13402
13403 if (timer_index < 0) {
13404 ret = -TARGET_EAGAIN;
13405 } else {
13406 timer_t *phtimer = g_posix_timers + timer_index;
13407
13408 if (arg2) {
13409 phost_sevp = &host_sevp;
13410 ret = target_to_host_sigevent(phost_sevp, arg2);
13411 if (ret != 0) {
13412 free_host_timer_slot(timer_index);
13413 return ret;
13414 }
13415 }
13416
13417 ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
13418 if (ret) {
13419 free_host_timer_slot(timer_index);
13420 } else {
13421 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
13422 timer_delete(*phtimer);
13423 free_host_timer_slot(timer_index);
13424 return -TARGET_EFAULT;
13425 }
13426 }
13427 }
13428 return ret;
13429 }
13430 #endif
13431
13432 #ifdef TARGET_NR_timer_settime
13433 case TARGET_NR_timer_settime:
13434 {
13435 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13436 * struct itimerspec * old_value */
13437 target_timer_t timerid = get_timer_id(arg1);
13438
13439 if (timerid < 0) {
13440 ret = timerid;
13441 } else if (arg3 == 0) {
13442 ret = -TARGET_EINVAL;
13443 } else {
13444 timer_t htimer = g_posix_timers[timerid];
13445 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13446
13447 if (target_to_host_itimerspec(&hspec_new, arg3)) {
13448 return -TARGET_EFAULT;
13449 }
13450 ret = get_errno(
13451 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13452 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
13453 return -TARGET_EFAULT;
13454 }
13455 }
13456 return ret;
13457 }
13458 #endif
13459
13460 #ifdef TARGET_NR_timer_settime64
13461 case TARGET_NR_timer_settime64:
13462 {
13463 target_timer_t timerid = get_timer_id(arg1);
13464
13465 if (timerid < 0) {
13466 ret = timerid;
13467 } else if (arg3 == 0) {
13468 ret = -TARGET_EINVAL;
13469 } else {
13470 timer_t htimer = g_posix_timers[timerid];
13471 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13472
13473 if (target_to_host_itimerspec64(&hspec_new, arg3)) {
13474 return -TARGET_EFAULT;
13475 }
13476 ret = get_errno(
13477 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13478 if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
13479 return -TARGET_EFAULT;
13480 }
13481 }
13482 return ret;
13483 }
13484 #endif
13485
13486 #ifdef TARGET_NR_timer_gettime
13487 case TARGET_NR_timer_gettime:
13488 {
13489 /* args: timer_t timerid, struct itimerspec *curr_value */
13490 target_timer_t timerid = get_timer_id(arg1);
13491
13492 if (timerid < 0) {
13493 ret = timerid;
13494 } else if (!arg2) {
13495 ret = -TARGET_EFAULT;
13496 } else {
13497 timer_t htimer = g_posix_timers[timerid];
13498 struct itimerspec hspec;
13499 ret = get_errno(timer_gettime(htimer, &hspec));
13500
13501 if (host_to_target_itimerspec(arg2, &hspec)) {
13502 ret = -TARGET_EFAULT;
13503 }
13504 }
13505 return ret;
13506 }
13507 #endif
13508
13509 #ifdef TARGET_NR_timer_gettime64
13510 case TARGET_NR_timer_gettime64:
13511 {
13512 /* args: timer_t timerid, struct itimerspec64 *curr_value */
13513 target_timer_t timerid = get_timer_id(arg1);
13514
13515 if (timerid < 0) {
13516 ret = timerid;
13517 } else if (!arg2) {
13518 ret = -TARGET_EFAULT;
13519 } else {
13520 timer_t htimer = g_posix_timers[timerid];
13521 struct itimerspec hspec;
13522 ret = get_errno(timer_gettime(htimer, &hspec));
13523
13524 if (host_to_target_itimerspec64(arg2, &hspec)) {
13525 ret = -TARGET_EFAULT;
13526 }
13527 }
13528 return ret;
13529 }
13530 #endif
13531
13532 #ifdef TARGET_NR_timer_getoverrun
13533 case TARGET_NR_timer_getoverrun:
13534 {
13535 /* args: timer_t timerid */
13536 target_timer_t timerid = get_timer_id(arg1);
13537
13538 if (timerid < 0) {
13539 ret = timerid;
13540 } else {
13541 timer_t htimer = g_posix_timers[timerid];
13542 ret = get_errno(timer_getoverrun(htimer));
13543 }
13544 return ret;
13545 }
13546 #endif
13547
13548 #ifdef TARGET_NR_timer_delete
13549 case TARGET_NR_timer_delete:
13550 {
13551 /* args: timer_t timerid */
13552 target_timer_t timerid = get_timer_id(arg1);
13553
13554 if (timerid < 0) {
13555 ret = timerid;
13556 } else {
13557 timer_t htimer = g_posix_timers[timerid];
13558 ret = get_errno(timer_delete(htimer));
13559 free_host_timer_slot(timerid);
13560 }
13561 return ret;
13562 }
13563 #endif
13564
13565 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13566 case TARGET_NR_timerfd_create:
13567 ret = get_errno(timerfd_create(arg1,
13568 target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13569 if (ret >= 0) {
13570 fd_trans_register(ret, &target_timerfd_trans);
13571 }
13572 return ret;
13573 #endif
13574
13575 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13576 case TARGET_NR_timerfd_gettime:
13577 {
13578 struct itimerspec its_curr;
13579
13580 ret = get_errno(timerfd_gettime(arg1, &its_curr));
13581
13582 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13583 return -TARGET_EFAULT;
13584 }
13585 }
13586 return ret;
13587 #endif
13588
13589 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13590 case TARGET_NR_timerfd_gettime64:
13591 {
13592 struct itimerspec its_curr;
13593
13594 ret = get_errno(timerfd_gettime(arg1, &its_curr));
13595
13596 if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13597 return -TARGET_EFAULT;
13598 }
13599 }
13600 return ret;
13601 #endif
13602
13603 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13604 case TARGET_NR_timerfd_settime:
13605 {
13606 struct itimerspec its_new, its_old, *p_new;
13607
13608 if (arg3) {
13609 if (target_to_host_itimerspec(&its_new, arg3)) {
13610 return -TARGET_EFAULT;
13611 }
13612 p_new = &its_new;
13613 } else {
13614 p_new = NULL;
13615 }
13616
13617 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13618
13619 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13620 return -TARGET_EFAULT;
13621 }
13622 }
13623 return ret;
13624 #endif
13625
13626 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13627 case TARGET_NR_timerfd_settime64:
13628 {
13629 struct itimerspec its_new, its_old, *p_new;
13630
13631 if (arg3) {
13632 if (target_to_host_itimerspec64(&its_new, arg3)) {
13633 return -TARGET_EFAULT;
13634 }
13635 p_new = &its_new;
13636 } else {
13637 p_new = NULL;
13638 }
13639
13640 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13641
13642 if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13643 return -TARGET_EFAULT;
13644 }
13645 }
13646 return ret;
13647 #endif
13648
13649 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13650 case TARGET_NR_ioprio_get:
13651 return get_errno(ioprio_get(arg1, arg2));
13652 #endif
13653
13654 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13655 case TARGET_NR_ioprio_set:
13656 return get_errno(ioprio_set(arg1, arg2, arg3));
13657 #endif
13658
13659 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13660 case TARGET_NR_setns:
13661 return get_errno(setns(arg1, arg2));
13662 #endif
13663 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13664 case TARGET_NR_unshare:
13665 return get_errno(unshare(arg1));
13666 #endif
13667 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13668 case TARGET_NR_kcmp:
13669 return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13670 #endif
13671 #ifdef TARGET_NR_swapcontext
13672 case TARGET_NR_swapcontext:
13673 /* PowerPC specific. */
13674 return do_swapcontext(cpu_env, arg1, arg2, arg3);
13675 #endif
13676 #ifdef TARGET_NR_memfd_create
13677 case TARGET_NR_memfd_create:
13678 p = lock_user_string(arg1);
13679 if (!p) {
13680 return -TARGET_EFAULT;
13681 }
13682 ret = get_errno(memfd_create(p, arg2));
13683 fd_trans_unregister(ret);
13684 unlock_user(p, arg1, 0);
13685 return ret;
13686 #endif
13687 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13688 case TARGET_NR_membarrier:
13689 return get_errno(membarrier(arg1, arg2));
13690 #endif
13691
13692 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13693 case TARGET_NR_copy_file_range:
13694 {
13695 loff_t inoff, outoff;
13696 loff_t *pinoff = NULL, *poutoff = NULL;
13697
13698 if (arg2) {
13699 if (get_user_u64(inoff, arg2)) {
13700 return -TARGET_EFAULT;
13701 }
13702 pinoff = &inoff;
13703 }
13704 if (arg4) {
13705 if (get_user_u64(outoff, arg4)) {
13706 return -TARGET_EFAULT;
13707 }
13708 poutoff = &outoff;
13709 }
13710 /* Do not sign-extend the count parameter. */
13711 ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13712 (abi_ulong)arg5, arg6));
13713 if (!is_error(ret) && ret > 0) {
13714 if (arg2) {
13715 if (put_user_u64(inoff, arg2)) {
13716 return -TARGET_EFAULT;
13717 }
13718 }
13719 if (arg4) {
13720 if (put_user_u64(outoff, arg4)) {
13721 return -TARGET_EFAULT;
13722 }
13723 }
13724 }
13725 }
13726 return ret;
13727 #endif
13728
13729 #if defined(TARGET_NR_pivot_root)
13730 case TARGET_NR_pivot_root:
13731 {
13732 void *p2;
13733 p = lock_user_string(arg1); /* new_root */
13734 p2 = lock_user_string(arg2); /* put_old */
13735 if (!p || !p2) {
13736 ret = -TARGET_EFAULT;
13737 } else {
13738 ret = get_errno(pivot_root(p, p2));
13739 }
13740 unlock_user(p2, arg2, 0);
13741 unlock_user(p, arg1, 0);
13742 }
13743 return ret;
13744 #endif
13745
13746 #if defined(TARGET_NR_riscv_hwprobe)
13747 case TARGET_NR_riscv_hwprobe:
13748 return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5);
13749 #endif
13750
13751 default:
13752 qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13753 return -TARGET_ENOSYS;
13754 }
13755 return ret;
13756 }
13757
do_syscall(CPUArchState * cpu_env,int num,abi_long arg1,abi_long arg2,abi_long arg3,abi_long arg4,abi_long arg5,abi_long arg6,abi_long arg7,abi_long arg8)13758 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13759 abi_long arg2, abi_long arg3, abi_long arg4,
13760 abi_long arg5, abi_long arg6, abi_long arg7,
13761 abi_long arg8)
13762 {
13763 CPUState *cpu = env_cpu(cpu_env);
13764 abi_long ret;
13765
13766 #ifdef DEBUG_ERESTARTSYS
13767 /* Debug-only code for exercising the syscall-restart code paths
13768 * in the per-architecture cpu main loops: restart every syscall
13769 * the guest makes once before letting it through.
13770 */
13771 {
13772 static bool flag;
13773 flag = !flag;
13774 if (flag) {
13775 return -QEMU_ERESTARTSYS;
13776 }
13777 }
13778 #endif
13779
13780 record_syscall_start(cpu, num, arg1,
13781 arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13782
13783 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13784 print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13785 }
13786
13787 ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13788 arg5, arg6, arg7, arg8);
13789
13790 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13791 print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13792 arg3, arg4, arg5, arg6);
13793 }
13794
13795 record_syscall_return(cpu, num, ret);
13796 return ret;
13797 }
13798