1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Dummy soundcard
4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 */
6
7 #include <linux/init.h>
8 #include <linux/err.h>
9 #include <linux/platform_device.h>
10 #include <linux/jiffies.h>
11 #include <linux/slab.h>
12 #include <linux/time.h>
13 #include <linux/wait.h>
14 #include <linux/hrtimer.h>
15 #include <linux/math64.h>
16 #include <linux/module.h>
17 #include <sound/core.h>
18 #include <sound/control.h>
19 #include <sound/tlv.h>
20 #include <sound/pcm.h>
21 #include <sound/rawmidi.h>
22 #include <sound/info.h>
23 #include <sound/initval.h>
24
25 MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
26 MODULE_DESCRIPTION("Dummy soundcard (/dev/null)");
27 MODULE_LICENSE("GPL");
28
29 #define MAX_PCM_DEVICES 4
30 #define MAX_PCM_SUBSTREAMS 128
31 #define MAX_MIDI_DEVICES 2
32
33 /* defaults */
34 #define MAX_BUFFER_SIZE (64*1024)
35 #define MIN_PERIOD_SIZE 64
36 #define MAX_PERIOD_SIZE MAX_BUFFER_SIZE
37 #define USE_FORMATS (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE)
38 #define USE_RATE SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000
39 #define USE_RATE_MIN 5500
40 #define USE_RATE_MAX 48000
41 #define USE_CHANNELS_MIN 1
42 #define USE_CHANNELS_MAX 2
43 #define USE_PERIODS_MIN 1
44 #define USE_PERIODS_MAX 1024
45 #define USE_MIXER_VOLUME_LEVEL_MIN -50
46 #define USE_MIXER_VOLUME_LEVEL_MAX 100
47
48 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
49 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
50 static bool enable[SNDRV_CARDS] = {1, [1 ... (SNDRV_CARDS - 1)] = 0};
51 static char *model[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = NULL};
52 static int pcm_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 1};
53 static int pcm_substreams[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 8};
54 //static int midi_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 2};
55 static int mixer_volume_level_min = USE_MIXER_VOLUME_LEVEL_MIN;
56 static int mixer_volume_level_max = USE_MIXER_VOLUME_LEVEL_MAX;
57 #ifdef CONFIG_HIGH_RES_TIMERS
58 static bool hrtimer = 1;
59 #endif
60 static bool fake_buffer = 1;
61
62 module_param_array(index, int, NULL, 0444);
63 MODULE_PARM_DESC(index, "Index value for dummy soundcard.");
64 module_param_array(id, charp, NULL, 0444);
65 MODULE_PARM_DESC(id, "ID string for dummy soundcard.");
66 module_param_array(enable, bool, NULL, 0444);
67 MODULE_PARM_DESC(enable, "Enable this dummy soundcard.");
68 module_param_array(model, charp, NULL, 0444);
69 MODULE_PARM_DESC(model, "Soundcard model.");
70 module_param_array(pcm_devs, int, NULL, 0444);
71 MODULE_PARM_DESC(pcm_devs, "PCM devices # (0-4) for dummy driver.");
72 module_param_array(pcm_substreams, int, NULL, 0444);
73 MODULE_PARM_DESC(pcm_substreams, "PCM substreams # (1-128) for dummy driver.");
74 //module_param_array(midi_devs, int, NULL, 0444);
75 //MODULE_PARM_DESC(midi_devs, "MIDI devices # (0-2) for dummy driver.");
76 module_param(mixer_volume_level_min, int, 0444);
77 MODULE_PARM_DESC(mixer_volume_level_min, "Minimum mixer volume level for dummy driver. Default: -50");
78 module_param(mixer_volume_level_max, int, 0444);
79 MODULE_PARM_DESC(mixer_volume_level_max, "Maximum mixer volume level for dummy driver. Default: 100");
80 module_param(fake_buffer, bool, 0444);
81 MODULE_PARM_DESC(fake_buffer, "Fake buffer allocations.");
82 #ifdef CONFIG_HIGH_RES_TIMERS
83 module_param(hrtimer, bool, 0644);
84 MODULE_PARM_DESC(hrtimer, "Use hrtimer as the timer source.");
85 #endif
86
87 static struct platform_device *devices[SNDRV_CARDS];
88
89 #define MIXER_ADDR_MASTER 0
90 #define MIXER_ADDR_LINE 1
91 #define MIXER_ADDR_MIC 2
92 #define MIXER_ADDR_SYNTH 3
93 #define MIXER_ADDR_CD 4
94 #define MIXER_ADDR_LAST 4
95
96 struct dummy_timer_ops {
97 int (*create)(struct snd_pcm_substream *);
98 void (*free)(struct snd_pcm_substream *);
99 int (*prepare)(struct snd_pcm_substream *);
100 int (*start)(struct snd_pcm_substream *);
101 int (*stop)(struct snd_pcm_substream *);
102 snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *);
103 };
104
105 #define get_dummy_ops(substream) \
106 (*(const struct dummy_timer_ops **)(substream)->runtime->private_data)
107
108 struct dummy_model {
109 const char *name;
110 int (*playback_constraints)(struct snd_pcm_runtime *runtime);
111 int (*capture_constraints)(struct snd_pcm_runtime *runtime);
112 u64 formats;
113 size_t buffer_bytes_max;
114 size_t period_bytes_min;
115 size_t period_bytes_max;
116 unsigned int periods_min;
117 unsigned int periods_max;
118 unsigned int rates;
119 unsigned int rate_min;
120 unsigned int rate_max;
121 unsigned int channels_min;
122 unsigned int channels_max;
123 };
124
125 struct snd_dummy {
126 struct snd_card *card;
127 const struct dummy_model *model;
128 struct snd_pcm *pcm;
129 struct snd_pcm_hardware pcm_hw;
130 spinlock_t mixer_lock;
131 int mixer_volume[MIXER_ADDR_LAST+1][2];
132 int capture_source[MIXER_ADDR_LAST+1][2];
133 int iobox;
134 struct snd_kcontrol *cd_volume_ctl;
135 struct snd_kcontrol *cd_switch_ctl;
136 };
137
138 /*
139 * card models
140 */
141
emu10k1_playback_constraints(struct snd_pcm_runtime * runtime)142 static int emu10k1_playback_constraints(struct snd_pcm_runtime *runtime)
143 {
144 int err;
145 err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
146 if (err < 0)
147 return err;
148 err = snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 256, UINT_MAX);
149 if (err < 0)
150 return err;
151 return 0;
152 }
153
154 static const struct dummy_model model_emu10k1 = {
155 .name = "emu10k1",
156 .playback_constraints = emu10k1_playback_constraints,
157 .buffer_bytes_max = 128 * 1024,
158 };
159
160 static const struct dummy_model model_rme9652 = {
161 .name = "rme9652",
162 .buffer_bytes_max = 26 * 64 * 1024,
163 .formats = SNDRV_PCM_FMTBIT_S32_LE,
164 .channels_min = 26,
165 .channels_max = 26,
166 .periods_min = 2,
167 .periods_max = 2,
168 };
169
170 static const struct dummy_model model_ice1712 = {
171 .name = "ice1712",
172 .buffer_bytes_max = 256 * 1024,
173 .formats = SNDRV_PCM_FMTBIT_S32_LE,
174 .channels_min = 10,
175 .channels_max = 10,
176 .periods_min = 1,
177 .periods_max = 1024,
178 };
179
180 static const struct dummy_model model_uda1341 = {
181 .name = "uda1341",
182 .buffer_bytes_max = 16380,
183 .formats = SNDRV_PCM_FMTBIT_S16_LE,
184 .channels_min = 2,
185 .channels_max = 2,
186 .periods_min = 2,
187 .periods_max = 255,
188 };
189
190 static const struct dummy_model model_ac97 = {
191 .name = "ac97",
192 .formats = SNDRV_PCM_FMTBIT_S16_LE,
193 .channels_min = 2,
194 .channels_max = 2,
195 .rates = SNDRV_PCM_RATE_48000,
196 .rate_min = 48000,
197 .rate_max = 48000,
198 };
199
200 static const struct dummy_model model_ca0106 = {
201 .name = "ca0106",
202 .formats = SNDRV_PCM_FMTBIT_S16_LE,
203 .buffer_bytes_max = ((65536-64)*8),
204 .period_bytes_max = (65536-64),
205 .periods_min = 2,
206 .periods_max = 8,
207 .channels_min = 2,
208 .channels_max = 2,
209 .rates = SNDRV_PCM_RATE_48000|SNDRV_PCM_RATE_96000|SNDRV_PCM_RATE_192000,
210 .rate_min = 48000,
211 .rate_max = 192000,
212 };
213
214 static const struct dummy_model *dummy_models[] = {
215 &model_emu10k1,
216 &model_rme9652,
217 &model_ice1712,
218 &model_uda1341,
219 &model_ac97,
220 &model_ca0106,
221 NULL
222 };
223
224 /*
225 * system timer interface
226 */
227
228 struct dummy_systimer_pcm {
229 /* ops must be the first item */
230 const struct dummy_timer_ops *timer_ops;
231 spinlock_t lock;
232 struct timer_list timer;
233 unsigned long base_time;
234 unsigned int frac_pos; /* fractional sample position (based HZ) */
235 unsigned int frac_period_rest;
236 unsigned int frac_buffer_size; /* buffer_size * HZ */
237 unsigned int frac_period_size; /* period_size * HZ */
238 unsigned int rate;
239 int elapsed;
240 struct snd_pcm_substream *substream;
241 };
242
dummy_systimer_rearm(struct dummy_systimer_pcm * dpcm)243 static void dummy_systimer_rearm(struct dummy_systimer_pcm *dpcm)
244 {
245 mod_timer(&dpcm->timer, jiffies +
246 DIV_ROUND_UP(dpcm->frac_period_rest, dpcm->rate));
247 }
248
dummy_systimer_update(struct dummy_systimer_pcm * dpcm)249 static void dummy_systimer_update(struct dummy_systimer_pcm *dpcm)
250 {
251 unsigned long delta;
252
253 delta = jiffies - dpcm->base_time;
254 if (!delta)
255 return;
256 dpcm->base_time += delta;
257 delta *= dpcm->rate;
258 dpcm->frac_pos += delta;
259 while (dpcm->frac_pos >= dpcm->frac_buffer_size)
260 dpcm->frac_pos -= dpcm->frac_buffer_size;
261 while (dpcm->frac_period_rest <= delta) {
262 dpcm->elapsed++;
263 dpcm->frac_period_rest += dpcm->frac_period_size;
264 }
265 dpcm->frac_period_rest -= delta;
266 }
267
dummy_systimer_start(struct snd_pcm_substream * substream)268 static int dummy_systimer_start(struct snd_pcm_substream *substream)
269 {
270 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data;
271 spin_lock(&dpcm->lock);
272 dpcm->base_time = jiffies;
273 dummy_systimer_rearm(dpcm);
274 spin_unlock(&dpcm->lock);
275 return 0;
276 }
277
dummy_systimer_stop(struct snd_pcm_substream * substream)278 static int dummy_systimer_stop(struct snd_pcm_substream *substream)
279 {
280 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data;
281 spin_lock(&dpcm->lock);
282 del_timer(&dpcm->timer);
283 spin_unlock(&dpcm->lock);
284 return 0;
285 }
286
dummy_systimer_prepare(struct snd_pcm_substream * substream)287 static int dummy_systimer_prepare(struct snd_pcm_substream *substream)
288 {
289 struct snd_pcm_runtime *runtime = substream->runtime;
290 struct dummy_systimer_pcm *dpcm = runtime->private_data;
291
292 dpcm->frac_pos = 0;
293 dpcm->rate = runtime->rate;
294 dpcm->frac_buffer_size = runtime->buffer_size * HZ;
295 dpcm->frac_period_size = runtime->period_size * HZ;
296 dpcm->frac_period_rest = dpcm->frac_period_size;
297 dpcm->elapsed = 0;
298
299 return 0;
300 }
301
dummy_systimer_callback(struct timer_list * t)302 static void dummy_systimer_callback(struct timer_list *t)
303 {
304 struct dummy_systimer_pcm *dpcm = from_timer(dpcm, t, timer);
305 unsigned long flags;
306 int elapsed = 0;
307
308 spin_lock_irqsave(&dpcm->lock, flags);
309 dummy_systimer_update(dpcm);
310 dummy_systimer_rearm(dpcm);
311 elapsed = dpcm->elapsed;
312 dpcm->elapsed = 0;
313 spin_unlock_irqrestore(&dpcm->lock, flags);
314 if (elapsed)
315 snd_pcm_period_elapsed(dpcm->substream);
316 }
317
318 static snd_pcm_uframes_t
dummy_systimer_pointer(struct snd_pcm_substream * substream)319 dummy_systimer_pointer(struct snd_pcm_substream *substream)
320 {
321 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data;
322 snd_pcm_uframes_t pos;
323
324 spin_lock(&dpcm->lock);
325 dummy_systimer_update(dpcm);
326 pos = dpcm->frac_pos / HZ;
327 spin_unlock(&dpcm->lock);
328 return pos;
329 }
330
dummy_systimer_create(struct snd_pcm_substream * substream)331 static int dummy_systimer_create(struct snd_pcm_substream *substream)
332 {
333 struct dummy_systimer_pcm *dpcm;
334
335 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL);
336 if (!dpcm)
337 return -ENOMEM;
338 substream->runtime->private_data = dpcm;
339 timer_setup(&dpcm->timer, dummy_systimer_callback, 0);
340 spin_lock_init(&dpcm->lock);
341 dpcm->substream = substream;
342 return 0;
343 }
344
dummy_systimer_free(struct snd_pcm_substream * substream)345 static void dummy_systimer_free(struct snd_pcm_substream *substream)
346 {
347 kfree(substream->runtime->private_data);
348 }
349
350 static const struct dummy_timer_ops dummy_systimer_ops = {
351 .create = dummy_systimer_create,
352 .free = dummy_systimer_free,
353 .prepare = dummy_systimer_prepare,
354 .start = dummy_systimer_start,
355 .stop = dummy_systimer_stop,
356 .pointer = dummy_systimer_pointer,
357 };
358
359 #ifdef CONFIG_HIGH_RES_TIMERS
360 /*
361 * hrtimer interface
362 */
363
364 struct dummy_hrtimer_pcm {
365 /* ops must be the first item */
366 const struct dummy_timer_ops *timer_ops;
367 ktime_t base_time;
368 ktime_t period_time;
369 atomic_t running;
370 struct hrtimer timer;
371 struct snd_pcm_substream *substream;
372 };
373
dummy_hrtimer_callback(struct hrtimer * timer)374 static enum hrtimer_restart dummy_hrtimer_callback(struct hrtimer *timer)
375 {
376 struct dummy_hrtimer_pcm *dpcm;
377
378 dpcm = container_of(timer, struct dummy_hrtimer_pcm, timer);
379 if (!atomic_read(&dpcm->running))
380 return HRTIMER_NORESTART;
381 /*
382 * In cases of XRUN and draining, this calls .trigger to stop PCM
383 * substream.
384 */
385 snd_pcm_period_elapsed(dpcm->substream);
386 if (!atomic_read(&dpcm->running))
387 return HRTIMER_NORESTART;
388
389 hrtimer_forward_now(timer, dpcm->period_time);
390 return HRTIMER_RESTART;
391 }
392
dummy_hrtimer_start(struct snd_pcm_substream * substream)393 static int dummy_hrtimer_start(struct snd_pcm_substream *substream)
394 {
395 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data;
396
397 dpcm->base_time = hrtimer_cb_get_time(&dpcm->timer);
398 hrtimer_start(&dpcm->timer, dpcm->period_time, HRTIMER_MODE_REL_SOFT);
399 atomic_set(&dpcm->running, 1);
400 return 0;
401 }
402
dummy_hrtimer_stop(struct snd_pcm_substream * substream)403 static int dummy_hrtimer_stop(struct snd_pcm_substream *substream)
404 {
405 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data;
406
407 atomic_set(&dpcm->running, 0);
408 if (!hrtimer_callback_running(&dpcm->timer))
409 hrtimer_cancel(&dpcm->timer);
410 return 0;
411 }
412
dummy_hrtimer_sync(struct dummy_hrtimer_pcm * dpcm)413 static inline void dummy_hrtimer_sync(struct dummy_hrtimer_pcm *dpcm)
414 {
415 hrtimer_cancel(&dpcm->timer);
416 }
417
418 static snd_pcm_uframes_t
dummy_hrtimer_pointer(struct snd_pcm_substream * substream)419 dummy_hrtimer_pointer(struct snd_pcm_substream *substream)
420 {
421 struct snd_pcm_runtime *runtime = substream->runtime;
422 struct dummy_hrtimer_pcm *dpcm = runtime->private_data;
423 u64 delta;
424 u32 pos;
425
426 delta = ktime_us_delta(hrtimer_cb_get_time(&dpcm->timer),
427 dpcm->base_time);
428 delta = div_u64(delta * runtime->rate + 999999, 1000000);
429 div_u64_rem(delta, runtime->buffer_size, &pos);
430 return pos;
431 }
432
dummy_hrtimer_prepare(struct snd_pcm_substream * substream)433 static int dummy_hrtimer_prepare(struct snd_pcm_substream *substream)
434 {
435 struct snd_pcm_runtime *runtime = substream->runtime;
436 struct dummy_hrtimer_pcm *dpcm = runtime->private_data;
437 unsigned int period, rate;
438 long sec;
439 unsigned long nsecs;
440
441 dummy_hrtimer_sync(dpcm);
442 period = runtime->period_size;
443 rate = runtime->rate;
444 sec = period / rate;
445 period %= rate;
446 nsecs = div_u64((u64)period * 1000000000UL + rate - 1, rate);
447 dpcm->period_time = ktime_set(sec, nsecs);
448
449 return 0;
450 }
451
dummy_hrtimer_create(struct snd_pcm_substream * substream)452 static int dummy_hrtimer_create(struct snd_pcm_substream *substream)
453 {
454 struct dummy_hrtimer_pcm *dpcm;
455
456 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL);
457 if (!dpcm)
458 return -ENOMEM;
459 substream->runtime->private_data = dpcm;
460 hrtimer_init(&dpcm->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
461 dpcm->timer.function = dummy_hrtimer_callback;
462 dpcm->substream = substream;
463 atomic_set(&dpcm->running, 0);
464 return 0;
465 }
466
dummy_hrtimer_free(struct snd_pcm_substream * substream)467 static void dummy_hrtimer_free(struct snd_pcm_substream *substream)
468 {
469 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data;
470 dummy_hrtimer_sync(dpcm);
471 kfree(dpcm);
472 }
473
474 static const struct dummy_timer_ops dummy_hrtimer_ops = {
475 .create = dummy_hrtimer_create,
476 .free = dummy_hrtimer_free,
477 .prepare = dummy_hrtimer_prepare,
478 .start = dummy_hrtimer_start,
479 .stop = dummy_hrtimer_stop,
480 .pointer = dummy_hrtimer_pointer,
481 };
482
483 #endif /* CONFIG_HIGH_RES_TIMERS */
484
485 /*
486 * PCM interface
487 */
488
dummy_pcm_trigger(struct snd_pcm_substream * substream,int cmd)489 static int dummy_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
490 {
491 switch (cmd) {
492 case SNDRV_PCM_TRIGGER_START:
493 case SNDRV_PCM_TRIGGER_RESUME:
494 return get_dummy_ops(substream)->start(substream);
495 case SNDRV_PCM_TRIGGER_STOP:
496 case SNDRV_PCM_TRIGGER_SUSPEND:
497 return get_dummy_ops(substream)->stop(substream);
498 }
499 return -EINVAL;
500 }
501
dummy_pcm_prepare(struct snd_pcm_substream * substream)502 static int dummy_pcm_prepare(struct snd_pcm_substream *substream)
503 {
504 return get_dummy_ops(substream)->prepare(substream);
505 }
506
dummy_pcm_pointer(struct snd_pcm_substream * substream)507 static snd_pcm_uframes_t dummy_pcm_pointer(struct snd_pcm_substream *substream)
508 {
509 return get_dummy_ops(substream)->pointer(substream);
510 }
511
512 static const struct snd_pcm_hardware dummy_pcm_hardware = {
513 .info = (SNDRV_PCM_INFO_MMAP |
514 SNDRV_PCM_INFO_INTERLEAVED |
515 SNDRV_PCM_INFO_RESUME |
516 SNDRV_PCM_INFO_MMAP_VALID),
517 .formats = USE_FORMATS,
518 .rates = USE_RATE,
519 .rate_min = USE_RATE_MIN,
520 .rate_max = USE_RATE_MAX,
521 .channels_min = USE_CHANNELS_MIN,
522 .channels_max = USE_CHANNELS_MAX,
523 .buffer_bytes_max = MAX_BUFFER_SIZE,
524 .period_bytes_min = MIN_PERIOD_SIZE,
525 .period_bytes_max = MAX_PERIOD_SIZE,
526 .periods_min = USE_PERIODS_MIN,
527 .periods_max = USE_PERIODS_MAX,
528 .fifo_size = 0,
529 };
530
dummy_pcm_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params)531 static int dummy_pcm_hw_params(struct snd_pcm_substream *substream,
532 struct snd_pcm_hw_params *hw_params)
533 {
534 if (fake_buffer) {
535 /* runtime->dma_bytes has to be set manually to allow mmap */
536 substream->runtime->dma_bytes = params_buffer_bytes(hw_params);
537 return 0;
538 }
539 return 0;
540 }
541
dummy_pcm_open(struct snd_pcm_substream * substream)542 static int dummy_pcm_open(struct snd_pcm_substream *substream)
543 {
544 struct snd_dummy *dummy = snd_pcm_substream_chip(substream);
545 const struct dummy_model *model = dummy->model;
546 struct snd_pcm_runtime *runtime = substream->runtime;
547 const struct dummy_timer_ops *ops;
548 int err;
549
550 ops = &dummy_systimer_ops;
551 #ifdef CONFIG_HIGH_RES_TIMERS
552 if (hrtimer)
553 ops = &dummy_hrtimer_ops;
554 #endif
555
556 err = ops->create(substream);
557 if (err < 0)
558 return err;
559 get_dummy_ops(substream) = ops;
560
561 runtime->hw = dummy->pcm_hw;
562 if (substream->pcm->device & 1) {
563 runtime->hw.info &= ~SNDRV_PCM_INFO_INTERLEAVED;
564 runtime->hw.info |= SNDRV_PCM_INFO_NONINTERLEAVED;
565 }
566 if (substream->pcm->device & 2)
567 runtime->hw.info &= ~(SNDRV_PCM_INFO_MMAP |
568 SNDRV_PCM_INFO_MMAP_VALID);
569
570 if (model == NULL)
571 return 0;
572
573 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
574 if (model->playback_constraints)
575 err = model->playback_constraints(substream->runtime);
576 } else {
577 if (model->capture_constraints)
578 err = model->capture_constraints(substream->runtime);
579 }
580 if (err < 0) {
581 get_dummy_ops(substream)->free(substream);
582 return err;
583 }
584 return 0;
585 }
586
dummy_pcm_close(struct snd_pcm_substream * substream)587 static int dummy_pcm_close(struct snd_pcm_substream *substream)
588 {
589 get_dummy_ops(substream)->free(substream);
590 return 0;
591 }
592
593 /*
594 * dummy buffer handling
595 */
596
597 static void *dummy_page[2];
598
free_fake_buffer(void)599 static void free_fake_buffer(void)
600 {
601 if (fake_buffer) {
602 int i;
603 for (i = 0; i < 2; i++)
604 if (dummy_page[i]) {
605 free_page((unsigned long)dummy_page[i]);
606 dummy_page[i] = NULL;
607 }
608 }
609 }
610
alloc_fake_buffer(void)611 static int alloc_fake_buffer(void)
612 {
613 int i;
614
615 if (!fake_buffer)
616 return 0;
617 for (i = 0; i < 2; i++) {
618 dummy_page[i] = (void *)get_zeroed_page(GFP_KERNEL);
619 if (!dummy_page[i]) {
620 free_fake_buffer();
621 return -ENOMEM;
622 }
623 }
624 return 0;
625 }
626
dummy_pcm_copy(struct snd_pcm_substream * substream,int channel,unsigned long pos,struct iov_iter * iter,unsigned long bytes)627 static int dummy_pcm_copy(struct snd_pcm_substream *substream,
628 int channel, unsigned long pos,
629 struct iov_iter *iter, unsigned long bytes)
630 {
631 return 0; /* do nothing */
632 }
633
dummy_pcm_silence(struct snd_pcm_substream * substream,int channel,unsigned long pos,unsigned long bytes)634 static int dummy_pcm_silence(struct snd_pcm_substream *substream,
635 int channel, unsigned long pos,
636 unsigned long bytes)
637 {
638 return 0; /* do nothing */
639 }
640
dummy_pcm_page(struct snd_pcm_substream * substream,unsigned long offset)641 static struct page *dummy_pcm_page(struct snd_pcm_substream *substream,
642 unsigned long offset)
643 {
644 return virt_to_page(dummy_page[substream->stream]); /* the same page */
645 }
646
647 static const struct snd_pcm_ops dummy_pcm_ops = {
648 .open = dummy_pcm_open,
649 .close = dummy_pcm_close,
650 .hw_params = dummy_pcm_hw_params,
651 .prepare = dummy_pcm_prepare,
652 .trigger = dummy_pcm_trigger,
653 .pointer = dummy_pcm_pointer,
654 };
655
656 static const struct snd_pcm_ops dummy_pcm_ops_no_buf = {
657 .open = dummy_pcm_open,
658 .close = dummy_pcm_close,
659 .hw_params = dummy_pcm_hw_params,
660 .prepare = dummy_pcm_prepare,
661 .trigger = dummy_pcm_trigger,
662 .pointer = dummy_pcm_pointer,
663 .copy = dummy_pcm_copy,
664 .fill_silence = dummy_pcm_silence,
665 .page = dummy_pcm_page,
666 };
667
snd_card_dummy_pcm(struct snd_dummy * dummy,int device,int substreams)668 static int snd_card_dummy_pcm(struct snd_dummy *dummy, int device,
669 int substreams)
670 {
671 struct snd_pcm *pcm;
672 const struct snd_pcm_ops *ops;
673 int err;
674
675 err = snd_pcm_new(dummy->card, "Dummy PCM", device,
676 substreams, substreams, &pcm);
677 if (err < 0)
678 return err;
679 dummy->pcm = pcm;
680 if (fake_buffer)
681 ops = &dummy_pcm_ops_no_buf;
682 else
683 ops = &dummy_pcm_ops;
684 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, ops);
685 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, ops);
686 pcm->private_data = dummy;
687 pcm->info_flags = 0;
688 strcpy(pcm->name, "Dummy PCM");
689 if (!fake_buffer) {
690 snd_pcm_set_managed_buffer_all(pcm,
691 SNDRV_DMA_TYPE_CONTINUOUS,
692 NULL,
693 0, 64*1024);
694 }
695 return 0;
696 }
697
698 /*
699 * mixer interface
700 */
701
702 #define DUMMY_VOLUME(xname, xindex, addr) \
703 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
704 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
705 .name = xname, .index = xindex, \
706 .info = snd_dummy_volume_info, \
707 .get = snd_dummy_volume_get, .put = snd_dummy_volume_put, \
708 .private_value = addr, \
709 .tlv = { .p = db_scale_dummy } }
710
snd_dummy_volume_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)711 static int snd_dummy_volume_info(struct snd_kcontrol *kcontrol,
712 struct snd_ctl_elem_info *uinfo)
713 {
714 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
715 uinfo->count = 2;
716 uinfo->value.integer.min = mixer_volume_level_min;
717 uinfo->value.integer.max = mixer_volume_level_max;
718 return 0;
719 }
720
snd_dummy_volume_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)721 static int snd_dummy_volume_get(struct snd_kcontrol *kcontrol,
722 struct snd_ctl_elem_value *ucontrol)
723 {
724 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
725 int addr = kcontrol->private_value;
726
727 spin_lock_irq(&dummy->mixer_lock);
728 ucontrol->value.integer.value[0] = dummy->mixer_volume[addr][0];
729 ucontrol->value.integer.value[1] = dummy->mixer_volume[addr][1];
730 spin_unlock_irq(&dummy->mixer_lock);
731 return 0;
732 }
733
snd_dummy_volume_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)734 static int snd_dummy_volume_put(struct snd_kcontrol *kcontrol,
735 struct snd_ctl_elem_value *ucontrol)
736 {
737 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
738 int change, addr = kcontrol->private_value;
739 int left, right;
740
741 left = ucontrol->value.integer.value[0];
742 if (left < mixer_volume_level_min)
743 left = mixer_volume_level_min;
744 if (left > mixer_volume_level_max)
745 left = mixer_volume_level_max;
746 right = ucontrol->value.integer.value[1];
747 if (right < mixer_volume_level_min)
748 right = mixer_volume_level_min;
749 if (right > mixer_volume_level_max)
750 right = mixer_volume_level_max;
751 spin_lock_irq(&dummy->mixer_lock);
752 change = dummy->mixer_volume[addr][0] != left ||
753 dummy->mixer_volume[addr][1] != right;
754 dummy->mixer_volume[addr][0] = left;
755 dummy->mixer_volume[addr][1] = right;
756 spin_unlock_irq(&dummy->mixer_lock);
757 return change;
758 }
759
760 static const DECLARE_TLV_DB_SCALE(db_scale_dummy, -4500, 30, 0);
761
762 #define DUMMY_CAPSRC(xname, xindex, addr) \
763 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
764 .info = snd_dummy_capsrc_info, \
765 .get = snd_dummy_capsrc_get, .put = snd_dummy_capsrc_put, \
766 .private_value = addr }
767
768 #define snd_dummy_capsrc_info snd_ctl_boolean_stereo_info
769
snd_dummy_capsrc_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)770 static int snd_dummy_capsrc_get(struct snd_kcontrol *kcontrol,
771 struct snd_ctl_elem_value *ucontrol)
772 {
773 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
774 int addr = kcontrol->private_value;
775
776 spin_lock_irq(&dummy->mixer_lock);
777 ucontrol->value.integer.value[0] = dummy->capture_source[addr][0];
778 ucontrol->value.integer.value[1] = dummy->capture_source[addr][1];
779 spin_unlock_irq(&dummy->mixer_lock);
780 return 0;
781 }
782
snd_dummy_capsrc_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)783 static int snd_dummy_capsrc_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
784 {
785 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
786 int change, addr = kcontrol->private_value;
787 int left, right;
788
789 left = ucontrol->value.integer.value[0] & 1;
790 right = ucontrol->value.integer.value[1] & 1;
791 spin_lock_irq(&dummy->mixer_lock);
792 change = dummy->capture_source[addr][0] != left &&
793 dummy->capture_source[addr][1] != right;
794 dummy->capture_source[addr][0] = left;
795 dummy->capture_source[addr][1] = right;
796 spin_unlock_irq(&dummy->mixer_lock);
797 return change;
798 }
799
snd_dummy_iobox_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * info)800 static int snd_dummy_iobox_info(struct snd_kcontrol *kcontrol,
801 struct snd_ctl_elem_info *info)
802 {
803 static const char *const names[] = { "None", "CD Player" };
804
805 return snd_ctl_enum_info(info, 1, 2, names);
806 }
807
snd_dummy_iobox_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * value)808 static int snd_dummy_iobox_get(struct snd_kcontrol *kcontrol,
809 struct snd_ctl_elem_value *value)
810 {
811 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
812
813 value->value.enumerated.item[0] = dummy->iobox;
814 return 0;
815 }
816
snd_dummy_iobox_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * value)817 static int snd_dummy_iobox_put(struct snd_kcontrol *kcontrol,
818 struct snd_ctl_elem_value *value)
819 {
820 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
821 int changed;
822
823 if (value->value.enumerated.item[0] > 1)
824 return -EINVAL;
825
826 changed = value->value.enumerated.item[0] != dummy->iobox;
827 if (changed) {
828 dummy->iobox = value->value.enumerated.item[0];
829
830 if (dummy->iobox) {
831 dummy->cd_volume_ctl->vd[0].access &=
832 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
833 dummy->cd_switch_ctl->vd[0].access &=
834 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
835 } else {
836 dummy->cd_volume_ctl->vd[0].access |=
837 SNDRV_CTL_ELEM_ACCESS_INACTIVE;
838 dummy->cd_switch_ctl->vd[0].access |=
839 SNDRV_CTL_ELEM_ACCESS_INACTIVE;
840 }
841
842 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO,
843 &dummy->cd_volume_ctl->id);
844 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO,
845 &dummy->cd_switch_ctl->id);
846 }
847
848 return changed;
849 }
850
851 static const struct snd_kcontrol_new snd_dummy_controls[] = {
852 DUMMY_VOLUME("Master Volume", 0, MIXER_ADDR_MASTER),
853 DUMMY_CAPSRC("Master Capture Switch", 0, MIXER_ADDR_MASTER),
854 DUMMY_VOLUME("Synth Volume", 0, MIXER_ADDR_SYNTH),
855 DUMMY_CAPSRC("Synth Capture Switch", 0, MIXER_ADDR_SYNTH),
856 DUMMY_VOLUME("Line Volume", 0, MIXER_ADDR_LINE),
857 DUMMY_CAPSRC("Line Capture Switch", 0, MIXER_ADDR_LINE),
858 DUMMY_VOLUME("Mic Volume", 0, MIXER_ADDR_MIC),
859 DUMMY_CAPSRC("Mic Capture Switch", 0, MIXER_ADDR_MIC),
860 DUMMY_VOLUME("CD Volume", 0, MIXER_ADDR_CD),
861 DUMMY_CAPSRC("CD Capture Switch", 0, MIXER_ADDR_CD),
862 {
863 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
864 .name = "External I/O Box",
865 .info = snd_dummy_iobox_info,
866 .get = snd_dummy_iobox_get,
867 .put = snd_dummy_iobox_put,
868 },
869 };
870
snd_card_dummy_new_mixer(struct snd_dummy * dummy)871 static int snd_card_dummy_new_mixer(struct snd_dummy *dummy)
872 {
873 struct snd_card *card = dummy->card;
874 struct snd_kcontrol *kcontrol;
875 unsigned int idx;
876 int err;
877
878 spin_lock_init(&dummy->mixer_lock);
879 strcpy(card->mixername, "Dummy Mixer");
880 dummy->iobox = 1;
881
882 for (idx = 0; idx < ARRAY_SIZE(snd_dummy_controls); idx++) {
883 kcontrol = snd_ctl_new1(&snd_dummy_controls[idx], dummy);
884 err = snd_ctl_add(card, kcontrol);
885 if (err < 0)
886 return err;
887 if (!strcmp(kcontrol->id.name, "CD Volume"))
888 dummy->cd_volume_ctl = kcontrol;
889 else if (!strcmp(kcontrol->id.name, "CD Capture Switch"))
890 dummy->cd_switch_ctl = kcontrol;
891
892 }
893 return 0;
894 }
895
896 #if defined(CONFIG_SND_DEBUG) && defined(CONFIG_SND_PROC_FS)
897 /*
898 * proc interface
899 */
print_formats(struct snd_dummy * dummy,struct snd_info_buffer * buffer)900 static void print_formats(struct snd_dummy *dummy,
901 struct snd_info_buffer *buffer)
902 {
903 snd_pcm_format_t i;
904
905 pcm_for_each_format(i) {
906 if (dummy->pcm_hw.formats & pcm_format_to_bits(i))
907 snd_iprintf(buffer, " %s", snd_pcm_format_name(i));
908 }
909 }
910
print_rates(struct snd_dummy * dummy,struct snd_info_buffer * buffer)911 static void print_rates(struct snd_dummy *dummy,
912 struct snd_info_buffer *buffer)
913 {
914 static const int rates[] = {
915 5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000,
916 64000, 88200, 96000, 176400, 192000,
917 };
918 int i;
919
920 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_CONTINUOUS)
921 snd_iprintf(buffer, " continuous");
922 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_KNOT)
923 snd_iprintf(buffer, " knot");
924 for (i = 0; i < ARRAY_SIZE(rates); i++)
925 if (dummy->pcm_hw.rates & (1 << i))
926 snd_iprintf(buffer, " %d", rates[i]);
927 }
928
929 #define get_dummy_int_ptr(dummy, ofs) \
930 (unsigned int *)((char *)&((dummy)->pcm_hw) + (ofs))
931 #define get_dummy_ll_ptr(dummy, ofs) \
932 (unsigned long long *)((char *)&((dummy)->pcm_hw) + (ofs))
933
934 struct dummy_hw_field {
935 const char *name;
936 const char *format;
937 unsigned int offset;
938 unsigned int size;
939 };
940 #define FIELD_ENTRY(item, fmt) { \
941 .name = #item, \
942 .format = fmt, \
943 .offset = offsetof(struct snd_pcm_hardware, item), \
944 .size = sizeof(dummy_pcm_hardware.item) }
945
946 static const struct dummy_hw_field fields[] = {
947 FIELD_ENTRY(formats, "%#llx"),
948 FIELD_ENTRY(rates, "%#x"),
949 FIELD_ENTRY(rate_min, "%d"),
950 FIELD_ENTRY(rate_max, "%d"),
951 FIELD_ENTRY(channels_min, "%d"),
952 FIELD_ENTRY(channels_max, "%d"),
953 FIELD_ENTRY(buffer_bytes_max, "%ld"),
954 FIELD_ENTRY(period_bytes_min, "%ld"),
955 FIELD_ENTRY(period_bytes_max, "%ld"),
956 FIELD_ENTRY(periods_min, "%d"),
957 FIELD_ENTRY(periods_max, "%d"),
958 };
959
dummy_proc_read(struct snd_info_entry * entry,struct snd_info_buffer * buffer)960 static void dummy_proc_read(struct snd_info_entry *entry,
961 struct snd_info_buffer *buffer)
962 {
963 struct snd_dummy *dummy = entry->private_data;
964 int i;
965
966 for (i = 0; i < ARRAY_SIZE(fields); i++) {
967 snd_iprintf(buffer, "%s ", fields[i].name);
968 if (fields[i].size == sizeof(int))
969 snd_iprintf(buffer, fields[i].format,
970 *get_dummy_int_ptr(dummy, fields[i].offset));
971 else
972 snd_iprintf(buffer, fields[i].format,
973 *get_dummy_ll_ptr(dummy, fields[i].offset));
974 if (!strcmp(fields[i].name, "formats"))
975 print_formats(dummy, buffer);
976 else if (!strcmp(fields[i].name, "rates"))
977 print_rates(dummy, buffer);
978 snd_iprintf(buffer, "\n");
979 }
980 }
981
dummy_proc_write(struct snd_info_entry * entry,struct snd_info_buffer * buffer)982 static void dummy_proc_write(struct snd_info_entry *entry,
983 struct snd_info_buffer *buffer)
984 {
985 struct snd_dummy *dummy = entry->private_data;
986 char line[64];
987
988 while (!snd_info_get_line(buffer, line, sizeof(line))) {
989 char item[20];
990 const char *ptr;
991 unsigned long long val;
992 int i;
993
994 ptr = snd_info_get_str(item, line, sizeof(item));
995 for (i = 0; i < ARRAY_SIZE(fields); i++) {
996 if (!strcmp(item, fields[i].name))
997 break;
998 }
999 if (i >= ARRAY_SIZE(fields))
1000 continue;
1001 snd_info_get_str(item, ptr, sizeof(item));
1002 if (kstrtoull(item, 0, &val))
1003 continue;
1004 if (fields[i].size == sizeof(int))
1005 *get_dummy_int_ptr(dummy, fields[i].offset) = val;
1006 else
1007 *get_dummy_ll_ptr(dummy, fields[i].offset) = val;
1008 }
1009 }
1010
dummy_proc_init(struct snd_dummy * chip)1011 static void dummy_proc_init(struct snd_dummy *chip)
1012 {
1013 snd_card_rw_proc_new(chip->card, "dummy_pcm", chip,
1014 dummy_proc_read, dummy_proc_write);
1015 }
1016 #else
1017 #define dummy_proc_init(x)
1018 #endif /* CONFIG_SND_DEBUG && CONFIG_SND_PROC_FS */
1019
snd_dummy_probe(struct platform_device * devptr)1020 static int snd_dummy_probe(struct platform_device *devptr)
1021 {
1022 struct snd_card *card;
1023 struct snd_dummy *dummy;
1024 const struct dummy_model *m = NULL, **mdl;
1025 int idx, err;
1026 int dev = devptr->id;
1027
1028 err = snd_devm_card_new(&devptr->dev, index[dev], id[dev], THIS_MODULE,
1029 sizeof(struct snd_dummy), &card);
1030 if (err < 0)
1031 return err;
1032 dummy = card->private_data;
1033 dummy->card = card;
1034 for (mdl = dummy_models; *mdl && model[dev]; mdl++) {
1035 if (strcmp(model[dev], (*mdl)->name) == 0) {
1036 printk(KERN_INFO
1037 "snd-dummy: Using model '%s' for card %i\n",
1038 (*mdl)->name, card->number);
1039 m = dummy->model = *mdl;
1040 break;
1041 }
1042 }
1043 for (idx = 0; idx < MAX_PCM_DEVICES && idx < pcm_devs[dev]; idx++) {
1044 if (pcm_substreams[dev] < 1)
1045 pcm_substreams[dev] = 1;
1046 if (pcm_substreams[dev] > MAX_PCM_SUBSTREAMS)
1047 pcm_substreams[dev] = MAX_PCM_SUBSTREAMS;
1048 err = snd_card_dummy_pcm(dummy, idx, pcm_substreams[dev]);
1049 if (err < 0)
1050 return err;
1051 }
1052
1053 dummy->pcm_hw = dummy_pcm_hardware;
1054 if (m) {
1055 if (m->formats)
1056 dummy->pcm_hw.formats = m->formats;
1057 if (m->buffer_bytes_max)
1058 dummy->pcm_hw.buffer_bytes_max = m->buffer_bytes_max;
1059 if (m->period_bytes_min)
1060 dummy->pcm_hw.period_bytes_min = m->period_bytes_min;
1061 if (m->period_bytes_max)
1062 dummy->pcm_hw.period_bytes_max = m->period_bytes_max;
1063 if (m->periods_min)
1064 dummy->pcm_hw.periods_min = m->periods_min;
1065 if (m->periods_max)
1066 dummy->pcm_hw.periods_max = m->periods_max;
1067 if (m->rates)
1068 dummy->pcm_hw.rates = m->rates;
1069 if (m->rate_min)
1070 dummy->pcm_hw.rate_min = m->rate_min;
1071 if (m->rate_max)
1072 dummy->pcm_hw.rate_max = m->rate_max;
1073 if (m->channels_min)
1074 dummy->pcm_hw.channels_min = m->channels_min;
1075 if (m->channels_max)
1076 dummy->pcm_hw.channels_max = m->channels_max;
1077 }
1078
1079 if (mixer_volume_level_min > mixer_volume_level_max) {
1080 pr_warn("snd-dummy: Invalid mixer volume level: min=%d, max=%d. Fall back to default value.\n",
1081 mixer_volume_level_min, mixer_volume_level_max);
1082 mixer_volume_level_min = USE_MIXER_VOLUME_LEVEL_MIN;
1083 mixer_volume_level_max = USE_MIXER_VOLUME_LEVEL_MAX;
1084 }
1085 err = snd_card_dummy_new_mixer(dummy);
1086 if (err < 0)
1087 return err;
1088 strcpy(card->driver, "Dummy");
1089 strcpy(card->shortname, "Dummy");
1090 sprintf(card->longname, "Dummy %i", dev + 1);
1091
1092 dummy_proc_init(dummy);
1093
1094 err = snd_card_register(card);
1095 if (err < 0)
1096 return err;
1097 platform_set_drvdata(devptr, card);
1098 return 0;
1099 }
1100
1101 #ifdef CONFIG_PM_SLEEP
snd_dummy_suspend(struct device * pdev)1102 static int snd_dummy_suspend(struct device *pdev)
1103 {
1104 struct snd_card *card = dev_get_drvdata(pdev);
1105
1106 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1107 return 0;
1108 }
1109
snd_dummy_resume(struct device * pdev)1110 static int snd_dummy_resume(struct device *pdev)
1111 {
1112 struct snd_card *card = dev_get_drvdata(pdev);
1113
1114 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1115 return 0;
1116 }
1117
1118 static SIMPLE_DEV_PM_OPS(snd_dummy_pm, snd_dummy_suspend, snd_dummy_resume);
1119 #define SND_DUMMY_PM_OPS &snd_dummy_pm
1120 #else
1121 #define SND_DUMMY_PM_OPS NULL
1122 #endif
1123
1124 #define SND_DUMMY_DRIVER "snd_dummy"
1125
1126 static struct platform_driver snd_dummy_driver = {
1127 .probe = snd_dummy_probe,
1128 .driver = {
1129 .name = SND_DUMMY_DRIVER,
1130 .pm = SND_DUMMY_PM_OPS,
1131 },
1132 };
1133
snd_dummy_unregister_all(void)1134 static void snd_dummy_unregister_all(void)
1135 {
1136 int i;
1137
1138 for (i = 0; i < ARRAY_SIZE(devices); ++i)
1139 platform_device_unregister(devices[i]);
1140 platform_driver_unregister(&snd_dummy_driver);
1141 free_fake_buffer();
1142 }
1143
alsa_card_dummy_init(void)1144 static int __init alsa_card_dummy_init(void)
1145 {
1146 int i, cards, err;
1147
1148 err = platform_driver_register(&snd_dummy_driver);
1149 if (err < 0)
1150 return err;
1151
1152 err = alloc_fake_buffer();
1153 if (err < 0) {
1154 platform_driver_unregister(&snd_dummy_driver);
1155 return err;
1156 }
1157
1158 cards = 0;
1159 for (i = 0; i < SNDRV_CARDS; i++) {
1160 struct platform_device *device;
1161 if (! enable[i])
1162 continue;
1163 device = platform_device_register_simple(SND_DUMMY_DRIVER,
1164 i, NULL, 0);
1165 if (IS_ERR(device))
1166 continue;
1167 if (!platform_get_drvdata(device)) {
1168 platform_device_unregister(device);
1169 continue;
1170 }
1171 devices[i] = device;
1172 cards++;
1173 }
1174 if (!cards) {
1175 #ifdef MODULE
1176 printk(KERN_ERR "Dummy soundcard not found or device busy\n");
1177 #endif
1178 snd_dummy_unregister_all();
1179 return -ENODEV;
1180 }
1181 return 0;
1182 }
1183
alsa_card_dummy_exit(void)1184 static void __exit alsa_card_dummy_exit(void)
1185 {
1186 snd_dummy_unregister_all();
1187 }
1188
1189 module_init(alsa_card_dummy_init)
1190 module_exit(alsa_card_dummy_exit)
1191