1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2014 Facebook. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/stacktrace.h>
8 #include "messages.h"
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "locking.h"
12 #include "delayed-ref.h"
13 #include "ref-verify.h"
14 #include "fs.h"
15 #include "accessors.h"
16
17 /*
18 * Used to keep track the roots and number of refs each root has for a given
19 * bytenr. This just tracks the number of direct references, no shared
20 * references.
21 */
22 struct root_entry {
23 u64 root_objectid;
24 u64 num_refs;
25 struct rb_node node;
26 };
27
28 /*
29 * These are meant to represent what should exist in the extent tree, these can
30 * be used to verify the extent tree is consistent as these should all match
31 * what the extent tree says.
32 */
33 struct ref_entry {
34 u64 root_objectid;
35 u64 parent;
36 u64 owner;
37 u64 offset;
38 u64 num_refs;
39 struct rb_node node;
40 };
41
42 #define MAX_TRACE 16
43
44 /*
45 * Whenever we add/remove a reference we record the action. The action maps
46 * back to the delayed ref action. We hold the ref we are changing in the
47 * action so we can account for the history properly, and we record the root we
48 * were called with since it could be different from ref_root. We also store
49 * stack traces because that's how I roll.
50 */
51 struct ref_action {
52 int action;
53 u64 root;
54 struct ref_entry ref;
55 struct list_head list;
56 unsigned long trace[MAX_TRACE];
57 unsigned int trace_len;
58 };
59
60 /*
61 * One of these for every block we reference, it holds the roots and references
62 * to it as well as all of the ref actions that have occurred to it. We never
63 * free it until we unmount the file system in order to make sure re-allocations
64 * are happening properly.
65 */
66 struct block_entry {
67 u64 bytenr;
68 u64 len;
69 u64 num_refs;
70 int metadata;
71 int from_disk;
72 struct rb_root roots;
73 struct rb_root refs;
74 struct rb_node node;
75 struct list_head actions;
76 };
77
insert_block_entry(struct rb_root * root,struct block_entry * be)78 static struct block_entry *insert_block_entry(struct rb_root *root,
79 struct block_entry *be)
80 {
81 struct rb_node **p = &root->rb_node;
82 struct rb_node *parent_node = NULL;
83 struct block_entry *entry;
84
85 while (*p) {
86 parent_node = *p;
87 entry = rb_entry(parent_node, struct block_entry, node);
88 if (entry->bytenr > be->bytenr)
89 p = &(*p)->rb_left;
90 else if (entry->bytenr < be->bytenr)
91 p = &(*p)->rb_right;
92 else
93 return entry;
94 }
95
96 rb_link_node(&be->node, parent_node, p);
97 rb_insert_color(&be->node, root);
98 return NULL;
99 }
100
lookup_block_entry(struct rb_root * root,u64 bytenr)101 static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
102 {
103 struct rb_node *n;
104 struct block_entry *entry = NULL;
105
106 n = root->rb_node;
107 while (n) {
108 entry = rb_entry(n, struct block_entry, node);
109 if (entry->bytenr < bytenr)
110 n = n->rb_right;
111 else if (entry->bytenr > bytenr)
112 n = n->rb_left;
113 else
114 return entry;
115 }
116 return NULL;
117 }
118
insert_root_entry(struct rb_root * root,struct root_entry * re)119 static struct root_entry *insert_root_entry(struct rb_root *root,
120 struct root_entry *re)
121 {
122 struct rb_node **p = &root->rb_node;
123 struct rb_node *parent_node = NULL;
124 struct root_entry *entry;
125
126 while (*p) {
127 parent_node = *p;
128 entry = rb_entry(parent_node, struct root_entry, node);
129 if (entry->root_objectid > re->root_objectid)
130 p = &(*p)->rb_left;
131 else if (entry->root_objectid < re->root_objectid)
132 p = &(*p)->rb_right;
133 else
134 return entry;
135 }
136
137 rb_link_node(&re->node, parent_node, p);
138 rb_insert_color(&re->node, root);
139 return NULL;
140
141 }
142
comp_refs(struct ref_entry * ref1,struct ref_entry * ref2)143 static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
144 {
145 if (ref1->root_objectid < ref2->root_objectid)
146 return -1;
147 if (ref1->root_objectid > ref2->root_objectid)
148 return 1;
149 if (ref1->parent < ref2->parent)
150 return -1;
151 if (ref1->parent > ref2->parent)
152 return 1;
153 if (ref1->owner < ref2->owner)
154 return -1;
155 if (ref1->owner > ref2->owner)
156 return 1;
157 if (ref1->offset < ref2->offset)
158 return -1;
159 if (ref1->offset > ref2->offset)
160 return 1;
161 return 0;
162 }
163
insert_ref_entry(struct rb_root * root,struct ref_entry * ref)164 static struct ref_entry *insert_ref_entry(struct rb_root *root,
165 struct ref_entry *ref)
166 {
167 struct rb_node **p = &root->rb_node;
168 struct rb_node *parent_node = NULL;
169 struct ref_entry *entry;
170 int cmp;
171
172 while (*p) {
173 parent_node = *p;
174 entry = rb_entry(parent_node, struct ref_entry, node);
175 cmp = comp_refs(entry, ref);
176 if (cmp > 0)
177 p = &(*p)->rb_left;
178 else if (cmp < 0)
179 p = &(*p)->rb_right;
180 else
181 return entry;
182 }
183
184 rb_link_node(&ref->node, parent_node, p);
185 rb_insert_color(&ref->node, root);
186 return NULL;
187
188 }
189
lookup_root_entry(struct rb_root * root,u64 objectid)190 static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
191 {
192 struct rb_node *n;
193 struct root_entry *entry = NULL;
194
195 n = root->rb_node;
196 while (n) {
197 entry = rb_entry(n, struct root_entry, node);
198 if (entry->root_objectid < objectid)
199 n = n->rb_right;
200 else if (entry->root_objectid > objectid)
201 n = n->rb_left;
202 else
203 return entry;
204 }
205 return NULL;
206 }
207
208 #ifdef CONFIG_STACKTRACE
__save_stack_trace(struct ref_action * ra)209 static void __save_stack_trace(struct ref_action *ra)
210 {
211 ra->trace_len = stack_trace_save(ra->trace, MAX_TRACE, 2);
212 }
213
__print_stack_trace(struct btrfs_fs_info * fs_info,struct ref_action * ra)214 static void __print_stack_trace(struct btrfs_fs_info *fs_info,
215 struct ref_action *ra)
216 {
217 if (ra->trace_len == 0) {
218 btrfs_err(fs_info, " ref-verify: no stacktrace");
219 return;
220 }
221 stack_trace_print(ra->trace, ra->trace_len, 2);
222 }
223 #else
__save_stack_trace(struct ref_action * ra)224 static inline void __save_stack_trace(struct ref_action *ra)
225 {
226 }
227
__print_stack_trace(struct btrfs_fs_info * fs_info,struct ref_action * ra)228 static inline void __print_stack_trace(struct btrfs_fs_info *fs_info,
229 struct ref_action *ra)
230 {
231 btrfs_err(fs_info, " ref-verify: no stacktrace support");
232 }
233 #endif
234
free_block_entry(struct block_entry * be)235 static void free_block_entry(struct block_entry *be)
236 {
237 struct root_entry *re;
238 struct ref_entry *ref;
239 struct ref_action *ra;
240 struct rb_node *n;
241
242 while ((n = rb_first(&be->roots))) {
243 re = rb_entry(n, struct root_entry, node);
244 rb_erase(&re->node, &be->roots);
245 kfree(re);
246 }
247
248 while((n = rb_first(&be->refs))) {
249 ref = rb_entry(n, struct ref_entry, node);
250 rb_erase(&ref->node, &be->refs);
251 kfree(ref);
252 }
253
254 while (!list_empty(&be->actions)) {
255 ra = list_first_entry(&be->actions, struct ref_action,
256 list);
257 list_del(&ra->list);
258 kfree(ra);
259 }
260 kfree(be);
261 }
262
add_block_entry(struct btrfs_fs_info * fs_info,u64 bytenr,u64 len,u64 root_objectid)263 static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
264 u64 bytenr, u64 len,
265 u64 root_objectid)
266 {
267 struct block_entry *be = NULL, *exist;
268 struct root_entry *re = NULL;
269
270 re = kzalloc(sizeof(struct root_entry), GFP_NOFS);
271 be = kzalloc(sizeof(struct block_entry), GFP_NOFS);
272 if (!be || !re) {
273 kfree(re);
274 kfree(be);
275 return ERR_PTR(-ENOMEM);
276 }
277 be->bytenr = bytenr;
278 be->len = len;
279
280 re->root_objectid = root_objectid;
281 re->num_refs = 0;
282
283 spin_lock(&fs_info->ref_verify_lock);
284 exist = insert_block_entry(&fs_info->block_tree, be);
285 if (exist) {
286 if (root_objectid) {
287 struct root_entry *exist_re;
288
289 exist_re = insert_root_entry(&exist->roots, re);
290 if (exist_re)
291 kfree(re);
292 } else {
293 kfree(re);
294 }
295 kfree(be);
296 return exist;
297 }
298
299 be->num_refs = 0;
300 be->metadata = 0;
301 be->from_disk = 0;
302 be->roots = RB_ROOT;
303 be->refs = RB_ROOT;
304 INIT_LIST_HEAD(&be->actions);
305 if (root_objectid)
306 insert_root_entry(&be->roots, re);
307 else
308 kfree(re);
309 return be;
310 }
311
add_tree_block(struct btrfs_fs_info * fs_info,u64 ref_root,u64 parent,u64 bytenr,int level)312 static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
313 u64 parent, u64 bytenr, int level)
314 {
315 struct block_entry *be;
316 struct root_entry *re;
317 struct ref_entry *ref = NULL, *exist;
318
319 ref = kmalloc(sizeof(struct ref_entry), GFP_NOFS);
320 if (!ref)
321 return -ENOMEM;
322
323 if (parent)
324 ref->root_objectid = 0;
325 else
326 ref->root_objectid = ref_root;
327 ref->parent = parent;
328 ref->owner = level;
329 ref->offset = 0;
330 ref->num_refs = 1;
331
332 be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
333 if (IS_ERR(be)) {
334 kfree(ref);
335 return PTR_ERR(be);
336 }
337 be->num_refs++;
338 be->from_disk = 1;
339 be->metadata = 1;
340
341 if (!parent) {
342 ASSERT(ref_root);
343 re = lookup_root_entry(&be->roots, ref_root);
344 ASSERT(re);
345 re->num_refs++;
346 }
347 exist = insert_ref_entry(&be->refs, ref);
348 if (exist) {
349 exist->num_refs++;
350 kfree(ref);
351 }
352 spin_unlock(&fs_info->ref_verify_lock);
353
354 return 0;
355 }
356
add_shared_data_ref(struct btrfs_fs_info * fs_info,u64 parent,u32 num_refs,u64 bytenr,u64 num_bytes)357 static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
358 u64 parent, u32 num_refs, u64 bytenr,
359 u64 num_bytes)
360 {
361 struct block_entry *be;
362 struct ref_entry *ref;
363
364 ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
365 if (!ref)
366 return -ENOMEM;
367 be = add_block_entry(fs_info, bytenr, num_bytes, 0);
368 if (IS_ERR(be)) {
369 kfree(ref);
370 return PTR_ERR(be);
371 }
372 be->num_refs += num_refs;
373
374 ref->parent = parent;
375 ref->num_refs = num_refs;
376 if (insert_ref_entry(&be->refs, ref)) {
377 spin_unlock(&fs_info->ref_verify_lock);
378 btrfs_err(fs_info, "existing shared ref when reading from disk?");
379 kfree(ref);
380 return -EINVAL;
381 }
382 spin_unlock(&fs_info->ref_verify_lock);
383 return 0;
384 }
385
add_extent_data_ref(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,struct btrfs_extent_data_ref * dref,u64 bytenr,u64 num_bytes)386 static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
387 struct extent_buffer *leaf,
388 struct btrfs_extent_data_ref *dref,
389 u64 bytenr, u64 num_bytes)
390 {
391 struct block_entry *be;
392 struct ref_entry *ref;
393 struct root_entry *re;
394 u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
395 u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
396 u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
397 u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
398
399 ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
400 if (!ref)
401 return -ENOMEM;
402 be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
403 if (IS_ERR(be)) {
404 kfree(ref);
405 return PTR_ERR(be);
406 }
407 be->num_refs += num_refs;
408
409 ref->parent = 0;
410 ref->owner = owner;
411 ref->root_objectid = ref_root;
412 ref->offset = offset;
413 ref->num_refs = num_refs;
414 if (insert_ref_entry(&be->refs, ref)) {
415 spin_unlock(&fs_info->ref_verify_lock);
416 btrfs_err(fs_info, "existing ref when reading from disk?");
417 kfree(ref);
418 return -EINVAL;
419 }
420
421 re = lookup_root_entry(&be->roots, ref_root);
422 if (!re) {
423 spin_unlock(&fs_info->ref_verify_lock);
424 btrfs_err(fs_info, "missing root in new block entry?");
425 return -EINVAL;
426 }
427 re->num_refs += num_refs;
428 spin_unlock(&fs_info->ref_verify_lock);
429 return 0;
430 }
431
process_extent_item(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key,int slot,int * tree_block_level)432 static int process_extent_item(struct btrfs_fs_info *fs_info,
433 struct btrfs_path *path, struct btrfs_key *key,
434 int slot, int *tree_block_level)
435 {
436 struct btrfs_extent_item *ei;
437 struct btrfs_extent_inline_ref *iref;
438 struct btrfs_extent_data_ref *dref;
439 struct btrfs_shared_data_ref *sref;
440 struct extent_buffer *leaf = path->nodes[0];
441 u32 item_size = btrfs_item_size(leaf, slot);
442 unsigned long end, ptr;
443 u64 offset, flags, count;
444 int type, ret;
445
446 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
447 flags = btrfs_extent_flags(leaf, ei);
448
449 if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
450 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
451 struct btrfs_tree_block_info *info;
452
453 info = (struct btrfs_tree_block_info *)(ei + 1);
454 *tree_block_level = btrfs_tree_block_level(leaf, info);
455 iref = (struct btrfs_extent_inline_ref *)(info + 1);
456 } else {
457 if (key->type == BTRFS_METADATA_ITEM_KEY)
458 *tree_block_level = key->offset;
459 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
460 }
461
462 ptr = (unsigned long)iref;
463 end = (unsigned long)ei + item_size;
464 while (ptr < end) {
465 iref = (struct btrfs_extent_inline_ref *)ptr;
466 type = btrfs_extent_inline_ref_type(leaf, iref);
467 offset = btrfs_extent_inline_ref_offset(leaf, iref);
468 switch (type) {
469 case BTRFS_TREE_BLOCK_REF_KEY:
470 ret = add_tree_block(fs_info, offset, 0, key->objectid,
471 *tree_block_level);
472 break;
473 case BTRFS_SHARED_BLOCK_REF_KEY:
474 ret = add_tree_block(fs_info, 0, offset, key->objectid,
475 *tree_block_level);
476 break;
477 case BTRFS_EXTENT_DATA_REF_KEY:
478 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
479 ret = add_extent_data_ref(fs_info, leaf, dref,
480 key->objectid, key->offset);
481 break;
482 case BTRFS_SHARED_DATA_REF_KEY:
483 sref = (struct btrfs_shared_data_ref *)(iref + 1);
484 count = btrfs_shared_data_ref_count(leaf, sref);
485 ret = add_shared_data_ref(fs_info, offset, count,
486 key->objectid, key->offset);
487 break;
488 default:
489 btrfs_err(fs_info, "invalid key type in iref");
490 ret = -EINVAL;
491 break;
492 }
493 if (ret)
494 break;
495 ptr += btrfs_extent_inline_ref_size(type);
496 }
497 return ret;
498 }
499
process_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 * bytenr,u64 * num_bytes,int * tree_block_level)500 static int process_leaf(struct btrfs_root *root,
501 struct btrfs_path *path, u64 *bytenr, u64 *num_bytes,
502 int *tree_block_level)
503 {
504 struct btrfs_fs_info *fs_info = root->fs_info;
505 struct extent_buffer *leaf = path->nodes[0];
506 struct btrfs_extent_data_ref *dref;
507 struct btrfs_shared_data_ref *sref;
508 u32 count;
509 int i = 0, ret = 0;
510 struct btrfs_key key;
511 int nritems = btrfs_header_nritems(leaf);
512
513 for (i = 0; i < nritems; i++) {
514 btrfs_item_key_to_cpu(leaf, &key, i);
515 switch (key.type) {
516 case BTRFS_EXTENT_ITEM_KEY:
517 *num_bytes = key.offset;
518 fallthrough;
519 case BTRFS_METADATA_ITEM_KEY:
520 *bytenr = key.objectid;
521 ret = process_extent_item(fs_info, path, &key, i,
522 tree_block_level);
523 break;
524 case BTRFS_TREE_BLOCK_REF_KEY:
525 ret = add_tree_block(fs_info, key.offset, 0,
526 key.objectid, *tree_block_level);
527 break;
528 case BTRFS_SHARED_BLOCK_REF_KEY:
529 ret = add_tree_block(fs_info, 0, key.offset,
530 key.objectid, *tree_block_level);
531 break;
532 case BTRFS_EXTENT_DATA_REF_KEY:
533 dref = btrfs_item_ptr(leaf, i,
534 struct btrfs_extent_data_ref);
535 ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
536 *num_bytes);
537 break;
538 case BTRFS_SHARED_DATA_REF_KEY:
539 sref = btrfs_item_ptr(leaf, i,
540 struct btrfs_shared_data_ref);
541 count = btrfs_shared_data_ref_count(leaf, sref);
542 ret = add_shared_data_ref(fs_info, key.offset, count,
543 *bytenr, *num_bytes);
544 break;
545 default:
546 break;
547 }
548 if (ret)
549 break;
550 }
551 return ret;
552 }
553
554 /* Walk down to the leaf from the given level */
walk_down_tree(struct btrfs_root * root,struct btrfs_path * path,int level,u64 * bytenr,u64 * num_bytes,int * tree_block_level)555 static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
556 int level, u64 *bytenr, u64 *num_bytes,
557 int *tree_block_level)
558 {
559 struct extent_buffer *eb;
560 int ret = 0;
561
562 while (level >= 0) {
563 if (level) {
564 eb = btrfs_read_node_slot(path->nodes[level],
565 path->slots[level]);
566 if (IS_ERR(eb))
567 return PTR_ERR(eb);
568 btrfs_tree_read_lock(eb);
569 path->nodes[level-1] = eb;
570 path->slots[level-1] = 0;
571 path->locks[level-1] = BTRFS_READ_LOCK;
572 } else {
573 ret = process_leaf(root, path, bytenr, num_bytes,
574 tree_block_level);
575 if (ret)
576 break;
577 }
578 level--;
579 }
580 return ret;
581 }
582
583 /* Walk up to the next node that needs to be processed */
walk_up_tree(struct btrfs_path * path,int * level)584 static int walk_up_tree(struct btrfs_path *path, int *level)
585 {
586 int l;
587
588 for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
589 if (!path->nodes[l])
590 continue;
591 if (l) {
592 path->slots[l]++;
593 if (path->slots[l] <
594 btrfs_header_nritems(path->nodes[l])) {
595 *level = l;
596 return 0;
597 }
598 }
599 btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
600 free_extent_buffer(path->nodes[l]);
601 path->nodes[l] = NULL;
602 path->slots[l] = 0;
603 path->locks[l] = 0;
604 }
605
606 return 1;
607 }
608
dump_ref_action(struct btrfs_fs_info * fs_info,struct ref_action * ra)609 static void dump_ref_action(struct btrfs_fs_info *fs_info,
610 struct ref_action *ra)
611 {
612 btrfs_err(fs_info,
613 " Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
614 ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
615 ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
616 __print_stack_trace(fs_info, ra);
617 }
618
619 /*
620 * Dumps all the information from the block entry to printk, it's going to be
621 * awesome.
622 */
dump_block_entry(struct btrfs_fs_info * fs_info,struct block_entry * be)623 static void dump_block_entry(struct btrfs_fs_info *fs_info,
624 struct block_entry *be)
625 {
626 struct ref_entry *ref;
627 struct root_entry *re;
628 struct ref_action *ra;
629 struct rb_node *n;
630
631 btrfs_err(fs_info,
632 "dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
633 be->bytenr, be->len, be->num_refs, be->metadata,
634 be->from_disk);
635
636 for (n = rb_first(&be->refs); n; n = rb_next(n)) {
637 ref = rb_entry(n, struct ref_entry, node);
638 btrfs_err(fs_info,
639 " ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
640 ref->root_objectid, ref->parent, ref->owner,
641 ref->offset, ref->num_refs);
642 }
643
644 for (n = rb_first(&be->roots); n; n = rb_next(n)) {
645 re = rb_entry(n, struct root_entry, node);
646 btrfs_err(fs_info, " root entry %llu, num_refs %llu",
647 re->root_objectid, re->num_refs);
648 }
649
650 list_for_each_entry(ra, &be->actions, list)
651 dump_ref_action(fs_info, ra);
652 }
653
654 /*
655 * btrfs_ref_tree_mod: called when we modify a ref for a bytenr
656 *
657 * This will add an action item to the given bytenr and do sanity checks to make
658 * sure we haven't messed something up. If we are making a new allocation and
659 * this block entry has history we will delete all previous actions as long as
660 * our sanity checks pass as they are no longer needed.
661 */
btrfs_ref_tree_mod(struct btrfs_fs_info * fs_info,struct btrfs_ref * generic_ref)662 int btrfs_ref_tree_mod(struct btrfs_fs_info *fs_info,
663 struct btrfs_ref *generic_ref)
664 {
665 struct ref_entry *ref = NULL, *exist;
666 struct ref_action *ra = NULL;
667 struct block_entry *be = NULL;
668 struct root_entry *re = NULL;
669 int action = generic_ref->action;
670 int ret = 0;
671 bool metadata;
672 u64 bytenr = generic_ref->bytenr;
673 u64 num_bytes = generic_ref->len;
674 u64 parent = generic_ref->parent;
675 u64 ref_root = 0;
676 u64 owner = 0;
677 u64 offset = 0;
678
679 if (!btrfs_test_opt(fs_info, REF_VERIFY))
680 return 0;
681
682 if (generic_ref->type == BTRFS_REF_METADATA) {
683 if (!parent)
684 ref_root = generic_ref->tree_ref.owning_root;
685 owner = generic_ref->tree_ref.level;
686 } else if (!parent) {
687 ref_root = generic_ref->data_ref.owning_root;
688 owner = generic_ref->data_ref.ino;
689 offset = generic_ref->data_ref.offset;
690 }
691 metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
692
693 ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
694 ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
695 if (!ra || !ref) {
696 kfree(ref);
697 kfree(ra);
698 ret = -ENOMEM;
699 goto out;
700 }
701
702 ref->parent = parent;
703 ref->owner = owner;
704 ref->root_objectid = ref_root;
705 ref->offset = offset;
706 ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
707
708 memcpy(&ra->ref, ref, sizeof(struct ref_entry));
709 /*
710 * Save the extra info from the delayed ref in the ref action to make it
711 * easier to figure out what is happening. The real ref's we add to the
712 * ref tree need to reflect what we save on disk so it matches any
713 * on-disk refs we pre-loaded.
714 */
715 ra->ref.owner = owner;
716 ra->ref.offset = offset;
717 ra->ref.root_objectid = ref_root;
718 __save_stack_trace(ra);
719
720 INIT_LIST_HEAD(&ra->list);
721 ra->action = action;
722 ra->root = generic_ref->real_root;
723
724 /*
725 * This is an allocation, preallocate the block_entry in case we haven't
726 * used it before.
727 */
728 ret = -EINVAL;
729 if (action == BTRFS_ADD_DELAYED_EXTENT) {
730 /*
731 * For subvol_create we'll just pass in whatever the parent root
732 * is and the new root objectid, so let's not treat the passed
733 * in root as if it really has a ref for this bytenr.
734 */
735 be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
736 if (IS_ERR(be)) {
737 kfree(ref);
738 kfree(ra);
739 ret = PTR_ERR(be);
740 goto out;
741 }
742 be->num_refs++;
743 if (metadata)
744 be->metadata = 1;
745
746 if (be->num_refs != 1) {
747 btrfs_err(fs_info,
748 "re-allocated a block that still has references to it!");
749 dump_block_entry(fs_info, be);
750 dump_ref_action(fs_info, ra);
751 kfree(ref);
752 kfree(ra);
753 goto out_unlock;
754 }
755
756 while (!list_empty(&be->actions)) {
757 struct ref_action *tmp;
758
759 tmp = list_first_entry(&be->actions, struct ref_action,
760 list);
761 list_del(&tmp->list);
762 kfree(tmp);
763 }
764 } else {
765 struct root_entry *tmp;
766
767 if (!parent) {
768 re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
769 if (!re) {
770 kfree(ref);
771 kfree(ra);
772 ret = -ENOMEM;
773 goto out;
774 }
775 /*
776 * This is the root that is modifying us, so it's the
777 * one we want to lookup below when we modify the
778 * re->num_refs.
779 */
780 ref_root = generic_ref->real_root;
781 re->root_objectid = generic_ref->real_root;
782 re->num_refs = 0;
783 }
784
785 spin_lock(&fs_info->ref_verify_lock);
786 be = lookup_block_entry(&fs_info->block_tree, bytenr);
787 if (!be) {
788 btrfs_err(fs_info,
789 "trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
790 action, bytenr, num_bytes);
791 dump_ref_action(fs_info, ra);
792 kfree(ref);
793 kfree(ra);
794 kfree(re);
795 goto out_unlock;
796 } else if (be->num_refs == 0) {
797 btrfs_err(fs_info,
798 "trying to do action %d for a bytenr that has 0 total references",
799 action);
800 dump_block_entry(fs_info, be);
801 dump_ref_action(fs_info, ra);
802 kfree(ref);
803 kfree(ra);
804 kfree(re);
805 goto out_unlock;
806 }
807
808 if (!parent) {
809 tmp = insert_root_entry(&be->roots, re);
810 if (tmp) {
811 kfree(re);
812 re = tmp;
813 }
814 }
815 }
816
817 exist = insert_ref_entry(&be->refs, ref);
818 if (exist) {
819 if (action == BTRFS_DROP_DELAYED_REF) {
820 if (exist->num_refs == 0) {
821 btrfs_err(fs_info,
822 "dropping a ref for a existing root that doesn't have a ref on the block");
823 dump_block_entry(fs_info, be);
824 dump_ref_action(fs_info, ra);
825 kfree(ref);
826 kfree(ra);
827 goto out_unlock;
828 }
829 exist->num_refs--;
830 if (exist->num_refs == 0) {
831 rb_erase(&exist->node, &be->refs);
832 kfree(exist);
833 }
834 } else if (!be->metadata) {
835 exist->num_refs++;
836 } else {
837 btrfs_err(fs_info,
838 "attempting to add another ref for an existing ref on a tree block");
839 dump_block_entry(fs_info, be);
840 dump_ref_action(fs_info, ra);
841 kfree(ref);
842 kfree(ra);
843 goto out_unlock;
844 }
845 kfree(ref);
846 } else {
847 if (action == BTRFS_DROP_DELAYED_REF) {
848 btrfs_err(fs_info,
849 "dropping a ref for a root that doesn't have a ref on the block");
850 dump_block_entry(fs_info, be);
851 dump_ref_action(fs_info, ra);
852 kfree(ref);
853 kfree(ra);
854 goto out_unlock;
855 }
856 }
857
858 if (!parent && !re) {
859 re = lookup_root_entry(&be->roots, ref_root);
860 if (!re) {
861 /*
862 * This shouldn't happen because we will add our re
863 * above when we lookup the be with !parent, but just in
864 * case catch this case so we don't panic because I
865 * didn't think of some other corner case.
866 */
867 btrfs_err(fs_info, "failed to find root %llu for %llu",
868 generic_ref->real_root, be->bytenr);
869 dump_block_entry(fs_info, be);
870 dump_ref_action(fs_info, ra);
871 kfree(ra);
872 goto out_unlock;
873 }
874 }
875 if (action == BTRFS_DROP_DELAYED_REF) {
876 if (re)
877 re->num_refs--;
878 be->num_refs--;
879 } else if (action == BTRFS_ADD_DELAYED_REF) {
880 be->num_refs++;
881 if (re)
882 re->num_refs++;
883 }
884 list_add_tail(&ra->list, &be->actions);
885 ret = 0;
886 out_unlock:
887 spin_unlock(&fs_info->ref_verify_lock);
888 out:
889 if (ret) {
890 btrfs_free_ref_cache(fs_info);
891 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
892 }
893 return ret;
894 }
895
896 /* Free up the ref cache */
btrfs_free_ref_cache(struct btrfs_fs_info * fs_info)897 void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
898 {
899 struct block_entry *be;
900 struct rb_node *n;
901
902 if (!btrfs_test_opt(fs_info, REF_VERIFY))
903 return;
904
905 spin_lock(&fs_info->ref_verify_lock);
906 while ((n = rb_first(&fs_info->block_tree))) {
907 be = rb_entry(n, struct block_entry, node);
908 rb_erase(&be->node, &fs_info->block_tree);
909 free_block_entry(be);
910 cond_resched_lock(&fs_info->ref_verify_lock);
911 }
912 spin_unlock(&fs_info->ref_verify_lock);
913 }
914
btrfs_free_ref_tree_range(struct btrfs_fs_info * fs_info,u64 start,u64 len)915 void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
916 u64 len)
917 {
918 struct block_entry *be = NULL, *entry;
919 struct rb_node *n;
920
921 if (!btrfs_test_opt(fs_info, REF_VERIFY))
922 return;
923
924 spin_lock(&fs_info->ref_verify_lock);
925 n = fs_info->block_tree.rb_node;
926 while (n) {
927 entry = rb_entry(n, struct block_entry, node);
928 if (entry->bytenr < start) {
929 n = n->rb_right;
930 } else if (entry->bytenr > start) {
931 n = n->rb_left;
932 } else {
933 be = entry;
934 break;
935 }
936 /* We want to get as close to start as possible */
937 if (be == NULL ||
938 (entry->bytenr < start && be->bytenr > start) ||
939 (entry->bytenr < start && entry->bytenr > be->bytenr))
940 be = entry;
941 }
942
943 /*
944 * Could have an empty block group, maybe have something to check for
945 * this case to verify we were actually empty?
946 */
947 if (!be) {
948 spin_unlock(&fs_info->ref_verify_lock);
949 return;
950 }
951
952 n = &be->node;
953 while (n) {
954 be = rb_entry(n, struct block_entry, node);
955 n = rb_next(n);
956 if (be->bytenr < start && be->bytenr + be->len > start) {
957 btrfs_err(fs_info,
958 "block entry overlaps a block group [%llu,%llu]!",
959 start, len);
960 dump_block_entry(fs_info, be);
961 continue;
962 }
963 if (be->bytenr < start)
964 continue;
965 if (be->bytenr >= start + len)
966 break;
967 if (be->bytenr + be->len > start + len) {
968 btrfs_err(fs_info,
969 "block entry overlaps a block group [%llu,%llu]!",
970 start, len);
971 dump_block_entry(fs_info, be);
972 }
973 rb_erase(&be->node, &fs_info->block_tree);
974 free_block_entry(be);
975 }
976 spin_unlock(&fs_info->ref_verify_lock);
977 }
978
979 /* Walk down all roots and build the ref tree, meant to be called at mount */
btrfs_build_ref_tree(struct btrfs_fs_info * fs_info)980 int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
981 {
982 struct btrfs_root *extent_root;
983 struct btrfs_path *path;
984 struct extent_buffer *eb;
985 int tree_block_level = 0;
986 u64 bytenr = 0, num_bytes = 0;
987 int ret, level;
988
989 if (!btrfs_test_opt(fs_info, REF_VERIFY))
990 return 0;
991
992 path = btrfs_alloc_path();
993 if (!path)
994 return -ENOMEM;
995
996 extent_root = btrfs_extent_root(fs_info, 0);
997 eb = btrfs_read_lock_root_node(extent_root);
998 level = btrfs_header_level(eb);
999 path->nodes[level] = eb;
1000 path->slots[level] = 0;
1001 path->locks[level] = BTRFS_READ_LOCK;
1002
1003 while (1) {
1004 /*
1005 * We have to keep track of the bytenr/num_bytes we last hit
1006 * because we could have run out of space for an inline ref, and
1007 * would have had to added a ref key item which may appear on a
1008 * different leaf from the original extent item.
1009 */
1010 ret = walk_down_tree(extent_root, path, level,
1011 &bytenr, &num_bytes, &tree_block_level);
1012 if (ret)
1013 break;
1014 ret = walk_up_tree(path, &level);
1015 if (ret < 0)
1016 break;
1017 if (ret > 0) {
1018 ret = 0;
1019 break;
1020 }
1021 }
1022 if (ret) {
1023 btrfs_free_ref_cache(fs_info);
1024 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
1025 }
1026 btrfs_free_path(path);
1027 return ret;
1028 }
1029