1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * MHI Endpoint bus stack
4 *
5 * Copyright (C) 2022 Linaro Ltd.
6 * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7 */
8
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/dma-direction.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/irq.h>
15 #include <linux/mhi_ep.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/module.h>
18 #include "internal.h"
19
20 #define M0_WAIT_DELAY_MS 100
21 #define M0_WAIT_COUNT 100
22
23 static DEFINE_IDA(mhi_ep_cntrl_ida);
24
25 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id);
26 static int mhi_ep_destroy_device(struct device *dev, void *data);
27
mhi_ep_send_event(struct mhi_ep_cntrl * mhi_cntrl,u32 ring_idx,struct mhi_ring_element * el,bool bei)28 static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx,
29 struct mhi_ring_element *el, bool bei)
30 {
31 struct device *dev = &mhi_cntrl->mhi_dev->dev;
32 union mhi_ep_ring_ctx *ctx;
33 struct mhi_ep_ring *ring;
34 int ret;
35
36 mutex_lock(&mhi_cntrl->event_lock);
37 ring = &mhi_cntrl->mhi_event[ring_idx].ring;
38 ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx];
39 if (!ring->started) {
40 ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx);
41 if (ret) {
42 dev_err(dev, "Error starting event ring (%u)\n", ring_idx);
43 goto err_unlock;
44 }
45 }
46
47 /* Add element to the event ring */
48 ret = mhi_ep_ring_add_element(ring, el);
49 if (ret) {
50 dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx);
51 goto err_unlock;
52 }
53
54 mutex_unlock(&mhi_cntrl->event_lock);
55
56 /*
57 * Raise IRQ to host only if the BEI flag is not set in TRE. Host might
58 * set this flag for interrupt moderation as per MHI protocol.
59 */
60 if (!bei)
61 mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector);
62
63 return 0;
64
65 err_unlock:
66 mutex_unlock(&mhi_cntrl->event_lock);
67
68 return ret;
69 }
70
mhi_ep_send_completion_event(struct mhi_ep_cntrl * mhi_cntrl,struct mhi_ep_ring * ring,struct mhi_ring_element * tre,u32 len,enum mhi_ev_ccs code)71 static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring,
72 struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code)
73 {
74 struct mhi_ring_element *event;
75 int ret;
76
77 event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
78 if (!event)
79 return -ENOMEM;
80
81 event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre));
82 event->dword[0] = MHI_TRE_EV_DWORD0(code, len);
83 event->dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT);
84
85 ret = mhi_ep_send_event(mhi_cntrl, ring->er_index, event, MHI_TRE_DATA_GET_BEI(tre));
86 kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
87
88 return ret;
89 }
90
mhi_ep_send_state_change_event(struct mhi_ep_cntrl * mhi_cntrl,enum mhi_state state)91 int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state)
92 {
93 struct mhi_ring_element *event;
94 int ret;
95
96 event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
97 if (!event)
98 return -ENOMEM;
99
100 event->dword[0] = MHI_SC_EV_DWORD0(state);
101 event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT);
102
103 ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
104 kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
105
106 return ret;
107 }
108
mhi_ep_send_ee_event(struct mhi_ep_cntrl * mhi_cntrl,enum mhi_ee_type exec_env)109 int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env)
110 {
111 struct mhi_ring_element *event;
112 int ret;
113
114 event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
115 if (!event)
116 return -ENOMEM;
117
118 event->dword[0] = MHI_EE_EV_DWORD0(exec_env);
119 event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT);
120
121 ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
122 kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
123
124 return ret;
125 }
126
mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl * mhi_cntrl,enum mhi_ev_ccs code)127 static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code)
128 {
129 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
130 struct mhi_ring_element *event;
131 int ret;
132
133 event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
134 if (!event)
135 return -ENOMEM;
136
137 event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element));
138 event->dword[0] = MHI_CC_EV_DWORD0(code);
139 event->dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT);
140
141 ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
142 kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
143
144 return ret;
145 }
146
mhi_ep_process_cmd_ring(struct mhi_ep_ring * ring,struct mhi_ring_element * el)147 static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
148 {
149 struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
150 struct device *dev = &mhi_cntrl->mhi_dev->dev;
151 struct mhi_result result = {};
152 struct mhi_ep_chan *mhi_chan;
153 struct mhi_ep_ring *ch_ring;
154 u32 tmp, ch_id;
155 int ret;
156
157 ch_id = MHI_TRE_GET_CMD_CHID(el);
158
159 /* Check if the channel is supported by the controller */
160 if ((ch_id >= mhi_cntrl->max_chan) || !mhi_cntrl->mhi_chan[ch_id].name) {
161 dev_dbg(dev, "Channel (%u) not supported!\n", ch_id);
162 return -ENODEV;
163 }
164
165 mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
166 ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring;
167
168 switch (MHI_TRE_GET_CMD_TYPE(el)) {
169 case MHI_PKT_TYPE_START_CHAN_CMD:
170 dev_dbg(dev, "Received START command for channel (%u)\n", ch_id);
171
172 mutex_lock(&mhi_chan->lock);
173 /* Initialize and configure the corresponding channel ring */
174 if (!ch_ring->started) {
175 ret = mhi_ep_ring_start(mhi_cntrl, ch_ring,
176 (union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]);
177 if (ret) {
178 dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id);
179 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl,
180 MHI_EV_CC_UNDEFINED_ERR);
181 if (ret)
182 dev_err(dev, "Error sending completion event: %d\n", ret);
183
184 goto err_unlock;
185 }
186
187 mhi_chan->rd_offset = ch_ring->rd_offset;
188 }
189
190 /* Set channel state to RUNNING */
191 mhi_chan->state = MHI_CH_STATE_RUNNING;
192 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
193 tmp &= ~CHAN_CTX_CHSTATE_MASK;
194 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
195 mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
196
197 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
198 if (ret) {
199 dev_err(dev, "Error sending command completion event (%u)\n",
200 MHI_EV_CC_SUCCESS);
201 goto err_unlock;
202 }
203
204 mutex_unlock(&mhi_chan->lock);
205
206 /*
207 * Create MHI device only during UL channel start. Since the MHI
208 * channels operate in a pair, we'll associate both UL and DL
209 * channels to the same device.
210 *
211 * We also need to check for mhi_dev != NULL because, the host
212 * will issue START_CHAN command during resume and we don't
213 * destroy the device during suspend.
214 */
215 if (!(ch_id % 2) && !mhi_chan->mhi_dev) {
216 ret = mhi_ep_create_device(mhi_cntrl, ch_id);
217 if (ret) {
218 dev_err(dev, "Error creating device for channel (%u)\n", ch_id);
219 mhi_ep_handle_syserr(mhi_cntrl);
220 return ret;
221 }
222 }
223
224 /* Finally, enable DB for the channel */
225 mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id);
226
227 break;
228 case MHI_PKT_TYPE_STOP_CHAN_CMD:
229 dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
230 if (!ch_ring->started) {
231 dev_err(dev, "Channel (%u) not opened\n", ch_id);
232 return -ENODEV;
233 }
234
235 mutex_lock(&mhi_chan->lock);
236 /* Disable DB for the channel */
237 mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id);
238
239 /* Send channel disconnect status to client drivers */
240 if (mhi_chan->xfer_cb) {
241 result.transaction_status = -ENOTCONN;
242 result.bytes_xferd = 0;
243 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
244 }
245
246 /* Set channel state to STOP */
247 mhi_chan->state = MHI_CH_STATE_STOP;
248 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
249 tmp &= ~CHAN_CTX_CHSTATE_MASK;
250 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP);
251 mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
252
253 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
254 if (ret) {
255 dev_err(dev, "Error sending command completion event (%u)\n",
256 MHI_EV_CC_SUCCESS);
257 goto err_unlock;
258 }
259
260 mutex_unlock(&mhi_chan->lock);
261 break;
262 case MHI_PKT_TYPE_RESET_CHAN_CMD:
263 dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id);
264 if (!ch_ring->started) {
265 dev_err(dev, "Channel (%u) not opened\n", ch_id);
266 return -ENODEV;
267 }
268
269 mutex_lock(&mhi_chan->lock);
270 /* Stop and reset the transfer ring */
271 mhi_ep_ring_reset(mhi_cntrl, ch_ring);
272
273 /* Send channel disconnect status to client driver */
274 if (mhi_chan->xfer_cb) {
275 result.transaction_status = -ENOTCONN;
276 result.bytes_xferd = 0;
277 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
278 }
279
280 /* Set channel state to DISABLED */
281 mhi_chan->state = MHI_CH_STATE_DISABLED;
282 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
283 tmp &= ~CHAN_CTX_CHSTATE_MASK;
284 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
285 mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
286
287 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
288 if (ret) {
289 dev_err(dev, "Error sending command completion event (%u)\n",
290 MHI_EV_CC_SUCCESS);
291 goto err_unlock;
292 }
293
294 mutex_unlock(&mhi_chan->lock);
295 break;
296 default:
297 dev_err(dev, "Invalid command received: %lu for channel (%u)\n",
298 MHI_TRE_GET_CMD_TYPE(el), ch_id);
299 return -EINVAL;
300 }
301
302 return 0;
303
304 err_unlock:
305 mutex_unlock(&mhi_chan->lock);
306
307 return ret;
308 }
309
mhi_ep_queue_is_empty(struct mhi_ep_device * mhi_dev,enum dma_data_direction dir)310 bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir)
311 {
312 struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan :
313 mhi_dev->ul_chan;
314 struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
315 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
316
317 return !!(mhi_chan->rd_offset == ring->wr_offset);
318 }
319 EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty);
320
mhi_ep_read_completion(struct mhi_ep_buf_info * buf_info)321 static void mhi_ep_read_completion(struct mhi_ep_buf_info *buf_info)
322 {
323 struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
324 struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
325 struct mhi_ep_chan *mhi_chan = mhi_dev->ul_chan;
326 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
327 struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
328 struct mhi_result result = {};
329 int ret;
330
331 if (mhi_chan->xfer_cb) {
332 result.buf_addr = buf_info->cb_buf;
333 result.dir = mhi_chan->dir;
334 result.bytes_xferd = buf_info->size;
335
336 mhi_chan->xfer_cb(mhi_dev, &result);
337 }
338
339 /*
340 * The host will split the data packet into multiple TREs if it can't fit
341 * the packet in a single TRE. In that case, CHAIN flag will be set by the
342 * host for all TREs except the last one.
343 */
344 if (buf_info->code != MHI_EV_CC_OVERFLOW) {
345 if (MHI_TRE_DATA_GET_CHAIN(el)) {
346 /*
347 * IEOB (Interrupt on End of Block) flag will be set by the host if
348 * it expects the completion event for all TREs of a TD.
349 */
350 if (MHI_TRE_DATA_GET_IEOB(el)) {
351 ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
352 MHI_TRE_DATA_GET_LEN(el),
353 MHI_EV_CC_EOB);
354 if (ret < 0) {
355 dev_err(&mhi_chan->mhi_dev->dev,
356 "Error sending transfer compl. event\n");
357 goto err_free_tre_buf;
358 }
359 }
360 } else {
361 /*
362 * IEOT (Interrupt on End of Transfer) flag will be set by the host
363 * for the last TRE of the TD and expects the completion event for
364 * the same.
365 */
366 if (MHI_TRE_DATA_GET_IEOT(el)) {
367 ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
368 MHI_TRE_DATA_GET_LEN(el),
369 MHI_EV_CC_EOT);
370 if (ret < 0) {
371 dev_err(&mhi_chan->mhi_dev->dev,
372 "Error sending transfer compl. event\n");
373 goto err_free_tre_buf;
374 }
375 }
376 }
377 }
378
379 mhi_ep_ring_inc_index(ring);
380
381 err_free_tre_buf:
382 kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_info->cb_buf);
383 }
384
mhi_ep_read_channel(struct mhi_ep_cntrl * mhi_cntrl,struct mhi_ep_ring * ring)385 static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl,
386 struct mhi_ep_ring *ring)
387 {
388 struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
389 struct device *dev = &mhi_cntrl->mhi_dev->dev;
390 size_t tr_len, read_offset, write_offset;
391 struct mhi_ep_buf_info buf_info = {};
392 u32 len = MHI_EP_DEFAULT_MTU;
393 struct mhi_ring_element *el;
394 bool tr_done = false;
395 void *buf_addr;
396 u32 buf_left;
397 int ret;
398
399 buf_left = len;
400
401 do {
402 /* Don't process the transfer ring if the channel is not in RUNNING state */
403 if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
404 dev_err(dev, "Channel not available\n");
405 return -ENODEV;
406 }
407
408 el = &ring->ring_cache[mhi_chan->rd_offset];
409
410 /* Check if there is data pending to be read from previous read operation */
411 if (mhi_chan->tre_bytes_left) {
412 dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left);
413 tr_len = min(buf_left, mhi_chan->tre_bytes_left);
414 } else {
415 mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el);
416 mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el);
417 mhi_chan->tre_bytes_left = mhi_chan->tre_size;
418
419 tr_len = min(buf_left, mhi_chan->tre_size);
420 }
421
422 read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left;
423 write_offset = len - buf_left;
424
425 buf_addr = kmem_cache_zalloc(mhi_cntrl->tre_buf_cache, GFP_KERNEL);
426 if (!buf_addr)
427 return -ENOMEM;
428
429 buf_info.host_addr = mhi_chan->tre_loc + read_offset;
430 buf_info.dev_addr = buf_addr + write_offset;
431 buf_info.size = tr_len;
432 buf_info.cb = mhi_ep_read_completion;
433 buf_info.cb_buf = buf_addr;
434 buf_info.mhi_dev = mhi_chan->mhi_dev;
435
436 if (mhi_chan->tre_bytes_left - tr_len)
437 buf_info.code = MHI_EV_CC_OVERFLOW;
438
439 dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id);
440 ret = mhi_cntrl->read_async(mhi_cntrl, &buf_info);
441 if (ret < 0) {
442 dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n");
443 goto err_free_buf_addr;
444 }
445
446 buf_left -= tr_len;
447 mhi_chan->tre_bytes_left -= tr_len;
448
449 if (!mhi_chan->tre_bytes_left) {
450 if (MHI_TRE_DATA_GET_IEOT(el))
451 tr_done = true;
452
453 mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
454 }
455 } while (buf_left && !tr_done);
456
457 return 0;
458
459 err_free_buf_addr:
460 kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_addr);
461
462 return ret;
463 }
464
mhi_ep_process_ch_ring(struct mhi_ep_ring * ring)465 static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring)
466 {
467 struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
468 struct mhi_result result = {};
469 struct mhi_ep_chan *mhi_chan;
470 int ret;
471
472 mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
473
474 /*
475 * Bail out if transfer callback is not registered for the channel.
476 * This is most likely due to the client driver not loaded at this point.
477 */
478 if (!mhi_chan->xfer_cb) {
479 dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n");
480 return -ENODEV;
481 }
482
483 if (ring->ch_id % 2) {
484 /* DL channel */
485 result.dir = mhi_chan->dir;
486 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
487 } else {
488 /* UL channel */
489 do {
490 ret = mhi_ep_read_channel(mhi_cntrl, ring);
491 if (ret < 0) {
492 dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n");
493 return ret;
494 }
495
496 /* Read until the ring becomes empty */
497 } while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE));
498 }
499
500 return 0;
501 }
502
mhi_ep_skb_completion(struct mhi_ep_buf_info * buf_info)503 static void mhi_ep_skb_completion(struct mhi_ep_buf_info *buf_info)
504 {
505 struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
506 struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
507 struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
508 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
509 struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
510 struct device *dev = &mhi_dev->dev;
511 struct mhi_result result = {};
512 int ret;
513
514 if (mhi_chan->xfer_cb) {
515 result.buf_addr = buf_info->cb_buf;
516 result.dir = mhi_chan->dir;
517 result.bytes_xferd = buf_info->size;
518
519 mhi_chan->xfer_cb(mhi_dev, &result);
520 }
521
522 ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, buf_info->size,
523 buf_info->code);
524 if (ret) {
525 dev_err(dev, "Error sending transfer completion event\n");
526 return;
527 }
528
529 mhi_ep_ring_inc_index(ring);
530 }
531
532 /* TODO: Handle partially formed TDs */
mhi_ep_queue_skb(struct mhi_ep_device * mhi_dev,struct sk_buff * skb)533 int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb)
534 {
535 struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
536 struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
537 struct device *dev = &mhi_chan->mhi_dev->dev;
538 struct mhi_ep_buf_info buf_info = {};
539 struct mhi_ring_element *el;
540 u32 buf_left, read_offset;
541 struct mhi_ep_ring *ring;
542 size_t tr_len;
543 u32 tre_len;
544 int ret;
545
546 buf_left = skb->len;
547 ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
548
549 mutex_lock(&mhi_chan->lock);
550
551 do {
552 /* Don't process the transfer ring if the channel is not in RUNNING state */
553 if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
554 dev_err(dev, "Channel not available\n");
555 ret = -ENODEV;
556 goto err_exit;
557 }
558
559 if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) {
560 dev_err(dev, "TRE not available!\n");
561 ret = -ENOSPC;
562 goto err_exit;
563 }
564
565 el = &ring->ring_cache[mhi_chan->rd_offset];
566 tre_len = MHI_TRE_DATA_GET_LEN(el);
567
568 tr_len = min(buf_left, tre_len);
569 read_offset = skb->len - buf_left;
570
571 buf_info.dev_addr = skb->data + read_offset;
572 buf_info.host_addr = MHI_TRE_DATA_GET_PTR(el);
573 buf_info.size = tr_len;
574 buf_info.cb = mhi_ep_skb_completion;
575 buf_info.cb_buf = skb;
576 buf_info.mhi_dev = mhi_dev;
577
578 /*
579 * For all TREs queued by the host for DL channel, only the EOT flag will be set.
580 * If the packet doesn't fit into a single TRE, send the OVERFLOW event to
581 * the host so that the host can adjust the packet boundary to next TREs. Else send
582 * the EOT event to the host indicating the packet boundary.
583 */
584 if (buf_left - tr_len)
585 buf_info.code = MHI_EV_CC_OVERFLOW;
586 else
587 buf_info.code = MHI_EV_CC_EOT;
588
589 dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id);
590 ret = mhi_cntrl->write_async(mhi_cntrl, &buf_info);
591 if (ret < 0) {
592 dev_err(dev, "Error writing to the channel\n");
593 goto err_exit;
594 }
595
596 buf_left -= tr_len;
597
598 /*
599 * Update the read offset cached in mhi_chan. Actual read offset
600 * will be updated by the completion handler.
601 */
602 mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
603 } while (buf_left);
604
605 mutex_unlock(&mhi_chan->lock);
606
607 return 0;
608
609 err_exit:
610 mutex_unlock(&mhi_chan->lock);
611
612 return ret;
613 }
614 EXPORT_SYMBOL_GPL(mhi_ep_queue_skb);
615
mhi_ep_cache_host_cfg(struct mhi_ep_cntrl * mhi_cntrl)616 static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
617 {
618 size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
619 struct device *dev = &mhi_cntrl->mhi_dev->dev;
620 int ret;
621
622 /* Update the number of event rings (NER) programmed by the host */
623 mhi_ep_mmio_update_ner(mhi_cntrl);
624
625 dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n",
626 mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings);
627
628 ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
629 ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
630 cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
631
632 /* Get the channel context base pointer from host */
633 mhi_ep_mmio_get_chc_base(mhi_cntrl);
634
635 /* Allocate and map memory for caching host channel context */
636 ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa,
637 &mhi_cntrl->ch_ctx_cache_phys,
638 (void __iomem **) &mhi_cntrl->ch_ctx_cache,
639 ch_ctx_host_size);
640 if (ret) {
641 dev_err(dev, "Failed to allocate and map ch_ctx_cache\n");
642 return ret;
643 }
644
645 /* Get the event context base pointer from host */
646 mhi_ep_mmio_get_erc_base(mhi_cntrl);
647
648 /* Allocate and map memory for caching host event context */
649 ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa,
650 &mhi_cntrl->ev_ctx_cache_phys,
651 (void __iomem **) &mhi_cntrl->ev_ctx_cache,
652 ev_ctx_host_size);
653 if (ret) {
654 dev_err(dev, "Failed to allocate and map ev_ctx_cache\n");
655 goto err_ch_ctx;
656 }
657
658 /* Get the command context base pointer from host */
659 mhi_ep_mmio_get_crc_base(mhi_cntrl);
660
661 /* Allocate and map memory for caching host command context */
662 ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa,
663 &mhi_cntrl->cmd_ctx_cache_phys,
664 (void __iomem **) &mhi_cntrl->cmd_ctx_cache,
665 cmd_ctx_host_size);
666 if (ret) {
667 dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n");
668 goto err_ev_ctx;
669 }
670
671 /* Initialize command ring */
672 ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring,
673 (union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache);
674 if (ret) {
675 dev_err(dev, "Failed to start the command ring\n");
676 goto err_cmd_ctx;
677 }
678
679 return ret;
680
681 err_cmd_ctx:
682 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
683 (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
684
685 err_ev_ctx:
686 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
687 (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
688
689 err_ch_ctx:
690 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
691 (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
692
693 return ret;
694 }
695
mhi_ep_free_host_cfg(struct mhi_ep_cntrl * mhi_cntrl)696 static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
697 {
698 size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
699
700 ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
701 ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
702 cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
703
704 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
705 (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
706
707 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
708 (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
709
710 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
711 (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
712 }
713
mhi_ep_enable_int(struct mhi_ep_cntrl * mhi_cntrl)714 static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl)
715 {
716 /*
717 * Doorbell interrupts are enabled when the corresponding channel gets started.
718 * Enabling all interrupts here triggers spurious irqs as some of the interrupts
719 * associated with hw channels always get triggered.
720 */
721 mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl);
722 mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl);
723 }
724
mhi_ep_enable(struct mhi_ep_cntrl * mhi_cntrl)725 static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl)
726 {
727 struct device *dev = &mhi_cntrl->mhi_dev->dev;
728 enum mhi_state state;
729 bool mhi_reset;
730 u32 count = 0;
731 int ret;
732
733 /* Wait for Host to set the M0 state */
734 do {
735 msleep(M0_WAIT_DELAY_MS);
736 mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
737 if (mhi_reset) {
738 /* Clear the MHI reset if host is in reset state */
739 mhi_ep_mmio_clear_reset(mhi_cntrl);
740 dev_info(dev, "Detected Host reset while waiting for M0\n");
741 }
742 count++;
743 } while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT);
744
745 if (state != MHI_STATE_M0) {
746 dev_err(dev, "Host failed to enter M0\n");
747 return -ETIMEDOUT;
748 }
749
750 ret = mhi_ep_cache_host_cfg(mhi_cntrl);
751 if (ret) {
752 dev_err(dev, "Failed to cache host config\n");
753 return ret;
754 }
755
756 mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
757
758 /* Enable all interrupts now */
759 mhi_ep_enable_int(mhi_cntrl);
760
761 return 0;
762 }
763
mhi_ep_cmd_ring_worker(struct work_struct * work)764 static void mhi_ep_cmd_ring_worker(struct work_struct *work)
765 {
766 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work);
767 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
768 struct device *dev = &mhi_cntrl->mhi_dev->dev;
769 struct mhi_ring_element *el;
770 int ret;
771
772 /* Update the write offset for the ring */
773 ret = mhi_ep_update_wr_offset(ring);
774 if (ret) {
775 dev_err(dev, "Error updating write offset for ring\n");
776 return;
777 }
778
779 /* Sanity check to make sure there are elements in the ring */
780 if (ring->rd_offset == ring->wr_offset)
781 return;
782
783 /*
784 * Process command ring element till write offset. In case of an error, just try to
785 * process next element.
786 */
787 while (ring->rd_offset != ring->wr_offset) {
788 el = &ring->ring_cache[ring->rd_offset];
789
790 ret = mhi_ep_process_cmd_ring(ring, el);
791 if (ret && ret != -ENODEV)
792 dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset);
793
794 mhi_ep_ring_inc_index(ring);
795 }
796 }
797
mhi_ep_ch_ring_worker(struct work_struct * work)798 static void mhi_ep_ch_ring_worker(struct work_struct *work)
799 {
800 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work);
801 struct device *dev = &mhi_cntrl->mhi_dev->dev;
802 struct mhi_ep_ring_item *itr, *tmp;
803 struct mhi_ep_ring *ring;
804 struct mhi_ep_chan *chan;
805 unsigned long flags;
806 LIST_HEAD(head);
807 int ret;
808
809 spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
810 list_splice_tail_init(&mhi_cntrl->ch_db_list, &head);
811 spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
812
813 /* Process each queued channel ring. In case of an error, just process next element. */
814 list_for_each_entry_safe(itr, tmp, &head, node) {
815 list_del(&itr->node);
816 ring = itr->ring;
817
818 chan = &mhi_cntrl->mhi_chan[ring->ch_id];
819 mutex_lock(&chan->lock);
820
821 /*
822 * The ring could've stopped while we waited to grab the (chan->lock), so do
823 * a sanity check before going further.
824 */
825 if (!ring->started) {
826 mutex_unlock(&chan->lock);
827 kfree(itr);
828 continue;
829 }
830
831 /* Update the write offset for the ring */
832 ret = mhi_ep_update_wr_offset(ring);
833 if (ret) {
834 dev_err(dev, "Error updating write offset for ring\n");
835 mutex_unlock(&chan->lock);
836 kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
837 continue;
838 }
839
840 /* Sanity check to make sure there are elements in the ring */
841 if (chan->rd_offset == ring->wr_offset) {
842 mutex_unlock(&chan->lock);
843 kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
844 continue;
845 }
846
847 dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id);
848 ret = mhi_ep_process_ch_ring(ring);
849 if (ret) {
850 dev_err(dev, "Error processing ring for channel (%u): %d\n",
851 ring->ch_id, ret);
852 mutex_unlock(&chan->lock);
853 kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
854 continue;
855 }
856
857 mutex_unlock(&chan->lock);
858 kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
859 }
860 }
861
mhi_ep_state_worker(struct work_struct * work)862 static void mhi_ep_state_worker(struct work_struct *work)
863 {
864 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work);
865 struct device *dev = &mhi_cntrl->mhi_dev->dev;
866 struct mhi_ep_state_transition *itr, *tmp;
867 unsigned long flags;
868 LIST_HEAD(head);
869 int ret;
870
871 spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
872 list_splice_tail_init(&mhi_cntrl->st_transition_list, &head);
873 spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
874
875 list_for_each_entry_safe(itr, tmp, &head, node) {
876 list_del(&itr->node);
877 dev_dbg(dev, "Handling MHI state transition to %s\n",
878 mhi_state_str(itr->state));
879
880 switch (itr->state) {
881 case MHI_STATE_M0:
882 ret = mhi_ep_set_m0_state(mhi_cntrl);
883 if (ret)
884 dev_err(dev, "Failed to transition to M0 state\n");
885 break;
886 case MHI_STATE_M3:
887 ret = mhi_ep_set_m3_state(mhi_cntrl);
888 if (ret)
889 dev_err(dev, "Failed to transition to M3 state\n");
890 break;
891 default:
892 dev_err(dev, "Invalid MHI state transition: %d\n", itr->state);
893 break;
894 }
895 kfree(itr);
896 }
897 }
898
mhi_ep_queue_channel_db(struct mhi_ep_cntrl * mhi_cntrl,unsigned long ch_int,u32 ch_idx)899 static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int,
900 u32 ch_idx)
901 {
902 struct mhi_ep_ring_item *item;
903 struct mhi_ep_ring *ring;
904 bool work = !!ch_int;
905 LIST_HEAD(head);
906 u32 i;
907
908 /* First add the ring items to a local list */
909 for_each_set_bit(i, &ch_int, 32) {
910 /* Channel index varies for each register: 0, 32, 64, 96 */
911 u32 ch_id = ch_idx + i;
912
913 ring = &mhi_cntrl->mhi_chan[ch_id].ring;
914 item = kmem_cache_zalloc(mhi_cntrl->ring_item_cache, GFP_ATOMIC);
915 if (!item)
916 return;
917
918 item->ring = ring;
919 list_add_tail(&item->node, &head);
920 }
921
922 /* Now, splice the local list into ch_db_list and queue the work item */
923 if (work) {
924 spin_lock(&mhi_cntrl->list_lock);
925 list_splice_tail_init(&head, &mhi_cntrl->ch_db_list);
926 spin_unlock(&mhi_cntrl->list_lock);
927
928 queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work);
929 }
930 }
931
932 /*
933 * Channel interrupt statuses are contained in 4 registers each of 32bit length.
934 * For checking all interrupts, we need to loop through each registers and then
935 * check for bits set.
936 */
mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl * mhi_cntrl)937 static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl)
938 {
939 u32 ch_int, ch_idx, i;
940
941 /* Bail out if there is no channel doorbell interrupt */
942 if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl))
943 return;
944
945 for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) {
946 ch_idx = i * MHI_MASK_CH_LEN;
947
948 /* Only process channel interrupt if the mask is enabled */
949 ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask;
950 if (ch_int) {
951 mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx);
952 mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i),
953 mhi_cntrl->chdb[i].status);
954 }
955 }
956 }
957
mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl * mhi_cntrl,enum mhi_state state)958 static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl,
959 enum mhi_state state)
960 {
961 struct mhi_ep_state_transition *item;
962
963 item = kzalloc(sizeof(*item), GFP_ATOMIC);
964 if (!item)
965 return;
966
967 item->state = state;
968 spin_lock(&mhi_cntrl->list_lock);
969 list_add_tail(&item->node, &mhi_cntrl->st_transition_list);
970 spin_unlock(&mhi_cntrl->list_lock);
971
972 queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work);
973 }
974
975 /*
976 * Interrupt handler that services interrupts raised by the host writing to
977 * MHICTRL and Command ring doorbell (CRDB) registers for state change and
978 * channel interrupts.
979 */
mhi_ep_irq(int irq,void * data)980 static irqreturn_t mhi_ep_irq(int irq, void *data)
981 {
982 struct mhi_ep_cntrl *mhi_cntrl = data;
983 struct device *dev = &mhi_cntrl->mhi_dev->dev;
984 enum mhi_state state;
985 u32 int_value;
986 bool mhi_reset;
987
988 /* Acknowledge the ctrl interrupt */
989 int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS);
990 mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value);
991
992 /* Check for ctrl interrupt */
993 if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) {
994 dev_dbg(dev, "Processing ctrl interrupt\n");
995 mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
996 if (mhi_reset) {
997 dev_info(dev, "Host triggered MHI reset!\n");
998 disable_irq_nosync(mhi_cntrl->irq);
999 schedule_work(&mhi_cntrl->reset_work);
1000 return IRQ_HANDLED;
1001 }
1002
1003 mhi_ep_process_ctrl_interrupt(mhi_cntrl, state);
1004 }
1005
1006 /* Check for command doorbell interrupt */
1007 if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) {
1008 dev_dbg(dev, "Processing command doorbell interrupt\n");
1009 queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work);
1010 }
1011
1012 /* Check for channel interrupts */
1013 mhi_ep_check_channel_interrupt(mhi_cntrl);
1014
1015 return IRQ_HANDLED;
1016 }
1017
mhi_ep_abort_transfer(struct mhi_ep_cntrl * mhi_cntrl)1018 static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl)
1019 {
1020 struct mhi_ep_ring *ch_ring, *ev_ring;
1021 struct mhi_result result = {};
1022 struct mhi_ep_chan *mhi_chan;
1023 int i;
1024
1025 /* Stop all the channels */
1026 for (i = 0; i < mhi_cntrl->max_chan; i++) {
1027 mhi_chan = &mhi_cntrl->mhi_chan[i];
1028 if (!mhi_chan->ring.started)
1029 continue;
1030
1031 mutex_lock(&mhi_chan->lock);
1032 /* Send channel disconnect status to client drivers */
1033 if (mhi_chan->xfer_cb) {
1034 result.transaction_status = -ENOTCONN;
1035 result.bytes_xferd = 0;
1036 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1037 }
1038
1039 mhi_chan->state = MHI_CH_STATE_DISABLED;
1040 mutex_unlock(&mhi_chan->lock);
1041 }
1042
1043 flush_workqueue(mhi_cntrl->wq);
1044
1045 /* Destroy devices associated with all channels */
1046 device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device);
1047
1048 /* Stop and reset the transfer rings */
1049 for (i = 0; i < mhi_cntrl->max_chan; i++) {
1050 mhi_chan = &mhi_cntrl->mhi_chan[i];
1051 if (!mhi_chan->ring.started)
1052 continue;
1053
1054 ch_ring = &mhi_cntrl->mhi_chan[i].ring;
1055 mutex_lock(&mhi_chan->lock);
1056 mhi_ep_ring_reset(mhi_cntrl, ch_ring);
1057 mutex_unlock(&mhi_chan->lock);
1058 }
1059
1060 /* Stop and reset the event rings */
1061 for (i = 0; i < mhi_cntrl->event_rings; i++) {
1062 ev_ring = &mhi_cntrl->mhi_event[i].ring;
1063 if (!ev_ring->started)
1064 continue;
1065
1066 mutex_lock(&mhi_cntrl->event_lock);
1067 mhi_ep_ring_reset(mhi_cntrl, ev_ring);
1068 mutex_unlock(&mhi_cntrl->event_lock);
1069 }
1070
1071 /* Stop and reset the command ring */
1072 mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring);
1073
1074 mhi_ep_free_host_cfg(mhi_cntrl);
1075 mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1076
1077 mhi_cntrl->enabled = false;
1078 }
1079
mhi_ep_reset_worker(struct work_struct * work)1080 static void mhi_ep_reset_worker(struct work_struct *work)
1081 {
1082 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work);
1083 enum mhi_state cur_state;
1084
1085 mhi_ep_power_down(mhi_cntrl);
1086
1087 mutex_lock(&mhi_cntrl->state_lock);
1088
1089 /* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */
1090 mhi_ep_mmio_reset(mhi_cntrl);
1091 cur_state = mhi_cntrl->mhi_state;
1092
1093 /*
1094 * Only proceed further if the reset is due to SYS_ERR. The host will
1095 * issue reset during shutdown also and we don't need to do re-init in
1096 * that case.
1097 */
1098 if (cur_state == MHI_STATE_SYS_ERR)
1099 mhi_ep_power_up(mhi_cntrl);
1100
1101 mutex_unlock(&mhi_cntrl->state_lock);
1102 }
1103
1104 /*
1105 * We don't need to do anything special other than setting the MHI SYS_ERR
1106 * state. The host will reset all contexts and issue MHI RESET so that we
1107 * could also recover from error state.
1108 */
mhi_ep_handle_syserr(struct mhi_ep_cntrl * mhi_cntrl)1109 void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl)
1110 {
1111 struct device *dev = &mhi_cntrl->mhi_dev->dev;
1112 int ret;
1113
1114 ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1115 if (ret)
1116 return;
1117
1118 /* Signal host that the device went to SYS_ERR state */
1119 ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR);
1120 if (ret)
1121 dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret);
1122 }
1123
mhi_ep_power_up(struct mhi_ep_cntrl * mhi_cntrl)1124 int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl)
1125 {
1126 struct device *dev = &mhi_cntrl->mhi_dev->dev;
1127 int ret, i;
1128
1129 /*
1130 * Mask all interrupts until the state machine is ready. Interrupts will
1131 * be enabled later with mhi_ep_enable().
1132 */
1133 mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1134 mhi_ep_mmio_init(mhi_cntrl);
1135
1136 mhi_cntrl->mhi_event = kzalloc(mhi_cntrl->event_rings * (sizeof(*mhi_cntrl->mhi_event)),
1137 GFP_KERNEL);
1138 if (!mhi_cntrl->mhi_event)
1139 return -ENOMEM;
1140
1141 /* Initialize command, channel and event rings */
1142 mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0);
1143 for (i = 0; i < mhi_cntrl->max_chan; i++)
1144 mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i);
1145 for (i = 0; i < mhi_cntrl->event_rings; i++)
1146 mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i);
1147
1148 mhi_cntrl->mhi_state = MHI_STATE_RESET;
1149
1150 /* Set AMSS EE before signaling ready state */
1151 mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1152
1153 /* All set, notify the host that we are ready */
1154 ret = mhi_ep_set_ready_state(mhi_cntrl);
1155 if (ret)
1156 goto err_free_event;
1157
1158 dev_dbg(dev, "READY state notification sent to the host\n");
1159
1160 ret = mhi_ep_enable(mhi_cntrl);
1161 if (ret) {
1162 dev_err(dev, "Failed to enable MHI endpoint\n");
1163 goto err_free_event;
1164 }
1165
1166 enable_irq(mhi_cntrl->irq);
1167 mhi_cntrl->enabled = true;
1168
1169 return 0;
1170
1171 err_free_event:
1172 kfree(mhi_cntrl->mhi_event);
1173
1174 return ret;
1175 }
1176 EXPORT_SYMBOL_GPL(mhi_ep_power_up);
1177
mhi_ep_power_down(struct mhi_ep_cntrl * mhi_cntrl)1178 void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl)
1179 {
1180 if (mhi_cntrl->enabled) {
1181 mhi_ep_abort_transfer(mhi_cntrl);
1182 kfree(mhi_cntrl->mhi_event);
1183 disable_irq(mhi_cntrl->irq);
1184 }
1185 }
1186 EXPORT_SYMBOL_GPL(mhi_ep_power_down);
1187
mhi_ep_suspend_channels(struct mhi_ep_cntrl * mhi_cntrl)1188 void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl)
1189 {
1190 struct mhi_ep_chan *mhi_chan;
1191 u32 tmp;
1192 int i;
1193
1194 for (i = 0; i < mhi_cntrl->max_chan; i++) {
1195 mhi_chan = &mhi_cntrl->mhi_chan[i];
1196
1197 if (!mhi_chan->mhi_dev)
1198 continue;
1199
1200 mutex_lock(&mhi_chan->lock);
1201 /* Skip if the channel is not currently running */
1202 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1203 if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) {
1204 mutex_unlock(&mhi_chan->lock);
1205 continue;
1206 }
1207
1208 dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n");
1209 /* Set channel state to SUSPENDED */
1210 mhi_chan->state = MHI_CH_STATE_SUSPENDED;
1211 tmp &= ~CHAN_CTX_CHSTATE_MASK;
1212 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED);
1213 mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1214 mutex_unlock(&mhi_chan->lock);
1215 }
1216 }
1217
mhi_ep_resume_channels(struct mhi_ep_cntrl * mhi_cntrl)1218 void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl)
1219 {
1220 struct mhi_ep_chan *mhi_chan;
1221 u32 tmp;
1222 int i;
1223
1224 for (i = 0; i < mhi_cntrl->max_chan; i++) {
1225 mhi_chan = &mhi_cntrl->mhi_chan[i];
1226
1227 if (!mhi_chan->mhi_dev)
1228 continue;
1229
1230 mutex_lock(&mhi_chan->lock);
1231 /* Skip if the channel is not currently suspended */
1232 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1233 if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) {
1234 mutex_unlock(&mhi_chan->lock);
1235 continue;
1236 }
1237
1238 dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n");
1239 /* Set channel state to RUNNING */
1240 mhi_chan->state = MHI_CH_STATE_RUNNING;
1241 tmp &= ~CHAN_CTX_CHSTATE_MASK;
1242 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
1243 mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1244 mutex_unlock(&mhi_chan->lock);
1245 }
1246 }
1247
mhi_ep_release_device(struct device * dev)1248 static void mhi_ep_release_device(struct device *dev)
1249 {
1250 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1251
1252 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1253 mhi_dev->mhi_cntrl->mhi_dev = NULL;
1254
1255 /*
1256 * We need to set the mhi_chan->mhi_dev to NULL here since the MHI
1257 * devices for the channels will only get created in mhi_ep_create_device()
1258 * if the mhi_dev associated with it is NULL.
1259 */
1260 if (mhi_dev->ul_chan)
1261 mhi_dev->ul_chan->mhi_dev = NULL;
1262
1263 if (mhi_dev->dl_chan)
1264 mhi_dev->dl_chan->mhi_dev = NULL;
1265
1266 kfree(mhi_dev);
1267 }
1268
mhi_ep_alloc_device(struct mhi_ep_cntrl * mhi_cntrl,enum mhi_device_type dev_type)1269 static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl,
1270 enum mhi_device_type dev_type)
1271 {
1272 struct mhi_ep_device *mhi_dev;
1273 struct device *dev;
1274
1275 mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
1276 if (!mhi_dev)
1277 return ERR_PTR(-ENOMEM);
1278
1279 dev = &mhi_dev->dev;
1280 device_initialize(dev);
1281 dev->bus = &mhi_ep_bus_type;
1282 dev->release = mhi_ep_release_device;
1283
1284 /* Controller device is always allocated first */
1285 if (dev_type == MHI_DEVICE_CONTROLLER)
1286 /* for MHI controller device, parent is the bus device (e.g. PCI EPF) */
1287 dev->parent = mhi_cntrl->cntrl_dev;
1288 else
1289 /* for MHI client devices, parent is the MHI controller device */
1290 dev->parent = &mhi_cntrl->mhi_dev->dev;
1291
1292 mhi_dev->mhi_cntrl = mhi_cntrl;
1293 mhi_dev->dev_type = dev_type;
1294
1295 return mhi_dev;
1296 }
1297
1298 /*
1299 * MHI channels are always defined in pairs with UL as the even numbered
1300 * channel and DL as odd numbered one. This function gets UL channel (primary)
1301 * as the ch_id and always looks after the next entry in channel list for
1302 * the corresponding DL channel (secondary).
1303 */
mhi_ep_create_device(struct mhi_ep_cntrl * mhi_cntrl,u32 ch_id)1304 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id)
1305 {
1306 struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
1307 struct device *dev = mhi_cntrl->cntrl_dev;
1308 struct mhi_ep_device *mhi_dev;
1309 int ret;
1310
1311 /* Check if the channel name is same for both UL and DL */
1312 if (strcmp(mhi_chan->name, mhi_chan[1].name)) {
1313 dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n",
1314 mhi_chan->name, mhi_chan[1].name);
1315 return -EINVAL;
1316 }
1317
1318 mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER);
1319 if (IS_ERR(mhi_dev))
1320 return PTR_ERR(mhi_dev);
1321
1322 /* Configure primary channel */
1323 mhi_dev->ul_chan = mhi_chan;
1324 get_device(&mhi_dev->dev);
1325 mhi_chan->mhi_dev = mhi_dev;
1326
1327 /* Configure secondary channel as well */
1328 mhi_chan++;
1329 mhi_dev->dl_chan = mhi_chan;
1330 get_device(&mhi_dev->dev);
1331 mhi_chan->mhi_dev = mhi_dev;
1332
1333 /* Channel name is same for both UL and DL */
1334 mhi_dev->name = mhi_chan->name;
1335 ret = dev_set_name(&mhi_dev->dev, "%s_%s",
1336 dev_name(&mhi_cntrl->mhi_dev->dev),
1337 mhi_dev->name);
1338 if (ret) {
1339 put_device(&mhi_dev->dev);
1340 return ret;
1341 }
1342
1343 ret = device_add(&mhi_dev->dev);
1344 if (ret)
1345 put_device(&mhi_dev->dev);
1346
1347 return ret;
1348 }
1349
mhi_ep_destroy_device(struct device * dev,void * data)1350 static int mhi_ep_destroy_device(struct device *dev, void *data)
1351 {
1352 struct mhi_ep_device *mhi_dev;
1353 struct mhi_ep_cntrl *mhi_cntrl;
1354 struct mhi_ep_chan *ul_chan, *dl_chan;
1355
1356 if (dev->bus != &mhi_ep_bus_type)
1357 return 0;
1358
1359 mhi_dev = to_mhi_ep_device(dev);
1360 mhi_cntrl = mhi_dev->mhi_cntrl;
1361
1362 /* Only destroy devices created for channels */
1363 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1364 return 0;
1365
1366 ul_chan = mhi_dev->ul_chan;
1367 dl_chan = mhi_dev->dl_chan;
1368
1369 if (ul_chan)
1370 put_device(&ul_chan->mhi_dev->dev);
1371
1372 if (dl_chan)
1373 put_device(&dl_chan->mhi_dev->dev);
1374
1375 dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n",
1376 mhi_dev->name);
1377
1378 /* Notify the client and remove the device from MHI bus */
1379 device_del(dev);
1380 put_device(dev);
1381
1382 return 0;
1383 }
1384
mhi_ep_chan_init(struct mhi_ep_cntrl * mhi_cntrl,const struct mhi_ep_cntrl_config * config)1385 static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl,
1386 const struct mhi_ep_cntrl_config *config)
1387 {
1388 const struct mhi_ep_channel_config *ch_cfg;
1389 struct device *dev = mhi_cntrl->cntrl_dev;
1390 u32 chan, i;
1391 int ret = -EINVAL;
1392
1393 mhi_cntrl->max_chan = config->max_channels;
1394
1395 /*
1396 * Allocate max_channels supported by the MHI endpoint and populate
1397 * only the defined channels
1398 */
1399 mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan),
1400 GFP_KERNEL);
1401 if (!mhi_cntrl->mhi_chan)
1402 return -ENOMEM;
1403
1404 for (i = 0; i < config->num_channels; i++) {
1405 struct mhi_ep_chan *mhi_chan;
1406
1407 ch_cfg = &config->ch_cfg[i];
1408
1409 chan = ch_cfg->num;
1410 if (chan >= mhi_cntrl->max_chan) {
1411 dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n",
1412 chan, mhi_cntrl->max_chan);
1413 goto error_chan_cfg;
1414 }
1415
1416 /* Bi-directional and direction less channels are not supported */
1417 if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) {
1418 dev_err(dev, "Invalid direction (%u) for channel (%u)\n",
1419 ch_cfg->dir, chan);
1420 goto error_chan_cfg;
1421 }
1422
1423 mhi_chan = &mhi_cntrl->mhi_chan[chan];
1424 mhi_chan->name = ch_cfg->name;
1425 mhi_chan->chan = chan;
1426 mhi_chan->dir = ch_cfg->dir;
1427 mutex_init(&mhi_chan->lock);
1428 }
1429
1430 return 0;
1431
1432 error_chan_cfg:
1433 kfree(mhi_cntrl->mhi_chan);
1434
1435 return ret;
1436 }
1437
1438 /*
1439 * Allocate channel and command rings here. Event rings will be allocated
1440 * in mhi_ep_power_up() as the config comes from the host.
1441 */
mhi_ep_register_controller(struct mhi_ep_cntrl * mhi_cntrl,const struct mhi_ep_cntrl_config * config)1442 int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl,
1443 const struct mhi_ep_cntrl_config *config)
1444 {
1445 struct mhi_ep_device *mhi_dev;
1446 int ret;
1447
1448 if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq)
1449 return -EINVAL;
1450
1451 ret = mhi_ep_chan_init(mhi_cntrl, config);
1452 if (ret)
1453 return ret;
1454
1455 mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
1456 if (!mhi_cntrl->mhi_cmd) {
1457 ret = -ENOMEM;
1458 goto err_free_ch;
1459 }
1460
1461 mhi_cntrl->ev_ring_el_cache = kmem_cache_create("mhi_ep_event_ring_el",
1462 sizeof(struct mhi_ring_element), 0,
1463 0, NULL);
1464 if (!mhi_cntrl->ev_ring_el_cache) {
1465 ret = -ENOMEM;
1466 goto err_free_cmd;
1467 }
1468
1469 mhi_cntrl->tre_buf_cache = kmem_cache_create("mhi_ep_tre_buf", MHI_EP_DEFAULT_MTU, 0,
1470 0, NULL);
1471 if (!mhi_cntrl->tre_buf_cache) {
1472 ret = -ENOMEM;
1473 goto err_destroy_ev_ring_el_cache;
1474 }
1475
1476 mhi_cntrl->ring_item_cache = kmem_cache_create("mhi_ep_ring_item",
1477 sizeof(struct mhi_ep_ring_item), 0,
1478 0, NULL);
1479 if (!mhi_cntrl->ring_item_cache) {
1480 ret = -ENOMEM;
1481 goto err_destroy_tre_buf_cache;
1482 }
1483
1484 INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker);
1485 INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker);
1486 INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker);
1487 INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker);
1488
1489 mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0);
1490 if (!mhi_cntrl->wq) {
1491 ret = -ENOMEM;
1492 goto err_destroy_ring_item_cache;
1493 }
1494
1495 INIT_LIST_HEAD(&mhi_cntrl->st_transition_list);
1496 INIT_LIST_HEAD(&mhi_cntrl->ch_db_list);
1497 spin_lock_init(&mhi_cntrl->list_lock);
1498 mutex_init(&mhi_cntrl->state_lock);
1499 mutex_init(&mhi_cntrl->event_lock);
1500
1501 /* Set MHI version and AMSS EE before enumeration */
1502 mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version);
1503 mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1504
1505 /* Set controller index */
1506 ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL);
1507 if (ret < 0)
1508 goto err_destroy_wq;
1509
1510 mhi_cntrl->index = ret;
1511
1512 irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN);
1513 ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH,
1514 "doorbell_irq", mhi_cntrl);
1515 if (ret) {
1516 dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n");
1517 goto err_ida_free;
1518 }
1519
1520 /* Allocate the controller device */
1521 mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER);
1522 if (IS_ERR(mhi_dev)) {
1523 dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n");
1524 ret = PTR_ERR(mhi_dev);
1525 goto err_free_irq;
1526 }
1527
1528 ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index);
1529 if (ret)
1530 goto err_put_dev;
1531
1532 mhi_dev->name = dev_name(&mhi_dev->dev);
1533 mhi_cntrl->mhi_dev = mhi_dev;
1534
1535 ret = device_add(&mhi_dev->dev);
1536 if (ret)
1537 goto err_put_dev;
1538
1539 dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n");
1540
1541 return 0;
1542
1543 err_put_dev:
1544 put_device(&mhi_dev->dev);
1545 err_free_irq:
1546 free_irq(mhi_cntrl->irq, mhi_cntrl);
1547 err_ida_free:
1548 ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1549 err_destroy_wq:
1550 destroy_workqueue(mhi_cntrl->wq);
1551 err_destroy_ring_item_cache:
1552 kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1553 err_destroy_ev_ring_el_cache:
1554 kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1555 err_destroy_tre_buf_cache:
1556 kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1557 err_free_cmd:
1558 kfree(mhi_cntrl->mhi_cmd);
1559 err_free_ch:
1560 kfree(mhi_cntrl->mhi_chan);
1561
1562 return ret;
1563 }
1564 EXPORT_SYMBOL_GPL(mhi_ep_register_controller);
1565
1566 /*
1567 * It is expected that the controller drivers will power down the MHI EP stack
1568 * using "mhi_ep_power_down()" before calling this function to unregister themselves.
1569 */
mhi_ep_unregister_controller(struct mhi_ep_cntrl * mhi_cntrl)1570 void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl)
1571 {
1572 struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev;
1573
1574 destroy_workqueue(mhi_cntrl->wq);
1575
1576 free_irq(mhi_cntrl->irq, mhi_cntrl);
1577
1578 kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1579 kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1580 kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1581 kfree(mhi_cntrl->mhi_cmd);
1582 kfree(mhi_cntrl->mhi_chan);
1583
1584 device_del(&mhi_dev->dev);
1585 put_device(&mhi_dev->dev);
1586
1587 ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1588 }
1589 EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller);
1590
mhi_ep_driver_probe(struct device * dev)1591 static int mhi_ep_driver_probe(struct device *dev)
1592 {
1593 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1594 struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1595 struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan;
1596 struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan;
1597
1598 ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
1599 dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
1600
1601 return mhi_drv->probe(mhi_dev, mhi_dev->id);
1602 }
1603
mhi_ep_driver_remove(struct device * dev)1604 static int mhi_ep_driver_remove(struct device *dev)
1605 {
1606 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1607 struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1608 struct mhi_result result = {};
1609 struct mhi_ep_chan *mhi_chan;
1610 int dir;
1611
1612 /* Skip if it is a controller device */
1613 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1614 return 0;
1615
1616 /* Disconnect the channels associated with the driver */
1617 for (dir = 0; dir < 2; dir++) {
1618 mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
1619
1620 if (!mhi_chan)
1621 continue;
1622
1623 mutex_lock(&mhi_chan->lock);
1624 /* Send channel disconnect status to the client driver */
1625 if (mhi_chan->xfer_cb) {
1626 result.transaction_status = -ENOTCONN;
1627 result.bytes_xferd = 0;
1628 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1629 }
1630
1631 mhi_chan->state = MHI_CH_STATE_DISABLED;
1632 mhi_chan->xfer_cb = NULL;
1633 mutex_unlock(&mhi_chan->lock);
1634 }
1635
1636 /* Remove the client driver now */
1637 mhi_drv->remove(mhi_dev);
1638
1639 return 0;
1640 }
1641
__mhi_ep_driver_register(struct mhi_ep_driver * mhi_drv,struct module * owner)1642 int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner)
1643 {
1644 struct device_driver *driver = &mhi_drv->driver;
1645
1646 if (!mhi_drv->probe || !mhi_drv->remove)
1647 return -EINVAL;
1648
1649 /* Client drivers should have callbacks defined for both channels */
1650 if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb)
1651 return -EINVAL;
1652
1653 driver->bus = &mhi_ep_bus_type;
1654 driver->owner = owner;
1655 driver->probe = mhi_ep_driver_probe;
1656 driver->remove = mhi_ep_driver_remove;
1657
1658 return driver_register(driver);
1659 }
1660 EXPORT_SYMBOL_GPL(__mhi_ep_driver_register);
1661
mhi_ep_driver_unregister(struct mhi_ep_driver * mhi_drv)1662 void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv)
1663 {
1664 driver_unregister(&mhi_drv->driver);
1665 }
1666 EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister);
1667
mhi_ep_uevent(const struct device * dev,struct kobj_uevent_env * env)1668 static int mhi_ep_uevent(const struct device *dev, struct kobj_uevent_env *env)
1669 {
1670 const struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1671
1672 return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT,
1673 mhi_dev->name);
1674 }
1675
mhi_ep_match(struct device * dev,struct device_driver * drv)1676 static int mhi_ep_match(struct device *dev, struct device_driver *drv)
1677 {
1678 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1679 struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv);
1680 const struct mhi_device_id *id;
1681
1682 /*
1683 * If the device is a controller type then there is no client driver
1684 * associated with it
1685 */
1686 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1687 return 0;
1688
1689 for (id = mhi_drv->id_table; id->chan[0]; id++)
1690 if (!strcmp(mhi_dev->name, id->chan)) {
1691 mhi_dev->id = id;
1692 return 1;
1693 }
1694
1695 return 0;
1696 };
1697
1698 struct bus_type mhi_ep_bus_type = {
1699 .name = "mhi_ep",
1700 .dev_name = "mhi_ep",
1701 .match = mhi_ep_match,
1702 .uevent = mhi_ep_uevent,
1703 };
1704
mhi_ep_init(void)1705 static int __init mhi_ep_init(void)
1706 {
1707 return bus_register(&mhi_ep_bus_type);
1708 }
1709
mhi_ep_exit(void)1710 static void __exit mhi_ep_exit(void)
1711 {
1712 bus_unregister(&mhi_ep_bus_type);
1713 }
1714
1715 postcore_initcall(mhi_ep_init);
1716 module_exit(mhi_ep_exit);
1717
1718 MODULE_LICENSE("GPL v2");
1719 MODULE_DESCRIPTION("MHI Bus Endpoint stack");
1720 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
1721