1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9
10 #include "cpuid.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "posted_intr.h"
16 #include "sgx.h"
17 #include "trace.h"
18 #include "vmx.h"
19 #include "x86.h"
20 #include "smm.h"
21
22 static bool __read_mostly enable_shadow_vmcs = 1;
23 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
24
25 static bool __read_mostly nested_early_check = 0;
26 module_param(nested_early_check, bool, S_IRUGO);
27
28 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
29
30 /*
31 * Hyper-V requires all of these, so mark them as supported even though
32 * they are just treated the same as all-context.
33 */
34 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
35 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
36 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
37 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
38 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39
40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41
42 enum {
43 VMX_VMREAD_BITMAP,
44 VMX_VMWRITE_BITMAP,
45 VMX_BITMAP_NR
46 };
47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48
49 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
50 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
51
52 struct shadow_vmcs_field {
53 u16 encoding;
54 u16 offset;
55 };
56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58 #include "vmcs_shadow_fields.h"
59 };
60 static int max_shadow_read_only_fields =
61 ARRAY_SIZE(shadow_read_only_fields);
62
63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65 #include "vmcs_shadow_fields.h"
66 };
67 static int max_shadow_read_write_fields =
68 ARRAY_SIZE(shadow_read_write_fields);
69
init_vmcs_shadow_fields(void)70 static void init_vmcs_shadow_fields(void)
71 {
72 int i, j;
73
74 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76
77 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
78 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79 u16 field = entry.encoding;
80
81 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82 (i + 1 == max_shadow_read_only_fields ||
83 shadow_read_only_fields[i + 1].encoding != field + 1))
84 pr_err("Missing field from shadow_read_only_field %x\n",
85 field + 1);
86
87 clear_bit(field, vmx_vmread_bitmap);
88 if (field & 1)
89 #ifdef CONFIG_X86_64
90 continue;
91 #else
92 entry.offset += sizeof(u32);
93 #endif
94 shadow_read_only_fields[j++] = entry;
95 }
96 max_shadow_read_only_fields = j;
97
98 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
99 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100 u16 field = entry.encoding;
101
102 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103 (i + 1 == max_shadow_read_write_fields ||
104 shadow_read_write_fields[i + 1].encoding != field + 1))
105 pr_err("Missing field from shadow_read_write_field %x\n",
106 field + 1);
107
108 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109 field <= GUEST_TR_AR_BYTES,
110 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111
112 /*
113 * PML and the preemption timer can be emulated, but the
114 * processor cannot vmwrite to fields that don't exist
115 * on bare metal.
116 */
117 switch (field) {
118 case GUEST_PML_INDEX:
119 if (!cpu_has_vmx_pml())
120 continue;
121 break;
122 case VMX_PREEMPTION_TIMER_VALUE:
123 if (!cpu_has_vmx_preemption_timer())
124 continue;
125 break;
126 case GUEST_INTR_STATUS:
127 if (!cpu_has_vmx_apicv())
128 continue;
129 break;
130 default:
131 break;
132 }
133
134 clear_bit(field, vmx_vmwrite_bitmap);
135 clear_bit(field, vmx_vmread_bitmap);
136 if (field & 1)
137 #ifdef CONFIG_X86_64
138 continue;
139 #else
140 entry.offset += sizeof(u32);
141 #endif
142 shadow_read_write_fields[j++] = entry;
143 }
144 max_shadow_read_write_fields = j;
145 }
146
147 /*
148 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149 * set the success or error code of an emulated VMX instruction (as specified
150 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151 * instruction.
152 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 {
155 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158 return kvm_skip_emulated_instruction(vcpu);
159 }
160
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 {
163 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165 X86_EFLAGS_SF | X86_EFLAGS_OF))
166 | X86_EFLAGS_CF);
167 return kvm_skip_emulated_instruction(vcpu);
168 }
169
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171 u32 vm_instruction_error)
172 {
173 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
174 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
175 X86_EFLAGS_SF | X86_EFLAGS_OF))
176 | X86_EFLAGS_ZF);
177 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
178 /*
179 * We don't need to force sync to shadow VMCS because
180 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
181 * fields and thus must be synced.
182 */
183 if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
184 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
185
186 return kvm_skip_emulated_instruction(vcpu);
187 }
188
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)189 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
190 {
191 struct vcpu_vmx *vmx = to_vmx(vcpu);
192
193 /*
194 * failValid writes the error number to the current VMCS, which
195 * can't be done if there isn't a current VMCS.
196 */
197 if (vmx->nested.current_vmptr == INVALID_GPA &&
198 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
199 return nested_vmx_failInvalid(vcpu);
200
201 return nested_vmx_failValid(vcpu, vm_instruction_error);
202 }
203
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)204 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
205 {
206 /* TODO: not to reset guest simply here. */
207 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
208 pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
209 }
210
vmx_control_verify(u32 control,u32 low,u32 high)211 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
212 {
213 return fixed_bits_valid(control, low, high);
214 }
215
vmx_control_msr(u32 low,u32 high)216 static inline u64 vmx_control_msr(u32 low, u32 high)
217 {
218 return low | ((u64)high << 32);
219 }
220
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)221 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
222 {
223 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
224 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
225 vmx->nested.need_vmcs12_to_shadow_sync = false;
226 }
227
nested_release_evmcs(struct kvm_vcpu * vcpu)228 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
229 {
230 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
231 struct vcpu_vmx *vmx = to_vmx(vcpu);
232
233 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
234 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
235 vmx->nested.hv_evmcs = NULL;
236 }
237
238 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
239
240 if (hv_vcpu) {
241 hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
242 hv_vcpu->nested.vm_id = 0;
243 hv_vcpu->nested.vp_id = 0;
244 }
245 }
246
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)247 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
248 struct loaded_vmcs *prev)
249 {
250 struct vmcs_host_state *dest, *src;
251
252 if (unlikely(!vmx->guest_state_loaded))
253 return;
254
255 src = &prev->host_state;
256 dest = &vmx->loaded_vmcs->host_state;
257
258 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
259 dest->ldt_sel = src->ldt_sel;
260 #ifdef CONFIG_X86_64
261 dest->ds_sel = src->ds_sel;
262 dest->es_sel = src->es_sel;
263 #endif
264 }
265
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)266 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
267 {
268 struct vcpu_vmx *vmx = to_vmx(vcpu);
269 struct loaded_vmcs *prev;
270 int cpu;
271
272 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
273 return;
274
275 cpu = get_cpu();
276 prev = vmx->loaded_vmcs;
277 vmx->loaded_vmcs = vmcs;
278 vmx_vcpu_load_vmcs(vcpu, cpu, prev);
279 vmx_sync_vmcs_host_state(vmx, prev);
280 put_cpu();
281
282 vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
283
284 /*
285 * All lazily updated registers will be reloaded from VMCS12 on both
286 * vmentry and vmexit.
287 */
288 vcpu->arch.regs_dirty = 0;
289 }
290
291 /*
292 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
293 * just stops using VMX.
294 */
free_nested(struct kvm_vcpu * vcpu)295 static void free_nested(struct kvm_vcpu *vcpu)
296 {
297 struct vcpu_vmx *vmx = to_vmx(vcpu);
298
299 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
300 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
301
302 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
303 return;
304
305 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
306
307 vmx->nested.vmxon = false;
308 vmx->nested.smm.vmxon = false;
309 vmx->nested.vmxon_ptr = INVALID_GPA;
310 free_vpid(vmx->nested.vpid02);
311 vmx->nested.posted_intr_nv = -1;
312 vmx->nested.current_vmptr = INVALID_GPA;
313 if (enable_shadow_vmcs) {
314 vmx_disable_shadow_vmcs(vmx);
315 vmcs_clear(vmx->vmcs01.shadow_vmcs);
316 free_vmcs(vmx->vmcs01.shadow_vmcs);
317 vmx->vmcs01.shadow_vmcs = NULL;
318 }
319 kfree(vmx->nested.cached_vmcs12);
320 vmx->nested.cached_vmcs12 = NULL;
321 kfree(vmx->nested.cached_shadow_vmcs12);
322 vmx->nested.cached_shadow_vmcs12 = NULL;
323 /*
324 * Unpin physical memory we referred to in the vmcs02. The APIC access
325 * page's backing page (yeah, confusing) shouldn't actually be accessed,
326 * and if it is written, the contents are irrelevant.
327 */
328 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
329 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
330 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
331 vmx->nested.pi_desc = NULL;
332
333 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
334
335 nested_release_evmcs(vcpu);
336
337 free_loaded_vmcs(&vmx->nested.vmcs02);
338 }
339
340 /*
341 * Ensure that the current vmcs of the logical processor is the
342 * vmcs01 of the vcpu before calling free_nested().
343 */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)344 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
345 {
346 vcpu_load(vcpu);
347 vmx_leave_nested(vcpu);
348 vcpu_put(vcpu);
349 }
350
351 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
352
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)353 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
354 {
355 return VALID_PAGE(root_hpa) &&
356 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
357 }
358
nested_ept_invalidate_addr(struct kvm_vcpu * vcpu,gpa_t eptp,gpa_t addr)359 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
360 gpa_t addr)
361 {
362 unsigned long roots = 0;
363 uint i;
364 struct kvm_mmu_root_info *cached_root;
365
366 WARN_ON_ONCE(!mmu_is_nested(vcpu));
367
368 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
369 cached_root = &vcpu->arch.mmu->prev_roots[i];
370
371 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
372 eptp))
373 roots |= KVM_MMU_ROOT_PREVIOUS(i);
374 }
375 if (roots)
376 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
377 }
378
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)379 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
380 struct x86_exception *fault)
381 {
382 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
383 struct vcpu_vmx *vmx = to_vmx(vcpu);
384 u32 vm_exit_reason;
385 unsigned long exit_qualification = vcpu->arch.exit_qualification;
386
387 if (vmx->nested.pml_full) {
388 vm_exit_reason = EXIT_REASON_PML_FULL;
389 vmx->nested.pml_full = false;
390 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
391 } else {
392 if (fault->error_code & PFERR_RSVD_MASK)
393 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
394 else
395 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
396
397 /*
398 * Although the caller (kvm_inject_emulated_page_fault) would
399 * have already synced the faulting address in the shadow EPT
400 * tables for the current EPTP12, we also need to sync it for
401 * any other cached EPTP02s based on the same EP4TA, since the
402 * TLB associates mappings to the EP4TA rather than the full EPTP.
403 */
404 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
405 fault->address);
406 }
407
408 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
409 vmcs12->guest_physical_address = fault->address;
410 }
411
nested_ept_new_eptp(struct kvm_vcpu * vcpu)412 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
413 {
414 struct vcpu_vmx *vmx = to_vmx(vcpu);
415 bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
416 int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
417
418 kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
419 nested_ept_ad_enabled(vcpu),
420 nested_ept_get_eptp(vcpu));
421 }
422
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)423 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
424 {
425 WARN_ON(mmu_is_nested(vcpu));
426
427 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
428 nested_ept_new_eptp(vcpu);
429 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
430 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
431 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
432
433 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
434 }
435
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)436 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
437 {
438 vcpu->arch.mmu = &vcpu->arch.root_mmu;
439 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
440 }
441
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)442 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
443 u16 error_code)
444 {
445 bool inequality, bit;
446
447 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
448 inequality =
449 (error_code & vmcs12->page_fault_error_code_mask) !=
450 vmcs12->page_fault_error_code_match;
451 return inequality ^ bit;
452 }
453
nested_vmx_is_exception_vmexit(struct kvm_vcpu * vcpu,u8 vector,u32 error_code)454 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
455 u32 error_code)
456 {
457 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
458
459 /*
460 * Drop bits 31:16 of the error code when performing the #PF mask+match
461 * check. All VMCS fields involved are 32 bits, but Intel CPUs never
462 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
463 * error code. Including the to-be-dropped bits in the check might
464 * result in an "impossible" or missed exit from L1's perspective.
465 */
466 if (vector == PF_VECTOR)
467 return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
468
469 return (vmcs12->exception_bitmap & (1u << vector));
470 }
471
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)472 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
473 struct vmcs12 *vmcs12)
474 {
475 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
476 return 0;
477
478 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
479 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
480 return -EINVAL;
481
482 return 0;
483 }
484
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)485 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
486 struct vmcs12 *vmcs12)
487 {
488 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
489 return 0;
490
491 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
492 return -EINVAL;
493
494 return 0;
495 }
496
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)497 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
498 struct vmcs12 *vmcs12)
499 {
500 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
501 return 0;
502
503 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
504 return -EINVAL;
505
506 return 0;
507 }
508
509 /*
510 * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1
511 * itself utilizing x2APIC. All MSRs were previously set to be intercepted,
512 * only the "disable intercept" case needs to be handled.
513 */
nested_vmx_disable_intercept_for_x2apic_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_l0,u32 msr,int type)514 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
515 unsigned long *msr_bitmap_l0,
516 u32 msr, int type)
517 {
518 if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
519 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
520
521 if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
522 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
523 }
524
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)525 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
526 {
527 int msr;
528
529 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
530 unsigned word = msr / BITS_PER_LONG;
531
532 msr_bitmap[word] = ~0;
533 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
534 }
535 }
536
537 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \
538 static inline \
539 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \
540 unsigned long *msr_bitmap_l1, \
541 unsigned long *msr_bitmap_l0, u32 msr) \
542 { \
543 if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \
544 vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \
545 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \
546 else \
547 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \
548 }
549 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)550 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
551
552 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
553 unsigned long *msr_bitmap_l1,
554 unsigned long *msr_bitmap_l0,
555 u32 msr, int types)
556 {
557 if (types & MSR_TYPE_R)
558 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
559 msr_bitmap_l0, msr);
560 if (types & MSR_TYPE_W)
561 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
562 msr_bitmap_l0, msr);
563 }
564
565 /*
566 * Merge L0's and L1's MSR bitmap, return false to indicate that
567 * we do not use the hardware.
568 */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)569 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
570 struct vmcs12 *vmcs12)
571 {
572 struct vcpu_vmx *vmx = to_vmx(vcpu);
573 int msr;
574 unsigned long *msr_bitmap_l1;
575 unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
576 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
577 struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
578
579 /* Nothing to do if the MSR bitmap is not in use. */
580 if (!cpu_has_vmx_msr_bitmap() ||
581 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
582 return false;
583
584 /*
585 * MSR bitmap update can be skipped when:
586 * - MSR bitmap for L1 hasn't changed.
587 * - Nested hypervisor (L1) is attempting to launch the same L2 as
588 * before.
589 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
590 * and tells KVM (L0) there were no changes in MSR bitmap for L2.
591 */
592 if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
593 evmcs->hv_enlightenments_control.msr_bitmap &&
594 evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
595 return true;
596
597 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
598 return false;
599
600 msr_bitmap_l1 = (unsigned long *)map->hva;
601
602 /*
603 * To keep the control flow simple, pay eight 8-byte writes (sixteen
604 * 4-byte writes on 32-bit systems) up front to enable intercepts for
605 * the x2APIC MSR range and selectively toggle those relevant to L2.
606 */
607 enable_x2apic_msr_intercepts(msr_bitmap_l0);
608
609 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
610 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
611 /*
612 * L0 need not intercept reads for MSRs between 0x800
613 * and 0x8ff, it just lets the processor take the value
614 * from the virtual-APIC page; take those 256 bits
615 * directly from the L1 bitmap.
616 */
617 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
618 unsigned word = msr / BITS_PER_LONG;
619
620 msr_bitmap_l0[word] = msr_bitmap_l1[word];
621 }
622 }
623
624 nested_vmx_disable_intercept_for_x2apic_msr(
625 msr_bitmap_l1, msr_bitmap_l0,
626 X2APIC_MSR(APIC_TASKPRI),
627 MSR_TYPE_R | MSR_TYPE_W);
628
629 if (nested_cpu_has_vid(vmcs12)) {
630 nested_vmx_disable_intercept_for_x2apic_msr(
631 msr_bitmap_l1, msr_bitmap_l0,
632 X2APIC_MSR(APIC_EOI),
633 MSR_TYPE_W);
634 nested_vmx_disable_intercept_for_x2apic_msr(
635 msr_bitmap_l1, msr_bitmap_l0,
636 X2APIC_MSR(APIC_SELF_IPI),
637 MSR_TYPE_W);
638 }
639 }
640
641 /*
642 * Always check vmcs01's bitmap to honor userspace MSR filters and any
643 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
644 */
645 #ifdef CONFIG_X86_64
646 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
647 MSR_FS_BASE, MSR_TYPE_RW);
648
649 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
650 MSR_GS_BASE, MSR_TYPE_RW);
651
652 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
653 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
654 #endif
655 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
656 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
657
658 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
659 MSR_IA32_PRED_CMD, MSR_TYPE_W);
660
661 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
662 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
663
664 kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
665
666 vmx->nested.force_msr_bitmap_recalc = false;
667
668 return true;
669 }
670
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)671 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
672 struct vmcs12 *vmcs12)
673 {
674 struct vcpu_vmx *vmx = to_vmx(vcpu);
675 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
676
677 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
678 vmcs12->vmcs_link_pointer == INVALID_GPA)
679 return;
680
681 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
682 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
683 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
684 return;
685
686 kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
687 VMCS12_SIZE);
688 }
689
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)690 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
691 struct vmcs12 *vmcs12)
692 {
693 struct vcpu_vmx *vmx = to_vmx(vcpu);
694 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
695
696 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
697 vmcs12->vmcs_link_pointer == INVALID_GPA)
698 return;
699
700 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
701 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
702 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
703 return;
704
705 kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
706 VMCS12_SIZE);
707 }
708
709 /*
710 * In nested virtualization, check if L1 has set
711 * VM_EXIT_ACK_INTR_ON_EXIT
712 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)713 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
714 {
715 return get_vmcs12(vcpu)->vm_exit_controls &
716 VM_EXIT_ACK_INTR_ON_EXIT;
717 }
718
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)719 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
720 struct vmcs12 *vmcs12)
721 {
722 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
723 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
724 return -EINVAL;
725 else
726 return 0;
727 }
728
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)729 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
730 struct vmcs12 *vmcs12)
731 {
732 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
733 !nested_cpu_has_apic_reg_virt(vmcs12) &&
734 !nested_cpu_has_vid(vmcs12) &&
735 !nested_cpu_has_posted_intr(vmcs12))
736 return 0;
737
738 /*
739 * If virtualize x2apic mode is enabled,
740 * virtualize apic access must be disabled.
741 */
742 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
743 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
744 return -EINVAL;
745
746 /*
747 * If virtual interrupt delivery is enabled,
748 * we must exit on external interrupts.
749 */
750 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
751 return -EINVAL;
752
753 /*
754 * bits 15:8 should be zero in posted_intr_nv,
755 * the descriptor address has been already checked
756 * in nested_get_vmcs12_pages.
757 *
758 * bits 5:0 of posted_intr_desc_addr should be zero.
759 */
760 if (nested_cpu_has_posted_intr(vmcs12) &&
761 (CC(!nested_cpu_has_vid(vmcs12)) ||
762 CC(!nested_exit_intr_ack_set(vcpu)) ||
763 CC((vmcs12->posted_intr_nv & 0xff00)) ||
764 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
765 return -EINVAL;
766
767 /* tpr shadow is needed by all apicv features. */
768 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
769 return -EINVAL;
770
771 return 0;
772 }
773
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)774 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
775 u32 count, u64 addr)
776 {
777 if (count == 0)
778 return 0;
779
780 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
781 !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
782 return -EINVAL;
783
784 return 0;
785 }
786
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)787 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
788 struct vmcs12 *vmcs12)
789 {
790 if (CC(nested_vmx_check_msr_switch(vcpu,
791 vmcs12->vm_exit_msr_load_count,
792 vmcs12->vm_exit_msr_load_addr)) ||
793 CC(nested_vmx_check_msr_switch(vcpu,
794 vmcs12->vm_exit_msr_store_count,
795 vmcs12->vm_exit_msr_store_addr)))
796 return -EINVAL;
797
798 return 0;
799 }
800
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)801 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
802 struct vmcs12 *vmcs12)
803 {
804 if (CC(nested_vmx_check_msr_switch(vcpu,
805 vmcs12->vm_entry_msr_load_count,
806 vmcs12->vm_entry_msr_load_addr)))
807 return -EINVAL;
808
809 return 0;
810 }
811
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)812 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
813 struct vmcs12 *vmcs12)
814 {
815 if (!nested_cpu_has_pml(vmcs12))
816 return 0;
817
818 if (CC(!nested_cpu_has_ept(vmcs12)) ||
819 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
820 return -EINVAL;
821
822 return 0;
823 }
824
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)825 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
826 struct vmcs12 *vmcs12)
827 {
828 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
829 !nested_cpu_has_ept(vmcs12)))
830 return -EINVAL;
831 return 0;
832 }
833
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)834 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
835 struct vmcs12 *vmcs12)
836 {
837 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
838 !nested_cpu_has_ept(vmcs12)))
839 return -EINVAL;
840 return 0;
841 }
842
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)843 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
844 struct vmcs12 *vmcs12)
845 {
846 if (!nested_cpu_has_shadow_vmcs(vmcs12))
847 return 0;
848
849 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
850 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
851 return -EINVAL;
852
853 return 0;
854 }
855
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)856 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
857 struct vmx_msr_entry *e)
858 {
859 /* x2APIC MSR accesses are not allowed */
860 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
861 return -EINVAL;
862 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
863 CC(e->index == MSR_IA32_UCODE_REV))
864 return -EINVAL;
865 if (CC(e->reserved != 0))
866 return -EINVAL;
867 return 0;
868 }
869
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)870 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
871 struct vmx_msr_entry *e)
872 {
873 if (CC(e->index == MSR_FS_BASE) ||
874 CC(e->index == MSR_GS_BASE) ||
875 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
876 nested_vmx_msr_check_common(vcpu, e))
877 return -EINVAL;
878 return 0;
879 }
880
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)881 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
882 struct vmx_msr_entry *e)
883 {
884 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
885 nested_vmx_msr_check_common(vcpu, e))
886 return -EINVAL;
887 return 0;
888 }
889
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)890 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
891 {
892 struct vcpu_vmx *vmx = to_vmx(vcpu);
893 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
894 vmx->nested.msrs.misc_high);
895
896 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
897 }
898
899 /*
900 * Load guest's/host's msr at nested entry/exit.
901 * return 0 for success, entry index for failure.
902 *
903 * One of the failure modes for MSR load/store is when a list exceeds the
904 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
905 * as possible, process all valid entries before failing rather than precheck
906 * for a capacity violation.
907 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)908 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
909 {
910 u32 i;
911 struct vmx_msr_entry e;
912 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
913
914 for (i = 0; i < count; i++) {
915 if (unlikely(i >= max_msr_list_size))
916 goto fail;
917
918 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
919 &e, sizeof(e))) {
920 pr_debug_ratelimited(
921 "%s cannot read MSR entry (%u, 0x%08llx)\n",
922 __func__, i, gpa + i * sizeof(e));
923 goto fail;
924 }
925 if (nested_vmx_load_msr_check(vcpu, &e)) {
926 pr_debug_ratelimited(
927 "%s check failed (%u, 0x%x, 0x%x)\n",
928 __func__, i, e.index, e.reserved);
929 goto fail;
930 }
931 if (kvm_set_msr(vcpu, e.index, e.value)) {
932 pr_debug_ratelimited(
933 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
934 __func__, i, e.index, e.value);
935 goto fail;
936 }
937 }
938 return 0;
939 fail:
940 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
941 return i + 1;
942 }
943
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)944 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
945 u32 msr_index,
946 u64 *data)
947 {
948 struct vcpu_vmx *vmx = to_vmx(vcpu);
949
950 /*
951 * If the L0 hypervisor stored a more accurate value for the TSC that
952 * does not include the time taken for emulation of the L2->L1
953 * VM-exit in L0, use the more accurate value.
954 */
955 if (msr_index == MSR_IA32_TSC) {
956 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
957 MSR_IA32_TSC);
958
959 if (i >= 0) {
960 u64 val = vmx->msr_autostore.guest.val[i].value;
961
962 *data = kvm_read_l1_tsc(vcpu, val);
963 return true;
964 }
965 }
966
967 if (kvm_get_msr(vcpu, msr_index, data)) {
968 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
969 msr_index);
970 return false;
971 }
972 return true;
973 }
974
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)975 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
976 struct vmx_msr_entry *e)
977 {
978 if (kvm_vcpu_read_guest(vcpu,
979 gpa + i * sizeof(*e),
980 e, 2 * sizeof(u32))) {
981 pr_debug_ratelimited(
982 "%s cannot read MSR entry (%u, 0x%08llx)\n",
983 __func__, i, gpa + i * sizeof(*e));
984 return false;
985 }
986 if (nested_vmx_store_msr_check(vcpu, e)) {
987 pr_debug_ratelimited(
988 "%s check failed (%u, 0x%x, 0x%x)\n",
989 __func__, i, e->index, e->reserved);
990 return false;
991 }
992 return true;
993 }
994
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)995 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
996 {
997 u64 data;
998 u32 i;
999 struct vmx_msr_entry e;
1000 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1001
1002 for (i = 0; i < count; i++) {
1003 if (unlikely(i >= max_msr_list_size))
1004 return -EINVAL;
1005
1006 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1007 return -EINVAL;
1008
1009 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1010 return -EINVAL;
1011
1012 if (kvm_vcpu_write_guest(vcpu,
1013 gpa + i * sizeof(e) +
1014 offsetof(struct vmx_msr_entry, value),
1015 &data, sizeof(data))) {
1016 pr_debug_ratelimited(
1017 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1018 __func__, i, e.index, data);
1019 return -EINVAL;
1020 }
1021 }
1022 return 0;
1023 }
1024
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1025 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1026 {
1027 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1028 u32 count = vmcs12->vm_exit_msr_store_count;
1029 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1030 struct vmx_msr_entry e;
1031 u32 i;
1032
1033 for (i = 0; i < count; i++) {
1034 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1035 return false;
1036
1037 if (e.index == msr_index)
1038 return true;
1039 }
1040 return false;
1041 }
1042
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1043 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1044 u32 msr_index)
1045 {
1046 struct vcpu_vmx *vmx = to_vmx(vcpu);
1047 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1048 bool in_vmcs12_store_list;
1049 int msr_autostore_slot;
1050 bool in_autostore_list;
1051 int last;
1052
1053 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1054 in_autostore_list = msr_autostore_slot >= 0;
1055 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1056
1057 if (in_vmcs12_store_list && !in_autostore_list) {
1058 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1059 /*
1060 * Emulated VMEntry does not fail here. Instead a less
1061 * accurate value will be returned by
1062 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1063 * instead of reading the value from the vmcs02 VMExit
1064 * MSR-store area.
1065 */
1066 pr_warn_ratelimited(
1067 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1068 msr_index);
1069 return;
1070 }
1071 last = autostore->nr++;
1072 autostore->val[last].index = msr_index;
1073 } else if (!in_vmcs12_store_list && in_autostore_list) {
1074 last = --autostore->nr;
1075 autostore->val[msr_autostore_slot] = autostore->val[last];
1076 }
1077 }
1078
1079 /*
1080 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1081 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1082 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1083 * @entry_failure_code.
1084 */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,bool reload_pdptrs,enum vm_entry_failure_code * entry_failure_code)1085 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1086 bool nested_ept, bool reload_pdptrs,
1087 enum vm_entry_failure_code *entry_failure_code)
1088 {
1089 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1090 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1091 return -EINVAL;
1092 }
1093
1094 /*
1095 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1096 * must not be dereferenced.
1097 */
1098 if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1099 CC(!load_pdptrs(vcpu, cr3))) {
1100 *entry_failure_code = ENTRY_FAIL_PDPTE;
1101 return -EINVAL;
1102 }
1103
1104 vcpu->arch.cr3 = cr3;
1105 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1106
1107 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1108 kvm_init_mmu(vcpu);
1109
1110 if (!nested_ept)
1111 kvm_mmu_new_pgd(vcpu, cr3);
1112
1113 return 0;
1114 }
1115
1116 /*
1117 * Returns if KVM is able to config CPU to tag TLB entries
1118 * populated by L2 differently than TLB entries populated
1119 * by L1.
1120 *
1121 * If L0 uses EPT, L1 and L2 run with different EPTP because
1122 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1123 * are tagged with different EPTP.
1124 *
1125 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1126 * with different VPID (L1 entries are tagged with vmx->vpid
1127 * while L2 entries are tagged with vmx->nested.vpid02).
1128 */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1129 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1130 {
1131 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1132
1133 return enable_ept ||
1134 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1135 }
1136
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1137 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1138 struct vmcs12 *vmcs12,
1139 bool is_vmenter)
1140 {
1141 struct vcpu_vmx *vmx = to_vmx(vcpu);
1142
1143 /*
1144 * KVM_REQ_HV_TLB_FLUSH flushes entries from either L1's VP_ID or
1145 * L2's VP_ID upon request from the guest. Make sure we check for
1146 * pending entries in the right FIFO upon L1/L2 transition as these
1147 * requests are put by other vCPUs asynchronously.
1148 */
1149 if (to_hv_vcpu(vcpu) && enable_ept)
1150 kvm_make_request(KVM_REQ_HV_TLB_FLUSH, vcpu);
1151
1152 /*
1153 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1154 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1155 * full TLB flush from the guest's perspective. This is required even
1156 * if VPID is disabled in the host as KVM may need to synchronize the
1157 * MMU in response to the guest TLB flush.
1158 *
1159 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1160 * EPT is a special snowflake, as guest-physical mappings aren't
1161 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1162 * VPID disabled. As a result, KVM _never_ needs to sync nEPT
1163 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1164 * those mappings.
1165 */
1166 if (!nested_cpu_has_vpid(vmcs12)) {
1167 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1168 return;
1169 }
1170
1171 /* L2 should never have a VPID if VPID is disabled. */
1172 WARN_ON(!enable_vpid);
1173
1174 /*
1175 * VPID is enabled and in use by vmcs12. If vpid12 is changing, then
1176 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1177 * is the VPID incorporated into the MMU context. I.e. KVM must assume
1178 * that the new vpid12 has never been used and thus represents a new
1179 * guest ASID that cannot have entries in the TLB.
1180 */
1181 if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1182 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1183 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1184 return;
1185 }
1186
1187 /*
1188 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1189 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1190 * KVM was unable to allocate a VPID for L2, flush the current context
1191 * as the effective ASID is common to both L1 and L2.
1192 */
1193 if (!nested_has_guest_tlb_tag(vcpu))
1194 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1195 }
1196
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1197 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1198 {
1199 superset &= mask;
1200 subset &= mask;
1201
1202 return (superset | subset) == superset;
1203 }
1204
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1205 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1206 {
1207 const u64 feature_and_reserved =
1208 /* feature (except bit 48; see below) */
1209 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1210 /* reserved */
1211 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1212 u64 vmx_basic = vmcs_config.nested.basic;
1213
1214 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1215 return -EINVAL;
1216
1217 /*
1218 * KVM does not emulate a version of VMX that constrains physical
1219 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1220 */
1221 if (data & BIT_ULL(48))
1222 return -EINVAL;
1223
1224 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1225 vmx_basic_vmcs_revision_id(data))
1226 return -EINVAL;
1227
1228 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1229 return -EINVAL;
1230
1231 vmx->nested.msrs.basic = data;
1232 return 0;
1233 }
1234
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1235 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1236 u32 **low, u32 **high)
1237 {
1238 switch (msr_index) {
1239 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1240 *low = &msrs->pinbased_ctls_low;
1241 *high = &msrs->pinbased_ctls_high;
1242 break;
1243 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1244 *low = &msrs->procbased_ctls_low;
1245 *high = &msrs->procbased_ctls_high;
1246 break;
1247 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1248 *low = &msrs->exit_ctls_low;
1249 *high = &msrs->exit_ctls_high;
1250 break;
1251 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1252 *low = &msrs->entry_ctls_low;
1253 *high = &msrs->entry_ctls_high;
1254 break;
1255 case MSR_IA32_VMX_PROCBASED_CTLS2:
1256 *low = &msrs->secondary_ctls_low;
1257 *high = &msrs->secondary_ctls_high;
1258 break;
1259 default:
1260 BUG();
1261 }
1262 }
1263
1264 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1265 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1266 {
1267 u32 *lowp, *highp;
1268 u64 supported;
1269
1270 vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1271
1272 supported = vmx_control_msr(*lowp, *highp);
1273
1274 /* Check must-be-1 bits are still 1. */
1275 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1276 return -EINVAL;
1277
1278 /* Check must-be-0 bits are still 0. */
1279 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1280 return -EINVAL;
1281
1282 vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1283 *lowp = data;
1284 *highp = data >> 32;
1285 return 0;
1286 }
1287
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1288 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1289 {
1290 const u64 feature_and_reserved_bits =
1291 /* feature */
1292 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1293 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1294 /* reserved */
1295 GENMASK_ULL(13, 9) | BIT_ULL(31);
1296 u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1297 vmcs_config.nested.misc_high);
1298
1299 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1300 return -EINVAL;
1301
1302 if ((vmx->nested.msrs.pinbased_ctls_high &
1303 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1304 vmx_misc_preemption_timer_rate(data) !=
1305 vmx_misc_preemption_timer_rate(vmx_misc))
1306 return -EINVAL;
1307
1308 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1309 return -EINVAL;
1310
1311 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1312 return -EINVAL;
1313
1314 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1315 return -EINVAL;
1316
1317 vmx->nested.msrs.misc_low = data;
1318 vmx->nested.msrs.misc_high = data >> 32;
1319
1320 return 0;
1321 }
1322
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1323 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1324 {
1325 u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1326 vmcs_config.nested.vpid_caps);
1327
1328 /* Every bit is either reserved or a feature bit. */
1329 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1330 return -EINVAL;
1331
1332 vmx->nested.msrs.ept_caps = data;
1333 vmx->nested.msrs.vpid_caps = data >> 32;
1334 return 0;
1335 }
1336
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1337 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1338 {
1339 switch (msr_index) {
1340 case MSR_IA32_VMX_CR0_FIXED0:
1341 return &msrs->cr0_fixed0;
1342 case MSR_IA32_VMX_CR4_FIXED0:
1343 return &msrs->cr4_fixed0;
1344 default:
1345 BUG();
1346 }
1347 }
1348
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1349 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1350 {
1351 const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1352
1353 /*
1354 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1355 * must be 1 in the restored value.
1356 */
1357 if (!is_bitwise_subset(data, *msr, -1ULL))
1358 return -EINVAL;
1359
1360 *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1361 return 0;
1362 }
1363
1364 /*
1365 * Called when userspace is restoring VMX MSRs.
1366 *
1367 * Returns 0 on success, non-0 otherwise.
1368 */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1369 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1370 {
1371 struct vcpu_vmx *vmx = to_vmx(vcpu);
1372
1373 /*
1374 * Don't allow changes to the VMX capability MSRs while the vCPU
1375 * is in VMX operation.
1376 */
1377 if (vmx->nested.vmxon)
1378 return -EBUSY;
1379
1380 switch (msr_index) {
1381 case MSR_IA32_VMX_BASIC:
1382 return vmx_restore_vmx_basic(vmx, data);
1383 case MSR_IA32_VMX_PINBASED_CTLS:
1384 case MSR_IA32_VMX_PROCBASED_CTLS:
1385 case MSR_IA32_VMX_EXIT_CTLS:
1386 case MSR_IA32_VMX_ENTRY_CTLS:
1387 /*
1388 * The "non-true" VMX capability MSRs are generated from the
1389 * "true" MSRs, so we do not support restoring them directly.
1390 *
1391 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1392 * should restore the "true" MSRs with the must-be-1 bits
1393 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1394 * DEFAULT SETTINGS".
1395 */
1396 return -EINVAL;
1397 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1398 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1399 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1400 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1401 case MSR_IA32_VMX_PROCBASED_CTLS2:
1402 return vmx_restore_control_msr(vmx, msr_index, data);
1403 case MSR_IA32_VMX_MISC:
1404 return vmx_restore_vmx_misc(vmx, data);
1405 case MSR_IA32_VMX_CR0_FIXED0:
1406 case MSR_IA32_VMX_CR4_FIXED0:
1407 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1408 case MSR_IA32_VMX_CR0_FIXED1:
1409 case MSR_IA32_VMX_CR4_FIXED1:
1410 /*
1411 * These MSRs are generated based on the vCPU's CPUID, so we
1412 * do not support restoring them directly.
1413 */
1414 return -EINVAL;
1415 case MSR_IA32_VMX_EPT_VPID_CAP:
1416 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1417 case MSR_IA32_VMX_VMCS_ENUM:
1418 vmx->nested.msrs.vmcs_enum = data;
1419 return 0;
1420 case MSR_IA32_VMX_VMFUNC:
1421 if (data & ~vmcs_config.nested.vmfunc_controls)
1422 return -EINVAL;
1423 vmx->nested.msrs.vmfunc_controls = data;
1424 return 0;
1425 default:
1426 /*
1427 * The rest of the VMX capability MSRs do not support restore.
1428 */
1429 return -EINVAL;
1430 }
1431 }
1432
1433 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1434 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1435 {
1436 switch (msr_index) {
1437 case MSR_IA32_VMX_BASIC:
1438 *pdata = msrs->basic;
1439 break;
1440 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1441 case MSR_IA32_VMX_PINBASED_CTLS:
1442 *pdata = vmx_control_msr(
1443 msrs->pinbased_ctls_low,
1444 msrs->pinbased_ctls_high);
1445 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1446 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1447 break;
1448 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1449 case MSR_IA32_VMX_PROCBASED_CTLS:
1450 *pdata = vmx_control_msr(
1451 msrs->procbased_ctls_low,
1452 msrs->procbased_ctls_high);
1453 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1454 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1455 break;
1456 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1457 case MSR_IA32_VMX_EXIT_CTLS:
1458 *pdata = vmx_control_msr(
1459 msrs->exit_ctls_low,
1460 msrs->exit_ctls_high);
1461 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1462 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1463 break;
1464 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1465 case MSR_IA32_VMX_ENTRY_CTLS:
1466 *pdata = vmx_control_msr(
1467 msrs->entry_ctls_low,
1468 msrs->entry_ctls_high);
1469 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1470 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1471 break;
1472 case MSR_IA32_VMX_MISC:
1473 *pdata = vmx_control_msr(
1474 msrs->misc_low,
1475 msrs->misc_high);
1476 break;
1477 case MSR_IA32_VMX_CR0_FIXED0:
1478 *pdata = msrs->cr0_fixed0;
1479 break;
1480 case MSR_IA32_VMX_CR0_FIXED1:
1481 *pdata = msrs->cr0_fixed1;
1482 break;
1483 case MSR_IA32_VMX_CR4_FIXED0:
1484 *pdata = msrs->cr4_fixed0;
1485 break;
1486 case MSR_IA32_VMX_CR4_FIXED1:
1487 *pdata = msrs->cr4_fixed1;
1488 break;
1489 case MSR_IA32_VMX_VMCS_ENUM:
1490 *pdata = msrs->vmcs_enum;
1491 break;
1492 case MSR_IA32_VMX_PROCBASED_CTLS2:
1493 *pdata = vmx_control_msr(
1494 msrs->secondary_ctls_low,
1495 msrs->secondary_ctls_high);
1496 break;
1497 case MSR_IA32_VMX_EPT_VPID_CAP:
1498 *pdata = msrs->ept_caps |
1499 ((u64)msrs->vpid_caps << 32);
1500 break;
1501 case MSR_IA32_VMX_VMFUNC:
1502 *pdata = msrs->vmfunc_controls;
1503 break;
1504 default:
1505 return 1;
1506 }
1507
1508 return 0;
1509 }
1510
1511 /*
1512 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1513 * been modified by the L1 guest. Note, "writable" in this context means
1514 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1515 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1516 * VM-exit information fields (which are actually writable if the vCPU is
1517 * configured to support "VMWRITE to any supported field in the VMCS").
1518 */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1519 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1520 {
1521 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1522 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1523 struct shadow_vmcs_field field;
1524 unsigned long val;
1525 int i;
1526
1527 if (WARN_ON(!shadow_vmcs))
1528 return;
1529
1530 preempt_disable();
1531
1532 vmcs_load(shadow_vmcs);
1533
1534 for (i = 0; i < max_shadow_read_write_fields; i++) {
1535 field = shadow_read_write_fields[i];
1536 val = __vmcs_readl(field.encoding);
1537 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1538 }
1539
1540 vmcs_clear(shadow_vmcs);
1541 vmcs_load(vmx->loaded_vmcs->vmcs);
1542
1543 preempt_enable();
1544 }
1545
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1546 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1547 {
1548 const struct shadow_vmcs_field *fields[] = {
1549 shadow_read_write_fields,
1550 shadow_read_only_fields
1551 };
1552 const int max_fields[] = {
1553 max_shadow_read_write_fields,
1554 max_shadow_read_only_fields
1555 };
1556 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1557 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1558 struct shadow_vmcs_field field;
1559 unsigned long val;
1560 int i, q;
1561
1562 if (WARN_ON(!shadow_vmcs))
1563 return;
1564
1565 vmcs_load(shadow_vmcs);
1566
1567 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1568 for (i = 0; i < max_fields[q]; i++) {
1569 field = fields[q][i];
1570 val = vmcs12_read_any(vmcs12, field.encoding,
1571 field.offset);
1572 __vmcs_writel(field.encoding, val);
1573 }
1574 }
1575
1576 vmcs_clear(shadow_vmcs);
1577 vmcs_load(vmx->loaded_vmcs->vmcs);
1578 }
1579
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx,u32 hv_clean_fields)1580 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1581 {
1582 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1583 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1584 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1585
1586 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1587 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1588 vmcs12->guest_rip = evmcs->guest_rip;
1589
1590 if (unlikely(!(hv_clean_fields &
1591 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1592 hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1593 hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1594 hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1595 }
1596
1597 if (unlikely(!(hv_clean_fields &
1598 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1599 vmcs12->guest_rsp = evmcs->guest_rsp;
1600 vmcs12->guest_rflags = evmcs->guest_rflags;
1601 vmcs12->guest_interruptibility_info =
1602 evmcs->guest_interruptibility_info;
1603 /*
1604 * Not present in struct vmcs12:
1605 * vmcs12->guest_ssp = evmcs->guest_ssp;
1606 */
1607 }
1608
1609 if (unlikely(!(hv_clean_fields &
1610 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1611 vmcs12->cpu_based_vm_exec_control =
1612 evmcs->cpu_based_vm_exec_control;
1613 }
1614
1615 if (unlikely(!(hv_clean_fields &
1616 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1617 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1618 }
1619
1620 if (unlikely(!(hv_clean_fields &
1621 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1622 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1623 }
1624
1625 if (unlikely(!(hv_clean_fields &
1626 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1627 vmcs12->vm_entry_intr_info_field =
1628 evmcs->vm_entry_intr_info_field;
1629 vmcs12->vm_entry_exception_error_code =
1630 evmcs->vm_entry_exception_error_code;
1631 vmcs12->vm_entry_instruction_len =
1632 evmcs->vm_entry_instruction_len;
1633 }
1634
1635 if (unlikely(!(hv_clean_fields &
1636 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1637 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1638 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1639 vmcs12->host_cr0 = evmcs->host_cr0;
1640 vmcs12->host_cr3 = evmcs->host_cr3;
1641 vmcs12->host_cr4 = evmcs->host_cr4;
1642 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1643 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1644 vmcs12->host_rip = evmcs->host_rip;
1645 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1646 vmcs12->host_es_selector = evmcs->host_es_selector;
1647 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1648 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1649 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1650 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1651 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1652 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1653 vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1654 /*
1655 * Not present in struct vmcs12:
1656 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1657 * vmcs12->host_ssp = evmcs->host_ssp;
1658 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1659 */
1660 }
1661
1662 if (unlikely(!(hv_clean_fields &
1663 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1664 vmcs12->pin_based_vm_exec_control =
1665 evmcs->pin_based_vm_exec_control;
1666 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1667 vmcs12->secondary_vm_exec_control =
1668 evmcs->secondary_vm_exec_control;
1669 }
1670
1671 if (unlikely(!(hv_clean_fields &
1672 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1673 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1674 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1675 }
1676
1677 if (unlikely(!(hv_clean_fields &
1678 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1679 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1680 }
1681
1682 if (unlikely(!(hv_clean_fields &
1683 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1684 vmcs12->guest_es_base = evmcs->guest_es_base;
1685 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1686 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1687 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1688 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1689 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1690 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1691 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1692 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1693 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1694 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1695 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1696 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1697 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1698 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1699 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1700 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1701 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1702 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1703 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1704 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1705 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1706 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1707 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1708 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1709 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1710 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1711 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1712 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1713 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1714 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1715 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1716 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1717 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1718 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1719 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1720 }
1721
1722 if (unlikely(!(hv_clean_fields &
1723 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1724 vmcs12->tsc_offset = evmcs->tsc_offset;
1725 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1726 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1727 vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1728 vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1729 }
1730
1731 if (unlikely(!(hv_clean_fields &
1732 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1733 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1734 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1735 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1736 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1737 vmcs12->guest_cr0 = evmcs->guest_cr0;
1738 vmcs12->guest_cr3 = evmcs->guest_cr3;
1739 vmcs12->guest_cr4 = evmcs->guest_cr4;
1740 vmcs12->guest_dr7 = evmcs->guest_dr7;
1741 }
1742
1743 if (unlikely(!(hv_clean_fields &
1744 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1745 vmcs12->host_fs_base = evmcs->host_fs_base;
1746 vmcs12->host_gs_base = evmcs->host_gs_base;
1747 vmcs12->host_tr_base = evmcs->host_tr_base;
1748 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1749 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1750 vmcs12->host_rsp = evmcs->host_rsp;
1751 }
1752
1753 if (unlikely(!(hv_clean_fields &
1754 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1755 vmcs12->ept_pointer = evmcs->ept_pointer;
1756 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1757 }
1758
1759 if (unlikely(!(hv_clean_fields &
1760 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1761 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1762 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1763 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1764 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1765 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1766 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1767 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1768 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1769 vmcs12->guest_pending_dbg_exceptions =
1770 evmcs->guest_pending_dbg_exceptions;
1771 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1772 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1773 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1774 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1775 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1776 vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1777 /*
1778 * Not present in struct vmcs12:
1779 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1780 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1781 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1782 */
1783 }
1784
1785 /*
1786 * Not used?
1787 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1788 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1789 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1790 * vmcs12->page_fault_error_code_mask =
1791 * evmcs->page_fault_error_code_mask;
1792 * vmcs12->page_fault_error_code_match =
1793 * evmcs->page_fault_error_code_match;
1794 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1795 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1796 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1797 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1798 */
1799
1800 /*
1801 * Read only fields:
1802 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1803 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1804 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1805 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1806 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1807 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1808 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1809 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1810 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1811 * vmcs12->exit_qualification = evmcs->exit_qualification;
1812 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1813 *
1814 * Not present in struct vmcs12:
1815 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1816 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1817 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1818 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1819 */
1820
1821 return;
1822 }
1823
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1824 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1825 {
1826 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1827 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1828
1829 /*
1830 * Should not be changed by KVM:
1831 *
1832 * evmcs->host_es_selector = vmcs12->host_es_selector;
1833 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1834 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1835 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1836 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1837 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1838 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1839 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1840 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1841 * evmcs->host_cr0 = vmcs12->host_cr0;
1842 * evmcs->host_cr3 = vmcs12->host_cr3;
1843 * evmcs->host_cr4 = vmcs12->host_cr4;
1844 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1845 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1846 * evmcs->host_rip = vmcs12->host_rip;
1847 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1848 * evmcs->host_fs_base = vmcs12->host_fs_base;
1849 * evmcs->host_gs_base = vmcs12->host_gs_base;
1850 * evmcs->host_tr_base = vmcs12->host_tr_base;
1851 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1852 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1853 * evmcs->host_rsp = vmcs12->host_rsp;
1854 * sync_vmcs02_to_vmcs12() doesn't read these:
1855 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1856 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1857 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1858 * evmcs->ept_pointer = vmcs12->ept_pointer;
1859 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1860 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1861 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1862 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1863 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1864 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1865 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1866 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1867 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1868 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1869 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1870 * evmcs->page_fault_error_code_mask =
1871 * vmcs12->page_fault_error_code_mask;
1872 * evmcs->page_fault_error_code_match =
1873 * vmcs12->page_fault_error_code_match;
1874 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1875 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1876 * evmcs->tsc_offset = vmcs12->tsc_offset;
1877 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1878 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1879 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1880 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1881 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1882 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1883 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1884 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1885 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1886 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1887 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1888 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1889 *
1890 * Not present in struct vmcs12:
1891 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1892 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1893 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1894 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1895 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1896 * evmcs->host_ssp = vmcs12->host_ssp;
1897 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1898 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1899 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1900 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1901 * evmcs->guest_ssp = vmcs12->guest_ssp;
1902 */
1903
1904 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1905 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1906 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1907 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1908 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1909 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1910 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1911 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1912
1913 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1914 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1915 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1916 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1917 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1918 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1919 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1920 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1921 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1922 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1923
1924 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1925 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1926 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1927 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1928 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1929 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1930 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1931 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1932
1933 evmcs->guest_es_base = vmcs12->guest_es_base;
1934 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1935 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1936 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1937 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1938 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1939 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1940 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1941 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1942 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1943
1944 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1945 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1946
1947 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1948 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1949 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1950 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1951
1952 evmcs->guest_pending_dbg_exceptions =
1953 vmcs12->guest_pending_dbg_exceptions;
1954 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1955 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1956
1957 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1958 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1959
1960 evmcs->guest_cr0 = vmcs12->guest_cr0;
1961 evmcs->guest_cr3 = vmcs12->guest_cr3;
1962 evmcs->guest_cr4 = vmcs12->guest_cr4;
1963 evmcs->guest_dr7 = vmcs12->guest_dr7;
1964
1965 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1966
1967 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1968 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1969 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1970 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1971 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1972 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1973 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1974 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1975
1976 evmcs->exit_qualification = vmcs12->exit_qualification;
1977
1978 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1979 evmcs->guest_rsp = vmcs12->guest_rsp;
1980 evmcs->guest_rflags = vmcs12->guest_rflags;
1981
1982 evmcs->guest_interruptibility_info =
1983 vmcs12->guest_interruptibility_info;
1984 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1985 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1986 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1987 evmcs->vm_entry_exception_error_code =
1988 vmcs12->vm_entry_exception_error_code;
1989 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1990
1991 evmcs->guest_rip = vmcs12->guest_rip;
1992
1993 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1994
1995 return;
1996 }
1997
1998 /*
1999 * This is an equivalent of the nested hypervisor executing the vmptrld
2000 * instruction.
2001 */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)2002 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2003 struct kvm_vcpu *vcpu, bool from_launch)
2004 {
2005 struct vcpu_vmx *vmx = to_vmx(vcpu);
2006 bool evmcs_gpa_changed = false;
2007 u64 evmcs_gpa;
2008
2009 if (likely(!guest_cpuid_has_evmcs(vcpu)))
2010 return EVMPTRLD_DISABLED;
2011
2012 evmcs_gpa = nested_get_evmptr(vcpu);
2013 if (!evmptr_is_valid(evmcs_gpa)) {
2014 nested_release_evmcs(vcpu);
2015 return EVMPTRLD_DISABLED;
2016 }
2017
2018 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2019 vmx->nested.current_vmptr = INVALID_GPA;
2020
2021 nested_release_evmcs(vcpu);
2022
2023 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2024 &vmx->nested.hv_evmcs_map))
2025 return EVMPTRLD_ERROR;
2026
2027 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2028
2029 /*
2030 * Currently, KVM only supports eVMCS version 1
2031 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2032 * value to first u32 field of eVMCS which should specify eVMCS
2033 * VersionNumber.
2034 *
2035 * Guest should be aware of supported eVMCS versions by host by
2036 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2037 * expected to set this CPUID leaf according to the value
2038 * returned in vmcs_version from nested_enable_evmcs().
2039 *
2040 * However, it turns out that Microsoft Hyper-V fails to comply
2041 * to their own invented interface: When Hyper-V use eVMCS, it
2042 * just sets first u32 field of eVMCS to revision_id specified
2043 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2044 * which is one of the supported versions specified in
2045 * CPUID.0x4000000A.EAX[0:15].
2046 *
2047 * To overcome Hyper-V bug, we accept here either a supported
2048 * eVMCS version or VMCS12 revision_id as valid values for first
2049 * u32 field of eVMCS.
2050 */
2051 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2052 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2053 nested_release_evmcs(vcpu);
2054 return EVMPTRLD_VMFAIL;
2055 }
2056
2057 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2058
2059 evmcs_gpa_changed = true;
2060 /*
2061 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2062 * reloaded from guest's memory (read only fields, fields not
2063 * present in struct hv_enlightened_vmcs, ...). Make sure there
2064 * are no leftovers.
2065 */
2066 if (from_launch) {
2067 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2068 memset(vmcs12, 0, sizeof(*vmcs12));
2069 vmcs12->hdr.revision_id = VMCS12_REVISION;
2070 }
2071
2072 }
2073
2074 /*
2075 * Clean fields data can't be used on VMLAUNCH and when we switch
2076 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2077 */
2078 if (from_launch || evmcs_gpa_changed) {
2079 vmx->nested.hv_evmcs->hv_clean_fields &=
2080 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2081
2082 vmx->nested.force_msr_bitmap_recalc = true;
2083 }
2084
2085 return EVMPTRLD_SUCCEEDED;
2086 }
2087
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2088 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2089 {
2090 struct vcpu_vmx *vmx = to_vmx(vcpu);
2091
2092 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2093 copy_vmcs12_to_enlightened(vmx);
2094 else
2095 copy_vmcs12_to_shadow(vmx);
2096
2097 vmx->nested.need_vmcs12_to_shadow_sync = false;
2098 }
2099
vmx_preemption_timer_fn(struct hrtimer * timer)2100 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2101 {
2102 struct vcpu_vmx *vmx =
2103 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2104
2105 vmx->nested.preemption_timer_expired = true;
2106 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2107 kvm_vcpu_kick(&vmx->vcpu);
2108
2109 return HRTIMER_NORESTART;
2110 }
2111
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2112 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2113 {
2114 struct vcpu_vmx *vmx = to_vmx(vcpu);
2115 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2116
2117 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2118 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2119
2120 if (!vmx->nested.has_preemption_timer_deadline) {
2121 vmx->nested.preemption_timer_deadline =
2122 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2123 vmx->nested.has_preemption_timer_deadline = true;
2124 }
2125 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2126 }
2127
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2128 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2129 u64 preemption_timeout)
2130 {
2131 struct vcpu_vmx *vmx = to_vmx(vcpu);
2132
2133 /*
2134 * A timer value of zero is architecturally guaranteed to cause
2135 * a VMExit prior to executing any instructions in the guest.
2136 */
2137 if (preemption_timeout == 0) {
2138 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2139 return;
2140 }
2141
2142 if (vcpu->arch.virtual_tsc_khz == 0)
2143 return;
2144
2145 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2146 preemption_timeout *= 1000000;
2147 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2148 hrtimer_start(&vmx->nested.preemption_timer,
2149 ktime_add_ns(ktime_get(), preemption_timeout),
2150 HRTIMER_MODE_ABS_PINNED);
2151 }
2152
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2153 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2154 {
2155 if (vmx->nested.nested_run_pending &&
2156 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2157 return vmcs12->guest_ia32_efer;
2158 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2159 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2160 else
2161 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2162 }
2163
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2164 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2165 {
2166 struct kvm *kvm = vmx->vcpu.kvm;
2167
2168 /*
2169 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2170 * according to L0's settings (vmcs12 is irrelevant here). Host
2171 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2172 * will be set as needed prior to VMLAUNCH/VMRESUME.
2173 */
2174 if (vmx->nested.vmcs02_initialized)
2175 return;
2176 vmx->nested.vmcs02_initialized = true;
2177
2178 /*
2179 * We don't care what the EPTP value is we just need to guarantee
2180 * it's valid so we don't get a false positive when doing early
2181 * consistency checks.
2182 */
2183 if (enable_ept && nested_early_check)
2184 vmcs_write64(EPT_POINTER,
2185 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2186
2187 /* All VMFUNCs are currently emulated through L0 vmexits. */
2188 if (cpu_has_vmx_vmfunc())
2189 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2190
2191 if (cpu_has_vmx_posted_intr())
2192 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2193
2194 if (cpu_has_vmx_msr_bitmap())
2195 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2196
2197 /*
2198 * PML is emulated for L2, but never enabled in hardware as the MMU
2199 * handles A/D emulation. Disabling PML for L2 also avoids having to
2200 * deal with filtering out L2 GPAs from the buffer.
2201 */
2202 if (enable_pml) {
2203 vmcs_write64(PML_ADDRESS, 0);
2204 vmcs_write16(GUEST_PML_INDEX, -1);
2205 }
2206
2207 if (cpu_has_vmx_encls_vmexit())
2208 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2209
2210 if (kvm_notify_vmexit_enabled(kvm))
2211 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2212
2213 /*
2214 * Set the MSR load/store lists to match L0's settings. Only the
2215 * addresses are constant (for vmcs02), the counts can change based
2216 * on L2's behavior, e.g. switching to/from long mode.
2217 */
2218 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2219 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2220 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2221
2222 vmx_set_constant_host_state(vmx);
2223 }
2224
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2225 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2226 struct vmcs12 *vmcs12)
2227 {
2228 prepare_vmcs02_constant_state(vmx);
2229
2230 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2231
2232 if (enable_vpid) {
2233 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2234 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2235 else
2236 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2237 }
2238 }
2239
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2240 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2241 struct vmcs12 *vmcs12)
2242 {
2243 u32 exec_control;
2244 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2245
2246 if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2247 prepare_vmcs02_early_rare(vmx, vmcs12);
2248
2249 /*
2250 * PIN CONTROLS
2251 */
2252 exec_control = __pin_controls_get(vmcs01);
2253 exec_control |= (vmcs12->pin_based_vm_exec_control &
2254 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2255
2256 /* Posted interrupts setting is only taken from vmcs12. */
2257 vmx->nested.pi_pending = false;
2258 if (nested_cpu_has_posted_intr(vmcs12))
2259 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2260 else
2261 exec_control &= ~PIN_BASED_POSTED_INTR;
2262 pin_controls_set(vmx, exec_control);
2263
2264 /*
2265 * EXEC CONTROLS
2266 */
2267 exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2268 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2269 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2270 exec_control &= ~CPU_BASED_TPR_SHADOW;
2271 exec_control |= vmcs12->cpu_based_vm_exec_control;
2272
2273 vmx->nested.l1_tpr_threshold = -1;
2274 if (exec_control & CPU_BASED_TPR_SHADOW)
2275 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2276 #ifdef CONFIG_X86_64
2277 else
2278 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2279 CPU_BASED_CR8_STORE_EXITING;
2280 #endif
2281
2282 /*
2283 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2284 * for I/O port accesses.
2285 */
2286 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2287 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2288
2289 /*
2290 * This bit will be computed in nested_get_vmcs12_pages, because
2291 * we do not have access to L1's MSR bitmap yet. For now, keep
2292 * the same bit as before, hoping to avoid multiple VMWRITEs that
2293 * only set/clear this bit.
2294 */
2295 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2296 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2297
2298 exec_controls_set(vmx, exec_control);
2299
2300 /*
2301 * SECONDARY EXEC CONTROLS
2302 */
2303 if (cpu_has_secondary_exec_ctrls()) {
2304 exec_control = __secondary_exec_controls_get(vmcs01);
2305
2306 /* Take the following fields only from vmcs12 */
2307 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2308 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2309 SECONDARY_EXEC_ENABLE_INVPCID |
2310 SECONDARY_EXEC_ENABLE_RDTSCP |
2311 SECONDARY_EXEC_ENABLE_XSAVES |
2312 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2313 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2314 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2315 SECONDARY_EXEC_ENABLE_VMFUNC |
2316 SECONDARY_EXEC_DESC);
2317
2318 if (nested_cpu_has(vmcs12,
2319 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2320 exec_control |= vmcs12->secondary_vm_exec_control;
2321
2322 /* PML is emulated and never enabled in hardware for L2. */
2323 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2324
2325 /* VMCS shadowing for L2 is emulated for now */
2326 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2327
2328 /*
2329 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2330 * will not have to rewrite the controls just for this bit.
2331 */
2332 if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2333 exec_control |= SECONDARY_EXEC_DESC;
2334
2335 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2336 vmcs_write16(GUEST_INTR_STATUS,
2337 vmcs12->guest_intr_status);
2338
2339 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2340 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2341
2342 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2343 vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2344
2345 secondary_exec_controls_set(vmx, exec_control);
2346 }
2347
2348 /*
2349 * ENTRY CONTROLS
2350 *
2351 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2352 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2353 * on the related bits (if supported by the CPU) in the hope that
2354 * we can avoid VMWrites during vmx_set_efer().
2355 *
2356 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2357 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2358 * do the same for L2.
2359 */
2360 exec_control = __vm_entry_controls_get(vmcs01);
2361 exec_control |= (vmcs12->vm_entry_controls &
2362 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2363 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2364 if (cpu_has_load_ia32_efer()) {
2365 if (guest_efer & EFER_LMA)
2366 exec_control |= VM_ENTRY_IA32E_MODE;
2367 if (guest_efer != host_efer)
2368 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2369 }
2370 vm_entry_controls_set(vmx, exec_control);
2371
2372 /*
2373 * EXIT CONTROLS
2374 *
2375 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2376 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2377 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2378 */
2379 exec_control = __vm_exit_controls_get(vmcs01);
2380 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2381 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2382 else
2383 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2384 vm_exit_controls_set(vmx, exec_control);
2385
2386 /*
2387 * Interrupt/Exception Fields
2388 */
2389 if (vmx->nested.nested_run_pending) {
2390 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2391 vmcs12->vm_entry_intr_info_field);
2392 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2393 vmcs12->vm_entry_exception_error_code);
2394 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2395 vmcs12->vm_entry_instruction_len);
2396 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2397 vmcs12->guest_interruptibility_info);
2398 vmx->loaded_vmcs->nmi_known_unmasked =
2399 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2400 } else {
2401 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2402 }
2403 }
2404
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2405 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2406 {
2407 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2408
2409 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2410 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2411 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2412 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2413 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2414 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2415 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2416 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2417 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2418 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2419 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2420 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2421 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2422 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2423 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2424 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2425 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2426 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2427 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2428 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2429 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2430 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2431 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2432 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2433 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2434 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2435 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2436 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2437 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2438 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2439 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2440 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2441 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2442 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2443 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2444 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2445 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2446 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2447
2448 vmx->segment_cache.bitmask = 0;
2449 }
2450
2451 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2452 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2453 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2454 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2455 vmcs12->guest_pending_dbg_exceptions);
2456 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2457 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2458
2459 /*
2460 * L1 may access the L2's PDPTR, so save them to construct
2461 * vmcs12
2462 */
2463 if (enable_ept) {
2464 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2465 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2466 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2467 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2468 }
2469
2470 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2471 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2472 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2473 }
2474
2475 if (nested_cpu_has_xsaves(vmcs12))
2476 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2477
2478 /*
2479 * Whether page-faults are trapped is determined by a combination of
2480 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2481 * doesn't care about page faults then we should set all of these to
2482 * L1's desires. However, if L0 does care about (some) page faults, it
2483 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2484 * simply ask to exit on each and every L2 page fault. This is done by
2485 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2486 * Note that below we don't need special code to set EB.PF beyond the
2487 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2488 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2489 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2490 */
2491 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2492 /*
2493 * TODO: if both L0 and L1 need the same MASK and MATCH,
2494 * go ahead and use it?
2495 */
2496 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2497 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2498 } else {
2499 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2500 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2501 }
2502
2503 if (cpu_has_vmx_apicv()) {
2504 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2505 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2506 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2507 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2508 }
2509
2510 /*
2511 * Make sure the msr_autostore list is up to date before we set the
2512 * count in the vmcs02.
2513 */
2514 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2515
2516 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2517 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2518 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2519
2520 set_cr4_guest_host_mask(vmx);
2521 }
2522
2523 /*
2524 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2525 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2526 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2527 * guest in a way that will both be appropriate to L1's requests, and our
2528 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2529 * function also has additional necessary side-effects, like setting various
2530 * vcpu->arch fields.
2531 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2532 * is assigned to entry_failure_code on failure.
2533 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool from_vmentry,enum vm_entry_failure_code * entry_failure_code)2534 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2535 bool from_vmentry,
2536 enum vm_entry_failure_code *entry_failure_code)
2537 {
2538 struct vcpu_vmx *vmx = to_vmx(vcpu);
2539 bool load_guest_pdptrs_vmcs12 = false;
2540
2541 if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2542 prepare_vmcs02_rare(vmx, vmcs12);
2543 vmx->nested.dirty_vmcs12 = false;
2544
2545 load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2546 !(vmx->nested.hv_evmcs->hv_clean_fields &
2547 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2548 }
2549
2550 if (vmx->nested.nested_run_pending &&
2551 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2552 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2553 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2554 } else {
2555 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2556 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl);
2557 }
2558 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2559 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2560 vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2561 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2562
2563 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2564 * bitwise-or of what L1 wants to trap for L2, and what we want to
2565 * trap. Note that CR0.TS also needs updating - we do this later.
2566 */
2567 vmx_update_exception_bitmap(vcpu);
2568 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2569 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2570
2571 if (vmx->nested.nested_run_pending &&
2572 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2573 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2574 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2575 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2576 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2577 }
2578
2579 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2580 vcpu->arch.l1_tsc_offset,
2581 vmx_get_l2_tsc_offset(vcpu),
2582 vmx_get_l2_tsc_multiplier(vcpu));
2583
2584 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2585 vcpu->arch.l1_tsc_scaling_ratio,
2586 vmx_get_l2_tsc_multiplier(vcpu));
2587
2588 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2589 if (kvm_caps.has_tsc_control)
2590 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2591
2592 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2593
2594 if (nested_cpu_has_ept(vmcs12))
2595 nested_ept_init_mmu_context(vcpu);
2596
2597 /*
2598 * Override the CR0/CR4 read shadows after setting the effective guest
2599 * CR0/CR4. The common helpers also set the shadows, but they don't
2600 * account for vmcs12's cr0/4_guest_host_mask.
2601 */
2602 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2603 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2604
2605 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2606 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2607
2608 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2609 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2610 vmx_set_efer(vcpu, vcpu->arch.efer);
2611
2612 /*
2613 * Guest state is invalid and unrestricted guest is disabled,
2614 * which means L1 attempted VMEntry to L2 with invalid state.
2615 * Fail the VMEntry.
2616 *
2617 * However when force loading the guest state (SMM exit or
2618 * loading nested state after migration, it is possible to
2619 * have invalid guest state now, which will be later fixed by
2620 * restoring L2 register state
2621 */
2622 if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2623 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2624 return -EINVAL;
2625 }
2626
2627 /* Shadow page tables on either EPT or shadow page tables. */
2628 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2629 from_vmentry, entry_failure_code))
2630 return -EINVAL;
2631
2632 /*
2633 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2634 * on nested VM-Exit, which can occur without actually running L2 and
2635 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2636 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2637 * transition to HLT instead of running L2.
2638 */
2639 if (enable_ept)
2640 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2641
2642 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2643 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2644 is_pae_paging(vcpu)) {
2645 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2646 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2647 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2648 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2649 }
2650
2651 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2652 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2653 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2654 vmcs12->guest_ia32_perf_global_ctrl))) {
2655 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2656 return -EINVAL;
2657 }
2658
2659 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2660 kvm_rip_write(vcpu, vmcs12->guest_rip);
2661
2662 /*
2663 * It was observed that genuine Hyper-V running in L1 doesn't reset
2664 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2665 * bits when it changes a field in eVMCS. Mark all fields as clean
2666 * here.
2667 */
2668 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2669 vmx->nested.hv_evmcs->hv_clean_fields |=
2670 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2671
2672 return 0;
2673 }
2674
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2675 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2676 {
2677 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2678 nested_cpu_has_virtual_nmis(vmcs12)))
2679 return -EINVAL;
2680
2681 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2682 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2683 return -EINVAL;
2684
2685 return 0;
2686 }
2687
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2688 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2689 {
2690 struct vcpu_vmx *vmx = to_vmx(vcpu);
2691
2692 /* Check for memory type validity */
2693 switch (new_eptp & VMX_EPTP_MT_MASK) {
2694 case VMX_EPTP_MT_UC:
2695 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2696 return false;
2697 break;
2698 case VMX_EPTP_MT_WB:
2699 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2700 return false;
2701 break;
2702 default:
2703 return false;
2704 }
2705
2706 /* Page-walk levels validity. */
2707 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2708 case VMX_EPTP_PWL_5:
2709 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2710 return false;
2711 break;
2712 case VMX_EPTP_PWL_4:
2713 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2714 return false;
2715 break;
2716 default:
2717 return false;
2718 }
2719
2720 /* Reserved bits should not be set */
2721 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2722 return false;
2723
2724 /* AD, if set, should be supported */
2725 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2726 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2727 return false;
2728 }
2729
2730 return true;
2731 }
2732
2733 /*
2734 * Checks related to VM-Execution Control Fields
2735 */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2736 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2737 struct vmcs12 *vmcs12)
2738 {
2739 struct vcpu_vmx *vmx = to_vmx(vcpu);
2740
2741 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2742 vmx->nested.msrs.pinbased_ctls_low,
2743 vmx->nested.msrs.pinbased_ctls_high)) ||
2744 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2745 vmx->nested.msrs.procbased_ctls_low,
2746 vmx->nested.msrs.procbased_ctls_high)))
2747 return -EINVAL;
2748
2749 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2750 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2751 vmx->nested.msrs.secondary_ctls_low,
2752 vmx->nested.msrs.secondary_ctls_high)))
2753 return -EINVAL;
2754
2755 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2756 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2757 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2758 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2759 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2760 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2761 nested_vmx_check_nmi_controls(vmcs12) ||
2762 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2763 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2764 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2765 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2766 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2767 return -EINVAL;
2768
2769 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2770 nested_cpu_has_save_preemption_timer(vmcs12))
2771 return -EINVAL;
2772
2773 if (nested_cpu_has_ept(vmcs12) &&
2774 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2775 return -EINVAL;
2776
2777 if (nested_cpu_has_vmfunc(vmcs12)) {
2778 if (CC(vmcs12->vm_function_control &
2779 ~vmx->nested.msrs.vmfunc_controls))
2780 return -EINVAL;
2781
2782 if (nested_cpu_has_eptp_switching(vmcs12)) {
2783 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2784 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2785 return -EINVAL;
2786 }
2787 }
2788
2789 return 0;
2790 }
2791
2792 /*
2793 * Checks related to VM-Exit Control Fields
2794 */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2795 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2796 struct vmcs12 *vmcs12)
2797 {
2798 struct vcpu_vmx *vmx = to_vmx(vcpu);
2799
2800 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2801 vmx->nested.msrs.exit_ctls_low,
2802 vmx->nested.msrs.exit_ctls_high)) ||
2803 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2804 return -EINVAL;
2805
2806 return 0;
2807 }
2808
2809 /*
2810 * Checks related to VM-Entry Control Fields
2811 */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2812 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2813 struct vmcs12 *vmcs12)
2814 {
2815 struct vcpu_vmx *vmx = to_vmx(vcpu);
2816
2817 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2818 vmx->nested.msrs.entry_ctls_low,
2819 vmx->nested.msrs.entry_ctls_high)))
2820 return -EINVAL;
2821
2822 /*
2823 * From the Intel SDM, volume 3:
2824 * Fields relevant to VM-entry event injection must be set properly.
2825 * These fields are the VM-entry interruption-information field, the
2826 * VM-entry exception error code, and the VM-entry instruction length.
2827 */
2828 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2829 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2830 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2831 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2832 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2833 bool should_have_error_code;
2834 bool urg = nested_cpu_has2(vmcs12,
2835 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2836 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2837
2838 /* VM-entry interruption-info field: interruption type */
2839 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2840 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2841 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2842 return -EINVAL;
2843
2844 /* VM-entry interruption-info field: vector */
2845 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2846 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2847 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2848 return -EINVAL;
2849
2850 /* VM-entry interruption-info field: deliver error code */
2851 should_have_error_code =
2852 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2853 x86_exception_has_error_code(vector);
2854 if (CC(has_error_code != should_have_error_code))
2855 return -EINVAL;
2856
2857 /* VM-entry exception error code */
2858 if (CC(has_error_code &&
2859 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2860 return -EINVAL;
2861
2862 /* VM-entry interruption-info field: reserved bits */
2863 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2864 return -EINVAL;
2865
2866 /* VM-entry instruction length */
2867 switch (intr_type) {
2868 case INTR_TYPE_SOFT_EXCEPTION:
2869 case INTR_TYPE_SOFT_INTR:
2870 case INTR_TYPE_PRIV_SW_EXCEPTION:
2871 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2872 CC(vmcs12->vm_entry_instruction_len == 0 &&
2873 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2874 return -EINVAL;
2875 }
2876 }
2877
2878 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2879 return -EINVAL;
2880
2881 return 0;
2882 }
2883
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2884 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2885 struct vmcs12 *vmcs12)
2886 {
2887 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2888 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2889 nested_check_vm_entry_controls(vcpu, vmcs12))
2890 return -EINVAL;
2891
2892 if (guest_cpuid_has_evmcs(vcpu))
2893 return nested_evmcs_check_controls(vmcs12);
2894
2895 return 0;
2896 }
2897
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2898 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2899 struct vmcs12 *vmcs12)
2900 {
2901 #ifdef CONFIG_X86_64
2902 if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2903 !!(vcpu->arch.efer & EFER_LMA)))
2904 return -EINVAL;
2905 #endif
2906 return 0;
2907 }
2908
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2909 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2910 struct vmcs12 *vmcs12)
2911 {
2912 bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2913
2914 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2915 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2916 CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2917 return -EINVAL;
2918
2919 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2920 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2921 return -EINVAL;
2922
2923 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2924 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2925 return -EINVAL;
2926
2927 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2928 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2929 vmcs12->host_ia32_perf_global_ctrl)))
2930 return -EINVAL;
2931
2932 if (ia32e) {
2933 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2934 return -EINVAL;
2935 } else {
2936 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2937 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2938 CC((vmcs12->host_rip) >> 32))
2939 return -EINVAL;
2940 }
2941
2942 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2943 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2944 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2945 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2946 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2947 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2948 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2949 CC(vmcs12->host_cs_selector == 0) ||
2950 CC(vmcs12->host_tr_selector == 0) ||
2951 CC(vmcs12->host_ss_selector == 0 && !ia32e))
2952 return -EINVAL;
2953
2954 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2955 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2956 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2957 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2958 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2959 CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2960 return -EINVAL;
2961
2962 /*
2963 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2964 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2965 * the values of the LMA and LME bits in the field must each be that of
2966 * the host address-space size VM-exit control.
2967 */
2968 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2969 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2970 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2971 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2972 return -EINVAL;
2973 }
2974
2975 return 0;
2976 }
2977
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2978 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2979 struct vmcs12 *vmcs12)
2980 {
2981 struct vcpu_vmx *vmx = to_vmx(vcpu);
2982 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
2983 struct vmcs_hdr hdr;
2984
2985 if (vmcs12->vmcs_link_pointer == INVALID_GPA)
2986 return 0;
2987
2988 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2989 return -EINVAL;
2990
2991 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
2992 CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
2993 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
2994 return -EINVAL;
2995
2996 if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
2997 offsetof(struct vmcs12, hdr),
2998 sizeof(hdr))))
2999 return -EINVAL;
3000
3001 if (CC(hdr.revision_id != VMCS12_REVISION) ||
3002 CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3003 return -EINVAL;
3004
3005 return 0;
3006 }
3007
3008 /*
3009 * Checks related to Guest Non-register State
3010 */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)3011 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3012 {
3013 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3014 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3015 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3016 return -EINVAL;
3017
3018 return 0;
3019 }
3020
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)3021 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3022 struct vmcs12 *vmcs12,
3023 enum vm_entry_failure_code *entry_failure_code)
3024 {
3025 bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3026
3027 *entry_failure_code = ENTRY_FAIL_DEFAULT;
3028
3029 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3030 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3031 return -EINVAL;
3032
3033 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3034 CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3035 return -EINVAL;
3036
3037 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3038 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3039 return -EINVAL;
3040
3041 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3042 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3043 return -EINVAL;
3044 }
3045
3046 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3047 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3048 vmcs12->guest_ia32_perf_global_ctrl)))
3049 return -EINVAL;
3050
3051 if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3052 return -EINVAL;
3053
3054 if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3055 CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3056 return -EINVAL;
3057
3058 /*
3059 * If the load IA32_EFER VM-entry control is 1, the following checks
3060 * are performed on the field for the IA32_EFER MSR:
3061 * - Bits reserved in the IA32_EFER MSR must be 0.
3062 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3063 * the IA-32e mode guest VM-exit control. It must also be identical
3064 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3065 * CR0.PG) is 1.
3066 */
3067 if (to_vmx(vcpu)->nested.nested_run_pending &&
3068 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3069 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3070 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3071 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3072 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3073 return -EINVAL;
3074 }
3075
3076 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3077 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3078 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3079 return -EINVAL;
3080
3081 if (nested_check_guest_non_reg_state(vmcs12))
3082 return -EINVAL;
3083
3084 return 0;
3085 }
3086
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3087 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3088 {
3089 struct vcpu_vmx *vmx = to_vmx(vcpu);
3090 unsigned long cr3, cr4;
3091 bool vm_fail;
3092
3093 if (!nested_early_check)
3094 return 0;
3095
3096 if (vmx->msr_autoload.host.nr)
3097 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3098 if (vmx->msr_autoload.guest.nr)
3099 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3100
3101 preempt_disable();
3102
3103 vmx_prepare_switch_to_guest(vcpu);
3104
3105 /*
3106 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3107 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3108 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3109 * there is no need to preserve other bits or save/restore the field.
3110 */
3111 vmcs_writel(GUEST_RFLAGS, 0);
3112
3113 cr3 = __get_current_cr3_fast();
3114 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3115 vmcs_writel(HOST_CR3, cr3);
3116 vmx->loaded_vmcs->host_state.cr3 = cr3;
3117 }
3118
3119 cr4 = cr4_read_shadow();
3120 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3121 vmcs_writel(HOST_CR4, cr4);
3122 vmx->loaded_vmcs->host_state.cr4 = cr4;
3123 }
3124
3125 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3126 __vmx_vcpu_run_flags(vmx));
3127
3128 if (vmx->msr_autoload.host.nr)
3129 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3130 if (vmx->msr_autoload.guest.nr)
3131 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3132
3133 if (vm_fail) {
3134 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3135
3136 preempt_enable();
3137
3138 trace_kvm_nested_vmenter_failed(
3139 "early hardware check VM-instruction error: ", error);
3140 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3141 return 1;
3142 }
3143
3144 /*
3145 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3146 */
3147 if (hw_breakpoint_active())
3148 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3149 local_irq_enable();
3150 preempt_enable();
3151
3152 /*
3153 * A non-failing VMEntry means we somehow entered guest mode with
3154 * an illegal RIP, and that's just the tip of the iceberg. There
3155 * is no telling what memory has been modified or what state has
3156 * been exposed to unknown code. Hitting this all but guarantees
3157 * a (very critical) hardware issue.
3158 */
3159 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3160 VMX_EXIT_REASONS_FAILED_VMENTRY));
3161
3162 return 0;
3163 }
3164
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3165 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3166 {
3167 struct vcpu_vmx *vmx = to_vmx(vcpu);
3168
3169 /*
3170 * hv_evmcs may end up being not mapped after migration (when
3171 * L2 was running), map it here to make sure vmcs12 changes are
3172 * properly reflected.
3173 */
3174 if (guest_cpuid_has_evmcs(vcpu) &&
3175 vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3176 enum nested_evmptrld_status evmptrld_status =
3177 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3178
3179 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3180 evmptrld_status == EVMPTRLD_ERROR)
3181 return false;
3182
3183 /*
3184 * Post migration VMCS12 always provides the most actual
3185 * information, copy it to eVMCS upon entry.
3186 */
3187 vmx->nested.need_vmcs12_to_shadow_sync = true;
3188 }
3189
3190 return true;
3191 }
3192
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3193 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3194 {
3195 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3196 struct vcpu_vmx *vmx = to_vmx(vcpu);
3197 struct kvm_host_map *map;
3198
3199 if (!vcpu->arch.pdptrs_from_userspace &&
3200 !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3201 /*
3202 * Reload the guest's PDPTRs since after a migration
3203 * the guest CR3 might be restored prior to setting the nested
3204 * state which can lead to a load of wrong PDPTRs.
3205 */
3206 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3207 return false;
3208 }
3209
3210
3211 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3212 map = &vmx->nested.apic_access_page_map;
3213
3214 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3215 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3216 } else {
3217 pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3218 __func__);
3219 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3220 vcpu->run->internal.suberror =
3221 KVM_INTERNAL_ERROR_EMULATION;
3222 vcpu->run->internal.ndata = 0;
3223 return false;
3224 }
3225 }
3226
3227 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3228 map = &vmx->nested.virtual_apic_map;
3229
3230 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3231 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3232 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3233 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3234 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3235 /*
3236 * The processor will never use the TPR shadow, simply
3237 * clear the bit from the execution control. Such a
3238 * configuration is useless, but it happens in tests.
3239 * For any other configuration, failing the vm entry is
3240 * _not_ what the processor does but it's basically the
3241 * only possibility we have.
3242 */
3243 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3244 } else {
3245 /*
3246 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3247 * force VM-Entry to fail.
3248 */
3249 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3250 }
3251 }
3252
3253 if (nested_cpu_has_posted_intr(vmcs12)) {
3254 map = &vmx->nested.pi_desc_map;
3255
3256 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3257 vmx->nested.pi_desc =
3258 (struct pi_desc *)(((void *)map->hva) +
3259 offset_in_page(vmcs12->posted_intr_desc_addr));
3260 vmcs_write64(POSTED_INTR_DESC_ADDR,
3261 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3262 } else {
3263 /*
3264 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3265 * access the contents of the VMCS12 posted interrupt
3266 * descriptor. (Note that KVM may do this when it
3267 * should not, per the architectural specification.)
3268 */
3269 vmx->nested.pi_desc = NULL;
3270 pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3271 }
3272 }
3273 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3274 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3275 else
3276 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3277
3278 return true;
3279 }
3280
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3281 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3282 {
3283 /*
3284 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3285 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3286 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3287 * migration.
3288 */
3289 if (!nested_get_evmcs_page(vcpu)) {
3290 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3291 __func__);
3292 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3293 vcpu->run->internal.suberror =
3294 KVM_INTERNAL_ERROR_EMULATION;
3295 vcpu->run->internal.ndata = 0;
3296
3297 return false;
3298 }
3299
3300 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3301 return false;
3302
3303 return true;
3304 }
3305
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3306 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3307 {
3308 struct vmcs12 *vmcs12;
3309 struct vcpu_vmx *vmx = to_vmx(vcpu);
3310 gpa_t dst;
3311
3312 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3313 return 0;
3314
3315 if (WARN_ON_ONCE(vmx->nested.pml_full))
3316 return 1;
3317
3318 /*
3319 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3320 * set is already checked as part of A/D emulation.
3321 */
3322 vmcs12 = get_vmcs12(vcpu);
3323 if (!nested_cpu_has_pml(vmcs12))
3324 return 0;
3325
3326 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3327 vmx->nested.pml_full = true;
3328 return 1;
3329 }
3330
3331 gpa &= ~0xFFFull;
3332 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3333
3334 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3335 offset_in_page(dst), sizeof(gpa)))
3336 return 0;
3337
3338 vmcs12->guest_pml_index--;
3339
3340 return 0;
3341 }
3342
3343 /*
3344 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3345 * for running VMX instructions (except VMXON, whose prerequisites are
3346 * slightly different). It also specifies what exception to inject otherwise.
3347 * Note that many of these exceptions have priority over VM exits, so they
3348 * don't have to be checked again here.
3349 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3350 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3351 {
3352 if (!to_vmx(vcpu)->nested.vmxon) {
3353 kvm_queue_exception(vcpu, UD_VECTOR);
3354 return 0;
3355 }
3356
3357 if (vmx_get_cpl(vcpu)) {
3358 kvm_inject_gp(vcpu, 0);
3359 return 0;
3360 }
3361
3362 return 1;
3363 }
3364
vmx_has_apicv_interrupt(struct kvm_vcpu * vcpu)3365 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3366 {
3367 u8 rvi = vmx_get_rvi();
3368 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3369
3370 return ((rvi & 0xf0) > (vppr & 0xf0));
3371 }
3372
3373 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3374 struct vmcs12 *vmcs12);
3375
3376 /*
3377 * If from_vmentry is false, this is being called from state restore (either RSM
3378 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3379 *
3380 * Returns:
3381 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3382 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3383 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3384 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3385 */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3386 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3387 bool from_vmentry)
3388 {
3389 struct vcpu_vmx *vmx = to_vmx(vcpu);
3390 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3391 enum vm_entry_failure_code entry_failure_code;
3392 bool evaluate_pending_interrupts;
3393 union vmx_exit_reason exit_reason = {
3394 .basic = EXIT_REASON_INVALID_STATE,
3395 .failed_vmentry = 1,
3396 };
3397 u32 failed_index;
3398
3399 trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3400 vmx->nested.current_vmptr,
3401 vmcs12->guest_rip,
3402 vmcs12->guest_intr_status,
3403 vmcs12->vm_entry_intr_info_field,
3404 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3405 vmcs12->ept_pointer,
3406 vmcs12->guest_cr3,
3407 KVM_ISA_VMX);
3408
3409 kvm_service_local_tlb_flush_requests(vcpu);
3410
3411 evaluate_pending_interrupts = exec_controls_get(vmx) &
3412 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3413 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3414 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3415 if (!evaluate_pending_interrupts)
3416 evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu);
3417
3418 if (!vmx->nested.nested_run_pending ||
3419 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3420 vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3421 if (kvm_mpx_supported() &&
3422 (!vmx->nested.nested_run_pending ||
3423 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3424 vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3425
3426 /*
3427 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3428 * nested early checks are disabled. In the event of a "late" VM-Fail,
3429 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3430 * software model to the pre-VMEntry host state. When EPT is disabled,
3431 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3432 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3433 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3434 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3435 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3436 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3437 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3438 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3439 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3440 * path would need to manually save/restore vmcs01.GUEST_CR3.
3441 */
3442 if (!enable_ept && !nested_early_check)
3443 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3444
3445 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3446
3447 prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3448
3449 if (from_vmentry) {
3450 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3451 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3452 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3453 }
3454
3455 if (nested_vmx_check_vmentry_hw(vcpu)) {
3456 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3457 return NVMX_VMENTRY_VMFAIL;
3458 }
3459
3460 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3461 &entry_failure_code)) {
3462 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3463 vmcs12->exit_qualification = entry_failure_code;
3464 goto vmentry_fail_vmexit;
3465 }
3466 }
3467
3468 enter_guest_mode(vcpu);
3469
3470 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3471 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3472 vmcs12->exit_qualification = entry_failure_code;
3473 goto vmentry_fail_vmexit_guest_mode;
3474 }
3475
3476 if (from_vmentry) {
3477 failed_index = nested_vmx_load_msr(vcpu,
3478 vmcs12->vm_entry_msr_load_addr,
3479 vmcs12->vm_entry_msr_load_count);
3480 if (failed_index) {
3481 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3482 vmcs12->exit_qualification = failed_index;
3483 goto vmentry_fail_vmexit_guest_mode;
3484 }
3485 } else {
3486 /*
3487 * The MMU is not initialized to point at the right entities yet and
3488 * "get pages" would need to read data from the guest (i.e. we will
3489 * need to perform gpa to hpa translation). Request a call
3490 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3491 * have already been set at vmentry time and should not be reset.
3492 */
3493 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3494 }
3495
3496 /*
3497 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3498 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3499 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3500 * unconditionally.
3501 */
3502 if (unlikely(evaluate_pending_interrupts))
3503 kvm_make_request(KVM_REQ_EVENT, vcpu);
3504
3505 /*
3506 * Do not start the preemption timer hrtimer until after we know
3507 * we are successful, so that only nested_vmx_vmexit needs to cancel
3508 * the timer.
3509 */
3510 vmx->nested.preemption_timer_expired = false;
3511 if (nested_cpu_has_preemption_timer(vmcs12)) {
3512 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3513 vmx_start_preemption_timer(vcpu, timer_value);
3514 }
3515
3516 /*
3517 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3518 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3519 * returned as far as L1 is concerned. It will only return (and set
3520 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3521 */
3522 return NVMX_VMENTRY_SUCCESS;
3523
3524 /*
3525 * A failed consistency check that leads to a VMExit during L1's
3526 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3527 * 26.7 "VM-entry failures during or after loading guest state".
3528 */
3529 vmentry_fail_vmexit_guest_mode:
3530 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3531 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3532 leave_guest_mode(vcpu);
3533
3534 vmentry_fail_vmexit:
3535 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3536
3537 if (!from_vmentry)
3538 return NVMX_VMENTRY_VMEXIT;
3539
3540 load_vmcs12_host_state(vcpu, vmcs12);
3541 vmcs12->vm_exit_reason = exit_reason.full;
3542 if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3543 vmx->nested.need_vmcs12_to_shadow_sync = true;
3544 return NVMX_VMENTRY_VMEXIT;
3545 }
3546
3547 /*
3548 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3549 * for running an L2 nested guest.
3550 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3551 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3552 {
3553 struct vmcs12 *vmcs12;
3554 enum nvmx_vmentry_status status;
3555 struct vcpu_vmx *vmx = to_vmx(vcpu);
3556 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3557 enum nested_evmptrld_status evmptrld_status;
3558
3559 if (!nested_vmx_check_permission(vcpu))
3560 return 1;
3561
3562 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3563 if (evmptrld_status == EVMPTRLD_ERROR) {
3564 kvm_queue_exception(vcpu, UD_VECTOR);
3565 return 1;
3566 }
3567
3568 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
3569
3570 if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3571 return nested_vmx_failInvalid(vcpu);
3572
3573 if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3574 vmx->nested.current_vmptr == INVALID_GPA))
3575 return nested_vmx_failInvalid(vcpu);
3576
3577 vmcs12 = get_vmcs12(vcpu);
3578
3579 /*
3580 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3581 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3582 * rather than RFLAGS.ZF, and no error number is stored to the
3583 * VM-instruction error field.
3584 */
3585 if (CC(vmcs12->hdr.shadow_vmcs))
3586 return nested_vmx_failInvalid(vcpu);
3587
3588 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3589 copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3590 /* Enlightened VMCS doesn't have launch state */
3591 vmcs12->launch_state = !launch;
3592 } else if (enable_shadow_vmcs) {
3593 copy_shadow_to_vmcs12(vmx);
3594 }
3595
3596 /*
3597 * The nested entry process starts with enforcing various prerequisites
3598 * on vmcs12 as required by the Intel SDM, and act appropriately when
3599 * they fail: As the SDM explains, some conditions should cause the
3600 * instruction to fail, while others will cause the instruction to seem
3601 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3602 * To speed up the normal (success) code path, we should avoid checking
3603 * for misconfigurations which will anyway be caught by the processor
3604 * when using the merged vmcs02.
3605 */
3606 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3607 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3608
3609 if (CC(vmcs12->launch_state == launch))
3610 return nested_vmx_fail(vcpu,
3611 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3612 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3613
3614 if (nested_vmx_check_controls(vcpu, vmcs12))
3615 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3616
3617 if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3618 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3619
3620 if (nested_vmx_check_host_state(vcpu, vmcs12))
3621 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3622
3623 /*
3624 * We're finally done with prerequisite checking, and can start with
3625 * the nested entry.
3626 */
3627 vmx->nested.nested_run_pending = 1;
3628 vmx->nested.has_preemption_timer_deadline = false;
3629 status = nested_vmx_enter_non_root_mode(vcpu, true);
3630 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3631 goto vmentry_failed;
3632
3633 /* Emulate processing of posted interrupts on VM-Enter. */
3634 if (nested_cpu_has_posted_intr(vmcs12) &&
3635 kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3636 vmx->nested.pi_pending = true;
3637 kvm_make_request(KVM_REQ_EVENT, vcpu);
3638 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3639 }
3640
3641 /* Hide L1D cache contents from the nested guest. */
3642 vmx->vcpu.arch.l1tf_flush_l1d = true;
3643
3644 /*
3645 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3646 * also be used as part of restoring nVMX state for
3647 * snapshot restore (migration).
3648 *
3649 * In this flow, it is assumed that vmcs12 cache was
3650 * transferred as part of captured nVMX state and should
3651 * therefore not be read from guest memory (which may not
3652 * exist on destination host yet).
3653 */
3654 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3655
3656 switch (vmcs12->guest_activity_state) {
3657 case GUEST_ACTIVITY_HLT:
3658 /*
3659 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3660 * awakened by event injection or by an NMI-window VM-exit or
3661 * by an interrupt-window VM-exit, halt the vcpu.
3662 */
3663 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3664 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3665 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3666 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3667 vmx->nested.nested_run_pending = 0;
3668 return kvm_emulate_halt_noskip(vcpu);
3669 }
3670 break;
3671 case GUEST_ACTIVITY_WAIT_SIPI:
3672 vmx->nested.nested_run_pending = 0;
3673 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3674 break;
3675 default:
3676 break;
3677 }
3678
3679 return 1;
3680
3681 vmentry_failed:
3682 vmx->nested.nested_run_pending = 0;
3683 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3684 return 0;
3685 if (status == NVMX_VMENTRY_VMEXIT)
3686 return 1;
3687 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3688 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3689 }
3690
3691 /*
3692 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3693 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3694 * This function returns the new value we should put in vmcs12.guest_cr0.
3695 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3696 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3697 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3698 * didn't trap the bit, because if L1 did, so would L0).
3699 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3700 * been modified by L2, and L1 knows it. So just leave the old value of
3701 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3702 * isn't relevant, because if L0 traps this bit it can set it to anything.
3703 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3704 * changed these bits, and therefore they need to be updated, but L0
3705 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3706 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3707 */
3708 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3709 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3710 {
3711 return
3712 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3713 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3714 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3715 vcpu->arch.cr0_guest_owned_bits));
3716 }
3717
3718 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3719 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3720 {
3721 return
3722 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3723 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3724 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3725 vcpu->arch.cr4_guest_owned_bits));
3726 }
3727
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info)3728 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3729 struct vmcs12 *vmcs12,
3730 u32 vm_exit_reason, u32 exit_intr_info)
3731 {
3732 u32 idt_vectoring;
3733 unsigned int nr;
3734
3735 /*
3736 * Per the SDM, VM-Exits due to double and triple faults are never
3737 * considered to occur during event delivery, even if the double/triple
3738 * fault is the result of an escalating vectoring issue.
3739 *
3740 * Note, the SDM qualifies the double fault behavior with "The original
3741 * event results in a double-fault exception". It's unclear why the
3742 * qualification exists since exits due to double fault can occur only
3743 * while vectoring a different exception (injected events are never
3744 * subject to interception), i.e. there's _always_ an original event.
3745 *
3746 * The SDM also uses NMI as a confusing example for the "original event
3747 * causes the VM exit directly" clause. NMI isn't special in any way,
3748 * the same rule applies to all events that cause an exit directly.
3749 * NMI is an odd choice for the example because NMIs can only occur on
3750 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3751 */
3752 if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3753 ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3754 is_double_fault(exit_intr_info))) {
3755 vmcs12->idt_vectoring_info_field = 0;
3756 } else if (vcpu->arch.exception.injected) {
3757 nr = vcpu->arch.exception.vector;
3758 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3759
3760 if (kvm_exception_is_soft(nr)) {
3761 vmcs12->vm_exit_instruction_len =
3762 vcpu->arch.event_exit_inst_len;
3763 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3764 } else
3765 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3766
3767 if (vcpu->arch.exception.has_error_code) {
3768 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3769 vmcs12->idt_vectoring_error_code =
3770 vcpu->arch.exception.error_code;
3771 }
3772
3773 vmcs12->idt_vectoring_info_field = idt_vectoring;
3774 } else if (vcpu->arch.nmi_injected) {
3775 vmcs12->idt_vectoring_info_field =
3776 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3777 } else if (vcpu->arch.interrupt.injected) {
3778 nr = vcpu->arch.interrupt.nr;
3779 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3780
3781 if (vcpu->arch.interrupt.soft) {
3782 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3783 vmcs12->vm_entry_instruction_len =
3784 vcpu->arch.event_exit_inst_len;
3785 } else
3786 idt_vectoring |= INTR_TYPE_EXT_INTR;
3787
3788 vmcs12->idt_vectoring_info_field = idt_vectoring;
3789 } else {
3790 vmcs12->idt_vectoring_info_field = 0;
3791 }
3792 }
3793
3794
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3795 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3796 {
3797 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3798 gfn_t gfn;
3799
3800 /*
3801 * Don't need to mark the APIC access page dirty; it is never
3802 * written to by the CPU during APIC virtualization.
3803 */
3804
3805 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3806 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3807 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3808 }
3809
3810 if (nested_cpu_has_posted_intr(vmcs12)) {
3811 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3812 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3813 }
3814 }
3815
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3816 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3817 {
3818 struct vcpu_vmx *vmx = to_vmx(vcpu);
3819 int max_irr;
3820 void *vapic_page;
3821 u16 status;
3822
3823 if (!vmx->nested.pi_pending)
3824 return 0;
3825
3826 if (!vmx->nested.pi_desc)
3827 goto mmio_needed;
3828
3829 vmx->nested.pi_pending = false;
3830
3831 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3832 return 0;
3833
3834 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
3835 if (max_irr > 0) {
3836 vapic_page = vmx->nested.virtual_apic_map.hva;
3837 if (!vapic_page)
3838 goto mmio_needed;
3839
3840 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3841 vapic_page, &max_irr);
3842 status = vmcs_read16(GUEST_INTR_STATUS);
3843 if ((u8)max_irr > ((u8)status & 0xff)) {
3844 status &= ~0xff;
3845 status |= (u8)max_irr;
3846 vmcs_write16(GUEST_INTR_STATUS, status);
3847 }
3848 }
3849
3850 nested_mark_vmcs12_pages_dirty(vcpu);
3851 return 0;
3852
3853 mmio_needed:
3854 kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3855 return -ENXIO;
3856 }
3857
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu)3858 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3859 {
3860 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3861 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3862 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3863 unsigned long exit_qual;
3864
3865 if (ex->has_payload) {
3866 exit_qual = ex->payload;
3867 } else if (ex->vector == PF_VECTOR) {
3868 exit_qual = vcpu->arch.cr2;
3869 } else if (ex->vector == DB_VECTOR) {
3870 exit_qual = vcpu->arch.dr6;
3871 exit_qual &= ~DR6_BT;
3872 exit_qual ^= DR6_ACTIVE_LOW;
3873 } else {
3874 exit_qual = 0;
3875 }
3876
3877 /*
3878 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3879 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3880 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
3881 */
3882 if (ex->has_error_code && is_protmode(vcpu)) {
3883 /*
3884 * Intel CPUs do not generate error codes with bits 31:16 set,
3885 * and more importantly VMX disallows setting bits 31:16 in the
3886 * injected error code for VM-Entry. Drop the bits to mimic
3887 * hardware and avoid inducing failure on nested VM-Entry if L1
3888 * chooses to inject the exception back to L2. AMD CPUs _do_
3889 * generate "full" 32-bit error codes, so KVM allows userspace
3890 * to inject exception error codes with bits 31:16 set.
3891 */
3892 vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3893 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3894 }
3895
3896 if (kvm_exception_is_soft(ex->vector))
3897 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3898 else
3899 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3900
3901 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3902 vmx_get_nmi_mask(vcpu))
3903 intr_info |= INTR_INFO_UNBLOCK_NMI;
3904
3905 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3906 }
3907
3908 /*
3909 * Returns true if a debug trap is (likely) pending delivery. Infer the class
3910 * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
3911 * Using the payload is flawed because code breakpoints (fault-like) and data
3912 * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
3913 * this will return false positives if a to-be-injected code breakpoint #DB is
3914 * pending (from KVM's perspective, but not "pending" across an instruction
3915 * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it
3916 * too is trap-like.
3917 *
3918 * KVM "works" despite these flaws as ICEBP isn't currently supported by the
3919 * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
3920 * #DB has already happened), and MTF isn't marked pending on code breakpoints
3921 * from the emulator (because such #DBs are fault-like and thus don't trigger
3922 * actions that fire on instruction retire).
3923 */
vmx_get_pending_dbg_trap(struct kvm_queued_exception * ex)3924 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
3925 {
3926 if (!ex->pending || ex->vector != DB_VECTOR)
3927 return 0;
3928
3929 /* General Detect #DBs are always fault-like. */
3930 return ex->payload & ~DR6_BD;
3931 }
3932
3933 /*
3934 * Returns true if there's a pending #DB exception that is lower priority than
3935 * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by
3936 * KVM, but could theoretically be injected by userspace. Note, this code is
3937 * imperfect, see above.
3938 */
vmx_is_low_priority_db_trap(struct kvm_queued_exception * ex)3939 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
3940 {
3941 return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
3942 }
3943
3944 /*
3945 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3946 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3947 * represents these debug traps with a payload that is said to be compatible
3948 * with the 'pending debug exceptions' field, write the payload to the VMCS
3949 * field if a VM-exit is delivered before the debug trap.
3950 */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)3951 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3952 {
3953 unsigned long pending_dbg;
3954
3955 pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
3956 if (pending_dbg)
3957 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
3958 }
3959
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)3960 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3961 {
3962 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3963 to_vmx(vcpu)->nested.preemption_timer_expired;
3964 }
3965
vmx_has_nested_events(struct kvm_vcpu * vcpu,bool for_injection)3966 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
3967 {
3968 struct vcpu_vmx *vmx = to_vmx(vcpu);
3969 void *vapic = vmx->nested.virtual_apic_map.hva;
3970 int max_irr, vppr;
3971
3972 if (nested_vmx_preemption_timer_pending(vcpu) ||
3973 vmx->nested.mtf_pending)
3974 return true;
3975
3976 /*
3977 * Virtual Interrupt Delivery doesn't require manual injection. Either
3978 * the interrupt is already in GUEST_RVI and will be recognized by CPU
3979 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
3980 * the interrupt from the PIR to RVI prior to entering the guest.
3981 */
3982 if (for_injection)
3983 return false;
3984
3985 if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3986 __vmx_interrupt_blocked(vcpu))
3987 return false;
3988
3989 if (!vapic)
3990 return false;
3991
3992 vppr = *((u32 *)(vapic + APIC_PROCPRI));
3993
3994 if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
3995 pi_test_on(vmx->nested.pi_desc)) {
3996 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
3997 if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
3998 return true;
3999 }
4000
4001 return false;
4002 }
4003
4004 /*
4005 * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4006 * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4007 * and less minor edits to splice in the priority of VMX Non-Root specific
4008 * events, e.g. MTF and NMI/INTR-window exiting.
4009 *
4010 * 1 Hardware Reset and Machine Checks
4011 * - RESET
4012 * - Machine Check
4013 *
4014 * 2 Trap on Task Switch
4015 * - T flag in TSS is set (on task switch)
4016 *
4017 * 3 External Hardware Interventions
4018 * - FLUSH
4019 * - STOPCLK
4020 * - SMI
4021 * - INIT
4022 *
4023 * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4024 *
4025 * 4 Traps on Previous Instruction
4026 * - Breakpoints
4027 * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4028 * breakpoint, or #DB due to a split-lock access)
4029 *
4030 * 4.3 VMX-preemption timer expired VM-exit
4031 *
4032 * 4.6 NMI-window exiting VM-exit[2]
4033 *
4034 * 5 Nonmaskable Interrupts (NMI)
4035 *
4036 * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4037 *
4038 * 6 Maskable Hardware Interrupts
4039 *
4040 * 7 Code Breakpoint Fault
4041 *
4042 * 8 Faults from Fetching Next Instruction
4043 * - Code-Segment Limit Violation
4044 * - Code Page Fault
4045 * - Control protection exception (missing ENDBRANCH at target of indirect
4046 * call or jump)
4047 *
4048 * 9 Faults from Decoding Next Instruction
4049 * - Instruction length > 15 bytes
4050 * - Invalid Opcode
4051 * - Coprocessor Not Available
4052 *
4053 *10 Faults on Executing Instruction
4054 * - Overflow
4055 * - Bound error
4056 * - Invalid TSS
4057 * - Segment Not Present
4058 * - Stack fault
4059 * - General Protection
4060 * - Data Page Fault
4061 * - Alignment Check
4062 * - x86 FPU Floating-point exception
4063 * - SIMD floating-point exception
4064 * - Virtualization exception
4065 * - Control protection exception
4066 *
4067 * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4068 * INIT signals, and higher priority events take priority over MTF VM exits.
4069 * MTF VM exits take priority over debug-trap exceptions and lower priority
4070 * events.
4071 *
4072 * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4073 * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
4074 * timer take priority over VM exits caused by the "NMI-window exiting"
4075 * VM-execution control and lower priority events.
4076 *
4077 * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4078 * caused by "NMI-window exiting". VM exits caused by this control take
4079 * priority over non-maskable interrupts (NMIs) and lower priority events.
4080 *
4081 * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4082 * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus,
4083 * non-maskable interrupts (NMIs) and higher priority events take priority over
4084 * delivery of a virtual interrupt; delivery of a virtual interrupt takes
4085 * priority over external interrupts and lower priority events.
4086 */
vmx_check_nested_events(struct kvm_vcpu * vcpu)4087 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4088 {
4089 struct kvm_lapic *apic = vcpu->arch.apic;
4090 struct vcpu_vmx *vmx = to_vmx(vcpu);
4091 /*
4092 * Only a pending nested run blocks a pending exception. If there is a
4093 * previously injected event, the pending exception occurred while said
4094 * event was being delivered and thus needs to be handled.
4095 */
4096 bool block_nested_exceptions = vmx->nested.nested_run_pending;
4097 /*
4098 * New events (not exceptions) are only recognized at instruction
4099 * boundaries. If an event needs reinjection, then KVM is handling a
4100 * VM-Exit that occurred _during_ instruction execution; new events are
4101 * blocked until the instruction completes.
4102 */
4103 bool block_nested_events = block_nested_exceptions ||
4104 kvm_event_needs_reinjection(vcpu);
4105
4106 if (lapic_in_kernel(vcpu) &&
4107 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4108 if (block_nested_events)
4109 return -EBUSY;
4110 nested_vmx_update_pending_dbg(vcpu);
4111 clear_bit(KVM_APIC_INIT, &apic->pending_events);
4112 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4113 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4114
4115 /* MTF is discarded if the vCPU is in WFS. */
4116 vmx->nested.mtf_pending = false;
4117 return 0;
4118 }
4119
4120 if (lapic_in_kernel(vcpu) &&
4121 test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4122 if (block_nested_events)
4123 return -EBUSY;
4124
4125 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4126 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4127 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4128 apic->sipi_vector & 0xFFUL);
4129 return 0;
4130 }
4131 /* Fallthrough, the SIPI is completely ignored. */
4132 }
4133
4134 /*
4135 * Process exceptions that are higher priority than Monitor Trap Flag:
4136 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4137 * could theoretically come in from userspace), and ICEBP (INT1).
4138 *
4139 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4140 * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF
4141 * across SMI/RSM as it should; that needs to be addressed in order to
4142 * prioritize SMI over MTF and trap-like #DBs.
4143 */
4144 if (vcpu->arch.exception_vmexit.pending &&
4145 !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4146 if (block_nested_exceptions)
4147 return -EBUSY;
4148
4149 nested_vmx_inject_exception_vmexit(vcpu);
4150 return 0;
4151 }
4152
4153 if (vcpu->arch.exception.pending &&
4154 !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4155 if (block_nested_exceptions)
4156 return -EBUSY;
4157 goto no_vmexit;
4158 }
4159
4160 if (vmx->nested.mtf_pending) {
4161 if (block_nested_events)
4162 return -EBUSY;
4163 nested_vmx_update_pending_dbg(vcpu);
4164 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4165 return 0;
4166 }
4167
4168 if (vcpu->arch.exception_vmexit.pending) {
4169 if (block_nested_exceptions)
4170 return -EBUSY;
4171
4172 nested_vmx_inject_exception_vmexit(vcpu);
4173 return 0;
4174 }
4175
4176 if (vcpu->arch.exception.pending) {
4177 if (block_nested_exceptions)
4178 return -EBUSY;
4179 goto no_vmexit;
4180 }
4181
4182 if (nested_vmx_preemption_timer_pending(vcpu)) {
4183 if (block_nested_events)
4184 return -EBUSY;
4185 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4186 return 0;
4187 }
4188
4189 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4190 if (block_nested_events)
4191 return -EBUSY;
4192 goto no_vmexit;
4193 }
4194
4195 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4196 if (block_nested_events)
4197 return -EBUSY;
4198 if (!nested_exit_on_nmi(vcpu))
4199 goto no_vmexit;
4200
4201 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4202 NMI_VECTOR | INTR_TYPE_NMI_INTR |
4203 INTR_INFO_VALID_MASK, 0);
4204 /*
4205 * The NMI-triggered VM exit counts as injection:
4206 * clear this one and block further NMIs.
4207 */
4208 vcpu->arch.nmi_pending = 0;
4209 vmx_set_nmi_mask(vcpu, true);
4210 return 0;
4211 }
4212
4213 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4214 if (block_nested_events)
4215 return -EBUSY;
4216 if (!nested_exit_on_intr(vcpu))
4217 goto no_vmexit;
4218 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4219 return 0;
4220 }
4221
4222 no_vmexit:
4223 return vmx_complete_nested_posted_interrupt(vcpu);
4224 }
4225
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)4226 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4227 {
4228 ktime_t remaining =
4229 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4230 u64 value;
4231
4232 if (ktime_to_ns(remaining) <= 0)
4233 return 0;
4234
4235 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4236 do_div(value, 1000000);
4237 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4238 }
4239
is_vmcs12_ext_field(unsigned long field)4240 static bool is_vmcs12_ext_field(unsigned long field)
4241 {
4242 switch (field) {
4243 case GUEST_ES_SELECTOR:
4244 case GUEST_CS_SELECTOR:
4245 case GUEST_SS_SELECTOR:
4246 case GUEST_DS_SELECTOR:
4247 case GUEST_FS_SELECTOR:
4248 case GUEST_GS_SELECTOR:
4249 case GUEST_LDTR_SELECTOR:
4250 case GUEST_TR_SELECTOR:
4251 case GUEST_ES_LIMIT:
4252 case GUEST_CS_LIMIT:
4253 case GUEST_SS_LIMIT:
4254 case GUEST_DS_LIMIT:
4255 case GUEST_FS_LIMIT:
4256 case GUEST_GS_LIMIT:
4257 case GUEST_LDTR_LIMIT:
4258 case GUEST_TR_LIMIT:
4259 case GUEST_GDTR_LIMIT:
4260 case GUEST_IDTR_LIMIT:
4261 case GUEST_ES_AR_BYTES:
4262 case GUEST_DS_AR_BYTES:
4263 case GUEST_FS_AR_BYTES:
4264 case GUEST_GS_AR_BYTES:
4265 case GUEST_LDTR_AR_BYTES:
4266 case GUEST_TR_AR_BYTES:
4267 case GUEST_ES_BASE:
4268 case GUEST_CS_BASE:
4269 case GUEST_SS_BASE:
4270 case GUEST_DS_BASE:
4271 case GUEST_FS_BASE:
4272 case GUEST_GS_BASE:
4273 case GUEST_LDTR_BASE:
4274 case GUEST_TR_BASE:
4275 case GUEST_GDTR_BASE:
4276 case GUEST_IDTR_BASE:
4277 case GUEST_PENDING_DBG_EXCEPTIONS:
4278 case GUEST_BNDCFGS:
4279 return true;
4280 default:
4281 break;
4282 }
4283
4284 return false;
4285 }
4286
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4287 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4288 struct vmcs12 *vmcs12)
4289 {
4290 struct vcpu_vmx *vmx = to_vmx(vcpu);
4291
4292 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4293 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4294 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4295 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4296 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4297 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4298 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4299 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4300 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4301 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4302 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4303 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4304 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4305 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4306 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4307 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4308 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4309 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4310 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4311 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4312 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4313 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4314 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4315 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4316 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4317 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4318 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4319 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4320 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4321 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4322 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4323 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4324 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4325 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4326 vmcs12->guest_pending_dbg_exceptions =
4327 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4328
4329 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4330 }
4331
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4332 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4333 struct vmcs12 *vmcs12)
4334 {
4335 struct vcpu_vmx *vmx = to_vmx(vcpu);
4336 int cpu;
4337
4338 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4339 return;
4340
4341
4342 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4343
4344 cpu = get_cpu();
4345 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4346 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4347
4348 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4349
4350 vmx->loaded_vmcs = &vmx->vmcs01;
4351 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4352 put_cpu();
4353 }
4354
4355 /*
4356 * Update the guest state fields of vmcs12 to reflect changes that
4357 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4358 * VM-entry controls is also updated, since this is really a guest
4359 * state bit.)
4360 */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4361 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4362 {
4363 struct vcpu_vmx *vmx = to_vmx(vcpu);
4364
4365 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4366 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4367
4368 vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4369 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4370
4371 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4372 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4373
4374 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4375 vmcs12->guest_rip = kvm_rip_read(vcpu);
4376 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4377
4378 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4379 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4380
4381 vmcs12->guest_interruptibility_info =
4382 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4383
4384 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4385 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4386 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4387 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4388 else
4389 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4390
4391 if (nested_cpu_has_preemption_timer(vmcs12) &&
4392 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4393 !vmx->nested.nested_run_pending)
4394 vmcs12->vmx_preemption_timer_value =
4395 vmx_get_preemption_timer_value(vcpu);
4396
4397 /*
4398 * In some cases (usually, nested EPT), L2 is allowed to change its
4399 * own CR3 without exiting. If it has changed it, we must keep it.
4400 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4401 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4402 *
4403 * Additionally, restore L2's PDPTR to vmcs12.
4404 */
4405 if (enable_ept) {
4406 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4407 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4408 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4409 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4410 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4411 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4412 }
4413 }
4414
4415 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4416
4417 if (nested_cpu_has_vid(vmcs12))
4418 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4419
4420 vmcs12->vm_entry_controls =
4421 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4422 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4423
4424 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4425 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4426
4427 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4428 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4429 }
4430
4431 /*
4432 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4433 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4434 * and this function updates it to reflect the changes to the guest state while
4435 * L2 was running (and perhaps made some exits which were handled directly by L0
4436 * without going back to L1), and to reflect the exit reason.
4437 * Note that we do not have to copy here all VMCS fields, just those that
4438 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4439 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4440 * which already writes to vmcs12 directly.
4441 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4442 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4443 u32 vm_exit_reason, u32 exit_intr_info,
4444 unsigned long exit_qualification)
4445 {
4446 /* update exit information fields: */
4447 vmcs12->vm_exit_reason = vm_exit_reason;
4448 if (to_vmx(vcpu)->exit_reason.enclave_mode)
4449 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4450 vmcs12->exit_qualification = exit_qualification;
4451
4452 /*
4453 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4454 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4455 * exit info fields are unmodified.
4456 */
4457 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4458 vmcs12->launch_state = 1;
4459
4460 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4461 * instead of reading the real value. */
4462 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4463
4464 /*
4465 * Transfer the event that L0 or L1 may wanted to inject into
4466 * L2 to IDT_VECTORING_INFO_FIELD.
4467 */
4468 vmcs12_save_pending_event(vcpu, vmcs12,
4469 vm_exit_reason, exit_intr_info);
4470
4471 vmcs12->vm_exit_intr_info = exit_intr_info;
4472 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4473 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4474
4475 /*
4476 * According to spec, there's no need to store the guest's
4477 * MSRs if the exit is due to a VM-entry failure that occurs
4478 * during or after loading the guest state. Since this exit
4479 * does not fall in that category, we need to save the MSRs.
4480 */
4481 if (nested_vmx_store_msr(vcpu,
4482 vmcs12->vm_exit_msr_store_addr,
4483 vmcs12->vm_exit_msr_store_count))
4484 nested_vmx_abort(vcpu,
4485 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4486 }
4487 }
4488
4489 /*
4490 * A part of what we need to when the nested L2 guest exits and we want to
4491 * run its L1 parent, is to reset L1's guest state to the host state specified
4492 * in vmcs12.
4493 * This function is to be called not only on normal nested exit, but also on
4494 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4495 * Failures During or After Loading Guest State").
4496 * This function should be called when the active VMCS is L1's (vmcs01).
4497 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4498 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4499 struct vmcs12 *vmcs12)
4500 {
4501 enum vm_entry_failure_code ignored;
4502 struct kvm_segment seg;
4503
4504 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4505 vcpu->arch.efer = vmcs12->host_ia32_efer;
4506 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4507 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4508 else
4509 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4510 vmx_set_efer(vcpu, vcpu->arch.efer);
4511
4512 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4513 kvm_rip_write(vcpu, vmcs12->host_rip);
4514 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4515 vmx_set_interrupt_shadow(vcpu, 0);
4516
4517 /*
4518 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4519 * actually changed, because vmx_set_cr0 refers to efer set above.
4520 *
4521 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4522 * (KVM doesn't change it);
4523 */
4524 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4525 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4526
4527 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4528 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4529 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4530
4531 nested_ept_uninit_mmu_context(vcpu);
4532
4533 /*
4534 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4535 * couldn't have changed.
4536 */
4537 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4538 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4539
4540 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4541
4542 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4543 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4544 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4545 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4546 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4547 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4548 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4549
4550 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4551 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4552 vmcs_write64(GUEST_BNDCFGS, 0);
4553
4554 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4555 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4556 vcpu->arch.pat = vmcs12->host_ia32_pat;
4557 }
4558 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4559 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4560 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4561 vmcs12->host_ia32_perf_global_ctrl));
4562
4563 /* Set L1 segment info according to Intel SDM
4564 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4565 seg = (struct kvm_segment) {
4566 .base = 0,
4567 .limit = 0xFFFFFFFF,
4568 .selector = vmcs12->host_cs_selector,
4569 .type = 11,
4570 .present = 1,
4571 .s = 1,
4572 .g = 1
4573 };
4574 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4575 seg.l = 1;
4576 else
4577 seg.db = 1;
4578 __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4579 seg = (struct kvm_segment) {
4580 .base = 0,
4581 .limit = 0xFFFFFFFF,
4582 .type = 3,
4583 .present = 1,
4584 .s = 1,
4585 .db = 1,
4586 .g = 1
4587 };
4588 seg.selector = vmcs12->host_ds_selector;
4589 __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4590 seg.selector = vmcs12->host_es_selector;
4591 __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4592 seg.selector = vmcs12->host_ss_selector;
4593 __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4594 seg.selector = vmcs12->host_fs_selector;
4595 seg.base = vmcs12->host_fs_base;
4596 __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4597 seg.selector = vmcs12->host_gs_selector;
4598 seg.base = vmcs12->host_gs_base;
4599 __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4600 seg = (struct kvm_segment) {
4601 .base = vmcs12->host_tr_base,
4602 .limit = 0x67,
4603 .selector = vmcs12->host_tr_selector,
4604 .type = 11,
4605 .present = 1
4606 };
4607 __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4608
4609 memset(&seg, 0, sizeof(seg));
4610 seg.unusable = 1;
4611 __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4612
4613 kvm_set_dr(vcpu, 7, 0x400);
4614 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4615
4616 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4617 vmcs12->vm_exit_msr_load_count))
4618 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4619
4620 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4621 }
4622
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4623 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4624 {
4625 struct vmx_uret_msr *efer_msr;
4626 unsigned int i;
4627
4628 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4629 return vmcs_read64(GUEST_IA32_EFER);
4630
4631 if (cpu_has_load_ia32_efer())
4632 return host_efer;
4633
4634 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4635 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4636 return vmx->msr_autoload.guest.val[i].value;
4637 }
4638
4639 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4640 if (efer_msr)
4641 return efer_msr->data;
4642
4643 return host_efer;
4644 }
4645
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4646 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4647 {
4648 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4649 struct vcpu_vmx *vmx = to_vmx(vcpu);
4650 struct vmx_msr_entry g, h;
4651 gpa_t gpa;
4652 u32 i, j;
4653
4654 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4655
4656 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4657 /*
4658 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4659 * as vmcs01.GUEST_DR7 contains a userspace defined value
4660 * and vcpu->arch.dr7 is not squirreled away before the
4661 * nested VMENTER (not worth adding a variable in nested_vmx).
4662 */
4663 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4664 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4665 else
4666 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4667 }
4668
4669 /*
4670 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4671 * handle a variety of side effects to KVM's software model.
4672 */
4673 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4674
4675 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4676 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4677
4678 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4679 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4680
4681 nested_ept_uninit_mmu_context(vcpu);
4682 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4683 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4684
4685 /*
4686 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4687 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4688 * VMFail, like everything else we just need to ensure our
4689 * software model is up-to-date.
4690 */
4691 if (enable_ept && is_pae_paging(vcpu))
4692 ept_save_pdptrs(vcpu);
4693
4694 kvm_mmu_reset_context(vcpu);
4695
4696 /*
4697 * This nasty bit of open coding is a compromise between blindly
4698 * loading L1's MSRs using the exit load lists (incorrect emulation
4699 * of VMFail), leaving the nested VM's MSRs in the software model
4700 * (incorrect behavior) and snapshotting the modified MSRs (too
4701 * expensive since the lists are unbound by hardware). For each
4702 * MSR that was (prematurely) loaded from the nested VMEntry load
4703 * list, reload it from the exit load list if it exists and differs
4704 * from the guest value. The intent is to stuff host state as
4705 * silently as possible, not to fully process the exit load list.
4706 */
4707 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4708 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4709 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4710 pr_debug_ratelimited(
4711 "%s read MSR index failed (%u, 0x%08llx)\n",
4712 __func__, i, gpa);
4713 goto vmabort;
4714 }
4715
4716 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4717 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4718 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4719 pr_debug_ratelimited(
4720 "%s read MSR failed (%u, 0x%08llx)\n",
4721 __func__, j, gpa);
4722 goto vmabort;
4723 }
4724 if (h.index != g.index)
4725 continue;
4726 if (h.value == g.value)
4727 break;
4728
4729 if (nested_vmx_load_msr_check(vcpu, &h)) {
4730 pr_debug_ratelimited(
4731 "%s check failed (%u, 0x%x, 0x%x)\n",
4732 __func__, j, h.index, h.reserved);
4733 goto vmabort;
4734 }
4735
4736 if (kvm_set_msr(vcpu, h.index, h.value)) {
4737 pr_debug_ratelimited(
4738 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4739 __func__, j, h.index, h.value);
4740 goto vmabort;
4741 }
4742 }
4743 }
4744
4745 return;
4746
4747 vmabort:
4748 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4749 }
4750
4751 /*
4752 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4753 * and modify vmcs12 to make it see what it would expect to see there if
4754 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4755 */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4756 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4757 u32 exit_intr_info, unsigned long exit_qualification)
4758 {
4759 struct vcpu_vmx *vmx = to_vmx(vcpu);
4760 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4761
4762 /* Pending MTF traps are discarded on VM-Exit. */
4763 vmx->nested.mtf_pending = false;
4764
4765 /* trying to cancel vmlaunch/vmresume is a bug */
4766 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4767
4768 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4769 /*
4770 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4771 * Enlightened VMCS after migration and we still need to
4772 * do that when something is forcing L2->L1 exit prior to
4773 * the first L2 run.
4774 */
4775 (void)nested_get_evmcs_page(vcpu);
4776 }
4777
4778 /* Service pending TLB flush requests for L2 before switching to L1. */
4779 kvm_service_local_tlb_flush_requests(vcpu);
4780
4781 /*
4782 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4783 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4784 * up-to-date before switching to L1.
4785 */
4786 if (enable_ept && is_pae_paging(vcpu))
4787 vmx_ept_load_pdptrs(vcpu);
4788
4789 leave_guest_mode(vcpu);
4790
4791 if (nested_cpu_has_preemption_timer(vmcs12))
4792 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4793
4794 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4795 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4796 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4797 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4798 }
4799
4800 if (likely(!vmx->fail)) {
4801 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4802
4803 if (vm_exit_reason != -1)
4804 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4805 exit_intr_info, exit_qualification);
4806
4807 /*
4808 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4809 * also be used to capture vmcs12 cache as part of
4810 * capturing nVMX state for snapshot (migration).
4811 *
4812 * Otherwise, this flush will dirty guest memory at a
4813 * point it is already assumed by user-space to be
4814 * immutable.
4815 */
4816 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4817 } else {
4818 /*
4819 * The only expected VM-instruction error is "VM entry with
4820 * invalid control field(s)." Anything else indicates a
4821 * problem with L0. And we should never get here with a
4822 * VMFail of any type if early consistency checks are enabled.
4823 */
4824 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4825 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4826 WARN_ON_ONCE(nested_early_check);
4827 }
4828
4829 /*
4830 * Drop events/exceptions that were queued for re-injection to L2
4831 * (picked up via vmx_complete_interrupts()), as well as exceptions
4832 * that were pending for L2. Note, this must NOT be hoisted above
4833 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4834 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4835 */
4836 vcpu->arch.nmi_injected = false;
4837 kvm_clear_exception_queue(vcpu);
4838 kvm_clear_interrupt_queue(vcpu);
4839
4840 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4841
4842 /*
4843 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4844 * branch predictors when transitioning from L2 to L1, as L1 expects
4845 * hardware (KVM in this case) to provide separate predictor modes.
4846 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4847 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4848 * separate modes for L2 vs L1.
4849 */
4850 if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4851 indirect_branch_prediction_barrier();
4852
4853 /* Update any VMCS fields that might have changed while L2 ran */
4854 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4855 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4856 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4857 if (kvm_caps.has_tsc_control)
4858 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4859
4860 if (vmx->nested.l1_tpr_threshold != -1)
4861 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4862
4863 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4864 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4865 vmx_set_virtual_apic_mode(vcpu);
4866 }
4867
4868 if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4869 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4870 vmx_update_cpu_dirty_logging(vcpu);
4871 }
4872
4873 /* Unpin physical memory we referred to in vmcs02 */
4874 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
4875 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4876 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4877 vmx->nested.pi_desc = NULL;
4878
4879 if (vmx->nested.reload_vmcs01_apic_access_page) {
4880 vmx->nested.reload_vmcs01_apic_access_page = false;
4881 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4882 }
4883
4884 if (vmx->nested.update_vmcs01_apicv_status) {
4885 vmx->nested.update_vmcs01_apicv_status = false;
4886 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4887 }
4888
4889 if ((vm_exit_reason != -1) &&
4890 (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4891 vmx->nested.need_vmcs12_to_shadow_sync = true;
4892
4893 /* in case we halted in L2 */
4894 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4895
4896 if (likely(!vmx->fail)) {
4897 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4898 nested_exit_intr_ack_set(vcpu)) {
4899 int irq = kvm_cpu_get_interrupt(vcpu);
4900 WARN_ON(irq < 0);
4901 vmcs12->vm_exit_intr_info = irq |
4902 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4903 }
4904
4905 if (vm_exit_reason != -1)
4906 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4907 vmcs12->exit_qualification,
4908 vmcs12->idt_vectoring_info_field,
4909 vmcs12->vm_exit_intr_info,
4910 vmcs12->vm_exit_intr_error_code,
4911 KVM_ISA_VMX);
4912
4913 load_vmcs12_host_state(vcpu, vmcs12);
4914
4915 return;
4916 }
4917
4918 /*
4919 * After an early L2 VM-entry failure, we're now back
4920 * in L1 which thinks it just finished a VMLAUNCH or
4921 * VMRESUME instruction, so we need to set the failure
4922 * flag and the VM-instruction error field of the VMCS
4923 * accordingly, and skip the emulated instruction.
4924 */
4925 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4926
4927 /*
4928 * Restore L1's host state to KVM's software model. We're here
4929 * because a consistency check was caught by hardware, which
4930 * means some amount of guest state has been propagated to KVM's
4931 * model and needs to be unwound to the host's state.
4932 */
4933 nested_vmx_restore_host_state(vcpu);
4934
4935 vmx->fail = 0;
4936 }
4937
nested_vmx_triple_fault(struct kvm_vcpu * vcpu)4938 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4939 {
4940 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4941 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4942 }
4943
4944 /*
4945 * Decode the memory-address operand of a vmx instruction, as recorded on an
4946 * exit caused by such an instruction (run by a guest hypervisor).
4947 * On success, returns 0. When the operand is invalid, returns 1 and throws
4948 * #UD, #GP, or #SS.
4949 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)4950 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4951 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4952 {
4953 gva_t off;
4954 bool exn;
4955 struct kvm_segment s;
4956
4957 /*
4958 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4959 * Execution", on an exit, vmx_instruction_info holds most of the
4960 * addressing components of the operand. Only the displacement part
4961 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4962 * For how an actual address is calculated from all these components,
4963 * refer to Vol. 1, "Operand Addressing".
4964 */
4965 int scaling = vmx_instruction_info & 3;
4966 int addr_size = (vmx_instruction_info >> 7) & 7;
4967 bool is_reg = vmx_instruction_info & (1u << 10);
4968 int seg_reg = (vmx_instruction_info >> 15) & 7;
4969 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4970 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4971 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4972 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4973
4974 if (is_reg) {
4975 kvm_queue_exception(vcpu, UD_VECTOR);
4976 return 1;
4977 }
4978
4979 /* Addr = segment_base + offset */
4980 /* offset = base + [index * scale] + displacement */
4981 off = exit_qualification; /* holds the displacement */
4982 if (addr_size == 1)
4983 off = (gva_t)sign_extend64(off, 31);
4984 else if (addr_size == 0)
4985 off = (gva_t)sign_extend64(off, 15);
4986 if (base_is_valid)
4987 off += kvm_register_read(vcpu, base_reg);
4988 if (index_is_valid)
4989 off += kvm_register_read(vcpu, index_reg) << scaling;
4990 vmx_get_segment(vcpu, &s, seg_reg);
4991
4992 /*
4993 * The effective address, i.e. @off, of a memory operand is truncated
4994 * based on the address size of the instruction. Note that this is
4995 * the *effective address*, i.e. the address prior to accounting for
4996 * the segment's base.
4997 */
4998 if (addr_size == 1) /* 32 bit */
4999 off &= 0xffffffff;
5000 else if (addr_size == 0) /* 16 bit */
5001 off &= 0xffff;
5002
5003 /* Checks for #GP/#SS exceptions. */
5004 exn = false;
5005 if (is_long_mode(vcpu)) {
5006 /*
5007 * The virtual/linear address is never truncated in 64-bit
5008 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5009 * address when using FS/GS with a non-zero base.
5010 */
5011 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5012 *ret = s.base + off;
5013 else
5014 *ret = off;
5015
5016 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
5017 * non-canonical form. This is the only check on the memory
5018 * destination for long mode!
5019 */
5020 exn = is_noncanonical_address(*ret, vcpu);
5021 } else {
5022 /*
5023 * When not in long mode, the virtual/linear address is
5024 * unconditionally truncated to 32 bits regardless of the
5025 * address size.
5026 */
5027 *ret = (s.base + off) & 0xffffffff;
5028
5029 /* Protected mode: apply checks for segment validity in the
5030 * following order:
5031 * - segment type check (#GP(0) may be thrown)
5032 * - usability check (#GP(0)/#SS(0))
5033 * - limit check (#GP(0)/#SS(0))
5034 */
5035 if (wr)
5036 /* #GP(0) if the destination operand is located in a
5037 * read-only data segment or any code segment.
5038 */
5039 exn = ((s.type & 0xa) == 0 || (s.type & 8));
5040 else
5041 /* #GP(0) if the source operand is located in an
5042 * execute-only code segment
5043 */
5044 exn = ((s.type & 0xa) == 8);
5045 if (exn) {
5046 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5047 return 1;
5048 }
5049 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5050 */
5051 exn = (s.unusable != 0);
5052
5053 /*
5054 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5055 * outside the segment limit. All CPUs that support VMX ignore
5056 * limit checks for flat segments, i.e. segments with base==0,
5057 * limit==0xffffffff and of type expand-up data or code.
5058 */
5059 if (!(s.base == 0 && s.limit == 0xffffffff &&
5060 ((s.type & 8) || !(s.type & 4))))
5061 exn = exn || ((u64)off + len - 1 > s.limit);
5062 }
5063 if (exn) {
5064 kvm_queue_exception_e(vcpu,
5065 seg_reg == VCPU_SREG_SS ?
5066 SS_VECTOR : GP_VECTOR,
5067 0);
5068 return 1;
5069 }
5070
5071 return 0;
5072 }
5073
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)5074 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5075 int *ret)
5076 {
5077 gva_t gva;
5078 struct x86_exception e;
5079 int r;
5080
5081 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5082 vmcs_read32(VMX_INSTRUCTION_INFO), false,
5083 sizeof(*vmpointer), &gva)) {
5084 *ret = 1;
5085 return -EINVAL;
5086 }
5087
5088 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5089 if (r != X86EMUL_CONTINUE) {
5090 *ret = kvm_handle_memory_failure(vcpu, r, &e);
5091 return -EINVAL;
5092 }
5093
5094 return 0;
5095 }
5096
5097 /*
5098 * Allocate a shadow VMCS and associate it with the currently loaded
5099 * VMCS, unless such a shadow VMCS already exists. The newly allocated
5100 * VMCS is also VMCLEARed, so that it is ready for use.
5101 */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)5102 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5103 {
5104 struct vcpu_vmx *vmx = to_vmx(vcpu);
5105 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5106
5107 /*
5108 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5109 * when L1 executes VMXOFF or the vCPU is forced out of nested
5110 * operation. VMXON faults if the CPU is already post-VMXON, so it
5111 * should be impossible to already have an allocated shadow VMCS. KVM
5112 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5113 * always be the loaded VMCS.
5114 */
5115 if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5116 return loaded_vmcs->shadow_vmcs;
5117
5118 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5119 if (loaded_vmcs->shadow_vmcs)
5120 vmcs_clear(loaded_vmcs->shadow_vmcs);
5121
5122 return loaded_vmcs->shadow_vmcs;
5123 }
5124
enter_vmx_operation(struct kvm_vcpu * vcpu)5125 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5126 {
5127 struct vcpu_vmx *vmx = to_vmx(vcpu);
5128 int r;
5129
5130 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5131 if (r < 0)
5132 goto out_vmcs02;
5133
5134 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5135 if (!vmx->nested.cached_vmcs12)
5136 goto out_cached_vmcs12;
5137
5138 vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5139 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5140 if (!vmx->nested.cached_shadow_vmcs12)
5141 goto out_cached_shadow_vmcs12;
5142
5143 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5144 goto out_shadow_vmcs;
5145
5146 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5147 HRTIMER_MODE_ABS_PINNED);
5148 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5149
5150 vmx->nested.vpid02 = allocate_vpid();
5151
5152 vmx->nested.vmcs02_initialized = false;
5153 vmx->nested.vmxon = true;
5154
5155 if (vmx_pt_mode_is_host_guest()) {
5156 vmx->pt_desc.guest.ctl = 0;
5157 pt_update_intercept_for_msr(vcpu);
5158 }
5159
5160 return 0;
5161
5162 out_shadow_vmcs:
5163 kfree(vmx->nested.cached_shadow_vmcs12);
5164
5165 out_cached_shadow_vmcs12:
5166 kfree(vmx->nested.cached_vmcs12);
5167
5168 out_cached_vmcs12:
5169 free_loaded_vmcs(&vmx->nested.vmcs02);
5170
5171 out_vmcs02:
5172 return -ENOMEM;
5173 }
5174
5175 /* Emulate the VMXON instruction. */
handle_vmxon(struct kvm_vcpu * vcpu)5176 static int handle_vmxon(struct kvm_vcpu *vcpu)
5177 {
5178 int ret;
5179 gpa_t vmptr;
5180 uint32_t revision;
5181 struct vcpu_vmx *vmx = to_vmx(vcpu);
5182 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5183 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5184
5185 /*
5186 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5187 * the guest and so cannot rely on hardware to perform the check,
5188 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5189 * for VMXON).
5190 *
5191 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5192 * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't
5193 * force any of the relevant guest state. For a restricted guest, KVM
5194 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5195 * Real Mode, and so there's no need to check CR0.PE manually.
5196 */
5197 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5198 kvm_queue_exception(vcpu, UD_VECTOR);
5199 return 1;
5200 }
5201
5202 /*
5203 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5204 * and has higher priority than the VM-Fail due to being post-VMXON,
5205 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root,
5206 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5207 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5208 * VMX non-root.
5209 *
5210 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5211 * #UD checks (see above), is functionally ok because KVM doesn't allow
5212 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5213 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5214 * missed by hardware due to shadowing CR0 and/or CR4.
5215 */
5216 if (vmx_get_cpl(vcpu)) {
5217 kvm_inject_gp(vcpu, 0);
5218 return 1;
5219 }
5220
5221 if (vmx->nested.vmxon)
5222 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5223
5224 /*
5225 * Invalid CR0/CR4 generates #GP. These checks are performed if and
5226 * only if the vCPU isn't already in VMX operation, i.e. effectively
5227 * have lower priority than the VM-Fail above.
5228 */
5229 if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5230 !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5231 kvm_inject_gp(vcpu, 0);
5232 return 1;
5233 }
5234
5235 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5236 != VMXON_NEEDED_FEATURES) {
5237 kvm_inject_gp(vcpu, 0);
5238 return 1;
5239 }
5240
5241 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5242 return ret;
5243
5244 /*
5245 * SDM 3: 24.11.5
5246 * The first 4 bytes of VMXON region contain the supported
5247 * VMCS revision identifier
5248 *
5249 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5250 * which replaces physical address width with 32
5251 */
5252 if (!page_address_valid(vcpu, vmptr))
5253 return nested_vmx_failInvalid(vcpu);
5254
5255 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5256 revision != VMCS12_REVISION)
5257 return nested_vmx_failInvalid(vcpu);
5258
5259 vmx->nested.vmxon_ptr = vmptr;
5260 ret = enter_vmx_operation(vcpu);
5261 if (ret)
5262 return ret;
5263
5264 return nested_vmx_succeed(vcpu);
5265 }
5266
nested_release_vmcs12(struct kvm_vcpu * vcpu)5267 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5268 {
5269 struct vcpu_vmx *vmx = to_vmx(vcpu);
5270
5271 if (vmx->nested.current_vmptr == INVALID_GPA)
5272 return;
5273
5274 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5275
5276 if (enable_shadow_vmcs) {
5277 /* copy to memory all shadowed fields in case
5278 they were modified */
5279 copy_shadow_to_vmcs12(vmx);
5280 vmx_disable_shadow_vmcs(vmx);
5281 }
5282 vmx->nested.posted_intr_nv = -1;
5283
5284 /* Flush VMCS12 to guest memory */
5285 kvm_vcpu_write_guest_page(vcpu,
5286 vmx->nested.current_vmptr >> PAGE_SHIFT,
5287 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5288
5289 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5290
5291 vmx->nested.current_vmptr = INVALID_GPA;
5292 }
5293
5294 /* Emulate the VMXOFF instruction */
handle_vmxoff(struct kvm_vcpu * vcpu)5295 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5296 {
5297 if (!nested_vmx_check_permission(vcpu))
5298 return 1;
5299
5300 free_nested(vcpu);
5301
5302 if (kvm_apic_has_pending_init_or_sipi(vcpu))
5303 kvm_make_request(KVM_REQ_EVENT, vcpu);
5304
5305 return nested_vmx_succeed(vcpu);
5306 }
5307
5308 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5309 static int handle_vmclear(struct kvm_vcpu *vcpu)
5310 {
5311 struct vcpu_vmx *vmx = to_vmx(vcpu);
5312 u32 zero = 0;
5313 gpa_t vmptr;
5314 int r;
5315
5316 if (!nested_vmx_check_permission(vcpu))
5317 return 1;
5318
5319 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5320 return r;
5321
5322 if (!page_address_valid(vcpu, vmptr))
5323 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5324
5325 if (vmptr == vmx->nested.vmxon_ptr)
5326 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5327
5328 /*
5329 * When Enlightened VMEntry is enabled on the calling CPU we treat
5330 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5331 * way to distinguish it from VMCS12) and we must not corrupt it by
5332 * writing to the non-existent 'launch_state' field. The area doesn't
5333 * have to be the currently active EVMCS on the calling CPU and there's
5334 * nothing KVM has to do to transition it from 'active' to 'non-active'
5335 * state. It is possible that the area will stay mapped as
5336 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5337 */
5338 if (likely(!guest_cpuid_has_evmcs(vcpu) ||
5339 !evmptr_is_valid(nested_get_evmptr(vcpu)))) {
5340 if (vmptr == vmx->nested.current_vmptr)
5341 nested_release_vmcs12(vcpu);
5342
5343 /*
5344 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5345 * for VMCLEAR includes a "ensure that data for VMCS referenced
5346 * by the operand is in memory" clause that guards writes to
5347 * memory, i.e. doing nothing for I/O is architecturally valid.
5348 *
5349 * FIXME: Suppress failures if and only if no memslot is found,
5350 * i.e. exit to userspace if __copy_to_user() fails.
5351 */
5352 (void)kvm_vcpu_write_guest(vcpu,
5353 vmptr + offsetof(struct vmcs12,
5354 launch_state),
5355 &zero, sizeof(zero));
5356 } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5357 nested_release_evmcs(vcpu);
5358 }
5359
5360 return nested_vmx_succeed(vcpu);
5361 }
5362
5363 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5364 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5365 {
5366 return nested_vmx_run(vcpu, true);
5367 }
5368
5369 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5370 static int handle_vmresume(struct kvm_vcpu *vcpu)
5371 {
5372
5373 return nested_vmx_run(vcpu, false);
5374 }
5375
handle_vmread(struct kvm_vcpu * vcpu)5376 static int handle_vmread(struct kvm_vcpu *vcpu)
5377 {
5378 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5379 : get_vmcs12(vcpu);
5380 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5381 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5382 struct vcpu_vmx *vmx = to_vmx(vcpu);
5383 struct x86_exception e;
5384 unsigned long field;
5385 u64 value;
5386 gva_t gva = 0;
5387 short offset;
5388 int len, r;
5389
5390 if (!nested_vmx_check_permission(vcpu))
5391 return 1;
5392
5393 /* Decode instruction info and find the field to read */
5394 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5395
5396 if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
5397 /*
5398 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5399 * any VMREAD sets the ALU flags for VMfailInvalid.
5400 */
5401 if (vmx->nested.current_vmptr == INVALID_GPA ||
5402 (is_guest_mode(vcpu) &&
5403 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5404 return nested_vmx_failInvalid(vcpu);
5405
5406 offset = get_vmcs12_field_offset(field);
5407 if (offset < 0)
5408 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5409
5410 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5411 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5412
5413 /* Read the field, zero-extended to a u64 value */
5414 value = vmcs12_read_any(vmcs12, field, offset);
5415 } else {
5416 /*
5417 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5418 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5419 * unsupported. Unfortunately, certain versions of Windows 11
5420 * don't comply with this requirement which is not enforced in
5421 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5422 * workaround, as misbehaving guests will panic on VM-Fail.
5423 * Note, enlightened VMCS is incompatible with shadow VMCS so
5424 * all VMREADs from L2 should go to L1.
5425 */
5426 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5427 return nested_vmx_failInvalid(vcpu);
5428
5429 offset = evmcs_field_offset(field, NULL);
5430 if (offset < 0)
5431 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5432
5433 /* Read the field, zero-extended to a u64 value */
5434 value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
5435 }
5436
5437 /*
5438 * Now copy part of this value to register or memory, as requested.
5439 * Note that the number of bits actually copied is 32 or 64 depending
5440 * on the guest's mode (32 or 64 bit), not on the given field's length.
5441 */
5442 if (instr_info & BIT(10)) {
5443 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5444 } else {
5445 len = is_64_bit_mode(vcpu) ? 8 : 4;
5446 if (get_vmx_mem_address(vcpu, exit_qualification,
5447 instr_info, true, len, &gva))
5448 return 1;
5449 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5450 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5451 if (r != X86EMUL_CONTINUE)
5452 return kvm_handle_memory_failure(vcpu, r, &e);
5453 }
5454
5455 return nested_vmx_succeed(vcpu);
5456 }
5457
is_shadow_field_rw(unsigned long field)5458 static bool is_shadow_field_rw(unsigned long field)
5459 {
5460 switch (field) {
5461 #define SHADOW_FIELD_RW(x, y) case x:
5462 #include "vmcs_shadow_fields.h"
5463 return true;
5464 default:
5465 break;
5466 }
5467 return false;
5468 }
5469
is_shadow_field_ro(unsigned long field)5470 static bool is_shadow_field_ro(unsigned long field)
5471 {
5472 switch (field) {
5473 #define SHADOW_FIELD_RO(x, y) case x:
5474 #include "vmcs_shadow_fields.h"
5475 return true;
5476 default:
5477 break;
5478 }
5479 return false;
5480 }
5481
handle_vmwrite(struct kvm_vcpu * vcpu)5482 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5483 {
5484 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5485 : get_vmcs12(vcpu);
5486 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5487 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5488 struct vcpu_vmx *vmx = to_vmx(vcpu);
5489 struct x86_exception e;
5490 unsigned long field;
5491 short offset;
5492 gva_t gva;
5493 int len, r;
5494
5495 /*
5496 * The value to write might be 32 or 64 bits, depending on L1's long
5497 * mode, and eventually we need to write that into a field of several
5498 * possible lengths. The code below first zero-extends the value to 64
5499 * bit (value), and then copies only the appropriate number of
5500 * bits into the vmcs12 field.
5501 */
5502 u64 value = 0;
5503
5504 if (!nested_vmx_check_permission(vcpu))
5505 return 1;
5506
5507 /*
5508 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5509 * any VMWRITE sets the ALU flags for VMfailInvalid.
5510 */
5511 if (vmx->nested.current_vmptr == INVALID_GPA ||
5512 (is_guest_mode(vcpu) &&
5513 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5514 return nested_vmx_failInvalid(vcpu);
5515
5516 if (instr_info & BIT(10))
5517 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5518 else {
5519 len = is_64_bit_mode(vcpu) ? 8 : 4;
5520 if (get_vmx_mem_address(vcpu, exit_qualification,
5521 instr_info, false, len, &gva))
5522 return 1;
5523 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5524 if (r != X86EMUL_CONTINUE)
5525 return kvm_handle_memory_failure(vcpu, r, &e);
5526 }
5527
5528 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5529
5530 offset = get_vmcs12_field_offset(field);
5531 if (offset < 0)
5532 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5533
5534 /*
5535 * If the vCPU supports "VMWRITE to any supported field in the
5536 * VMCS," then the "read-only" fields are actually read/write.
5537 */
5538 if (vmcs_field_readonly(field) &&
5539 !nested_cpu_has_vmwrite_any_field(vcpu))
5540 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5541
5542 /*
5543 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5544 * vmcs12, else we may crush a field or consume a stale value.
5545 */
5546 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5547 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5548
5549 /*
5550 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5551 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5552 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5553 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5554 * from L1 will return a different value than VMREAD from L2 (L1 sees
5555 * the stripped down value, L2 sees the full value as stored by KVM).
5556 */
5557 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5558 value &= 0x1f0ff;
5559
5560 vmcs12_write_any(vmcs12, field, offset, value);
5561
5562 /*
5563 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5564 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5565 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5566 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5567 */
5568 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5569 /*
5570 * L1 can read these fields without exiting, ensure the
5571 * shadow VMCS is up-to-date.
5572 */
5573 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5574 preempt_disable();
5575 vmcs_load(vmx->vmcs01.shadow_vmcs);
5576
5577 __vmcs_writel(field, value);
5578
5579 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5580 vmcs_load(vmx->loaded_vmcs->vmcs);
5581 preempt_enable();
5582 }
5583 vmx->nested.dirty_vmcs12 = true;
5584 }
5585
5586 return nested_vmx_succeed(vcpu);
5587 }
5588
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5589 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5590 {
5591 vmx->nested.current_vmptr = vmptr;
5592 if (enable_shadow_vmcs) {
5593 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5594 vmcs_write64(VMCS_LINK_POINTER,
5595 __pa(vmx->vmcs01.shadow_vmcs));
5596 vmx->nested.need_vmcs12_to_shadow_sync = true;
5597 }
5598 vmx->nested.dirty_vmcs12 = true;
5599 vmx->nested.force_msr_bitmap_recalc = true;
5600 }
5601
5602 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5603 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5604 {
5605 struct vcpu_vmx *vmx = to_vmx(vcpu);
5606 gpa_t vmptr;
5607 int r;
5608
5609 if (!nested_vmx_check_permission(vcpu))
5610 return 1;
5611
5612 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5613 return r;
5614
5615 if (!page_address_valid(vcpu, vmptr))
5616 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5617
5618 if (vmptr == vmx->nested.vmxon_ptr)
5619 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5620
5621 /* Forbid normal VMPTRLD if Enlightened version was used */
5622 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5623 return 1;
5624
5625 if (vmx->nested.current_vmptr != vmptr) {
5626 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5627 struct vmcs_hdr hdr;
5628
5629 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5630 /*
5631 * Reads from an unbacked page return all 1s,
5632 * which means that the 32 bits located at the
5633 * given physical address won't match the required
5634 * VMCS12_REVISION identifier.
5635 */
5636 return nested_vmx_fail(vcpu,
5637 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5638 }
5639
5640 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5641 offsetof(struct vmcs12, hdr),
5642 sizeof(hdr))) {
5643 return nested_vmx_fail(vcpu,
5644 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5645 }
5646
5647 if (hdr.revision_id != VMCS12_REVISION ||
5648 (hdr.shadow_vmcs &&
5649 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5650 return nested_vmx_fail(vcpu,
5651 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5652 }
5653
5654 nested_release_vmcs12(vcpu);
5655
5656 /*
5657 * Load VMCS12 from guest memory since it is not already
5658 * cached.
5659 */
5660 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5661 VMCS12_SIZE)) {
5662 return nested_vmx_fail(vcpu,
5663 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5664 }
5665
5666 set_current_vmptr(vmx, vmptr);
5667 }
5668
5669 return nested_vmx_succeed(vcpu);
5670 }
5671
5672 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5673 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5674 {
5675 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5676 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5677 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5678 struct x86_exception e;
5679 gva_t gva;
5680 int r;
5681
5682 if (!nested_vmx_check_permission(vcpu))
5683 return 1;
5684
5685 if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5686 return 1;
5687
5688 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5689 true, sizeof(gpa_t), &gva))
5690 return 1;
5691 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5692 r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
5693 sizeof(gpa_t), &e);
5694 if (r != X86EMUL_CONTINUE)
5695 return kvm_handle_memory_failure(vcpu, r, &e);
5696
5697 return nested_vmx_succeed(vcpu);
5698 }
5699
5700 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5701 static int handle_invept(struct kvm_vcpu *vcpu)
5702 {
5703 struct vcpu_vmx *vmx = to_vmx(vcpu);
5704 u32 vmx_instruction_info, types;
5705 unsigned long type, roots_to_free;
5706 struct kvm_mmu *mmu;
5707 gva_t gva;
5708 struct x86_exception e;
5709 struct {
5710 u64 eptp, gpa;
5711 } operand;
5712 int i, r, gpr_index;
5713
5714 if (!(vmx->nested.msrs.secondary_ctls_high &
5715 SECONDARY_EXEC_ENABLE_EPT) ||
5716 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5717 kvm_queue_exception(vcpu, UD_VECTOR);
5718 return 1;
5719 }
5720
5721 if (!nested_vmx_check_permission(vcpu))
5722 return 1;
5723
5724 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5725 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5726 type = kvm_register_read(vcpu, gpr_index);
5727
5728 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5729
5730 if (type >= 32 || !(types & (1 << type)))
5731 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5732
5733 /* According to the Intel VMX instruction reference, the memory
5734 * operand is read even if it isn't needed (e.g., for type==global)
5735 */
5736 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5737 vmx_instruction_info, false, sizeof(operand), &gva))
5738 return 1;
5739 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5740 if (r != X86EMUL_CONTINUE)
5741 return kvm_handle_memory_failure(vcpu, r, &e);
5742
5743 /*
5744 * Nested EPT roots are always held through guest_mmu,
5745 * not root_mmu.
5746 */
5747 mmu = &vcpu->arch.guest_mmu;
5748
5749 switch (type) {
5750 case VMX_EPT_EXTENT_CONTEXT:
5751 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5752 return nested_vmx_fail(vcpu,
5753 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5754
5755 roots_to_free = 0;
5756 if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5757 operand.eptp))
5758 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5759
5760 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5761 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5762 mmu->prev_roots[i].pgd,
5763 operand.eptp))
5764 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5765 }
5766 break;
5767 case VMX_EPT_EXTENT_GLOBAL:
5768 roots_to_free = KVM_MMU_ROOTS_ALL;
5769 break;
5770 default:
5771 BUG();
5772 break;
5773 }
5774
5775 if (roots_to_free)
5776 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5777
5778 return nested_vmx_succeed(vcpu);
5779 }
5780
handle_invvpid(struct kvm_vcpu * vcpu)5781 static int handle_invvpid(struct kvm_vcpu *vcpu)
5782 {
5783 struct vcpu_vmx *vmx = to_vmx(vcpu);
5784 u32 vmx_instruction_info;
5785 unsigned long type, types;
5786 gva_t gva;
5787 struct x86_exception e;
5788 struct {
5789 u64 vpid;
5790 u64 gla;
5791 } operand;
5792 u16 vpid02;
5793 int r, gpr_index;
5794
5795 if (!(vmx->nested.msrs.secondary_ctls_high &
5796 SECONDARY_EXEC_ENABLE_VPID) ||
5797 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5798 kvm_queue_exception(vcpu, UD_VECTOR);
5799 return 1;
5800 }
5801
5802 if (!nested_vmx_check_permission(vcpu))
5803 return 1;
5804
5805 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5806 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5807 type = kvm_register_read(vcpu, gpr_index);
5808
5809 types = (vmx->nested.msrs.vpid_caps &
5810 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5811
5812 if (type >= 32 || !(types & (1 << type)))
5813 return nested_vmx_fail(vcpu,
5814 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5815
5816 /* according to the intel vmx instruction reference, the memory
5817 * operand is read even if it isn't needed (e.g., for type==global)
5818 */
5819 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5820 vmx_instruction_info, false, sizeof(operand), &gva))
5821 return 1;
5822 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5823 if (r != X86EMUL_CONTINUE)
5824 return kvm_handle_memory_failure(vcpu, r, &e);
5825
5826 if (operand.vpid >> 16)
5827 return nested_vmx_fail(vcpu,
5828 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5829
5830 vpid02 = nested_get_vpid02(vcpu);
5831 switch (type) {
5832 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5833 if (!operand.vpid ||
5834 is_noncanonical_address(operand.gla, vcpu))
5835 return nested_vmx_fail(vcpu,
5836 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5837 vpid_sync_vcpu_addr(vpid02, operand.gla);
5838 break;
5839 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5840 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5841 if (!operand.vpid)
5842 return nested_vmx_fail(vcpu,
5843 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5844 vpid_sync_context(vpid02);
5845 break;
5846 case VMX_VPID_EXTENT_ALL_CONTEXT:
5847 vpid_sync_context(vpid02);
5848 break;
5849 default:
5850 WARN_ON_ONCE(1);
5851 return kvm_skip_emulated_instruction(vcpu);
5852 }
5853
5854 /*
5855 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5856 * linear mappings for L2 (tagged with L2's VPID). Free all guest
5857 * roots as VPIDs are not tracked in the MMU role.
5858 *
5859 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5860 * an MMU when EPT is disabled.
5861 *
5862 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5863 */
5864 if (!enable_ept)
5865 kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5866
5867 return nested_vmx_succeed(vcpu);
5868 }
5869
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5870 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5871 struct vmcs12 *vmcs12)
5872 {
5873 u32 index = kvm_rcx_read(vcpu);
5874 u64 new_eptp;
5875
5876 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5877 return 1;
5878 if (index >= VMFUNC_EPTP_ENTRIES)
5879 return 1;
5880
5881 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5882 &new_eptp, index * 8, 8))
5883 return 1;
5884
5885 /*
5886 * If the (L2) guest does a vmfunc to the currently
5887 * active ept pointer, we don't have to do anything else
5888 */
5889 if (vmcs12->ept_pointer != new_eptp) {
5890 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5891 return 1;
5892
5893 vmcs12->ept_pointer = new_eptp;
5894 nested_ept_new_eptp(vcpu);
5895
5896 if (!nested_cpu_has_vpid(vmcs12))
5897 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5898 }
5899
5900 return 0;
5901 }
5902
handle_vmfunc(struct kvm_vcpu * vcpu)5903 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5904 {
5905 struct vcpu_vmx *vmx = to_vmx(vcpu);
5906 struct vmcs12 *vmcs12;
5907 u32 function = kvm_rax_read(vcpu);
5908
5909 /*
5910 * VMFUNC should never execute cleanly while L1 is active; KVM supports
5911 * VMFUNC for nested VMs, but not for L1.
5912 */
5913 if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
5914 kvm_queue_exception(vcpu, UD_VECTOR);
5915 return 1;
5916 }
5917
5918 vmcs12 = get_vmcs12(vcpu);
5919
5920 /*
5921 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5922 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5923 */
5924 if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5925 kvm_queue_exception(vcpu, UD_VECTOR);
5926 return 1;
5927 }
5928
5929 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5930 goto fail;
5931
5932 switch (function) {
5933 case 0:
5934 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5935 goto fail;
5936 break;
5937 default:
5938 goto fail;
5939 }
5940 return kvm_skip_emulated_instruction(vcpu);
5941
5942 fail:
5943 /*
5944 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5945 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
5946 * EXIT_REASON_VMFUNC as the exit reason.
5947 */
5948 nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5949 vmx_get_intr_info(vcpu),
5950 vmx_get_exit_qual(vcpu));
5951 return 1;
5952 }
5953
5954 /*
5955 * Return true if an IO instruction with the specified port and size should cause
5956 * a VM-exit into L1.
5957 */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)5958 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5959 int size)
5960 {
5961 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5962 gpa_t bitmap, last_bitmap;
5963 u8 b;
5964
5965 last_bitmap = INVALID_GPA;
5966 b = -1;
5967
5968 while (size > 0) {
5969 if (port < 0x8000)
5970 bitmap = vmcs12->io_bitmap_a;
5971 else if (port < 0x10000)
5972 bitmap = vmcs12->io_bitmap_b;
5973 else
5974 return true;
5975 bitmap += (port & 0x7fff) / 8;
5976
5977 if (last_bitmap != bitmap)
5978 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5979 return true;
5980 if (b & (1 << (port & 7)))
5981 return true;
5982
5983 port++;
5984 size--;
5985 last_bitmap = bitmap;
5986 }
5987
5988 return false;
5989 }
5990
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5991 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5992 struct vmcs12 *vmcs12)
5993 {
5994 unsigned long exit_qualification;
5995 unsigned short port;
5996 int size;
5997
5998 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5999 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6000
6001 exit_qualification = vmx_get_exit_qual(vcpu);
6002
6003 port = exit_qualification >> 16;
6004 size = (exit_qualification & 7) + 1;
6005
6006 return nested_vmx_check_io_bitmaps(vcpu, port, size);
6007 }
6008
6009 /*
6010 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6011 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6012 * disinterest in the current event (read or write a specific MSR) by using an
6013 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6014 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)6015 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6016 struct vmcs12 *vmcs12,
6017 union vmx_exit_reason exit_reason)
6018 {
6019 u32 msr_index = kvm_rcx_read(vcpu);
6020 gpa_t bitmap;
6021
6022 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6023 return true;
6024
6025 /*
6026 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6027 * for the four combinations of read/write and low/high MSR numbers.
6028 * First we need to figure out which of the four to use:
6029 */
6030 bitmap = vmcs12->msr_bitmap;
6031 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6032 bitmap += 2048;
6033 if (msr_index >= 0xc0000000) {
6034 msr_index -= 0xc0000000;
6035 bitmap += 1024;
6036 }
6037
6038 /* Then read the msr_index'th bit from this bitmap: */
6039 if (msr_index < 1024*8) {
6040 unsigned char b;
6041 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6042 return true;
6043 return 1 & (b >> (msr_index & 7));
6044 } else
6045 return true; /* let L1 handle the wrong parameter */
6046 }
6047
6048 /*
6049 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6050 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6051 * intercept (via guest_host_mask etc.) the current event.
6052 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6053 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6054 struct vmcs12 *vmcs12)
6055 {
6056 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6057 int cr = exit_qualification & 15;
6058 int reg;
6059 unsigned long val;
6060
6061 switch ((exit_qualification >> 4) & 3) {
6062 case 0: /* mov to cr */
6063 reg = (exit_qualification >> 8) & 15;
6064 val = kvm_register_read(vcpu, reg);
6065 switch (cr) {
6066 case 0:
6067 if (vmcs12->cr0_guest_host_mask &
6068 (val ^ vmcs12->cr0_read_shadow))
6069 return true;
6070 break;
6071 case 3:
6072 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6073 return true;
6074 break;
6075 case 4:
6076 if (vmcs12->cr4_guest_host_mask &
6077 (vmcs12->cr4_read_shadow ^ val))
6078 return true;
6079 break;
6080 case 8:
6081 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6082 return true;
6083 break;
6084 }
6085 break;
6086 case 2: /* clts */
6087 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6088 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6089 return true;
6090 break;
6091 case 1: /* mov from cr */
6092 switch (cr) {
6093 case 3:
6094 if (vmcs12->cpu_based_vm_exec_control &
6095 CPU_BASED_CR3_STORE_EXITING)
6096 return true;
6097 break;
6098 case 8:
6099 if (vmcs12->cpu_based_vm_exec_control &
6100 CPU_BASED_CR8_STORE_EXITING)
6101 return true;
6102 break;
6103 }
6104 break;
6105 case 3: /* lmsw */
6106 /*
6107 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6108 * cr0. Other attempted changes are ignored, with no exit.
6109 */
6110 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6111 if (vmcs12->cr0_guest_host_mask & 0xe &
6112 (val ^ vmcs12->cr0_read_shadow))
6113 return true;
6114 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6115 !(vmcs12->cr0_read_shadow & 0x1) &&
6116 (val & 0x1))
6117 return true;
6118 break;
6119 }
6120 return false;
6121 }
6122
nested_vmx_exit_handled_encls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6123 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6124 struct vmcs12 *vmcs12)
6125 {
6126 u32 encls_leaf;
6127
6128 if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
6129 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6130 return false;
6131
6132 encls_leaf = kvm_rax_read(vcpu);
6133 if (encls_leaf > 62)
6134 encls_leaf = 63;
6135 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6136 }
6137
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)6138 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6139 struct vmcs12 *vmcs12, gpa_t bitmap)
6140 {
6141 u32 vmx_instruction_info;
6142 unsigned long field;
6143 u8 b;
6144
6145 if (!nested_cpu_has_shadow_vmcs(vmcs12))
6146 return true;
6147
6148 /* Decode instruction info and find the field to access */
6149 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6150 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6151
6152 /* Out-of-range fields always cause a VM exit from L2 to L1 */
6153 if (field >> 15)
6154 return true;
6155
6156 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6157 return true;
6158
6159 return 1 & (b >> (field & 7));
6160 }
6161
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)6162 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6163 {
6164 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6165
6166 if (nested_cpu_has_mtf(vmcs12))
6167 return true;
6168
6169 /*
6170 * An MTF VM-exit may be injected into the guest by setting the
6171 * interruption-type to 7 (other event) and the vector field to 0. Such
6172 * is the case regardless of the 'monitor trap flag' VM-execution
6173 * control.
6174 */
6175 return entry_intr_info == (INTR_INFO_VALID_MASK
6176 | INTR_TYPE_OTHER_EVENT);
6177 }
6178
6179 /*
6180 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6181 * L1 wants the exit. Only call this when in is_guest_mode (L2).
6182 */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6183 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6184 union vmx_exit_reason exit_reason)
6185 {
6186 u32 intr_info;
6187
6188 switch ((u16)exit_reason.basic) {
6189 case EXIT_REASON_EXCEPTION_NMI:
6190 intr_info = vmx_get_intr_info(vcpu);
6191 if (is_nmi(intr_info))
6192 return true;
6193 else if (is_page_fault(intr_info))
6194 return vcpu->arch.apf.host_apf_flags ||
6195 vmx_need_pf_intercept(vcpu);
6196 else if (is_debug(intr_info) &&
6197 vcpu->guest_debug &
6198 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6199 return true;
6200 else if (is_breakpoint(intr_info) &&
6201 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6202 return true;
6203 else if (is_alignment_check(intr_info) &&
6204 !vmx_guest_inject_ac(vcpu))
6205 return true;
6206 return false;
6207 case EXIT_REASON_EXTERNAL_INTERRUPT:
6208 return true;
6209 case EXIT_REASON_MCE_DURING_VMENTRY:
6210 return true;
6211 case EXIT_REASON_EPT_VIOLATION:
6212 /*
6213 * L0 always deals with the EPT violation. If nested EPT is
6214 * used, and the nested mmu code discovers that the address is
6215 * missing in the guest EPT table (EPT12), the EPT violation
6216 * will be injected with nested_ept_inject_page_fault()
6217 */
6218 return true;
6219 case EXIT_REASON_EPT_MISCONFIG:
6220 /*
6221 * L2 never uses directly L1's EPT, but rather L0's own EPT
6222 * table (shadow on EPT) or a merged EPT table that L0 built
6223 * (EPT on EPT). So any problems with the structure of the
6224 * table is L0's fault.
6225 */
6226 return true;
6227 case EXIT_REASON_PREEMPTION_TIMER:
6228 return true;
6229 case EXIT_REASON_PML_FULL:
6230 /*
6231 * PML is emulated for an L1 VMM and should never be enabled in
6232 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6233 */
6234 return true;
6235 case EXIT_REASON_VMFUNC:
6236 /* VM functions are emulated through L2->L0 vmexits. */
6237 return true;
6238 case EXIT_REASON_BUS_LOCK:
6239 /*
6240 * At present, bus lock VM exit is never exposed to L1.
6241 * Handle L2's bus locks in L0 directly.
6242 */
6243 return true;
6244 case EXIT_REASON_VMCALL:
6245 /* Hyper-V L2 TLB flush hypercall is handled by L0 */
6246 return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6247 nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6248 kvm_hv_is_tlb_flush_hcall(vcpu);
6249 default:
6250 break;
6251 }
6252 return false;
6253 }
6254
6255 /*
6256 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
6257 * is_guest_mode (L2).
6258 */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6259 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6260 union vmx_exit_reason exit_reason)
6261 {
6262 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6263 u32 intr_info;
6264
6265 switch ((u16)exit_reason.basic) {
6266 case EXIT_REASON_EXCEPTION_NMI:
6267 intr_info = vmx_get_intr_info(vcpu);
6268 if (is_nmi(intr_info))
6269 return true;
6270 else if (is_page_fault(intr_info))
6271 return true;
6272 return vmcs12->exception_bitmap &
6273 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6274 case EXIT_REASON_EXTERNAL_INTERRUPT:
6275 return nested_exit_on_intr(vcpu);
6276 case EXIT_REASON_TRIPLE_FAULT:
6277 return true;
6278 case EXIT_REASON_INTERRUPT_WINDOW:
6279 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6280 case EXIT_REASON_NMI_WINDOW:
6281 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6282 case EXIT_REASON_TASK_SWITCH:
6283 return true;
6284 case EXIT_REASON_CPUID:
6285 return true;
6286 case EXIT_REASON_HLT:
6287 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6288 case EXIT_REASON_INVD:
6289 return true;
6290 case EXIT_REASON_INVLPG:
6291 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6292 case EXIT_REASON_RDPMC:
6293 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6294 case EXIT_REASON_RDRAND:
6295 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6296 case EXIT_REASON_RDSEED:
6297 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6298 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6299 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6300 case EXIT_REASON_VMREAD:
6301 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6302 vmcs12->vmread_bitmap);
6303 case EXIT_REASON_VMWRITE:
6304 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6305 vmcs12->vmwrite_bitmap);
6306 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6307 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6308 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6309 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6310 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6311 /*
6312 * VMX instructions trap unconditionally. This allows L1 to
6313 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6314 */
6315 return true;
6316 case EXIT_REASON_CR_ACCESS:
6317 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6318 case EXIT_REASON_DR_ACCESS:
6319 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6320 case EXIT_REASON_IO_INSTRUCTION:
6321 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6322 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6323 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6324 case EXIT_REASON_MSR_READ:
6325 case EXIT_REASON_MSR_WRITE:
6326 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6327 case EXIT_REASON_INVALID_STATE:
6328 return true;
6329 case EXIT_REASON_MWAIT_INSTRUCTION:
6330 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6331 case EXIT_REASON_MONITOR_TRAP_FLAG:
6332 return nested_vmx_exit_handled_mtf(vmcs12);
6333 case EXIT_REASON_MONITOR_INSTRUCTION:
6334 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6335 case EXIT_REASON_PAUSE_INSTRUCTION:
6336 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6337 nested_cpu_has2(vmcs12,
6338 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6339 case EXIT_REASON_MCE_DURING_VMENTRY:
6340 return true;
6341 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6342 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6343 case EXIT_REASON_APIC_ACCESS:
6344 case EXIT_REASON_APIC_WRITE:
6345 case EXIT_REASON_EOI_INDUCED:
6346 /*
6347 * The controls for "virtualize APIC accesses," "APIC-
6348 * register virtualization," and "virtual-interrupt
6349 * delivery" only come from vmcs12.
6350 */
6351 return true;
6352 case EXIT_REASON_INVPCID:
6353 return
6354 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6355 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6356 case EXIT_REASON_WBINVD:
6357 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6358 case EXIT_REASON_XSETBV:
6359 return true;
6360 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6361 /*
6362 * This should never happen, since it is not possible to
6363 * set XSS to a non-zero value---neither in L1 nor in L2.
6364 * If if it were, XSS would have to be checked against
6365 * the XSS exit bitmap in vmcs12.
6366 */
6367 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES);
6368 case EXIT_REASON_UMWAIT:
6369 case EXIT_REASON_TPAUSE:
6370 return nested_cpu_has2(vmcs12,
6371 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6372 case EXIT_REASON_ENCLS:
6373 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6374 case EXIT_REASON_NOTIFY:
6375 /* Notify VM exit is not exposed to L1 */
6376 return false;
6377 default:
6378 return true;
6379 }
6380 }
6381
6382 /*
6383 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6384 * reflected into L1.
6385 */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6386 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6387 {
6388 struct vcpu_vmx *vmx = to_vmx(vcpu);
6389 union vmx_exit_reason exit_reason = vmx->exit_reason;
6390 unsigned long exit_qual;
6391 u32 exit_intr_info;
6392
6393 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6394
6395 /*
6396 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6397 * has already loaded L2's state.
6398 */
6399 if (unlikely(vmx->fail)) {
6400 trace_kvm_nested_vmenter_failed(
6401 "hardware VM-instruction error: ",
6402 vmcs_read32(VM_INSTRUCTION_ERROR));
6403 exit_intr_info = 0;
6404 exit_qual = 0;
6405 goto reflect_vmexit;
6406 }
6407
6408 trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6409
6410 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6411 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6412 return false;
6413
6414 /* If L1 doesn't want the exit, handle it in L0. */
6415 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6416 return false;
6417
6418 /*
6419 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6420 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6421 * need to be synthesized by querying the in-kernel LAPIC, but external
6422 * interrupts are never reflected to L1 so it's a non-issue.
6423 */
6424 exit_intr_info = vmx_get_intr_info(vcpu);
6425 if (is_exception_with_error_code(exit_intr_info)) {
6426 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6427
6428 vmcs12->vm_exit_intr_error_code =
6429 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6430 }
6431 exit_qual = vmx_get_exit_qual(vcpu);
6432
6433 reflect_vmexit:
6434 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6435 return true;
6436 }
6437
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6438 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6439 struct kvm_nested_state __user *user_kvm_nested_state,
6440 u32 user_data_size)
6441 {
6442 struct vcpu_vmx *vmx;
6443 struct vmcs12 *vmcs12;
6444 struct kvm_nested_state kvm_state = {
6445 .flags = 0,
6446 .format = KVM_STATE_NESTED_FORMAT_VMX,
6447 .size = sizeof(kvm_state),
6448 .hdr.vmx.flags = 0,
6449 .hdr.vmx.vmxon_pa = INVALID_GPA,
6450 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6451 .hdr.vmx.preemption_timer_deadline = 0,
6452 };
6453 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6454 &user_kvm_nested_state->data.vmx[0];
6455
6456 if (!vcpu)
6457 return kvm_state.size + sizeof(*user_vmx_nested_state);
6458
6459 vmx = to_vmx(vcpu);
6460 vmcs12 = get_vmcs12(vcpu);
6461
6462 if (guest_can_use(vcpu, X86_FEATURE_VMX) &&
6463 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6464 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6465 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6466
6467 if (vmx_has_valid_vmcs12(vcpu)) {
6468 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6469
6470 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6471 if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6472 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6473
6474 if (is_guest_mode(vcpu) &&
6475 nested_cpu_has_shadow_vmcs(vmcs12) &&
6476 vmcs12->vmcs_link_pointer != INVALID_GPA)
6477 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6478 }
6479
6480 if (vmx->nested.smm.vmxon)
6481 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6482
6483 if (vmx->nested.smm.guest_mode)
6484 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6485
6486 if (is_guest_mode(vcpu)) {
6487 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6488
6489 if (vmx->nested.nested_run_pending)
6490 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6491
6492 if (vmx->nested.mtf_pending)
6493 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6494
6495 if (nested_cpu_has_preemption_timer(vmcs12) &&
6496 vmx->nested.has_preemption_timer_deadline) {
6497 kvm_state.hdr.vmx.flags |=
6498 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6499 kvm_state.hdr.vmx.preemption_timer_deadline =
6500 vmx->nested.preemption_timer_deadline;
6501 }
6502 }
6503 }
6504
6505 if (user_data_size < kvm_state.size)
6506 goto out;
6507
6508 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6509 return -EFAULT;
6510
6511 if (!vmx_has_valid_vmcs12(vcpu))
6512 goto out;
6513
6514 /*
6515 * When running L2, the authoritative vmcs12 state is in the
6516 * vmcs02. When running L1, the authoritative vmcs12 state is
6517 * in the shadow or enlightened vmcs linked to vmcs01, unless
6518 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6519 * vmcs12 state is in the vmcs12 already.
6520 */
6521 if (is_guest_mode(vcpu)) {
6522 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6523 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6524 } else {
6525 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6526 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6527 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6528 /*
6529 * L1 hypervisor is not obliged to keep eVMCS
6530 * clean fields data always up-to-date while
6531 * not in guest mode, 'hv_clean_fields' is only
6532 * supposed to be actual upon vmentry so we need
6533 * to ignore it here and do full copy.
6534 */
6535 copy_enlightened_to_vmcs12(vmx, 0);
6536 else if (enable_shadow_vmcs)
6537 copy_shadow_to_vmcs12(vmx);
6538 }
6539 }
6540
6541 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6542 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6543
6544 /*
6545 * Copy over the full allocated size of vmcs12 rather than just the size
6546 * of the struct.
6547 */
6548 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6549 return -EFAULT;
6550
6551 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6552 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6553 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6554 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6555 return -EFAULT;
6556 }
6557 out:
6558 return kvm_state.size;
6559 }
6560
vmx_leave_nested(struct kvm_vcpu * vcpu)6561 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6562 {
6563 if (is_guest_mode(vcpu)) {
6564 to_vmx(vcpu)->nested.nested_run_pending = 0;
6565 nested_vmx_vmexit(vcpu, -1, 0, 0);
6566 }
6567 free_nested(vcpu);
6568 }
6569
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6570 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6571 struct kvm_nested_state __user *user_kvm_nested_state,
6572 struct kvm_nested_state *kvm_state)
6573 {
6574 struct vcpu_vmx *vmx = to_vmx(vcpu);
6575 struct vmcs12 *vmcs12;
6576 enum vm_entry_failure_code ignored;
6577 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6578 &user_kvm_nested_state->data.vmx[0];
6579 int ret;
6580
6581 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6582 return -EINVAL;
6583
6584 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6585 if (kvm_state->hdr.vmx.smm.flags)
6586 return -EINVAL;
6587
6588 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6589 return -EINVAL;
6590
6591 /*
6592 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6593 * enable eVMCS capability on vCPU. However, since then
6594 * code was changed such that flag signals vmcs12 should
6595 * be copied into eVMCS in guest memory.
6596 *
6597 * To preserve backwards compatability, allow user
6598 * to set this flag even when there is no VMXON region.
6599 */
6600 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6601 return -EINVAL;
6602 } else {
6603 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
6604 return -EINVAL;
6605
6606 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6607 return -EINVAL;
6608 }
6609
6610 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6611 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6612 return -EINVAL;
6613
6614 if (kvm_state->hdr.vmx.smm.flags &
6615 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6616 return -EINVAL;
6617
6618 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6619 return -EINVAL;
6620
6621 /*
6622 * SMM temporarily disables VMX, so we cannot be in guest mode,
6623 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6624 * must be zero.
6625 */
6626 if (is_smm(vcpu) ?
6627 (kvm_state->flags &
6628 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6629 : kvm_state->hdr.vmx.smm.flags)
6630 return -EINVAL;
6631
6632 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6633 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6634 return -EINVAL;
6635
6636 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6637 (!guest_can_use(vcpu, X86_FEATURE_VMX) ||
6638 !vmx->nested.enlightened_vmcs_enabled))
6639 return -EINVAL;
6640
6641 vmx_leave_nested(vcpu);
6642
6643 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6644 return 0;
6645
6646 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6647 ret = enter_vmx_operation(vcpu);
6648 if (ret)
6649 return ret;
6650
6651 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6652 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6653 /* See vmx_has_valid_vmcs12. */
6654 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6655 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6656 (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6657 return -EINVAL;
6658 else
6659 return 0;
6660 }
6661
6662 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6663 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6664 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6665 return -EINVAL;
6666
6667 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6668 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6669 /*
6670 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6671 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6672 * restored yet. EVMCS will be mapped from
6673 * nested_get_vmcs12_pages().
6674 */
6675 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6676 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6677 } else {
6678 return -EINVAL;
6679 }
6680
6681 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6682 vmx->nested.smm.vmxon = true;
6683 vmx->nested.vmxon = false;
6684
6685 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6686 vmx->nested.smm.guest_mode = true;
6687 }
6688
6689 vmcs12 = get_vmcs12(vcpu);
6690 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6691 return -EFAULT;
6692
6693 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6694 return -EINVAL;
6695
6696 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6697 return 0;
6698
6699 vmx->nested.nested_run_pending =
6700 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6701
6702 vmx->nested.mtf_pending =
6703 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6704
6705 ret = -EINVAL;
6706 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6707 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6708 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6709
6710 if (kvm_state->size <
6711 sizeof(*kvm_state) +
6712 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6713 goto error_guest_mode;
6714
6715 if (copy_from_user(shadow_vmcs12,
6716 user_vmx_nested_state->shadow_vmcs12,
6717 sizeof(*shadow_vmcs12))) {
6718 ret = -EFAULT;
6719 goto error_guest_mode;
6720 }
6721
6722 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6723 !shadow_vmcs12->hdr.shadow_vmcs)
6724 goto error_guest_mode;
6725 }
6726
6727 vmx->nested.has_preemption_timer_deadline = false;
6728 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6729 vmx->nested.has_preemption_timer_deadline = true;
6730 vmx->nested.preemption_timer_deadline =
6731 kvm_state->hdr.vmx.preemption_timer_deadline;
6732 }
6733
6734 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6735 nested_vmx_check_host_state(vcpu, vmcs12) ||
6736 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6737 goto error_guest_mode;
6738
6739 vmx->nested.dirty_vmcs12 = true;
6740 vmx->nested.force_msr_bitmap_recalc = true;
6741 ret = nested_vmx_enter_non_root_mode(vcpu, false);
6742 if (ret)
6743 goto error_guest_mode;
6744
6745 if (vmx->nested.mtf_pending)
6746 kvm_make_request(KVM_REQ_EVENT, vcpu);
6747
6748 return 0;
6749
6750 error_guest_mode:
6751 vmx->nested.nested_run_pending = 0;
6752 return ret;
6753 }
6754
nested_vmx_set_vmcs_shadowing_bitmap(void)6755 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6756 {
6757 if (enable_shadow_vmcs) {
6758 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6759 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6760 }
6761 }
6762
6763 /*
6764 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo
6765 * that madness to get the encoding for comparison.
6766 */
6767 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6768
nested_vmx_calc_vmcs_enum_msr(void)6769 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6770 {
6771 /*
6772 * Note these are the so called "index" of the VMCS field encoding, not
6773 * the index into vmcs12.
6774 */
6775 unsigned int max_idx, idx;
6776 int i;
6777
6778 /*
6779 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6780 * vmcs12, regardless of whether or not the associated feature is
6781 * exposed to L1. Simply find the field with the highest index.
6782 */
6783 max_idx = 0;
6784 for (i = 0; i < nr_vmcs12_fields; i++) {
6785 /* The vmcs12 table is very, very sparsely populated. */
6786 if (!vmcs12_field_offsets[i])
6787 continue;
6788
6789 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6790 if (idx > max_idx)
6791 max_idx = idx;
6792 }
6793
6794 return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6795 }
6796
nested_vmx_setup_pinbased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6797 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
6798 struct nested_vmx_msrs *msrs)
6799 {
6800 msrs->pinbased_ctls_low =
6801 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6802
6803 msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6804 msrs->pinbased_ctls_high &=
6805 PIN_BASED_EXT_INTR_MASK |
6806 PIN_BASED_NMI_EXITING |
6807 PIN_BASED_VIRTUAL_NMIS |
6808 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6809 msrs->pinbased_ctls_high |=
6810 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6811 PIN_BASED_VMX_PREEMPTION_TIMER;
6812 }
6813
nested_vmx_setup_exit_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6814 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
6815 struct nested_vmx_msrs *msrs)
6816 {
6817 msrs->exit_ctls_low =
6818 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6819
6820 msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
6821 msrs->exit_ctls_high &=
6822 #ifdef CONFIG_X86_64
6823 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6824 #endif
6825 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6826 VM_EXIT_CLEAR_BNDCFGS;
6827 msrs->exit_ctls_high |=
6828 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6829 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6830 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
6831 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6832
6833 /* We support free control of debug control saving. */
6834 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6835 }
6836
nested_vmx_setup_entry_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6837 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
6838 struct nested_vmx_msrs *msrs)
6839 {
6840 msrs->entry_ctls_low =
6841 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6842
6843 msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
6844 msrs->entry_ctls_high &=
6845 #ifdef CONFIG_X86_64
6846 VM_ENTRY_IA32E_MODE |
6847 #endif
6848 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
6849 msrs->entry_ctls_high |=
6850 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
6851 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
6852
6853 /* We support free control of debug control loading. */
6854 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6855 }
6856
nested_vmx_setup_cpubased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6857 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
6858 struct nested_vmx_msrs *msrs)
6859 {
6860 msrs->procbased_ctls_low =
6861 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6862
6863 msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
6864 msrs->procbased_ctls_high &=
6865 CPU_BASED_INTR_WINDOW_EXITING |
6866 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6867 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6868 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6869 CPU_BASED_CR3_STORE_EXITING |
6870 #ifdef CONFIG_X86_64
6871 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6872 #endif
6873 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6874 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6875 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6876 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6877 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6878 /*
6879 * We can allow some features even when not supported by the
6880 * hardware. For example, L1 can specify an MSR bitmap - and we
6881 * can use it to avoid exits to L1 - even when L0 runs L2
6882 * without MSR bitmaps.
6883 */
6884 msrs->procbased_ctls_high |=
6885 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6886 CPU_BASED_USE_MSR_BITMAPS;
6887
6888 /* We support free control of CR3 access interception. */
6889 msrs->procbased_ctls_low &=
6890 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6891 }
6892
nested_vmx_setup_secondary_ctls(u32 ept_caps,struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6893 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
6894 struct vmcs_config *vmcs_conf,
6895 struct nested_vmx_msrs *msrs)
6896 {
6897 msrs->secondary_ctls_low = 0;
6898
6899 msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
6900 msrs->secondary_ctls_high &=
6901 SECONDARY_EXEC_DESC |
6902 SECONDARY_EXEC_ENABLE_RDTSCP |
6903 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6904 SECONDARY_EXEC_WBINVD_EXITING |
6905 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6906 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6907 SECONDARY_EXEC_RDRAND_EXITING |
6908 SECONDARY_EXEC_ENABLE_INVPCID |
6909 SECONDARY_EXEC_ENABLE_VMFUNC |
6910 SECONDARY_EXEC_RDSEED_EXITING |
6911 SECONDARY_EXEC_ENABLE_XSAVES |
6912 SECONDARY_EXEC_TSC_SCALING |
6913 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
6914
6915 /*
6916 * We can emulate "VMCS shadowing," even if the hardware
6917 * doesn't support it.
6918 */
6919 msrs->secondary_ctls_high |=
6920 SECONDARY_EXEC_SHADOW_VMCS;
6921
6922 if (enable_ept) {
6923 /* nested EPT: emulate EPT also to L1 */
6924 msrs->secondary_ctls_high |=
6925 SECONDARY_EXEC_ENABLE_EPT;
6926 msrs->ept_caps =
6927 VMX_EPT_PAGE_WALK_4_BIT |
6928 VMX_EPT_PAGE_WALK_5_BIT |
6929 VMX_EPTP_WB_BIT |
6930 VMX_EPT_INVEPT_BIT |
6931 VMX_EPT_EXECUTE_ONLY_BIT;
6932
6933 msrs->ept_caps &= ept_caps;
6934 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6935 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6936 VMX_EPT_1GB_PAGE_BIT;
6937 if (enable_ept_ad_bits) {
6938 msrs->secondary_ctls_high |=
6939 SECONDARY_EXEC_ENABLE_PML;
6940 msrs->ept_caps |= VMX_EPT_AD_BIT;
6941 }
6942
6943 /*
6944 * Advertise EPTP switching irrespective of hardware support,
6945 * KVM emulates it in software so long as VMFUNC is supported.
6946 */
6947 if (cpu_has_vmx_vmfunc())
6948 msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
6949 }
6950
6951 /*
6952 * Old versions of KVM use the single-context version without
6953 * checking for support, so declare that it is supported even
6954 * though it is treated as global context. The alternative is
6955 * not failing the single-context invvpid, and it is worse.
6956 */
6957 if (enable_vpid) {
6958 msrs->secondary_ctls_high |=
6959 SECONDARY_EXEC_ENABLE_VPID;
6960 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6961 VMX_VPID_EXTENT_SUPPORTED_MASK;
6962 }
6963
6964 if (enable_unrestricted_guest)
6965 msrs->secondary_ctls_high |=
6966 SECONDARY_EXEC_UNRESTRICTED_GUEST;
6967
6968 if (flexpriority_enabled)
6969 msrs->secondary_ctls_high |=
6970 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6971
6972 if (enable_sgx)
6973 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6974 }
6975
nested_vmx_setup_misc_data(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6976 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
6977 struct nested_vmx_msrs *msrs)
6978 {
6979 msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
6980 msrs->misc_low |=
6981 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6982 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6983 VMX_MISC_ACTIVITY_HLT |
6984 VMX_MISC_ACTIVITY_WAIT_SIPI;
6985 msrs->misc_high = 0;
6986 }
6987
nested_vmx_setup_basic(struct nested_vmx_msrs * msrs)6988 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
6989 {
6990 /*
6991 * This MSR reports some information about VMX support. We
6992 * should return information about the VMX we emulate for the
6993 * guest, and the VMCS structure we give it - not about the
6994 * VMX support of the underlying hardware.
6995 */
6996 msrs->basic =
6997 VMCS12_REVISION |
6998 VMX_BASIC_TRUE_CTLS |
6999 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
7000 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
7001
7002 if (cpu_has_vmx_basic_inout())
7003 msrs->basic |= VMX_BASIC_INOUT;
7004 }
7005
nested_vmx_setup_cr_fixed(struct nested_vmx_msrs * msrs)7006 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7007 {
7008 /*
7009 * These MSRs specify bits which the guest must keep fixed on
7010 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7011 * We picked the standard core2 setting.
7012 */
7013 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7014 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
7015 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7016 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7017
7018 /* These MSRs specify bits which the guest must keep fixed off. */
7019 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7020 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7021
7022 if (vmx_umip_emulated())
7023 msrs->cr4_fixed1 |= X86_CR4_UMIP;
7024 }
7025
7026 /*
7027 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7028 * returned for the various VMX controls MSRs when nested VMX is enabled.
7029 * The same values should also be used to verify that vmcs12 control fields are
7030 * valid during nested entry from L1 to L2.
7031 * Each of these control msrs has a low and high 32-bit half: A low bit is on
7032 * if the corresponding bit in the (32-bit) control field *must* be on, and a
7033 * bit in the high half is on if the corresponding bit in the control field
7034 * may be on. See also vmx_control_verify().
7035 */
nested_vmx_setup_ctls_msrs(struct vmcs_config * vmcs_conf,u32 ept_caps)7036 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7037 {
7038 struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7039
7040 /*
7041 * Note that as a general rule, the high half of the MSRs (bits in
7042 * the control fields which may be 1) should be initialized by the
7043 * intersection of the underlying hardware's MSR (i.e., features which
7044 * can be supported) and the list of features we want to expose -
7045 * because they are known to be properly supported in our code.
7046 * Also, usually, the low half of the MSRs (bits which must be 1) can
7047 * be set to 0, meaning that L1 may turn off any of these bits. The
7048 * reason is that if one of these bits is necessary, it will appear
7049 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7050 * fields of vmcs01 and vmcs02, will turn these bits off - and
7051 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7052 * These rules have exceptions below.
7053 */
7054 nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7055
7056 nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7057
7058 nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7059
7060 nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7061
7062 nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7063
7064 nested_vmx_setup_misc_data(vmcs_conf, msrs);
7065
7066 nested_vmx_setup_basic(msrs);
7067
7068 nested_vmx_setup_cr_fixed(msrs);
7069
7070 msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7071 }
7072
nested_vmx_hardware_unsetup(void)7073 void nested_vmx_hardware_unsetup(void)
7074 {
7075 int i;
7076
7077 if (enable_shadow_vmcs) {
7078 for (i = 0; i < VMX_BITMAP_NR; i++)
7079 free_page((unsigned long)vmx_bitmap[i]);
7080 }
7081 }
7082
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))7083 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7084 {
7085 int i;
7086
7087 if (!cpu_has_vmx_shadow_vmcs())
7088 enable_shadow_vmcs = 0;
7089 if (enable_shadow_vmcs) {
7090 for (i = 0; i < VMX_BITMAP_NR; i++) {
7091 /*
7092 * The vmx_bitmap is not tied to a VM and so should
7093 * not be charged to a memcg.
7094 */
7095 vmx_bitmap[i] = (unsigned long *)
7096 __get_free_page(GFP_KERNEL);
7097 if (!vmx_bitmap[i]) {
7098 nested_vmx_hardware_unsetup();
7099 return -ENOMEM;
7100 }
7101 }
7102
7103 init_vmcs_shadow_fields();
7104 }
7105
7106 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
7107 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
7108 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
7109 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
7110 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
7111 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
7112 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
7113 exit_handlers[EXIT_REASON_VMOFF] = handle_vmxoff;
7114 exit_handlers[EXIT_REASON_VMON] = handle_vmxon;
7115 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
7116 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
7117 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
7118
7119 return 0;
7120 }
7121
7122 struct kvm_x86_nested_ops vmx_nested_ops = {
7123 .leave_nested = vmx_leave_nested,
7124 .is_exception_vmexit = nested_vmx_is_exception_vmexit,
7125 .check_events = vmx_check_nested_events,
7126 .has_events = vmx_has_nested_events,
7127 .triple_fault = nested_vmx_triple_fault,
7128 .get_state = vmx_get_nested_state,
7129 .set_state = vmx_set_nested_state,
7130 .get_nested_state_pages = vmx_get_nested_state_pages,
7131 .write_log_dirty = nested_vmx_write_pml_buffer,
7132 .enable_evmcs = nested_enable_evmcs,
7133 .get_evmcs_version = nested_get_evmcs_version,
7134 .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7135 };
7136