1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/notifier.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/in.h>
17 #include <linux/ethtool.h>
18 #include <linux/topology.h>
19 #include <linux/gfp.h>
20 #include <linux/interrupt.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "nic.h"
24 #include "selftest.h"
25
26 #include "workarounds.h"
27
28 /**************************************************************************
29 *
30 * Type name strings
31 *
32 **************************************************************************
33 */
34
35 /* Loopback mode names (see LOOPBACK_MODE()) */
36 const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
37 const char *const ef4_loopback_mode_names[] = {
38 [LOOPBACK_NONE] = "NONE",
39 [LOOPBACK_DATA] = "DATAPATH",
40 [LOOPBACK_GMAC] = "GMAC",
41 [LOOPBACK_XGMII] = "XGMII",
42 [LOOPBACK_XGXS] = "XGXS",
43 [LOOPBACK_XAUI] = "XAUI",
44 [LOOPBACK_GMII] = "GMII",
45 [LOOPBACK_SGMII] = "SGMII",
46 [LOOPBACK_XGBR] = "XGBR",
47 [LOOPBACK_XFI] = "XFI",
48 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
49 [LOOPBACK_GMII_FAR] = "GMII_FAR",
50 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
51 [LOOPBACK_XFI_FAR] = "XFI_FAR",
52 [LOOPBACK_GPHY] = "GPHY",
53 [LOOPBACK_PHYXS] = "PHYXS",
54 [LOOPBACK_PCS] = "PCS",
55 [LOOPBACK_PMAPMD] = "PMA/PMD",
56 [LOOPBACK_XPORT] = "XPORT",
57 [LOOPBACK_XGMII_WS] = "XGMII_WS",
58 [LOOPBACK_XAUI_WS] = "XAUI_WS",
59 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
60 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
61 [LOOPBACK_GMII_WS] = "GMII_WS",
62 [LOOPBACK_XFI_WS] = "XFI_WS",
63 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
64 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
65 };
66
67 const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
68 const char *const ef4_reset_type_names[] = {
69 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
70 [RESET_TYPE_ALL] = "ALL",
71 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
72 [RESET_TYPE_WORLD] = "WORLD",
73 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
74 [RESET_TYPE_DATAPATH] = "DATAPATH",
75 [RESET_TYPE_DISABLE] = "DISABLE",
76 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
77 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
78 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
79 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
80 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
81 };
82
83 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
84 * queued onto this work queue. This is not a per-nic work queue, because
85 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
86 */
87 static struct workqueue_struct *reset_workqueue;
88
89 /* How often and how many times to poll for a reset while waiting for a
90 * BIST that another function started to complete.
91 */
92 #define BIST_WAIT_DELAY_MS 100
93 #define BIST_WAIT_DELAY_COUNT 100
94
95 /**************************************************************************
96 *
97 * Configurable values
98 *
99 *************************************************************************/
100
101 /*
102 * Use separate channels for TX and RX events
103 *
104 * Set this to 1 to use separate channels for TX and RX. It allows us
105 * to control interrupt affinity separately for TX and RX.
106 *
107 * This is only used in MSI-X interrupt mode
108 */
109 bool ef4_separate_tx_channels;
110 module_param(ef4_separate_tx_channels, bool, 0444);
111 MODULE_PARM_DESC(ef4_separate_tx_channels,
112 "Use separate channels for TX and RX");
113
114 /* This is the time (in jiffies) between invocations of the hardware
115 * monitor.
116 * On Falcon-based NICs, this will:
117 * - Check the on-board hardware monitor;
118 * - Poll the link state and reconfigure the hardware as necessary.
119 * On Siena-based NICs for power systems with EEH support, this will give EEH a
120 * chance to start.
121 */
122 static unsigned int ef4_monitor_interval = 1 * HZ;
123
124 /* Initial interrupt moderation settings. They can be modified after
125 * module load with ethtool.
126 *
127 * The default for RX should strike a balance between increasing the
128 * round-trip latency and reducing overhead.
129 */
130 static unsigned int rx_irq_mod_usec = 60;
131
132 /* Initial interrupt moderation settings. They can be modified after
133 * module load with ethtool.
134 *
135 * This default is chosen to ensure that a 10G link does not go idle
136 * while a TX queue is stopped after it has become full. A queue is
137 * restarted when it drops below half full. The time this takes (assuming
138 * worst case 3 descriptors per packet and 1024 descriptors) is
139 * 512 / 3 * 1.2 = 205 usec.
140 */
141 static unsigned int tx_irq_mod_usec = 150;
142
143 /* This is the first interrupt mode to try out of:
144 * 0 => MSI-X
145 * 1 => MSI
146 * 2 => legacy
147 */
148 static unsigned int interrupt_mode;
149
150 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
151 * i.e. the number of CPUs among which we may distribute simultaneous
152 * interrupt handling.
153 *
154 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
155 * The default (0) means to assign an interrupt to each core.
156 */
157 static unsigned int rss_cpus;
158 module_param(rss_cpus, uint, 0444);
159 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
160
161 static bool phy_flash_cfg;
162 module_param(phy_flash_cfg, bool, 0644);
163 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
164
165 static unsigned irq_adapt_low_thresh = 8000;
166 module_param(irq_adapt_low_thresh, uint, 0644);
167 MODULE_PARM_DESC(irq_adapt_low_thresh,
168 "Threshold score for reducing IRQ moderation");
169
170 static unsigned irq_adapt_high_thresh = 16000;
171 module_param(irq_adapt_high_thresh, uint, 0644);
172 MODULE_PARM_DESC(irq_adapt_high_thresh,
173 "Threshold score for increasing IRQ moderation");
174
175 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
176 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
177 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
178 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
179 module_param(debug, uint, 0);
180 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
181
182 /**************************************************************************
183 *
184 * Utility functions and prototypes
185 *
186 *************************************************************************/
187
188 static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
189 static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
190 static void ef4_remove_channel(struct ef4_channel *channel);
191 static void ef4_remove_channels(struct ef4_nic *efx);
192 static const struct ef4_channel_type ef4_default_channel_type;
193 static void ef4_remove_port(struct ef4_nic *efx);
194 static void ef4_init_napi_channel(struct ef4_channel *channel);
195 static void ef4_fini_napi(struct ef4_nic *efx);
196 static void ef4_fini_napi_channel(struct ef4_channel *channel);
197 static void ef4_fini_struct(struct ef4_nic *efx);
198 static void ef4_start_all(struct ef4_nic *efx);
199 static void ef4_stop_all(struct ef4_nic *efx);
200
201 #define EF4_ASSERT_RESET_SERIALISED(efx) \
202 do { \
203 if ((efx->state == STATE_READY) || \
204 (efx->state == STATE_RECOVERY) || \
205 (efx->state == STATE_DISABLED)) \
206 ASSERT_RTNL(); \
207 } while (0)
208
ef4_check_disabled(struct ef4_nic * efx)209 static int ef4_check_disabled(struct ef4_nic *efx)
210 {
211 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
212 netif_err(efx, drv, efx->net_dev,
213 "device is disabled due to earlier errors\n");
214 return -EIO;
215 }
216 return 0;
217 }
218
219 /**************************************************************************
220 *
221 * Event queue processing
222 *
223 *************************************************************************/
224
225 /* Process channel's event queue
226 *
227 * This function is responsible for processing the event queue of a
228 * single channel. The caller must guarantee that this function will
229 * never be concurrently called more than once on the same channel,
230 * though different channels may be being processed concurrently.
231 */
ef4_process_channel(struct ef4_channel * channel,int budget)232 static int ef4_process_channel(struct ef4_channel *channel, int budget)
233 {
234 struct ef4_tx_queue *tx_queue;
235 int spent;
236
237 if (unlikely(!channel->enabled))
238 return 0;
239
240 ef4_for_each_channel_tx_queue(tx_queue, channel) {
241 tx_queue->pkts_compl = 0;
242 tx_queue->bytes_compl = 0;
243 }
244
245 spent = ef4_nic_process_eventq(channel, budget);
246 if (spent && ef4_channel_has_rx_queue(channel)) {
247 struct ef4_rx_queue *rx_queue =
248 ef4_channel_get_rx_queue(channel);
249
250 ef4_rx_flush_packet(channel);
251 ef4_fast_push_rx_descriptors(rx_queue, true);
252 }
253
254 /* Update BQL */
255 ef4_for_each_channel_tx_queue(tx_queue, channel) {
256 if (tx_queue->bytes_compl) {
257 netdev_tx_completed_queue(tx_queue->core_txq,
258 tx_queue->pkts_compl, tx_queue->bytes_compl);
259 }
260 }
261
262 return spent;
263 }
264
265 /* NAPI poll handler
266 *
267 * NAPI guarantees serialisation of polls of the same device, which
268 * provides the guarantee required by ef4_process_channel().
269 */
ef4_update_irq_mod(struct ef4_nic * efx,struct ef4_channel * channel)270 static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
271 {
272 int step = efx->irq_mod_step_us;
273
274 if (channel->irq_mod_score < irq_adapt_low_thresh) {
275 if (channel->irq_moderation_us > step) {
276 channel->irq_moderation_us -= step;
277 efx->type->push_irq_moderation(channel);
278 }
279 } else if (channel->irq_mod_score > irq_adapt_high_thresh) {
280 if (channel->irq_moderation_us <
281 efx->irq_rx_moderation_us) {
282 channel->irq_moderation_us += step;
283 efx->type->push_irq_moderation(channel);
284 }
285 }
286
287 channel->irq_count = 0;
288 channel->irq_mod_score = 0;
289 }
290
ef4_poll(struct napi_struct * napi,int budget)291 static int ef4_poll(struct napi_struct *napi, int budget)
292 {
293 struct ef4_channel *channel =
294 container_of(napi, struct ef4_channel, napi_str);
295 struct ef4_nic *efx = channel->efx;
296 int spent;
297
298 netif_vdbg(efx, intr, efx->net_dev,
299 "channel %d NAPI poll executing on CPU %d\n",
300 channel->channel, raw_smp_processor_id());
301
302 spent = ef4_process_channel(channel, budget);
303
304 if (spent < budget) {
305 if (ef4_channel_has_rx_queue(channel) &&
306 efx->irq_rx_adaptive &&
307 unlikely(++channel->irq_count == 1000)) {
308 ef4_update_irq_mod(efx, channel);
309 }
310
311 ef4_filter_rfs_expire(channel);
312
313 /* There is no race here; although napi_disable() will
314 * only wait for napi_complete(), this isn't a problem
315 * since ef4_nic_eventq_read_ack() will have no effect if
316 * interrupts have already been disabled.
317 */
318 napi_complete_done(napi, spent);
319 ef4_nic_eventq_read_ack(channel);
320 }
321
322 return spent;
323 }
324
325 /* Create event queue
326 * Event queue memory allocations are done only once. If the channel
327 * is reset, the memory buffer will be reused; this guards against
328 * errors during channel reset and also simplifies interrupt handling.
329 */
ef4_probe_eventq(struct ef4_channel * channel)330 static int ef4_probe_eventq(struct ef4_channel *channel)
331 {
332 struct ef4_nic *efx = channel->efx;
333 unsigned long entries;
334
335 netif_dbg(efx, probe, efx->net_dev,
336 "chan %d create event queue\n", channel->channel);
337
338 /* Build an event queue with room for one event per tx and rx buffer,
339 * plus some extra for link state events and MCDI completions. */
340 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
341 EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
342 channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
343
344 return ef4_nic_probe_eventq(channel);
345 }
346
347 /* Prepare channel's event queue */
ef4_init_eventq(struct ef4_channel * channel)348 static int ef4_init_eventq(struct ef4_channel *channel)
349 {
350 struct ef4_nic *efx = channel->efx;
351 int rc;
352
353 EF4_WARN_ON_PARANOID(channel->eventq_init);
354
355 netif_dbg(efx, drv, efx->net_dev,
356 "chan %d init event queue\n", channel->channel);
357
358 rc = ef4_nic_init_eventq(channel);
359 if (rc == 0) {
360 efx->type->push_irq_moderation(channel);
361 channel->eventq_read_ptr = 0;
362 channel->eventq_init = true;
363 }
364 return rc;
365 }
366
367 /* Enable event queue processing and NAPI */
ef4_start_eventq(struct ef4_channel * channel)368 void ef4_start_eventq(struct ef4_channel *channel)
369 {
370 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
371 "chan %d start event queue\n", channel->channel);
372
373 /* Make sure the NAPI handler sees the enabled flag set */
374 channel->enabled = true;
375 smp_wmb();
376
377 napi_enable(&channel->napi_str);
378 ef4_nic_eventq_read_ack(channel);
379 }
380
381 /* Disable event queue processing and NAPI */
ef4_stop_eventq(struct ef4_channel * channel)382 void ef4_stop_eventq(struct ef4_channel *channel)
383 {
384 if (!channel->enabled)
385 return;
386
387 napi_disable(&channel->napi_str);
388 channel->enabled = false;
389 }
390
ef4_fini_eventq(struct ef4_channel * channel)391 static void ef4_fini_eventq(struct ef4_channel *channel)
392 {
393 if (!channel->eventq_init)
394 return;
395
396 netif_dbg(channel->efx, drv, channel->efx->net_dev,
397 "chan %d fini event queue\n", channel->channel);
398
399 ef4_nic_fini_eventq(channel);
400 channel->eventq_init = false;
401 }
402
ef4_remove_eventq(struct ef4_channel * channel)403 static void ef4_remove_eventq(struct ef4_channel *channel)
404 {
405 netif_dbg(channel->efx, drv, channel->efx->net_dev,
406 "chan %d remove event queue\n", channel->channel);
407
408 ef4_nic_remove_eventq(channel);
409 }
410
411 /**************************************************************************
412 *
413 * Channel handling
414 *
415 *************************************************************************/
416
417 /* Allocate and initialise a channel structure. */
418 static struct ef4_channel *
ef4_alloc_channel(struct ef4_nic * efx,int i,struct ef4_channel * old_channel)419 ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
420 {
421 struct ef4_channel *channel;
422 struct ef4_rx_queue *rx_queue;
423 struct ef4_tx_queue *tx_queue;
424 int j;
425
426 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
427 if (!channel)
428 return NULL;
429
430 channel->efx = efx;
431 channel->channel = i;
432 channel->type = &ef4_default_channel_type;
433
434 for (j = 0; j < EF4_TXQ_TYPES; j++) {
435 tx_queue = &channel->tx_queue[j];
436 tx_queue->efx = efx;
437 tx_queue->queue = i * EF4_TXQ_TYPES + j;
438 tx_queue->channel = channel;
439 }
440
441 rx_queue = &channel->rx_queue;
442 rx_queue->efx = efx;
443 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
444
445 return channel;
446 }
447
448 /* Allocate and initialise a channel structure, copying parameters
449 * (but not resources) from an old channel structure.
450 */
451 static struct ef4_channel *
ef4_copy_channel(const struct ef4_channel * old_channel)452 ef4_copy_channel(const struct ef4_channel *old_channel)
453 {
454 struct ef4_channel *channel;
455 struct ef4_rx_queue *rx_queue;
456 struct ef4_tx_queue *tx_queue;
457 int j;
458
459 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
460 if (!channel)
461 return NULL;
462
463 *channel = *old_channel;
464
465 channel->napi_dev = NULL;
466 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
467 channel->napi_str.napi_id = 0;
468 channel->napi_str.state = 0;
469 memset(&channel->eventq, 0, sizeof(channel->eventq));
470
471 for (j = 0; j < EF4_TXQ_TYPES; j++) {
472 tx_queue = &channel->tx_queue[j];
473 if (tx_queue->channel)
474 tx_queue->channel = channel;
475 tx_queue->buffer = NULL;
476 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
477 }
478
479 rx_queue = &channel->rx_queue;
480 rx_queue->buffer = NULL;
481 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
482 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
483
484 return channel;
485 }
486
ef4_probe_channel(struct ef4_channel * channel)487 static int ef4_probe_channel(struct ef4_channel *channel)
488 {
489 struct ef4_tx_queue *tx_queue;
490 struct ef4_rx_queue *rx_queue;
491 int rc;
492
493 netif_dbg(channel->efx, probe, channel->efx->net_dev,
494 "creating channel %d\n", channel->channel);
495
496 rc = channel->type->pre_probe(channel);
497 if (rc)
498 goto fail;
499
500 rc = ef4_probe_eventq(channel);
501 if (rc)
502 goto fail;
503
504 ef4_for_each_channel_tx_queue(tx_queue, channel) {
505 rc = ef4_probe_tx_queue(tx_queue);
506 if (rc)
507 goto fail;
508 }
509
510 ef4_for_each_channel_rx_queue(rx_queue, channel) {
511 rc = ef4_probe_rx_queue(rx_queue);
512 if (rc)
513 goto fail;
514 }
515
516 return 0;
517
518 fail:
519 ef4_remove_channel(channel);
520 return rc;
521 }
522
523 static void
ef4_get_channel_name(struct ef4_channel * channel,char * buf,size_t len)524 ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
525 {
526 struct ef4_nic *efx = channel->efx;
527 const char *type;
528 int number;
529
530 number = channel->channel;
531 if (efx->tx_channel_offset == 0) {
532 type = "";
533 } else if (channel->channel < efx->tx_channel_offset) {
534 type = "-rx";
535 } else {
536 type = "-tx";
537 number -= efx->tx_channel_offset;
538 }
539 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
540 }
541
ef4_set_channel_names(struct ef4_nic * efx)542 static void ef4_set_channel_names(struct ef4_nic *efx)
543 {
544 struct ef4_channel *channel;
545
546 ef4_for_each_channel(channel, efx)
547 channel->type->get_name(channel,
548 efx->msi_context[channel->channel].name,
549 sizeof(efx->msi_context[0].name));
550 }
551
ef4_probe_channels(struct ef4_nic * efx)552 static int ef4_probe_channels(struct ef4_nic *efx)
553 {
554 struct ef4_channel *channel;
555 int rc;
556
557 /* Restart special buffer allocation */
558 efx->next_buffer_table = 0;
559
560 /* Probe channels in reverse, so that any 'extra' channels
561 * use the start of the buffer table. This allows the traffic
562 * channels to be resized without moving them or wasting the
563 * entries before them.
564 */
565 ef4_for_each_channel_rev(channel, efx) {
566 rc = ef4_probe_channel(channel);
567 if (rc) {
568 netif_err(efx, probe, efx->net_dev,
569 "failed to create channel %d\n",
570 channel->channel);
571 goto fail;
572 }
573 }
574 ef4_set_channel_names(efx);
575
576 return 0;
577
578 fail:
579 ef4_remove_channels(efx);
580 return rc;
581 }
582
583 /* Channels are shutdown and reinitialised whilst the NIC is running
584 * to propagate configuration changes (mtu, checksum offload), or
585 * to clear hardware error conditions
586 */
ef4_start_datapath(struct ef4_nic * efx)587 static void ef4_start_datapath(struct ef4_nic *efx)
588 {
589 netdev_features_t old_features = efx->net_dev->features;
590 bool old_rx_scatter = efx->rx_scatter;
591 struct ef4_tx_queue *tx_queue;
592 struct ef4_rx_queue *rx_queue;
593 struct ef4_channel *channel;
594 size_t rx_buf_len;
595
596 /* Calculate the rx buffer allocation parameters required to
597 * support the current MTU, including padding for header
598 * alignment and overruns.
599 */
600 efx->rx_dma_len = (efx->rx_prefix_size +
601 EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
602 efx->type->rx_buffer_padding);
603 rx_buf_len = (sizeof(struct ef4_rx_page_state) +
604 efx->rx_ip_align + efx->rx_dma_len);
605 if (rx_buf_len <= PAGE_SIZE) {
606 efx->rx_scatter = efx->type->always_rx_scatter;
607 efx->rx_buffer_order = 0;
608 } else if (efx->type->can_rx_scatter) {
609 BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
610 BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
611 2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
612 EF4_RX_BUF_ALIGNMENT) >
613 PAGE_SIZE);
614 efx->rx_scatter = true;
615 efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
616 efx->rx_buffer_order = 0;
617 } else {
618 efx->rx_scatter = false;
619 efx->rx_buffer_order = get_order(rx_buf_len);
620 }
621
622 ef4_rx_config_page_split(efx);
623 if (efx->rx_buffer_order)
624 netif_dbg(efx, drv, efx->net_dev,
625 "RX buf len=%u; page order=%u batch=%u\n",
626 efx->rx_dma_len, efx->rx_buffer_order,
627 efx->rx_pages_per_batch);
628 else
629 netif_dbg(efx, drv, efx->net_dev,
630 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
631 efx->rx_dma_len, efx->rx_page_buf_step,
632 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
633
634 /* Restore previously fixed features in hw_features and remove
635 * features which are fixed now
636 */
637 efx->net_dev->hw_features |= efx->net_dev->features;
638 efx->net_dev->hw_features &= ~efx->fixed_features;
639 efx->net_dev->features |= efx->fixed_features;
640 if (efx->net_dev->features != old_features)
641 netdev_features_change(efx->net_dev);
642
643 /* RX filters may also have scatter-enabled flags */
644 if (efx->rx_scatter != old_rx_scatter)
645 efx->type->filter_update_rx_scatter(efx);
646
647 /* We must keep at least one descriptor in a TX ring empty.
648 * We could avoid this when the queue size does not exactly
649 * match the hardware ring size, but it's not that important.
650 * Therefore we stop the queue when one more skb might fill
651 * the ring completely. We wake it when half way back to
652 * empty.
653 */
654 efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
655 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
656
657 /* Initialise the channels */
658 ef4_for_each_channel(channel, efx) {
659 ef4_for_each_channel_tx_queue(tx_queue, channel) {
660 ef4_init_tx_queue(tx_queue);
661 atomic_inc(&efx->active_queues);
662 }
663
664 ef4_for_each_channel_rx_queue(rx_queue, channel) {
665 ef4_init_rx_queue(rx_queue);
666 atomic_inc(&efx->active_queues);
667 ef4_stop_eventq(channel);
668 ef4_fast_push_rx_descriptors(rx_queue, false);
669 ef4_start_eventq(channel);
670 }
671
672 WARN_ON(channel->rx_pkt_n_frags);
673 }
674
675 if (netif_device_present(efx->net_dev))
676 netif_tx_wake_all_queues(efx->net_dev);
677 }
678
ef4_stop_datapath(struct ef4_nic * efx)679 static void ef4_stop_datapath(struct ef4_nic *efx)
680 {
681 struct ef4_channel *channel;
682 struct ef4_tx_queue *tx_queue;
683 struct ef4_rx_queue *rx_queue;
684 int rc;
685
686 EF4_ASSERT_RESET_SERIALISED(efx);
687 BUG_ON(efx->port_enabled);
688
689 /* Stop RX refill */
690 ef4_for_each_channel(channel, efx) {
691 ef4_for_each_channel_rx_queue(rx_queue, channel)
692 rx_queue->refill_enabled = false;
693 }
694
695 ef4_for_each_channel(channel, efx) {
696 /* RX packet processing is pipelined, so wait for the
697 * NAPI handler to complete. At least event queue 0
698 * might be kept active by non-data events, so don't
699 * use napi_synchronize() but actually disable NAPI
700 * temporarily.
701 */
702 if (ef4_channel_has_rx_queue(channel)) {
703 ef4_stop_eventq(channel);
704 ef4_start_eventq(channel);
705 }
706 }
707
708 rc = efx->type->fini_dmaq(efx);
709 if (rc && EF4_WORKAROUND_7803(efx)) {
710 /* Schedule a reset to recover from the flush failure. The
711 * descriptor caches reference memory we're about to free,
712 * but falcon_reconfigure_mac_wrapper() won't reconnect
713 * the MACs because of the pending reset.
714 */
715 netif_err(efx, drv, efx->net_dev,
716 "Resetting to recover from flush failure\n");
717 ef4_schedule_reset(efx, RESET_TYPE_ALL);
718 } else if (rc) {
719 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
720 } else {
721 netif_dbg(efx, drv, efx->net_dev,
722 "successfully flushed all queues\n");
723 }
724
725 ef4_for_each_channel(channel, efx) {
726 ef4_for_each_channel_rx_queue(rx_queue, channel)
727 ef4_fini_rx_queue(rx_queue);
728 ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
729 ef4_fini_tx_queue(tx_queue);
730 }
731 }
732
ef4_remove_channel(struct ef4_channel * channel)733 static void ef4_remove_channel(struct ef4_channel *channel)
734 {
735 struct ef4_tx_queue *tx_queue;
736 struct ef4_rx_queue *rx_queue;
737
738 netif_dbg(channel->efx, drv, channel->efx->net_dev,
739 "destroy chan %d\n", channel->channel);
740
741 ef4_for_each_channel_rx_queue(rx_queue, channel)
742 ef4_remove_rx_queue(rx_queue);
743 ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
744 ef4_remove_tx_queue(tx_queue);
745 ef4_remove_eventq(channel);
746 channel->type->post_remove(channel);
747 }
748
ef4_remove_channels(struct ef4_nic * efx)749 static void ef4_remove_channels(struct ef4_nic *efx)
750 {
751 struct ef4_channel *channel;
752
753 ef4_for_each_channel(channel, efx)
754 ef4_remove_channel(channel);
755 }
756
757 int
ef4_realloc_channels(struct ef4_nic * efx,u32 rxq_entries,u32 txq_entries)758 ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
759 {
760 struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
761 u32 old_rxq_entries, old_txq_entries;
762 unsigned i, next_buffer_table = 0;
763 int rc, rc2;
764
765 rc = ef4_check_disabled(efx);
766 if (rc)
767 return rc;
768
769 /* Not all channels should be reallocated. We must avoid
770 * reallocating their buffer table entries.
771 */
772 ef4_for_each_channel(channel, efx) {
773 struct ef4_rx_queue *rx_queue;
774 struct ef4_tx_queue *tx_queue;
775
776 if (channel->type->copy)
777 continue;
778 next_buffer_table = max(next_buffer_table,
779 channel->eventq.index +
780 channel->eventq.entries);
781 ef4_for_each_channel_rx_queue(rx_queue, channel)
782 next_buffer_table = max(next_buffer_table,
783 rx_queue->rxd.index +
784 rx_queue->rxd.entries);
785 ef4_for_each_channel_tx_queue(tx_queue, channel)
786 next_buffer_table = max(next_buffer_table,
787 tx_queue->txd.index +
788 tx_queue->txd.entries);
789 }
790
791 ef4_device_detach_sync(efx);
792 ef4_stop_all(efx);
793 ef4_soft_disable_interrupts(efx);
794
795 /* Clone channels (where possible) */
796 memset(other_channel, 0, sizeof(other_channel));
797 for (i = 0; i < efx->n_channels; i++) {
798 channel = efx->channel[i];
799 if (channel->type->copy)
800 channel = channel->type->copy(channel);
801 if (!channel) {
802 rc = -ENOMEM;
803 goto out;
804 }
805 other_channel[i] = channel;
806 }
807
808 /* Swap entry counts and channel pointers */
809 old_rxq_entries = efx->rxq_entries;
810 old_txq_entries = efx->txq_entries;
811 efx->rxq_entries = rxq_entries;
812 efx->txq_entries = txq_entries;
813 for (i = 0; i < efx->n_channels; i++) {
814 swap(efx->channel[i], other_channel[i]);
815 }
816
817 /* Restart buffer table allocation */
818 efx->next_buffer_table = next_buffer_table;
819
820 for (i = 0; i < efx->n_channels; i++) {
821 channel = efx->channel[i];
822 if (!channel->type->copy)
823 continue;
824 rc = ef4_probe_channel(channel);
825 if (rc)
826 goto rollback;
827 ef4_init_napi_channel(efx->channel[i]);
828 }
829
830 out:
831 /* Destroy unused channel structures */
832 for (i = 0; i < efx->n_channels; i++) {
833 channel = other_channel[i];
834 if (channel && channel->type->copy) {
835 ef4_fini_napi_channel(channel);
836 ef4_remove_channel(channel);
837 kfree(channel);
838 }
839 }
840
841 rc2 = ef4_soft_enable_interrupts(efx);
842 if (rc2) {
843 rc = rc ? rc : rc2;
844 netif_err(efx, drv, efx->net_dev,
845 "unable to restart interrupts on channel reallocation\n");
846 ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
847 } else {
848 ef4_start_all(efx);
849 netif_device_attach(efx->net_dev);
850 }
851 return rc;
852
853 rollback:
854 /* Swap back */
855 efx->rxq_entries = old_rxq_entries;
856 efx->txq_entries = old_txq_entries;
857 for (i = 0; i < efx->n_channels; i++) {
858 swap(efx->channel[i], other_channel[i]);
859 }
860 goto out;
861 }
862
ef4_schedule_slow_fill(struct ef4_rx_queue * rx_queue)863 void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
864 {
865 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
866 }
867
868 static const struct ef4_channel_type ef4_default_channel_type = {
869 .pre_probe = ef4_channel_dummy_op_int,
870 .post_remove = ef4_channel_dummy_op_void,
871 .get_name = ef4_get_channel_name,
872 .copy = ef4_copy_channel,
873 .keep_eventq = false,
874 };
875
ef4_channel_dummy_op_int(struct ef4_channel * channel)876 int ef4_channel_dummy_op_int(struct ef4_channel *channel)
877 {
878 return 0;
879 }
880
ef4_channel_dummy_op_void(struct ef4_channel * channel)881 void ef4_channel_dummy_op_void(struct ef4_channel *channel)
882 {
883 }
884
885 /**************************************************************************
886 *
887 * Port handling
888 *
889 **************************************************************************/
890
891 /* This ensures that the kernel is kept informed (via
892 * netif_carrier_on/off) of the link status, and also maintains the
893 * link status's stop on the port's TX queue.
894 */
ef4_link_status_changed(struct ef4_nic * efx)895 void ef4_link_status_changed(struct ef4_nic *efx)
896 {
897 struct ef4_link_state *link_state = &efx->link_state;
898
899 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
900 * that no events are triggered between unregister_netdev() and the
901 * driver unloading. A more general condition is that NETDEV_CHANGE
902 * can only be generated between NETDEV_UP and NETDEV_DOWN */
903 if (!netif_running(efx->net_dev))
904 return;
905
906 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
907 efx->n_link_state_changes++;
908
909 if (link_state->up)
910 netif_carrier_on(efx->net_dev);
911 else
912 netif_carrier_off(efx->net_dev);
913 }
914
915 /* Status message for kernel log */
916 if (link_state->up)
917 netif_info(efx, link, efx->net_dev,
918 "link up at %uMbps %s-duplex (MTU %d)\n",
919 link_state->speed, link_state->fd ? "full" : "half",
920 efx->net_dev->mtu);
921 else
922 netif_info(efx, link, efx->net_dev, "link down\n");
923 }
924
ef4_link_set_advertising(struct ef4_nic * efx,u32 advertising)925 void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
926 {
927 efx->link_advertising = advertising;
928 if (advertising) {
929 if (advertising & ADVERTISED_Pause)
930 efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
931 else
932 efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
933 if (advertising & ADVERTISED_Asym_Pause)
934 efx->wanted_fc ^= EF4_FC_TX;
935 }
936 }
937
ef4_link_set_wanted_fc(struct ef4_nic * efx,u8 wanted_fc)938 void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
939 {
940 efx->wanted_fc = wanted_fc;
941 if (efx->link_advertising) {
942 if (wanted_fc & EF4_FC_RX)
943 efx->link_advertising |= (ADVERTISED_Pause |
944 ADVERTISED_Asym_Pause);
945 else
946 efx->link_advertising &= ~(ADVERTISED_Pause |
947 ADVERTISED_Asym_Pause);
948 if (wanted_fc & EF4_FC_TX)
949 efx->link_advertising ^= ADVERTISED_Asym_Pause;
950 }
951 }
952
953 static void ef4_fini_port(struct ef4_nic *efx);
954
955 /* We assume that efx->type->reconfigure_mac will always try to sync RX
956 * filters and therefore needs to read-lock the filter table against freeing
957 */
ef4_mac_reconfigure(struct ef4_nic * efx)958 void ef4_mac_reconfigure(struct ef4_nic *efx)
959 {
960 down_read(&efx->filter_sem);
961 efx->type->reconfigure_mac(efx);
962 up_read(&efx->filter_sem);
963 }
964
965 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
966 * the MAC appropriately. All other PHY configuration changes are pushed
967 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
968 * through ef4_monitor().
969 *
970 * Callers must hold the mac_lock
971 */
__ef4_reconfigure_port(struct ef4_nic * efx)972 int __ef4_reconfigure_port(struct ef4_nic *efx)
973 {
974 enum ef4_phy_mode phy_mode;
975 int rc;
976
977 WARN_ON(!mutex_is_locked(&efx->mac_lock));
978
979 /* Disable PHY transmit in mac level loopbacks */
980 phy_mode = efx->phy_mode;
981 if (LOOPBACK_INTERNAL(efx))
982 efx->phy_mode |= PHY_MODE_TX_DISABLED;
983 else
984 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
985
986 rc = efx->type->reconfigure_port(efx);
987
988 if (rc)
989 efx->phy_mode = phy_mode;
990
991 return rc;
992 }
993
994 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
995 * disabled. */
ef4_reconfigure_port(struct ef4_nic * efx)996 int ef4_reconfigure_port(struct ef4_nic *efx)
997 {
998 int rc;
999
1000 EF4_ASSERT_RESET_SERIALISED(efx);
1001
1002 mutex_lock(&efx->mac_lock);
1003 rc = __ef4_reconfigure_port(efx);
1004 mutex_unlock(&efx->mac_lock);
1005
1006 return rc;
1007 }
1008
1009 /* Asynchronous work item for changing MAC promiscuity and multicast
1010 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1011 * MAC directly. */
ef4_mac_work(struct work_struct * data)1012 static void ef4_mac_work(struct work_struct *data)
1013 {
1014 struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1015
1016 mutex_lock(&efx->mac_lock);
1017 if (efx->port_enabled)
1018 ef4_mac_reconfigure(efx);
1019 mutex_unlock(&efx->mac_lock);
1020 }
1021
ef4_probe_port(struct ef4_nic * efx)1022 static int ef4_probe_port(struct ef4_nic *efx)
1023 {
1024 int rc;
1025
1026 netif_dbg(efx, probe, efx->net_dev, "create port\n");
1027
1028 if (phy_flash_cfg)
1029 efx->phy_mode = PHY_MODE_SPECIAL;
1030
1031 /* Connect up MAC/PHY operations table */
1032 rc = efx->type->probe_port(efx);
1033 if (rc)
1034 return rc;
1035
1036 /* Initialise MAC address to permanent address */
1037 eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
1038
1039 return 0;
1040 }
1041
ef4_init_port(struct ef4_nic * efx)1042 static int ef4_init_port(struct ef4_nic *efx)
1043 {
1044 int rc;
1045
1046 netif_dbg(efx, drv, efx->net_dev, "init port\n");
1047
1048 mutex_lock(&efx->mac_lock);
1049
1050 rc = efx->phy_op->init(efx);
1051 if (rc)
1052 goto fail1;
1053
1054 efx->port_initialized = true;
1055
1056 /* Reconfigure the MAC before creating dma queues (required for
1057 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1058 ef4_mac_reconfigure(efx);
1059
1060 /* Ensure the PHY advertises the correct flow control settings */
1061 rc = efx->phy_op->reconfigure(efx);
1062 if (rc && rc != -EPERM)
1063 goto fail2;
1064
1065 mutex_unlock(&efx->mac_lock);
1066 return 0;
1067
1068 fail2:
1069 efx->phy_op->fini(efx);
1070 fail1:
1071 mutex_unlock(&efx->mac_lock);
1072 return rc;
1073 }
1074
ef4_start_port(struct ef4_nic * efx)1075 static void ef4_start_port(struct ef4_nic *efx)
1076 {
1077 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1078 BUG_ON(efx->port_enabled);
1079
1080 mutex_lock(&efx->mac_lock);
1081 efx->port_enabled = true;
1082
1083 /* Ensure MAC ingress/egress is enabled */
1084 ef4_mac_reconfigure(efx);
1085
1086 mutex_unlock(&efx->mac_lock);
1087 }
1088
1089 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1090 * and the async self-test, wait for them to finish and prevent them
1091 * being scheduled again. This doesn't cover online resets, which
1092 * should only be cancelled when removing the device.
1093 */
ef4_stop_port(struct ef4_nic * efx)1094 static void ef4_stop_port(struct ef4_nic *efx)
1095 {
1096 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1097
1098 EF4_ASSERT_RESET_SERIALISED(efx);
1099
1100 mutex_lock(&efx->mac_lock);
1101 efx->port_enabled = false;
1102 mutex_unlock(&efx->mac_lock);
1103
1104 /* Serialise against ef4_set_multicast_list() */
1105 netif_addr_lock_bh(efx->net_dev);
1106 netif_addr_unlock_bh(efx->net_dev);
1107
1108 cancel_delayed_work_sync(&efx->monitor_work);
1109 ef4_selftest_async_cancel(efx);
1110 cancel_work_sync(&efx->mac_work);
1111 }
1112
ef4_fini_port(struct ef4_nic * efx)1113 static void ef4_fini_port(struct ef4_nic *efx)
1114 {
1115 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1116
1117 if (!efx->port_initialized)
1118 return;
1119
1120 efx->phy_op->fini(efx);
1121 efx->port_initialized = false;
1122
1123 efx->link_state.up = false;
1124 ef4_link_status_changed(efx);
1125 }
1126
ef4_remove_port(struct ef4_nic * efx)1127 static void ef4_remove_port(struct ef4_nic *efx)
1128 {
1129 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1130
1131 efx->type->remove_port(efx);
1132 }
1133
1134 /**************************************************************************
1135 *
1136 * NIC handling
1137 *
1138 **************************************************************************/
1139
1140 static LIST_HEAD(ef4_primary_list);
1141 static LIST_HEAD(ef4_unassociated_list);
1142
ef4_same_controller(struct ef4_nic * left,struct ef4_nic * right)1143 static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1144 {
1145 return left->type == right->type &&
1146 left->vpd_sn && right->vpd_sn &&
1147 !strcmp(left->vpd_sn, right->vpd_sn);
1148 }
1149
ef4_associate(struct ef4_nic * efx)1150 static void ef4_associate(struct ef4_nic *efx)
1151 {
1152 struct ef4_nic *other, *next;
1153
1154 if (efx->primary == efx) {
1155 /* Adding primary function; look for secondaries */
1156
1157 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1158 list_add_tail(&efx->node, &ef4_primary_list);
1159
1160 list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1161 node) {
1162 if (ef4_same_controller(efx, other)) {
1163 list_del(&other->node);
1164 netif_dbg(other, probe, other->net_dev,
1165 "moving to secondary list of %s %s\n",
1166 pci_name(efx->pci_dev),
1167 efx->net_dev->name);
1168 list_add_tail(&other->node,
1169 &efx->secondary_list);
1170 other->primary = efx;
1171 }
1172 }
1173 } else {
1174 /* Adding secondary function; look for primary */
1175
1176 list_for_each_entry(other, &ef4_primary_list, node) {
1177 if (ef4_same_controller(efx, other)) {
1178 netif_dbg(efx, probe, efx->net_dev,
1179 "adding to secondary list of %s %s\n",
1180 pci_name(other->pci_dev),
1181 other->net_dev->name);
1182 list_add_tail(&efx->node,
1183 &other->secondary_list);
1184 efx->primary = other;
1185 return;
1186 }
1187 }
1188
1189 netif_dbg(efx, probe, efx->net_dev,
1190 "adding to unassociated list\n");
1191 list_add_tail(&efx->node, &ef4_unassociated_list);
1192 }
1193 }
1194
ef4_dissociate(struct ef4_nic * efx)1195 static void ef4_dissociate(struct ef4_nic *efx)
1196 {
1197 struct ef4_nic *other, *next;
1198
1199 list_del(&efx->node);
1200 efx->primary = NULL;
1201
1202 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1203 list_del(&other->node);
1204 netif_dbg(other, probe, other->net_dev,
1205 "moving to unassociated list\n");
1206 list_add_tail(&other->node, &ef4_unassociated_list);
1207 other->primary = NULL;
1208 }
1209 }
1210
1211 /* This configures the PCI device to enable I/O and DMA. */
ef4_init_io(struct ef4_nic * efx)1212 static int ef4_init_io(struct ef4_nic *efx)
1213 {
1214 struct pci_dev *pci_dev = efx->pci_dev;
1215 dma_addr_t dma_mask = efx->type->max_dma_mask;
1216 unsigned int mem_map_size = efx->type->mem_map_size(efx);
1217 int rc, bar;
1218
1219 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1220
1221 bar = efx->type->mem_bar;
1222
1223 rc = pci_enable_device(pci_dev);
1224 if (rc) {
1225 netif_err(efx, probe, efx->net_dev,
1226 "failed to enable PCI device\n");
1227 goto fail1;
1228 }
1229
1230 pci_set_master(pci_dev);
1231
1232 /* Set the PCI DMA mask. Try all possibilities from our genuine mask
1233 * down to 32 bits, because some architectures will allow 40 bit
1234 * masks event though they reject 46 bit masks.
1235 */
1236 while (dma_mask > 0x7fffffffUL) {
1237 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1238 if (rc == 0)
1239 break;
1240 dma_mask >>= 1;
1241 }
1242 if (rc) {
1243 netif_err(efx, probe, efx->net_dev,
1244 "could not find a suitable DMA mask\n");
1245 goto fail2;
1246 }
1247 netif_dbg(efx, probe, efx->net_dev,
1248 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1249
1250 efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1251 rc = pci_request_region(pci_dev, bar, "sfc");
1252 if (rc) {
1253 netif_err(efx, probe, efx->net_dev,
1254 "request for memory BAR failed\n");
1255 rc = -EIO;
1256 goto fail3;
1257 }
1258 efx->membase = ioremap(efx->membase_phys, mem_map_size);
1259 if (!efx->membase) {
1260 netif_err(efx, probe, efx->net_dev,
1261 "could not map memory BAR at %llx+%x\n",
1262 (unsigned long long)efx->membase_phys, mem_map_size);
1263 rc = -ENOMEM;
1264 goto fail4;
1265 }
1266 netif_dbg(efx, probe, efx->net_dev,
1267 "memory BAR at %llx+%x (virtual %p)\n",
1268 (unsigned long long)efx->membase_phys, mem_map_size,
1269 efx->membase);
1270
1271 return 0;
1272
1273 fail4:
1274 pci_release_region(efx->pci_dev, bar);
1275 fail3:
1276 efx->membase_phys = 0;
1277 fail2:
1278 pci_disable_device(efx->pci_dev);
1279 fail1:
1280 return rc;
1281 }
1282
ef4_fini_io(struct ef4_nic * efx)1283 static void ef4_fini_io(struct ef4_nic *efx)
1284 {
1285 int bar;
1286
1287 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1288
1289 if (efx->membase) {
1290 iounmap(efx->membase);
1291 efx->membase = NULL;
1292 }
1293
1294 if (efx->membase_phys) {
1295 bar = efx->type->mem_bar;
1296 pci_release_region(efx->pci_dev, bar);
1297 efx->membase_phys = 0;
1298 }
1299
1300 /* Don't disable bus-mastering if VFs are assigned */
1301 if (!pci_vfs_assigned(efx->pci_dev))
1302 pci_disable_device(efx->pci_dev);
1303 }
1304
ef4_set_default_rx_indir_table(struct ef4_nic * efx)1305 void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1306 {
1307 size_t i;
1308
1309 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1310 efx->rx_indir_table[i] =
1311 ethtool_rxfh_indir_default(i, efx->rss_spread);
1312 }
1313
ef4_wanted_parallelism(struct ef4_nic * efx)1314 static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1315 {
1316 cpumask_var_t thread_mask;
1317 unsigned int count;
1318 int cpu;
1319
1320 if (rss_cpus) {
1321 count = rss_cpus;
1322 } else {
1323 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1324 netif_warn(efx, probe, efx->net_dev,
1325 "RSS disabled due to allocation failure\n");
1326 return 1;
1327 }
1328
1329 count = 0;
1330 for_each_online_cpu(cpu) {
1331 if (!cpumask_test_cpu(cpu, thread_mask)) {
1332 ++count;
1333 cpumask_or(thread_mask, thread_mask,
1334 topology_sibling_cpumask(cpu));
1335 }
1336 }
1337
1338 free_cpumask_var(thread_mask);
1339 }
1340
1341 if (count > EF4_MAX_RX_QUEUES) {
1342 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1343 "Reducing number of rx queues from %u to %u.\n",
1344 count, EF4_MAX_RX_QUEUES);
1345 count = EF4_MAX_RX_QUEUES;
1346 }
1347
1348 return count;
1349 }
1350
1351 /* Probe the number and type of interrupts we are able to obtain, and
1352 * the resulting numbers of channels and RX queues.
1353 */
ef4_probe_interrupts(struct ef4_nic * efx)1354 static int ef4_probe_interrupts(struct ef4_nic *efx)
1355 {
1356 unsigned int extra_channels = 0;
1357 unsigned int i, j;
1358 int rc;
1359
1360 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1361 if (efx->extra_channel_type[i])
1362 ++extra_channels;
1363
1364 if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1365 struct msix_entry xentries[EF4_MAX_CHANNELS];
1366 unsigned int n_channels;
1367
1368 n_channels = ef4_wanted_parallelism(efx);
1369 if (ef4_separate_tx_channels)
1370 n_channels *= 2;
1371 n_channels += extra_channels;
1372 n_channels = min(n_channels, efx->max_channels);
1373
1374 for (i = 0; i < n_channels; i++)
1375 xentries[i].entry = i;
1376 rc = pci_enable_msix_range(efx->pci_dev,
1377 xentries, 1, n_channels);
1378 if (rc < 0) {
1379 /* Fall back to single channel MSI */
1380 efx->interrupt_mode = EF4_INT_MODE_MSI;
1381 netif_err(efx, drv, efx->net_dev,
1382 "could not enable MSI-X\n");
1383 } else if (rc < n_channels) {
1384 netif_err(efx, drv, efx->net_dev,
1385 "WARNING: Insufficient MSI-X vectors"
1386 " available (%d < %u).\n", rc, n_channels);
1387 netif_err(efx, drv, efx->net_dev,
1388 "WARNING: Performance may be reduced.\n");
1389 n_channels = rc;
1390 }
1391
1392 if (rc > 0) {
1393 efx->n_channels = n_channels;
1394 if (n_channels > extra_channels)
1395 n_channels -= extra_channels;
1396 if (ef4_separate_tx_channels) {
1397 efx->n_tx_channels = min(max(n_channels / 2,
1398 1U),
1399 efx->max_tx_channels);
1400 efx->n_rx_channels = max(n_channels -
1401 efx->n_tx_channels,
1402 1U);
1403 } else {
1404 efx->n_tx_channels = min(n_channels,
1405 efx->max_tx_channels);
1406 efx->n_rx_channels = n_channels;
1407 }
1408 for (i = 0; i < efx->n_channels; i++)
1409 ef4_get_channel(efx, i)->irq =
1410 xentries[i].vector;
1411 }
1412 }
1413
1414 /* Try single interrupt MSI */
1415 if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1416 efx->n_channels = 1;
1417 efx->n_rx_channels = 1;
1418 efx->n_tx_channels = 1;
1419 rc = pci_enable_msi(efx->pci_dev);
1420 if (rc == 0) {
1421 ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1422 } else {
1423 netif_err(efx, drv, efx->net_dev,
1424 "could not enable MSI\n");
1425 efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1426 }
1427 }
1428
1429 /* Assume legacy interrupts */
1430 if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1431 efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1432 efx->n_rx_channels = 1;
1433 efx->n_tx_channels = 1;
1434 efx->legacy_irq = efx->pci_dev->irq;
1435 }
1436
1437 /* Assign extra channels if possible */
1438 j = efx->n_channels;
1439 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1440 if (!efx->extra_channel_type[i])
1441 continue;
1442 if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1443 efx->n_channels <= extra_channels) {
1444 efx->extra_channel_type[i]->handle_no_channel(efx);
1445 } else {
1446 --j;
1447 ef4_get_channel(efx, j)->type =
1448 efx->extra_channel_type[i];
1449 }
1450 }
1451
1452 efx->rss_spread = efx->n_rx_channels;
1453
1454 return 0;
1455 }
1456
ef4_soft_enable_interrupts(struct ef4_nic * efx)1457 static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1458 {
1459 struct ef4_channel *channel, *end_channel;
1460 int rc;
1461
1462 BUG_ON(efx->state == STATE_DISABLED);
1463
1464 efx->irq_soft_enabled = true;
1465 smp_wmb();
1466
1467 ef4_for_each_channel(channel, efx) {
1468 if (!channel->type->keep_eventq) {
1469 rc = ef4_init_eventq(channel);
1470 if (rc)
1471 goto fail;
1472 }
1473 ef4_start_eventq(channel);
1474 }
1475
1476 return 0;
1477 fail:
1478 end_channel = channel;
1479 ef4_for_each_channel(channel, efx) {
1480 if (channel == end_channel)
1481 break;
1482 ef4_stop_eventq(channel);
1483 if (!channel->type->keep_eventq)
1484 ef4_fini_eventq(channel);
1485 }
1486
1487 return rc;
1488 }
1489
ef4_soft_disable_interrupts(struct ef4_nic * efx)1490 static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1491 {
1492 struct ef4_channel *channel;
1493
1494 if (efx->state == STATE_DISABLED)
1495 return;
1496
1497 efx->irq_soft_enabled = false;
1498 smp_wmb();
1499
1500 if (efx->legacy_irq)
1501 synchronize_irq(efx->legacy_irq);
1502
1503 ef4_for_each_channel(channel, efx) {
1504 if (channel->irq)
1505 synchronize_irq(channel->irq);
1506
1507 ef4_stop_eventq(channel);
1508 if (!channel->type->keep_eventq)
1509 ef4_fini_eventq(channel);
1510 }
1511 }
1512
ef4_enable_interrupts(struct ef4_nic * efx)1513 static int ef4_enable_interrupts(struct ef4_nic *efx)
1514 {
1515 struct ef4_channel *channel, *end_channel;
1516 int rc;
1517
1518 BUG_ON(efx->state == STATE_DISABLED);
1519
1520 if (efx->eeh_disabled_legacy_irq) {
1521 enable_irq(efx->legacy_irq);
1522 efx->eeh_disabled_legacy_irq = false;
1523 }
1524
1525 efx->type->irq_enable_master(efx);
1526
1527 ef4_for_each_channel(channel, efx) {
1528 if (channel->type->keep_eventq) {
1529 rc = ef4_init_eventq(channel);
1530 if (rc)
1531 goto fail;
1532 }
1533 }
1534
1535 rc = ef4_soft_enable_interrupts(efx);
1536 if (rc)
1537 goto fail;
1538
1539 return 0;
1540
1541 fail:
1542 end_channel = channel;
1543 ef4_for_each_channel(channel, efx) {
1544 if (channel == end_channel)
1545 break;
1546 if (channel->type->keep_eventq)
1547 ef4_fini_eventq(channel);
1548 }
1549
1550 efx->type->irq_disable_non_ev(efx);
1551
1552 return rc;
1553 }
1554
ef4_disable_interrupts(struct ef4_nic * efx)1555 static void ef4_disable_interrupts(struct ef4_nic *efx)
1556 {
1557 struct ef4_channel *channel;
1558
1559 ef4_soft_disable_interrupts(efx);
1560
1561 ef4_for_each_channel(channel, efx) {
1562 if (channel->type->keep_eventq)
1563 ef4_fini_eventq(channel);
1564 }
1565
1566 efx->type->irq_disable_non_ev(efx);
1567 }
1568
ef4_remove_interrupts(struct ef4_nic * efx)1569 static void ef4_remove_interrupts(struct ef4_nic *efx)
1570 {
1571 struct ef4_channel *channel;
1572
1573 /* Remove MSI/MSI-X interrupts */
1574 ef4_for_each_channel(channel, efx)
1575 channel->irq = 0;
1576 pci_disable_msi(efx->pci_dev);
1577 pci_disable_msix(efx->pci_dev);
1578
1579 /* Remove legacy interrupt */
1580 efx->legacy_irq = 0;
1581 }
1582
ef4_set_channels(struct ef4_nic * efx)1583 static void ef4_set_channels(struct ef4_nic *efx)
1584 {
1585 struct ef4_channel *channel;
1586 struct ef4_tx_queue *tx_queue;
1587
1588 efx->tx_channel_offset =
1589 ef4_separate_tx_channels ?
1590 efx->n_channels - efx->n_tx_channels : 0;
1591
1592 /* We need to mark which channels really have RX and TX
1593 * queues, and adjust the TX queue numbers if we have separate
1594 * RX-only and TX-only channels.
1595 */
1596 ef4_for_each_channel(channel, efx) {
1597 if (channel->channel < efx->n_rx_channels)
1598 channel->rx_queue.core_index = channel->channel;
1599 else
1600 channel->rx_queue.core_index = -1;
1601
1602 ef4_for_each_channel_tx_queue(tx_queue, channel)
1603 tx_queue->queue -= (efx->tx_channel_offset *
1604 EF4_TXQ_TYPES);
1605 }
1606 }
1607
ef4_probe_nic(struct ef4_nic * efx)1608 static int ef4_probe_nic(struct ef4_nic *efx)
1609 {
1610 int rc;
1611
1612 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1613
1614 /* Carry out hardware-type specific initialisation */
1615 rc = efx->type->probe(efx);
1616 if (rc)
1617 return rc;
1618
1619 do {
1620 if (!efx->max_channels || !efx->max_tx_channels) {
1621 netif_err(efx, drv, efx->net_dev,
1622 "Insufficient resources to allocate"
1623 " any channels\n");
1624 rc = -ENOSPC;
1625 goto fail1;
1626 }
1627
1628 /* Determine the number of channels and queues by trying
1629 * to hook in MSI-X interrupts.
1630 */
1631 rc = ef4_probe_interrupts(efx);
1632 if (rc)
1633 goto fail1;
1634
1635 ef4_set_channels(efx);
1636
1637 /* dimension_resources can fail with EAGAIN */
1638 rc = efx->type->dimension_resources(efx);
1639 if (rc != 0 && rc != -EAGAIN)
1640 goto fail2;
1641
1642 if (rc == -EAGAIN)
1643 /* try again with new max_channels */
1644 ef4_remove_interrupts(efx);
1645
1646 } while (rc == -EAGAIN);
1647
1648 if (efx->n_channels > 1)
1649 netdev_rss_key_fill(&efx->rx_hash_key,
1650 sizeof(efx->rx_hash_key));
1651 ef4_set_default_rx_indir_table(efx);
1652
1653 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1654 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1655
1656 /* Initialise the interrupt moderation settings */
1657 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1658 ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1659 true);
1660
1661 return 0;
1662
1663 fail2:
1664 ef4_remove_interrupts(efx);
1665 fail1:
1666 efx->type->remove(efx);
1667 return rc;
1668 }
1669
ef4_remove_nic(struct ef4_nic * efx)1670 static void ef4_remove_nic(struct ef4_nic *efx)
1671 {
1672 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1673
1674 ef4_remove_interrupts(efx);
1675 efx->type->remove(efx);
1676 }
1677
ef4_probe_filters(struct ef4_nic * efx)1678 static int ef4_probe_filters(struct ef4_nic *efx)
1679 {
1680 int rc;
1681
1682 spin_lock_init(&efx->filter_lock);
1683 init_rwsem(&efx->filter_sem);
1684 mutex_lock(&efx->mac_lock);
1685 down_write(&efx->filter_sem);
1686 rc = efx->type->filter_table_probe(efx);
1687 if (rc)
1688 goto out_unlock;
1689
1690 #ifdef CONFIG_RFS_ACCEL
1691 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1692 struct ef4_channel *channel;
1693 int i, success = 1;
1694
1695 ef4_for_each_channel(channel, efx) {
1696 channel->rps_flow_id =
1697 kcalloc(efx->type->max_rx_ip_filters,
1698 sizeof(*channel->rps_flow_id),
1699 GFP_KERNEL);
1700 if (!channel->rps_flow_id)
1701 success = 0;
1702 else
1703 for (i = 0;
1704 i < efx->type->max_rx_ip_filters;
1705 ++i)
1706 channel->rps_flow_id[i] =
1707 RPS_FLOW_ID_INVALID;
1708 }
1709
1710 if (!success) {
1711 ef4_for_each_channel(channel, efx)
1712 kfree(channel->rps_flow_id);
1713 efx->type->filter_table_remove(efx);
1714 rc = -ENOMEM;
1715 goto out_unlock;
1716 }
1717
1718 efx->rps_expire_index = efx->rps_expire_channel = 0;
1719 }
1720 #endif
1721 out_unlock:
1722 up_write(&efx->filter_sem);
1723 mutex_unlock(&efx->mac_lock);
1724 return rc;
1725 }
1726
ef4_remove_filters(struct ef4_nic * efx)1727 static void ef4_remove_filters(struct ef4_nic *efx)
1728 {
1729 #ifdef CONFIG_RFS_ACCEL
1730 struct ef4_channel *channel;
1731
1732 ef4_for_each_channel(channel, efx)
1733 kfree(channel->rps_flow_id);
1734 #endif
1735 down_write(&efx->filter_sem);
1736 efx->type->filter_table_remove(efx);
1737 up_write(&efx->filter_sem);
1738 }
1739
ef4_restore_filters(struct ef4_nic * efx)1740 static void ef4_restore_filters(struct ef4_nic *efx)
1741 {
1742 down_read(&efx->filter_sem);
1743 efx->type->filter_table_restore(efx);
1744 up_read(&efx->filter_sem);
1745 }
1746
1747 /**************************************************************************
1748 *
1749 * NIC startup/shutdown
1750 *
1751 *************************************************************************/
1752
ef4_probe_all(struct ef4_nic * efx)1753 static int ef4_probe_all(struct ef4_nic *efx)
1754 {
1755 int rc;
1756
1757 rc = ef4_probe_nic(efx);
1758 if (rc) {
1759 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1760 goto fail1;
1761 }
1762
1763 rc = ef4_probe_port(efx);
1764 if (rc) {
1765 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1766 goto fail2;
1767 }
1768
1769 BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1770 if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1771 rc = -EINVAL;
1772 goto fail3;
1773 }
1774 efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1775
1776 rc = ef4_probe_filters(efx);
1777 if (rc) {
1778 netif_err(efx, probe, efx->net_dev,
1779 "failed to create filter tables\n");
1780 goto fail4;
1781 }
1782
1783 rc = ef4_probe_channels(efx);
1784 if (rc)
1785 goto fail5;
1786
1787 return 0;
1788
1789 fail5:
1790 ef4_remove_filters(efx);
1791 fail4:
1792 fail3:
1793 ef4_remove_port(efx);
1794 fail2:
1795 ef4_remove_nic(efx);
1796 fail1:
1797 return rc;
1798 }
1799
1800 /* If the interface is supposed to be running but is not, start
1801 * the hardware and software data path, regular activity for the port
1802 * (MAC statistics, link polling, etc.) and schedule the port to be
1803 * reconfigured. Interrupts must already be enabled. This function
1804 * is safe to call multiple times, so long as the NIC is not disabled.
1805 * Requires the RTNL lock.
1806 */
ef4_start_all(struct ef4_nic * efx)1807 static void ef4_start_all(struct ef4_nic *efx)
1808 {
1809 EF4_ASSERT_RESET_SERIALISED(efx);
1810 BUG_ON(efx->state == STATE_DISABLED);
1811
1812 /* Check that it is appropriate to restart the interface. All
1813 * of these flags are safe to read under just the rtnl lock */
1814 if (efx->port_enabled || !netif_running(efx->net_dev) ||
1815 efx->reset_pending)
1816 return;
1817
1818 ef4_start_port(efx);
1819 ef4_start_datapath(efx);
1820
1821 /* Start the hardware monitor if there is one */
1822 if (efx->type->monitor != NULL)
1823 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1824 ef4_monitor_interval);
1825
1826 efx->type->start_stats(efx);
1827 efx->type->pull_stats(efx);
1828 spin_lock_bh(&efx->stats_lock);
1829 efx->type->update_stats(efx, NULL, NULL);
1830 spin_unlock_bh(&efx->stats_lock);
1831 }
1832
1833 /* Quiesce the hardware and software data path, and regular activity
1834 * for the port without bringing the link down. Safe to call multiple
1835 * times with the NIC in almost any state, but interrupts should be
1836 * enabled. Requires the RTNL lock.
1837 */
ef4_stop_all(struct ef4_nic * efx)1838 static void ef4_stop_all(struct ef4_nic *efx)
1839 {
1840 EF4_ASSERT_RESET_SERIALISED(efx);
1841
1842 /* port_enabled can be read safely under the rtnl lock */
1843 if (!efx->port_enabled)
1844 return;
1845
1846 /* update stats before we go down so we can accurately count
1847 * rx_nodesc_drops
1848 */
1849 efx->type->pull_stats(efx);
1850 spin_lock_bh(&efx->stats_lock);
1851 efx->type->update_stats(efx, NULL, NULL);
1852 spin_unlock_bh(&efx->stats_lock);
1853 efx->type->stop_stats(efx);
1854 ef4_stop_port(efx);
1855
1856 /* Stop the kernel transmit interface. This is only valid if
1857 * the device is stopped or detached; otherwise the watchdog
1858 * may fire immediately.
1859 */
1860 WARN_ON(netif_running(efx->net_dev) &&
1861 netif_device_present(efx->net_dev));
1862 netif_tx_disable(efx->net_dev);
1863
1864 ef4_stop_datapath(efx);
1865 }
1866
ef4_remove_all(struct ef4_nic * efx)1867 static void ef4_remove_all(struct ef4_nic *efx)
1868 {
1869 ef4_remove_channels(efx);
1870 ef4_remove_filters(efx);
1871 ef4_remove_port(efx);
1872 ef4_remove_nic(efx);
1873 }
1874
1875 /**************************************************************************
1876 *
1877 * Interrupt moderation
1878 *
1879 **************************************************************************/
ef4_usecs_to_ticks(struct ef4_nic * efx,unsigned int usecs)1880 unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1881 {
1882 if (usecs == 0)
1883 return 0;
1884 if (usecs * 1000 < efx->timer_quantum_ns)
1885 return 1; /* never round down to 0 */
1886 return usecs * 1000 / efx->timer_quantum_ns;
1887 }
1888
ef4_ticks_to_usecs(struct ef4_nic * efx,unsigned int ticks)1889 unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks)
1890 {
1891 /* We must round up when converting ticks to microseconds
1892 * because we round down when converting the other way.
1893 */
1894 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1895 }
1896
1897 /* Set interrupt moderation parameters */
ef4_init_irq_moderation(struct ef4_nic * efx,unsigned int tx_usecs,unsigned int rx_usecs,bool rx_adaptive,bool rx_may_override_tx)1898 int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1899 unsigned int rx_usecs, bool rx_adaptive,
1900 bool rx_may_override_tx)
1901 {
1902 struct ef4_channel *channel;
1903 unsigned int timer_max_us;
1904
1905 EF4_ASSERT_RESET_SERIALISED(efx);
1906
1907 timer_max_us = efx->timer_max_ns / 1000;
1908
1909 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1910 return -EINVAL;
1911
1912 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1913 !rx_may_override_tx) {
1914 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1915 "RX and TX IRQ moderation must be equal\n");
1916 return -EINVAL;
1917 }
1918
1919 efx->irq_rx_adaptive = rx_adaptive;
1920 efx->irq_rx_moderation_us = rx_usecs;
1921 ef4_for_each_channel(channel, efx) {
1922 if (ef4_channel_has_rx_queue(channel))
1923 channel->irq_moderation_us = rx_usecs;
1924 else if (ef4_channel_has_tx_queues(channel))
1925 channel->irq_moderation_us = tx_usecs;
1926 }
1927
1928 return 0;
1929 }
1930
ef4_get_irq_moderation(struct ef4_nic * efx,unsigned int * tx_usecs,unsigned int * rx_usecs,bool * rx_adaptive)1931 void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1932 unsigned int *rx_usecs, bool *rx_adaptive)
1933 {
1934 *rx_adaptive = efx->irq_rx_adaptive;
1935 *rx_usecs = efx->irq_rx_moderation_us;
1936
1937 /* If channels are shared between RX and TX, so is IRQ
1938 * moderation. Otherwise, IRQ moderation is the same for all
1939 * TX channels and is not adaptive.
1940 */
1941 if (efx->tx_channel_offset == 0) {
1942 *tx_usecs = *rx_usecs;
1943 } else {
1944 struct ef4_channel *tx_channel;
1945
1946 tx_channel = efx->channel[efx->tx_channel_offset];
1947 *tx_usecs = tx_channel->irq_moderation_us;
1948 }
1949 }
1950
1951 /**************************************************************************
1952 *
1953 * Hardware monitor
1954 *
1955 **************************************************************************/
1956
1957 /* Run periodically off the general workqueue */
ef4_monitor(struct work_struct * data)1958 static void ef4_monitor(struct work_struct *data)
1959 {
1960 struct ef4_nic *efx = container_of(data, struct ef4_nic,
1961 monitor_work.work);
1962
1963 netif_vdbg(efx, timer, efx->net_dev,
1964 "hardware monitor executing on CPU %d\n",
1965 raw_smp_processor_id());
1966 BUG_ON(efx->type->monitor == NULL);
1967
1968 /* If the mac_lock is already held then it is likely a port
1969 * reconfiguration is already in place, which will likely do
1970 * most of the work of monitor() anyway. */
1971 if (mutex_trylock(&efx->mac_lock)) {
1972 if (efx->port_enabled)
1973 efx->type->monitor(efx);
1974 mutex_unlock(&efx->mac_lock);
1975 }
1976
1977 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1978 ef4_monitor_interval);
1979 }
1980
1981 /**************************************************************************
1982 *
1983 * ioctls
1984 *
1985 *************************************************************************/
1986
1987 /* Net device ioctl
1988 * Context: process, rtnl_lock() held.
1989 */
ef4_ioctl(struct net_device * net_dev,struct ifreq * ifr,int cmd)1990 static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1991 {
1992 struct ef4_nic *efx = netdev_priv(net_dev);
1993 struct mii_ioctl_data *data = if_mii(ifr);
1994
1995 /* Convert phy_id from older PRTAD/DEVAD format */
1996 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1997 (data->phy_id & 0xfc00) == 0x0400)
1998 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1999
2000 return mdio_mii_ioctl(&efx->mdio, data, cmd);
2001 }
2002
2003 /**************************************************************************
2004 *
2005 * NAPI interface
2006 *
2007 **************************************************************************/
2008
ef4_init_napi_channel(struct ef4_channel * channel)2009 static void ef4_init_napi_channel(struct ef4_channel *channel)
2010 {
2011 struct ef4_nic *efx = channel->efx;
2012
2013 channel->napi_dev = efx->net_dev;
2014 netif_napi_add(channel->napi_dev, &channel->napi_str, ef4_poll);
2015 }
2016
ef4_init_napi(struct ef4_nic * efx)2017 static void ef4_init_napi(struct ef4_nic *efx)
2018 {
2019 struct ef4_channel *channel;
2020
2021 ef4_for_each_channel(channel, efx)
2022 ef4_init_napi_channel(channel);
2023 }
2024
ef4_fini_napi_channel(struct ef4_channel * channel)2025 static void ef4_fini_napi_channel(struct ef4_channel *channel)
2026 {
2027 if (channel->napi_dev)
2028 netif_napi_del(&channel->napi_str);
2029
2030 channel->napi_dev = NULL;
2031 }
2032
ef4_fini_napi(struct ef4_nic * efx)2033 static void ef4_fini_napi(struct ef4_nic *efx)
2034 {
2035 struct ef4_channel *channel;
2036
2037 ef4_for_each_channel(channel, efx)
2038 ef4_fini_napi_channel(channel);
2039 }
2040
2041 /**************************************************************************
2042 *
2043 * Kernel net device interface
2044 *
2045 *************************************************************************/
2046
2047 /* Context: process, rtnl_lock() held. */
ef4_net_open(struct net_device * net_dev)2048 int ef4_net_open(struct net_device *net_dev)
2049 {
2050 struct ef4_nic *efx = netdev_priv(net_dev);
2051 int rc;
2052
2053 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2054 raw_smp_processor_id());
2055
2056 rc = ef4_check_disabled(efx);
2057 if (rc)
2058 return rc;
2059 if (efx->phy_mode & PHY_MODE_SPECIAL)
2060 return -EBUSY;
2061
2062 /* Notify the kernel of the link state polled during driver load,
2063 * before the monitor starts running */
2064 ef4_link_status_changed(efx);
2065
2066 ef4_start_all(efx);
2067 ef4_selftest_async_start(efx);
2068 return 0;
2069 }
2070
2071 /* Context: process, rtnl_lock() held.
2072 * Note that the kernel will ignore our return code; this method
2073 * should really be a void.
2074 */
ef4_net_stop(struct net_device * net_dev)2075 int ef4_net_stop(struct net_device *net_dev)
2076 {
2077 struct ef4_nic *efx = netdev_priv(net_dev);
2078
2079 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2080 raw_smp_processor_id());
2081
2082 /* Stop the device and flush all the channels */
2083 ef4_stop_all(efx);
2084
2085 return 0;
2086 }
2087
2088 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
ef4_net_stats(struct net_device * net_dev,struct rtnl_link_stats64 * stats)2089 static void ef4_net_stats(struct net_device *net_dev,
2090 struct rtnl_link_stats64 *stats)
2091 {
2092 struct ef4_nic *efx = netdev_priv(net_dev);
2093
2094 spin_lock_bh(&efx->stats_lock);
2095 efx->type->update_stats(efx, NULL, stats);
2096 spin_unlock_bh(&efx->stats_lock);
2097 }
2098
2099 /* Context: netif_tx_lock held, BHs disabled. */
ef4_watchdog(struct net_device * net_dev,unsigned int txqueue)2100 static void ef4_watchdog(struct net_device *net_dev, unsigned int txqueue)
2101 {
2102 struct ef4_nic *efx = netdev_priv(net_dev);
2103
2104 netif_err(efx, tx_err, efx->net_dev,
2105 "TX stuck with port_enabled=%d: resetting channels\n",
2106 efx->port_enabled);
2107
2108 ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2109 }
2110
2111
2112 /* Context: process, rtnl_lock() held. */
ef4_change_mtu(struct net_device * net_dev,int new_mtu)2113 static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2114 {
2115 struct ef4_nic *efx = netdev_priv(net_dev);
2116 int rc;
2117
2118 rc = ef4_check_disabled(efx);
2119 if (rc)
2120 return rc;
2121
2122 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2123
2124 ef4_device_detach_sync(efx);
2125 ef4_stop_all(efx);
2126
2127 mutex_lock(&efx->mac_lock);
2128 net_dev->mtu = new_mtu;
2129 ef4_mac_reconfigure(efx);
2130 mutex_unlock(&efx->mac_lock);
2131
2132 ef4_start_all(efx);
2133 netif_device_attach(efx->net_dev);
2134 return 0;
2135 }
2136
ef4_set_mac_address(struct net_device * net_dev,void * data)2137 static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2138 {
2139 struct ef4_nic *efx = netdev_priv(net_dev);
2140 struct sockaddr *addr = data;
2141 u8 *new_addr = addr->sa_data;
2142 u8 old_addr[6];
2143 int rc;
2144
2145 if (!is_valid_ether_addr(new_addr)) {
2146 netif_err(efx, drv, efx->net_dev,
2147 "invalid ethernet MAC address requested: %pM\n",
2148 new_addr);
2149 return -EADDRNOTAVAIL;
2150 }
2151
2152 /* save old address */
2153 ether_addr_copy(old_addr, net_dev->dev_addr);
2154 eth_hw_addr_set(net_dev, new_addr);
2155 if (efx->type->set_mac_address) {
2156 rc = efx->type->set_mac_address(efx);
2157 if (rc) {
2158 eth_hw_addr_set(net_dev, old_addr);
2159 return rc;
2160 }
2161 }
2162
2163 /* Reconfigure the MAC */
2164 mutex_lock(&efx->mac_lock);
2165 ef4_mac_reconfigure(efx);
2166 mutex_unlock(&efx->mac_lock);
2167
2168 return 0;
2169 }
2170
2171 /* Context: netif_addr_lock held, BHs disabled. */
ef4_set_rx_mode(struct net_device * net_dev)2172 static void ef4_set_rx_mode(struct net_device *net_dev)
2173 {
2174 struct ef4_nic *efx = netdev_priv(net_dev);
2175
2176 if (efx->port_enabled)
2177 queue_work(efx->workqueue, &efx->mac_work);
2178 /* Otherwise ef4_start_port() will do this */
2179 }
2180
ef4_set_features(struct net_device * net_dev,netdev_features_t data)2181 static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2182 {
2183 struct ef4_nic *efx = netdev_priv(net_dev);
2184 int rc;
2185
2186 /* If disabling RX n-tuple filtering, clear existing filters */
2187 if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2188 rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2189 if (rc)
2190 return rc;
2191 }
2192
2193 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2194 if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2195 /* ef4_set_rx_mode() will schedule MAC work to update filters
2196 * when a new features are finally set in net_dev.
2197 */
2198 ef4_set_rx_mode(net_dev);
2199 }
2200
2201 return 0;
2202 }
2203
2204 static const struct net_device_ops ef4_netdev_ops = {
2205 .ndo_open = ef4_net_open,
2206 .ndo_stop = ef4_net_stop,
2207 .ndo_get_stats64 = ef4_net_stats,
2208 .ndo_tx_timeout = ef4_watchdog,
2209 .ndo_start_xmit = ef4_hard_start_xmit,
2210 .ndo_validate_addr = eth_validate_addr,
2211 .ndo_eth_ioctl = ef4_ioctl,
2212 .ndo_change_mtu = ef4_change_mtu,
2213 .ndo_set_mac_address = ef4_set_mac_address,
2214 .ndo_set_rx_mode = ef4_set_rx_mode,
2215 .ndo_set_features = ef4_set_features,
2216 .ndo_setup_tc = ef4_setup_tc,
2217 #ifdef CONFIG_RFS_ACCEL
2218 .ndo_rx_flow_steer = ef4_filter_rfs,
2219 #endif
2220 };
2221
ef4_update_name(struct ef4_nic * efx)2222 static void ef4_update_name(struct ef4_nic *efx)
2223 {
2224 strcpy(efx->name, efx->net_dev->name);
2225 ef4_mtd_rename(efx);
2226 ef4_set_channel_names(efx);
2227 }
2228
ef4_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)2229 static int ef4_netdev_event(struct notifier_block *this,
2230 unsigned long event, void *ptr)
2231 {
2232 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2233
2234 if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2235 event == NETDEV_CHANGENAME)
2236 ef4_update_name(netdev_priv(net_dev));
2237
2238 return NOTIFY_DONE;
2239 }
2240
2241 static struct notifier_block ef4_netdev_notifier = {
2242 .notifier_call = ef4_netdev_event,
2243 };
2244
2245 static ssize_t
phy_type_show(struct device * dev,struct device_attribute * attr,char * buf)2246 phy_type_show(struct device *dev, struct device_attribute *attr, char *buf)
2247 {
2248 struct ef4_nic *efx = dev_get_drvdata(dev);
2249 return sprintf(buf, "%d\n", efx->phy_type);
2250 }
2251 static DEVICE_ATTR_RO(phy_type);
2252
ef4_register_netdev(struct ef4_nic * efx)2253 static int ef4_register_netdev(struct ef4_nic *efx)
2254 {
2255 struct net_device *net_dev = efx->net_dev;
2256 struct ef4_channel *channel;
2257 int rc;
2258
2259 net_dev->watchdog_timeo = 5 * HZ;
2260 net_dev->irq = efx->pci_dev->irq;
2261 net_dev->netdev_ops = &ef4_netdev_ops;
2262 net_dev->ethtool_ops = &ef4_ethtool_ops;
2263 netif_set_tso_max_segs(net_dev, EF4_TSO_MAX_SEGS);
2264 net_dev->min_mtu = EF4_MIN_MTU;
2265 net_dev->max_mtu = EF4_MAX_MTU;
2266
2267 rtnl_lock();
2268
2269 /* Enable resets to be scheduled and check whether any were
2270 * already requested. If so, the NIC is probably hosed so we
2271 * abort.
2272 */
2273 efx->state = STATE_READY;
2274 smp_mb(); /* ensure we change state before checking reset_pending */
2275 if (efx->reset_pending) {
2276 netif_err(efx, probe, efx->net_dev,
2277 "aborting probe due to scheduled reset\n");
2278 rc = -EIO;
2279 goto fail_locked;
2280 }
2281
2282 rc = dev_alloc_name(net_dev, net_dev->name);
2283 if (rc < 0)
2284 goto fail_locked;
2285 ef4_update_name(efx);
2286
2287 /* Always start with carrier off; PHY events will detect the link */
2288 netif_carrier_off(net_dev);
2289
2290 rc = register_netdevice(net_dev);
2291 if (rc)
2292 goto fail_locked;
2293
2294 ef4_for_each_channel(channel, efx) {
2295 struct ef4_tx_queue *tx_queue;
2296 ef4_for_each_channel_tx_queue(tx_queue, channel)
2297 ef4_init_tx_queue_core_txq(tx_queue);
2298 }
2299
2300 ef4_associate(efx);
2301
2302 rtnl_unlock();
2303
2304 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2305 if (rc) {
2306 netif_err(efx, drv, efx->net_dev,
2307 "failed to init net dev attributes\n");
2308 goto fail_registered;
2309 }
2310 return 0;
2311
2312 fail_registered:
2313 rtnl_lock();
2314 ef4_dissociate(efx);
2315 unregister_netdevice(net_dev);
2316 fail_locked:
2317 efx->state = STATE_UNINIT;
2318 rtnl_unlock();
2319 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2320 return rc;
2321 }
2322
ef4_unregister_netdev(struct ef4_nic * efx)2323 static void ef4_unregister_netdev(struct ef4_nic *efx)
2324 {
2325 if (!efx->net_dev)
2326 return;
2327
2328 BUG_ON(netdev_priv(efx->net_dev) != efx);
2329
2330 if (ef4_dev_registered(efx)) {
2331 strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2332 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2333 unregister_netdev(efx->net_dev);
2334 }
2335 }
2336
2337 /**************************************************************************
2338 *
2339 * Device reset and suspend
2340 *
2341 **************************************************************************/
2342
2343 /* Tears down the entire software state and most of the hardware state
2344 * before reset. */
ef4_reset_down(struct ef4_nic * efx,enum reset_type method)2345 void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2346 {
2347 EF4_ASSERT_RESET_SERIALISED(efx);
2348
2349 ef4_stop_all(efx);
2350 ef4_disable_interrupts(efx);
2351
2352 mutex_lock(&efx->mac_lock);
2353 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2354 method != RESET_TYPE_DATAPATH)
2355 efx->phy_op->fini(efx);
2356 efx->type->fini(efx);
2357 }
2358
2359 /* This function will always ensure that the locks acquired in
2360 * ef4_reset_down() are released. A failure return code indicates
2361 * that we were unable to reinitialise the hardware, and the
2362 * driver should be disabled. If ok is false, then the rx and tx
2363 * engines are not restarted, pending a RESET_DISABLE. */
ef4_reset_up(struct ef4_nic * efx,enum reset_type method,bool ok)2364 int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2365 {
2366 int rc;
2367
2368 EF4_ASSERT_RESET_SERIALISED(efx);
2369
2370 /* Ensure that SRAM is initialised even if we're disabling the device */
2371 rc = efx->type->init(efx);
2372 if (rc) {
2373 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2374 goto fail;
2375 }
2376
2377 if (!ok)
2378 goto fail;
2379
2380 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2381 method != RESET_TYPE_DATAPATH) {
2382 rc = efx->phy_op->init(efx);
2383 if (rc)
2384 goto fail;
2385 rc = efx->phy_op->reconfigure(efx);
2386 if (rc && rc != -EPERM)
2387 netif_err(efx, drv, efx->net_dev,
2388 "could not restore PHY settings\n");
2389 }
2390
2391 rc = ef4_enable_interrupts(efx);
2392 if (rc)
2393 goto fail;
2394
2395 down_read(&efx->filter_sem);
2396 ef4_restore_filters(efx);
2397 up_read(&efx->filter_sem);
2398
2399 mutex_unlock(&efx->mac_lock);
2400
2401 ef4_start_all(efx);
2402
2403 return 0;
2404
2405 fail:
2406 efx->port_initialized = false;
2407
2408 mutex_unlock(&efx->mac_lock);
2409
2410 return rc;
2411 }
2412
2413 /* Reset the NIC using the specified method. Note that the reset may
2414 * fail, in which case the card will be left in an unusable state.
2415 *
2416 * Caller must hold the rtnl_lock.
2417 */
ef4_reset(struct ef4_nic * efx,enum reset_type method)2418 int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2419 {
2420 int rc, rc2;
2421 bool disabled;
2422
2423 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2424 RESET_TYPE(method));
2425
2426 ef4_device_detach_sync(efx);
2427 ef4_reset_down(efx, method);
2428
2429 rc = efx->type->reset(efx, method);
2430 if (rc) {
2431 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2432 goto out;
2433 }
2434
2435 /* Clear flags for the scopes we covered. We assume the NIC and
2436 * driver are now quiescent so that there is no race here.
2437 */
2438 if (method < RESET_TYPE_MAX_METHOD)
2439 efx->reset_pending &= -(1 << (method + 1));
2440 else /* it doesn't fit into the well-ordered scope hierarchy */
2441 __clear_bit(method, &efx->reset_pending);
2442
2443 /* Reinitialise bus-mastering, which may have been turned off before
2444 * the reset was scheduled. This is still appropriate, even in the
2445 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2446 * can respond to requests. */
2447 pci_set_master(efx->pci_dev);
2448
2449 out:
2450 /* Leave device stopped if necessary */
2451 disabled = rc ||
2452 method == RESET_TYPE_DISABLE ||
2453 method == RESET_TYPE_RECOVER_OR_DISABLE;
2454 rc2 = ef4_reset_up(efx, method, !disabled);
2455 if (rc2) {
2456 disabled = true;
2457 if (!rc)
2458 rc = rc2;
2459 }
2460
2461 if (disabled) {
2462 dev_close(efx->net_dev);
2463 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2464 efx->state = STATE_DISABLED;
2465 } else {
2466 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2467 netif_device_attach(efx->net_dev);
2468 }
2469 return rc;
2470 }
2471
2472 /* Try recovery mechanisms.
2473 * For now only EEH is supported.
2474 * Returns 0 if the recovery mechanisms are unsuccessful.
2475 * Returns a non-zero value otherwise.
2476 */
ef4_try_recovery(struct ef4_nic * efx)2477 int ef4_try_recovery(struct ef4_nic *efx)
2478 {
2479 #ifdef CONFIG_EEH
2480 /* A PCI error can occur and not be seen by EEH because nothing
2481 * happens on the PCI bus. In this case the driver may fail and
2482 * schedule a 'recover or reset', leading to this recovery handler.
2483 * Manually call the eeh failure check function.
2484 */
2485 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2486 if (eeh_dev_check_failure(eehdev)) {
2487 /* The EEH mechanisms will handle the error and reset the
2488 * device if necessary.
2489 */
2490 return 1;
2491 }
2492 #endif
2493 return 0;
2494 }
2495
2496 /* The worker thread exists so that code that cannot sleep can
2497 * schedule a reset for later.
2498 */
ef4_reset_work(struct work_struct * data)2499 static void ef4_reset_work(struct work_struct *data)
2500 {
2501 struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2502 unsigned long pending;
2503 enum reset_type method;
2504
2505 pending = READ_ONCE(efx->reset_pending);
2506 method = fls(pending) - 1;
2507
2508 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2509 method == RESET_TYPE_RECOVER_OR_ALL) &&
2510 ef4_try_recovery(efx))
2511 return;
2512
2513 if (!pending)
2514 return;
2515
2516 rtnl_lock();
2517
2518 /* We checked the state in ef4_schedule_reset() but it may
2519 * have changed by now. Now that we have the RTNL lock,
2520 * it cannot change again.
2521 */
2522 if (efx->state == STATE_READY)
2523 (void)ef4_reset(efx, method);
2524
2525 rtnl_unlock();
2526 }
2527
ef4_schedule_reset(struct ef4_nic * efx,enum reset_type type)2528 void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2529 {
2530 enum reset_type method;
2531
2532 if (efx->state == STATE_RECOVERY) {
2533 netif_dbg(efx, drv, efx->net_dev,
2534 "recovering: skip scheduling %s reset\n",
2535 RESET_TYPE(type));
2536 return;
2537 }
2538
2539 switch (type) {
2540 case RESET_TYPE_INVISIBLE:
2541 case RESET_TYPE_ALL:
2542 case RESET_TYPE_RECOVER_OR_ALL:
2543 case RESET_TYPE_WORLD:
2544 case RESET_TYPE_DISABLE:
2545 case RESET_TYPE_RECOVER_OR_DISABLE:
2546 case RESET_TYPE_DATAPATH:
2547 method = type;
2548 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2549 RESET_TYPE(method));
2550 break;
2551 default:
2552 method = efx->type->map_reset_reason(type);
2553 netif_dbg(efx, drv, efx->net_dev,
2554 "scheduling %s reset for %s\n",
2555 RESET_TYPE(method), RESET_TYPE(type));
2556 break;
2557 }
2558
2559 set_bit(method, &efx->reset_pending);
2560 smp_mb(); /* ensure we change reset_pending before checking state */
2561
2562 /* If we're not READY then just leave the flags set as the cue
2563 * to abort probing or reschedule the reset later.
2564 */
2565 if (READ_ONCE(efx->state) != STATE_READY)
2566 return;
2567
2568 queue_work(reset_workqueue, &efx->reset_work);
2569 }
2570
2571 /**************************************************************************
2572 *
2573 * List of NICs we support
2574 *
2575 **************************************************************************/
2576
2577 /* PCI device ID table */
2578 static const struct pci_device_id ef4_pci_table[] = {
2579 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2580 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2581 .driver_data = (unsigned long) &falcon_a1_nic_type},
2582 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2583 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2584 .driver_data = (unsigned long) &falcon_b0_nic_type},
2585 {0} /* end of list */
2586 };
2587
2588 /**************************************************************************
2589 *
2590 * Dummy PHY/MAC operations
2591 *
2592 * Can be used for some unimplemented operations
2593 * Needed so all function pointers are valid and do not have to be tested
2594 * before use
2595 *
2596 **************************************************************************/
ef4_port_dummy_op_int(struct ef4_nic * efx)2597 int ef4_port_dummy_op_int(struct ef4_nic *efx)
2598 {
2599 return 0;
2600 }
ef4_port_dummy_op_void(struct ef4_nic * efx)2601 void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2602
ef4_port_dummy_op_poll(struct ef4_nic * efx)2603 static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2604 {
2605 return false;
2606 }
2607
2608 static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2609 .init = ef4_port_dummy_op_int,
2610 .reconfigure = ef4_port_dummy_op_int,
2611 .poll = ef4_port_dummy_op_poll,
2612 .fini = ef4_port_dummy_op_void,
2613 };
2614
2615 /**************************************************************************
2616 *
2617 * Data housekeeping
2618 *
2619 **************************************************************************/
2620
2621 /* This zeroes out and then fills in the invariants in a struct
2622 * ef4_nic (including all sub-structures).
2623 */
ef4_init_struct(struct ef4_nic * efx,struct pci_dev * pci_dev,struct net_device * net_dev)2624 static int ef4_init_struct(struct ef4_nic *efx,
2625 struct pci_dev *pci_dev, struct net_device *net_dev)
2626 {
2627 int i;
2628
2629 /* Initialise common structures */
2630 INIT_LIST_HEAD(&efx->node);
2631 INIT_LIST_HEAD(&efx->secondary_list);
2632 spin_lock_init(&efx->biu_lock);
2633 #ifdef CONFIG_SFC_FALCON_MTD
2634 INIT_LIST_HEAD(&efx->mtd_list);
2635 #endif
2636 INIT_WORK(&efx->reset_work, ef4_reset_work);
2637 INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2638 INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2639 efx->pci_dev = pci_dev;
2640 efx->msg_enable = debug;
2641 efx->state = STATE_UNINIT;
2642 strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2643
2644 efx->net_dev = net_dev;
2645 efx->rx_prefix_size = efx->type->rx_prefix_size;
2646 efx->rx_ip_align =
2647 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2648 efx->rx_packet_hash_offset =
2649 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2650 efx->rx_packet_ts_offset =
2651 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2652 spin_lock_init(&efx->stats_lock);
2653 mutex_init(&efx->mac_lock);
2654 efx->phy_op = &ef4_dummy_phy_operations;
2655 efx->mdio.dev = net_dev;
2656 INIT_WORK(&efx->mac_work, ef4_mac_work);
2657 init_waitqueue_head(&efx->flush_wq);
2658
2659 for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2660 efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2661 if (!efx->channel[i])
2662 goto fail;
2663 efx->msi_context[i].efx = efx;
2664 efx->msi_context[i].index = i;
2665 }
2666
2667 /* Higher numbered interrupt modes are less capable! */
2668 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2669 interrupt_mode);
2670
2671 /* Would be good to use the net_dev name, but we're too early */
2672 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2673 pci_name(pci_dev));
2674 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2675 if (!efx->workqueue)
2676 goto fail;
2677
2678 return 0;
2679
2680 fail:
2681 ef4_fini_struct(efx);
2682 return -ENOMEM;
2683 }
2684
ef4_fini_struct(struct ef4_nic * efx)2685 static void ef4_fini_struct(struct ef4_nic *efx)
2686 {
2687 int i;
2688
2689 for (i = 0; i < EF4_MAX_CHANNELS; i++)
2690 kfree(efx->channel[i]);
2691
2692 kfree(efx->vpd_sn);
2693
2694 if (efx->workqueue) {
2695 destroy_workqueue(efx->workqueue);
2696 efx->workqueue = NULL;
2697 }
2698 }
2699
ef4_update_sw_stats(struct ef4_nic * efx,u64 * stats)2700 void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2701 {
2702 u64 n_rx_nodesc_trunc = 0;
2703 struct ef4_channel *channel;
2704
2705 ef4_for_each_channel(channel, efx)
2706 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2707 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2708 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2709 }
2710
2711 /**************************************************************************
2712 *
2713 * PCI interface
2714 *
2715 **************************************************************************/
2716
2717 /* Main body of final NIC shutdown code
2718 * This is called only at module unload (or hotplug removal).
2719 */
ef4_pci_remove_main(struct ef4_nic * efx)2720 static void ef4_pci_remove_main(struct ef4_nic *efx)
2721 {
2722 /* Flush reset_work. It can no longer be scheduled since we
2723 * are not READY.
2724 */
2725 BUG_ON(efx->state == STATE_READY);
2726 cancel_work_sync(&efx->reset_work);
2727
2728 ef4_disable_interrupts(efx);
2729 ef4_nic_fini_interrupt(efx);
2730 ef4_fini_port(efx);
2731 efx->type->fini(efx);
2732 ef4_fini_napi(efx);
2733 ef4_remove_all(efx);
2734 }
2735
2736 /* Final NIC shutdown
2737 * This is called only at module unload (or hotplug removal). A PF can call
2738 * this on its VFs to ensure they are unbound first.
2739 */
ef4_pci_remove(struct pci_dev * pci_dev)2740 static void ef4_pci_remove(struct pci_dev *pci_dev)
2741 {
2742 struct ef4_nic *efx;
2743
2744 efx = pci_get_drvdata(pci_dev);
2745 if (!efx)
2746 return;
2747
2748 /* Mark the NIC as fini, then stop the interface */
2749 rtnl_lock();
2750 ef4_dissociate(efx);
2751 dev_close(efx->net_dev);
2752 ef4_disable_interrupts(efx);
2753 efx->state = STATE_UNINIT;
2754 rtnl_unlock();
2755
2756 ef4_unregister_netdev(efx);
2757
2758 ef4_mtd_remove(efx);
2759
2760 ef4_pci_remove_main(efx);
2761
2762 ef4_fini_io(efx);
2763 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2764
2765 ef4_fini_struct(efx);
2766 free_netdev(efx->net_dev);
2767 };
2768
2769 /* NIC VPD information
2770 * Called during probe to display the part number of the installed NIC.
2771 */
ef4_probe_vpd_strings(struct ef4_nic * efx)2772 static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2773 {
2774 struct pci_dev *dev = efx->pci_dev;
2775 unsigned int vpd_size, kw_len;
2776 u8 *vpd_data;
2777 int start;
2778
2779 vpd_data = pci_vpd_alloc(dev, &vpd_size);
2780 if (IS_ERR(vpd_data)) {
2781 pci_warn(dev, "Unable to read VPD\n");
2782 return;
2783 }
2784
2785 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2786 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
2787 if (start < 0)
2788 pci_warn(dev, "Part number not found or incomplete\n");
2789 else
2790 pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
2791
2792 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2793 PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
2794 if (start < 0)
2795 pci_warn(dev, "Serial number not found or incomplete\n");
2796 else
2797 efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
2798
2799 kfree(vpd_data);
2800 }
2801
2802
2803 /* Main body of NIC initialisation
2804 * This is called at module load (or hotplug insertion, theoretically).
2805 */
ef4_pci_probe_main(struct ef4_nic * efx)2806 static int ef4_pci_probe_main(struct ef4_nic *efx)
2807 {
2808 int rc;
2809
2810 /* Do start-of-day initialisation */
2811 rc = ef4_probe_all(efx);
2812 if (rc)
2813 goto fail1;
2814
2815 ef4_init_napi(efx);
2816
2817 rc = efx->type->init(efx);
2818 if (rc) {
2819 netif_err(efx, probe, efx->net_dev,
2820 "failed to initialise NIC\n");
2821 goto fail3;
2822 }
2823
2824 rc = ef4_init_port(efx);
2825 if (rc) {
2826 netif_err(efx, probe, efx->net_dev,
2827 "failed to initialise port\n");
2828 goto fail4;
2829 }
2830
2831 rc = ef4_nic_init_interrupt(efx);
2832 if (rc)
2833 goto fail5;
2834 rc = ef4_enable_interrupts(efx);
2835 if (rc)
2836 goto fail6;
2837
2838 return 0;
2839
2840 fail6:
2841 ef4_nic_fini_interrupt(efx);
2842 fail5:
2843 ef4_fini_port(efx);
2844 fail4:
2845 efx->type->fini(efx);
2846 fail3:
2847 ef4_fini_napi(efx);
2848 ef4_remove_all(efx);
2849 fail1:
2850 return rc;
2851 }
2852
2853 /* NIC initialisation
2854 *
2855 * This is called at module load (or hotplug insertion,
2856 * theoretically). It sets up PCI mappings, resets the NIC,
2857 * sets up and registers the network devices with the kernel and hooks
2858 * the interrupt service routine. It does not prepare the device for
2859 * transmission; this is left to the first time one of the network
2860 * interfaces is brought up (i.e. ef4_net_open).
2861 */
ef4_pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * entry)2862 static int ef4_pci_probe(struct pci_dev *pci_dev,
2863 const struct pci_device_id *entry)
2864 {
2865 struct net_device *net_dev;
2866 struct ef4_nic *efx;
2867 int rc;
2868
2869 /* Allocate and initialise a struct net_device and struct ef4_nic */
2870 net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2871 EF4_MAX_RX_QUEUES);
2872 if (!net_dev)
2873 return -ENOMEM;
2874 efx = netdev_priv(net_dev);
2875 efx->type = (const struct ef4_nic_type *) entry->driver_data;
2876 efx->fixed_features |= NETIF_F_HIGHDMA;
2877
2878 pci_set_drvdata(pci_dev, efx);
2879 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2880 rc = ef4_init_struct(efx, pci_dev, net_dev);
2881 if (rc)
2882 goto fail1;
2883
2884 netif_info(efx, probe, efx->net_dev,
2885 "Solarflare NIC detected\n");
2886
2887 ef4_probe_vpd_strings(efx);
2888
2889 /* Set up basic I/O (BAR mappings etc) */
2890 rc = ef4_init_io(efx);
2891 if (rc)
2892 goto fail2;
2893
2894 rc = ef4_pci_probe_main(efx);
2895 if (rc)
2896 goto fail3;
2897
2898 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2899 NETIF_F_RXCSUM);
2900 /* Mask for features that also apply to VLAN devices */
2901 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2902 NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2903
2904 net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2905
2906 /* Disable VLAN filtering by default. It may be enforced if
2907 * the feature is fixed (i.e. VLAN filters are required to
2908 * receive VLAN tagged packets due to vPort restrictions).
2909 */
2910 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2911 net_dev->features |= efx->fixed_features;
2912
2913 rc = ef4_register_netdev(efx);
2914 if (rc)
2915 goto fail4;
2916
2917 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2918
2919 /* Try to create MTDs, but allow this to fail */
2920 rtnl_lock();
2921 rc = ef4_mtd_probe(efx);
2922 rtnl_unlock();
2923 if (rc && rc != -EPERM)
2924 netif_warn(efx, probe, efx->net_dev,
2925 "failed to create MTDs (%d)\n", rc);
2926
2927 return 0;
2928
2929 fail4:
2930 ef4_pci_remove_main(efx);
2931 fail3:
2932 ef4_fini_io(efx);
2933 fail2:
2934 ef4_fini_struct(efx);
2935 fail1:
2936 WARN_ON(rc > 0);
2937 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2938 free_netdev(net_dev);
2939 return rc;
2940 }
2941
ef4_pm_freeze(struct device * dev)2942 static int ef4_pm_freeze(struct device *dev)
2943 {
2944 struct ef4_nic *efx = dev_get_drvdata(dev);
2945
2946 rtnl_lock();
2947
2948 if (efx->state != STATE_DISABLED) {
2949 efx->state = STATE_UNINIT;
2950
2951 ef4_device_detach_sync(efx);
2952
2953 ef4_stop_all(efx);
2954 ef4_disable_interrupts(efx);
2955 }
2956
2957 rtnl_unlock();
2958
2959 return 0;
2960 }
2961
ef4_pm_thaw(struct device * dev)2962 static int ef4_pm_thaw(struct device *dev)
2963 {
2964 int rc;
2965 struct ef4_nic *efx = dev_get_drvdata(dev);
2966
2967 rtnl_lock();
2968
2969 if (efx->state != STATE_DISABLED) {
2970 rc = ef4_enable_interrupts(efx);
2971 if (rc)
2972 goto fail;
2973
2974 mutex_lock(&efx->mac_lock);
2975 efx->phy_op->reconfigure(efx);
2976 mutex_unlock(&efx->mac_lock);
2977
2978 ef4_start_all(efx);
2979
2980 netif_device_attach(efx->net_dev);
2981
2982 efx->state = STATE_READY;
2983
2984 efx->type->resume_wol(efx);
2985 }
2986
2987 rtnl_unlock();
2988
2989 /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
2990 queue_work(reset_workqueue, &efx->reset_work);
2991
2992 return 0;
2993
2994 fail:
2995 rtnl_unlock();
2996
2997 return rc;
2998 }
2999
ef4_pm_poweroff(struct device * dev)3000 static int ef4_pm_poweroff(struct device *dev)
3001 {
3002 struct pci_dev *pci_dev = to_pci_dev(dev);
3003 struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3004
3005 efx->type->fini(efx);
3006
3007 efx->reset_pending = 0;
3008
3009 pci_save_state(pci_dev);
3010 return pci_set_power_state(pci_dev, PCI_D3hot);
3011 }
3012
3013 /* Used for both resume and restore */
ef4_pm_resume(struct device * dev)3014 static int ef4_pm_resume(struct device *dev)
3015 {
3016 struct pci_dev *pci_dev = to_pci_dev(dev);
3017 struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3018 int rc;
3019
3020 rc = pci_set_power_state(pci_dev, PCI_D0);
3021 if (rc)
3022 return rc;
3023 pci_restore_state(pci_dev);
3024 rc = pci_enable_device(pci_dev);
3025 if (rc)
3026 return rc;
3027 pci_set_master(efx->pci_dev);
3028 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3029 if (rc)
3030 return rc;
3031 rc = efx->type->init(efx);
3032 if (rc)
3033 return rc;
3034 rc = ef4_pm_thaw(dev);
3035 return rc;
3036 }
3037
ef4_pm_suspend(struct device * dev)3038 static int ef4_pm_suspend(struct device *dev)
3039 {
3040 int rc;
3041
3042 ef4_pm_freeze(dev);
3043 rc = ef4_pm_poweroff(dev);
3044 if (rc)
3045 ef4_pm_resume(dev);
3046 return rc;
3047 }
3048
3049 static const struct dev_pm_ops ef4_pm_ops = {
3050 .suspend = ef4_pm_suspend,
3051 .resume = ef4_pm_resume,
3052 .freeze = ef4_pm_freeze,
3053 .thaw = ef4_pm_thaw,
3054 .poweroff = ef4_pm_poweroff,
3055 .restore = ef4_pm_resume,
3056 };
3057
3058 /* A PCI error affecting this device was detected.
3059 * At this point MMIO and DMA may be disabled.
3060 * Stop the software path and request a slot reset.
3061 */
ef4_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3062 static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3063 pci_channel_state_t state)
3064 {
3065 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3066 struct ef4_nic *efx = pci_get_drvdata(pdev);
3067
3068 if (state == pci_channel_io_perm_failure)
3069 return PCI_ERS_RESULT_DISCONNECT;
3070
3071 rtnl_lock();
3072
3073 if (efx->state != STATE_DISABLED) {
3074 efx->state = STATE_RECOVERY;
3075 efx->reset_pending = 0;
3076
3077 ef4_device_detach_sync(efx);
3078
3079 ef4_stop_all(efx);
3080 ef4_disable_interrupts(efx);
3081
3082 status = PCI_ERS_RESULT_NEED_RESET;
3083 } else {
3084 /* If the interface is disabled we don't want to do anything
3085 * with it.
3086 */
3087 status = PCI_ERS_RESULT_RECOVERED;
3088 }
3089
3090 rtnl_unlock();
3091
3092 pci_disable_device(pdev);
3093
3094 return status;
3095 }
3096
3097 /* Fake a successful reset, which will be performed later in ef4_io_resume. */
ef4_io_slot_reset(struct pci_dev * pdev)3098 static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3099 {
3100 struct ef4_nic *efx = pci_get_drvdata(pdev);
3101 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3102
3103 if (pci_enable_device(pdev)) {
3104 netif_err(efx, hw, efx->net_dev,
3105 "Cannot re-enable PCI device after reset.\n");
3106 status = PCI_ERS_RESULT_DISCONNECT;
3107 }
3108
3109 return status;
3110 }
3111
3112 /* Perform the actual reset and resume I/O operations. */
ef4_io_resume(struct pci_dev * pdev)3113 static void ef4_io_resume(struct pci_dev *pdev)
3114 {
3115 struct ef4_nic *efx = pci_get_drvdata(pdev);
3116 int rc;
3117
3118 rtnl_lock();
3119
3120 if (efx->state == STATE_DISABLED)
3121 goto out;
3122
3123 rc = ef4_reset(efx, RESET_TYPE_ALL);
3124 if (rc) {
3125 netif_err(efx, hw, efx->net_dev,
3126 "ef4_reset failed after PCI error (%d)\n", rc);
3127 } else {
3128 efx->state = STATE_READY;
3129 netif_dbg(efx, hw, efx->net_dev,
3130 "Done resetting and resuming IO after PCI error.\n");
3131 }
3132
3133 out:
3134 rtnl_unlock();
3135 }
3136
3137 /* For simplicity and reliability, we always require a slot reset and try to
3138 * reset the hardware when a pci error affecting the device is detected.
3139 * We leave both the link_reset and mmio_enabled callback unimplemented:
3140 * with our request for slot reset the mmio_enabled callback will never be
3141 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3142 */
3143 static const struct pci_error_handlers ef4_err_handlers = {
3144 .error_detected = ef4_io_error_detected,
3145 .slot_reset = ef4_io_slot_reset,
3146 .resume = ef4_io_resume,
3147 };
3148
3149 static struct pci_driver ef4_pci_driver = {
3150 .name = KBUILD_MODNAME,
3151 .id_table = ef4_pci_table,
3152 .probe = ef4_pci_probe,
3153 .remove = ef4_pci_remove,
3154 .driver.pm = &ef4_pm_ops,
3155 .err_handler = &ef4_err_handlers,
3156 };
3157
3158 /**************************************************************************
3159 *
3160 * Kernel module interface
3161 *
3162 *************************************************************************/
3163
3164 module_param(interrupt_mode, uint, 0444);
3165 MODULE_PARM_DESC(interrupt_mode,
3166 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3167
ef4_init_module(void)3168 static int __init ef4_init_module(void)
3169 {
3170 int rc;
3171
3172 printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3173
3174 rc = register_netdevice_notifier(&ef4_netdev_notifier);
3175 if (rc)
3176 goto err_notifier;
3177
3178 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3179 if (!reset_workqueue) {
3180 rc = -ENOMEM;
3181 goto err_reset;
3182 }
3183
3184 rc = pci_register_driver(&ef4_pci_driver);
3185 if (rc < 0)
3186 goto err_pci;
3187
3188 return 0;
3189
3190 err_pci:
3191 destroy_workqueue(reset_workqueue);
3192 err_reset:
3193 unregister_netdevice_notifier(&ef4_netdev_notifier);
3194 err_notifier:
3195 return rc;
3196 }
3197
ef4_exit_module(void)3198 static void __exit ef4_exit_module(void)
3199 {
3200 printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3201
3202 pci_unregister_driver(&ef4_pci_driver);
3203 destroy_workqueue(reset_workqueue);
3204 unregister_netdevice_notifier(&ef4_netdev_notifier);
3205
3206 }
3207
3208 module_init(ef4_init_module);
3209 module_exit(ef4_exit_module);
3210
3211 MODULE_AUTHOR("Solarflare Communications and "
3212 "Michael Brown <mbrown@fensystems.co.uk>");
3213 MODULE_DESCRIPTION("Solarflare Falcon network driver");
3214 MODULE_LICENSE("GPL");
3215 MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3216 MODULE_VERSION(EF4_DRIVER_VERSION);
3217