xref: /openbmc/linux/drivers/mtd/nand/raw/atmel/nand-controller.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright 2017 ATMEL
4   * Copyright 2017 Free Electrons
5   *
6   * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7   *
8   * Derived from the atmel_nand.c driver which contained the following
9   * copyrights:
10   *
11   *   Copyright 2003 Rick Bronson
12   *
13   *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14   *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15   *
16   *   Derived from drivers/mtd/spia.c (removed in v3.8)
17   *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18   *
19   *
20   *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21   *	Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
22   *
23   *   Derived from Das U-Boot source code
24   *	(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25   *	Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26   *
27   *   Add Programmable Multibit ECC support for various AT91 SoC
28   *	Copyright 2012 ATMEL, Hong Xu
29   *
30   *   Add Nand Flash Controller support for SAMA5 SoC
31   *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
32   *
33   * A few words about the naming convention in this file. This convention
34   * applies to structure and function names.
35   *
36   * Prefixes:
37   *
38   * - atmel_nand_: all generic structures/functions
39   * - atmel_smc_nand_: all structures/functions specific to the SMC interface
40   *		      (at91sam9 and avr32 SoCs)
41   * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
42   *		       (sama5 SoCs and later)
43   * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
44   *		 that is available in the HSMC block
45   * - <soc>_nand_: all SoC specific structures/functions
46   */
47  
48  #include <linux/clk.h>
49  #include <linux/dma-mapping.h>
50  #include <linux/dmaengine.h>
51  #include <linux/genalloc.h>
52  #include <linux/gpio/consumer.h>
53  #include <linux/interrupt.h>
54  #include <linux/mfd/syscon.h>
55  #include <linux/mfd/syscon/atmel-matrix.h>
56  #include <linux/mfd/syscon/atmel-smc.h>
57  #include <linux/module.h>
58  #include <linux/mtd/rawnand.h>
59  #include <linux/of_address.h>
60  #include <linux/of_irq.h>
61  #include <linux/of_platform.h>
62  #include <linux/iopoll.h>
63  #include <linux/platform_device.h>
64  #include <linux/regmap.h>
65  #include <soc/at91/atmel-sfr.h>
66  
67  #include "pmecc.h"
68  
69  #define ATMEL_HSMC_NFC_CFG			0x0
70  #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x)		(((x) / 4) << 24)
71  #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK	GENMASK(30, 24)
72  #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul)	(((cyc) << 16) | ((mul) << 20))
73  #define ATMEL_HSMC_NFC_CFG_DTO_MAX		GENMASK(22, 16)
74  #define ATMEL_HSMC_NFC_CFG_RBEDGE		BIT(13)
75  #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE		BIT(12)
76  #define ATMEL_HSMC_NFC_CFG_RSPARE		BIT(9)
77  #define ATMEL_HSMC_NFC_CFG_WSPARE		BIT(8)
78  #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK	GENMASK(2, 0)
79  #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x)		(fls((x) / 512) - 1)
80  
81  #define ATMEL_HSMC_NFC_CTRL			0x4
82  #define ATMEL_HSMC_NFC_CTRL_EN			BIT(0)
83  #define ATMEL_HSMC_NFC_CTRL_DIS			BIT(1)
84  
85  #define ATMEL_HSMC_NFC_SR			0x8
86  #define ATMEL_HSMC_NFC_IER			0xc
87  #define ATMEL_HSMC_NFC_IDR			0x10
88  #define ATMEL_HSMC_NFC_IMR			0x14
89  #define ATMEL_HSMC_NFC_SR_ENABLED		BIT(1)
90  #define ATMEL_HSMC_NFC_SR_RB_RISE		BIT(4)
91  #define ATMEL_HSMC_NFC_SR_RB_FALL		BIT(5)
92  #define ATMEL_HSMC_NFC_SR_BUSY			BIT(8)
93  #define ATMEL_HSMC_NFC_SR_WR			BIT(11)
94  #define ATMEL_HSMC_NFC_SR_CSID			GENMASK(14, 12)
95  #define ATMEL_HSMC_NFC_SR_XFRDONE		BIT(16)
96  #define ATMEL_HSMC_NFC_SR_CMDDONE		BIT(17)
97  #define ATMEL_HSMC_NFC_SR_DTOE			BIT(20)
98  #define ATMEL_HSMC_NFC_SR_UNDEF			BIT(21)
99  #define ATMEL_HSMC_NFC_SR_AWB			BIT(22)
100  #define ATMEL_HSMC_NFC_SR_NFCASE		BIT(23)
101  #define ATMEL_HSMC_NFC_SR_ERRORS		(ATMEL_HSMC_NFC_SR_DTOE | \
102  						 ATMEL_HSMC_NFC_SR_UNDEF | \
103  						 ATMEL_HSMC_NFC_SR_AWB | \
104  						 ATMEL_HSMC_NFC_SR_NFCASE)
105  #define ATMEL_HSMC_NFC_SR_RBEDGE(x)		BIT((x) + 24)
106  
107  #define ATMEL_HSMC_NFC_ADDR			0x18
108  #define ATMEL_HSMC_NFC_BANK			0x1c
109  
110  #define ATMEL_NFC_MAX_RB_ID			7
111  
112  #define ATMEL_NFC_SRAM_SIZE			0x2400
113  
114  #define ATMEL_NFC_CMD(pos, cmd)			((cmd) << (((pos) * 8) + 2))
115  #define ATMEL_NFC_VCMD2				BIT(18)
116  #define ATMEL_NFC_ACYCLE(naddrs)		((naddrs) << 19)
117  #define ATMEL_NFC_CSID(cs)			((cs) << 22)
118  #define ATMEL_NFC_DATAEN			BIT(25)
119  #define ATMEL_NFC_NFCWR				BIT(26)
120  
121  #define ATMEL_NFC_MAX_ADDR_CYCLES		5
122  
123  #define ATMEL_NAND_ALE_OFFSET			BIT(21)
124  #define ATMEL_NAND_CLE_OFFSET			BIT(22)
125  
126  #define DEFAULT_TIMEOUT_MS			1000
127  #define MIN_DMA_LEN				128
128  
129  static bool atmel_nand_avoid_dma __read_mostly;
130  
131  MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
132  module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
133  
134  enum atmel_nand_rb_type {
135  	ATMEL_NAND_NO_RB,
136  	ATMEL_NAND_NATIVE_RB,
137  	ATMEL_NAND_GPIO_RB,
138  };
139  
140  struct atmel_nand_rb {
141  	enum atmel_nand_rb_type type;
142  	union {
143  		struct gpio_desc *gpio;
144  		int id;
145  	};
146  };
147  
148  struct atmel_nand_cs {
149  	int id;
150  	struct atmel_nand_rb rb;
151  	struct gpio_desc *csgpio;
152  	struct {
153  		void __iomem *virt;
154  		dma_addr_t dma;
155  	} io;
156  
157  	struct atmel_smc_cs_conf smcconf;
158  };
159  
160  struct atmel_nand {
161  	struct list_head node;
162  	struct device *dev;
163  	struct nand_chip base;
164  	struct atmel_nand_cs *activecs;
165  	struct atmel_pmecc_user *pmecc;
166  	struct gpio_desc *cdgpio;
167  	int numcs;
168  	struct atmel_nand_cs cs[];
169  };
170  
to_atmel_nand(struct nand_chip * chip)171  static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
172  {
173  	return container_of(chip, struct atmel_nand, base);
174  }
175  
176  enum atmel_nfc_data_xfer {
177  	ATMEL_NFC_NO_DATA,
178  	ATMEL_NFC_READ_DATA,
179  	ATMEL_NFC_WRITE_DATA,
180  };
181  
182  struct atmel_nfc_op {
183  	u8 cs;
184  	u8 ncmds;
185  	u8 cmds[2];
186  	u8 naddrs;
187  	u8 addrs[5];
188  	enum atmel_nfc_data_xfer data;
189  	u32 wait;
190  	u32 errors;
191  };
192  
193  struct atmel_nand_controller;
194  struct atmel_nand_controller_caps;
195  
196  struct atmel_nand_controller_ops {
197  	int (*probe)(struct platform_device *pdev,
198  		     const struct atmel_nand_controller_caps *caps);
199  	int (*remove)(struct atmel_nand_controller *nc);
200  	void (*nand_init)(struct atmel_nand_controller *nc,
201  			  struct atmel_nand *nand);
202  	int (*ecc_init)(struct nand_chip *chip);
203  	int (*setup_interface)(struct atmel_nand *nand, int csline,
204  			       const struct nand_interface_config *conf);
205  	int (*exec_op)(struct atmel_nand *nand,
206  		       const struct nand_operation *op, bool check_only);
207  };
208  
209  struct atmel_nand_controller_caps {
210  	bool has_dma;
211  	bool legacy_of_bindings;
212  	u32 ale_offs;
213  	u32 cle_offs;
214  	const char *ebi_csa_regmap_name;
215  	const struct atmel_nand_controller_ops *ops;
216  };
217  
218  struct atmel_nand_controller {
219  	struct nand_controller base;
220  	const struct atmel_nand_controller_caps *caps;
221  	struct device *dev;
222  	struct regmap *smc;
223  	struct dma_chan *dmac;
224  	struct atmel_pmecc *pmecc;
225  	struct list_head chips;
226  	struct clk *mck;
227  };
228  
229  static inline struct atmel_nand_controller *
to_nand_controller(struct nand_controller * ctl)230  to_nand_controller(struct nand_controller *ctl)
231  {
232  	return container_of(ctl, struct atmel_nand_controller, base);
233  }
234  
235  struct atmel_smc_nand_ebi_csa_cfg {
236  	u32 offs;
237  	u32 nfd0_on_d16;
238  };
239  
240  struct atmel_smc_nand_controller {
241  	struct atmel_nand_controller base;
242  	struct regmap *ebi_csa_regmap;
243  	struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
244  };
245  
246  static inline struct atmel_smc_nand_controller *
to_smc_nand_controller(struct nand_controller * ctl)247  to_smc_nand_controller(struct nand_controller *ctl)
248  {
249  	return container_of(to_nand_controller(ctl),
250  			    struct atmel_smc_nand_controller, base);
251  }
252  
253  struct atmel_hsmc_nand_controller {
254  	struct atmel_nand_controller base;
255  	struct {
256  		struct gen_pool *pool;
257  		void __iomem *virt;
258  		dma_addr_t dma;
259  	} sram;
260  	const struct atmel_hsmc_reg_layout *hsmc_layout;
261  	struct regmap *io;
262  	struct atmel_nfc_op op;
263  	struct completion complete;
264  	u32 cfg;
265  	int irq;
266  
267  	/* Only used when instantiating from legacy DT bindings. */
268  	struct clk *clk;
269  };
270  
271  static inline struct atmel_hsmc_nand_controller *
to_hsmc_nand_controller(struct nand_controller * ctl)272  to_hsmc_nand_controller(struct nand_controller *ctl)
273  {
274  	return container_of(to_nand_controller(ctl),
275  			    struct atmel_hsmc_nand_controller, base);
276  }
277  
atmel_nfc_op_done(struct atmel_nfc_op * op,u32 status)278  static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
279  {
280  	op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
281  	op->wait ^= status & op->wait;
282  
283  	return !op->wait || op->errors;
284  }
285  
atmel_nfc_interrupt(int irq,void * data)286  static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
287  {
288  	struct atmel_hsmc_nand_controller *nc = data;
289  	u32 sr, rcvd;
290  	bool done;
291  
292  	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
293  
294  	rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
295  	done = atmel_nfc_op_done(&nc->op, sr);
296  
297  	if (rcvd)
298  		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
299  
300  	if (done)
301  		complete(&nc->complete);
302  
303  	return rcvd ? IRQ_HANDLED : IRQ_NONE;
304  }
305  
atmel_nfc_wait(struct atmel_hsmc_nand_controller * nc,bool poll,unsigned int timeout_ms)306  static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
307  			  unsigned int timeout_ms)
308  {
309  	int ret;
310  
311  	if (!timeout_ms)
312  		timeout_ms = DEFAULT_TIMEOUT_MS;
313  
314  	if (poll) {
315  		u32 status;
316  
317  		ret = regmap_read_poll_timeout(nc->base.smc,
318  					       ATMEL_HSMC_NFC_SR, status,
319  					       atmel_nfc_op_done(&nc->op,
320  								 status),
321  					       0, timeout_ms * 1000);
322  	} else {
323  		init_completion(&nc->complete);
324  		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
325  			     nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
326  		ret = wait_for_completion_timeout(&nc->complete,
327  						msecs_to_jiffies(timeout_ms));
328  		if (!ret)
329  			ret = -ETIMEDOUT;
330  		else
331  			ret = 0;
332  
333  		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
334  	}
335  
336  	if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
337  		dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
338  		ret = -ETIMEDOUT;
339  	}
340  
341  	if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
342  		dev_err(nc->base.dev, "Access to an undefined area\n");
343  		ret = -EIO;
344  	}
345  
346  	if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
347  		dev_err(nc->base.dev, "Access while busy\n");
348  		ret = -EIO;
349  	}
350  
351  	if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
352  		dev_err(nc->base.dev, "Wrong access size\n");
353  		ret = -EIO;
354  	}
355  
356  	return ret;
357  }
358  
atmel_nand_dma_transfer_finished(void * data)359  static void atmel_nand_dma_transfer_finished(void *data)
360  {
361  	struct completion *finished = data;
362  
363  	complete(finished);
364  }
365  
atmel_nand_dma_transfer(struct atmel_nand_controller * nc,void * buf,dma_addr_t dev_dma,size_t len,enum dma_data_direction dir)366  static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
367  				   void *buf, dma_addr_t dev_dma, size_t len,
368  				   enum dma_data_direction dir)
369  {
370  	DECLARE_COMPLETION_ONSTACK(finished);
371  	dma_addr_t src_dma, dst_dma, buf_dma;
372  	struct dma_async_tx_descriptor *tx;
373  	dma_cookie_t cookie;
374  
375  	buf_dma = dma_map_single(nc->dev, buf, len, dir);
376  	if (dma_mapping_error(nc->dev, dev_dma)) {
377  		dev_err(nc->dev,
378  			"Failed to prepare a buffer for DMA access\n");
379  		goto err;
380  	}
381  
382  	if (dir == DMA_FROM_DEVICE) {
383  		src_dma = dev_dma;
384  		dst_dma = buf_dma;
385  	} else {
386  		src_dma = buf_dma;
387  		dst_dma = dev_dma;
388  	}
389  
390  	tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
391  				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
392  	if (!tx) {
393  		dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
394  		goto err_unmap;
395  	}
396  
397  	tx->callback = atmel_nand_dma_transfer_finished;
398  	tx->callback_param = &finished;
399  
400  	cookie = dmaengine_submit(tx);
401  	if (dma_submit_error(cookie)) {
402  		dev_err(nc->dev, "Failed to do DMA tx_submit\n");
403  		goto err_unmap;
404  	}
405  
406  	dma_async_issue_pending(nc->dmac);
407  	wait_for_completion(&finished);
408  	dma_unmap_single(nc->dev, buf_dma, len, dir);
409  
410  	return 0;
411  
412  err_unmap:
413  	dma_unmap_single(nc->dev, buf_dma, len, dir);
414  
415  err:
416  	dev_dbg(nc->dev, "Fall back to CPU I/O\n");
417  
418  	return -EIO;
419  }
420  
atmel_nfc_exec_op(struct atmel_hsmc_nand_controller * nc,bool poll)421  static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
422  {
423  	u8 *addrs = nc->op.addrs;
424  	unsigned int op = 0;
425  	u32 addr, val;
426  	int i, ret;
427  
428  	nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
429  
430  	for (i = 0; i < nc->op.ncmds; i++)
431  		op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
432  
433  	if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
434  		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
435  
436  	op |= ATMEL_NFC_CSID(nc->op.cs) |
437  	      ATMEL_NFC_ACYCLE(nc->op.naddrs);
438  
439  	if (nc->op.ncmds > 1)
440  		op |= ATMEL_NFC_VCMD2;
441  
442  	addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
443  	       (addrs[3] << 24);
444  
445  	if (nc->op.data != ATMEL_NFC_NO_DATA) {
446  		op |= ATMEL_NFC_DATAEN;
447  		nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
448  
449  		if (nc->op.data == ATMEL_NFC_WRITE_DATA)
450  			op |= ATMEL_NFC_NFCWR;
451  	}
452  
453  	/* Clear all flags. */
454  	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
455  
456  	/* Send the command. */
457  	regmap_write(nc->io, op, addr);
458  
459  	ret = atmel_nfc_wait(nc, poll, 0);
460  	if (ret)
461  		dev_err(nc->base.dev,
462  			"Failed to send NAND command (err = %d)!",
463  			ret);
464  
465  	/* Reset the op state. */
466  	memset(&nc->op, 0, sizeof(nc->op));
467  
468  	return ret;
469  }
470  
atmel_nand_data_in(struct atmel_nand * nand,void * buf,unsigned int len,bool force_8bit)471  static void atmel_nand_data_in(struct atmel_nand *nand, void *buf,
472  			       unsigned int len, bool force_8bit)
473  {
474  	struct atmel_nand_controller *nc;
475  
476  	nc = to_nand_controller(nand->base.controller);
477  
478  	/*
479  	 * If the controller supports DMA, the buffer address is DMA-able and
480  	 * len is long enough to make DMA transfers profitable, let's trigger
481  	 * a DMA transfer. If it fails, fallback to PIO mode.
482  	 */
483  	if (nc->dmac && virt_addr_valid(buf) &&
484  	    len >= MIN_DMA_LEN && !force_8bit &&
485  	    !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
486  				     DMA_FROM_DEVICE))
487  		return;
488  
489  	if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
490  		ioread16_rep(nand->activecs->io.virt, buf, len / 2);
491  	else
492  		ioread8_rep(nand->activecs->io.virt, buf, len);
493  }
494  
atmel_nand_data_out(struct atmel_nand * nand,const void * buf,unsigned int len,bool force_8bit)495  static void atmel_nand_data_out(struct atmel_nand *nand, const void *buf,
496  				unsigned int len, bool force_8bit)
497  {
498  	struct atmel_nand_controller *nc;
499  
500  	nc = to_nand_controller(nand->base.controller);
501  
502  	/*
503  	 * If the controller supports DMA, the buffer address is DMA-able and
504  	 * len is long enough to make DMA transfers profitable, let's trigger
505  	 * a DMA transfer. If it fails, fallback to PIO mode.
506  	 */
507  	if (nc->dmac && virt_addr_valid(buf) &&
508  	    len >= MIN_DMA_LEN && !force_8bit &&
509  	    !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
510  				     len, DMA_TO_DEVICE))
511  		return;
512  
513  	if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
514  		iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
515  	else
516  		iowrite8_rep(nand->activecs->io.virt, buf, len);
517  }
518  
atmel_nand_waitrdy(struct atmel_nand * nand,unsigned int timeout_ms)519  static int atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms)
520  {
521  	if (nand->activecs->rb.type == ATMEL_NAND_NO_RB)
522  		return nand_soft_waitrdy(&nand->base, timeout_ms);
523  
524  	return nand_gpio_waitrdy(&nand->base, nand->activecs->rb.gpio,
525  				 timeout_ms);
526  }
527  
atmel_hsmc_nand_waitrdy(struct atmel_nand * nand,unsigned int timeout_ms)528  static int atmel_hsmc_nand_waitrdy(struct atmel_nand *nand,
529  				   unsigned int timeout_ms)
530  {
531  	struct atmel_hsmc_nand_controller *nc;
532  	u32 status, mask;
533  
534  	if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
535  		return atmel_nand_waitrdy(nand, timeout_ms);
536  
537  	nc = to_hsmc_nand_controller(nand->base.controller);
538  	mask = ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
539  	return regmap_read_poll_timeout_atomic(nc->base.smc, ATMEL_HSMC_NFC_SR,
540  					       status, status & mask,
541  					       10, timeout_ms * 1000);
542  }
543  
atmel_nand_select_target(struct atmel_nand * nand,unsigned int cs)544  static void atmel_nand_select_target(struct atmel_nand *nand,
545  				     unsigned int cs)
546  {
547  	nand->activecs = &nand->cs[cs];
548  }
549  
atmel_hsmc_nand_select_target(struct atmel_nand * nand,unsigned int cs)550  static void atmel_hsmc_nand_select_target(struct atmel_nand *nand,
551  					  unsigned int cs)
552  {
553  	struct mtd_info *mtd = nand_to_mtd(&nand->base);
554  	struct atmel_hsmc_nand_controller *nc;
555  	u32 cfg = ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
556  		  ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
557  		  ATMEL_HSMC_NFC_CFG_RSPARE;
558  
559  	nand->activecs = &nand->cs[cs];
560  	nc = to_hsmc_nand_controller(nand->base.controller);
561  	if (nc->cfg == cfg)
562  		return;
563  
564  	regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
565  			   ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
566  			   ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
567  			   ATMEL_HSMC_NFC_CFG_RSPARE |
568  			   ATMEL_HSMC_NFC_CFG_WSPARE,
569  			   cfg);
570  	nc->cfg = cfg;
571  }
572  
atmel_smc_nand_exec_instr(struct atmel_nand * nand,const struct nand_op_instr * instr)573  static int atmel_smc_nand_exec_instr(struct atmel_nand *nand,
574  				     const struct nand_op_instr *instr)
575  {
576  	struct atmel_nand_controller *nc;
577  	unsigned int i;
578  
579  	nc = to_nand_controller(nand->base.controller);
580  	switch (instr->type) {
581  	case NAND_OP_CMD_INSTR:
582  		writeb(instr->ctx.cmd.opcode,
583  		       nand->activecs->io.virt + nc->caps->cle_offs);
584  		return 0;
585  	case NAND_OP_ADDR_INSTR:
586  		for (i = 0; i < instr->ctx.addr.naddrs; i++)
587  			writeb(instr->ctx.addr.addrs[i],
588  			       nand->activecs->io.virt + nc->caps->ale_offs);
589  		return 0;
590  	case NAND_OP_DATA_IN_INSTR:
591  		atmel_nand_data_in(nand, instr->ctx.data.buf.in,
592  				   instr->ctx.data.len,
593  				   instr->ctx.data.force_8bit);
594  		return 0;
595  	case NAND_OP_DATA_OUT_INSTR:
596  		atmel_nand_data_out(nand, instr->ctx.data.buf.out,
597  				    instr->ctx.data.len,
598  				    instr->ctx.data.force_8bit);
599  		return 0;
600  	case NAND_OP_WAITRDY_INSTR:
601  		return atmel_nand_waitrdy(nand,
602  					  instr->ctx.waitrdy.timeout_ms);
603  	default:
604  		break;
605  	}
606  
607  	return -EINVAL;
608  }
609  
atmel_smc_nand_exec_op(struct atmel_nand * nand,const struct nand_operation * op,bool check_only)610  static int atmel_smc_nand_exec_op(struct atmel_nand *nand,
611  				  const struct nand_operation *op,
612  				  bool check_only)
613  {
614  	unsigned int i;
615  	int ret = 0;
616  
617  	if (check_only)
618  		return 0;
619  
620  	atmel_nand_select_target(nand, op->cs);
621  	gpiod_set_value(nand->activecs->csgpio, 0);
622  	for (i = 0; i < op->ninstrs; i++) {
623  		ret = atmel_smc_nand_exec_instr(nand, &op->instrs[i]);
624  		if (ret)
625  			break;
626  	}
627  	gpiod_set_value(nand->activecs->csgpio, 1);
628  
629  	return ret;
630  }
631  
atmel_hsmc_exec_cmd_addr(struct nand_chip * chip,const struct nand_subop * subop)632  static int atmel_hsmc_exec_cmd_addr(struct nand_chip *chip,
633  				    const struct nand_subop *subop)
634  {
635  	struct atmel_nand *nand = to_atmel_nand(chip);
636  	struct atmel_hsmc_nand_controller *nc;
637  	unsigned int i, j;
638  
639  	nc = to_hsmc_nand_controller(chip->controller);
640  
641  	nc->op.cs = nand->activecs->id;
642  	for (i = 0; i < subop->ninstrs; i++) {
643  		const struct nand_op_instr *instr = &subop->instrs[i];
644  
645  		if (instr->type == NAND_OP_CMD_INSTR) {
646  			nc->op.cmds[nc->op.ncmds++] = instr->ctx.cmd.opcode;
647  			continue;
648  		}
649  
650  		for (j = nand_subop_get_addr_start_off(subop, i);
651  		     j < nand_subop_get_num_addr_cyc(subop, i); j++) {
652  			nc->op.addrs[nc->op.naddrs] = instr->ctx.addr.addrs[j];
653  			nc->op.naddrs++;
654  		}
655  	}
656  
657  	return atmel_nfc_exec_op(nc, true);
658  }
659  
atmel_hsmc_exec_rw(struct nand_chip * chip,const struct nand_subop * subop)660  static int atmel_hsmc_exec_rw(struct nand_chip *chip,
661  			      const struct nand_subop *subop)
662  {
663  	const struct nand_op_instr *instr = subop->instrs;
664  	struct atmel_nand *nand = to_atmel_nand(chip);
665  
666  	if (instr->type == NAND_OP_DATA_IN_INSTR)
667  		atmel_nand_data_in(nand, instr->ctx.data.buf.in,
668  				   instr->ctx.data.len,
669  				   instr->ctx.data.force_8bit);
670  	else
671  		atmel_nand_data_out(nand, instr->ctx.data.buf.out,
672  				    instr->ctx.data.len,
673  				    instr->ctx.data.force_8bit);
674  
675  	return 0;
676  }
677  
atmel_hsmc_exec_waitrdy(struct nand_chip * chip,const struct nand_subop * subop)678  static int atmel_hsmc_exec_waitrdy(struct nand_chip *chip,
679  				   const struct nand_subop *subop)
680  {
681  	const struct nand_op_instr *instr = subop->instrs;
682  	struct atmel_nand *nand = to_atmel_nand(chip);
683  
684  	return atmel_hsmc_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms);
685  }
686  
687  static const struct nand_op_parser atmel_hsmc_op_parser = NAND_OP_PARSER(
688  	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr,
689  		NAND_OP_PARSER_PAT_CMD_ELEM(true),
690  		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
691  		NAND_OP_PARSER_PAT_CMD_ELEM(true)),
692  	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
693  		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
694  	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
695  		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)),
696  	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy,
697  		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
698  );
699  
atmel_hsmc_nand_exec_op(struct atmel_nand * nand,const struct nand_operation * op,bool check_only)700  static int atmel_hsmc_nand_exec_op(struct atmel_nand *nand,
701  				   const struct nand_operation *op,
702  				   bool check_only)
703  {
704  	int ret;
705  
706  	if (check_only)
707  		return nand_op_parser_exec_op(&nand->base,
708  					      &atmel_hsmc_op_parser, op, true);
709  
710  	atmel_hsmc_nand_select_target(nand, op->cs);
711  	ret = nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op,
712  				     false);
713  
714  	return ret;
715  }
716  
atmel_nfc_copy_to_sram(struct nand_chip * chip,const u8 * buf,bool oob_required)717  static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
718  				   bool oob_required)
719  {
720  	struct mtd_info *mtd = nand_to_mtd(chip);
721  	struct atmel_hsmc_nand_controller *nc;
722  	int ret = -EIO;
723  
724  	nc = to_hsmc_nand_controller(chip->controller);
725  
726  	if (nc->base.dmac)
727  		ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
728  					      nc->sram.dma, mtd->writesize,
729  					      DMA_TO_DEVICE);
730  
731  	/* Falling back to CPU copy. */
732  	if (ret)
733  		memcpy_toio(nc->sram.virt, buf, mtd->writesize);
734  
735  	if (oob_required)
736  		memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
737  			    mtd->oobsize);
738  }
739  
atmel_nfc_copy_from_sram(struct nand_chip * chip,u8 * buf,bool oob_required)740  static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
741  				     bool oob_required)
742  {
743  	struct mtd_info *mtd = nand_to_mtd(chip);
744  	struct atmel_hsmc_nand_controller *nc;
745  	int ret = -EIO;
746  
747  	nc = to_hsmc_nand_controller(chip->controller);
748  
749  	if (nc->base.dmac)
750  		ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
751  					      mtd->writesize, DMA_FROM_DEVICE);
752  
753  	/* Falling back to CPU copy. */
754  	if (ret)
755  		memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
756  
757  	if (oob_required)
758  		memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
759  			      mtd->oobsize);
760  }
761  
atmel_nfc_set_op_addr(struct nand_chip * chip,int page,int column)762  static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
763  {
764  	struct mtd_info *mtd = nand_to_mtd(chip);
765  	struct atmel_hsmc_nand_controller *nc;
766  
767  	nc = to_hsmc_nand_controller(chip->controller);
768  
769  	if (column >= 0) {
770  		nc->op.addrs[nc->op.naddrs++] = column;
771  
772  		/*
773  		 * 2 address cycles for the column offset on large page NANDs.
774  		 */
775  		if (mtd->writesize > 512)
776  			nc->op.addrs[nc->op.naddrs++] = column >> 8;
777  	}
778  
779  	if (page >= 0) {
780  		nc->op.addrs[nc->op.naddrs++] = page;
781  		nc->op.addrs[nc->op.naddrs++] = page >> 8;
782  
783  		if (chip->options & NAND_ROW_ADDR_3)
784  			nc->op.addrs[nc->op.naddrs++] = page >> 16;
785  	}
786  }
787  
atmel_nand_pmecc_enable(struct nand_chip * chip,int op,bool raw)788  static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
789  {
790  	struct atmel_nand *nand = to_atmel_nand(chip);
791  	struct atmel_nand_controller *nc;
792  	int ret;
793  
794  	nc = to_nand_controller(chip->controller);
795  
796  	if (raw)
797  		return 0;
798  
799  	ret = atmel_pmecc_enable(nand->pmecc, op);
800  	if (ret)
801  		dev_err(nc->dev,
802  			"Failed to enable ECC engine (err = %d)\n", ret);
803  
804  	return ret;
805  }
806  
atmel_nand_pmecc_disable(struct nand_chip * chip,bool raw)807  static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
808  {
809  	struct atmel_nand *nand = to_atmel_nand(chip);
810  
811  	if (!raw)
812  		atmel_pmecc_disable(nand->pmecc);
813  }
814  
atmel_nand_pmecc_generate_eccbytes(struct nand_chip * chip,bool raw)815  static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
816  {
817  	struct atmel_nand *nand = to_atmel_nand(chip);
818  	struct mtd_info *mtd = nand_to_mtd(chip);
819  	struct atmel_nand_controller *nc;
820  	struct mtd_oob_region oobregion;
821  	void *eccbuf;
822  	int ret, i;
823  
824  	nc = to_nand_controller(chip->controller);
825  
826  	if (raw)
827  		return 0;
828  
829  	ret = atmel_pmecc_wait_rdy(nand->pmecc);
830  	if (ret) {
831  		dev_err(nc->dev,
832  			"Failed to transfer NAND page data (err = %d)\n",
833  			ret);
834  		return ret;
835  	}
836  
837  	mtd_ooblayout_ecc(mtd, 0, &oobregion);
838  	eccbuf = chip->oob_poi + oobregion.offset;
839  
840  	for (i = 0; i < chip->ecc.steps; i++) {
841  		atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
842  						   eccbuf);
843  		eccbuf += chip->ecc.bytes;
844  	}
845  
846  	return 0;
847  }
848  
atmel_nand_pmecc_correct_data(struct nand_chip * chip,void * buf,bool raw)849  static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
850  					 bool raw)
851  {
852  	struct atmel_nand *nand = to_atmel_nand(chip);
853  	struct mtd_info *mtd = nand_to_mtd(chip);
854  	struct atmel_nand_controller *nc;
855  	struct mtd_oob_region oobregion;
856  	int ret, i, max_bitflips = 0;
857  	void *databuf, *eccbuf;
858  
859  	nc = to_nand_controller(chip->controller);
860  
861  	if (raw)
862  		return 0;
863  
864  	ret = atmel_pmecc_wait_rdy(nand->pmecc);
865  	if (ret) {
866  		dev_err(nc->dev,
867  			"Failed to read NAND page data (err = %d)\n",
868  			ret);
869  		return ret;
870  	}
871  
872  	mtd_ooblayout_ecc(mtd, 0, &oobregion);
873  	eccbuf = chip->oob_poi + oobregion.offset;
874  	databuf = buf;
875  
876  	for (i = 0; i < chip->ecc.steps; i++) {
877  		ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
878  						 eccbuf);
879  		if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
880  			ret = nand_check_erased_ecc_chunk(databuf,
881  							  chip->ecc.size,
882  							  eccbuf,
883  							  chip->ecc.bytes,
884  							  NULL, 0,
885  							  chip->ecc.strength);
886  
887  		if (ret >= 0) {
888  			mtd->ecc_stats.corrected += ret;
889  			max_bitflips = max(ret, max_bitflips);
890  		} else {
891  			mtd->ecc_stats.failed++;
892  		}
893  
894  		databuf += chip->ecc.size;
895  		eccbuf += chip->ecc.bytes;
896  	}
897  
898  	return max_bitflips;
899  }
900  
atmel_nand_pmecc_write_pg(struct nand_chip * chip,const u8 * buf,bool oob_required,int page,bool raw)901  static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
902  				     bool oob_required, int page, bool raw)
903  {
904  	struct mtd_info *mtd = nand_to_mtd(chip);
905  	struct atmel_nand *nand = to_atmel_nand(chip);
906  	int ret;
907  
908  	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
909  
910  	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
911  	if (ret)
912  		return ret;
913  
914  	nand_write_data_op(chip, buf, mtd->writesize, false);
915  
916  	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
917  	if (ret) {
918  		atmel_pmecc_disable(nand->pmecc);
919  		return ret;
920  	}
921  
922  	atmel_nand_pmecc_disable(chip, raw);
923  
924  	nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
925  
926  	return nand_prog_page_end_op(chip);
927  }
928  
atmel_nand_pmecc_write_page(struct nand_chip * chip,const u8 * buf,int oob_required,int page)929  static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
930  				       int oob_required, int page)
931  {
932  	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
933  }
934  
atmel_nand_pmecc_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)935  static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
936  					   const u8 *buf, int oob_required,
937  					   int page)
938  {
939  	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
940  }
941  
atmel_nand_pmecc_read_pg(struct nand_chip * chip,u8 * buf,bool oob_required,int page,bool raw)942  static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
943  				    bool oob_required, int page, bool raw)
944  {
945  	struct mtd_info *mtd = nand_to_mtd(chip);
946  	int ret;
947  
948  	nand_read_page_op(chip, page, 0, NULL, 0);
949  
950  	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
951  	if (ret)
952  		return ret;
953  
954  	ret = nand_read_data_op(chip, buf, mtd->writesize, false, false);
955  	if (ret)
956  		goto out_disable;
957  
958  	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false);
959  	if (ret)
960  		goto out_disable;
961  
962  	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
963  
964  out_disable:
965  	atmel_nand_pmecc_disable(chip, raw);
966  
967  	return ret;
968  }
969  
atmel_nand_pmecc_read_page(struct nand_chip * chip,u8 * buf,int oob_required,int page)970  static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
971  				      int oob_required, int page)
972  {
973  	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
974  }
975  
atmel_nand_pmecc_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)976  static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
977  					  int oob_required, int page)
978  {
979  	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
980  }
981  
atmel_hsmc_nand_pmecc_write_pg(struct nand_chip * chip,const u8 * buf,bool oob_required,int page,bool raw)982  static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
983  					  const u8 *buf, bool oob_required,
984  					  int page, bool raw)
985  {
986  	struct mtd_info *mtd = nand_to_mtd(chip);
987  	struct atmel_nand *nand = to_atmel_nand(chip);
988  	struct atmel_hsmc_nand_controller *nc;
989  	int ret;
990  
991  	atmel_hsmc_nand_select_target(nand, chip->cur_cs);
992  	nc = to_hsmc_nand_controller(chip->controller);
993  
994  	atmel_nfc_copy_to_sram(chip, buf, false);
995  
996  	nc->op.cmds[0] = NAND_CMD_SEQIN;
997  	nc->op.ncmds = 1;
998  	atmel_nfc_set_op_addr(chip, page, 0x0);
999  	nc->op.cs = nand->activecs->id;
1000  	nc->op.data = ATMEL_NFC_WRITE_DATA;
1001  
1002  	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
1003  	if (ret)
1004  		return ret;
1005  
1006  	ret = atmel_nfc_exec_op(nc, false);
1007  	if (ret) {
1008  		atmel_nand_pmecc_disable(chip, raw);
1009  		dev_err(nc->base.dev,
1010  			"Failed to transfer NAND page data (err = %d)\n",
1011  			ret);
1012  		return ret;
1013  	}
1014  
1015  	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
1016  
1017  	atmel_nand_pmecc_disable(chip, raw);
1018  
1019  	if (ret)
1020  		return ret;
1021  
1022  	nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
1023  
1024  	return nand_prog_page_end_op(chip);
1025  }
1026  
atmel_hsmc_nand_pmecc_write_page(struct nand_chip * chip,const u8 * buf,int oob_required,int page)1027  static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
1028  					    const u8 *buf, int oob_required,
1029  					    int page)
1030  {
1031  	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1032  					      false);
1033  }
1034  
atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)1035  static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
1036  						const u8 *buf,
1037  						int oob_required, int page)
1038  {
1039  	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1040  					      true);
1041  }
1042  
atmel_hsmc_nand_pmecc_read_pg(struct nand_chip * chip,u8 * buf,bool oob_required,int page,bool raw)1043  static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
1044  					 bool oob_required, int page,
1045  					 bool raw)
1046  {
1047  	struct mtd_info *mtd = nand_to_mtd(chip);
1048  	struct atmel_nand *nand = to_atmel_nand(chip);
1049  	struct atmel_hsmc_nand_controller *nc;
1050  	int ret;
1051  
1052  	atmel_hsmc_nand_select_target(nand, chip->cur_cs);
1053  	nc = to_hsmc_nand_controller(chip->controller);
1054  
1055  	/*
1056  	 * Optimized read page accessors only work when the NAND R/B pin is
1057  	 * connected to a native SoC R/B pin. If that's not the case, fallback
1058  	 * to the non-optimized one.
1059  	 */
1060  	if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
1061  		return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
1062  						raw);
1063  
1064  	nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
1065  
1066  	if (mtd->writesize > 512)
1067  		nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
1068  
1069  	atmel_nfc_set_op_addr(chip, page, 0x0);
1070  	nc->op.cs = nand->activecs->id;
1071  	nc->op.data = ATMEL_NFC_READ_DATA;
1072  
1073  	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1074  	if (ret)
1075  		return ret;
1076  
1077  	ret = atmel_nfc_exec_op(nc, false);
1078  	if (ret) {
1079  		atmel_nand_pmecc_disable(chip, raw);
1080  		dev_err(nc->base.dev,
1081  			"Failed to load NAND page data (err = %d)\n",
1082  			ret);
1083  		return ret;
1084  	}
1085  
1086  	atmel_nfc_copy_from_sram(chip, buf, true);
1087  
1088  	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1089  
1090  	atmel_nand_pmecc_disable(chip, raw);
1091  
1092  	return ret;
1093  }
1094  
atmel_hsmc_nand_pmecc_read_page(struct nand_chip * chip,u8 * buf,int oob_required,int page)1095  static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
1096  					   int oob_required, int page)
1097  {
1098  	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1099  					     false);
1100  }
1101  
atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)1102  static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
1103  					       u8 *buf, int oob_required,
1104  					       int page)
1105  {
1106  	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1107  					     true);
1108  }
1109  
atmel_nand_pmecc_init(struct nand_chip * chip)1110  static int atmel_nand_pmecc_init(struct nand_chip *chip)
1111  {
1112  	const struct nand_ecc_props *requirements =
1113  		nanddev_get_ecc_requirements(&chip->base);
1114  	struct mtd_info *mtd = nand_to_mtd(chip);
1115  	struct nand_device *nanddev = mtd_to_nanddev(mtd);
1116  	struct atmel_nand *nand = to_atmel_nand(chip);
1117  	struct atmel_nand_controller *nc;
1118  	struct atmel_pmecc_user_req req;
1119  
1120  	nc = to_nand_controller(chip->controller);
1121  
1122  	if (!nc->pmecc) {
1123  		dev_err(nc->dev, "HW ECC not supported\n");
1124  		return -ENOTSUPP;
1125  	}
1126  
1127  	if (nc->caps->legacy_of_bindings) {
1128  		u32 val;
1129  
1130  		if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1131  					  &val))
1132  			chip->ecc.strength = val;
1133  
1134  		if (!of_property_read_u32(nc->dev->of_node,
1135  					  "atmel,pmecc-sector-size",
1136  					  &val))
1137  			chip->ecc.size = val;
1138  	}
1139  
1140  	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
1141  		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1142  	else if (chip->ecc.strength)
1143  		req.ecc.strength = chip->ecc.strength;
1144  	else if (requirements->strength)
1145  		req.ecc.strength = requirements->strength;
1146  	else
1147  		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1148  
1149  	if (chip->ecc.size)
1150  		req.ecc.sectorsize = chip->ecc.size;
1151  	else if (requirements->step_size)
1152  		req.ecc.sectorsize = requirements->step_size;
1153  	else
1154  		req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1155  
1156  	req.pagesize = mtd->writesize;
1157  	req.oobsize = mtd->oobsize;
1158  
1159  	if (mtd->writesize <= 512) {
1160  		req.ecc.bytes = 4;
1161  		req.ecc.ooboffset = 0;
1162  	} else {
1163  		req.ecc.bytes = mtd->oobsize - 2;
1164  		req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1165  	}
1166  
1167  	nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1168  	if (IS_ERR(nand->pmecc))
1169  		return PTR_ERR(nand->pmecc);
1170  
1171  	chip->ecc.algo = NAND_ECC_ALGO_BCH;
1172  	chip->ecc.size = req.ecc.sectorsize;
1173  	chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1174  	chip->ecc.strength = req.ecc.strength;
1175  
1176  	chip->options |= NAND_NO_SUBPAGE_WRITE;
1177  
1178  	mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1179  
1180  	return 0;
1181  }
1182  
atmel_nand_ecc_init(struct nand_chip * chip)1183  static int atmel_nand_ecc_init(struct nand_chip *chip)
1184  {
1185  	struct atmel_nand_controller *nc;
1186  	int ret;
1187  
1188  	nc = to_nand_controller(chip->controller);
1189  
1190  	switch (chip->ecc.engine_type) {
1191  	case NAND_ECC_ENGINE_TYPE_NONE:
1192  	case NAND_ECC_ENGINE_TYPE_SOFT:
1193  		/*
1194  		 * Nothing to do, the core will initialize everything for us.
1195  		 */
1196  		break;
1197  
1198  	case NAND_ECC_ENGINE_TYPE_ON_HOST:
1199  		ret = atmel_nand_pmecc_init(chip);
1200  		if (ret)
1201  			return ret;
1202  
1203  		chip->ecc.read_page = atmel_nand_pmecc_read_page;
1204  		chip->ecc.write_page = atmel_nand_pmecc_write_page;
1205  		chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1206  		chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1207  		break;
1208  
1209  	default:
1210  		/* Other modes are not supported. */
1211  		dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1212  			chip->ecc.engine_type);
1213  		return -ENOTSUPP;
1214  	}
1215  
1216  	return 0;
1217  }
1218  
atmel_hsmc_nand_ecc_init(struct nand_chip * chip)1219  static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1220  {
1221  	int ret;
1222  
1223  	ret = atmel_nand_ecc_init(chip);
1224  	if (ret)
1225  		return ret;
1226  
1227  	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1228  		return 0;
1229  
1230  	/* Adjust the ECC operations for the HSMC IP. */
1231  	chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1232  	chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1233  	chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1234  	chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1235  
1236  	return 0;
1237  }
1238  
atmel_smc_nand_prepare_smcconf(struct atmel_nand * nand,const struct nand_interface_config * conf,struct atmel_smc_cs_conf * smcconf)1239  static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1240  					const struct nand_interface_config *conf,
1241  					struct atmel_smc_cs_conf *smcconf)
1242  {
1243  	u32 ncycles, totalcycles, timeps, mckperiodps;
1244  	struct atmel_nand_controller *nc;
1245  	int ret;
1246  
1247  	nc = to_nand_controller(nand->base.controller);
1248  
1249  	/* DDR interface not supported. */
1250  	if (!nand_interface_is_sdr(conf))
1251  		return -ENOTSUPP;
1252  
1253  	/*
1254  	 * tRC < 30ns implies EDO mode. This controller does not support this
1255  	 * mode.
1256  	 */
1257  	if (conf->timings.sdr.tRC_min < 30000)
1258  		return -ENOTSUPP;
1259  
1260  	atmel_smc_cs_conf_init(smcconf);
1261  
1262  	mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1263  	mckperiodps *= 1000;
1264  
1265  	/*
1266  	 * Set write pulse timing. This one is easy to extract:
1267  	 *
1268  	 * NWE_PULSE = tWP
1269  	 */
1270  	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1271  	totalcycles = ncycles;
1272  	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1273  					  ncycles);
1274  	if (ret)
1275  		return ret;
1276  
1277  	/*
1278  	 * The write setup timing depends on the operation done on the NAND.
1279  	 * All operations goes through the same data bus, but the operation
1280  	 * type depends on the address we are writing to (ALE/CLE address
1281  	 * lines).
1282  	 * Since we have no way to differentiate the different operations at
1283  	 * the SMC level, we must consider the worst case (the biggest setup
1284  	 * time among all operation types):
1285  	 *
1286  	 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1287  	 */
1288  	timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1289  		      conf->timings.sdr.tALS_min);
1290  	timeps = max(timeps, conf->timings.sdr.tDS_min);
1291  	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1292  	ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1293  	totalcycles += ncycles;
1294  	ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1295  					  ncycles);
1296  	if (ret)
1297  		return ret;
1298  
1299  	/*
1300  	 * As for the write setup timing, the write hold timing depends on the
1301  	 * operation done on the NAND:
1302  	 *
1303  	 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1304  	 */
1305  	timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1306  		      conf->timings.sdr.tALH_min);
1307  	timeps = max3(timeps, conf->timings.sdr.tDH_min,
1308  		      conf->timings.sdr.tWH_min);
1309  	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1310  	totalcycles += ncycles;
1311  
1312  	/*
1313  	 * The write cycle timing is directly matching tWC, but is also
1314  	 * dependent on the other timings on the setup and hold timings we
1315  	 * calculated earlier, which gives:
1316  	 *
1317  	 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1318  	 */
1319  	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1320  	ncycles = max(totalcycles, ncycles);
1321  	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1322  					  ncycles);
1323  	if (ret)
1324  		return ret;
1325  
1326  	/*
1327  	 * We don't want the CS line to be toggled between each byte/word
1328  	 * transfer to the NAND. The only way to guarantee that is to have the
1329  	 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1330  	 *
1331  	 * NCS_WR_PULSE = NWE_CYCLE
1332  	 */
1333  	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1334  					  ncycles);
1335  	if (ret)
1336  		return ret;
1337  
1338  	/*
1339  	 * As for the write setup timing, the read hold timing depends on the
1340  	 * operation done on the NAND:
1341  	 *
1342  	 * NRD_HOLD = max(tREH, tRHOH)
1343  	 */
1344  	timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1345  	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1346  	totalcycles = ncycles;
1347  
1348  	/*
1349  	 * TDF = tRHZ - NRD_HOLD
1350  	 */
1351  	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1352  	ncycles -= totalcycles;
1353  
1354  	/*
1355  	 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1356  	 * we might end up with a config that does not fit in the TDF field.
1357  	 * Just take the max value in this case and hope that the NAND is more
1358  	 * tolerant than advertised.
1359  	 */
1360  	if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1361  		ncycles = ATMEL_SMC_MODE_TDF_MAX;
1362  	else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1363  		ncycles = ATMEL_SMC_MODE_TDF_MIN;
1364  
1365  	smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1366  			 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1367  
1368  	/*
1369  	 * Read pulse timing directly matches tRP:
1370  	 *
1371  	 * NRD_PULSE = tRP
1372  	 */
1373  	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1374  	totalcycles += ncycles;
1375  	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1376  					  ncycles);
1377  	if (ret)
1378  		return ret;
1379  
1380  	/*
1381  	 * The write cycle timing is directly matching tWC, but is also
1382  	 * dependent on the setup and hold timings we calculated earlier,
1383  	 * which gives:
1384  	 *
1385  	 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1386  	 *
1387  	 * NRD_SETUP is always 0.
1388  	 */
1389  	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1390  	ncycles = max(totalcycles, ncycles);
1391  	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1392  					  ncycles);
1393  	if (ret)
1394  		return ret;
1395  
1396  	/*
1397  	 * We don't want the CS line to be toggled between each byte/word
1398  	 * transfer from the NAND. The only way to guarantee that is to have
1399  	 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1400  	 *
1401  	 * NCS_RD_PULSE = NRD_CYCLE
1402  	 */
1403  	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1404  					  ncycles);
1405  	if (ret)
1406  		return ret;
1407  
1408  	/* Txxx timings are directly matching tXXX ones. */
1409  	ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1410  	ret = atmel_smc_cs_conf_set_timing(smcconf,
1411  					   ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1412  					   ncycles);
1413  	if (ret)
1414  		return ret;
1415  
1416  	ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1417  	ret = atmel_smc_cs_conf_set_timing(smcconf,
1418  					   ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1419  					   ncycles);
1420  	/*
1421  	 * Version 4 of the ONFI spec mandates that tADL be at least 400
1422  	 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1423  	 * fit in the tADL field of the SMC reg. We need to relax the check and
1424  	 * accept the -ERANGE return code.
1425  	 *
1426  	 * Note that previous versions of the ONFI spec had a lower tADL_min
1427  	 * (100 or 200 ns). It's not clear why this timing constraint got
1428  	 * increased but it seems most NANDs are fine with values lower than
1429  	 * 400ns, so we should be safe.
1430  	 */
1431  	if (ret && ret != -ERANGE)
1432  		return ret;
1433  
1434  	ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1435  	ret = atmel_smc_cs_conf_set_timing(smcconf,
1436  					   ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1437  					   ncycles);
1438  	if (ret)
1439  		return ret;
1440  
1441  	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1442  	ret = atmel_smc_cs_conf_set_timing(smcconf,
1443  					   ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1444  					   ncycles);
1445  	if (ret)
1446  		return ret;
1447  
1448  	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1449  	ret = atmel_smc_cs_conf_set_timing(smcconf,
1450  					   ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1451  					   ncycles);
1452  	if (ret)
1453  		return ret;
1454  
1455  	/* Attach the CS line to the NFC logic. */
1456  	smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1457  
1458  	/* Set the appropriate data bus width. */
1459  	if (nand->base.options & NAND_BUSWIDTH_16)
1460  		smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1461  
1462  	/* Operate in NRD/NWE READ/WRITEMODE. */
1463  	smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1464  			 ATMEL_SMC_MODE_WRITEMODE_NWE;
1465  
1466  	return 0;
1467  }
1468  
atmel_smc_nand_setup_interface(struct atmel_nand * nand,int csline,const struct nand_interface_config * conf)1469  static int atmel_smc_nand_setup_interface(struct atmel_nand *nand,
1470  					int csline,
1471  					const struct nand_interface_config *conf)
1472  {
1473  	struct atmel_nand_controller *nc;
1474  	struct atmel_smc_cs_conf smcconf;
1475  	struct atmel_nand_cs *cs;
1476  	int ret;
1477  
1478  	nc = to_nand_controller(nand->base.controller);
1479  
1480  	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1481  	if (ret)
1482  		return ret;
1483  
1484  	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1485  		return 0;
1486  
1487  	cs = &nand->cs[csline];
1488  	cs->smcconf = smcconf;
1489  	atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1490  
1491  	return 0;
1492  }
1493  
atmel_hsmc_nand_setup_interface(struct atmel_nand * nand,int csline,const struct nand_interface_config * conf)1494  static int atmel_hsmc_nand_setup_interface(struct atmel_nand *nand,
1495  					int csline,
1496  					const struct nand_interface_config *conf)
1497  {
1498  	struct atmel_hsmc_nand_controller *nc;
1499  	struct atmel_smc_cs_conf smcconf;
1500  	struct atmel_nand_cs *cs;
1501  	int ret;
1502  
1503  	nc = to_hsmc_nand_controller(nand->base.controller);
1504  
1505  	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1506  	if (ret)
1507  		return ret;
1508  
1509  	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1510  		return 0;
1511  
1512  	cs = &nand->cs[csline];
1513  	cs->smcconf = smcconf;
1514  
1515  	if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1516  		cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1517  
1518  	atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1519  				 &cs->smcconf);
1520  
1521  	return 0;
1522  }
1523  
atmel_nand_setup_interface(struct nand_chip * chip,int csline,const struct nand_interface_config * conf)1524  static int atmel_nand_setup_interface(struct nand_chip *chip, int csline,
1525  				      const struct nand_interface_config *conf)
1526  {
1527  	struct atmel_nand *nand = to_atmel_nand(chip);
1528  	const struct nand_sdr_timings *sdr;
1529  	struct atmel_nand_controller *nc;
1530  
1531  	sdr = nand_get_sdr_timings(conf);
1532  	if (IS_ERR(sdr))
1533  		return PTR_ERR(sdr);
1534  
1535  	nc = to_nand_controller(nand->base.controller);
1536  
1537  	if (csline >= nand->numcs ||
1538  	    (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1539  		return -EINVAL;
1540  
1541  	return nc->caps->ops->setup_interface(nand, csline, conf);
1542  }
1543  
atmel_nand_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)1544  static int atmel_nand_exec_op(struct nand_chip *chip,
1545  			      const struct nand_operation *op,
1546  			      bool check_only)
1547  {
1548  	struct atmel_nand *nand = to_atmel_nand(chip);
1549  	struct atmel_nand_controller *nc;
1550  
1551  	nc = to_nand_controller(nand->base.controller);
1552  
1553  	return nc->caps->ops->exec_op(nand, op, check_only);
1554  }
1555  
atmel_nand_init(struct atmel_nand_controller * nc,struct atmel_nand * nand)1556  static void atmel_nand_init(struct atmel_nand_controller *nc,
1557  			    struct atmel_nand *nand)
1558  {
1559  	struct nand_chip *chip = &nand->base;
1560  	struct mtd_info *mtd = nand_to_mtd(chip);
1561  
1562  	mtd->dev.parent = nc->dev;
1563  	nand->base.controller = &nc->base;
1564  
1565  	if (!nc->mck || !nc->caps->ops->setup_interface)
1566  		chip->options |= NAND_KEEP_TIMINGS;
1567  
1568  	/*
1569  	 * Use a bounce buffer when the buffer passed by the MTD user is not
1570  	 * suitable for DMA.
1571  	 */
1572  	if (nc->dmac)
1573  		chip->options |= NAND_USES_DMA;
1574  
1575  	/* Default to HW ECC if pmecc is available. */
1576  	if (nc->pmecc)
1577  		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1578  }
1579  
atmel_smc_nand_init(struct atmel_nand_controller * nc,struct atmel_nand * nand)1580  static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1581  				struct atmel_nand *nand)
1582  {
1583  	struct nand_chip *chip = &nand->base;
1584  	struct atmel_smc_nand_controller *smc_nc;
1585  	int i;
1586  
1587  	atmel_nand_init(nc, nand);
1588  
1589  	smc_nc = to_smc_nand_controller(chip->controller);
1590  	if (!smc_nc->ebi_csa_regmap)
1591  		return;
1592  
1593  	/* Attach the CS to the NAND Flash logic. */
1594  	for (i = 0; i < nand->numcs; i++)
1595  		regmap_update_bits(smc_nc->ebi_csa_regmap,
1596  				   smc_nc->ebi_csa->offs,
1597  				   BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1598  
1599  	if (smc_nc->ebi_csa->nfd0_on_d16)
1600  		regmap_update_bits(smc_nc->ebi_csa_regmap,
1601  				   smc_nc->ebi_csa->offs,
1602  				   smc_nc->ebi_csa->nfd0_on_d16,
1603  				   smc_nc->ebi_csa->nfd0_on_d16);
1604  }
1605  
atmel_nand_controller_remove_nand(struct atmel_nand * nand)1606  static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1607  {
1608  	struct nand_chip *chip = &nand->base;
1609  	struct mtd_info *mtd = nand_to_mtd(chip);
1610  	int ret;
1611  
1612  	ret = mtd_device_unregister(mtd);
1613  	if (ret)
1614  		return ret;
1615  
1616  	nand_cleanup(chip);
1617  	list_del(&nand->node);
1618  
1619  	return 0;
1620  }
1621  
atmel_nand_create(struct atmel_nand_controller * nc,struct device_node * np,int reg_cells)1622  static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1623  					    struct device_node *np,
1624  					    int reg_cells)
1625  {
1626  	struct atmel_nand *nand;
1627  	struct gpio_desc *gpio;
1628  	int numcs, ret, i;
1629  
1630  	numcs = of_property_count_elems_of_size(np, "reg",
1631  						reg_cells * sizeof(u32));
1632  	if (numcs < 1) {
1633  		dev_err(nc->dev, "Missing or invalid reg property\n");
1634  		return ERR_PTR(-EINVAL);
1635  	}
1636  
1637  	nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
1638  	if (!nand)
1639  		return ERR_PTR(-ENOMEM);
1640  
1641  	nand->numcs = numcs;
1642  
1643  	gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np),
1644  				     "det", GPIOD_IN, "nand-det");
1645  	if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1646  		dev_err(nc->dev,
1647  			"Failed to get detect gpio (err = %ld)\n",
1648  			PTR_ERR(gpio));
1649  		return ERR_CAST(gpio);
1650  	}
1651  
1652  	if (!IS_ERR(gpio))
1653  		nand->cdgpio = gpio;
1654  
1655  	for (i = 0; i < numcs; i++) {
1656  		struct resource res;
1657  		u32 val;
1658  
1659  		ret = of_address_to_resource(np, 0, &res);
1660  		if (ret) {
1661  			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1662  				ret);
1663  			return ERR_PTR(ret);
1664  		}
1665  
1666  		ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1667  						 &val);
1668  		if (ret) {
1669  			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1670  				ret);
1671  			return ERR_PTR(ret);
1672  		}
1673  
1674  		nand->cs[i].id = val;
1675  
1676  		nand->cs[i].io.dma = res.start;
1677  		nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1678  		if (IS_ERR(nand->cs[i].io.virt))
1679  			return ERR_CAST(nand->cs[i].io.virt);
1680  
1681  		if (!of_property_read_u32(np, "atmel,rb", &val)) {
1682  			if (val > ATMEL_NFC_MAX_RB_ID)
1683  				return ERR_PTR(-EINVAL);
1684  
1685  			nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1686  			nand->cs[i].rb.id = val;
1687  		} else {
1688  			gpio = devm_fwnode_gpiod_get_index(nc->dev,
1689  							   of_fwnode_handle(np),
1690  							   "rb", i, GPIOD_IN,
1691  							   "nand-rb");
1692  			if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1693  				dev_err(nc->dev,
1694  					"Failed to get R/B gpio (err = %ld)\n",
1695  					PTR_ERR(gpio));
1696  				return ERR_CAST(gpio);
1697  			}
1698  
1699  			if (!IS_ERR(gpio)) {
1700  				nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1701  				nand->cs[i].rb.gpio = gpio;
1702  			}
1703  		}
1704  
1705  		gpio = devm_fwnode_gpiod_get_index(nc->dev,
1706  						   of_fwnode_handle(np),
1707  						   "cs", i, GPIOD_OUT_HIGH,
1708  						   "nand-cs");
1709  		if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1710  			dev_err(nc->dev,
1711  				"Failed to get CS gpio (err = %ld)\n",
1712  				PTR_ERR(gpio));
1713  			return ERR_CAST(gpio);
1714  		}
1715  
1716  		if (!IS_ERR(gpio))
1717  			nand->cs[i].csgpio = gpio;
1718  	}
1719  
1720  	nand_set_flash_node(&nand->base, np);
1721  
1722  	return nand;
1723  }
1724  
1725  static int
atmel_nand_controller_add_nand(struct atmel_nand_controller * nc,struct atmel_nand * nand)1726  atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1727  			       struct atmel_nand *nand)
1728  {
1729  	struct nand_chip *chip = &nand->base;
1730  	struct mtd_info *mtd = nand_to_mtd(chip);
1731  	int ret;
1732  
1733  	/* No card inserted, skip this NAND. */
1734  	if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1735  		dev_info(nc->dev, "No SmartMedia card inserted.\n");
1736  		return 0;
1737  	}
1738  
1739  	nc->caps->ops->nand_init(nc, nand);
1740  
1741  	ret = nand_scan(chip, nand->numcs);
1742  	if (ret) {
1743  		dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1744  		return ret;
1745  	}
1746  
1747  	ret = mtd_device_register(mtd, NULL, 0);
1748  	if (ret) {
1749  		dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1750  		nand_cleanup(chip);
1751  		return ret;
1752  	}
1753  
1754  	list_add_tail(&nand->node, &nc->chips);
1755  
1756  	return 0;
1757  }
1758  
1759  static int
atmel_nand_controller_remove_nands(struct atmel_nand_controller * nc)1760  atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1761  {
1762  	struct atmel_nand *nand, *tmp;
1763  	int ret;
1764  
1765  	list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1766  		ret = atmel_nand_controller_remove_nand(nand);
1767  		if (ret)
1768  			return ret;
1769  	}
1770  
1771  	return 0;
1772  }
1773  
1774  static int
atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller * nc)1775  atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1776  {
1777  	struct device *dev = nc->dev;
1778  	struct platform_device *pdev = to_platform_device(dev);
1779  	struct atmel_nand *nand;
1780  	struct gpio_desc *gpio;
1781  	struct resource *res;
1782  
1783  	/*
1784  	 * Legacy bindings only allow connecting a single NAND with a unique CS
1785  	 * line to the controller.
1786  	 */
1787  	nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1788  			    GFP_KERNEL);
1789  	if (!nand)
1790  		return -ENOMEM;
1791  
1792  	nand->numcs = 1;
1793  
1794  	nand->cs[0].io.virt = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1795  	if (IS_ERR(nand->cs[0].io.virt))
1796  		return PTR_ERR(nand->cs[0].io.virt);
1797  
1798  	nand->cs[0].io.dma = res->start;
1799  
1800  	/*
1801  	 * The old driver was hardcoding the CS id to 3 for all sama5
1802  	 * controllers. Since this id is only meaningful for the sama5
1803  	 * controller we can safely assign this id to 3 no matter the
1804  	 * controller.
1805  	 * If one wants to connect a NAND to a different CS line, he will
1806  	 * have to use the new bindings.
1807  	 */
1808  	nand->cs[0].id = 3;
1809  
1810  	/* R/B GPIO. */
1811  	gpio = devm_gpiod_get_index_optional(dev, NULL, 0,  GPIOD_IN);
1812  	if (IS_ERR(gpio)) {
1813  		dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1814  			PTR_ERR(gpio));
1815  		return PTR_ERR(gpio);
1816  	}
1817  
1818  	if (gpio) {
1819  		nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1820  		nand->cs[0].rb.gpio = gpio;
1821  	}
1822  
1823  	/* CS GPIO. */
1824  	gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1825  	if (IS_ERR(gpio)) {
1826  		dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1827  			PTR_ERR(gpio));
1828  		return PTR_ERR(gpio);
1829  	}
1830  
1831  	nand->cs[0].csgpio = gpio;
1832  
1833  	/* Card detect GPIO. */
1834  	gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1835  	if (IS_ERR(gpio)) {
1836  		dev_err(dev,
1837  			"Failed to get detect gpio (err = %ld)\n",
1838  			PTR_ERR(gpio));
1839  		return PTR_ERR(gpio);
1840  	}
1841  
1842  	nand->cdgpio = gpio;
1843  
1844  	nand_set_flash_node(&nand->base, nc->dev->of_node);
1845  
1846  	return atmel_nand_controller_add_nand(nc, nand);
1847  }
1848  
atmel_nand_controller_add_nands(struct atmel_nand_controller * nc)1849  static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1850  {
1851  	struct device_node *np, *nand_np;
1852  	struct device *dev = nc->dev;
1853  	int ret, reg_cells;
1854  	u32 val;
1855  
1856  	/* We do not retrieve the SMC syscon when parsing old DTs. */
1857  	if (nc->caps->legacy_of_bindings)
1858  		return atmel_nand_controller_legacy_add_nands(nc);
1859  
1860  	np = dev->of_node;
1861  
1862  	ret = of_property_read_u32(np, "#address-cells", &val);
1863  	if (ret) {
1864  		dev_err(dev, "missing #address-cells property\n");
1865  		return ret;
1866  	}
1867  
1868  	reg_cells = val;
1869  
1870  	ret = of_property_read_u32(np, "#size-cells", &val);
1871  	if (ret) {
1872  		dev_err(dev, "missing #size-cells property\n");
1873  		return ret;
1874  	}
1875  
1876  	reg_cells += val;
1877  
1878  	for_each_child_of_node(np, nand_np) {
1879  		struct atmel_nand *nand;
1880  
1881  		nand = atmel_nand_create(nc, nand_np, reg_cells);
1882  		if (IS_ERR(nand)) {
1883  			ret = PTR_ERR(nand);
1884  			goto err;
1885  		}
1886  
1887  		ret = atmel_nand_controller_add_nand(nc, nand);
1888  		if (ret)
1889  			goto err;
1890  	}
1891  
1892  	return 0;
1893  
1894  err:
1895  	atmel_nand_controller_remove_nands(nc);
1896  
1897  	return ret;
1898  }
1899  
atmel_nand_controller_cleanup(struct atmel_nand_controller * nc)1900  static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1901  {
1902  	if (nc->dmac)
1903  		dma_release_channel(nc->dmac);
1904  
1905  	clk_put(nc->mck);
1906  }
1907  
1908  static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
1909  	.offs = AT91SAM9260_MATRIX_EBICSA,
1910  };
1911  
1912  static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
1913  	.offs = AT91SAM9261_MATRIX_EBICSA,
1914  };
1915  
1916  static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
1917  	.offs = AT91SAM9263_MATRIX_EBI0CSA,
1918  };
1919  
1920  static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
1921  	.offs = AT91SAM9RL_MATRIX_EBICSA,
1922  };
1923  
1924  static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
1925  	.offs = AT91SAM9G45_MATRIX_EBICSA,
1926  };
1927  
1928  static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
1929  	.offs = AT91SAM9N12_MATRIX_EBICSA,
1930  };
1931  
1932  static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
1933  	.offs = AT91SAM9X5_MATRIX_EBICSA,
1934  };
1935  
1936  static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
1937  	.offs = AT91_SFR_CCFG_EBICSA,
1938  	.nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
1939  };
1940  
1941  static const struct of_device_id __maybe_unused atmel_ebi_csa_regmap_of_ids[] = {
1942  	{
1943  		.compatible = "atmel,at91sam9260-matrix",
1944  		.data = &at91sam9260_ebi_csa,
1945  	},
1946  	{
1947  		.compatible = "atmel,at91sam9261-matrix",
1948  		.data = &at91sam9261_ebi_csa,
1949  	},
1950  	{
1951  		.compatible = "atmel,at91sam9263-matrix",
1952  		.data = &at91sam9263_ebi_csa,
1953  	},
1954  	{
1955  		.compatible = "atmel,at91sam9rl-matrix",
1956  		.data = &at91sam9rl_ebi_csa,
1957  	},
1958  	{
1959  		.compatible = "atmel,at91sam9g45-matrix",
1960  		.data = &at91sam9g45_ebi_csa,
1961  	},
1962  	{
1963  		.compatible = "atmel,at91sam9n12-matrix",
1964  		.data = &at91sam9n12_ebi_csa,
1965  	},
1966  	{
1967  		.compatible = "atmel,at91sam9x5-matrix",
1968  		.data = &at91sam9x5_ebi_csa,
1969  	},
1970  	{
1971  		.compatible = "microchip,sam9x60-sfr",
1972  		.data = &sam9x60_ebi_csa,
1973  	},
1974  	{ /* sentinel */ },
1975  };
1976  
atmel_nand_attach_chip(struct nand_chip * chip)1977  static int atmel_nand_attach_chip(struct nand_chip *chip)
1978  {
1979  	struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
1980  	struct atmel_nand *nand = to_atmel_nand(chip);
1981  	struct mtd_info *mtd = nand_to_mtd(chip);
1982  	int ret;
1983  
1984  	ret = nc->caps->ops->ecc_init(chip);
1985  	if (ret)
1986  		return ret;
1987  
1988  	if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1989  		/*
1990  		 * We keep the MTD name unchanged to avoid breaking platforms
1991  		 * where the MTD cmdline parser is used and the bootloader
1992  		 * has not been updated to use the new naming scheme.
1993  		 */
1994  		mtd->name = "atmel_nand";
1995  	} else if (!mtd->name) {
1996  		/*
1997  		 * If the new bindings are used and the bootloader has not been
1998  		 * updated to pass a new mtdparts parameter on the cmdline, you
1999  		 * should define the following property in your nand node:
2000  		 *
2001  		 *	label = "atmel_nand";
2002  		 *
2003  		 * This way, mtd->name will be set by the core when
2004  		 * nand_set_flash_node() is called.
2005  		 */
2006  		mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
2007  					   "%s:nand.%d", dev_name(nc->dev),
2008  					   nand->cs[0].id);
2009  		if (!mtd->name) {
2010  			dev_err(nc->dev, "Failed to allocate mtd->name\n");
2011  			return -ENOMEM;
2012  		}
2013  	}
2014  
2015  	return 0;
2016  }
2017  
2018  static const struct nand_controller_ops atmel_nand_controller_ops = {
2019  	.attach_chip = atmel_nand_attach_chip,
2020  	.setup_interface = atmel_nand_setup_interface,
2021  	.exec_op = atmel_nand_exec_op,
2022  };
2023  
atmel_nand_controller_init(struct atmel_nand_controller * nc,struct platform_device * pdev,const struct atmel_nand_controller_caps * caps)2024  static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
2025  				struct platform_device *pdev,
2026  				const struct atmel_nand_controller_caps *caps)
2027  {
2028  	struct device *dev = &pdev->dev;
2029  	struct device_node *np = dev->of_node;
2030  	int ret;
2031  
2032  	nand_controller_init(&nc->base);
2033  	nc->base.ops = &atmel_nand_controller_ops;
2034  	INIT_LIST_HEAD(&nc->chips);
2035  	nc->dev = dev;
2036  	nc->caps = caps;
2037  
2038  	platform_set_drvdata(pdev, nc);
2039  
2040  	nc->pmecc = devm_atmel_pmecc_get(dev);
2041  	if (IS_ERR(nc->pmecc))
2042  		return dev_err_probe(dev, PTR_ERR(nc->pmecc),
2043  				     "Could not get PMECC object\n");
2044  
2045  	if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
2046  		dma_cap_mask_t mask;
2047  
2048  		dma_cap_zero(mask);
2049  		dma_cap_set(DMA_MEMCPY, mask);
2050  
2051  		nc->dmac = dma_request_channel(mask, NULL, NULL);
2052  		if (!nc->dmac)
2053  			dev_err(nc->dev, "Failed to request DMA channel\n");
2054  	}
2055  
2056  	/* We do not retrieve the SMC syscon when parsing old DTs. */
2057  	if (nc->caps->legacy_of_bindings)
2058  		return 0;
2059  
2060  	nc->mck = of_clk_get(dev->parent->of_node, 0);
2061  	if (IS_ERR(nc->mck)) {
2062  		dev_err(dev, "Failed to retrieve MCK clk\n");
2063  		ret = PTR_ERR(nc->mck);
2064  		goto out_release_dma;
2065  	}
2066  
2067  	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2068  	if (!np) {
2069  		dev_err(dev, "Missing or invalid atmel,smc property\n");
2070  		ret = -EINVAL;
2071  		goto out_release_dma;
2072  	}
2073  
2074  	nc->smc = syscon_node_to_regmap(np);
2075  	of_node_put(np);
2076  	if (IS_ERR(nc->smc)) {
2077  		ret = PTR_ERR(nc->smc);
2078  		dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
2079  		goto out_release_dma;
2080  	}
2081  
2082  	return 0;
2083  
2084  out_release_dma:
2085  	if (nc->dmac)
2086  		dma_release_channel(nc->dmac);
2087  
2088  	return ret;
2089  }
2090  
2091  static int
atmel_smc_nand_controller_init(struct atmel_smc_nand_controller * nc)2092  atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
2093  {
2094  	struct device *dev = nc->base.dev;
2095  	const struct of_device_id *match;
2096  	struct device_node *np;
2097  	int ret;
2098  
2099  	/* We do not retrieve the EBICSA regmap when parsing old DTs. */
2100  	if (nc->base.caps->legacy_of_bindings)
2101  		return 0;
2102  
2103  	np = of_parse_phandle(dev->parent->of_node,
2104  			      nc->base.caps->ebi_csa_regmap_name, 0);
2105  	if (!np)
2106  		return 0;
2107  
2108  	match = of_match_node(atmel_ebi_csa_regmap_of_ids, np);
2109  	if (!match) {
2110  		of_node_put(np);
2111  		return 0;
2112  	}
2113  
2114  	nc->ebi_csa_regmap = syscon_node_to_regmap(np);
2115  	of_node_put(np);
2116  	if (IS_ERR(nc->ebi_csa_regmap)) {
2117  		ret = PTR_ERR(nc->ebi_csa_regmap);
2118  		dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
2119  		return ret;
2120  	}
2121  
2122  	nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
2123  
2124  	/*
2125  	 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2126  	 * add 4 to ->ebi_csa->offs.
2127  	 */
2128  	if (of_device_is_compatible(dev->parent->of_node,
2129  				    "atmel,at91sam9263-ebi1"))
2130  		nc->ebi_csa->offs += 4;
2131  
2132  	return 0;
2133  }
2134  
2135  static int
atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller * nc)2136  atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2137  {
2138  	struct regmap_config regmap_conf = {
2139  		.reg_bits = 32,
2140  		.val_bits = 32,
2141  		.reg_stride = 4,
2142  	};
2143  
2144  	struct device *dev = nc->base.dev;
2145  	struct device_node *nand_np, *nfc_np;
2146  	void __iomem *iomem;
2147  	struct resource res;
2148  	int ret;
2149  
2150  	nand_np = dev->of_node;
2151  	nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc");
2152  	if (!nfc_np) {
2153  		dev_err(dev, "Could not find device node for sama5d3-nfc\n");
2154  		return -ENODEV;
2155  	}
2156  
2157  	nc->clk = of_clk_get(nfc_np, 0);
2158  	if (IS_ERR(nc->clk)) {
2159  		ret = PTR_ERR(nc->clk);
2160  		dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2161  			ret);
2162  		goto out;
2163  	}
2164  
2165  	ret = clk_prepare_enable(nc->clk);
2166  	if (ret) {
2167  		dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2168  			ret);
2169  		goto out;
2170  	}
2171  
2172  	nc->irq = of_irq_get(nand_np, 0);
2173  	if (nc->irq <= 0) {
2174  		ret = nc->irq ?: -ENXIO;
2175  		if (ret != -EPROBE_DEFER)
2176  			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2177  				ret);
2178  		goto out;
2179  	}
2180  
2181  	ret = of_address_to_resource(nfc_np, 0, &res);
2182  	if (ret) {
2183  		dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2184  			ret);
2185  		goto out;
2186  	}
2187  
2188  	iomem = devm_ioremap_resource(dev, &res);
2189  	if (IS_ERR(iomem)) {
2190  		ret = PTR_ERR(iomem);
2191  		goto out;
2192  	}
2193  
2194  	regmap_conf.name = "nfc-io";
2195  	regmap_conf.max_register = resource_size(&res) - 4;
2196  	nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2197  	if (IS_ERR(nc->io)) {
2198  		ret = PTR_ERR(nc->io);
2199  		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2200  			ret);
2201  		goto out;
2202  	}
2203  
2204  	ret = of_address_to_resource(nfc_np, 1, &res);
2205  	if (ret) {
2206  		dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2207  			ret);
2208  		goto out;
2209  	}
2210  
2211  	iomem = devm_ioremap_resource(dev, &res);
2212  	if (IS_ERR(iomem)) {
2213  		ret = PTR_ERR(iomem);
2214  		goto out;
2215  	}
2216  
2217  	regmap_conf.name = "smc";
2218  	regmap_conf.max_register = resource_size(&res) - 4;
2219  	nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2220  	if (IS_ERR(nc->base.smc)) {
2221  		ret = PTR_ERR(nc->base.smc);
2222  		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2223  			ret);
2224  		goto out;
2225  	}
2226  
2227  	ret = of_address_to_resource(nfc_np, 2, &res);
2228  	if (ret) {
2229  		dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2230  			ret);
2231  		goto out;
2232  	}
2233  
2234  	nc->sram.virt = devm_ioremap_resource(dev, &res);
2235  	if (IS_ERR(nc->sram.virt)) {
2236  		ret = PTR_ERR(nc->sram.virt);
2237  		goto out;
2238  	}
2239  
2240  	nc->sram.dma = res.start;
2241  
2242  out:
2243  	of_node_put(nfc_np);
2244  
2245  	return ret;
2246  }
2247  
2248  static int
atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller * nc)2249  atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2250  {
2251  	struct device *dev = nc->base.dev;
2252  	struct device_node *np;
2253  	int ret;
2254  
2255  	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2256  	if (!np) {
2257  		dev_err(dev, "Missing or invalid atmel,smc property\n");
2258  		return -EINVAL;
2259  	}
2260  
2261  	nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
2262  
2263  	nc->irq = of_irq_get(np, 0);
2264  	of_node_put(np);
2265  	if (nc->irq <= 0) {
2266  		ret = nc->irq ?: -ENXIO;
2267  		if (ret != -EPROBE_DEFER)
2268  			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2269  				ret);
2270  		return ret;
2271  	}
2272  
2273  	np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2274  	if (!np) {
2275  		dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2276  		return -EINVAL;
2277  	}
2278  
2279  	nc->io = syscon_node_to_regmap(np);
2280  	of_node_put(np);
2281  	if (IS_ERR(nc->io)) {
2282  		ret = PTR_ERR(nc->io);
2283  		dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2284  		return ret;
2285  	}
2286  
2287  	nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2288  					 "atmel,nfc-sram", 0);
2289  	if (!nc->sram.pool) {
2290  		dev_err(nc->base.dev, "Missing SRAM\n");
2291  		return -ENOMEM;
2292  	}
2293  
2294  	nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
2295  							   ATMEL_NFC_SRAM_SIZE,
2296  							   &nc->sram.dma);
2297  	if (!nc->sram.virt) {
2298  		dev_err(nc->base.dev,
2299  			"Could not allocate memory from the NFC SRAM pool\n");
2300  		return -ENOMEM;
2301  	}
2302  
2303  	return 0;
2304  }
2305  
2306  static int
atmel_hsmc_nand_controller_remove(struct atmel_nand_controller * nc)2307  atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2308  {
2309  	struct atmel_hsmc_nand_controller *hsmc_nc;
2310  	int ret;
2311  
2312  	ret = atmel_nand_controller_remove_nands(nc);
2313  	if (ret)
2314  		return ret;
2315  
2316  	hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2317  	regmap_write(hsmc_nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2318  		     ATMEL_HSMC_NFC_CTRL_DIS);
2319  
2320  	if (hsmc_nc->sram.pool)
2321  		gen_pool_free(hsmc_nc->sram.pool,
2322  			      (unsigned long)hsmc_nc->sram.virt,
2323  			      ATMEL_NFC_SRAM_SIZE);
2324  
2325  	if (hsmc_nc->clk) {
2326  		clk_disable_unprepare(hsmc_nc->clk);
2327  		clk_put(hsmc_nc->clk);
2328  	}
2329  
2330  	atmel_nand_controller_cleanup(nc);
2331  
2332  	return 0;
2333  }
2334  
atmel_hsmc_nand_controller_probe(struct platform_device * pdev,const struct atmel_nand_controller_caps * caps)2335  static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2336  				const struct atmel_nand_controller_caps *caps)
2337  {
2338  	struct device *dev = &pdev->dev;
2339  	struct atmel_hsmc_nand_controller *nc;
2340  	int ret;
2341  
2342  	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2343  	if (!nc)
2344  		return -ENOMEM;
2345  
2346  	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2347  	if (ret)
2348  		return ret;
2349  
2350  	if (caps->legacy_of_bindings)
2351  		ret = atmel_hsmc_nand_controller_legacy_init(nc);
2352  	else
2353  		ret = atmel_hsmc_nand_controller_init(nc);
2354  
2355  	if (ret)
2356  		return ret;
2357  
2358  	/* Make sure all irqs are masked before registering our IRQ handler. */
2359  	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2360  	ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2361  			       IRQF_SHARED, "nfc", nc);
2362  	if (ret) {
2363  		dev_err(dev,
2364  			"Could not get register NFC interrupt handler (err = %d)\n",
2365  			ret);
2366  		goto err;
2367  	}
2368  
2369  	/* Initial NFC configuration. */
2370  	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2371  		     ATMEL_HSMC_NFC_CFG_DTO_MAX);
2372  	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2373  		     ATMEL_HSMC_NFC_CTRL_EN);
2374  
2375  	ret = atmel_nand_controller_add_nands(&nc->base);
2376  	if (ret)
2377  		goto err;
2378  
2379  	return 0;
2380  
2381  err:
2382  	atmel_hsmc_nand_controller_remove(&nc->base);
2383  
2384  	return ret;
2385  }
2386  
2387  static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2388  	.probe = atmel_hsmc_nand_controller_probe,
2389  	.remove = atmel_hsmc_nand_controller_remove,
2390  	.ecc_init = atmel_hsmc_nand_ecc_init,
2391  	.nand_init = atmel_nand_init,
2392  	.setup_interface = atmel_hsmc_nand_setup_interface,
2393  	.exec_op = atmel_hsmc_nand_exec_op,
2394  };
2395  
2396  static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2397  	.has_dma = true,
2398  	.ale_offs = BIT(21),
2399  	.cle_offs = BIT(22),
2400  	.ops = &atmel_hsmc_nc_ops,
2401  };
2402  
2403  /* Only used to parse old bindings. */
2404  static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2405  	.has_dma = true,
2406  	.ale_offs = BIT(21),
2407  	.cle_offs = BIT(22),
2408  	.ops = &atmel_hsmc_nc_ops,
2409  	.legacy_of_bindings = true,
2410  };
2411  
atmel_smc_nand_controller_probe(struct platform_device * pdev,const struct atmel_nand_controller_caps * caps)2412  static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2413  				const struct atmel_nand_controller_caps *caps)
2414  {
2415  	struct device *dev = &pdev->dev;
2416  	struct atmel_smc_nand_controller *nc;
2417  	int ret;
2418  
2419  	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2420  	if (!nc)
2421  		return -ENOMEM;
2422  
2423  	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2424  	if (ret)
2425  		return ret;
2426  
2427  	ret = atmel_smc_nand_controller_init(nc);
2428  	if (ret)
2429  		return ret;
2430  
2431  	return atmel_nand_controller_add_nands(&nc->base);
2432  }
2433  
2434  static int
atmel_smc_nand_controller_remove(struct atmel_nand_controller * nc)2435  atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2436  {
2437  	int ret;
2438  
2439  	ret = atmel_nand_controller_remove_nands(nc);
2440  	if (ret)
2441  		return ret;
2442  
2443  	atmel_nand_controller_cleanup(nc);
2444  
2445  	return 0;
2446  }
2447  
2448  /*
2449   * The SMC reg layout of at91rm9200 is completely different which prevents us
2450   * from re-using atmel_smc_nand_setup_interface() for the
2451   * ->setup_interface() hook.
2452   * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2453   * ->setup_interface() unassigned.
2454   */
2455  static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2456  	.probe = atmel_smc_nand_controller_probe,
2457  	.remove = atmel_smc_nand_controller_remove,
2458  	.ecc_init = atmel_nand_ecc_init,
2459  	.nand_init = atmel_smc_nand_init,
2460  	.exec_op = atmel_smc_nand_exec_op,
2461  };
2462  
2463  static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2464  	.ale_offs = BIT(21),
2465  	.cle_offs = BIT(22),
2466  	.ebi_csa_regmap_name = "atmel,matrix",
2467  	.ops = &at91rm9200_nc_ops,
2468  };
2469  
2470  static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2471  	.probe = atmel_smc_nand_controller_probe,
2472  	.remove = atmel_smc_nand_controller_remove,
2473  	.ecc_init = atmel_nand_ecc_init,
2474  	.nand_init = atmel_smc_nand_init,
2475  	.setup_interface = atmel_smc_nand_setup_interface,
2476  	.exec_op = atmel_smc_nand_exec_op,
2477  };
2478  
2479  static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2480  	.ale_offs = BIT(21),
2481  	.cle_offs = BIT(22),
2482  	.ebi_csa_regmap_name = "atmel,matrix",
2483  	.ops = &atmel_smc_nc_ops,
2484  };
2485  
2486  static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2487  	.ale_offs = BIT(22),
2488  	.cle_offs = BIT(21),
2489  	.ebi_csa_regmap_name = "atmel,matrix",
2490  	.ops = &atmel_smc_nc_ops,
2491  };
2492  
2493  static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2494  	.has_dma = true,
2495  	.ale_offs = BIT(21),
2496  	.cle_offs = BIT(22),
2497  	.ebi_csa_regmap_name = "atmel,matrix",
2498  	.ops = &atmel_smc_nc_ops,
2499  };
2500  
2501  static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
2502  	.has_dma = true,
2503  	.ale_offs = BIT(21),
2504  	.cle_offs = BIT(22),
2505  	.ebi_csa_regmap_name = "microchip,sfr",
2506  	.ops = &atmel_smc_nc_ops,
2507  };
2508  
2509  /* Only used to parse old bindings. */
2510  static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2511  	.ale_offs = BIT(21),
2512  	.cle_offs = BIT(22),
2513  	.ops = &atmel_smc_nc_ops,
2514  	.legacy_of_bindings = true,
2515  };
2516  
2517  static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2518  	.ale_offs = BIT(22),
2519  	.cle_offs = BIT(21),
2520  	.ops = &atmel_smc_nc_ops,
2521  	.legacy_of_bindings = true,
2522  };
2523  
2524  static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2525  	.has_dma = true,
2526  	.ale_offs = BIT(21),
2527  	.cle_offs = BIT(22),
2528  	.ops = &atmel_smc_nc_ops,
2529  	.legacy_of_bindings = true,
2530  };
2531  
2532  static const struct of_device_id atmel_nand_controller_of_ids[] = {
2533  	{
2534  		.compatible = "atmel,at91rm9200-nand-controller",
2535  		.data = &atmel_rm9200_nc_caps,
2536  	},
2537  	{
2538  		.compatible = "atmel,at91sam9260-nand-controller",
2539  		.data = &atmel_sam9260_nc_caps,
2540  	},
2541  	{
2542  		.compatible = "atmel,at91sam9261-nand-controller",
2543  		.data = &atmel_sam9261_nc_caps,
2544  	},
2545  	{
2546  		.compatible = "atmel,at91sam9g45-nand-controller",
2547  		.data = &atmel_sam9g45_nc_caps,
2548  	},
2549  	{
2550  		.compatible = "atmel,sama5d3-nand-controller",
2551  		.data = &atmel_sama5_nc_caps,
2552  	},
2553  	{
2554  		.compatible = "microchip,sam9x60-nand-controller",
2555  		.data = &microchip_sam9x60_nc_caps,
2556  	},
2557  	/* Support for old/deprecated bindings: */
2558  	{
2559  		.compatible = "atmel,at91rm9200-nand",
2560  		.data = &atmel_rm9200_nand_caps,
2561  	},
2562  	{
2563  		.compatible = "atmel,sama5d4-nand",
2564  		.data = &atmel_rm9200_nand_caps,
2565  	},
2566  	{
2567  		.compatible = "atmel,sama5d2-nand",
2568  		.data = &atmel_rm9200_nand_caps,
2569  	},
2570  	{ /* sentinel */ },
2571  };
2572  MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2573  
atmel_nand_controller_probe(struct platform_device * pdev)2574  static int atmel_nand_controller_probe(struct platform_device *pdev)
2575  {
2576  	const struct atmel_nand_controller_caps *caps;
2577  
2578  	if (pdev->id_entry)
2579  		caps = (void *)pdev->id_entry->driver_data;
2580  	else
2581  		caps = of_device_get_match_data(&pdev->dev);
2582  
2583  	if (!caps) {
2584  		dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2585  		return -EINVAL;
2586  	}
2587  
2588  	if (caps->legacy_of_bindings) {
2589  		struct device_node *nfc_node;
2590  		u32 ale_offs = 21;
2591  
2592  		/*
2593  		 * If we are parsing legacy DT props and the DT contains a
2594  		 * valid NFC node, forward the request to the sama5 logic.
2595  		 */
2596  		nfc_node = of_get_compatible_child(pdev->dev.of_node,
2597  						   "atmel,sama5d3-nfc");
2598  		if (nfc_node) {
2599  			caps = &atmel_sama5_nand_caps;
2600  			of_node_put(nfc_node);
2601  		}
2602  
2603  		/*
2604  		 * Even if the compatible says we are dealing with an
2605  		 * at91rm9200 controller, the atmel,nand-has-dma specify that
2606  		 * this controller supports DMA, which means we are in fact
2607  		 * dealing with an at91sam9g45+ controller.
2608  		 */
2609  		if (!caps->has_dma &&
2610  		    of_property_read_bool(pdev->dev.of_node,
2611  					  "atmel,nand-has-dma"))
2612  			caps = &atmel_sam9g45_nand_caps;
2613  
2614  		/*
2615  		 * All SoCs except the at91sam9261 are assigning ALE to A21 and
2616  		 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2617  		 * actually dealing with an at91sam9261 controller.
2618  		 */
2619  		of_property_read_u32(pdev->dev.of_node,
2620  				     "atmel,nand-addr-offset", &ale_offs);
2621  		if (ale_offs != 21)
2622  			caps = &atmel_sam9261_nand_caps;
2623  	}
2624  
2625  	return caps->ops->probe(pdev, caps);
2626  }
2627  
atmel_nand_controller_remove(struct platform_device * pdev)2628  static void atmel_nand_controller_remove(struct platform_device *pdev)
2629  {
2630  	struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2631  
2632  	WARN_ON(nc->caps->ops->remove(nc));
2633  }
2634  
atmel_nand_controller_resume(struct device * dev)2635  static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2636  {
2637  	struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2638  	struct atmel_nand *nand;
2639  
2640  	if (nc->pmecc)
2641  		atmel_pmecc_reset(nc->pmecc);
2642  
2643  	list_for_each_entry(nand, &nc->chips, node) {
2644  		int i;
2645  
2646  		for (i = 0; i < nand->numcs; i++)
2647  			nand_reset(&nand->base, i);
2648  	}
2649  
2650  	return 0;
2651  }
2652  
2653  static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2654  			 atmel_nand_controller_resume);
2655  
2656  static struct platform_driver atmel_nand_controller_driver = {
2657  	.driver = {
2658  		.name = "atmel-nand-controller",
2659  		.of_match_table = atmel_nand_controller_of_ids,
2660  		.pm = &atmel_nand_controller_pm_ops,
2661  	},
2662  	.probe = atmel_nand_controller_probe,
2663  	.remove_new = atmel_nand_controller_remove,
2664  };
2665  module_platform_driver(atmel_nand_controller_driver);
2666  
2667  MODULE_LICENSE("GPL");
2668  MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2669  MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2670  MODULE_ALIAS("platform:atmel-nand-controller");
2671