xref: /openbmc/linux/net/vmw_vsock/vmci_transport.c (revision 1ac731c529cd4d6adbce134754b51ff7d822b145)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * VMware vSockets Driver
4   *
5   * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6   */
7  
8  #include <linux/types.h>
9  #include <linux/bitops.h>
10  #include <linux/cred.h>
11  #include <linux/init.h>
12  #include <linux/io.h>
13  #include <linux/kernel.h>
14  #include <linux/kmod.h>
15  #include <linux/list.h>
16  #include <linux/module.h>
17  #include <linux/mutex.h>
18  #include <linux/net.h>
19  #include <linux/poll.h>
20  #include <linux/skbuff.h>
21  #include <linux/smp.h>
22  #include <linux/socket.h>
23  #include <linux/stddef.h>
24  #include <linux/unistd.h>
25  #include <linux/wait.h>
26  #include <linux/workqueue.h>
27  #include <net/sock.h>
28  #include <net/af_vsock.h>
29  
30  #include "vmci_transport_notify.h"
31  
32  static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
33  static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
34  static void vmci_transport_peer_detach_cb(u32 sub_id,
35  					  const struct vmci_event_data *ed,
36  					  void *client_data);
37  static void vmci_transport_recv_pkt_work(struct work_struct *work);
38  static void vmci_transport_cleanup(struct work_struct *work);
39  static int vmci_transport_recv_listen(struct sock *sk,
40  				      struct vmci_transport_packet *pkt);
41  static int vmci_transport_recv_connecting_server(
42  					struct sock *sk,
43  					struct sock *pending,
44  					struct vmci_transport_packet *pkt);
45  static int vmci_transport_recv_connecting_client(
46  					struct sock *sk,
47  					struct vmci_transport_packet *pkt);
48  static int vmci_transport_recv_connecting_client_negotiate(
49  					struct sock *sk,
50  					struct vmci_transport_packet *pkt);
51  static int vmci_transport_recv_connecting_client_invalid(
52  					struct sock *sk,
53  					struct vmci_transport_packet *pkt);
54  static int vmci_transport_recv_connected(struct sock *sk,
55  					 struct vmci_transport_packet *pkt);
56  static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
57  static u16 vmci_transport_new_proto_supported_versions(void);
58  static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
59  						  bool old_pkt_proto);
60  static bool vmci_check_transport(struct vsock_sock *vsk);
61  
62  struct vmci_transport_recv_pkt_info {
63  	struct work_struct work;
64  	struct sock *sk;
65  	struct vmci_transport_packet pkt;
66  };
67  
68  static LIST_HEAD(vmci_transport_cleanup_list);
69  static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
70  static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
71  
72  static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
73  							   VMCI_INVALID_ID };
74  static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
75  
76  static int PROTOCOL_OVERRIDE = -1;
77  
78  static struct vsock_transport vmci_transport; /* forward declaration */
79  
80  /* Helper function to convert from a VMCI error code to a VSock error code. */
81  
vmci_transport_error_to_vsock_error(s32 vmci_error)82  static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
83  {
84  	switch (vmci_error) {
85  	case VMCI_ERROR_NO_MEM:
86  		return -ENOMEM;
87  	case VMCI_ERROR_DUPLICATE_ENTRY:
88  	case VMCI_ERROR_ALREADY_EXISTS:
89  		return -EADDRINUSE;
90  	case VMCI_ERROR_NO_ACCESS:
91  		return -EPERM;
92  	case VMCI_ERROR_NO_RESOURCES:
93  		return -ENOBUFS;
94  	case VMCI_ERROR_INVALID_RESOURCE:
95  		return -EHOSTUNREACH;
96  	case VMCI_ERROR_INVALID_ARGS:
97  	default:
98  		break;
99  	}
100  	return -EINVAL;
101  }
102  
vmci_transport_peer_rid(u32 peer_cid)103  static u32 vmci_transport_peer_rid(u32 peer_cid)
104  {
105  	if (VMADDR_CID_HYPERVISOR == peer_cid)
106  		return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
107  
108  	return VMCI_TRANSPORT_PACKET_RID;
109  }
110  
111  static inline void
vmci_transport_packet_init(struct vmci_transport_packet * pkt,struct sockaddr_vm * src,struct sockaddr_vm * dst,u8 type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)112  vmci_transport_packet_init(struct vmci_transport_packet *pkt,
113  			   struct sockaddr_vm *src,
114  			   struct sockaddr_vm *dst,
115  			   u8 type,
116  			   u64 size,
117  			   u64 mode,
118  			   struct vmci_transport_waiting_info *wait,
119  			   u16 proto,
120  			   struct vmci_handle handle)
121  {
122  	/* We register the stream control handler as an any cid handle so we
123  	 * must always send from a source address of VMADDR_CID_ANY
124  	 */
125  	pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
126  				       VMCI_TRANSPORT_PACKET_RID);
127  	pkt->dg.dst = vmci_make_handle(dst->svm_cid,
128  				       vmci_transport_peer_rid(dst->svm_cid));
129  	pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
130  	pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
131  	pkt->type = type;
132  	pkt->src_port = src->svm_port;
133  	pkt->dst_port = dst->svm_port;
134  	memset(&pkt->proto, 0, sizeof(pkt->proto));
135  	memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
136  
137  	switch (pkt->type) {
138  	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
139  		pkt->u.size = 0;
140  		break;
141  
142  	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
143  	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
144  		pkt->u.size = size;
145  		break;
146  
147  	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
148  	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
149  		pkt->u.handle = handle;
150  		break;
151  
152  	case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
153  	case VMCI_TRANSPORT_PACKET_TYPE_READ:
154  	case VMCI_TRANSPORT_PACKET_TYPE_RST:
155  		pkt->u.size = 0;
156  		break;
157  
158  	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
159  		pkt->u.mode = mode;
160  		break;
161  
162  	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
163  	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
164  		memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
165  		break;
166  
167  	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
168  	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
169  		pkt->u.size = size;
170  		pkt->proto = proto;
171  		break;
172  	}
173  }
174  
175  static inline void
vmci_transport_packet_get_addresses(struct vmci_transport_packet * pkt,struct sockaddr_vm * local,struct sockaddr_vm * remote)176  vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
177  				    struct sockaddr_vm *local,
178  				    struct sockaddr_vm *remote)
179  {
180  	vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
181  	vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
182  }
183  
184  static int
__vmci_transport_send_control_pkt(struct vmci_transport_packet * pkt,struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle,bool convert_error)185  __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
186  				  struct sockaddr_vm *src,
187  				  struct sockaddr_vm *dst,
188  				  enum vmci_transport_packet_type type,
189  				  u64 size,
190  				  u64 mode,
191  				  struct vmci_transport_waiting_info *wait,
192  				  u16 proto,
193  				  struct vmci_handle handle,
194  				  bool convert_error)
195  {
196  	int err;
197  
198  	vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
199  				   proto, handle);
200  	err = vmci_datagram_send(&pkt->dg);
201  	if (convert_error && (err < 0))
202  		return vmci_transport_error_to_vsock_error(err);
203  
204  	return err;
205  }
206  
207  static int
vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet * pkt,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,struct vmci_handle handle)208  vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
209  				      enum vmci_transport_packet_type type,
210  				      u64 size,
211  				      u64 mode,
212  				      struct vmci_transport_waiting_info *wait,
213  				      struct vmci_handle handle)
214  {
215  	struct vmci_transport_packet reply;
216  	struct sockaddr_vm src, dst;
217  
218  	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
219  		return 0;
220  	} else {
221  		vmci_transport_packet_get_addresses(pkt, &src, &dst);
222  		return __vmci_transport_send_control_pkt(&reply, &src, &dst,
223  							 type,
224  							 size, mode, wait,
225  							 VSOCK_PROTO_INVALID,
226  							 handle, true);
227  	}
228  }
229  
230  static int
vmci_transport_send_control_pkt_bh(struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,struct vmci_handle handle)231  vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
232  				   struct sockaddr_vm *dst,
233  				   enum vmci_transport_packet_type type,
234  				   u64 size,
235  				   u64 mode,
236  				   struct vmci_transport_waiting_info *wait,
237  				   struct vmci_handle handle)
238  {
239  	/* Note that it is safe to use a single packet across all CPUs since
240  	 * two tasklets of the same type are guaranteed to not ever run
241  	 * simultaneously. If that ever changes, or VMCI stops using tasklets,
242  	 * we can use per-cpu packets.
243  	 */
244  	static struct vmci_transport_packet pkt;
245  
246  	return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
247  						 size, mode, wait,
248  						 VSOCK_PROTO_INVALID, handle,
249  						 false);
250  }
251  
252  static int
vmci_transport_alloc_send_control_pkt(struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)253  vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
254  				      struct sockaddr_vm *dst,
255  				      enum vmci_transport_packet_type type,
256  				      u64 size,
257  				      u64 mode,
258  				      struct vmci_transport_waiting_info *wait,
259  				      u16 proto,
260  				      struct vmci_handle handle)
261  {
262  	struct vmci_transport_packet *pkt;
263  	int err;
264  
265  	pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
266  	if (!pkt)
267  		return -ENOMEM;
268  
269  	err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
270  						mode, wait, proto, handle,
271  						true);
272  	kfree(pkt);
273  
274  	return err;
275  }
276  
277  static int
vmci_transport_send_control_pkt(struct sock * sk,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)278  vmci_transport_send_control_pkt(struct sock *sk,
279  				enum vmci_transport_packet_type type,
280  				u64 size,
281  				u64 mode,
282  				struct vmci_transport_waiting_info *wait,
283  				u16 proto,
284  				struct vmci_handle handle)
285  {
286  	struct vsock_sock *vsk;
287  
288  	vsk = vsock_sk(sk);
289  
290  	if (!vsock_addr_bound(&vsk->local_addr))
291  		return -EINVAL;
292  
293  	if (!vsock_addr_bound(&vsk->remote_addr))
294  		return -EINVAL;
295  
296  	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
297  						     &vsk->remote_addr,
298  						     type, size, mode,
299  						     wait, proto, handle);
300  }
301  
vmci_transport_send_reset_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src,struct vmci_transport_packet * pkt)302  static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
303  					struct sockaddr_vm *src,
304  					struct vmci_transport_packet *pkt)
305  {
306  	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
307  		return 0;
308  	return vmci_transport_send_control_pkt_bh(
309  					dst, src,
310  					VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
311  					0, NULL, VMCI_INVALID_HANDLE);
312  }
313  
vmci_transport_send_reset(struct sock * sk,struct vmci_transport_packet * pkt)314  static int vmci_transport_send_reset(struct sock *sk,
315  				     struct vmci_transport_packet *pkt)
316  {
317  	struct sockaddr_vm *dst_ptr;
318  	struct sockaddr_vm dst;
319  	struct vsock_sock *vsk;
320  
321  	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
322  		return 0;
323  
324  	vsk = vsock_sk(sk);
325  
326  	if (!vsock_addr_bound(&vsk->local_addr))
327  		return -EINVAL;
328  
329  	if (vsock_addr_bound(&vsk->remote_addr)) {
330  		dst_ptr = &vsk->remote_addr;
331  	} else {
332  		vsock_addr_init(&dst, pkt->dg.src.context,
333  				pkt->src_port);
334  		dst_ptr = &dst;
335  	}
336  	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
337  					     VMCI_TRANSPORT_PACKET_TYPE_RST,
338  					     0, 0, NULL, VSOCK_PROTO_INVALID,
339  					     VMCI_INVALID_HANDLE);
340  }
341  
vmci_transport_send_negotiate(struct sock * sk,size_t size)342  static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
343  {
344  	return vmci_transport_send_control_pkt(
345  					sk,
346  					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
347  					size, 0, NULL,
348  					VSOCK_PROTO_INVALID,
349  					VMCI_INVALID_HANDLE);
350  }
351  
vmci_transport_send_negotiate2(struct sock * sk,size_t size,u16 version)352  static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
353  					  u16 version)
354  {
355  	return vmci_transport_send_control_pkt(
356  					sk,
357  					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
358  					size, 0, NULL, version,
359  					VMCI_INVALID_HANDLE);
360  }
361  
vmci_transport_send_qp_offer(struct sock * sk,struct vmci_handle handle)362  static int vmci_transport_send_qp_offer(struct sock *sk,
363  					struct vmci_handle handle)
364  {
365  	return vmci_transport_send_control_pkt(
366  					sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
367  					0, NULL,
368  					VSOCK_PROTO_INVALID, handle);
369  }
370  
vmci_transport_send_attach(struct sock * sk,struct vmci_handle handle)371  static int vmci_transport_send_attach(struct sock *sk,
372  				      struct vmci_handle handle)
373  {
374  	return vmci_transport_send_control_pkt(
375  					sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
376  					0, 0, NULL, VSOCK_PROTO_INVALID,
377  					handle);
378  }
379  
vmci_transport_reply_reset(struct vmci_transport_packet * pkt)380  static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
381  {
382  	return vmci_transport_reply_control_pkt_fast(
383  						pkt,
384  						VMCI_TRANSPORT_PACKET_TYPE_RST,
385  						0, 0, NULL,
386  						VMCI_INVALID_HANDLE);
387  }
388  
vmci_transport_send_invalid_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)389  static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
390  					  struct sockaddr_vm *src)
391  {
392  	return vmci_transport_send_control_pkt_bh(
393  					dst, src,
394  					VMCI_TRANSPORT_PACKET_TYPE_INVALID,
395  					0, 0, NULL, VMCI_INVALID_HANDLE);
396  }
397  
vmci_transport_send_wrote_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)398  int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
399  				 struct sockaddr_vm *src)
400  {
401  	return vmci_transport_send_control_pkt_bh(
402  					dst, src,
403  					VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
404  					0, NULL, VMCI_INVALID_HANDLE);
405  }
406  
vmci_transport_send_read_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)407  int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
408  				struct sockaddr_vm *src)
409  {
410  	return vmci_transport_send_control_pkt_bh(
411  					dst, src,
412  					VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
413  					0, NULL, VMCI_INVALID_HANDLE);
414  }
415  
vmci_transport_send_wrote(struct sock * sk)416  int vmci_transport_send_wrote(struct sock *sk)
417  {
418  	return vmci_transport_send_control_pkt(
419  					sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
420  					0, NULL, VSOCK_PROTO_INVALID,
421  					VMCI_INVALID_HANDLE);
422  }
423  
vmci_transport_send_read(struct sock * sk)424  int vmci_transport_send_read(struct sock *sk)
425  {
426  	return vmci_transport_send_control_pkt(
427  					sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
428  					0, NULL, VSOCK_PROTO_INVALID,
429  					VMCI_INVALID_HANDLE);
430  }
431  
vmci_transport_send_waiting_write(struct sock * sk,struct vmci_transport_waiting_info * wait)432  int vmci_transport_send_waiting_write(struct sock *sk,
433  				      struct vmci_transport_waiting_info *wait)
434  {
435  	return vmci_transport_send_control_pkt(
436  				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
437  				0, 0, wait, VSOCK_PROTO_INVALID,
438  				VMCI_INVALID_HANDLE);
439  }
440  
vmci_transport_send_waiting_read(struct sock * sk,struct vmci_transport_waiting_info * wait)441  int vmci_transport_send_waiting_read(struct sock *sk,
442  				     struct vmci_transport_waiting_info *wait)
443  {
444  	return vmci_transport_send_control_pkt(
445  				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
446  				0, 0, wait, VSOCK_PROTO_INVALID,
447  				VMCI_INVALID_HANDLE);
448  }
449  
vmci_transport_shutdown(struct vsock_sock * vsk,int mode)450  static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
451  {
452  	return vmci_transport_send_control_pkt(
453  					&vsk->sk,
454  					VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
455  					0, mode, NULL,
456  					VSOCK_PROTO_INVALID,
457  					VMCI_INVALID_HANDLE);
458  }
459  
vmci_transport_send_conn_request(struct sock * sk,size_t size)460  static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
461  {
462  	return vmci_transport_send_control_pkt(sk,
463  					VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
464  					size, 0, NULL,
465  					VSOCK_PROTO_INVALID,
466  					VMCI_INVALID_HANDLE);
467  }
468  
vmci_transport_send_conn_request2(struct sock * sk,size_t size,u16 version)469  static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
470  					     u16 version)
471  {
472  	return vmci_transport_send_control_pkt(
473  					sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
474  					size, 0, NULL, version,
475  					VMCI_INVALID_HANDLE);
476  }
477  
vmci_transport_get_pending(struct sock * listener,struct vmci_transport_packet * pkt)478  static struct sock *vmci_transport_get_pending(
479  					struct sock *listener,
480  					struct vmci_transport_packet *pkt)
481  {
482  	struct vsock_sock *vlistener;
483  	struct vsock_sock *vpending;
484  	struct sock *pending;
485  	struct sockaddr_vm src;
486  
487  	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
488  
489  	vlistener = vsock_sk(listener);
490  
491  	list_for_each_entry(vpending, &vlistener->pending_links,
492  			    pending_links) {
493  		if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
494  		    pkt->dst_port == vpending->local_addr.svm_port) {
495  			pending = sk_vsock(vpending);
496  			sock_hold(pending);
497  			goto found;
498  		}
499  	}
500  
501  	pending = NULL;
502  found:
503  	return pending;
504  
505  }
506  
vmci_transport_release_pending(struct sock * pending)507  static void vmci_transport_release_pending(struct sock *pending)
508  {
509  	sock_put(pending);
510  }
511  
512  /* We allow two kinds of sockets to communicate with a restricted VM: 1)
513   * trusted sockets 2) sockets from applications running as the same user as the
514   * VM (this is only true for the host side and only when using hosted products)
515   */
516  
vmci_transport_is_trusted(struct vsock_sock * vsock,u32 peer_cid)517  static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
518  {
519  	return vsock->trusted ||
520  	       vmci_is_context_owner(peer_cid, vsock->owner->uid);
521  }
522  
523  /* We allow sending datagrams to and receiving datagrams from a restricted VM
524   * only if it is trusted as described in vmci_transport_is_trusted.
525   */
526  
vmci_transport_allow_dgram(struct vsock_sock * vsock,u32 peer_cid)527  static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
528  {
529  	if (VMADDR_CID_HYPERVISOR == peer_cid)
530  		return true;
531  
532  	if (vsock->cached_peer != peer_cid) {
533  		vsock->cached_peer = peer_cid;
534  		if (!vmci_transport_is_trusted(vsock, peer_cid) &&
535  		    (vmci_context_get_priv_flags(peer_cid) &
536  		     VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
537  			vsock->cached_peer_allow_dgram = false;
538  		} else {
539  			vsock->cached_peer_allow_dgram = true;
540  		}
541  	}
542  
543  	return vsock->cached_peer_allow_dgram;
544  }
545  
546  static int
vmci_transport_queue_pair_alloc(struct vmci_qp ** qpair,struct vmci_handle * handle,u64 produce_size,u64 consume_size,u32 peer,u32 flags,bool trusted)547  vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
548  				struct vmci_handle *handle,
549  				u64 produce_size,
550  				u64 consume_size,
551  				u32 peer, u32 flags, bool trusted)
552  {
553  	int err = 0;
554  
555  	if (trusted) {
556  		/* Try to allocate our queue pair as trusted. This will only
557  		 * work if vsock is running in the host.
558  		 */
559  
560  		err = vmci_qpair_alloc(qpair, handle, produce_size,
561  				       consume_size,
562  				       peer, flags,
563  				       VMCI_PRIVILEGE_FLAG_TRUSTED);
564  		if (err != VMCI_ERROR_NO_ACCESS)
565  			goto out;
566  
567  	}
568  
569  	err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
570  			       peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
571  out:
572  	if (err < 0) {
573  		pr_err_once("Could not attach to queue pair with %d\n", err);
574  		err = vmci_transport_error_to_vsock_error(err);
575  	}
576  
577  	return err;
578  }
579  
580  static int
vmci_transport_datagram_create_hnd(u32 resource_id,u32 flags,vmci_datagram_recv_cb recv_cb,void * client_data,struct vmci_handle * out_handle)581  vmci_transport_datagram_create_hnd(u32 resource_id,
582  				   u32 flags,
583  				   vmci_datagram_recv_cb recv_cb,
584  				   void *client_data,
585  				   struct vmci_handle *out_handle)
586  {
587  	int err = 0;
588  
589  	/* Try to allocate our datagram handler as trusted. This will only work
590  	 * if vsock is running in the host.
591  	 */
592  
593  	err = vmci_datagram_create_handle_priv(resource_id, flags,
594  					       VMCI_PRIVILEGE_FLAG_TRUSTED,
595  					       recv_cb,
596  					       client_data, out_handle);
597  
598  	if (err == VMCI_ERROR_NO_ACCESS)
599  		err = vmci_datagram_create_handle(resource_id, flags,
600  						  recv_cb, client_data,
601  						  out_handle);
602  
603  	return err;
604  }
605  
606  /* This is invoked as part of a tasklet that's scheduled when the VMCI
607   * interrupt fires.  This is run in bottom-half context and if it ever needs to
608   * sleep it should defer that work to a work queue.
609   */
610  
vmci_transport_recv_dgram_cb(void * data,struct vmci_datagram * dg)611  static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
612  {
613  	struct sock *sk;
614  	size_t size;
615  	struct sk_buff *skb;
616  	struct vsock_sock *vsk;
617  
618  	sk = (struct sock *)data;
619  
620  	/* This handler is privileged when this module is running on the host.
621  	 * We will get datagrams from all endpoints (even VMs that are in a
622  	 * restricted context). If we get one from a restricted context then
623  	 * the destination socket must be trusted.
624  	 *
625  	 * NOTE: We access the socket struct without holding the lock here.
626  	 * This is ok because the field we are interested is never modified
627  	 * outside of the create and destruct socket functions.
628  	 */
629  	vsk = vsock_sk(sk);
630  	if (!vmci_transport_allow_dgram(vsk, dg->src.context))
631  		return VMCI_ERROR_NO_ACCESS;
632  
633  	size = VMCI_DG_SIZE(dg);
634  
635  	/* Attach the packet to the socket's receive queue as an sk_buff. */
636  	skb = alloc_skb(size, GFP_ATOMIC);
637  	if (!skb)
638  		return VMCI_ERROR_NO_MEM;
639  
640  	/* sk_receive_skb() will do a sock_put(), so hold here. */
641  	sock_hold(sk);
642  	skb_put(skb, size);
643  	memcpy(skb->data, dg, size);
644  	sk_receive_skb(sk, skb, 0);
645  
646  	return VMCI_SUCCESS;
647  }
648  
vmci_transport_stream_allow(u32 cid,u32 port)649  static bool vmci_transport_stream_allow(u32 cid, u32 port)
650  {
651  	static const u32 non_socket_contexts[] = {
652  		VMADDR_CID_LOCAL,
653  	};
654  	int i;
655  
656  	BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
657  
658  	for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
659  		if (cid == non_socket_contexts[i])
660  			return false;
661  	}
662  
663  	return true;
664  }
665  
666  /* This is invoked as part of a tasklet that's scheduled when the VMCI
667   * interrupt fires.  This is run in bottom-half context but it defers most of
668   * its work to the packet handling work queue.
669   */
670  
vmci_transport_recv_stream_cb(void * data,struct vmci_datagram * dg)671  static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
672  {
673  	struct sock *sk;
674  	struct sockaddr_vm dst;
675  	struct sockaddr_vm src;
676  	struct vmci_transport_packet *pkt;
677  	struct vsock_sock *vsk;
678  	bool bh_process_pkt;
679  	int err;
680  
681  	sk = NULL;
682  	err = VMCI_SUCCESS;
683  	bh_process_pkt = false;
684  
685  	/* Ignore incoming packets from contexts without sockets, or resources
686  	 * that aren't vsock implementations.
687  	 */
688  
689  	if (!vmci_transport_stream_allow(dg->src.context, -1)
690  	    || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
691  		return VMCI_ERROR_NO_ACCESS;
692  
693  	if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
694  		/* Drop datagrams that do not contain full VSock packets. */
695  		return VMCI_ERROR_INVALID_ARGS;
696  
697  	pkt = (struct vmci_transport_packet *)dg;
698  
699  	/* Find the socket that should handle this packet.  First we look for a
700  	 * connected socket and if there is none we look for a socket bound to
701  	 * the destintation address.
702  	 */
703  	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
704  	vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
705  
706  	sk = vsock_find_connected_socket(&src, &dst);
707  	if (!sk) {
708  		sk = vsock_find_bound_socket(&dst);
709  		if (!sk) {
710  			/* We could not find a socket for this specified
711  			 * address.  If this packet is a RST, we just drop it.
712  			 * If it is another packet, we send a RST.  Note that
713  			 * we do not send a RST reply to RSTs so that we do not
714  			 * continually send RSTs between two endpoints.
715  			 *
716  			 * Note that since this is a reply, dst is src and src
717  			 * is dst.
718  			 */
719  			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
720  				pr_err("unable to send reset\n");
721  
722  			err = VMCI_ERROR_NOT_FOUND;
723  			goto out;
724  		}
725  	}
726  
727  	/* If the received packet type is beyond all types known to this
728  	 * implementation, reply with an invalid message.  Hopefully this will
729  	 * help when implementing backwards compatibility in the future.
730  	 */
731  	if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
732  		vmci_transport_send_invalid_bh(&dst, &src);
733  		err = VMCI_ERROR_INVALID_ARGS;
734  		goto out;
735  	}
736  
737  	/* This handler is privileged when this module is running on the host.
738  	 * We will get datagram connect requests from all endpoints (even VMs
739  	 * that are in a restricted context). If we get one from a restricted
740  	 * context then the destination socket must be trusted.
741  	 *
742  	 * NOTE: We access the socket struct without holding the lock here.
743  	 * This is ok because the field we are interested is never modified
744  	 * outside of the create and destruct socket functions.
745  	 */
746  	vsk = vsock_sk(sk);
747  	if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
748  		err = VMCI_ERROR_NO_ACCESS;
749  		goto out;
750  	}
751  
752  	/* We do most everything in a work queue, but let's fast path the
753  	 * notification of reads and writes to help data transfer performance.
754  	 * We can only do this if there is no process context code executing
755  	 * for this socket since that may change the state.
756  	 */
757  	bh_lock_sock(sk);
758  
759  	if (!sock_owned_by_user(sk)) {
760  		/* The local context ID may be out of date, update it. */
761  		vsk->local_addr.svm_cid = dst.svm_cid;
762  
763  		if (sk->sk_state == TCP_ESTABLISHED)
764  			vmci_trans(vsk)->notify_ops->handle_notify_pkt(
765  					sk, pkt, true, &dst, &src,
766  					&bh_process_pkt);
767  	}
768  
769  	bh_unlock_sock(sk);
770  
771  	if (!bh_process_pkt) {
772  		struct vmci_transport_recv_pkt_info *recv_pkt_info;
773  
774  		recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
775  		if (!recv_pkt_info) {
776  			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
777  				pr_err("unable to send reset\n");
778  
779  			err = VMCI_ERROR_NO_MEM;
780  			goto out;
781  		}
782  
783  		recv_pkt_info->sk = sk;
784  		memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
785  		INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
786  
787  		schedule_work(&recv_pkt_info->work);
788  		/* Clear sk so that the reference count incremented by one of
789  		 * the Find functions above is not decremented below.  We need
790  		 * that reference count for the packet handler we've scheduled
791  		 * to run.
792  		 */
793  		sk = NULL;
794  	}
795  
796  out:
797  	if (sk)
798  		sock_put(sk);
799  
800  	return err;
801  }
802  
vmci_transport_handle_detach(struct sock * sk)803  static void vmci_transport_handle_detach(struct sock *sk)
804  {
805  	struct vsock_sock *vsk;
806  
807  	vsk = vsock_sk(sk);
808  	if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
809  		sock_set_flag(sk, SOCK_DONE);
810  
811  		/* On a detach the peer will not be sending or receiving
812  		 * anymore.
813  		 */
814  		vsk->peer_shutdown = SHUTDOWN_MASK;
815  
816  		/* We should not be sending anymore since the peer won't be
817  		 * there to receive, but we can still receive if there is data
818  		 * left in our consume queue. If the local endpoint is a host,
819  		 * we can't call vsock_stream_has_data, since that may block,
820  		 * but a host endpoint can't read data once the VM has
821  		 * detached, so there is no available data in that case.
822  		 */
823  		if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
824  		    vsock_stream_has_data(vsk) <= 0) {
825  			if (sk->sk_state == TCP_SYN_SENT) {
826  				/* The peer may detach from a queue pair while
827  				 * we are still in the connecting state, i.e.,
828  				 * if the peer VM is killed after attaching to
829  				 * a queue pair, but before we complete the
830  				 * handshake. In that case, we treat the detach
831  				 * event like a reset.
832  				 */
833  
834  				sk->sk_state = TCP_CLOSE;
835  				sk->sk_err = ECONNRESET;
836  				sk_error_report(sk);
837  				return;
838  			}
839  			sk->sk_state = TCP_CLOSE;
840  		}
841  		sk->sk_state_change(sk);
842  	}
843  }
844  
vmci_transport_peer_detach_cb(u32 sub_id,const struct vmci_event_data * e_data,void * client_data)845  static void vmci_transport_peer_detach_cb(u32 sub_id,
846  					  const struct vmci_event_data *e_data,
847  					  void *client_data)
848  {
849  	struct vmci_transport *trans = client_data;
850  	const struct vmci_event_payload_qp *e_payload;
851  
852  	e_payload = vmci_event_data_const_payload(e_data);
853  
854  	/* XXX This is lame, we should provide a way to lookup sockets by
855  	 * qp_handle.
856  	 */
857  	if (vmci_handle_is_invalid(e_payload->handle) ||
858  	    !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
859  		return;
860  
861  	/* We don't ask for delayed CBs when we subscribe to this event (we
862  	 * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
863  	 * guarantees in that case about what context we might be running in,
864  	 * so it could be BH or process, blockable or non-blockable.  So we
865  	 * need to account for all possible contexts here.
866  	 */
867  	spin_lock_bh(&trans->lock);
868  	if (!trans->sk)
869  		goto out;
870  
871  	/* Apart from here, trans->lock is only grabbed as part of sk destruct,
872  	 * where trans->sk isn't locked.
873  	 */
874  	bh_lock_sock(trans->sk);
875  
876  	vmci_transport_handle_detach(trans->sk);
877  
878  	bh_unlock_sock(trans->sk);
879   out:
880  	spin_unlock_bh(&trans->lock);
881  }
882  
vmci_transport_qp_resumed_cb(u32 sub_id,const struct vmci_event_data * e_data,void * client_data)883  static void vmci_transport_qp_resumed_cb(u32 sub_id,
884  					 const struct vmci_event_data *e_data,
885  					 void *client_data)
886  {
887  	vsock_for_each_connected_socket(&vmci_transport,
888  					vmci_transport_handle_detach);
889  }
890  
vmci_transport_recv_pkt_work(struct work_struct * work)891  static void vmci_transport_recv_pkt_work(struct work_struct *work)
892  {
893  	struct vmci_transport_recv_pkt_info *recv_pkt_info;
894  	struct vmci_transport_packet *pkt;
895  	struct sock *sk;
896  
897  	recv_pkt_info =
898  		container_of(work, struct vmci_transport_recv_pkt_info, work);
899  	sk = recv_pkt_info->sk;
900  	pkt = &recv_pkt_info->pkt;
901  
902  	lock_sock(sk);
903  
904  	/* The local context ID may be out of date. */
905  	vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
906  
907  	switch (sk->sk_state) {
908  	case TCP_LISTEN:
909  		vmci_transport_recv_listen(sk, pkt);
910  		break;
911  	case TCP_SYN_SENT:
912  		/* Processing of pending connections for servers goes through
913  		 * the listening socket, so see vmci_transport_recv_listen()
914  		 * for that path.
915  		 */
916  		vmci_transport_recv_connecting_client(sk, pkt);
917  		break;
918  	case TCP_ESTABLISHED:
919  		vmci_transport_recv_connected(sk, pkt);
920  		break;
921  	default:
922  		/* Because this function does not run in the same context as
923  		 * vmci_transport_recv_stream_cb it is possible that the
924  		 * socket has closed. We need to let the other side know or it
925  		 * could be sitting in a connect and hang forever. Send a
926  		 * reset to prevent that.
927  		 */
928  		vmci_transport_send_reset(sk, pkt);
929  		break;
930  	}
931  
932  	release_sock(sk);
933  	kfree(recv_pkt_info);
934  	/* Release reference obtained in the stream callback when we fetched
935  	 * this socket out of the bound or connected list.
936  	 */
937  	sock_put(sk);
938  }
939  
vmci_transport_recv_listen(struct sock * sk,struct vmci_transport_packet * pkt)940  static int vmci_transport_recv_listen(struct sock *sk,
941  				      struct vmci_transport_packet *pkt)
942  {
943  	struct sock *pending;
944  	struct vsock_sock *vpending;
945  	int err;
946  	u64 qp_size;
947  	bool old_request = false;
948  	bool old_pkt_proto = false;
949  
950  	/* Because we are in the listen state, we could be receiving a packet
951  	 * for ourself or any previous connection requests that we received.
952  	 * If it's the latter, we try to find a socket in our list of pending
953  	 * connections and, if we do, call the appropriate handler for the
954  	 * state that socket is in.  Otherwise we try to service the
955  	 * connection request.
956  	 */
957  	pending = vmci_transport_get_pending(sk, pkt);
958  	if (pending) {
959  		lock_sock(pending);
960  
961  		/* The local context ID may be out of date. */
962  		vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
963  
964  		switch (pending->sk_state) {
965  		case TCP_SYN_SENT:
966  			err = vmci_transport_recv_connecting_server(sk,
967  								    pending,
968  								    pkt);
969  			break;
970  		default:
971  			vmci_transport_send_reset(pending, pkt);
972  			err = -EINVAL;
973  		}
974  
975  		if (err < 0)
976  			vsock_remove_pending(sk, pending);
977  
978  		release_sock(pending);
979  		vmci_transport_release_pending(pending);
980  
981  		return err;
982  	}
983  
984  	/* The listen state only accepts connection requests.  Reply with a
985  	 * reset unless we received a reset.
986  	 */
987  
988  	if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
989  	      pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
990  		vmci_transport_reply_reset(pkt);
991  		return -EINVAL;
992  	}
993  
994  	if (pkt->u.size == 0) {
995  		vmci_transport_reply_reset(pkt);
996  		return -EINVAL;
997  	}
998  
999  	/* If this socket can't accommodate this connection request, we send a
1000  	 * reset.  Otherwise we create and initialize a child socket and reply
1001  	 * with a connection negotiation.
1002  	 */
1003  	if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1004  		vmci_transport_reply_reset(pkt);
1005  		return -ECONNREFUSED;
1006  	}
1007  
1008  	pending = vsock_create_connected(sk);
1009  	if (!pending) {
1010  		vmci_transport_send_reset(sk, pkt);
1011  		return -ENOMEM;
1012  	}
1013  
1014  	vpending = vsock_sk(pending);
1015  
1016  	vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1017  			pkt->dst_port);
1018  	vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1019  			pkt->src_port);
1020  
1021  	err = vsock_assign_transport(vpending, vsock_sk(sk));
1022  	/* Transport assigned (looking at remote_addr) must be the same
1023  	 * where we received the request.
1024  	 */
1025  	if (err || !vmci_check_transport(vpending)) {
1026  		vmci_transport_send_reset(sk, pkt);
1027  		sock_put(pending);
1028  		return err;
1029  	}
1030  
1031  	/* If the proposed size fits within our min/max, accept it. Otherwise
1032  	 * propose our own size.
1033  	 */
1034  	if (pkt->u.size >= vpending->buffer_min_size &&
1035  	    pkt->u.size <= vpending->buffer_max_size) {
1036  		qp_size = pkt->u.size;
1037  	} else {
1038  		qp_size = vpending->buffer_size;
1039  	}
1040  
1041  	/* Figure out if we are using old or new requests based on the
1042  	 * overrides pkt types sent by our peer.
1043  	 */
1044  	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1045  		old_request = old_pkt_proto;
1046  	} else {
1047  		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1048  			old_request = true;
1049  		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1050  			old_request = false;
1051  
1052  	}
1053  
1054  	if (old_request) {
1055  		/* Handle a REQUEST (or override) */
1056  		u16 version = VSOCK_PROTO_INVALID;
1057  		if (vmci_transport_proto_to_notify_struct(
1058  			pending, &version, true))
1059  			err = vmci_transport_send_negotiate(pending, qp_size);
1060  		else
1061  			err = -EINVAL;
1062  
1063  	} else {
1064  		/* Handle a REQUEST2 (or override) */
1065  		int proto_int = pkt->proto;
1066  		int pos;
1067  		u16 active_proto_version = 0;
1068  
1069  		/* The list of possible protocols is the intersection of all
1070  		 * protocols the client supports ... plus all the protocols we
1071  		 * support.
1072  		 */
1073  		proto_int &= vmci_transport_new_proto_supported_versions();
1074  
1075  		/* We choose the highest possible protocol version and use that
1076  		 * one.
1077  		 */
1078  		pos = fls(proto_int);
1079  		if (pos) {
1080  			active_proto_version = (1 << (pos - 1));
1081  			if (vmci_transport_proto_to_notify_struct(
1082  				pending, &active_proto_version, false))
1083  				err = vmci_transport_send_negotiate2(pending,
1084  							qp_size,
1085  							active_proto_version);
1086  			else
1087  				err = -EINVAL;
1088  
1089  		} else {
1090  			err = -EINVAL;
1091  		}
1092  	}
1093  
1094  	if (err < 0) {
1095  		vmci_transport_send_reset(sk, pkt);
1096  		sock_put(pending);
1097  		err = vmci_transport_error_to_vsock_error(err);
1098  		goto out;
1099  	}
1100  
1101  	vsock_add_pending(sk, pending);
1102  	sk_acceptq_added(sk);
1103  
1104  	pending->sk_state = TCP_SYN_SENT;
1105  	vmci_trans(vpending)->produce_size =
1106  		vmci_trans(vpending)->consume_size = qp_size;
1107  	vpending->buffer_size = qp_size;
1108  
1109  	vmci_trans(vpending)->notify_ops->process_request(pending);
1110  
1111  	/* We might never receive another message for this socket and it's not
1112  	 * connected to any process, so we have to ensure it gets cleaned up
1113  	 * ourself.  Our delayed work function will take care of that.  Note
1114  	 * that we do not ever cancel this function since we have few
1115  	 * guarantees about its state when calling cancel_delayed_work().
1116  	 * Instead we hold a reference on the socket for that function and make
1117  	 * it capable of handling cases where it needs to do nothing but
1118  	 * release that reference.
1119  	 */
1120  	vpending->listener = sk;
1121  	sock_hold(sk);
1122  	sock_hold(pending);
1123  	schedule_delayed_work(&vpending->pending_work, HZ);
1124  
1125  out:
1126  	return err;
1127  }
1128  
1129  static int
vmci_transport_recv_connecting_server(struct sock * listener,struct sock * pending,struct vmci_transport_packet * pkt)1130  vmci_transport_recv_connecting_server(struct sock *listener,
1131  				      struct sock *pending,
1132  				      struct vmci_transport_packet *pkt)
1133  {
1134  	struct vsock_sock *vpending;
1135  	struct vmci_handle handle;
1136  	struct vmci_qp *qpair;
1137  	bool is_local;
1138  	u32 flags;
1139  	u32 detach_sub_id;
1140  	int err;
1141  	int skerr;
1142  
1143  	vpending = vsock_sk(pending);
1144  	detach_sub_id = VMCI_INVALID_ID;
1145  
1146  	switch (pkt->type) {
1147  	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1148  		if (vmci_handle_is_invalid(pkt->u.handle)) {
1149  			vmci_transport_send_reset(pending, pkt);
1150  			skerr = EPROTO;
1151  			err = -EINVAL;
1152  			goto destroy;
1153  		}
1154  		break;
1155  	default:
1156  		/* Close and cleanup the connection. */
1157  		vmci_transport_send_reset(pending, pkt);
1158  		skerr = EPROTO;
1159  		err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1160  		goto destroy;
1161  	}
1162  
1163  	/* In order to complete the connection we need to attach to the offered
1164  	 * queue pair and send an attach notification.  We also subscribe to the
1165  	 * detach event so we know when our peer goes away, and we do that
1166  	 * before attaching so we don't miss an event.  If all this succeeds,
1167  	 * we update our state and wakeup anything waiting in accept() for a
1168  	 * connection.
1169  	 */
1170  
1171  	/* We don't care about attach since we ensure the other side has
1172  	 * attached by specifying the ATTACH_ONLY flag below.
1173  	 */
1174  	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1175  				   vmci_transport_peer_detach_cb,
1176  				   vmci_trans(vpending), &detach_sub_id);
1177  	if (err < VMCI_SUCCESS) {
1178  		vmci_transport_send_reset(pending, pkt);
1179  		err = vmci_transport_error_to_vsock_error(err);
1180  		skerr = -err;
1181  		goto destroy;
1182  	}
1183  
1184  	vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1185  
1186  	/* Now attach to the queue pair the client created. */
1187  	handle = pkt->u.handle;
1188  
1189  	/* vpending->local_addr always has a context id so we do not need to
1190  	 * worry about VMADDR_CID_ANY in this case.
1191  	 */
1192  	is_local =
1193  	    vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1194  	flags = VMCI_QPFLAG_ATTACH_ONLY;
1195  	flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1196  
1197  	err = vmci_transport_queue_pair_alloc(
1198  					&qpair,
1199  					&handle,
1200  					vmci_trans(vpending)->produce_size,
1201  					vmci_trans(vpending)->consume_size,
1202  					pkt->dg.src.context,
1203  					flags,
1204  					vmci_transport_is_trusted(
1205  						vpending,
1206  						vpending->remote_addr.svm_cid));
1207  	if (err < 0) {
1208  		vmci_transport_send_reset(pending, pkt);
1209  		skerr = -err;
1210  		goto destroy;
1211  	}
1212  
1213  	vmci_trans(vpending)->qp_handle = handle;
1214  	vmci_trans(vpending)->qpair = qpair;
1215  
1216  	/* When we send the attach message, we must be ready to handle incoming
1217  	 * control messages on the newly connected socket. So we move the
1218  	 * pending socket to the connected state before sending the attach
1219  	 * message. Otherwise, an incoming packet triggered by the attach being
1220  	 * received by the peer may be processed concurrently with what happens
1221  	 * below after sending the attach message, and that incoming packet
1222  	 * will find the listening socket instead of the (currently) pending
1223  	 * socket. Note that enqueueing the socket increments the reference
1224  	 * count, so even if a reset comes before the connection is accepted,
1225  	 * the socket will be valid until it is removed from the queue.
1226  	 *
1227  	 * If we fail sending the attach below, we remove the socket from the
1228  	 * connected list and move the socket to TCP_CLOSE before
1229  	 * releasing the lock, so a pending slow path processing of an incoming
1230  	 * packet will not see the socket in the connected state in that case.
1231  	 */
1232  	pending->sk_state = TCP_ESTABLISHED;
1233  
1234  	vsock_insert_connected(vpending);
1235  
1236  	/* Notify our peer of our attach. */
1237  	err = vmci_transport_send_attach(pending, handle);
1238  	if (err < 0) {
1239  		vsock_remove_connected(vpending);
1240  		pr_err("Could not send attach\n");
1241  		vmci_transport_send_reset(pending, pkt);
1242  		err = vmci_transport_error_to_vsock_error(err);
1243  		skerr = -err;
1244  		goto destroy;
1245  	}
1246  
1247  	/* We have a connection. Move the now connected socket from the
1248  	 * listener's pending list to the accept queue so callers of accept()
1249  	 * can find it.
1250  	 */
1251  	vsock_remove_pending(listener, pending);
1252  	vsock_enqueue_accept(listener, pending);
1253  
1254  	/* Callers of accept() will be waiting on the listening socket, not
1255  	 * the pending socket.
1256  	 */
1257  	listener->sk_data_ready(listener);
1258  
1259  	return 0;
1260  
1261  destroy:
1262  	pending->sk_err = skerr;
1263  	pending->sk_state = TCP_CLOSE;
1264  	/* As long as we drop our reference, all necessary cleanup will handle
1265  	 * when the cleanup function drops its reference and our destruct
1266  	 * implementation is called.  Note that since the listen handler will
1267  	 * remove pending from the pending list upon our failure, the cleanup
1268  	 * function won't drop the additional reference, which is why we do it
1269  	 * here.
1270  	 */
1271  	sock_put(pending);
1272  
1273  	return err;
1274  }
1275  
1276  static int
vmci_transport_recv_connecting_client(struct sock * sk,struct vmci_transport_packet * pkt)1277  vmci_transport_recv_connecting_client(struct sock *sk,
1278  				      struct vmci_transport_packet *pkt)
1279  {
1280  	struct vsock_sock *vsk;
1281  	int err;
1282  	int skerr;
1283  
1284  	vsk = vsock_sk(sk);
1285  
1286  	switch (pkt->type) {
1287  	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1288  		if (vmci_handle_is_invalid(pkt->u.handle) ||
1289  		    !vmci_handle_is_equal(pkt->u.handle,
1290  					  vmci_trans(vsk)->qp_handle)) {
1291  			skerr = EPROTO;
1292  			err = -EINVAL;
1293  			goto destroy;
1294  		}
1295  
1296  		/* Signify the socket is connected and wakeup the waiter in
1297  		 * connect(). Also place the socket in the connected table for
1298  		 * accounting (it can already be found since it's in the bound
1299  		 * table).
1300  		 */
1301  		sk->sk_state = TCP_ESTABLISHED;
1302  		sk->sk_socket->state = SS_CONNECTED;
1303  		vsock_insert_connected(vsk);
1304  		sk->sk_state_change(sk);
1305  
1306  		break;
1307  	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1308  	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1309  		if (pkt->u.size == 0
1310  		    || pkt->dg.src.context != vsk->remote_addr.svm_cid
1311  		    || pkt->src_port != vsk->remote_addr.svm_port
1312  		    || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1313  		    || vmci_trans(vsk)->qpair
1314  		    || vmci_trans(vsk)->produce_size != 0
1315  		    || vmci_trans(vsk)->consume_size != 0
1316  		    || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1317  			skerr = EPROTO;
1318  			err = -EINVAL;
1319  
1320  			goto destroy;
1321  		}
1322  
1323  		err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1324  		if (err) {
1325  			skerr = -err;
1326  			goto destroy;
1327  		}
1328  
1329  		break;
1330  	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1331  		err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1332  		if (err) {
1333  			skerr = -err;
1334  			goto destroy;
1335  		}
1336  
1337  		break;
1338  	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1339  		/* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1340  		 * continue processing here after they sent an INVALID packet.
1341  		 * This meant that we got a RST after the INVALID. We ignore a
1342  		 * RST after an INVALID. The common code doesn't send the RST
1343  		 * ... so we can hang if an old version of the common code
1344  		 * fails between getting a REQUEST and sending an OFFER back.
1345  		 * Not much we can do about it... except hope that it doesn't
1346  		 * happen.
1347  		 */
1348  		if (vsk->ignore_connecting_rst) {
1349  			vsk->ignore_connecting_rst = false;
1350  		} else {
1351  			skerr = ECONNRESET;
1352  			err = 0;
1353  			goto destroy;
1354  		}
1355  
1356  		break;
1357  	default:
1358  		/* Close and cleanup the connection. */
1359  		skerr = EPROTO;
1360  		err = -EINVAL;
1361  		goto destroy;
1362  	}
1363  
1364  	return 0;
1365  
1366  destroy:
1367  	vmci_transport_send_reset(sk, pkt);
1368  
1369  	sk->sk_state = TCP_CLOSE;
1370  	sk->sk_err = skerr;
1371  	sk_error_report(sk);
1372  	return err;
1373  }
1374  
vmci_transport_recv_connecting_client_negotiate(struct sock * sk,struct vmci_transport_packet * pkt)1375  static int vmci_transport_recv_connecting_client_negotiate(
1376  					struct sock *sk,
1377  					struct vmci_transport_packet *pkt)
1378  {
1379  	int err;
1380  	struct vsock_sock *vsk;
1381  	struct vmci_handle handle;
1382  	struct vmci_qp *qpair;
1383  	u32 detach_sub_id;
1384  	bool is_local;
1385  	u32 flags;
1386  	bool old_proto = true;
1387  	bool old_pkt_proto;
1388  	u16 version;
1389  
1390  	vsk = vsock_sk(sk);
1391  	handle = VMCI_INVALID_HANDLE;
1392  	detach_sub_id = VMCI_INVALID_ID;
1393  
1394  	/* If we have gotten here then we should be past the point where old
1395  	 * linux vsock could have sent the bogus rst.
1396  	 */
1397  	vsk->sent_request = false;
1398  	vsk->ignore_connecting_rst = false;
1399  
1400  	/* Verify that we're OK with the proposed queue pair size */
1401  	if (pkt->u.size < vsk->buffer_min_size ||
1402  	    pkt->u.size > vsk->buffer_max_size) {
1403  		err = -EINVAL;
1404  		goto destroy;
1405  	}
1406  
1407  	/* At this point we know the CID the peer is using to talk to us. */
1408  
1409  	if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1410  		vsk->local_addr.svm_cid = pkt->dg.dst.context;
1411  
1412  	/* Setup the notify ops to be the highest supported version that both
1413  	 * the server and the client support.
1414  	 */
1415  
1416  	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1417  		old_proto = old_pkt_proto;
1418  	} else {
1419  		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1420  			old_proto = true;
1421  		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1422  			old_proto = false;
1423  
1424  	}
1425  
1426  	if (old_proto)
1427  		version = VSOCK_PROTO_INVALID;
1428  	else
1429  		version = pkt->proto;
1430  
1431  	if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1432  		err = -EINVAL;
1433  		goto destroy;
1434  	}
1435  
1436  	/* Subscribe to detach events first.
1437  	 *
1438  	 * XXX We attach once for each queue pair created for now so it is easy
1439  	 * to find the socket (it's provided), but later we should only
1440  	 * subscribe once and add a way to lookup sockets by queue pair handle.
1441  	 */
1442  	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1443  				   vmci_transport_peer_detach_cb,
1444  				   vmci_trans(vsk), &detach_sub_id);
1445  	if (err < VMCI_SUCCESS) {
1446  		err = vmci_transport_error_to_vsock_error(err);
1447  		goto destroy;
1448  	}
1449  
1450  	/* Make VMCI select the handle for us. */
1451  	handle = VMCI_INVALID_HANDLE;
1452  	is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1453  	flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1454  
1455  	err = vmci_transport_queue_pair_alloc(&qpair,
1456  					      &handle,
1457  					      pkt->u.size,
1458  					      pkt->u.size,
1459  					      vsk->remote_addr.svm_cid,
1460  					      flags,
1461  					      vmci_transport_is_trusted(
1462  						  vsk,
1463  						  vsk->
1464  						  remote_addr.svm_cid));
1465  	if (err < 0)
1466  		goto destroy;
1467  
1468  	err = vmci_transport_send_qp_offer(sk, handle);
1469  	if (err < 0) {
1470  		err = vmci_transport_error_to_vsock_error(err);
1471  		goto destroy;
1472  	}
1473  
1474  	vmci_trans(vsk)->qp_handle = handle;
1475  	vmci_trans(vsk)->qpair = qpair;
1476  
1477  	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1478  		pkt->u.size;
1479  
1480  	vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1481  
1482  	vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1483  
1484  	return 0;
1485  
1486  destroy:
1487  	if (detach_sub_id != VMCI_INVALID_ID)
1488  		vmci_event_unsubscribe(detach_sub_id);
1489  
1490  	if (!vmci_handle_is_invalid(handle))
1491  		vmci_qpair_detach(&qpair);
1492  
1493  	return err;
1494  }
1495  
1496  static int
vmci_transport_recv_connecting_client_invalid(struct sock * sk,struct vmci_transport_packet * pkt)1497  vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1498  					      struct vmci_transport_packet *pkt)
1499  {
1500  	int err = 0;
1501  	struct vsock_sock *vsk = vsock_sk(sk);
1502  
1503  	if (vsk->sent_request) {
1504  		vsk->sent_request = false;
1505  		vsk->ignore_connecting_rst = true;
1506  
1507  		err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1508  		if (err < 0)
1509  			err = vmci_transport_error_to_vsock_error(err);
1510  		else
1511  			err = 0;
1512  
1513  	}
1514  
1515  	return err;
1516  }
1517  
vmci_transport_recv_connected(struct sock * sk,struct vmci_transport_packet * pkt)1518  static int vmci_transport_recv_connected(struct sock *sk,
1519  					 struct vmci_transport_packet *pkt)
1520  {
1521  	struct vsock_sock *vsk;
1522  	bool pkt_processed = false;
1523  
1524  	/* In cases where we are closing the connection, it's sufficient to
1525  	 * mark the state change (and maybe error) and wake up any waiting
1526  	 * threads. Since this is a connected socket, it's owned by a user
1527  	 * process and will be cleaned up when the failure is passed back on
1528  	 * the current or next system call.  Our system call implementations
1529  	 * must therefore check for error and state changes on entry and when
1530  	 * being awoken.
1531  	 */
1532  	switch (pkt->type) {
1533  	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1534  		if (pkt->u.mode) {
1535  			vsk = vsock_sk(sk);
1536  
1537  			vsk->peer_shutdown |= pkt->u.mode;
1538  			sk->sk_state_change(sk);
1539  		}
1540  		break;
1541  
1542  	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1543  		vsk = vsock_sk(sk);
1544  		/* It is possible that we sent our peer a message (e.g a
1545  		 * WAITING_READ) right before we got notified that the peer had
1546  		 * detached. If that happens then we can get a RST pkt back
1547  		 * from our peer even though there is data available for us to
1548  		 * read. In that case, don't shutdown the socket completely but
1549  		 * instead allow the local client to finish reading data off
1550  		 * the queuepair. Always treat a RST pkt in connected mode like
1551  		 * a clean shutdown.
1552  		 */
1553  		sock_set_flag(sk, SOCK_DONE);
1554  		vsk->peer_shutdown = SHUTDOWN_MASK;
1555  		if (vsock_stream_has_data(vsk) <= 0)
1556  			sk->sk_state = TCP_CLOSING;
1557  
1558  		sk->sk_state_change(sk);
1559  		break;
1560  
1561  	default:
1562  		vsk = vsock_sk(sk);
1563  		vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1564  				sk, pkt, false, NULL, NULL,
1565  				&pkt_processed);
1566  		if (!pkt_processed)
1567  			return -EINVAL;
1568  
1569  		break;
1570  	}
1571  
1572  	return 0;
1573  }
1574  
vmci_transport_socket_init(struct vsock_sock * vsk,struct vsock_sock * psk)1575  static int vmci_transport_socket_init(struct vsock_sock *vsk,
1576  				      struct vsock_sock *psk)
1577  {
1578  	vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1579  	if (!vsk->trans)
1580  		return -ENOMEM;
1581  
1582  	vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1583  	vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1584  	vmci_trans(vsk)->qpair = NULL;
1585  	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1586  	vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1587  	vmci_trans(vsk)->notify_ops = NULL;
1588  	INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1589  	vmci_trans(vsk)->sk = &vsk->sk;
1590  	spin_lock_init(&vmci_trans(vsk)->lock);
1591  
1592  	return 0;
1593  }
1594  
vmci_transport_free_resources(struct list_head * transport_list)1595  static void vmci_transport_free_resources(struct list_head *transport_list)
1596  {
1597  	while (!list_empty(transport_list)) {
1598  		struct vmci_transport *transport =
1599  		    list_first_entry(transport_list, struct vmci_transport,
1600  				     elem);
1601  		list_del(&transport->elem);
1602  
1603  		if (transport->detach_sub_id != VMCI_INVALID_ID) {
1604  			vmci_event_unsubscribe(transport->detach_sub_id);
1605  			transport->detach_sub_id = VMCI_INVALID_ID;
1606  		}
1607  
1608  		if (!vmci_handle_is_invalid(transport->qp_handle)) {
1609  			vmci_qpair_detach(&transport->qpair);
1610  			transport->qp_handle = VMCI_INVALID_HANDLE;
1611  			transport->produce_size = 0;
1612  			transport->consume_size = 0;
1613  		}
1614  
1615  		kfree(transport);
1616  	}
1617  }
1618  
vmci_transport_cleanup(struct work_struct * work)1619  static void vmci_transport_cleanup(struct work_struct *work)
1620  {
1621  	LIST_HEAD(pending);
1622  
1623  	spin_lock_bh(&vmci_transport_cleanup_lock);
1624  	list_replace_init(&vmci_transport_cleanup_list, &pending);
1625  	spin_unlock_bh(&vmci_transport_cleanup_lock);
1626  	vmci_transport_free_resources(&pending);
1627  }
1628  
vmci_transport_destruct(struct vsock_sock * vsk)1629  static void vmci_transport_destruct(struct vsock_sock *vsk)
1630  {
1631  	/* transport can be NULL if we hit a failure at init() time */
1632  	if (!vmci_trans(vsk))
1633  		return;
1634  
1635  	/* Ensure that the detach callback doesn't use the sk/vsk
1636  	 * we are about to destruct.
1637  	 */
1638  	spin_lock_bh(&vmci_trans(vsk)->lock);
1639  	vmci_trans(vsk)->sk = NULL;
1640  	spin_unlock_bh(&vmci_trans(vsk)->lock);
1641  
1642  	if (vmci_trans(vsk)->notify_ops)
1643  		vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1644  
1645  	spin_lock_bh(&vmci_transport_cleanup_lock);
1646  	list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1647  	spin_unlock_bh(&vmci_transport_cleanup_lock);
1648  	schedule_work(&vmci_transport_cleanup_work);
1649  
1650  	vsk->trans = NULL;
1651  }
1652  
vmci_transport_release(struct vsock_sock * vsk)1653  static void vmci_transport_release(struct vsock_sock *vsk)
1654  {
1655  	vsock_remove_sock(vsk);
1656  
1657  	if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1658  		vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1659  		vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1660  	}
1661  }
1662  
vmci_transport_dgram_bind(struct vsock_sock * vsk,struct sockaddr_vm * addr)1663  static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1664  				     struct sockaddr_vm *addr)
1665  {
1666  	u32 port;
1667  	u32 flags;
1668  	int err;
1669  
1670  	/* VMCI will select a resource ID for us if we provide
1671  	 * VMCI_INVALID_ID.
1672  	 */
1673  	port = addr->svm_port == VMADDR_PORT_ANY ?
1674  			VMCI_INVALID_ID : addr->svm_port;
1675  
1676  	if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1677  		return -EACCES;
1678  
1679  	flags = addr->svm_cid == VMADDR_CID_ANY ?
1680  				VMCI_FLAG_ANYCID_DG_HND : 0;
1681  
1682  	err = vmci_transport_datagram_create_hnd(port, flags,
1683  						 vmci_transport_recv_dgram_cb,
1684  						 &vsk->sk,
1685  						 &vmci_trans(vsk)->dg_handle);
1686  	if (err < VMCI_SUCCESS)
1687  		return vmci_transport_error_to_vsock_error(err);
1688  	vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1689  			vmci_trans(vsk)->dg_handle.resource);
1690  
1691  	return 0;
1692  }
1693  
vmci_transport_dgram_enqueue(struct vsock_sock * vsk,struct sockaddr_vm * remote_addr,struct msghdr * msg,size_t len)1694  static int vmci_transport_dgram_enqueue(
1695  	struct vsock_sock *vsk,
1696  	struct sockaddr_vm *remote_addr,
1697  	struct msghdr *msg,
1698  	size_t len)
1699  {
1700  	int err;
1701  	struct vmci_datagram *dg;
1702  
1703  	if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1704  		return -EMSGSIZE;
1705  
1706  	if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1707  		return -EPERM;
1708  
1709  	/* Allocate a buffer for the user's message and our packet header. */
1710  	dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1711  	if (!dg)
1712  		return -ENOMEM;
1713  
1714  	err = memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1715  	if (err) {
1716  		kfree(dg);
1717  		return err;
1718  	}
1719  
1720  	dg->dst = vmci_make_handle(remote_addr->svm_cid,
1721  				   remote_addr->svm_port);
1722  	dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1723  				   vsk->local_addr.svm_port);
1724  	dg->payload_size = len;
1725  
1726  	err = vmci_datagram_send(dg);
1727  	kfree(dg);
1728  	if (err < 0)
1729  		return vmci_transport_error_to_vsock_error(err);
1730  
1731  	return err - sizeof(*dg);
1732  }
1733  
vmci_transport_dgram_dequeue(struct vsock_sock * vsk,struct msghdr * msg,size_t len,int flags)1734  static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1735  					struct msghdr *msg, size_t len,
1736  					int flags)
1737  {
1738  	int err;
1739  	struct vmci_datagram *dg;
1740  	size_t payload_len;
1741  	struct sk_buff *skb;
1742  
1743  	if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1744  		return -EOPNOTSUPP;
1745  
1746  	/* Retrieve the head sk_buff from the socket's receive queue. */
1747  	err = 0;
1748  	skb = skb_recv_datagram(&vsk->sk, flags, &err);
1749  	if (!skb)
1750  		return err;
1751  
1752  	dg = (struct vmci_datagram *)skb->data;
1753  	if (!dg)
1754  		/* err is 0, meaning we read zero bytes. */
1755  		goto out;
1756  
1757  	payload_len = dg->payload_size;
1758  	/* Ensure the sk_buff matches the payload size claimed in the packet. */
1759  	if (payload_len != skb->len - sizeof(*dg)) {
1760  		err = -EINVAL;
1761  		goto out;
1762  	}
1763  
1764  	if (payload_len > len) {
1765  		payload_len = len;
1766  		msg->msg_flags |= MSG_TRUNC;
1767  	}
1768  
1769  	/* Place the datagram payload in the user's iovec. */
1770  	err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1771  	if (err)
1772  		goto out;
1773  
1774  	if (msg->msg_name) {
1775  		/* Provide the address of the sender. */
1776  		DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1777  		vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1778  		msg->msg_namelen = sizeof(*vm_addr);
1779  	}
1780  	err = payload_len;
1781  
1782  out:
1783  	skb_free_datagram(&vsk->sk, skb);
1784  	return err;
1785  }
1786  
vmci_transport_dgram_allow(u32 cid,u32 port)1787  static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1788  {
1789  	if (cid == VMADDR_CID_HYPERVISOR) {
1790  		/* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1791  		 * state and are allowed.
1792  		 */
1793  		return port == VMCI_UNITY_PBRPC_REGISTER;
1794  	}
1795  
1796  	return true;
1797  }
1798  
vmci_transport_connect(struct vsock_sock * vsk)1799  static int vmci_transport_connect(struct vsock_sock *vsk)
1800  {
1801  	int err;
1802  	bool old_pkt_proto = false;
1803  	struct sock *sk = &vsk->sk;
1804  
1805  	if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1806  		old_pkt_proto) {
1807  		err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1808  		if (err < 0) {
1809  			sk->sk_state = TCP_CLOSE;
1810  			return err;
1811  		}
1812  	} else {
1813  		int supported_proto_versions =
1814  			vmci_transport_new_proto_supported_versions();
1815  		err = vmci_transport_send_conn_request2(sk, vsk->buffer_size,
1816  				supported_proto_versions);
1817  		if (err < 0) {
1818  			sk->sk_state = TCP_CLOSE;
1819  			return err;
1820  		}
1821  
1822  		vsk->sent_request = true;
1823  	}
1824  
1825  	return err;
1826  }
1827  
vmci_transport_stream_dequeue(struct vsock_sock * vsk,struct msghdr * msg,size_t len,int flags)1828  static ssize_t vmci_transport_stream_dequeue(
1829  	struct vsock_sock *vsk,
1830  	struct msghdr *msg,
1831  	size_t len,
1832  	int flags)
1833  {
1834  	ssize_t err;
1835  
1836  	if (flags & MSG_PEEK)
1837  		err = vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1838  	else
1839  		err = vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1840  
1841  	if (err < 0)
1842  		err = -ENOMEM;
1843  
1844  	return err;
1845  }
1846  
vmci_transport_stream_enqueue(struct vsock_sock * vsk,struct msghdr * msg,size_t len)1847  static ssize_t vmci_transport_stream_enqueue(
1848  	struct vsock_sock *vsk,
1849  	struct msghdr *msg,
1850  	size_t len)
1851  {
1852  	ssize_t err;
1853  
1854  	err = vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1855  	if (err < 0)
1856  		err = -ENOMEM;
1857  
1858  	return err;
1859  }
1860  
vmci_transport_stream_has_data(struct vsock_sock * vsk)1861  static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1862  {
1863  	return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1864  }
1865  
vmci_transport_stream_has_space(struct vsock_sock * vsk)1866  static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1867  {
1868  	return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1869  }
1870  
vmci_transport_stream_rcvhiwat(struct vsock_sock * vsk)1871  static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1872  {
1873  	return vmci_trans(vsk)->consume_size;
1874  }
1875  
vmci_transport_stream_is_active(struct vsock_sock * vsk)1876  static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1877  {
1878  	return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1879  }
1880  
vmci_transport_notify_poll_in(struct vsock_sock * vsk,size_t target,bool * data_ready_now)1881  static int vmci_transport_notify_poll_in(
1882  	struct vsock_sock *vsk,
1883  	size_t target,
1884  	bool *data_ready_now)
1885  {
1886  	return vmci_trans(vsk)->notify_ops->poll_in(
1887  			&vsk->sk, target, data_ready_now);
1888  }
1889  
vmci_transport_notify_poll_out(struct vsock_sock * vsk,size_t target,bool * space_available_now)1890  static int vmci_transport_notify_poll_out(
1891  	struct vsock_sock *vsk,
1892  	size_t target,
1893  	bool *space_available_now)
1894  {
1895  	return vmci_trans(vsk)->notify_ops->poll_out(
1896  			&vsk->sk, target, space_available_now);
1897  }
1898  
vmci_transport_notify_recv_init(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1899  static int vmci_transport_notify_recv_init(
1900  	struct vsock_sock *vsk,
1901  	size_t target,
1902  	struct vsock_transport_recv_notify_data *data)
1903  {
1904  	return vmci_trans(vsk)->notify_ops->recv_init(
1905  			&vsk->sk, target,
1906  			(struct vmci_transport_recv_notify_data *)data);
1907  }
1908  
vmci_transport_notify_recv_pre_block(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1909  static int vmci_transport_notify_recv_pre_block(
1910  	struct vsock_sock *vsk,
1911  	size_t target,
1912  	struct vsock_transport_recv_notify_data *data)
1913  {
1914  	return vmci_trans(vsk)->notify_ops->recv_pre_block(
1915  			&vsk->sk, target,
1916  			(struct vmci_transport_recv_notify_data *)data);
1917  }
1918  
vmci_transport_notify_recv_pre_dequeue(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1919  static int vmci_transport_notify_recv_pre_dequeue(
1920  	struct vsock_sock *vsk,
1921  	size_t target,
1922  	struct vsock_transport_recv_notify_data *data)
1923  {
1924  	return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1925  			&vsk->sk, target,
1926  			(struct vmci_transport_recv_notify_data *)data);
1927  }
1928  
vmci_transport_notify_recv_post_dequeue(struct vsock_sock * vsk,size_t target,ssize_t copied,bool data_read,struct vsock_transport_recv_notify_data * data)1929  static int vmci_transport_notify_recv_post_dequeue(
1930  	struct vsock_sock *vsk,
1931  	size_t target,
1932  	ssize_t copied,
1933  	bool data_read,
1934  	struct vsock_transport_recv_notify_data *data)
1935  {
1936  	return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1937  			&vsk->sk, target, copied, data_read,
1938  			(struct vmci_transport_recv_notify_data *)data);
1939  }
1940  
vmci_transport_notify_send_init(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1941  static int vmci_transport_notify_send_init(
1942  	struct vsock_sock *vsk,
1943  	struct vsock_transport_send_notify_data *data)
1944  {
1945  	return vmci_trans(vsk)->notify_ops->send_init(
1946  			&vsk->sk,
1947  			(struct vmci_transport_send_notify_data *)data);
1948  }
1949  
vmci_transport_notify_send_pre_block(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1950  static int vmci_transport_notify_send_pre_block(
1951  	struct vsock_sock *vsk,
1952  	struct vsock_transport_send_notify_data *data)
1953  {
1954  	return vmci_trans(vsk)->notify_ops->send_pre_block(
1955  			&vsk->sk,
1956  			(struct vmci_transport_send_notify_data *)data);
1957  }
1958  
vmci_transport_notify_send_pre_enqueue(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1959  static int vmci_transport_notify_send_pre_enqueue(
1960  	struct vsock_sock *vsk,
1961  	struct vsock_transport_send_notify_data *data)
1962  {
1963  	return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1964  			&vsk->sk,
1965  			(struct vmci_transport_send_notify_data *)data);
1966  }
1967  
vmci_transport_notify_send_post_enqueue(struct vsock_sock * vsk,ssize_t written,struct vsock_transport_send_notify_data * data)1968  static int vmci_transport_notify_send_post_enqueue(
1969  	struct vsock_sock *vsk,
1970  	ssize_t written,
1971  	struct vsock_transport_send_notify_data *data)
1972  {
1973  	return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1974  			&vsk->sk, written,
1975  			(struct vmci_transport_send_notify_data *)data);
1976  }
1977  
vmci_transport_old_proto_override(bool * old_pkt_proto)1978  static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1979  {
1980  	if (PROTOCOL_OVERRIDE != -1) {
1981  		if (PROTOCOL_OVERRIDE == 0)
1982  			*old_pkt_proto = true;
1983  		else
1984  			*old_pkt_proto = false;
1985  
1986  		pr_info("Proto override in use\n");
1987  		return true;
1988  	}
1989  
1990  	return false;
1991  }
1992  
vmci_transport_proto_to_notify_struct(struct sock * sk,u16 * proto,bool old_pkt_proto)1993  static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
1994  						  u16 *proto,
1995  						  bool old_pkt_proto)
1996  {
1997  	struct vsock_sock *vsk = vsock_sk(sk);
1998  
1999  	if (old_pkt_proto) {
2000  		if (*proto != VSOCK_PROTO_INVALID) {
2001  			pr_err("Can't set both an old and new protocol\n");
2002  			return false;
2003  		}
2004  		vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2005  		goto exit;
2006  	}
2007  
2008  	switch (*proto) {
2009  	case VSOCK_PROTO_PKT_ON_NOTIFY:
2010  		vmci_trans(vsk)->notify_ops =
2011  			&vmci_transport_notify_pkt_q_state_ops;
2012  		break;
2013  	default:
2014  		pr_err("Unknown notify protocol version\n");
2015  		return false;
2016  	}
2017  
2018  exit:
2019  	vmci_trans(vsk)->notify_ops->socket_init(sk);
2020  	return true;
2021  }
2022  
vmci_transport_new_proto_supported_versions(void)2023  static u16 vmci_transport_new_proto_supported_versions(void)
2024  {
2025  	if (PROTOCOL_OVERRIDE != -1)
2026  		return PROTOCOL_OVERRIDE;
2027  
2028  	return VSOCK_PROTO_ALL_SUPPORTED;
2029  }
2030  
vmci_transport_get_local_cid(void)2031  static u32 vmci_transport_get_local_cid(void)
2032  {
2033  	return vmci_get_context_id();
2034  }
2035  
2036  static struct vsock_transport vmci_transport = {
2037  	.module = THIS_MODULE,
2038  	.init = vmci_transport_socket_init,
2039  	.destruct = vmci_transport_destruct,
2040  	.release = vmci_transport_release,
2041  	.connect = vmci_transport_connect,
2042  	.dgram_bind = vmci_transport_dgram_bind,
2043  	.dgram_dequeue = vmci_transport_dgram_dequeue,
2044  	.dgram_enqueue = vmci_transport_dgram_enqueue,
2045  	.dgram_allow = vmci_transport_dgram_allow,
2046  	.stream_dequeue = vmci_transport_stream_dequeue,
2047  	.stream_enqueue = vmci_transport_stream_enqueue,
2048  	.stream_has_data = vmci_transport_stream_has_data,
2049  	.stream_has_space = vmci_transport_stream_has_space,
2050  	.stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2051  	.stream_is_active = vmci_transport_stream_is_active,
2052  	.stream_allow = vmci_transport_stream_allow,
2053  	.notify_poll_in = vmci_transport_notify_poll_in,
2054  	.notify_poll_out = vmci_transport_notify_poll_out,
2055  	.notify_recv_init = vmci_transport_notify_recv_init,
2056  	.notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2057  	.notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2058  	.notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2059  	.notify_send_init = vmci_transport_notify_send_init,
2060  	.notify_send_pre_block = vmci_transport_notify_send_pre_block,
2061  	.notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2062  	.notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2063  	.shutdown = vmci_transport_shutdown,
2064  	.get_local_cid = vmci_transport_get_local_cid,
2065  };
2066  
vmci_check_transport(struct vsock_sock * vsk)2067  static bool vmci_check_transport(struct vsock_sock *vsk)
2068  {
2069  	return vsk->transport == &vmci_transport;
2070  }
2071  
vmci_vsock_transport_cb(bool is_host)2072  static void vmci_vsock_transport_cb(bool is_host)
2073  {
2074  	int features;
2075  
2076  	if (is_host)
2077  		features = VSOCK_TRANSPORT_F_H2G;
2078  	else
2079  		features = VSOCK_TRANSPORT_F_G2H;
2080  
2081  	vsock_core_register(&vmci_transport, features);
2082  }
2083  
vmci_transport_init(void)2084  static int __init vmci_transport_init(void)
2085  {
2086  	int err;
2087  
2088  	/* Create the datagram handle that we will use to send and receive all
2089  	 * VSocket control messages for this context.
2090  	 */
2091  	err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2092  						 VMCI_FLAG_ANYCID_DG_HND,
2093  						 vmci_transport_recv_stream_cb,
2094  						 NULL,
2095  						 &vmci_transport_stream_handle);
2096  	if (err < VMCI_SUCCESS) {
2097  		pr_err("Unable to create datagram handle. (%d)\n", err);
2098  		return vmci_transport_error_to_vsock_error(err);
2099  	}
2100  	err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2101  				   vmci_transport_qp_resumed_cb,
2102  				   NULL, &vmci_transport_qp_resumed_sub_id);
2103  	if (err < VMCI_SUCCESS) {
2104  		pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2105  		err = vmci_transport_error_to_vsock_error(err);
2106  		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2107  		goto err_destroy_stream_handle;
2108  	}
2109  
2110  	/* Register only with dgram feature, other features (H2G, G2H) will be
2111  	 * registered when the first host or guest becomes active.
2112  	 */
2113  	err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM);
2114  	if (err < 0)
2115  		goto err_unsubscribe;
2116  
2117  	err = vmci_register_vsock_callback(vmci_vsock_transport_cb);
2118  	if (err < 0)
2119  		goto err_unregister;
2120  
2121  	return 0;
2122  
2123  err_unregister:
2124  	vsock_core_unregister(&vmci_transport);
2125  err_unsubscribe:
2126  	vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2127  err_destroy_stream_handle:
2128  	vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2129  	return err;
2130  }
2131  module_init(vmci_transport_init);
2132  
vmci_transport_exit(void)2133  static void __exit vmci_transport_exit(void)
2134  {
2135  	cancel_work_sync(&vmci_transport_cleanup_work);
2136  	vmci_transport_free_resources(&vmci_transport_cleanup_list);
2137  
2138  	if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2139  		if (vmci_datagram_destroy_handle(
2140  			vmci_transport_stream_handle) != VMCI_SUCCESS)
2141  			pr_err("Couldn't destroy datagram handle\n");
2142  		vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2143  	}
2144  
2145  	if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2146  		vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2147  		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2148  	}
2149  
2150  	vmci_register_vsock_callback(NULL);
2151  	vsock_core_unregister(&vmci_transport);
2152  }
2153  module_exit(vmci_transport_exit);
2154  
2155  MODULE_AUTHOR("VMware, Inc.");
2156  MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2157  MODULE_VERSION("1.0.5.0-k");
2158  MODULE_LICENSE("GPL v2");
2159  MODULE_ALIAS("vmware_vsock");
2160  MODULE_ALIAS_NETPROTO(PF_VSOCK);
2161