1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/blkdev.h>
9 #include <linux/fs.h>
10 #include <linux/random.h>
11 #include <linux/slab.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16
17 /*
18 * LOG FILE structs
19 */
20
21 // clang-format off
22
23 #define MaxLogFileSize 0x100000000ull
24 #define DefaultLogPageSize 4096
25 #define MinLogRecordPages 0x30
26
27 struct RESTART_HDR {
28 struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
29 __le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
30 __le32 page_size; // 0x14: Log page size used for this log file.
31 __le16 ra_off; // 0x18:
32 __le16 minor_ver; // 0x1A:
33 __le16 major_ver; // 0x1C:
34 __le16 fixups[];
35 };
36
37 #define LFS_NO_CLIENT 0xffff
38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
39
40 struct CLIENT_REC {
41 __le64 oldest_lsn;
42 __le64 restart_lsn; // 0x08:
43 __le16 prev_client; // 0x10:
44 __le16 next_client; // 0x12:
45 __le16 seq_num; // 0x14:
46 u8 align[6]; // 0x16:
47 __le32 name_bytes; // 0x1C: In bytes.
48 __le16 name[32]; // 0x20: Name of client.
49 };
50
51 static_assert(sizeof(struct CLIENT_REC) == 0x60);
52
53 /* Two copies of these will exist at the beginning of the log file */
54 struct RESTART_AREA {
55 __le64 current_lsn; // 0x00: Current logical end of log file.
56 __le16 log_clients; // 0x08: Maximum number of clients.
57 __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays.
58 __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO.
59 __le32 seq_num_bits; // 0x10: The number of bits in sequence number.
60 __le16 ra_len; // 0x14:
61 __le16 client_off; // 0x16:
62 __le64 l_size; // 0x18: Usable log file size.
63 __le32 last_lsn_data_len; // 0x20:
64 __le16 rec_hdr_len; // 0x24: Log page data offset.
65 __le16 data_off; // 0x26: Log page data length.
66 __le32 open_log_count; // 0x28:
67 __le32 align[5]; // 0x2C:
68 struct CLIENT_REC clients[]; // 0x40:
69 };
70
71 struct LOG_REC_HDR {
72 __le16 redo_op; // 0x00: NTFS_LOG_OPERATION
73 __le16 undo_op; // 0x02: NTFS_LOG_OPERATION
74 __le16 redo_off; // 0x04: Offset to Redo record.
75 __le16 redo_len; // 0x06: Redo length.
76 __le16 undo_off; // 0x08: Offset to Undo record.
77 __le16 undo_len; // 0x0A: Undo length.
78 __le16 target_attr; // 0x0C:
79 __le16 lcns_follow; // 0x0E:
80 __le16 record_off; // 0x10:
81 __le16 attr_off; // 0x12:
82 __le16 cluster_off; // 0x14:
83 __le16 reserved; // 0x16:
84 __le64 target_vcn; // 0x18:
85 __le64 page_lcns[]; // 0x20:
86 };
87
88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
89
90 #define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF
91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
92
93 struct RESTART_TABLE {
94 __le16 size; // 0x00: In bytes
95 __le16 used; // 0x02: Entries
96 __le16 total; // 0x04: Entries
97 __le16 res[3]; // 0x06:
98 __le32 free_goal; // 0x0C:
99 __le32 first_free; // 0x10:
100 __le32 last_free; // 0x14:
101
102 };
103
104 static_assert(sizeof(struct RESTART_TABLE) == 0x18);
105
106 struct ATTR_NAME_ENTRY {
107 __le16 off; // Offset in the Open attribute Table.
108 __le16 name_bytes;
109 __le16 name[];
110 };
111
112 struct OPEN_ATTR_ENRTY {
113 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114 __le32 bytes_per_index; // 0x04:
115 enum ATTR_TYPE type; // 0x08:
116 u8 is_dirty_pages; // 0x0C:
117 u8 is_attr_name; // 0x0B: Faked field to manage 'ptr'
118 u8 name_len; // 0x0C: Faked field to manage 'ptr'
119 u8 res;
120 struct MFT_REF ref; // 0x10: File Reference of file containing attribute
121 __le64 open_record_lsn; // 0x18:
122 void *ptr; // 0x20:
123 };
124
125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126 struct OPEN_ATTR_ENRTY_32 {
127 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
128 __le32 ptr; // 0x04:
129 struct MFT_REF ref; // 0x08:
130 __le64 open_record_lsn; // 0x10:
131 u8 is_dirty_pages; // 0x18:
132 u8 is_attr_name; // 0x19:
133 u8 res1[2];
134 enum ATTR_TYPE type; // 0x1C:
135 u8 name_len; // 0x20: In wchar
136 u8 res2[3];
137 __le32 AttributeName; // 0x24:
138 __le32 bytes_per_index; // 0x28:
139 };
140
141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
144
145 /*
146 * One entry exists in the Dirty Pages Table for each page which is dirty at
147 * the time the Restart Area is written.
148 */
149 struct DIR_PAGE_ENTRY {
150 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151 __le32 target_attr; // 0x04: Index into the Open attribute Table
152 __le32 transfer_len; // 0x08:
153 __le32 lcns_follow; // 0x0C:
154 __le64 vcn; // 0x10: Vcn of dirty page
155 __le64 oldest_lsn; // 0x18:
156 __le64 page_lcns[]; // 0x20:
157 };
158
159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
160
161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162 struct DIR_PAGE_ENTRY_32 {
163 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
164 __le32 target_attr; // 0x04: Index into the Open attribute Table
165 __le32 transfer_len; // 0x08:
166 __le32 lcns_follow; // 0x0C:
167 __le32 reserved; // 0x10:
168 __le32 vcn_low; // 0x14: Vcn of dirty page
169 __le32 vcn_hi; // 0x18: Vcn of dirty page
170 __le32 oldest_lsn_low; // 0x1C:
171 __le32 oldest_lsn_hi; // 0x1C:
172 __le32 page_lcns_low; // 0x24:
173 __le32 page_lcns_hi; // 0x24:
174 };
175
176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
178
179 enum transact_state {
180 TransactionUninitialized = 0,
181 TransactionActive,
182 TransactionPrepared,
183 TransactionCommitted
184 };
185
186 struct TRANSACTION_ENTRY {
187 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188 u8 transact_state; // 0x04:
189 u8 reserved[3]; // 0x05:
190 __le64 first_lsn; // 0x08:
191 __le64 prev_lsn; // 0x10:
192 __le64 undo_next_lsn; // 0x18:
193 __le32 undo_records; // 0x20: Number of undo log records pending abort
194 __le32 undo_len; // 0x24: Total undo size
195 };
196
197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
198
199 struct NTFS_RESTART {
200 __le32 major_ver; // 0x00:
201 __le32 minor_ver; // 0x04:
202 __le64 check_point_start; // 0x08:
203 __le64 open_attr_table_lsn; // 0x10:
204 __le64 attr_names_lsn; // 0x18:
205 __le64 dirty_pages_table_lsn; // 0x20:
206 __le64 transact_table_lsn; // 0x28:
207 __le32 open_attr_len; // 0x30: In bytes
208 __le32 attr_names_len; // 0x34: In bytes
209 __le32 dirty_pages_len; // 0x38: In bytes
210 __le32 transact_table_len; // 0x3C: In bytes
211 };
212
213 static_assert(sizeof(struct NTFS_RESTART) == 0x40);
214
215 struct NEW_ATTRIBUTE_SIZES {
216 __le64 alloc_size;
217 __le64 valid_size;
218 __le64 data_size;
219 __le64 total_size;
220 };
221
222 struct BITMAP_RANGE {
223 __le32 bitmap_off;
224 __le32 bits;
225 };
226
227 struct LCN_RANGE {
228 __le64 lcn;
229 __le64 len;
230 };
231
232 /* The following type defines the different log record types. */
233 #define LfsClientRecord cpu_to_le32(1)
234 #define LfsClientRestart cpu_to_le32(2)
235
236 /* This is used to uniquely identify a client for a particular log file. */
237 struct CLIENT_ID {
238 __le16 seq_num;
239 __le16 client_idx;
240 };
241
242 /* This is the header that begins every Log Record in the log file. */
243 struct LFS_RECORD_HDR {
244 __le64 this_lsn; // 0x00:
245 __le64 client_prev_lsn; // 0x08:
246 __le64 client_undo_next_lsn; // 0x10:
247 __le32 client_data_len; // 0x18:
248 struct CLIENT_ID client; // 0x1C: Owner of this log record.
249 __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart.
250 __le32 transact_id; // 0x24:
251 __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE
252 u8 align[6]; // 0x2A:
253 };
254
255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
256
257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
258
259 struct LFS_RECORD {
260 __le16 next_record_off; // 0x00: Offset of the free space in the page,
261 u8 align[6]; // 0x02:
262 __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page,
263 };
264
265 static_assert(sizeof(struct LFS_RECORD) == 0x10);
266
267 struct RECORD_PAGE_HDR {
268 struct NTFS_RECORD_HEADER rhdr; // 'RCRD'
269 __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END
270 __le16 page_count; // 0x14:
271 __le16 page_pos; // 0x16:
272 struct LFS_RECORD record_hdr; // 0x18:
273 __le16 fixups[10]; // 0x28:
274 __le32 file_off; // 0x3c: Used when major version >= 2
275 };
276
277 // clang-format on
278
279 // Page contains the end of a log record.
280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
281
is_log_record_end(const struct RECORD_PAGE_HDR * hdr)282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
283 {
284 return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
285 }
286
287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
288
289 /*
290 * END of NTFS LOG structures
291 */
292
293 /* Define some tuning parameters to keep the restart tables a reasonable size. */
294 #define INITIAL_NUMBER_TRANSACTIONS 5
295
296 enum NTFS_LOG_OPERATION {
297
298 Noop = 0x00,
299 CompensationLogRecord = 0x01,
300 InitializeFileRecordSegment = 0x02,
301 DeallocateFileRecordSegment = 0x03,
302 WriteEndOfFileRecordSegment = 0x04,
303 CreateAttribute = 0x05,
304 DeleteAttribute = 0x06,
305 UpdateResidentValue = 0x07,
306 UpdateNonresidentValue = 0x08,
307 UpdateMappingPairs = 0x09,
308 DeleteDirtyClusters = 0x0A,
309 SetNewAttributeSizes = 0x0B,
310 AddIndexEntryRoot = 0x0C,
311 DeleteIndexEntryRoot = 0x0D,
312 AddIndexEntryAllocation = 0x0E,
313 DeleteIndexEntryAllocation = 0x0F,
314 WriteEndOfIndexBuffer = 0x10,
315 SetIndexEntryVcnRoot = 0x11,
316 SetIndexEntryVcnAllocation = 0x12,
317 UpdateFileNameRoot = 0x13,
318 UpdateFileNameAllocation = 0x14,
319 SetBitsInNonresidentBitMap = 0x15,
320 ClearBitsInNonresidentBitMap = 0x16,
321 HotFix = 0x17,
322 EndTopLevelAction = 0x18,
323 PrepareTransaction = 0x19,
324 CommitTransaction = 0x1A,
325 ForgetTransaction = 0x1B,
326 OpenNonresidentAttribute = 0x1C,
327 OpenAttributeTableDump = 0x1D,
328 AttributeNamesDump = 0x1E,
329 DirtyPageTableDump = 0x1F,
330 TransactionTableDump = 0x20,
331 UpdateRecordDataRoot = 0x21,
332 UpdateRecordDataAllocation = 0x22,
333
334 UpdateRelativeDataInIndex =
335 0x23, // NtOfsRestartUpdateRelativeDataInIndex
336 UpdateRelativeDataInIndex2 = 0x24,
337 ZeroEndOfFileRecord = 0x25,
338 };
339
340 /*
341 * Array for log records which require a target attribute.
342 * A true indicates that the corresponding restart operation
343 * requires a target attribute.
344 */
345 static const u8 AttributeRequired[] = {
346 0xFC, 0xFB, 0xFF, 0x10, 0x06,
347 };
348
is_target_required(u16 op)349 static inline bool is_target_required(u16 op)
350 {
351 bool ret = op <= UpdateRecordDataAllocation &&
352 (AttributeRequired[op >> 3] >> (op & 7) & 1);
353 return ret;
354 }
355
can_skip_action(enum NTFS_LOG_OPERATION op)356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
357 {
358 switch (op) {
359 case Noop:
360 case DeleteDirtyClusters:
361 case HotFix:
362 case EndTopLevelAction:
363 case PrepareTransaction:
364 case CommitTransaction:
365 case ForgetTransaction:
366 case CompensationLogRecord:
367 case OpenNonresidentAttribute:
368 case OpenAttributeTableDump:
369 case AttributeNamesDump:
370 case DirtyPageTableDump:
371 case TransactionTableDump:
372 return true;
373 default:
374 return false;
375 }
376 }
377
378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
379
380 /* Bytes per restart table. */
bytes_per_rt(const struct RESTART_TABLE * rt)381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
382 {
383 return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384 sizeof(struct RESTART_TABLE);
385 }
386
387 /* Log record length. */
lrh_length(const struct LOG_REC_HDR * lr)388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
389 {
390 u16 t16 = le16_to_cpu(lr->lcns_follow);
391
392 return struct_size(lr, page_lcns, max_t(u16, 1, t16));
393 }
394
395 struct lcb {
396 struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
397 struct LOG_REC_HDR *log_rec;
398 u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399 struct CLIENT_ID client;
400 bool alloc; // If true the we should deallocate 'log_rec'.
401 };
402
lcb_put(struct lcb * lcb)403 static void lcb_put(struct lcb *lcb)
404 {
405 if (lcb->alloc)
406 kfree(lcb->log_rec);
407 kfree(lcb->lrh);
408 kfree(lcb);
409 }
410
411 /* Find the oldest lsn from active clients. */
oldest_client_lsn(const struct CLIENT_REC * ca,__le16 next_client,u64 * oldest_lsn)412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413 __le16 next_client, u64 *oldest_lsn)
414 {
415 while (next_client != LFS_NO_CLIENT_LE) {
416 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417 u64 lsn = le64_to_cpu(cr->oldest_lsn);
418
419 /* Ignore this block if it's oldest lsn is 0. */
420 if (lsn && lsn < *oldest_lsn)
421 *oldest_lsn = lsn;
422
423 next_client = cr->next_client;
424 }
425 }
426
is_rst_page_hdr_valid(u32 file_off,const struct RESTART_HDR * rhdr)427 static inline bool is_rst_page_hdr_valid(u32 file_off,
428 const struct RESTART_HDR *rhdr)
429 {
430 u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431 u32 page_size = le32_to_cpu(rhdr->page_size);
432 u32 end_usa;
433 u16 ro;
434
435 if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436 sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
437 return false;
438 }
439
440 /* Check that if the file offset isn't 0, it is the system page size. */
441 if (file_off && file_off != sys_page)
442 return false;
443
444 /* Check support version 1.1+. */
445 if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
446 return false;
447
448 if (le16_to_cpu(rhdr->major_ver) > 2)
449 return false;
450
451 ro = le16_to_cpu(rhdr->ra_off);
452 if (!IS_ALIGNED(ro, 8) || ro > sys_page)
453 return false;
454
455 end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456 end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
457
458 if (ro < end_usa)
459 return false;
460
461 return true;
462 }
463
is_rst_area_valid(const struct RESTART_HDR * rhdr)464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
465 {
466 const struct RESTART_AREA *ra;
467 u16 cl, fl, ul;
468 u32 off, l_size, seq_bits;
469 u16 ro = le16_to_cpu(rhdr->ra_off);
470 u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
471
472 if (ro + offsetof(struct RESTART_AREA, l_size) >
473 SECTOR_SIZE - sizeof(short))
474 return false;
475
476 ra = Add2Ptr(rhdr, ro);
477 cl = le16_to_cpu(ra->log_clients);
478
479 if (cl > 1)
480 return false;
481
482 off = le16_to_cpu(ra->client_off);
483
484 if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
485 return false;
486
487 off += cl * sizeof(struct CLIENT_REC);
488
489 if (off > sys_page)
490 return false;
491
492 /*
493 * Check the restart length field and whether the entire
494 * restart area is contained that length.
495 */
496 if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497 off > le16_to_cpu(ra->ra_len)) {
498 return false;
499 }
500
501 /*
502 * As a final check make sure that the use list and the free list
503 * are either empty or point to a valid client.
504 */
505 fl = le16_to_cpu(ra->client_idx[0]);
506 ul = le16_to_cpu(ra->client_idx[1]);
507 if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508 (ul != LFS_NO_CLIENT && ul >= cl))
509 return false;
510
511 /* Make sure the sequence number bits match the log file size. */
512 l_size = le64_to_cpu(ra->l_size);
513
514 seq_bits = sizeof(u64) * 8 + 3;
515 while (l_size) {
516 l_size >>= 1;
517 seq_bits -= 1;
518 }
519
520 if (seq_bits != ra->seq_num_bits)
521 return false;
522
523 /* The log page data offset and record header length must be quad-aligned. */
524 if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
525 !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
526 return false;
527
528 return true;
529 }
530
is_client_area_valid(const struct RESTART_HDR * rhdr,bool usa_error)531 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
532 bool usa_error)
533 {
534 u16 ro = le16_to_cpu(rhdr->ra_off);
535 const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
536 u16 ra_len = le16_to_cpu(ra->ra_len);
537 const struct CLIENT_REC *ca;
538 u32 i;
539
540 if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
541 return false;
542
543 /* Find the start of the client array. */
544 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
545
546 /*
547 * Start with the free list.
548 * Check that all the clients are valid and that there isn't a cycle.
549 * Do the in-use list on the second pass.
550 */
551 for (i = 0; i < 2; i++) {
552 u16 client_idx = le16_to_cpu(ra->client_idx[i]);
553 bool first_client = true;
554 u16 clients = le16_to_cpu(ra->log_clients);
555
556 while (client_idx != LFS_NO_CLIENT) {
557 const struct CLIENT_REC *cr;
558
559 if (!clients ||
560 client_idx >= le16_to_cpu(ra->log_clients))
561 return false;
562
563 clients -= 1;
564 cr = ca + client_idx;
565
566 client_idx = le16_to_cpu(cr->next_client);
567
568 if (first_client) {
569 first_client = false;
570 if (cr->prev_client != LFS_NO_CLIENT_LE)
571 return false;
572 }
573 }
574 }
575
576 return true;
577 }
578
579 /*
580 * remove_client
581 *
582 * Remove a client record from a client record list an restart area.
583 */
remove_client(struct CLIENT_REC * ca,const struct CLIENT_REC * cr,__le16 * head)584 static inline void remove_client(struct CLIENT_REC *ca,
585 const struct CLIENT_REC *cr, __le16 *head)
586 {
587 if (cr->prev_client == LFS_NO_CLIENT_LE)
588 *head = cr->next_client;
589 else
590 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
591
592 if (cr->next_client != LFS_NO_CLIENT_LE)
593 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
594 }
595
596 /*
597 * add_client - Add a client record to the start of a list.
598 */
add_client(struct CLIENT_REC * ca,u16 index,__le16 * head)599 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
600 {
601 struct CLIENT_REC *cr = ca + index;
602
603 cr->prev_client = LFS_NO_CLIENT_LE;
604 cr->next_client = *head;
605
606 if (*head != LFS_NO_CLIENT_LE)
607 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
608
609 *head = cpu_to_le16(index);
610 }
611
612 /*
613 * Enumerate restart table.
614 *
615 * @t - table to enumerate.
616 * @c - current enumerated element.
617 *
618 * enumeration starts with @c == NULL
619 * returns next element or NULL
620 */
enum_rstbl(struct RESTART_TABLE * t,void * c)621 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
622 {
623 __le32 *e;
624 u32 bprt;
625 u16 rsize;
626
627 if (!t)
628 return NULL;
629
630 rsize = le16_to_cpu(t->size);
631
632 if (!c) {
633 /* start enumeration. */
634 if (!t->total)
635 return NULL;
636 e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
637 } else {
638 e = Add2Ptr(c, rsize);
639 }
640
641 /* Loop until we hit the first one allocated, or the end of the list. */
642 for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
643 e = Add2Ptr(e, rsize)) {
644 if (*e == RESTART_ENTRY_ALLOCATED_LE)
645 return e;
646 }
647 return NULL;
648 }
649
650 /*
651 * find_dp - Search for a @vcn in Dirty Page Table.
652 */
find_dp(struct RESTART_TABLE * dptbl,u32 target_attr,u64 vcn)653 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
654 u32 target_attr, u64 vcn)
655 {
656 __le32 ta = cpu_to_le32(target_attr);
657 struct DIR_PAGE_ENTRY *dp = NULL;
658
659 while ((dp = enum_rstbl(dptbl, dp))) {
660 u64 dp_vcn = le64_to_cpu(dp->vcn);
661
662 if (dp->target_attr == ta && vcn >= dp_vcn &&
663 vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
664 return dp;
665 }
666 }
667 return NULL;
668 }
669
norm_file_page(u32 page_size,u32 * l_size,bool use_default)670 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
671 {
672 if (use_default)
673 page_size = DefaultLogPageSize;
674
675 /* Round the file size down to a system page boundary. */
676 *l_size &= ~(page_size - 1);
677
678 /* File should contain at least 2 restart pages and MinLogRecordPages pages. */
679 if (*l_size < (MinLogRecordPages + 2) * page_size)
680 return 0;
681
682 return page_size;
683 }
684
check_log_rec(const struct LOG_REC_HDR * lr,u32 bytes,u32 tr,u32 bytes_per_attr_entry)685 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
686 u32 bytes_per_attr_entry)
687 {
688 u16 t16;
689
690 if (bytes < sizeof(struct LOG_REC_HDR))
691 return false;
692 if (!tr)
693 return false;
694
695 if ((tr - sizeof(struct RESTART_TABLE)) %
696 sizeof(struct TRANSACTION_ENTRY))
697 return false;
698
699 if (le16_to_cpu(lr->redo_off) & 7)
700 return false;
701
702 if (le16_to_cpu(lr->undo_off) & 7)
703 return false;
704
705 if (lr->target_attr)
706 goto check_lcns;
707
708 if (is_target_required(le16_to_cpu(lr->redo_op)))
709 return false;
710
711 if (is_target_required(le16_to_cpu(lr->undo_op)))
712 return false;
713
714 check_lcns:
715 if (!lr->lcns_follow)
716 goto check_length;
717
718 t16 = le16_to_cpu(lr->target_attr);
719 if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
720 return false;
721
722 check_length:
723 if (bytes < lrh_length(lr))
724 return false;
725
726 return true;
727 }
728
check_rstbl(const struct RESTART_TABLE * rt,size_t bytes)729 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
730 {
731 u32 ts;
732 u32 i, off;
733 u16 rsize = le16_to_cpu(rt->size);
734 u16 ne = le16_to_cpu(rt->used);
735 u32 ff = le32_to_cpu(rt->first_free);
736 u32 lf = le32_to_cpu(rt->last_free);
737
738 ts = rsize * ne + sizeof(struct RESTART_TABLE);
739
740 if (!rsize || rsize > bytes ||
741 rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
742 le16_to_cpu(rt->total) > ne ||
743 ff > ts - sizeof(__le32) || lf > ts - sizeof(__le32) ||
744 (ff && ff < sizeof(struct RESTART_TABLE)) ||
745 (lf && lf < sizeof(struct RESTART_TABLE))) {
746 return false;
747 }
748
749 /*
750 * Verify each entry is either allocated or points
751 * to a valid offset the table.
752 */
753 for (i = 0; i < ne; i++) {
754 off = le32_to_cpu(*(__le32 *)Add2Ptr(
755 rt, i * rsize + sizeof(struct RESTART_TABLE)));
756
757 if (off != RESTART_ENTRY_ALLOCATED && off &&
758 (off < sizeof(struct RESTART_TABLE) ||
759 ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
760 return false;
761 }
762 }
763
764 /*
765 * Walk through the list headed by the first entry to make
766 * sure none of the entries are currently being used.
767 */
768 for (off = ff; off;) {
769 if (off == RESTART_ENTRY_ALLOCATED)
770 return false;
771
772 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
773
774 if (off > ts - sizeof(__le32))
775 return false;
776 }
777
778 return true;
779 }
780
781 /*
782 * free_rsttbl_idx - Free a previously allocated index a Restart Table.
783 */
free_rsttbl_idx(struct RESTART_TABLE * rt,u32 off)784 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
785 {
786 __le32 *e;
787 u32 lf = le32_to_cpu(rt->last_free);
788 __le32 off_le = cpu_to_le32(off);
789
790 e = Add2Ptr(rt, off);
791
792 if (off < le32_to_cpu(rt->free_goal)) {
793 *e = rt->first_free;
794 rt->first_free = off_le;
795 if (!lf)
796 rt->last_free = off_le;
797 } else {
798 if (lf)
799 *(__le32 *)Add2Ptr(rt, lf) = off_le;
800 else
801 rt->first_free = off_le;
802
803 rt->last_free = off_le;
804 *e = 0;
805 }
806
807 le16_sub_cpu(&rt->total, 1);
808 }
809
init_rsttbl(u16 esize,u16 used)810 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
811 {
812 __le32 *e, *last_free;
813 u32 off;
814 u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
815 u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
816 struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
817
818 if (!t)
819 return NULL;
820
821 t->size = cpu_to_le16(esize);
822 t->used = cpu_to_le16(used);
823 t->free_goal = cpu_to_le32(~0u);
824 t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
825 t->last_free = cpu_to_le32(lf);
826
827 e = (__le32 *)(t + 1);
828 last_free = Add2Ptr(t, lf);
829
830 for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
831 e = Add2Ptr(e, esize), off += esize) {
832 *e = cpu_to_le32(off);
833 }
834 return t;
835 }
836
extend_rsttbl(struct RESTART_TABLE * tbl,u32 add,u32 free_goal)837 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
838 u32 add, u32 free_goal)
839 {
840 u16 esize = le16_to_cpu(tbl->size);
841 __le32 osize = cpu_to_le32(bytes_per_rt(tbl));
842 u32 used = le16_to_cpu(tbl->used);
843 struct RESTART_TABLE *rt;
844
845 rt = init_rsttbl(esize, used + add);
846 if (!rt)
847 return NULL;
848
849 memcpy(rt + 1, tbl + 1, esize * used);
850
851 rt->free_goal = free_goal == ~0u ?
852 cpu_to_le32(~0u) :
853 cpu_to_le32(sizeof(struct RESTART_TABLE) +
854 free_goal * esize);
855
856 if (tbl->first_free) {
857 rt->first_free = tbl->first_free;
858 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
859 } else {
860 rt->first_free = osize;
861 }
862
863 rt->total = tbl->total;
864
865 kfree(tbl);
866 return rt;
867 }
868
869 /*
870 * alloc_rsttbl_idx
871 *
872 * Allocate an index from within a previously initialized Restart Table.
873 */
alloc_rsttbl_idx(struct RESTART_TABLE ** tbl)874 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
875 {
876 u32 off;
877 __le32 *e;
878 struct RESTART_TABLE *t = *tbl;
879
880 if (!t->first_free) {
881 *tbl = t = extend_rsttbl(t, 16, ~0u);
882 if (!t)
883 return NULL;
884 }
885
886 off = le32_to_cpu(t->first_free);
887
888 /* Dequeue this entry and zero it. */
889 e = Add2Ptr(t, off);
890
891 t->first_free = *e;
892
893 memset(e, 0, le16_to_cpu(t->size));
894
895 *e = RESTART_ENTRY_ALLOCATED_LE;
896
897 /* If list is going empty, then we fix the last_free as well. */
898 if (!t->first_free)
899 t->last_free = 0;
900
901 le16_add_cpu(&t->total, 1);
902
903 return Add2Ptr(t, off);
904 }
905
906 /*
907 * alloc_rsttbl_from_idx
908 *
909 * Allocate a specific index from within a previously initialized Restart Table.
910 */
alloc_rsttbl_from_idx(struct RESTART_TABLE ** tbl,u32 vbo)911 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
912 {
913 u32 off;
914 __le32 *e;
915 struct RESTART_TABLE *rt = *tbl;
916 u32 bytes = bytes_per_rt(rt);
917 u16 esize = le16_to_cpu(rt->size);
918
919 /* If the entry is not the table, we will have to extend the table. */
920 if (vbo >= bytes) {
921 /*
922 * Extend the size by computing the number of entries between
923 * the existing size and the desired index and adding 1 to that.
924 */
925 u32 bytes2idx = vbo - bytes;
926
927 /*
928 * There should always be an integral number of entries
929 * being added. Now extend the table.
930 */
931 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
932 if (!rt)
933 return NULL;
934 }
935
936 /* See if the entry is already allocated, and just return if it is. */
937 e = Add2Ptr(rt, vbo);
938
939 if (*e == RESTART_ENTRY_ALLOCATED_LE)
940 return e;
941
942 /*
943 * Walk through the table, looking for the entry we're
944 * interested and the previous entry.
945 */
946 off = le32_to_cpu(rt->first_free);
947 e = Add2Ptr(rt, off);
948
949 if (off == vbo) {
950 /* this is a match */
951 rt->first_free = *e;
952 goto skip_looking;
953 }
954
955 /*
956 * Need to walk through the list looking for the predecessor
957 * of our entry.
958 */
959 for (;;) {
960 /* Remember the entry just found */
961 u32 last_off = off;
962 __le32 *last_e = e;
963
964 /* Should never run of entries. */
965
966 /* Lookup up the next entry the list. */
967 off = le32_to_cpu(*last_e);
968 e = Add2Ptr(rt, off);
969
970 /* If this is our match we are done. */
971 if (off == vbo) {
972 *last_e = *e;
973
974 /*
975 * If this was the last entry, we update that
976 * table as well.
977 */
978 if (le32_to_cpu(rt->last_free) == off)
979 rt->last_free = cpu_to_le32(last_off);
980 break;
981 }
982 }
983
984 skip_looking:
985 /* If the list is now empty, we fix the last_free as well. */
986 if (!rt->first_free)
987 rt->last_free = 0;
988
989 /* Zero this entry. */
990 memset(e, 0, esize);
991 *e = RESTART_ENTRY_ALLOCATED_LE;
992
993 le16_add_cpu(&rt->total, 1);
994
995 return e;
996 }
997
998 struct restart_info {
999 u64 last_lsn;
1000 struct RESTART_HDR *r_page;
1001 u32 vbo;
1002 bool chkdsk_was_run;
1003 bool valid_page;
1004 bool initialized;
1005 bool restart;
1006 };
1007
1008 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
1009
1010 #define NTFSLOG_WRAPPED 0x00000001
1011 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
1012 #define NTFSLOG_NO_LAST_LSN 0x00000004
1013 #define NTFSLOG_REUSE_TAIL 0x00000010
1014 #define NTFSLOG_NO_OLDEST_LSN 0x00000020
1015
1016 /* Helper struct to work with NTFS $LogFile. */
1017 struct ntfs_log {
1018 struct ntfs_inode *ni;
1019
1020 u32 l_size;
1021 u32 orig_file_size;
1022 u32 sys_page_size;
1023 u32 sys_page_mask;
1024 u32 page_size;
1025 u32 page_mask; // page_size - 1
1026 u8 page_bits;
1027 struct RECORD_PAGE_HDR *one_page_buf;
1028
1029 struct RESTART_TABLE *open_attr_tbl;
1030 u32 transaction_id;
1031 u32 clst_per_page;
1032
1033 u32 first_page;
1034 u32 next_page;
1035 u32 ra_off;
1036 u32 data_off;
1037 u32 restart_size;
1038 u32 data_size;
1039 u16 record_header_len;
1040 u64 seq_num;
1041 u32 seq_num_bits;
1042 u32 file_data_bits;
1043 u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1044
1045 struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1046 u32 ra_size; /* The usable size of the restart area. */
1047
1048 /*
1049 * If true, then the in-memory restart area is to be written
1050 * to the first position on the disk.
1051 */
1052 bool init_ra;
1053 bool set_dirty; /* True if we need to set dirty flag. */
1054
1055 u64 oldest_lsn;
1056
1057 u32 oldest_lsn_off;
1058 u64 last_lsn;
1059
1060 u32 total_avail;
1061 u32 total_avail_pages;
1062 u32 total_undo_commit;
1063 u32 max_current_avail;
1064 u32 current_avail;
1065 u32 reserved;
1066
1067 short major_ver;
1068 short minor_ver;
1069
1070 u32 l_flags; /* See NTFSLOG_XXX */
1071 u32 current_openlog_count; /* On-disk value for open_log_count. */
1072
1073 struct CLIENT_ID client_id;
1074 u32 client_undo_commit;
1075
1076 struct restart_info rst_info, rst_info2;
1077 };
1078
lsn_to_vbo(struct ntfs_log * log,const u64 lsn)1079 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1080 {
1081 u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1082
1083 return vbo;
1084 }
1085
1086 /* Compute the offset in the log file of the next log page. */
next_page_off(struct ntfs_log * log,u32 off)1087 static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1088 {
1089 off = (off & ~log->sys_page_mask) + log->page_size;
1090 return off >= log->l_size ? log->first_page : off;
1091 }
1092
lsn_to_page_off(struct ntfs_log * log,u64 lsn)1093 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1094 {
1095 return (((u32)lsn) << 3) & log->page_mask;
1096 }
1097
vbo_to_lsn(struct ntfs_log * log,u32 off,u64 Seq)1098 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1099 {
1100 return (off >> 3) + (Seq << log->file_data_bits);
1101 }
1102
is_lsn_in_file(struct ntfs_log * log,u64 lsn)1103 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1104 {
1105 return lsn >= log->oldest_lsn &&
1106 lsn <= le64_to_cpu(log->ra->current_lsn);
1107 }
1108
hdr_file_off(struct ntfs_log * log,struct RECORD_PAGE_HDR * hdr)1109 static inline u32 hdr_file_off(struct ntfs_log *log,
1110 struct RECORD_PAGE_HDR *hdr)
1111 {
1112 if (log->major_ver < 2)
1113 return le64_to_cpu(hdr->rhdr.lsn);
1114
1115 return le32_to_cpu(hdr->file_off);
1116 }
1117
base_lsn(struct ntfs_log * log,const struct RECORD_PAGE_HDR * hdr,u64 lsn)1118 static inline u64 base_lsn(struct ntfs_log *log,
1119 const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1120 {
1121 u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1122 u64 ret = (((h_lsn >> log->file_data_bits) +
1123 (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1124 << log->file_data_bits) +
1125 ((((is_log_record_end(hdr) &&
1126 h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ?
1127 le16_to_cpu(hdr->record_hdr.next_record_off) :
1128 log->page_size) +
1129 lsn) >>
1130 3);
1131
1132 return ret;
1133 }
1134
verify_client_lsn(struct ntfs_log * log,const struct CLIENT_REC * client,u64 lsn)1135 static inline bool verify_client_lsn(struct ntfs_log *log,
1136 const struct CLIENT_REC *client, u64 lsn)
1137 {
1138 return lsn >= le64_to_cpu(client->oldest_lsn) &&
1139 lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1140 }
1141
read_log_page(struct ntfs_log * log,u32 vbo,struct RECORD_PAGE_HDR ** buffer,bool * usa_error)1142 static int read_log_page(struct ntfs_log *log, u32 vbo,
1143 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1144 {
1145 int err = 0;
1146 u32 page_idx = vbo >> log->page_bits;
1147 u32 page_off = vbo & log->page_mask;
1148 u32 bytes = log->page_size - page_off;
1149 void *to_free = NULL;
1150 u32 page_vbo = page_idx << log->page_bits;
1151 struct RECORD_PAGE_HDR *page_buf;
1152 struct ntfs_inode *ni = log->ni;
1153 bool bBAAD;
1154
1155 if (vbo >= log->l_size)
1156 return -EINVAL;
1157
1158 if (!*buffer) {
1159 to_free = kmalloc(log->page_size, GFP_NOFS);
1160 if (!to_free)
1161 return -ENOMEM;
1162 *buffer = to_free;
1163 }
1164
1165 page_buf = page_off ? log->one_page_buf : *buffer;
1166
1167 err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1168 log->page_size, NULL);
1169 if (err)
1170 goto out;
1171
1172 if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1173 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1174
1175 if (page_buf != *buffer)
1176 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1177
1178 bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1179
1180 if (usa_error)
1181 *usa_error = bBAAD;
1182 /* Check that the update sequence array for this page is valid */
1183 /* If we don't allow errors, raise an error status */
1184 else if (bBAAD)
1185 err = -EINVAL;
1186
1187 out:
1188 if (err && to_free) {
1189 kfree(to_free);
1190 *buffer = NULL;
1191 }
1192
1193 return err;
1194 }
1195
1196 /*
1197 * log_read_rst
1198 *
1199 * It walks through 512 blocks of the file looking for a valid
1200 * restart page header. It will stop the first time we find a
1201 * valid page header.
1202 */
log_read_rst(struct ntfs_log * log,bool first,struct restart_info * info)1203 static int log_read_rst(struct ntfs_log *log, bool first,
1204 struct restart_info *info)
1205 {
1206 u32 skip;
1207 u64 vbo;
1208 struct RESTART_HDR *r_page = NULL;
1209
1210 /* Determine which restart area we are looking for. */
1211 if (first) {
1212 vbo = 0;
1213 skip = 512;
1214 } else {
1215 vbo = 512;
1216 skip = 0;
1217 }
1218
1219 /* Loop continuously until we succeed. */
1220 for (; vbo < log->l_size; vbo = 2 * vbo + skip, skip = 0) {
1221 bool usa_error;
1222 bool brst, bchk;
1223 struct RESTART_AREA *ra;
1224
1225 /* Read a page header at the current offset. */
1226 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1227 &usa_error)) {
1228 /* Ignore any errors. */
1229 continue;
1230 }
1231
1232 /* Exit if the signature is a log record page. */
1233 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1234 info->initialized = true;
1235 break;
1236 }
1237
1238 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1239 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1240
1241 if (!bchk && !brst) {
1242 if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1243 /*
1244 * Remember if the signature does not
1245 * indicate uninitialized file.
1246 */
1247 info->initialized = true;
1248 }
1249 continue;
1250 }
1251
1252 ra = NULL;
1253 info->valid_page = false;
1254 info->initialized = true;
1255 info->vbo = vbo;
1256
1257 /* Let's check the restart area if this is a valid page. */
1258 if (!is_rst_page_hdr_valid(vbo, r_page))
1259 goto check_result;
1260 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1261
1262 if (!is_rst_area_valid(r_page))
1263 goto check_result;
1264
1265 /*
1266 * We have a valid restart page header and restart area.
1267 * If chkdsk was run or we have no clients then we have
1268 * no more checking to do.
1269 */
1270 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1271 info->valid_page = true;
1272 goto check_result;
1273 }
1274
1275 if (is_client_area_valid(r_page, usa_error)) {
1276 info->valid_page = true;
1277 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1278 }
1279
1280 check_result:
1281 /*
1282 * If chkdsk was run then update the caller's
1283 * values and return.
1284 */
1285 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1286 info->chkdsk_was_run = true;
1287 info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1288 info->restart = true;
1289 info->r_page = r_page;
1290 return 0;
1291 }
1292
1293 /*
1294 * If we have a valid page then copy the values
1295 * we need from it.
1296 */
1297 if (info->valid_page) {
1298 info->last_lsn = le64_to_cpu(ra->current_lsn);
1299 info->restart = true;
1300 info->r_page = r_page;
1301 return 0;
1302 }
1303 }
1304
1305 kfree(r_page);
1306
1307 return 0;
1308 }
1309
1310 /*
1311 * Ilog_init_pg_hdr - Init @log from restart page header.
1312 */
log_init_pg_hdr(struct ntfs_log * log,u16 major_ver,u16 minor_ver)1313 static void log_init_pg_hdr(struct ntfs_log *log, u16 major_ver, u16 minor_ver)
1314 {
1315 log->sys_page_size = log->page_size;
1316 log->sys_page_mask = log->page_mask;
1317
1318 log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1319 if (!log->clst_per_page)
1320 log->clst_per_page = 1;
1321
1322 log->first_page = major_ver >= 2 ? 0x22 * log->page_size :
1323 4 * log->page_size;
1324 log->major_ver = major_ver;
1325 log->minor_ver = minor_ver;
1326 }
1327
1328 /*
1329 * log_create - Init @log in cases when we don't have a restart area to use.
1330 */
log_create(struct ntfs_log * log,const u64 last_lsn,u32 open_log_count,bool wrapped,bool use_multi_page)1331 static void log_create(struct ntfs_log *log, const u64 last_lsn,
1332 u32 open_log_count, bool wrapped, bool use_multi_page)
1333 {
1334 /* All file offsets must be quadword aligned. */
1335 log->file_data_bits = blksize_bits(log->l_size) - 3;
1336 log->seq_num_mask = (8 << log->file_data_bits) - 1;
1337 log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1338 log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1339 log->next_page = log->first_page;
1340 log->oldest_lsn = log->seq_num << log->file_data_bits;
1341 log->oldest_lsn_off = 0;
1342 log->last_lsn = log->oldest_lsn;
1343
1344 log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1345
1346 /* Set the correct flags for the I/O and indicate if we have wrapped. */
1347 if (wrapped)
1348 log->l_flags |= NTFSLOG_WRAPPED;
1349
1350 if (use_multi_page)
1351 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1352
1353 /* Compute the log page values. */
1354 log->data_off = ALIGN(
1355 offsetof(struct RECORD_PAGE_HDR, fixups) +
1356 sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1357 8);
1358 log->data_size = log->page_size - log->data_off;
1359 log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1360
1361 /* Remember the different page sizes for reservation. */
1362 log->reserved = log->data_size - log->record_header_len;
1363
1364 /* Compute the restart page values. */
1365 log->ra_off = ALIGN(
1366 offsetof(struct RESTART_HDR, fixups) +
1367 sizeof(short) *
1368 ((log->sys_page_size >> SECTOR_SHIFT) + 1),
1369 8);
1370 log->restart_size = log->sys_page_size - log->ra_off;
1371 log->ra_size = struct_size(log->ra, clients, 1);
1372 log->current_openlog_count = open_log_count;
1373
1374 /*
1375 * The total available log file space is the number of
1376 * log file pages times the space available on each page.
1377 */
1378 log->total_avail_pages = log->l_size - log->first_page;
1379 log->total_avail = log->total_avail_pages >> log->page_bits;
1380
1381 /*
1382 * We assume that we can't use the end of the page less than
1383 * the file record size.
1384 * Then we won't need to reserve more than the caller asks for.
1385 */
1386 log->max_current_avail = log->total_avail * log->reserved;
1387 log->total_avail = log->total_avail * log->data_size;
1388 log->current_avail = log->max_current_avail;
1389 }
1390
1391 /*
1392 * log_create_ra - Fill a restart area from the values stored in @log.
1393 */
log_create_ra(struct ntfs_log * log)1394 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1395 {
1396 struct CLIENT_REC *cr;
1397 struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1398
1399 if (!ra)
1400 return NULL;
1401
1402 ra->current_lsn = cpu_to_le64(log->last_lsn);
1403 ra->log_clients = cpu_to_le16(1);
1404 ra->client_idx[1] = LFS_NO_CLIENT_LE;
1405 if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1406 ra->flags = RESTART_SINGLE_PAGE_IO;
1407 ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1408 ra->ra_len = cpu_to_le16(log->ra_size);
1409 ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1410 ra->l_size = cpu_to_le64(log->l_size);
1411 ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1412 ra->data_off = cpu_to_le16(log->data_off);
1413 ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1414
1415 cr = ra->clients;
1416
1417 cr->prev_client = LFS_NO_CLIENT_LE;
1418 cr->next_client = LFS_NO_CLIENT_LE;
1419
1420 return ra;
1421 }
1422
final_log_off(struct ntfs_log * log,u64 lsn,u32 data_len)1423 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1424 {
1425 u32 base_vbo = lsn << 3;
1426 u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1427 u32 page_off = base_vbo & log->page_mask;
1428 u32 tail = log->page_size - page_off;
1429
1430 page_off -= 1;
1431
1432 /* Add the length of the header. */
1433 data_len += log->record_header_len;
1434
1435 /*
1436 * If this lsn is contained this log page we are done.
1437 * Otherwise we need to walk through several log pages.
1438 */
1439 if (data_len > tail) {
1440 data_len -= tail;
1441 tail = log->data_size;
1442 page_off = log->data_off - 1;
1443
1444 for (;;) {
1445 final_log_off = next_page_off(log, final_log_off);
1446
1447 /*
1448 * We are done if the remaining bytes
1449 * fit on this page.
1450 */
1451 if (data_len <= tail)
1452 break;
1453 data_len -= tail;
1454 }
1455 }
1456
1457 /*
1458 * We add the remaining bytes to our starting position on this page
1459 * and then add that value to the file offset of this log page.
1460 */
1461 return final_log_off + data_len + page_off;
1462 }
1463
next_log_lsn(struct ntfs_log * log,const struct LFS_RECORD_HDR * rh,u64 * lsn)1464 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1465 u64 *lsn)
1466 {
1467 int err;
1468 u64 this_lsn = le64_to_cpu(rh->this_lsn);
1469 u32 vbo = lsn_to_vbo(log, this_lsn);
1470 u32 end =
1471 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1472 u32 hdr_off = end & ~log->sys_page_mask;
1473 u64 seq = this_lsn >> log->file_data_bits;
1474 struct RECORD_PAGE_HDR *page = NULL;
1475
1476 /* Remember if we wrapped. */
1477 if (end <= vbo)
1478 seq += 1;
1479
1480 /* Log page header for this page. */
1481 err = read_log_page(log, hdr_off, &page, NULL);
1482 if (err)
1483 return err;
1484
1485 /*
1486 * If the lsn we were given was not the last lsn on this page,
1487 * then the starting offset for the next lsn is on a quad word
1488 * boundary following the last file offset for the current lsn.
1489 * Otherwise the file offset is the start of the data on the next page.
1490 */
1491 if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1492 /* If we wrapped, we need to increment the sequence number. */
1493 hdr_off = next_page_off(log, hdr_off);
1494 if (hdr_off == log->first_page)
1495 seq += 1;
1496
1497 vbo = hdr_off + log->data_off;
1498 } else {
1499 vbo = ALIGN(end, 8);
1500 }
1501
1502 /* Compute the lsn based on the file offset and the sequence count. */
1503 *lsn = vbo_to_lsn(log, vbo, seq);
1504
1505 /*
1506 * If this lsn is within the legal range for the file, we return true.
1507 * Otherwise false indicates that there are no more lsn's.
1508 */
1509 if (!is_lsn_in_file(log, *lsn))
1510 *lsn = 0;
1511
1512 kfree(page);
1513
1514 return 0;
1515 }
1516
1517 /*
1518 * current_log_avail - Calculate the number of bytes available for log records.
1519 */
current_log_avail(struct ntfs_log * log)1520 static u32 current_log_avail(struct ntfs_log *log)
1521 {
1522 u32 oldest_off, next_free_off, free_bytes;
1523
1524 if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1525 /* The entire file is available. */
1526 return log->max_current_avail;
1527 }
1528
1529 /*
1530 * If there is a last lsn the restart area then we know that we will
1531 * have to compute the free range.
1532 * If there is no oldest lsn then start at the first page of the file.
1533 */
1534 oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ?
1535 log->first_page :
1536 (log->oldest_lsn_off & ~log->sys_page_mask);
1537
1538 /*
1539 * We will use the next log page offset to compute the next free page.
1540 * If we are going to reuse this page go to the next page.
1541 * If we are at the first page then use the end of the file.
1542 */
1543 next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ?
1544 log->next_page + log->page_size :
1545 log->next_page == log->first_page ? log->l_size :
1546 log->next_page;
1547
1548 /* If the two offsets are the same then there is no available space. */
1549 if (oldest_off == next_free_off)
1550 return 0;
1551 /*
1552 * If the free offset follows the oldest offset then subtract
1553 * this range from the total available pages.
1554 */
1555 free_bytes =
1556 oldest_off < next_free_off ?
1557 log->total_avail_pages - (next_free_off - oldest_off) :
1558 oldest_off - next_free_off;
1559
1560 free_bytes >>= log->page_bits;
1561 return free_bytes * log->reserved;
1562 }
1563
check_subseq_log_page(struct ntfs_log * log,const struct RECORD_PAGE_HDR * rp,u32 vbo,u64 seq)1564 static bool check_subseq_log_page(struct ntfs_log *log,
1565 const struct RECORD_PAGE_HDR *rp, u32 vbo,
1566 u64 seq)
1567 {
1568 u64 lsn_seq;
1569 const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1570 u64 lsn = le64_to_cpu(rhdr->lsn);
1571
1572 if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1573 return false;
1574
1575 /*
1576 * If the last lsn on the page occurs was written after the page
1577 * that caused the original error then we have a fatal error.
1578 */
1579 lsn_seq = lsn >> log->file_data_bits;
1580
1581 /*
1582 * If the sequence number for the lsn the page is equal or greater
1583 * than lsn we expect, then this is a subsequent write.
1584 */
1585 return lsn_seq >= seq ||
1586 (lsn_seq == seq - 1 && log->first_page == vbo &&
1587 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1588 }
1589
1590 /*
1591 * last_log_lsn
1592 *
1593 * Walks through the log pages for a file, searching for the
1594 * last log page written to the file.
1595 */
last_log_lsn(struct ntfs_log * log)1596 static int last_log_lsn(struct ntfs_log *log)
1597 {
1598 int err;
1599 bool usa_error = false;
1600 bool replace_page = false;
1601 bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1602 bool wrapped_file, wrapped;
1603
1604 u32 page_cnt = 1, page_pos = 1;
1605 u32 page_off = 0, page_off1 = 0, saved_off = 0;
1606 u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1607 u32 first_file_off = 0, second_file_off = 0;
1608 u32 part_io_count = 0;
1609 u32 tails = 0;
1610 u32 this_off, curpage_off, nextpage_off, remain_pages;
1611
1612 u64 expected_seq, seq_base = 0, lsn_base = 0;
1613 u64 best_lsn, best_lsn1, best_lsn2;
1614 u64 lsn_cur, lsn1, lsn2;
1615 u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1616
1617 u16 cur_pos, best_page_pos;
1618
1619 struct RECORD_PAGE_HDR *page = NULL;
1620 struct RECORD_PAGE_HDR *tst_page = NULL;
1621 struct RECORD_PAGE_HDR *first_tail = NULL;
1622 struct RECORD_PAGE_HDR *second_tail = NULL;
1623 struct RECORD_PAGE_HDR *tail_page = NULL;
1624 struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1625 struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1626 struct RECORD_PAGE_HDR *page_bufs = NULL;
1627 struct RECORD_PAGE_HDR *best_page;
1628
1629 if (log->major_ver >= 2) {
1630 final_off = 0x02 * log->page_size;
1631 second_off = 0x12 * log->page_size;
1632
1633 // 0x10 == 0x12 - 0x2
1634 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1635 if (!page_bufs)
1636 return -ENOMEM;
1637 } else {
1638 second_off = log->first_page - log->page_size;
1639 final_off = second_off - log->page_size;
1640 }
1641
1642 next_tail:
1643 /* Read second tail page (at pos 3/0x12000). */
1644 if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1645 usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1646 kfree(second_tail);
1647 second_tail = NULL;
1648 second_file_off = 0;
1649 lsn2 = 0;
1650 } else {
1651 second_file_off = hdr_file_off(log, second_tail);
1652 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1653 }
1654
1655 /* Read first tail page (at pos 2/0x2000). */
1656 if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1657 usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1658 kfree(first_tail);
1659 first_tail = NULL;
1660 first_file_off = 0;
1661 lsn1 = 0;
1662 } else {
1663 first_file_off = hdr_file_off(log, first_tail);
1664 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1665 }
1666
1667 if (log->major_ver < 2) {
1668 int best_page;
1669
1670 first_tail_prev = first_tail;
1671 final_off_prev = first_file_off;
1672 second_tail_prev = second_tail;
1673 second_off_prev = second_file_off;
1674 tails = 1;
1675
1676 if (!first_tail && !second_tail)
1677 goto tail_read;
1678
1679 if (first_tail && second_tail)
1680 best_page = lsn1 < lsn2 ? 1 : 0;
1681 else if (first_tail)
1682 best_page = 0;
1683 else
1684 best_page = 1;
1685
1686 page_off = best_page ? second_file_off : first_file_off;
1687 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1688 goto tail_read;
1689 }
1690
1691 best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1692 best_lsn2 = second_tail ? base_lsn(log, second_tail, second_file_off) :
1693 0;
1694
1695 if (first_tail && second_tail) {
1696 if (best_lsn1 > best_lsn2) {
1697 best_lsn = best_lsn1;
1698 best_page = first_tail;
1699 this_off = first_file_off;
1700 } else {
1701 best_lsn = best_lsn2;
1702 best_page = second_tail;
1703 this_off = second_file_off;
1704 }
1705 } else if (first_tail) {
1706 best_lsn = best_lsn1;
1707 best_page = first_tail;
1708 this_off = first_file_off;
1709 } else if (second_tail) {
1710 best_lsn = best_lsn2;
1711 best_page = second_tail;
1712 this_off = second_file_off;
1713 } else {
1714 goto tail_read;
1715 }
1716
1717 best_page_pos = le16_to_cpu(best_page->page_pos);
1718
1719 if (!tails) {
1720 if (best_page_pos == page_pos) {
1721 seq_base = best_lsn >> log->file_data_bits;
1722 saved_off = page_off = le32_to_cpu(best_page->file_off);
1723 lsn_base = best_lsn;
1724
1725 memmove(page_bufs, best_page, log->page_size);
1726
1727 page_cnt = le16_to_cpu(best_page->page_count);
1728 if (page_cnt > 1)
1729 page_pos += 1;
1730
1731 tails = 1;
1732 }
1733 } else if (seq_base == (best_lsn >> log->file_data_bits) &&
1734 saved_off + log->page_size == this_off &&
1735 lsn_base < best_lsn &&
1736 (page_pos != page_cnt || best_page_pos == page_pos ||
1737 best_page_pos == 1) &&
1738 (page_pos >= page_cnt || best_page_pos == page_pos)) {
1739 u16 bppc = le16_to_cpu(best_page->page_count);
1740
1741 saved_off += log->page_size;
1742 lsn_base = best_lsn;
1743
1744 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1745 log->page_size);
1746
1747 tails += 1;
1748
1749 if (best_page_pos != bppc) {
1750 page_cnt = bppc;
1751 page_pos = best_page_pos;
1752
1753 if (page_cnt > 1)
1754 page_pos += 1;
1755 } else {
1756 page_pos = page_cnt = 1;
1757 }
1758 } else {
1759 kfree(first_tail);
1760 kfree(second_tail);
1761 goto tail_read;
1762 }
1763
1764 kfree(first_tail_prev);
1765 first_tail_prev = first_tail;
1766 final_off_prev = first_file_off;
1767 first_tail = NULL;
1768
1769 kfree(second_tail_prev);
1770 second_tail_prev = second_tail;
1771 second_off_prev = second_file_off;
1772 second_tail = NULL;
1773
1774 final_off += log->page_size;
1775 second_off += log->page_size;
1776
1777 if (tails < 0x10)
1778 goto next_tail;
1779 tail_read:
1780 first_tail = first_tail_prev;
1781 final_off = final_off_prev;
1782
1783 second_tail = second_tail_prev;
1784 second_off = second_off_prev;
1785
1786 page_cnt = page_pos = 1;
1787
1788 curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) :
1789 log->next_page;
1790
1791 wrapped_file =
1792 curpage_off == log->first_page &&
1793 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1794
1795 expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1796
1797 nextpage_off = curpage_off;
1798
1799 next_page:
1800 tail_page = NULL;
1801 /* Read the next log page. */
1802 err = read_log_page(log, curpage_off, &page, &usa_error);
1803
1804 /* Compute the next log page offset the file. */
1805 nextpage_off = next_page_off(log, curpage_off);
1806 wrapped = nextpage_off == log->first_page;
1807
1808 if (tails > 1) {
1809 struct RECORD_PAGE_HDR *cur_page =
1810 Add2Ptr(page_bufs, curpage_off - page_off);
1811
1812 if (curpage_off == saved_off) {
1813 tail_page = cur_page;
1814 goto use_tail_page;
1815 }
1816
1817 if (page_off > curpage_off || curpage_off >= saved_off)
1818 goto use_tail_page;
1819
1820 if (page_off1)
1821 goto use_cur_page;
1822
1823 if (!err && !usa_error &&
1824 page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1825 cur_page->rhdr.lsn == page->rhdr.lsn &&
1826 cur_page->record_hdr.next_record_off ==
1827 page->record_hdr.next_record_off &&
1828 ((page_pos == page_cnt &&
1829 le16_to_cpu(page->page_pos) == 1) ||
1830 (page_pos != page_cnt &&
1831 le16_to_cpu(page->page_pos) == page_pos + 1 &&
1832 le16_to_cpu(page->page_count) == page_cnt))) {
1833 cur_page = NULL;
1834 goto use_tail_page;
1835 }
1836
1837 page_off1 = page_off;
1838
1839 use_cur_page:
1840
1841 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1842
1843 if (last_ok_lsn !=
1844 le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1845 ((lsn_cur >> log->file_data_bits) +
1846 ((curpage_off <
1847 (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) ?
1848 1 :
1849 0)) != expected_seq) {
1850 goto check_tail;
1851 }
1852
1853 if (!is_log_record_end(cur_page)) {
1854 tail_page = NULL;
1855 last_ok_lsn = lsn_cur;
1856 goto next_page_1;
1857 }
1858
1859 log->seq_num = expected_seq;
1860 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1861 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1862 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1863
1864 if (log->record_header_len <=
1865 log->page_size -
1866 le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1867 log->l_flags |= NTFSLOG_REUSE_TAIL;
1868 log->next_page = curpage_off;
1869 } else {
1870 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1871 log->next_page = nextpage_off;
1872 }
1873
1874 if (wrapped_file)
1875 log->l_flags |= NTFSLOG_WRAPPED;
1876
1877 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1878 goto next_page_1;
1879 }
1880
1881 /*
1882 * If we are at the expected first page of a transfer check to see
1883 * if either tail copy is at this offset.
1884 * If this page is the last page of a transfer, check if we wrote
1885 * a subsequent tail copy.
1886 */
1887 if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1888 /*
1889 * Check if the offset matches either the first or second
1890 * tail copy. It is possible it will match both.
1891 */
1892 if (curpage_off == final_off)
1893 tail_page = first_tail;
1894
1895 /*
1896 * If we already matched on the first page then
1897 * check the ending lsn's.
1898 */
1899 if (curpage_off == second_off) {
1900 if (!tail_page ||
1901 (second_tail &&
1902 le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1903 le64_to_cpu(first_tail->record_hdr
1904 .last_end_lsn))) {
1905 tail_page = second_tail;
1906 }
1907 }
1908 }
1909
1910 use_tail_page:
1911 if (tail_page) {
1912 /* We have a candidate for a tail copy. */
1913 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1914
1915 if (last_ok_lsn < lsn_cur) {
1916 /*
1917 * If the sequence number is not expected,
1918 * then don't use the tail copy.
1919 */
1920 if (expected_seq != (lsn_cur >> log->file_data_bits))
1921 tail_page = NULL;
1922 } else if (last_ok_lsn > lsn_cur) {
1923 /*
1924 * If the last lsn is greater than the one on
1925 * this page then forget this tail.
1926 */
1927 tail_page = NULL;
1928 }
1929 }
1930
1931 /*
1932 *If we have an error on the current page,
1933 * we will break of this loop.
1934 */
1935 if (err || usa_error)
1936 goto check_tail;
1937
1938 /*
1939 * Done if the last lsn on this page doesn't match the previous known
1940 * last lsn or the sequence number is not expected.
1941 */
1942 lsn_cur = le64_to_cpu(page->rhdr.lsn);
1943 if (last_ok_lsn != lsn_cur &&
1944 expected_seq != (lsn_cur >> log->file_data_bits)) {
1945 goto check_tail;
1946 }
1947
1948 /*
1949 * Check that the page position and page count values are correct.
1950 * If this is the first page of a transfer the position must be 1
1951 * and the count will be unknown.
1952 */
1953 if (page_cnt == page_pos) {
1954 if (page->page_pos != cpu_to_le16(1) &&
1955 (!reuse_page || page->page_pos != page->page_count)) {
1956 /*
1957 * If the current page is the first page we are
1958 * looking at and we are reusing this page then
1959 * it can be either the first or last page of a
1960 * transfer. Otherwise it can only be the first.
1961 */
1962 goto check_tail;
1963 }
1964 } else if (le16_to_cpu(page->page_count) != page_cnt ||
1965 le16_to_cpu(page->page_pos) != page_pos + 1) {
1966 /*
1967 * The page position better be 1 more than the last page
1968 * position and the page count better match.
1969 */
1970 goto check_tail;
1971 }
1972
1973 /*
1974 * We have a valid page the file and may have a valid page
1975 * the tail copy area.
1976 * If the tail page was written after the page the file then
1977 * break of the loop.
1978 */
1979 if (tail_page &&
1980 le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1981 /* Remember if we will replace the page. */
1982 replace_page = true;
1983 goto check_tail;
1984 }
1985
1986 tail_page = NULL;
1987
1988 if (is_log_record_end(page)) {
1989 /*
1990 * Since we have read this page we know the sequence number
1991 * is the same as our expected value.
1992 */
1993 log->seq_num = expected_seq;
1994 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
1995 log->ra->current_lsn = page->record_hdr.last_end_lsn;
1996 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1997
1998 /*
1999 * If there is room on this page for another header then
2000 * remember we want to reuse the page.
2001 */
2002 if (log->record_header_len <=
2003 log->page_size -
2004 le16_to_cpu(page->record_hdr.next_record_off)) {
2005 log->l_flags |= NTFSLOG_REUSE_TAIL;
2006 log->next_page = curpage_off;
2007 } else {
2008 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2009 log->next_page = nextpage_off;
2010 }
2011
2012 /* Remember if we wrapped the log file. */
2013 if (wrapped_file)
2014 log->l_flags |= NTFSLOG_WRAPPED;
2015 }
2016
2017 /*
2018 * Remember the last page count and position.
2019 * Also remember the last known lsn.
2020 */
2021 page_cnt = le16_to_cpu(page->page_count);
2022 page_pos = le16_to_cpu(page->page_pos);
2023 last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2024
2025 next_page_1:
2026
2027 if (wrapped) {
2028 expected_seq += 1;
2029 wrapped_file = 1;
2030 }
2031
2032 curpage_off = nextpage_off;
2033 kfree(page);
2034 page = NULL;
2035 reuse_page = 0;
2036 goto next_page;
2037
2038 check_tail:
2039 if (tail_page) {
2040 log->seq_num = expected_seq;
2041 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2042 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2043 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2044
2045 if (log->page_size -
2046 le16_to_cpu(
2047 tail_page->record_hdr.next_record_off) >=
2048 log->record_header_len) {
2049 log->l_flags |= NTFSLOG_REUSE_TAIL;
2050 log->next_page = curpage_off;
2051 } else {
2052 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2053 log->next_page = nextpage_off;
2054 }
2055
2056 if (wrapped)
2057 log->l_flags |= NTFSLOG_WRAPPED;
2058 }
2059
2060 /* Remember that the partial IO will start at the next page. */
2061 second_off = nextpage_off;
2062
2063 /*
2064 * If the next page is the first page of the file then update
2065 * the sequence number for log records which begon the next page.
2066 */
2067 if (wrapped)
2068 expected_seq += 1;
2069
2070 /*
2071 * If we have a tail copy or are performing single page I/O we can
2072 * immediately look at the next page.
2073 */
2074 if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2075 page_cnt = 2;
2076 page_pos = 1;
2077 goto check_valid;
2078 }
2079
2080 if (page_pos != page_cnt)
2081 goto check_valid;
2082 /*
2083 * If the next page causes us to wrap to the beginning of the log
2084 * file then we know which page to check next.
2085 */
2086 if (wrapped) {
2087 page_cnt = 2;
2088 page_pos = 1;
2089 goto check_valid;
2090 }
2091
2092 cur_pos = 2;
2093
2094 next_test_page:
2095 kfree(tst_page);
2096 tst_page = NULL;
2097
2098 /* Walk through the file, reading log pages. */
2099 err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2100
2101 /*
2102 * If we get a USA error then assume that we correctly found
2103 * the end of the original transfer.
2104 */
2105 if (usa_error)
2106 goto file_is_valid;
2107
2108 /*
2109 * If we were able to read the page, we examine it to see if it
2110 * is the same or different Io block.
2111 */
2112 if (err)
2113 goto next_test_page_1;
2114
2115 if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2116 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2117 page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2118 page_pos = le16_to_cpu(tst_page->page_pos);
2119 goto check_valid;
2120 } else {
2121 goto file_is_valid;
2122 }
2123
2124 next_test_page_1:
2125
2126 nextpage_off = next_page_off(log, curpage_off);
2127 wrapped = nextpage_off == log->first_page;
2128
2129 if (wrapped) {
2130 expected_seq += 1;
2131 page_cnt = 2;
2132 page_pos = 1;
2133 }
2134
2135 cur_pos += 1;
2136 part_io_count += 1;
2137 if (!wrapped)
2138 goto next_test_page;
2139
2140 check_valid:
2141 /* Skip over the remaining pages this transfer. */
2142 remain_pages = page_cnt - page_pos - 1;
2143 part_io_count += remain_pages;
2144
2145 while (remain_pages--) {
2146 nextpage_off = next_page_off(log, curpage_off);
2147 wrapped = nextpage_off == log->first_page;
2148
2149 if (wrapped)
2150 expected_seq += 1;
2151 }
2152
2153 /* Call our routine to check this log page. */
2154 kfree(tst_page);
2155 tst_page = NULL;
2156
2157 err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2158 if (!err && !usa_error &&
2159 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2160 err = -EINVAL;
2161 goto out;
2162 }
2163
2164 file_is_valid:
2165
2166 /* We have a valid file. */
2167 if (page_off1 || tail_page) {
2168 struct RECORD_PAGE_HDR *tmp_page;
2169
2170 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2171 err = -EROFS;
2172 goto out;
2173 }
2174
2175 if (page_off1) {
2176 tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2177 tails -= (page_off1 - page_off) / log->page_size;
2178 if (!tail_page)
2179 tails -= 1;
2180 } else {
2181 tmp_page = tail_page;
2182 tails = 1;
2183 }
2184
2185 while (tails--) {
2186 u64 off = hdr_file_off(log, tmp_page);
2187
2188 if (!page) {
2189 page = kmalloc(log->page_size, GFP_NOFS);
2190 if (!page) {
2191 err = -ENOMEM;
2192 goto out;
2193 }
2194 }
2195
2196 /*
2197 * Correct page and copy the data from this page
2198 * into it and flush it to disk.
2199 */
2200 memcpy(page, tmp_page, log->page_size);
2201
2202 /* Fill last flushed lsn value flush the page. */
2203 if (log->major_ver < 2)
2204 page->rhdr.lsn = page->record_hdr.last_end_lsn;
2205 else
2206 page->file_off = 0;
2207
2208 page->page_pos = page->page_count = cpu_to_le16(1);
2209
2210 ntfs_fix_pre_write(&page->rhdr, log->page_size);
2211
2212 err = ntfs_sb_write_run(log->ni->mi.sbi,
2213 &log->ni->file.run, off, page,
2214 log->page_size, 0);
2215
2216 if (err)
2217 goto out;
2218
2219 if (part_io_count && second_off == off) {
2220 second_off += log->page_size;
2221 part_io_count -= 1;
2222 }
2223
2224 tmp_page = Add2Ptr(tmp_page, log->page_size);
2225 }
2226 }
2227
2228 if (part_io_count) {
2229 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2230 err = -EROFS;
2231 goto out;
2232 }
2233 }
2234
2235 out:
2236 kfree(second_tail);
2237 kfree(first_tail);
2238 kfree(page);
2239 kfree(tst_page);
2240 kfree(page_bufs);
2241
2242 return err;
2243 }
2244
2245 /*
2246 * read_log_rec_buf - Copy a log record from the file to a buffer.
2247 *
2248 * The log record may span several log pages and may even wrap the file.
2249 */
read_log_rec_buf(struct ntfs_log * log,const struct LFS_RECORD_HDR * rh,void * buffer)2250 static int read_log_rec_buf(struct ntfs_log *log,
2251 const struct LFS_RECORD_HDR *rh, void *buffer)
2252 {
2253 int err;
2254 struct RECORD_PAGE_HDR *ph = NULL;
2255 u64 lsn = le64_to_cpu(rh->this_lsn);
2256 u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2257 u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2258 u32 data_len = le32_to_cpu(rh->client_data_len);
2259
2260 /*
2261 * While there are more bytes to transfer,
2262 * we continue to attempt to perform the read.
2263 */
2264 for (;;) {
2265 bool usa_error;
2266 u32 tail = log->page_size - off;
2267
2268 if (tail >= data_len)
2269 tail = data_len;
2270
2271 data_len -= tail;
2272
2273 err = read_log_page(log, vbo, &ph, &usa_error);
2274 if (err)
2275 goto out;
2276
2277 /*
2278 * The last lsn on this page better be greater or equal
2279 * to the lsn we are copying.
2280 */
2281 if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2282 err = -EINVAL;
2283 goto out;
2284 }
2285
2286 memcpy(buffer, Add2Ptr(ph, off), tail);
2287
2288 /* If there are no more bytes to transfer, we exit the loop. */
2289 if (!data_len) {
2290 if (!is_log_record_end(ph) ||
2291 lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2292 err = -EINVAL;
2293 goto out;
2294 }
2295 break;
2296 }
2297
2298 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2299 lsn > le64_to_cpu(ph->rhdr.lsn)) {
2300 err = -EINVAL;
2301 goto out;
2302 }
2303
2304 vbo = next_page_off(log, vbo);
2305 off = log->data_off;
2306
2307 /*
2308 * Adjust our pointer the user's buffer to transfer
2309 * the next block to.
2310 */
2311 buffer = Add2Ptr(buffer, tail);
2312 }
2313
2314 out:
2315 kfree(ph);
2316 return err;
2317 }
2318
read_rst_area(struct ntfs_log * log,struct NTFS_RESTART ** rst_,u64 * lsn)2319 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2320 u64 *lsn)
2321 {
2322 int err;
2323 struct LFS_RECORD_HDR *rh = NULL;
2324 const struct CLIENT_REC *cr =
2325 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2326 u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2327 u32 len;
2328 struct NTFS_RESTART *rst;
2329
2330 *lsn = 0;
2331 *rst_ = NULL;
2332
2333 /* If the client doesn't have a restart area, go ahead and exit now. */
2334 if (!lsnc)
2335 return 0;
2336
2337 err = read_log_page(log, lsn_to_vbo(log, lsnc),
2338 (struct RECORD_PAGE_HDR **)&rh, NULL);
2339 if (err)
2340 return err;
2341
2342 rst = NULL;
2343 lsnr = le64_to_cpu(rh->this_lsn);
2344
2345 if (lsnc != lsnr) {
2346 /* If the lsn values don't match, then the disk is corrupt. */
2347 err = -EINVAL;
2348 goto out;
2349 }
2350
2351 *lsn = lsnr;
2352 len = le32_to_cpu(rh->client_data_len);
2353
2354 if (!len) {
2355 err = 0;
2356 goto out;
2357 }
2358
2359 if (len < sizeof(struct NTFS_RESTART)) {
2360 err = -EINVAL;
2361 goto out;
2362 }
2363
2364 rst = kmalloc(len, GFP_NOFS);
2365 if (!rst) {
2366 err = -ENOMEM;
2367 goto out;
2368 }
2369
2370 /* Copy the data into the 'rst' buffer. */
2371 err = read_log_rec_buf(log, rh, rst);
2372 if (err)
2373 goto out;
2374
2375 *rst_ = rst;
2376 rst = NULL;
2377
2378 out:
2379 kfree(rh);
2380 kfree(rst);
2381
2382 return err;
2383 }
2384
find_log_rec(struct ntfs_log * log,u64 lsn,struct lcb * lcb)2385 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2386 {
2387 int err;
2388 struct LFS_RECORD_HDR *rh = lcb->lrh;
2389 u32 rec_len, len;
2390
2391 /* Read the record header for this lsn. */
2392 if (!rh) {
2393 err = read_log_page(log, lsn_to_vbo(log, lsn),
2394 (struct RECORD_PAGE_HDR **)&rh, NULL);
2395
2396 lcb->lrh = rh;
2397 if (err)
2398 return err;
2399 }
2400
2401 /*
2402 * If the lsn the log record doesn't match the desired
2403 * lsn then the disk is corrupt.
2404 */
2405 if (lsn != le64_to_cpu(rh->this_lsn))
2406 return -EINVAL;
2407
2408 len = le32_to_cpu(rh->client_data_len);
2409
2410 /*
2411 * Check that the length field isn't greater than the total
2412 * available space the log file.
2413 */
2414 rec_len = len + log->record_header_len;
2415 if (rec_len >= log->total_avail)
2416 return -EINVAL;
2417
2418 /*
2419 * If the entire log record is on this log page,
2420 * put a pointer to the log record the context block.
2421 */
2422 if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2423 void *lr = kmalloc(len, GFP_NOFS);
2424
2425 if (!lr)
2426 return -ENOMEM;
2427
2428 lcb->log_rec = lr;
2429 lcb->alloc = true;
2430
2431 /* Copy the data into the buffer returned. */
2432 err = read_log_rec_buf(log, rh, lr);
2433 if (err)
2434 return err;
2435 } else {
2436 /* If beyond the end of the current page -> an error. */
2437 u32 page_off = lsn_to_page_off(log, lsn);
2438
2439 if (page_off + len + log->record_header_len > log->page_size)
2440 return -EINVAL;
2441
2442 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2443 lcb->alloc = false;
2444 }
2445
2446 return 0;
2447 }
2448
2449 /*
2450 * read_log_rec_lcb - Init the query operation.
2451 */
read_log_rec_lcb(struct ntfs_log * log,u64 lsn,u32 ctx_mode,struct lcb ** lcb_)2452 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2453 struct lcb **lcb_)
2454 {
2455 int err;
2456 const struct CLIENT_REC *cr;
2457 struct lcb *lcb;
2458
2459 switch (ctx_mode) {
2460 case lcb_ctx_undo_next:
2461 case lcb_ctx_prev:
2462 case lcb_ctx_next:
2463 break;
2464 default:
2465 return -EINVAL;
2466 }
2467
2468 /* Check that the given lsn is the legal range for this client. */
2469 cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2470
2471 if (!verify_client_lsn(log, cr, lsn))
2472 return -EINVAL;
2473
2474 lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
2475 if (!lcb)
2476 return -ENOMEM;
2477 lcb->client = log->client_id;
2478 lcb->ctx_mode = ctx_mode;
2479
2480 /* Find the log record indicated by the given lsn. */
2481 err = find_log_rec(log, lsn, lcb);
2482 if (err)
2483 goto out;
2484
2485 *lcb_ = lcb;
2486 return 0;
2487
2488 out:
2489 lcb_put(lcb);
2490 *lcb_ = NULL;
2491 return err;
2492 }
2493
2494 /*
2495 * find_client_next_lsn
2496 *
2497 * Attempt to find the next lsn to return to a client based on the context mode.
2498 */
find_client_next_lsn(struct ntfs_log * log,struct lcb * lcb,u64 * lsn)2499 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2500 {
2501 int err;
2502 u64 next_lsn;
2503 struct LFS_RECORD_HDR *hdr;
2504
2505 hdr = lcb->lrh;
2506 *lsn = 0;
2507
2508 if (lcb_ctx_next != lcb->ctx_mode)
2509 goto check_undo_next;
2510
2511 /* Loop as long as another lsn can be found. */
2512 for (;;) {
2513 u64 current_lsn;
2514
2515 err = next_log_lsn(log, hdr, ¤t_lsn);
2516 if (err)
2517 goto out;
2518
2519 if (!current_lsn)
2520 break;
2521
2522 if (hdr != lcb->lrh)
2523 kfree(hdr);
2524
2525 hdr = NULL;
2526 err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2527 (struct RECORD_PAGE_HDR **)&hdr, NULL);
2528 if (err)
2529 goto out;
2530
2531 if (memcmp(&hdr->client, &lcb->client,
2532 sizeof(struct CLIENT_ID))) {
2533 /*err = -EINVAL; */
2534 } else if (LfsClientRecord == hdr->record_type) {
2535 kfree(lcb->lrh);
2536 lcb->lrh = hdr;
2537 *lsn = current_lsn;
2538 return 0;
2539 }
2540 }
2541
2542 out:
2543 if (hdr != lcb->lrh)
2544 kfree(hdr);
2545 return err;
2546
2547 check_undo_next:
2548 if (lcb_ctx_undo_next == lcb->ctx_mode)
2549 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2550 else if (lcb_ctx_prev == lcb->ctx_mode)
2551 next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2552 else
2553 return 0;
2554
2555 if (!next_lsn)
2556 return 0;
2557
2558 if (!verify_client_lsn(
2559 log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2560 next_lsn))
2561 return 0;
2562
2563 hdr = NULL;
2564 err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2565 (struct RECORD_PAGE_HDR **)&hdr, NULL);
2566 if (err)
2567 return err;
2568 kfree(lcb->lrh);
2569 lcb->lrh = hdr;
2570
2571 *lsn = next_lsn;
2572
2573 return 0;
2574 }
2575
read_next_log_rec(struct ntfs_log * log,struct lcb * lcb,u64 * lsn)2576 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2577 {
2578 int err;
2579
2580 err = find_client_next_lsn(log, lcb, lsn);
2581 if (err)
2582 return err;
2583
2584 if (!*lsn)
2585 return 0;
2586
2587 if (lcb->alloc)
2588 kfree(lcb->log_rec);
2589
2590 lcb->log_rec = NULL;
2591 lcb->alloc = false;
2592 kfree(lcb->lrh);
2593 lcb->lrh = NULL;
2594
2595 return find_log_rec(log, *lsn, lcb);
2596 }
2597
check_index_header(const struct INDEX_HDR * hdr,size_t bytes)2598 bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2599 {
2600 __le16 mask;
2601 u32 min_de, de_off, used, total;
2602 const struct NTFS_DE *e;
2603
2604 if (hdr_has_subnode(hdr)) {
2605 min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2606 mask = NTFS_IE_HAS_SUBNODES;
2607 } else {
2608 min_de = sizeof(struct NTFS_DE);
2609 mask = 0;
2610 }
2611
2612 de_off = le32_to_cpu(hdr->de_off);
2613 used = le32_to_cpu(hdr->used);
2614 total = le32_to_cpu(hdr->total);
2615
2616 if (de_off > bytes - min_de || used > bytes || total > bytes ||
2617 de_off + min_de > used || used > total) {
2618 return false;
2619 }
2620
2621 e = Add2Ptr(hdr, de_off);
2622 for (;;) {
2623 u16 esize = le16_to_cpu(e->size);
2624 struct NTFS_DE *next = Add2Ptr(e, esize);
2625
2626 if (esize < min_de || PtrOffset(hdr, next) > used ||
2627 (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2628 return false;
2629 }
2630
2631 if (de_is_last(e))
2632 break;
2633
2634 e = next;
2635 }
2636
2637 return true;
2638 }
2639
check_index_buffer(const struct INDEX_BUFFER * ib,u32 bytes)2640 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2641 {
2642 u16 fo;
2643 const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2644
2645 if (r->sign != NTFS_INDX_SIGNATURE)
2646 return false;
2647
2648 fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2649
2650 if (le16_to_cpu(r->fix_off) > fo)
2651 return false;
2652
2653 if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2654 return false;
2655
2656 return check_index_header(&ib->ihdr,
2657 bytes - offsetof(struct INDEX_BUFFER, ihdr));
2658 }
2659
check_index_root(const struct ATTRIB * attr,struct ntfs_sb_info * sbi)2660 static inline bool check_index_root(const struct ATTRIB *attr,
2661 struct ntfs_sb_info *sbi)
2662 {
2663 bool ret;
2664 const struct INDEX_ROOT *root = resident_data(attr);
2665 u8 index_bits = le32_to_cpu(root->index_block_size) >=
2666 sbi->cluster_size ?
2667 sbi->cluster_bits :
2668 SECTOR_SHIFT;
2669 u8 block_clst = root->index_block_clst;
2670
2671 if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2672 (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2673 (root->type == ATTR_NAME &&
2674 root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2675 (le32_to_cpu(root->index_block_size) !=
2676 (block_clst << index_bits)) ||
2677 (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2678 block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2679 block_clst != 0x40 && block_clst != 0x80)) {
2680 return false;
2681 }
2682
2683 ret = check_index_header(&root->ihdr,
2684 le32_to_cpu(attr->res.data_size) -
2685 offsetof(struct INDEX_ROOT, ihdr));
2686 return ret;
2687 }
2688
check_attr(const struct MFT_REC * rec,const struct ATTRIB * attr,struct ntfs_sb_info * sbi)2689 static inline bool check_attr(const struct MFT_REC *rec,
2690 const struct ATTRIB *attr,
2691 struct ntfs_sb_info *sbi)
2692 {
2693 u32 asize = le32_to_cpu(attr->size);
2694 u32 rsize = 0;
2695 u64 dsize, svcn, evcn;
2696 u16 run_off;
2697
2698 /* Check the fixed part of the attribute record header. */
2699 if (asize >= sbi->record_size ||
2700 asize + PtrOffset(rec, attr) >= sbi->record_size ||
2701 (attr->name_len &&
2702 le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2703 asize)) {
2704 return false;
2705 }
2706
2707 /* Check the attribute fields. */
2708 switch (attr->non_res) {
2709 case 0:
2710 rsize = le32_to_cpu(attr->res.data_size);
2711 if (rsize >= asize ||
2712 le16_to_cpu(attr->res.data_off) + rsize > asize) {
2713 return false;
2714 }
2715 break;
2716
2717 case 1:
2718 dsize = le64_to_cpu(attr->nres.data_size);
2719 svcn = le64_to_cpu(attr->nres.svcn);
2720 evcn = le64_to_cpu(attr->nres.evcn);
2721 run_off = le16_to_cpu(attr->nres.run_off);
2722
2723 if (svcn > evcn + 1 || run_off >= asize ||
2724 le64_to_cpu(attr->nres.valid_size) > dsize ||
2725 dsize > le64_to_cpu(attr->nres.alloc_size)) {
2726 return false;
2727 }
2728
2729 if (run_off > asize)
2730 return false;
2731
2732 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2733 Add2Ptr(attr, run_off), asize - run_off) < 0) {
2734 return false;
2735 }
2736
2737 return true;
2738
2739 default:
2740 return false;
2741 }
2742
2743 switch (attr->type) {
2744 case ATTR_NAME:
2745 if (fname_full_size(Add2Ptr(
2746 attr, le16_to_cpu(attr->res.data_off))) > asize) {
2747 return false;
2748 }
2749 break;
2750
2751 case ATTR_ROOT:
2752 return check_index_root(attr, sbi);
2753
2754 case ATTR_STD:
2755 if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2756 rsize != sizeof(struct ATTR_STD_INFO)) {
2757 return false;
2758 }
2759 break;
2760
2761 case ATTR_LIST:
2762 case ATTR_ID:
2763 case ATTR_SECURE:
2764 case ATTR_LABEL:
2765 case ATTR_VOL_INFO:
2766 case ATTR_DATA:
2767 case ATTR_ALLOC:
2768 case ATTR_BITMAP:
2769 case ATTR_REPARSE:
2770 case ATTR_EA_INFO:
2771 case ATTR_EA:
2772 case ATTR_PROPERTYSET:
2773 case ATTR_LOGGED_UTILITY_STREAM:
2774 break;
2775
2776 default:
2777 return false;
2778 }
2779
2780 return true;
2781 }
2782
check_file_record(const struct MFT_REC * rec,const struct MFT_REC * rec2,struct ntfs_sb_info * sbi)2783 static inline bool check_file_record(const struct MFT_REC *rec,
2784 const struct MFT_REC *rec2,
2785 struct ntfs_sb_info *sbi)
2786 {
2787 const struct ATTRIB *attr;
2788 u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2789 u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2790 u16 ao = le16_to_cpu(rec->attr_off);
2791 u32 rs = sbi->record_size;
2792
2793 /* Check the file record header for consistency. */
2794 if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2795 fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2796 (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2797 ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2798 le32_to_cpu(rec->total) != rs) {
2799 return false;
2800 }
2801
2802 /* Loop to check all of the attributes. */
2803 for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2804 attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2805 if (check_attr(rec, attr, sbi))
2806 continue;
2807 return false;
2808 }
2809
2810 return true;
2811 }
2812
check_lsn(const struct NTFS_RECORD_HEADER * hdr,const u64 * rlsn)2813 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2814 const u64 *rlsn)
2815 {
2816 u64 lsn;
2817
2818 if (!rlsn)
2819 return true;
2820
2821 lsn = le64_to_cpu(hdr->lsn);
2822
2823 if (hdr->sign == NTFS_HOLE_SIGNATURE)
2824 return false;
2825
2826 if (*rlsn > lsn)
2827 return true;
2828
2829 return false;
2830 }
2831
check_if_attr(const struct MFT_REC * rec,const struct LOG_REC_HDR * lrh)2832 static inline bool check_if_attr(const struct MFT_REC *rec,
2833 const struct LOG_REC_HDR *lrh)
2834 {
2835 u16 ro = le16_to_cpu(lrh->record_off);
2836 u16 o = le16_to_cpu(rec->attr_off);
2837 const struct ATTRIB *attr = Add2Ptr(rec, o);
2838
2839 while (o < ro) {
2840 u32 asize;
2841
2842 if (attr->type == ATTR_END)
2843 break;
2844
2845 asize = le32_to_cpu(attr->size);
2846 if (!asize)
2847 break;
2848
2849 o += asize;
2850 attr = Add2Ptr(attr, asize);
2851 }
2852
2853 return o == ro;
2854 }
2855
check_if_index_root(const struct MFT_REC * rec,const struct LOG_REC_HDR * lrh)2856 static inline bool check_if_index_root(const struct MFT_REC *rec,
2857 const struct LOG_REC_HDR *lrh)
2858 {
2859 u16 ro = le16_to_cpu(lrh->record_off);
2860 u16 o = le16_to_cpu(rec->attr_off);
2861 const struct ATTRIB *attr = Add2Ptr(rec, o);
2862
2863 while (o < ro) {
2864 u32 asize;
2865
2866 if (attr->type == ATTR_END)
2867 break;
2868
2869 asize = le32_to_cpu(attr->size);
2870 if (!asize)
2871 break;
2872
2873 o += asize;
2874 attr = Add2Ptr(attr, asize);
2875 }
2876
2877 return o == ro && attr->type == ATTR_ROOT;
2878 }
2879
check_if_root_index(const struct ATTRIB * attr,const struct INDEX_HDR * hdr,const struct LOG_REC_HDR * lrh)2880 static inline bool check_if_root_index(const struct ATTRIB *attr,
2881 const struct INDEX_HDR *hdr,
2882 const struct LOG_REC_HDR *lrh)
2883 {
2884 u16 ao = le16_to_cpu(lrh->attr_off);
2885 u32 de_off = le32_to_cpu(hdr->de_off);
2886 u32 o = PtrOffset(attr, hdr) + de_off;
2887 const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2888 u32 asize = le32_to_cpu(attr->size);
2889
2890 while (o < ao) {
2891 u16 esize;
2892
2893 if (o >= asize)
2894 break;
2895
2896 esize = le16_to_cpu(e->size);
2897 if (!esize)
2898 break;
2899
2900 o += esize;
2901 e = Add2Ptr(e, esize);
2902 }
2903
2904 return o == ao;
2905 }
2906
check_if_alloc_index(const struct INDEX_HDR * hdr,u32 attr_off)2907 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2908 u32 attr_off)
2909 {
2910 u32 de_off = le32_to_cpu(hdr->de_off);
2911 u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2912 const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2913 u32 used = le32_to_cpu(hdr->used);
2914
2915 while (o < attr_off) {
2916 u16 esize;
2917
2918 if (de_off >= used)
2919 break;
2920
2921 esize = le16_to_cpu(e->size);
2922 if (!esize)
2923 break;
2924
2925 o += esize;
2926 de_off += esize;
2927 e = Add2Ptr(e, esize);
2928 }
2929
2930 return o == attr_off;
2931 }
2932
change_attr_size(struct MFT_REC * rec,struct ATTRIB * attr,u32 nsize)2933 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2934 u32 nsize)
2935 {
2936 u32 asize = le32_to_cpu(attr->size);
2937 int dsize = nsize - asize;
2938 u8 *next = Add2Ptr(attr, asize);
2939 u32 used = le32_to_cpu(rec->used);
2940
2941 memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2942
2943 rec->used = cpu_to_le32(used + dsize);
2944 attr->size = cpu_to_le32(nsize);
2945 }
2946
2947 struct OpenAttr {
2948 struct ATTRIB *attr;
2949 struct runs_tree *run1;
2950 struct runs_tree run0;
2951 struct ntfs_inode *ni;
2952 // CLST rno;
2953 };
2954
2955 /*
2956 * cmp_type_and_name
2957 *
2958 * Return: 0 if 'attr' has the same type and name.
2959 */
cmp_type_and_name(const struct ATTRIB * a1,const struct ATTRIB * a2)2960 static inline int cmp_type_and_name(const struct ATTRIB *a1,
2961 const struct ATTRIB *a2)
2962 {
2963 return a1->type != a2->type || a1->name_len != a2->name_len ||
2964 (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2965 a1->name_len * sizeof(short)));
2966 }
2967
find_loaded_attr(struct ntfs_log * log,const struct ATTRIB * attr,CLST rno)2968 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2969 const struct ATTRIB *attr, CLST rno)
2970 {
2971 struct OPEN_ATTR_ENRTY *oe = NULL;
2972
2973 while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2974 struct OpenAttr *op_attr;
2975
2976 if (ino_get(&oe->ref) != rno)
2977 continue;
2978
2979 op_attr = (struct OpenAttr *)oe->ptr;
2980 if (!cmp_type_and_name(op_attr->attr, attr))
2981 return op_attr;
2982 }
2983 return NULL;
2984 }
2985
attr_create_nonres_log(struct ntfs_sb_info * sbi,enum ATTR_TYPE type,u64 size,const u16 * name,size_t name_len,__le16 flags)2986 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2987 enum ATTR_TYPE type, u64 size,
2988 const u16 *name, size_t name_len,
2989 __le16 flags)
2990 {
2991 struct ATTRIB *attr;
2992 u32 name_size = ALIGN(name_len * sizeof(short), 8);
2993 bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2994 u32 asize = name_size +
2995 (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2996
2997 attr = kzalloc(asize, GFP_NOFS);
2998 if (!attr)
2999 return NULL;
3000
3001 attr->type = type;
3002 attr->size = cpu_to_le32(asize);
3003 attr->flags = flags;
3004 attr->non_res = 1;
3005 attr->name_len = name_len;
3006
3007 attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
3008 attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
3009 attr->nres.data_size = cpu_to_le64(size);
3010 attr->nres.valid_size = attr->nres.data_size;
3011 if (is_ext) {
3012 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
3013 if (is_attr_compressed(attr))
3014 attr->nres.c_unit = NTFS_LZNT_CUNIT;
3015
3016 attr->nres.run_off =
3017 cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
3018 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
3019 name_len * sizeof(short));
3020 } else {
3021 attr->name_off = SIZEOF_NONRESIDENT_LE;
3022 attr->nres.run_off =
3023 cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3024 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3025 name_len * sizeof(short));
3026 }
3027
3028 return attr;
3029 }
3030
3031 /*
3032 * do_action - Common routine for the Redo and Undo Passes.
3033 * @rlsn: If it is NULL then undo.
3034 */
do_action(struct ntfs_log * log,struct OPEN_ATTR_ENRTY * oe,const struct LOG_REC_HDR * lrh,u32 op,void * data,u32 dlen,u32 rec_len,const u64 * rlsn)3035 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3036 const struct LOG_REC_HDR *lrh, u32 op, void *data,
3037 u32 dlen, u32 rec_len, const u64 *rlsn)
3038 {
3039 int err = 0;
3040 struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3041 struct inode *inode = NULL, *inode_parent;
3042 struct mft_inode *mi = NULL, *mi2_child = NULL;
3043 CLST rno = 0, rno_base = 0;
3044 struct INDEX_BUFFER *ib = NULL;
3045 struct MFT_REC *rec = NULL;
3046 struct ATTRIB *attr = NULL, *attr2;
3047 struct INDEX_HDR *hdr;
3048 struct INDEX_ROOT *root;
3049 struct NTFS_DE *e, *e1, *e2;
3050 struct NEW_ATTRIBUTE_SIZES *new_sz;
3051 struct ATTR_FILE_NAME *fname;
3052 struct OpenAttr *oa, *oa2;
3053 u32 nsize, t32, asize, used, esize, off, bits;
3054 u16 id, id2;
3055 u32 record_size = sbi->record_size;
3056 u64 t64;
3057 u16 roff = le16_to_cpu(lrh->record_off);
3058 u16 aoff = le16_to_cpu(lrh->attr_off);
3059 u64 lco = 0;
3060 u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3061 u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3062 u64 vbo = cbo + tvo;
3063 void *buffer_le = NULL;
3064 u32 bytes = 0;
3065 bool a_dirty = false;
3066 u16 data_off;
3067
3068 oa = oe->ptr;
3069
3070 /* Big switch to prepare. */
3071 switch (op) {
3072 /* ============================================================
3073 * Process MFT records, as described by the current log record.
3074 * ============================================================
3075 */
3076 case InitializeFileRecordSegment:
3077 case DeallocateFileRecordSegment:
3078 case WriteEndOfFileRecordSegment:
3079 case CreateAttribute:
3080 case DeleteAttribute:
3081 case UpdateResidentValue:
3082 case UpdateMappingPairs:
3083 case SetNewAttributeSizes:
3084 case AddIndexEntryRoot:
3085 case DeleteIndexEntryRoot:
3086 case SetIndexEntryVcnRoot:
3087 case UpdateFileNameRoot:
3088 case UpdateRecordDataRoot:
3089 case ZeroEndOfFileRecord:
3090 rno = vbo >> sbi->record_bits;
3091 inode = ilookup(sbi->sb, rno);
3092 if (inode) {
3093 mi = &ntfs_i(inode)->mi;
3094 } else if (op == InitializeFileRecordSegment) {
3095 mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
3096 if (!mi)
3097 return -ENOMEM;
3098 err = mi_format_new(mi, sbi, rno, 0, false);
3099 if (err)
3100 goto out;
3101 } else {
3102 /* Read from disk. */
3103 err = mi_get(sbi, rno, &mi);
3104 if (err)
3105 return err;
3106 }
3107 rec = mi->mrec;
3108
3109 if (op == DeallocateFileRecordSegment)
3110 goto skip_load_parent;
3111
3112 if (InitializeFileRecordSegment != op) {
3113 if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3114 goto dirty_vol;
3115 if (!check_lsn(&rec->rhdr, rlsn))
3116 goto out;
3117 if (!check_file_record(rec, NULL, sbi))
3118 goto dirty_vol;
3119 attr = Add2Ptr(rec, roff);
3120 }
3121
3122 if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3123 rno_base = rno;
3124 goto skip_load_parent;
3125 }
3126
3127 rno_base = ino_get(&rec->parent_ref);
3128 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3129 if (IS_ERR(inode_parent))
3130 goto skip_load_parent;
3131
3132 if (is_bad_inode(inode_parent)) {
3133 iput(inode_parent);
3134 goto skip_load_parent;
3135 }
3136
3137 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3138 iput(inode_parent);
3139 } else {
3140 if (mi2_child->mrec != mi->mrec)
3141 memcpy(mi2_child->mrec, mi->mrec,
3142 sbi->record_size);
3143
3144 if (inode)
3145 iput(inode);
3146 else if (mi)
3147 mi_put(mi);
3148
3149 inode = inode_parent;
3150 mi = mi2_child;
3151 rec = mi2_child->mrec;
3152 attr = Add2Ptr(rec, roff);
3153 }
3154
3155 skip_load_parent:
3156 inode_parent = NULL;
3157 break;
3158
3159 /*
3160 * Process attributes, as described by the current log record.
3161 */
3162 case UpdateNonresidentValue:
3163 case AddIndexEntryAllocation:
3164 case DeleteIndexEntryAllocation:
3165 case WriteEndOfIndexBuffer:
3166 case SetIndexEntryVcnAllocation:
3167 case UpdateFileNameAllocation:
3168 case SetBitsInNonresidentBitMap:
3169 case ClearBitsInNonresidentBitMap:
3170 case UpdateRecordDataAllocation:
3171 attr = oa->attr;
3172 bytes = UpdateNonresidentValue == op ? dlen : 0;
3173 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3174
3175 if (attr->type == ATTR_ALLOC) {
3176 t32 = le32_to_cpu(oe->bytes_per_index);
3177 if (bytes < t32)
3178 bytes = t32;
3179 }
3180
3181 if (!bytes)
3182 bytes = lco - cbo;
3183
3184 bytes += roff;
3185 if (attr->type == ATTR_ALLOC)
3186 bytes = (bytes + 511) & ~511; // align
3187
3188 buffer_le = kmalloc(bytes, GFP_NOFS);
3189 if (!buffer_le)
3190 return -ENOMEM;
3191
3192 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3193 NULL);
3194 if (err)
3195 goto out;
3196
3197 if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3198 ntfs_fix_post_read(buffer_le, bytes, false);
3199 break;
3200
3201 default:
3202 WARN_ON(1);
3203 }
3204
3205 /* Big switch to do operation. */
3206 switch (op) {
3207 case InitializeFileRecordSegment:
3208 if (roff + dlen > record_size)
3209 goto dirty_vol;
3210
3211 memcpy(Add2Ptr(rec, roff), data, dlen);
3212 mi->dirty = true;
3213 break;
3214
3215 case DeallocateFileRecordSegment:
3216 clear_rec_inuse(rec);
3217 le16_add_cpu(&rec->seq, 1);
3218 mi->dirty = true;
3219 break;
3220
3221 case WriteEndOfFileRecordSegment:
3222 attr2 = (struct ATTRIB *)data;
3223 if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3224 goto dirty_vol;
3225
3226 memmove(attr, attr2, dlen);
3227 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3228
3229 mi->dirty = true;
3230 break;
3231
3232 case CreateAttribute:
3233 attr2 = (struct ATTRIB *)data;
3234 asize = le32_to_cpu(attr2->size);
3235 used = le32_to_cpu(rec->used);
3236
3237 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3238 !IS_ALIGNED(asize, 8) ||
3239 Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3240 dlen > record_size - used) {
3241 goto dirty_vol;
3242 }
3243
3244 memmove(Add2Ptr(attr, asize), attr, used - roff);
3245 memcpy(attr, attr2, asize);
3246
3247 rec->used = cpu_to_le32(used + asize);
3248 id = le16_to_cpu(rec->next_attr_id);
3249 id2 = le16_to_cpu(attr2->id);
3250 if (id <= id2)
3251 rec->next_attr_id = cpu_to_le16(id2 + 1);
3252 if (is_attr_indexed(attr))
3253 le16_add_cpu(&rec->hard_links, 1);
3254
3255 oa2 = find_loaded_attr(log, attr, rno_base);
3256 if (oa2) {
3257 void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3258 GFP_NOFS);
3259 if (p2) {
3260 // run_close(oa2->run1);
3261 kfree(oa2->attr);
3262 oa2->attr = p2;
3263 }
3264 }
3265
3266 mi->dirty = true;
3267 break;
3268
3269 case DeleteAttribute:
3270 asize = le32_to_cpu(attr->size);
3271 used = le32_to_cpu(rec->used);
3272
3273 if (!check_if_attr(rec, lrh))
3274 goto dirty_vol;
3275
3276 rec->used = cpu_to_le32(used - asize);
3277 if (is_attr_indexed(attr))
3278 le16_add_cpu(&rec->hard_links, -1);
3279
3280 memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3281
3282 mi->dirty = true;
3283 break;
3284
3285 case UpdateResidentValue:
3286 nsize = aoff + dlen;
3287
3288 if (!check_if_attr(rec, lrh))
3289 goto dirty_vol;
3290
3291 asize = le32_to_cpu(attr->size);
3292 used = le32_to_cpu(rec->used);
3293
3294 if (lrh->redo_len == lrh->undo_len) {
3295 if (nsize > asize)
3296 goto dirty_vol;
3297 goto move_data;
3298 }
3299
3300 if (nsize > asize && nsize - asize > record_size - used)
3301 goto dirty_vol;
3302
3303 nsize = ALIGN(nsize, 8);
3304 data_off = le16_to_cpu(attr->res.data_off);
3305
3306 if (nsize < asize) {
3307 memmove(Add2Ptr(attr, aoff), data, dlen);
3308 data = NULL; // To skip below memmove().
3309 }
3310
3311 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3312 used - le16_to_cpu(lrh->record_off) - asize);
3313
3314 rec->used = cpu_to_le32(used + nsize - asize);
3315 attr->size = cpu_to_le32(nsize);
3316 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3317
3318 move_data:
3319 if (data)
3320 memmove(Add2Ptr(attr, aoff), data, dlen);
3321
3322 oa2 = find_loaded_attr(log, attr, rno_base);
3323 if (oa2) {
3324 void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3325 GFP_NOFS);
3326 if (p2) {
3327 // run_close(&oa2->run0);
3328 oa2->run1 = &oa2->run0;
3329 kfree(oa2->attr);
3330 oa2->attr = p2;
3331 }
3332 }
3333
3334 mi->dirty = true;
3335 break;
3336
3337 case UpdateMappingPairs:
3338 nsize = aoff + dlen;
3339 asize = le32_to_cpu(attr->size);
3340 used = le32_to_cpu(rec->used);
3341
3342 if (!check_if_attr(rec, lrh) || !attr->non_res ||
3343 aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3344 (nsize > asize && nsize - asize > record_size - used)) {
3345 goto dirty_vol;
3346 }
3347
3348 nsize = ALIGN(nsize, 8);
3349
3350 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3351 used - le16_to_cpu(lrh->record_off) - asize);
3352 rec->used = cpu_to_le32(used + nsize - asize);
3353 attr->size = cpu_to_le32(nsize);
3354 memmove(Add2Ptr(attr, aoff), data, dlen);
3355
3356 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3357 attr_run(attr), &t64)) {
3358 goto dirty_vol;
3359 }
3360
3361 attr->nres.evcn = cpu_to_le64(t64);
3362 oa2 = find_loaded_attr(log, attr, rno_base);
3363 if (oa2 && oa2->attr->non_res)
3364 oa2->attr->nres.evcn = attr->nres.evcn;
3365
3366 mi->dirty = true;
3367 break;
3368
3369 case SetNewAttributeSizes:
3370 new_sz = data;
3371 if (!check_if_attr(rec, lrh) || !attr->non_res)
3372 goto dirty_vol;
3373
3374 attr->nres.alloc_size = new_sz->alloc_size;
3375 attr->nres.data_size = new_sz->data_size;
3376 attr->nres.valid_size = new_sz->valid_size;
3377
3378 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3379 attr->nres.total_size = new_sz->total_size;
3380
3381 oa2 = find_loaded_attr(log, attr, rno_base);
3382 if (oa2) {
3383 void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3384 GFP_NOFS);
3385 if (p2) {
3386 kfree(oa2->attr);
3387 oa2->attr = p2;
3388 }
3389 }
3390 mi->dirty = true;
3391 break;
3392
3393 case AddIndexEntryRoot:
3394 e = (struct NTFS_DE *)data;
3395 esize = le16_to_cpu(e->size);
3396 root = resident_data(attr);
3397 hdr = &root->ihdr;
3398 used = le32_to_cpu(hdr->used);
3399
3400 if (!check_if_index_root(rec, lrh) ||
3401 !check_if_root_index(attr, hdr, lrh) ||
3402 Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3403 esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3404 goto dirty_vol;
3405 }
3406
3407 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3408
3409 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3410
3411 memmove(Add2Ptr(e1, esize), e1,
3412 PtrOffset(e1, Add2Ptr(hdr, used)));
3413 memmove(e1, e, esize);
3414
3415 le32_add_cpu(&attr->res.data_size, esize);
3416 hdr->used = cpu_to_le32(used + esize);
3417 le32_add_cpu(&hdr->total, esize);
3418
3419 mi->dirty = true;
3420 break;
3421
3422 case DeleteIndexEntryRoot:
3423 root = resident_data(attr);
3424 hdr = &root->ihdr;
3425 used = le32_to_cpu(hdr->used);
3426
3427 if (!check_if_index_root(rec, lrh) ||
3428 !check_if_root_index(attr, hdr, lrh)) {
3429 goto dirty_vol;
3430 }
3431
3432 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3433 esize = le16_to_cpu(e1->size);
3434 e2 = Add2Ptr(e1, esize);
3435
3436 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3437
3438 le32_sub_cpu(&attr->res.data_size, esize);
3439 hdr->used = cpu_to_le32(used - esize);
3440 le32_sub_cpu(&hdr->total, esize);
3441
3442 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3443
3444 mi->dirty = true;
3445 break;
3446
3447 case SetIndexEntryVcnRoot:
3448 root = resident_data(attr);
3449 hdr = &root->ihdr;
3450
3451 if (!check_if_index_root(rec, lrh) ||
3452 !check_if_root_index(attr, hdr, lrh)) {
3453 goto dirty_vol;
3454 }
3455
3456 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3457
3458 de_set_vbn_le(e, *(__le64 *)data);
3459 mi->dirty = true;
3460 break;
3461
3462 case UpdateFileNameRoot:
3463 root = resident_data(attr);
3464 hdr = &root->ihdr;
3465
3466 if (!check_if_index_root(rec, lrh) ||
3467 !check_if_root_index(attr, hdr, lrh)) {
3468 goto dirty_vol;
3469 }
3470
3471 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3472 fname = (struct ATTR_FILE_NAME *)(e + 1);
3473 memmove(&fname->dup, data, sizeof(fname->dup)); //
3474 mi->dirty = true;
3475 break;
3476
3477 case UpdateRecordDataRoot:
3478 root = resident_data(attr);
3479 hdr = &root->ihdr;
3480
3481 if (!check_if_index_root(rec, lrh) ||
3482 !check_if_root_index(attr, hdr, lrh)) {
3483 goto dirty_vol;
3484 }
3485
3486 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3487
3488 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3489
3490 mi->dirty = true;
3491 break;
3492
3493 case ZeroEndOfFileRecord:
3494 if (roff + dlen > record_size)
3495 goto dirty_vol;
3496
3497 memset(attr, 0, dlen);
3498 mi->dirty = true;
3499 break;
3500
3501 case UpdateNonresidentValue:
3502 if (lco < cbo + roff + dlen)
3503 goto dirty_vol;
3504
3505 memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3506
3507 a_dirty = true;
3508 if (attr->type == ATTR_ALLOC)
3509 ntfs_fix_pre_write(buffer_le, bytes);
3510 break;
3511
3512 case AddIndexEntryAllocation:
3513 ib = Add2Ptr(buffer_le, roff);
3514 hdr = &ib->ihdr;
3515 e = data;
3516 esize = le16_to_cpu(e->size);
3517 e1 = Add2Ptr(ib, aoff);
3518
3519 if (is_baad(&ib->rhdr))
3520 goto dirty_vol;
3521 if (!check_lsn(&ib->rhdr, rlsn))
3522 goto out;
3523
3524 used = le32_to_cpu(hdr->used);
3525
3526 if (!check_index_buffer(ib, bytes) ||
3527 !check_if_alloc_index(hdr, aoff) ||
3528 Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3529 used + esize > le32_to_cpu(hdr->total)) {
3530 goto dirty_vol;
3531 }
3532
3533 memmove(Add2Ptr(e1, esize), e1,
3534 PtrOffset(e1, Add2Ptr(hdr, used)));
3535 memcpy(e1, e, esize);
3536
3537 hdr->used = cpu_to_le32(used + esize);
3538
3539 a_dirty = true;
3540
3541 ntfs_fix_pre_write(&ib->rhdr, bytes);
3542 break;
3543
3544 case DeleteIndexEntryAllocation:
3545 ib = Add2Ptr(buffer_le, roff);
3546 hdr = &ib->ihdr;
3547 e = Add2Ptr(ib, aoff);
3548 esize = le16_to_cpu(e->size);
3549
3550 if (is_baad(&ib->rhdr))
3551 goto dirty_vol;
3552 if (!check_lsn(&ib->rhdr, rlsn))
3553 goto out;
3554
3555 if (!check_index_buffer(ib, bytes) ||
3556 !check_if_alloc_index(hdr, aoff)) {
3557 goto dirty_vol;
3558 }
3559
3560 e1 = Add2Ptr(e, esize);
3561 nsize = esize;
3562 used = le32_to_cpu(hdr->used);
3563
3564 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3565
3566 hdr->used = cpu_to_le32(used - nsize);
3567
3568 a_dirty = true;
3569
3570 ntfs_fix_pre_write(&ib->rhdr, bytes);
3571 break;
3572
3573 case WriteEndOfIndexBuffer:
3574 ib = Add2Ptr(buffer_le, roff);
3575 hdr = &ib->ihdr;
3576 e = Add2Ptr(ib, aoff);
3577
3578 if (is_baad(&ib->rhdr))
3579 goto dirty_vol;
3580 if (!check_lsn(&ib->rhdr, rlsn))
3581 goto out;
3582 if (!check_index_buffer(ib, bytes) ||
3583 !check_if_alloc_index(hdr, aoff) ||
3584 aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3585 le32_to_cpu(hdr->total)) {
3586 goto dirty_vol;
3587 }
3588
3589 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3590 memmove(e, data, dlen);
3591
3592 a_dirty = true;
3593 ntfs_fix_pre_write(&ib->rhdr, bytes);
3594 break;
3595
3596 case SetIndexEntryVcnAllocation:
3597 ib = Add2Ptr(buffer_le, roff);
3598 hdr = &ib->ihdr;
3599 e = Add2Ptr(ib, aoff);
3600
3601 if (is_baad(&ib->rhdr))
3602 goto dirty_vol;
3603
3604 if (!check_lsn(&ib->rhdr, rlsn))
3605 goto out;
3606 if (!check_index_buffer(ib, bytes) ||
3607 !check_if_alloc_index(hdr, aoff)) {
3608 goto dirty_vol;
3609 }
3610
3611 de_set_vbn_le(e, *(__le64 *)data);
3612
3613 a_dirty = true;
3614 ntfs_fix_pre_write(&ib->rhdr, bytes);
3615 break;
3616
3617 case UpdateFileNameAllocation:
3618 ib = Add2Ptr(buffer_le, roff);
3619 hdr = &ib->ihdr;
3620 e = Add2Ptr(ib, aoff);
3621
3622 if (is_baad(&ib->rhdr))
3623 goto dirty_vol;
3624
3625 if (!check_lsn(&ib->rhdr, rlsn))
3626 goto out;
3627 if (!check_index_buffer(ib, bytes) ||
3628 !check_if_alloc_index(hdr, aoff)) {
3629 goto dirty_vol;
3630 }
3631
3632 fname = (struct ATTR_FILE_NAME *)(e + 1);
3633 memmove(&fname->dup, data, sizeof(fname->dup));
3634
3635 a_dirty = true;
3636 ntfs_fix_pre_write(&ib->rhdr, bytes);
3637 break;
3638
3639 case SetBitsInNonresidentBitMap:
3640 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3641 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3642
3643 if (cbo + (off + 7) / 8 > lco ||
3644 cbo + ((off + bits + 7) / 8) > lco) {
3645 goto dirty_vol;
3646 }
3647
3648 ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits);
3649 a_dirty = true;
3650 break;
3651
3652 case ClearBitsInNonresidentBitMap:
3653 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3654 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3655
3656 if (cbo + (off + 7) / 8 > lco ||
3657 cbo + ((off + bits + 7) / 8) > lco) {
3658 goto dirty_vol;
3659 }
3660
3661 ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits);
3662 a_dirty = true;
3663 break;
3664
3665 case UpdateRecordDataAllocation:
3666 ib = Add2Ptr(buffer_le, roff);
3667 hdr = &ib->ihdr;
3668 e = Add2Ptr(ib, aoff);
3669
3670 if (is_baad(&ib->rhdr))
3671 goto dirty_vol;
3672
3673 if (!check_lsn(&ib->rhdr, rlsn))
3674 goto out;
3675 if (!check_index_buffer(ib, bytes) ||
3676 !check_if_alloc_index(hdr, aoff)) {
3677 goto dirty_vol;
3678 }
3679
3680 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3681
3682 a_dirty = true;
3683 ntfs_fix_pre_write(&ib->rhdr, bytes);
3684 break;
3685
3686 default:
3687 WARN_ON(1);
3688 }
3689
3690 if (rlsn) {
3691 __le64 t64 = cpu_to_le64(*rlsn);
3692
3693 if (rec)
3694 rec->rhdr.lsn = t64;
3695 if (ib)
3696 ib->rhdr.lsn = t64;
3697 }
3698
3699 if (mi && mi->dirty) {
3700 err = mi_write(mi, 0);
3701 if (err)
3702 goto out;
3703 }
3704
3705 if (a_dirty) {
3706 attr = oa->attr;
3707 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes,
3708 0);
3709 if (err)
3710 goto out;
3711 }
3712
3713 out:
3714
3715 if (inode)
3716 iput(inode);
3717 else if (mi != mi2_child)
3718 mi_put(mi);
3719
3720 kfree(buffer_le);
3721
3722 return err;
3723
3724 dirty_vol:
3725 log->set_dirty = true;
3726 goto out;
3727 }
3728
3729 /*
3730 * log_replay - Replays log and empties it.
3731 *
3732 * This function is called during mount operation.
3733 * It replays log and empties it.
3734 * Initialized is set false if logfile contains '-1'.
3735 */
log_replay(struct ntfs_inode * ni,bool * initialized)3736 int log_replay(struct ntfs_inode *ni, bool *initialized)
3737 {
3738 int err;
3739 struct ntfs_sb_info *sbi = ni->mi.sbi;
3740 struct ntfs_log *log;
3741
3742 u64 rec_lsn, checkpt_lsn = 0, rlsn = 0;
3743 struct ATTR_NAME_ENTRY *attr_names = NULL;
3744 u32 attr_names_bytes = 0;
3745 u32 oatbl_bytes = 0;
3746 struct RESTART_TABLE *dptbl = NULL;
3747 struct RESTART_TABLE *trtbl = NULL;
3748 const struct RESTART_TABLE *rt;
3749 struct RESTART_TABLE *oatbl = NULL;
3750 struct inode *inode;
3751 struct OpenAttr *oa;
3752 struct ntfs_inode *ni_oe;
3753 struct ATTRIB *attr = NULL;
3754 u64 size, vcn, undo_next_lsn;
3755 CLST rno, lcn, lcn0, len0, clen;
3756 void *data;
3757 struct NTFS_RESTART *rst = NULL;
3758 struct lcb *lcb = NULL;
3759 struct OPEN_ATTR_ENRTY *oe;
3760 struct ATTR_NAME_ENTRY *ane;
3761 struct TRANSACTION_ENTRY *tr;
3762 struct DIR_PAGE_ENTRY *dp;
3763 u32 i, bytes_per_attr_entry;
3764 u32 vbo, tail, off, dlen;
3765 u32 saved_len, rec_len, transact_id;
3766 bool use_second_page;
3767 struct RESTART_AREA *ra2, *ra = NULL;
3768 struct CLIENT_REC *ca, *cr;
3769 __le16 client;
3770 struct RESTART_HDR *rh;
3771 const struct LFS_RECORD_HDR *frh;
3772 const struct LOG_REC_HDR *lrh;
3773 bool is_mapped;
3774 bool is_ro = sb_rdonly(sbi->sb);
3775 u64 t64;
3776 u16 t16;
3777 u32 t32;
3778
3779 log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
3780 if (!log)
3781 return -ENOMEM;
3782
3783 log->ni = ni;
3784 log->l_size = log->orig_file_size = ni->vfs_inode.i_size;
3785
3786 /* Get the size of page. NOTE: To replay we can use default page. */
3787 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3788 log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, true);
3789 #else
3790 log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, false);
3791 #endif
3792 if (!log->page_size) {
3793 err = -EINVAL;
3794 goto out;
3795 }
3796
3797 log->one_page_buf = kmalloc(log->page_size, GFP_NOFS);
3798 if (!log->one_page_buf) {
3799 err = -ENOMEM;
3800 goto out;
3801 }
3802
3803 log->page_mask = log->page_size - 1;
3804 log->page_bits = blksize_bits(log->page_size);
3805
3806 /* Look for a restart area on the disk. */
3807 err = log_read_rst(log, true, &log->rst_info);
3808 if (err)
3809 goto out;
3810
3811 /* remember 'initialized' */
3812 *initialized = log->rst_info.initialized;
3813
3814 if (!log->rst_info.restart) {
3815 if (log->rst_info.initialized) {
3816 /* No restart area but the file is not initialized. */
3817 err = -EINVAL;
3818 goto out;
3819 }
3820
3821 log_init_pg_hdr(log, 1, 1);
3822 log_create(log, 0, get_random_u32(), false, false);
3823
3824 ra = log_create_ra(log);
3825 if (!ra) {
3826 err = -ENOMEM;
3827 goto out;
3828 }
3829 log->ra = ra;
3830 log->init_ra = true;
3831
3832 goto process_log;
3833 }
3834
3835 /*
3836 * If the restart offset above wasn't zero then we won't
3837 * look for a second restart.
3838 */
3839 if (log->rst_info.vbo)
3840 goto check_restart_area;
3841
3842 err = log_read_rst(log, false, &log->rst_info2);
3843 if (err)
3844 goto out;
3845
3846 /* Determine which restart area to use. */
3847 if (!log->rst_info2.restart ||
3848 log->rst_info2.last_lsn <= log->rst_info.last_lsn)
3849 goto use_first_page;
3850
3851 use_second_page = true;
3852
3853 if (log->rst_info.chkdsk_was_run &&
3854 log->page_size != log->rst_info.vbo) {
3855 struct RECORD_PAGE_HDR *sp = NULL;
3856 bool usa_error;
3857
3858 if (!read_log_page(log, log->page_size, &sp, &usa_error) &&
3859 sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3860 use_second_page = false;
3861 }
3862 kfree(sp);
3863 }
3864
3865 if (use_second_page) {
3866 kfree(log->rst_info.r_page);
3867 memcpy(&log->rst_info, &log->rst_info2,
3868 sizeof(struct restart_info));
3869 log->rst_info2.r_page = NULL;
3870 }
3871
3872 use_first_page:
3873 kfree(log->rst_info2.r_page);
3874
3875 check_restart_area:
3876 /*
3877 * If the restart area is at offset 0, we want
3878 * to write the second restart area first.
3879 */
3880 log->init_ra = !!log->rst_info.vbo;
3881
3882 /* If we have a valid page then grab a pointer to the restart area. */
3883 ra2 = log->rst_info.valid_page ?
3884 Add2Ptr(log->rst_info.r_page,
3885 le16_to_cpu(log->rst_info.r_page->ra_off)) :
3886 NULL;
3887
3888 if (log->rst_info.chkdsk_was_run ||
3889 (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3890 bool wrapped = false;
3891 bool use_multi_page = false;
3892 u32 open_log_count;
3893
3894 /* Do some checks based on whether we have a valid log page. */
3895 open_log_count = log->rst_info.valid_page ?
3896 le32_to_cpu(ra2->open_log_count) :
3897 get_random_u32();
3898
3899 log_init_pg_hdr(log, 1, 1);
3900
3901 log_create(log, log->rst_info.last_lsn, open_log_count, wrapped,
3902 use_multi_page);
3903
3904 ra = log_create_ra(log);
3905 if (!ra) {
3906 err = -ENOMEM;
3907 goto out;
3908 }
3909 log->ra = ra;
3910
3911 /* Put the restart areas and initialize
3912 * the log file as required.
3913 */
3914 goto process_log;
3915 }
3916
3917 if (!ra2) {
3918 err = -EINVAL;
3919 goto out;
3920 }
3921
3922 /*
3923 * If the log page or the system page sizes have changed, we can't
3924 * use the log file. We must use the system page size instead of the
3925 * default size if there is not a clean shutdown.
3926 */
3927 t32 = le32_to_cpu(log->rst_info.r_page->sys_page_size);
3928 if (log->page_size != t32) {
3929 log->l_size = log->orig_file_size;
3930 log->page_size = norm_file_page(t32, &log->l_size,
3931 t32 == DefaultLogPageSize);
3932 }
3933
3934 if (log->page_size != t32 ||
3935 log->page_size != le32_to_cpu(log->rst_info.r_page->page_size)) {
3936 err = -EINVAL;
3937 goto out;
3938 }
3939
3940 log->page_mask = log->page_size - 1;
3941 log->page_bits = blksize_bits(log->page_size);
3942
3943 /* If the file size has shrunk then we won't mount it. */
3944 if (log->l_size < le64_to_cpu(ra2->l_size)) {
3945 err = -EINVAL;
3946 goto out;
3947 }
3948
3949 log_init_pg_hdr(log, le16_to_cpu(log->rst_info.r_page->major_ver),
3950 le16_to_cpu(log->rst_info.r_page->minor_ver));
3951
3952 log->l_size = le64_to_cpu(ra2->l_size);
3953 log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3954 log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3955 log->seq_num_mask = (8 << log->file_data_bits) - 1;
3956 log->last_lsn = le64_to_cpu(ra2->current_lsn);
3957 log->seq_num = log->last_lsn >> log->file_data_bits;
3958 log->ra_off = le16_to_cpu(log->rst_info.r_page->ra_off);
3959 log->restart_size = log->sys_page_size - log->ra_off;
3960 log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3961 log->ra_size = le16_to_cpu(ra2->ra_len);
3962 log->data_off = le16_to_cpu(ra2->data_off);
3963 log->data_size = log->page_size - log->data_off;
3964 log->reserved = log->data_size - log->record_header_len;
3965
3966 vbo = lsn_to_vbo(log, log->last_lsn);
3967
3968 if (vbo < log->first_page) {
3969 /* This is a pseudo lsn. */
3970 log->l_flags |= NTFSLOG_NO_LAST_LSN;
3971 log->next_page = log->first_page;
3972 goto find_oldest;
3973 }
3974
3975 /* Find the end of this log record. */
3976 off = final_log_off(log, log->last_lsn,
3977 le32_to_cpu(ra2->last_lsn_data_len));
3978
3979 /* If we wrapped the file then increment the sequence number. */
3980 if (off <= vbo) {
3981 log->seq_num += 1;
3982 log->l_flags |= NTFSLOG_WRAPPED;
3983 }
3984
3985 /* Now compute the next log page to use. */
3986 vbo &= ~log->sys_page_mask;
3987 tail = log->page_size - (off & log->page_mask) - 1;
3988
3989 /*
3990 *If we can fit another log record on the page,
3991 * move back a page the log file.
3992 */
3993 if (tail >= log->record_header_len) {
3994 log->l_flags |= NTFSLOG_REUSE_TAIL;
3995 log->next_page = vbo;
3996 } else {
3997 log->next_page = next_page_off(log, vbo);
3998 }
3999
4000 find_oldest:
4001 /*
4002 * Find the oldest client lsn. Use the last
4003 * flushed lsn as a starting point.
4004 */
4005 log->oldest_lsn = log->last_lsn;
4006 oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
4007 ra2->client_idx[1], &log->oldest_lsn);
4008 log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
4009
4010 if (log->oldest_lsn_off < log->first_page)
4011 log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
4012
4013 if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
4014 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
4015
4016 log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
4017 log->total_avail_pages = log->l_size - log->first_page;
4018 log->total_avail = log->total_avail_pages >> log->page_bits;
4019 log->max_current_avail = log->total_avail * log->reserved;
4020 log->total_avail = log->total_avail * log->data_size;
4021
4022 log->current_avail = current_log_avail(log);
4023
4024 ra = kzalloc(log->restart_size, GFP_NOFS);
4025 if (!ra) {
4026 err = -ENOMEM;
4027 goto out;
4028 }
4029 log->ra = ra;
4030
4031 t16 = le16_to_cpu(ra2->client_off);
4032 if (t16 == offsetof(struct RESTART_AREA, clients)) {
4033 memcpy(ra, ra2, log->ra_size);
4034 } else {
4035 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4036 memcpy(ra->clients, Add2Ptr(ra2, t16),
4037 le16_to_cpu(ra2->ra_len) - t16);
4038
4039 log->current_openlog_count = get_random_u32();
4040 ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4041 log->ra_size = offsetof(struct RESTART_AREA, clients) +
4042 sizeof(struct CLIENT_REC);
4043 ra->client_off =
4044 cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4045 ra->ra_len = cpu_to_le16(log->ra_size);
4046 }
4047
4048 le32_add_cpu(&ra->open_log_count, 1);
4049
4050 /* Now we need to walk through looking for the last lsn. */
4051 err = last_log_lsn(log);
4052 if (err)
4053 goto out;
4054
4055 log->current_avail = current_log_avail(log);
4056
4057 /* Remember which restart area to write first. */
4058 log->init_ra = log->rst_info.vbo;
4059
4060 process_log:
4061 /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4062 switch ((log->major_ver << 16) + log->minor_ver) {
4063 case 0x10000:
4064 case 0x10001:
4065 case 0x20000:
4066 break;
4067 default:
4068 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4069 log->major_ver, log->minor_ver);
4070 err = -EOPNOTSUPP;
4071 log->set_dirty = true;
4072 goto out;
4073 }
4074
4075 /* One client "NTFS" per logfile. */
4076 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4077
4078 for (client = ra->client_idx[1];; client = cr->next_client) {
4079 if (client == LFS_NO_CLIENT_LE) {
4080 /* Insert "NTFS" client LogFile. */
4081 client = ra->client_idx[0];
4082 if (client == LFS_NO_CLIENT_LE) {
4083 err = -EINVAL;
4084 goto out;
4085 }
4086
4087 t16 = le16_to_cpu(client);
4088 cr = ca + t16;
4089
4090 remove_client(ca, cr, &ra->client_idx[0]);
4091
4092 cr->restart_lsn = 0;
4093 cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4094 cr->name_bytes = cpu_to_le32(8);
4095 cr->name[0] = cpu_to_le16('N');
4096 cr->name[1] = cpu_to_le16('T');
4097 cr->name[2] = cpu_to_le16('F');
4098 cr->name[3] = cpu_to_le16('S');
4099
4100 add_client(ca, t16, &ra->client_idx[1]);
4101 break;
4102 }
4103
4104 cr = ca + le16_to_cpu(client);
4105
4106 if (cpu_to_le32(8) == cr->name_bytes &&
4107 cpu_to_le16('N') == cr->name[0] &&
4108 cpu_to_le16('T') == cr->name[1] &&
4109 cpu_to_le16('F') == cr->name[2] &&
4110 cpu_to_le16('S') == cr->name[3])
4111 break;
4112 }
4113
4114 /* Update the client handle with the client block information. */
4115 log->client_id.seq_num = cr->seq_num;
4116 log->client_id.client_idx = client;
4117
4118 err = read_rst_area(log, &rst, &checkpt_lsn);
4119 if (err)
4120 goto out;
4121
4122 if (!rst)
4123 goto out;
4124
4125 bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4126
4127 if (rst->check_point_start)
4128 checkpt_lsn = le64_to_cpu(rst->check_point_start);
4129
4130 /* Allocate and Read the Transaction Table. */
4131 if (!rst->transact_table_len)
4132 goto check_dirty_page_table;
4133
4134 t64 = le64_to_cpu(rst->transact_table_lsn);
4135 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4136 if (err)
4137 goto out;
4138
4139 lrh = lcb->log_rec;
4140 frh = lcb->lrh;
4141 rec_len = le32_to_cpu(frh->client_data_len);
4142
4143 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4144 bytes_per_attr_entry)) {
4145 err = -EINVAL;
4146 goto out;
4147 }
4148
4149 t16 = le16_to_cpu(lrh->redo_off);
4150
4151 rt = Add2Ptr(lrh, t16);
4152 t32 = rec_len - t16;
4153
4154 /* Now check that this is a valid restart table. */
4155 if (!check_rstbl(rt, t32)) {
4156 err = -EINVAL;
4157 goto out;
4158 }
4159
4160 trtbl = kmemdup(rt, t32, GFP_NOFS);
4161 if (!trtbl) {
4162 err = -ENOMEM;
4163 goto out;
4164 }
4165
4166 lcb_put(lcb);
4167 lcb = NULL;
4168
4169 check_dirty_page_table:
4170 /* The next record back should be the Dirty Pages Table. */
4171 if (!rst->dirty_pages_len)
4172 goto check_attribute_names;
4173
4174 t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4175 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4176 if (err)
4177 goto out;
4178
4179 lrh = lcb->log_rec;
4180 frh = lcb->lrh;
4181 rec_len = le32_to_cpu(frh->client_data_len);
4182
4183 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4184 bytes_per_attr_entry)) {
4185 err = -EINVAL;
4186 goto out;
4187 }
4188
4189 t16 = le16_to_cpu(lrh->redo_off);
4190
4191 rt = Add2Ptr(lrh, t16);
4192 t32 = rec_len - t16;
4193
4194 /* Now check that this is a valid restart table. */
4195 if (!check_rstbl(rt, t32)) {
4196 err = -EINVAL;
4197 goto out;
4198 }
4199
4200 dptbl = kmemdup(rt, t32, GFP_NOFS);
4201 if (!dptbl) {
4202 err = -ENOMEM;
4203 goto out;
4204 }
4205
4206 /* Convert Ra version '0' into version '1'. */
4207 if (rst->major_ver)
4208 goto end_conv_1;
4209
4210 dp = NULL;
4211 while ((dp = enum_rstbl(dptbl, dp))) {
4212 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4213 // NOTE: Danger. Check for of boundary.
4214 memmove(&dp->vcn, &dp0->vcn_low,
4215 2 * sizeof(u64) +
4216 le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4217 }
4218
4219 end_conv_1:
4220 lcb_put(lcb);
4221 lcb = NULL;
4222
4223 /*
4224 * Go through the table and remove the duplicates,
4225 * remembering the oldest lsn values.
4226 */
4227 if (sbi->cluster_size <= log->page_size)
4228 goto trace_dp_table;
4229
4230 dp = NULL;
4231 while ((dp = enum_rstbl(dptbl, dp))) {
4232 struct DIR_PAGE_ENTRY *next = dp;
4233
4234 while ((next = enum_rstbl(dptbl, next))) {
4235 if (next->target_attr == dp->target_attr &&
4236 next->vcn == dp->vcn) {
4237 if (le64_to_cpu(next->oldest_lsn) <
4238 le64_to_cpu(dp->oldest_lsn)) {
4239 dp->oldest_lsn = next->oldest_lsn;
4240 }
4241
4242 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4243 }
4244 }
4245 }
4246 trace_dp_table:
4247 check_attribute_names:
4248 /* The next record should be the Attribute Names. */
4249 if (!rst->attr_names_len)
4250 goto check_attr_table;
4251
4252 t64 = le64_to_cpu(rst->attr_names_lsn);
4253 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4254 if (err)
4255 goto out;
4256
4257 lrh = lcb->log_rec;
4258 frh = lcb->lrh;
4259 rec_len = le32_to_cpu(frh->client_data_len);
4260
4261 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4262 bytes_per_attr_entry)) {
4263 err = -EINVAL;
4264 goto out;
4265 }
4266
4267 t32 = lrh_length(lrh);
4268 rec_len -= t32;
4269
4270 attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
4271 if (!attr_names) {
4272 err = -ENOMEM;
4273 goto out;
4274 }
4275
4276 lcb_put(lcb);
4277 lcb = NULL;
4278
4279 check_attr_table:
4280 /* The next record should be the attribute Table. */
4281 if (!rst->open_attr_len)
4282 goto check_attribute_names2;
4283
4284 t64 = le64_to_cpu(rst->open_attr_table_lsn);
4285 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4286 if (err)
4287 goto out;
4288
4289 lrh = lcb->log_rec;
4290 frh = lcb->lrh;
4291 rec_len = le32_to_cpu(frh->client_data_len);
4292
4293 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4294 bytes_per_attr_entry)) {
4295 err = -EINVAL;
4296 goto out;
4297 }
4298
4299 t16 = le16_to_cpu(lrh->redo_off);
4300
4301 rt = Add2Ptr(lrh, t16);
4302 t32 = rec_len - t16;
4303
4304 if (!check_rstbl(rt, t32)) {
4305 err = -EINVAL;
4306 goto out;
4307 }
4308
4309 oatbl = kmemdup(rt, t32, GFP_NOFS);
4310 if (!oatbl) {
4311 err = -ENOMEM;
4312 goto out;
4313 }
4314
4315 log->open_attr_tbl = oatbl;
4316
4317 /* Clear all of the Attr pointers. */
4318 oe = NULL;
4319 while ((oe = enum_rstbl(oatbl, oe))) {
4320 if (!rst->major_ver) {
4321 struct OPEN_ATTR_ENRTY_32 oe0;
4322
4323 /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4324 memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4325
4326 oe->bytes_per_index = oe0.bytes_per_index;
4327 oe->type = oe0.type;
4328 oe->is_dirty_pages = oe0.is_dirty_pages;
4329 oe->name_len = 0;
4330 oe->ref = oe0.ref;
4331 oe->open_record_lsn = oe0.open_record_lsn;
4332 }
4333
4334 oe->is_attr_name = 0;
4335 oe->ptr = NULL;
4336 }
4337
4338 lcb_put(lcb);
4339 lcb = NULL;
4340
4341 check_attribute_names2:
4342 if (attr_names && oatbl) {
4343 off = 0;
4344 for (;;) {
4345 /* Check we can use attribute name entry 'ane'. */
4346 static_assert(sizeof(*ane) == 4);
4347 if (off + sizeof(*ane) > attr_names_bytes) {
4348 /* just ignore the rest. */
4349 break;
4350 }
4351
4352 ane = Add2Ptr(attr_names, off);
4353 t16 = le16_to_cpu(ane->off);
4354 if (!t16) {
4355 /* this is the only valid exit. */
4356 break;
4357 }
4358
4359 /* Check we can use open attribute entry 'oe'. */
4360 if (t16 + sizeof(*oe) > oatbl_bytes) {
4361 /* just ignore the rest. */
4362 break;
4363 }
4364
4365 /* TODO: Clear table on exit! */
4366 oe = Add2Ptr(oatbl, t16);
4367 t16 = le16_to_cpu(ane->name_bytes);
4368 off += t16 + sizeof(*ane);
4369 if (off > attr_names_bytes) {
4370 /* just ignore the rest. */
4371 break;
4372 }
4373 oe->name_len = t16 / sizeof(short);
4374 oe->ptr = ane->name;
4375 oe->is_attr_name = 2;
4376 }
4377 }
4378
4379 /*
4380 * If the checkpt_lsn is zero, then this is a freshly
4381 * formatted disk and we have no work to do.
4382 */
4383 if (!checkpt_lsn) {
4384 err = 0;
4385 goto out;
4386 }
4387
4388 if (!oatbl) {
4389 oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4390 if (!oatbl) {
4391 err = -ENOMEM;
4392 goto out;
4393 }
4394 }
4395
4396 log->open_attr_tbl = oatbl;
4397
4398 /* Start the analysis pass from the Checkpoint lsn. */
4399 rec_lsn = checkpt_lsn;
4400
4401 /* Read the first lsn. */
4402 err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4403 if (err)
4404 goto out;
4405
4406 /* Loop to read all subsequent records to the end of the log file. */
4407 next_log_record_analyze:
4408 err = read_next_log_rec(log, lcb, &rec_lsn);
4409 if (err)
4410 goto out;
4411
4412 if (!rec_lsn)
4413 goto end_log_records_enumerate;
4414
4415 frh = lcb->lrh;
4416 transact_id = le32_to_cpu(frh->transact_id);
4417 rec_len = le32_to_cpu(frh->client_data_len);
4418 lrh = lcb->log_rec;
4419
4420 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4421 err = -EINVAL;
4422 goto out;
4423 }
4424
4425 /*
4426 * The first lsn after the previous lsn remembered
4427 * the checkpoint is the first candidate for the rlsn.
4428 */
4429 if (!rlsn)
4430 rlsn = rec_lsn;
4431
4432 if (LfsClientRecord != frh->record_type)
4433 goto next_log_record_analyze;
4434
4435 /*
4436 * Now update the Transaction Table for this transaction. If there
4437 * is no entry present or it is unallocated we allocate the entry.
4438 */
4439 if (!trtbl) {
4440 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4441 INITIAL_NUMBER_TRANSACTIONS);
4442 if (!trtbl) {
4443 err = -ENOMEM;
4444 goto out;
4445 }
4446 }
4447
4448 tr = Add2Ptr(trtbl, transact_id);
4449
4450 if (transact_id >= bytes_per_rt(trtbl) ||
4451 tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4452 tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4453 if (!tr) {
4454 err = -ENOMEM;
4455 goto out;
4456 }
4457 tr->transact_state = TransactionActive;
4458 tr->first_lsn = cpu_to_le64(rec_lsn);
4459 }
4460
4461 tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4462
4463 /*
4464 * If this is a compensation log record, then change
4465 * the undo_next_lsn to be the undo_next_lsn of this record.
4466 */
4467 if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4468 tr->undo_next_lsn = frh->client_undo_next_lsn;
4469
4470 /* Dispatch to handle log record depending on type. */
4471 switch (le16_to_cpu(lrh->redo_op)) {
4472 case InitializeFileRecordSegment:
4473 case DeallocateFileRecordSegment:
4474 case WriteEndOfFileRecordSegment:
4475 case CreateAttribute:
4476 case DeleteAttribute:
4477 case UpdateResidentValue:
4478 case UpdateNonresidentValue:
4479 case UpdateMappingPairs:
4480 case SetNewAttributeSizes:
4481 case AddIndexEntryRoot:
4482 case DeleteIndexEntryRoot:
4483 case AddIndexEntryAllocation:
4484 case DeleteIndexEntryAllocation:
4485 case WriteEndOfIndexBuffer:
4486 case SetIndexEntryVcnRoot:
4487 case SetIndexEntryVcnAllocation:
4488 case UpdateFileNameRoot:
4489 case UpdateFileNameAllocation:
4490 case SetBitsInNonresidentBitMap:
4491 case ClearBitsInNonresidentBitMap:
4492 case UpdateRecordDataRoot:
4493 case UpdateRecordDataAllocation:
4494 case ZeroEndOfFileRecord:
4495 t16 = le16_to_cpu(lrh->target_attr);
4496 t64 = le64_to_cpu(lrh->target_vcn);
4497 dp = find_dp(dptbl, t16, t64);
4498
4499 if (dp)
4500 goto copy_lcns;
4501
4502 /*
4503 * Calculate the number of clusters per page the system
4504 * which wrote the checkpoint, possibly creating the table.
4505 */
4506 if (dptbl) {
4507 t32 = (le16_to_cpu(dptbl->size) -
4508 sizeof(struct DIR_PAGE_ENTRY)) /
4509 sizeof(u64);
4510 } else {
4511 t32 = log->clst_per_page;
4512 kfree(dptbl);
4513 dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4514 32);
4515 if (!dptbl) {
4516 err = -ENOMEM;
4517 goto out;
4518 }
4519 }
4520
4521 dp = alloc_rsttbl_idx(&dptbl);
4522 if (!dp) {
4523 err = -ENOMEM;
4524 goto out;
4525 }
4526 dp->target_attr = cpu_to_le32(t16);
4527 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4528 dp->lcns_follow = cpu_to_le32(t32);
4529 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4530 dp->oldest_lsn = cpu_to_le64(rec_lsn);
4531
4532 copy_lcns:
4533 /*
4534 * Copy the Lcns from the log record into the Dirty Page Entry.
4535 * TODO: For different page size support, must somehow make
4536 * whole routine a loop, case Lcns do not fit below.
4537 */
4538 t16 = le16_to_cpu(lrh->lcns_follow);
4539 for (i = 0; i < t16; i++) {
4540 size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4541 le64_to_cpu(dp->vcn));
4542 dp->page_lcns[j + i] = lrh->page_lcns[i];
4543 }
4544
4545 goto next_log_record_analyze;
4546
4547 case DeleteDirtyClusters: {
4548 u32 range_count =
4549 le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4550 const struct LCN_RANGE *r =
4551 Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4552
4553 /* Loop through all of the Lcn ranges this log record. */
4554 for (i = 0; i < range_count; i++, r++) {
4555 u64 lcn0 = le64_to_cpu(r->lcn);
4556 u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4557
4558 dp = NULL;
4559 while ((dp = enum_rstbl(dptbl, dp))) {
4560 u32 j;
4561
4562 t32 = le32_to_cpu(dp->lcns_follow);
4563 for (j = 0; j < t32; j++) {
4564 t64 = le64_to_cpu(dp->page_lcns[j]);
4565 if (t64 >= lcn0 && t64 <= lcn_e)
4566 dp->page_lcns[j] = 0;
4567 }
4568 }
4569 }
4570 goto next_log_record_analyze;
4571 ;
4572 }
4573
4574 case OpenNonresidentAttribute:
4575 t16 = le16_to_cpu(lrh->target_attr);
4576 if (t16 >= bytes_per_rt(oatbl)) {
4577 /*
4578 * Compute how big the table needs to be.
4579 * Add 10 extra entries for some cushion.
4580 */
4581 u32 new_e = t16 / le16_to_cpu(oatbl->size);
4582
4583 new_e += 10 - le16_to_cpu(oatbl->used);
4584
4585 oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4586 log->open_attr_tbl = oatbl;
4587 if (!oatbl) {
4588 err = -ENOMEM;
4589 goto out;
4590 }
4591 }
4592
4593 /* Point to the entry being opened. */
4594 oe = alloc_rsttbl_from_idx(&oatbl, t16);
4595 log->open_attr_tbl = oatbl;
4596 if (!oe) {
4597 err = -ENOMEM;
4598 goto out;
4599 }
4600
4601 /* Initialize this entry from the log record. */
4602 t16 = le16_to_cpu(lrh->redo_off);
4603 if (!rst->major_ver) {
4604 /* Convert version '0' into version '1'. */
4605 struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4606
4607 oe->bytes_per_index = oe0->bytes_per_index;
4608 oe->type = oe0->type;
4609 oe->is_dirty_pages = oe0->is_dirty_pages;
4610 oe->name_len = 0; //oe0.name_len;
4611 oe->ref = oe0->ref;
4612 oe->open_record_lsn = oe0->open_record_lsn;
4613 } else {
4614 memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4615 }
4616
4617 t16 = le16_to_cpu(lrh->undo_len);
4618 if (t16) {
4619 oe->ptr = kmalloc(t16, GFP_NOFS);
4620 if (!oe->ptr) {
4621 err = -ENOMEM;
4622 goto out;
4623 }
4624 oe->name_len = t16 / sizeof(short);
4625 memcpy(oe->ptr,
4626 Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4627 oe->is_attr_name = 1;
4628 } else {
4629 oe->ptr = NULL;
4630 oe->is_attr_name = 0;
4631 }
4632
4633 goto next_log_record_analyze;
4634
4635 case HotFix:
4636 t16 = le16_to_cpu(lrh->target_attr);
4637 t64 = le64_to_cpu(lrh->target_vcn);
4638 dp = find_dp(dptbl, t16, t64);
4639 if (dp) {
4640 size_t j = le64_to_cpu(lrh->target_vcn) -
4641 le64_to_cpu(dp->vcn);
4642 if (dp->page_lcns[j])
4643 dp->page_lcns[j] = lrh->page_lcns[0];
4644 }
4645 goto next_log_record_analyze;
4646
4647 case EndTopLevelAction:
4648 tr = Add2Ptr(trtbl, transact_id);
4649 tr->prev_lsn = cpu_to_le64(rec_lsn);
4650 tr->undo_next_lsn = frh->client_undo_next_lsn;
4651 goto next_log_record_analyze;
4652
4653 case PrepareTransaction:
4654 tr = Add2Ptr(trtbl, transact_id);
4655 tr->transact_state = TransactionPrepared;
4656 goto next_log_record_analyze;
4657
4658 case CommitTransaction:
4659 tr = Add2Ptr(trtbl, transact_id);
4660 tr->transact_state = TransactionCommitted;
4661 goto next_log_record_analyze;
4662
4663 case ForgetTransaction:
4664 free_rsttbl_idx(trtbl, transact_id);
4665 goto next_log_record_analyze;
4666
4667 case Noop:
4668 case OpenAttributeTableDump:
4669 case AttributeNamesDump:
4670 case DirtyPageTableDump:
4671 case TransactionTableDump:
4672 /* The following cases require no action the Analysis Pass. */
4673 goto next_log_record_analyze;
4674
4675 default:
4676 /*
4677 * All codes will be explicitly handled.
4678 * If we see a code we do not expect, then we are trouble.
4679 */
4680 goto next_log_record_analyze;
4681 }
4682
4683 end_log_records_enumerate:
4684 lcb_put(lcb);
4685 lcb = NULL;
4686
4687 /*
4688 * Scan the Dirty Page Table and Transaction Table for
4689 * the lowest lsn, and return it as the Redo lsn.
4690 */
4691 dp = NULL;
4692 while ((dp = enum_rstbl(dptbl, dp))) {
4693 t64 = le64_to_cpu(dp->oldest_lsn);
4694 if (t64 && t64 < rlsn)
4695 rlsn = t64;
4696 }
4697
4698 tr = NULL;
4699 while ((tr = enum_rstbl(trtbl, tr))) {
4700 t64 = le64_to_cpu(tr->first_lsn);
4701 if (t64 && t64 < rlsn)
4702 rlsn = t64;
4703 }
4704
4705 /*
4706 * Only proceed if the Dirty Page Table or Transaction
4707 * table are not empty.
4708 */
4709 if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4710 goto end_reply;
4711
4712 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4713 if (is_ro)
4714 goto out;
4715
4716 /* Reopen all of the attributes with dirty pages. */
4717 oe = NULL;
4718 next_open_attribute:
4719
4720 oe = enum_rstbl(oatbl, oe);
4721 if (!oe) {
4722 err = 0;
4723 dp = NULL;
4724 goto next_dirty_page;
4725 }
4726
4727 oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
4728 if (!oa) {
4729 err = -ENOMEM;
4730 goto out;
4731 }
4732
4733 inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4734 if (IS_ERR(inode))
4735 goto fake_attr;
4736
4737 if (is_bad_inode(inode)) {
4738 iput(inode);
4739 fake_attr:
4740 if (oa->ni) {
4741 iput(&oa->ni->vfs_inode);
4742 oa->ni = NULL;
4743 }
4744
4745 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4746 oe->name_len, 0);
4747 if (!attr) {
4748 kfree(oa);
4749 err = -ENOMEM;
4750 goto out;
4751 }
4752 oa->attr = attr;
4753 oa->run1 = &oa->run0;
4754 goto final_oe;
4755 }
4756
4757 ni_oe = ntfs_i(inode);
4758 oa->ni = ni_oe;
4759
4760 attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4761 NULL, NULL);
4762
4763 if (!attr)
4764 goto fake_attr;
4765
4766 t32 = le32_to_cpu(attr->size);
4767 oa->attr = kmemdup(attr, t32, GFP_NOFS);
4768 if (!oa->attr)
4769 goto fake_attr;
4770
4771 if (!S_ISDIR(inode->i_mode)) {
4772 if (attr->type == ATTR_DATA && !attr->name_len) {
4773 oa->run1 = &ni_oe->file.run;
4774 goto final_oe;
4775 }
4776 } else {
4777 if (attr->type == ATTR_ALLOC &&
4778 attr->name_len == ARRAY_SIZE(I30_NAME) &&
4779 !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4780 oa->run1 = &ni_oe->dir.alloc_run;
4781 goto final_oe;
4782 }
4783 }
4784
4785 if (attr->non_res) {
4786 u16 roff = le16_to_cpu(attr->nres.run_off);
4787 CLST svcn = le64_to_cpu(attr->nres.svcn);
4788
4789 if (roff > t32) {
4790 kfree(oa->attr);
4791 oa->attr = NULL;
4792 goto fake_attr;
4793 }
4794
4795 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4796 le64_to_cpu(attr->nres.evcn), svcn,
4797 Add2Ptr(attr, roff), t32 - roff);
4798 if (err < 0) {
4799 kfree(oa->attr);
4800 oa->attr = NULL;
4801 goto fake_attr;
4802 }
4803 err = 0;
4804 }
4805 oa->run1 = &oa->run0;
4806 attr = oa->attr;
4807
4808 final_oe:
4809 if (oe->is_attr_name == 1)
4810 kfree(oe->ptr);
4811 oe->is_attr_name = 0;
4812 oe->ptr = oa;
4813 oe->name_len = attr->name_len;
4814
4815 goto next_open_attribute;
4816
4817 /*
4818 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4819 * Mapping that we have, and insert it into the appropriate run.
4820 */
4821 next_dirty_page:
4822 dp = enum_rstbl(dptbl, dp);
4823 if (!dp)
4824 goto do_redo_1;
4825
4826 oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4827
4828 if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4829 goto next_dirty_page;
4830
4831 oa = oe->ptr;
4832 if (!oa)
4833 goto next_dirty_page;
4834
4835 i = -1;
4836 next_dirty_page_vcn:
4837 i += 1;
4838 if (i >= le32_to_cpu(dp->lcns_follow))
4839 goto next_dirty_page;
4840
4841 vcn = le64_to_cpu(dp->vcn) + i;
4842 size = (vcn + 1) << sbi->cluster_bits;
4843
4844 if (!dp->page_lcns[i])
4845 goto next_dirty_page_vcn;
4846
4847 rno = ino_get(&oe->ref);
4848 if (rno <= MFT_REC_MIRR &&
4849 size < (MFT_REC_VOL + 1) * sbi->record_size &&
4850 oe->type == ATTR_DATA) {
4851 goto next_dirty_page_vcn;
4852 }
4853
4854 lcn = le64_to_cpu(dp->page_lcns[i]);
4855
4856 if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4857 lcn0 != lcn) &&
4858 !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4859 err = -ENOMEM;
4860 goto out;
4861 }
4862 attr = oa->attr;
4863 if (size > le64_to_cpu(attr->nres.alloc_size)) {
4864 attr->nres.valid_size = attr->nres.data_size =
4865 attr->nres.alloc_size = cpu_to_le64(size);
4866 }
4867 goto next_dirty_page_vcn;
4868
4869 do_redo_1:
4870 /*
4871 * Perform the Redo Pass, to restore all of the dirty pages to the same
4872 * contents that they had immediately before the crash. If the dirty
4873 * page table is empty, then we can skip the entire Redo Pass.
4874 */
4875 if (!dptbl || !dptbl->total)
4876 goto do_undo_action;
4877
4878 rec_lsn = rlsn;
4879
4880 /*
4881 * Read the record at the Redo lsn, before falling
4882 * into common code to handle each record.
4883 */
4884 err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4885 if (err)
4886 goto out;
4887
4888 /*
4889 * Now loop to read all of our log records forwards, until
4890 * we hit the end of the file, cleaning up at the end.
4891 */
4892 do_action_next:
4893 frh = lcb->lrh;
4894
4895 if (LfsClientRecord != frh->record_type)
4896 goto read_next_log_do_action;
4897
4898 transact_id = le32_to_cpu(frh->transact_id);
4899 rec_len = le32_to_cpu(frh->client_data_len);
4900 lrh = lcb->log_rec;
4901
4902 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4903 err = -EINVAL;
4904 goto out;
4905 }
4906
4907 /* Ignore log records that do not update pages. */
4908 if (lrh->lcns_follow)
4909 goto find_dirty_page;
4910
4911 goto read_next_log_do_action;
4912
4913 find_dirty_page:
4914 t16 = le16_to_cpu(lrh->target_attr);
4915 t64 = le64_to_cpu(lrh->target_vcn);
4916 dp = find_dp(dptbl, t16, t64);
4917
4918 if (!dp)
4919 goto read_next_log_do_action;
4920
4921 if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4922 goto read_next_log_do_action;
4923
4924 t16 = le16_to_cpu(lrh->target_attr);
4925 if (t16 >= bytes_per_rt(oatbl)) {
4926 err = -EINVAL;
4927 goto out;
4928 }
4929
4930 oe = Add2Ptr(oatbl, t16);
4931
4932 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4933 err = -EINVAL;
4934 goto out;
4935 }
4936
4937 oa = oe->ptr;
4938
4939 if (!oa) {
4940 err = -EINVAL;
4941 goto out;
4942 }
4943 attr = oa->attr;
4944
4945 vcn = le64_to_cpu(lrh->target_vcn);
4946
4947 if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4948 lcn == SPARSE_LCN) {
4949 goto read_next_log_do_action;
4950 }
4951
4952 /* Point to the Redo data and get its length. */
4953 data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4954 dlen = le16_to_cpu(lrh->redo_len);
4955
4956 /* Shorten length by any Lcns which were deleted. */
4957 saved_len = dlen;
4958
4959 for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4960 size_t j;
4961 u32 alen, voff;
4962
4963 voff = le16_to_cpu(lrh->record_off) +
4964 le16_to_cpu(lrh->attr_off);
4965 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4966
4967 /* If the Vcn question is allocated, we can just get out. */
4968 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4969 if (dp->page_lcns[j + i - 1])
4970 break;
4971
4972 if (!saved_len)
4973 saved_len = 1;
4974
4975 /*
4976 * Calculate the allocated space left relative to the
4977 * log record Vcn, after removing this unallocated Vcn.
4978 */
4979 alen = (i - 1) << sbi->cluster_bits;
4980
4981 /*
4982 * If the update described this log record goes beyond
4983 * the allocated space, then we will have to reduce the length.
4984 */
4985 if (voff >= alen)
4986 dlen = 0;
4987 else if (voff + dlen > alen)
4988 dlen = alen - voff;
4989 }
4990
4991 /*
4992 * If the resulting dlen from above is now zero,
4993 * we can skip this log record.
4994 */
4995 if (!dlen && saved_len)
4996 goto read_next_log_do_action;
4997
4998 t16 = le16_to_cpu(lrh->redo_op);
4999 if (can_skip_action(t16))
5000 goto read_next_log_do_action;
5001
5002 /* Apply the Redo operation a common routine. */
5003 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
5004 if (err)
5005 goto out;
5006
5007 /* Keep reading and looping back until end of file. */
5008 read_next_log_do_action:
5009 err = read_next_log_rec(log, lcb, &rec_lsn);
5010 if (!err && rec_lsn)
5011 goto do_action_next;
5012
5013 lcb_put(lcb);
5014 lcb = NULL;
5015
5016 do_undo_action:
5017 /* Scan Transaction Table. */
5018 tr = NULL;
5019 transaction_table_next:
5020 tr = enum_rstbl(trtbl, tr);
5021 if (!tr)
5022 goto undo_action_done;
5023
5024 if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
5025 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
5026 goto transaction_table_next;
5027 }
5028
5029 log->transaction_id = PtrOffset(trtbl, tr);
5030 undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
5031
5032 /*
5033 * We only have to do anything if the transaction has
5034 * something its undo_next_lsn field.
5035 */
5036 if (!undo_next_lsn)
5037 goto commit_undo;
5038
5039 /* Read the first record to be undone by this transaction. */
5040 err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
5041 if (err)
5042 goto out;
5043
5044 /*
5045 * Now loop to read all of our log records forwards,
5046 * until we hit the end of the file, cleaning up at the end.
5047 */
5048 undo_action_next:
5049
5050 lrh = lcb->log_rec;
5051 frh = lcb->lrh;
5052 transact_id = le32_to_cpu(frh->transact_id);
5053 rec_len = le32_to_cpu(frh->client_data_len);
5054
5055 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5056 err = -EINVAL;
5057 goto out;
5058 }
5059
5060 if (lrh->undo_op == cpu_to_le16(Noop))
5061 goto read_next_log_undo_action;
5062
5063 oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5064 oa = oe->ptr;
5065
5066 t16 = le16_to_cpu(lrh->lcns_follow);
5067 if (!t16)
5068 goto add_allocated_vcns;
5069
5070 is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5071 &lcn, &clen, NULL);
5072
5073 /*
5074 * If the mapping isn't already the table or the mapping
5075 * corresponds to a hole the mapping, we need to make sure
5076 * there is no partial page already memory.
5077 */
5078 if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5079 goto add_allocated_vcns;
5080
5081 vcn = le64_to_cpu(lrh->target_vcn);
5082 vcn &= ~(u64)(log->clst_per_page - 1);
5083
5084 add_allocated_vcns:
5085 for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5086 size = (vcn + 1) << sbi->cluster_bits;
5087 i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5088 attr = oa->attr;
5089 if (!attr->non_res) {
5090 if (size > le32_to_cpu(attr->res.data_size))
5091 attr->res.data_size = cpu_to_le32(size);
5092 } else {
5093 if (size > le64_to_cpu(attr->nres.data_size))
5094 attr->nres.valid_size = attr->nres.data_size =
5095 attr->nres.alloc_size =
5096 cpu_to_le64(size);
5097 }
5098 }
5099
5100 t16 = le16_to_cpu(lrh->undo_op);
5101 if (can_skip_action(t16))
5102 goto read_next_log_undo_action;
5103
5104 /* Point to the Redo data and get its length. */
5105 data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5106 dlen = le16_to_cpu(lrh->undo_len);
5107
5108 /* It is time to apply the undo action. */
5109 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5110
5111 read_next_log_undo_action:
5112 /*
5113 * Keep reading and looping back until we have read the
5114 * last record for this transaction.
5115 */
5116 err = read_next_log_rec(log, lcb, &rec_lsn);
5117 if (err)
5118 goto out;
5119
5120 if (rec_lsn)
5121 goto undo_action_next;
5122
5123 lcb_put(lcb);
5124 lcb = NULL;
5125
5126 commit_undo:
5127 free_rsttbl_idx(trtbl, log->transaction_id);
5128
5129 log->transaction_id = 0;
5130
5131 goto transaction_table_next;
5132
5133 undo_action_done:
5134
5135 ntfs_update_mftmirr(sbi, 0);
5136
5137 sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5138
5139 end_reply:
5140
5141 err = 0;
5142 if (is_ro)
5143 goto out;
5144
5145 rh = kzalloc(log->page_size, GFP_NOFS);
5146 if (!rh) {
5147 err = -ENOMEM;
5148 goto out;
5149 }
5150
5151 rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5152 rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5153 t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5154 rh->rhdr.fix_num = cpu_to_le16(t16);
5155 rh->sys_page_size = cpu_to_le32(log->page_size);
5156 rh->page_size = cpu_to_le32(log->page_size);
5157
5158 t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5159 8);
5160 rh->ra_off = cpu_to_le16(t16);
5161 rh->minor_ver = cpu_to_le16(1); // 0x1A:
5162 rh->major_ver = cpu_to_le16(1); // 0x1C:
5163
5164 ra2 = Add2Ptr(rh, t16);
5165 memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5166
5167 ra2->client_idx[0] = 0;
5168 ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5169 ra2->flags = cpu_to_le16(2);
5170
5171 le32_add_cpu(&ra2->open_log_count, 1);
5172
5173 ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5174
5175 err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
5176 if (!err)
5177 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5178 rh, log->page_size, 0);
5179
5180 kfree(rh);
5181 if (err)
5182 goto out;
5183
5184 out:
5185 kfree(rst);
5186 if (lcb)
5187 lcb_put(lcb);
5188
5189 /*
5190 * Scan the Open Attribute Table to close all of
5191 * the open attributes.
5192 */
5193 oe = NULL;
5194 while ((oe = enum_rstbl(oatbl, oe))) {
5195 rno = ino_get(&oe->ref);
5196
5197 if (oe->is_attr_name == 1) {
5198 kfree(oe->ptr);
5199 oe->ptr = NULL;
5200 continue;
5201 }
5202
5203 if (oe->is_attr_name)
5204 continue;
5205
5206 oa = oe->ptr;
5207 if (!oa)
5208 continue;
5209
5210 run_close(&oa->run0);
5211 kfree(oa->attr);
5212 if (oa->ni)
5213 iput(&oa->ni->vfs_inode);
5214 kfree(oa);
5215 }
5216
5217 kfree(trtbl);
5218 kfree(oatbl);
5219 kfree(dptbl);
5220 kfree(attr_names);
5221 kfree(log->rst_info.r_page);
5222
5223 kfree(ra);
5224 kfree(log->one_page_buf);
5225
5226 if (err)
5227 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5228
5229 if (err == -EROFS)
5230 err = 0;
5231 else if (log->set_dirty)
5232 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5233
5234 kfree(log);
5235
5236 return err;
5237 }
5238