1 /*
2 * Copyright (C) 2010 Red Hat, Inc.
3 *
4 * written by Gerd Hoffmann <kraxel@redhat.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "hw/pci/pci.h"
22 #include "hw/qdev-properties.h"
23 #include "hw/pci/msi.h"
24 #include "qemu/timer.h"
25 #include "qemu/bitops.h"
26 #include "qemu/log.h"
27 #include "qemu/module.h"
28 #include "qemu/error-report.h"
29 #include "hw/audio/soundhw.h"
30 #include "intel-hda.h"
31 #include "migration/vmstate.h"
32 #include "intel-hda-defs.h"
33 #include "sysemu/dma.h"
34 #include "qapi/error.h"
35 #include "qom/object.h"
36
37 /* --------------------------------------------------------------------- */
38 /* hda bus */
39
40 static Property hda_props[] = {
41 DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1),
42 DEFINE_PROP_END_OF_LIST()
43 };
44
45 static const TypeInfo hda_codec_bus_info = {
46 .name = TYPE_HDA_BUS,
47 .parent = TYPE_BUS,
48 .instance_size = sizeof(HDACodecBus),
49 };
50
hda_codec_bus_init(DeviceState * dev,HDACodecBus * bus,size_t bus_size,hda_codec_response_func response,hda_codec_xfer_func xfer)51 void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus, size_t bus_size,
52 hda_codec_response_func response,
53 hda_codec_xfer_func xfer)
54 {
55 qbus_init(bus, bus_size, TYPE_HDA_BUS, dev, NULL);
56 bus->response = response;
57 bus->xfer = xfer;
58 }
59
hda_codec_dev_realize(DeviceState * qdev,Error ** errp)60 static void hda_codec_dev_realize(DeviceState *qdev, Error **errp)
61 {
62 HDACodecBus *bus = HDA_BUS(qdev->parent_bus);
63 HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev);
64 HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
65
66 if (dev->cad == -1) {
67 dev->cad = bus->next_cad;
68 }
69 if (dev->cad >= 15) {
70 error_setg(errp, "HDA audio codec address is full");
71 return;
72 }
73 bus->next_cad = dev->cad + 1;
74 cdc->init(dev, errp);
75 }
76
hda_codec_dev_unrealize(DeviceState * qdev)77 static void hda_codec_dev_unrealize(DeviceState *qdev)
78 {
79 HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev);
80 HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
81
82 if (cdc->exit) {
83 cdc->exit(dev);
84 }
85 }
86
hda_codec_find(HDACodecBus * bus,uint32_t cad)87 HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad)
88 {
89 BusChild *kid;
90 HDACodecDevice *cdev;
91
92 QTAILQ_FOREACH(kid, &bus->qbus.children, sibling) {
93 DeviceState *qdev = kid->child;
94 cdev = HDA_CODEC_DEVICE(qdev);
95 if (cdev->cad == cad) {
96 return cdev;
97 }
98 }
99 return NULL;
100 }
101
hda_codec_response(HDACodecDevice * dev,bool solicited,uint32_t response)102 void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response)
103 {
104 HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
105 bus->response(dev, solicited, response);
106 }
107
hda_codec_xfer(HDACodecDevice * dev,uint32_t stnr,bool output,uint8_t * buf,uint32_t len)108 bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
109 uint8_t *buf, uint32_t len)
110 {
111 HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
112 return bus->xfer(dev, stnr, output, buf, len);
113 }
114
115 /* --------------------------------------------------------------------- */
116 /* intel hda emulation */
117
118 typedef struct IntelHDAStream IntelHDAStream;
119 typedef struct IntelHDAState IntelHDAState;
120 typedef struct IntelHDAReg IntelHDAReg;
121
122 typedef struct bpl {
123 uint64_t addr;
124 uint32_t len;
125 uint32_t flags;
126 } bpl;
127
128 struct IntelHDAStream {
129 /* registers */
130 uint32_t ctl;
131 uint32_t lpib;
132 uint32_t cbl;
133 uint32_t lvi;
134 uint32_t fmt;
135 uint32_t bdlp_lbase;
136 uint32_t bdlp_ubase;
137
138 /* state */
139 bpl *bpl;
140 uint32_t bentries;
141 uint32_t bsize, be, bp;
142 };
143
144 struct IntelHDAState {
145 PCIDevice pci;
146 const char *name;
147 HDACodecBus codecs;
148
149 /* registers */
150 uint32_t g_ctl;
151 uint32_t wake_en;
152 uint32_t state_sts;
153 uint32_t int_ctl;
154 uint32_t int_sts;
155 uint32_t wall_clk;
156
157 uint32_t corb_lbase;
158 uint32_t corb_ubase;
159 uint32_t corb_rp;
160 uint32_t corb_wp;
161 uint32_t corb_ctl;
162 uint32_t corb_sts;
163 uint32_t corb_size;
164
165 uint32_t rirb_lbase;
166 uint32_t rirb_ubase;
167 uint32_t rirb_wp;
168 uint32_t rirb_cnt;
169 uint32_t rirb_ctl;
170 uint32_t rirb_sts;
171 uint32_t rirb_size;
172
173 uint32_t dp_lbase;
174 uint32_t dp_ubase;
175
176 uint32_t icw;
177 uint32_t irr;
178 uint32_t ics;
179
180 /* streams */
181 IntelHDAStream st[8];
182
183 /* state */
184 MemoryRegion container;
185 MemoryRegion mmio;
186 MemoryRegion alias;
187 uint32_t rirb_count;
188 int64_t wall_base_ns;
189
190 /* debug logging */
191 const IntelHDAReg *last_reg;
192 uint32_t last_val;
193 uint32_t last_write;
194 uint32_t last_sec;
195 uint32_t repeat_count;
196
197 /* properties */
198 uint32_t debug;
199 OnOffAuto msi;
200 bool old_msi_addr;
201 };
202
203 #define TYPE_INTEL_HDA_GENERIC "intel-hda-generic"
204
205 DECLARE_INSTANCE_CHECKER(IntelHDAState, INTEL_HDA,
206 TYPE_INTEL_HDA_GENERIC)
207
208 struct IntelHDAReg {
209 const char *name; /* register name */
210 uint32_t size; /* size in bytes */
211 uint32_t reset; /* reset value */
212 uint32_t wmask; /* write mask */
213 uint32_t wclear; /* write 1 to clear bits */
214 uint32_t offset; /* location in IntelHDAState */
215 uint32_t shift; /* byte access entries for dwords */
216 uint32_t stream;
217 void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old);
218 void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg);
219 };
220
221 /* --------------------------------------------------------------------- */
222
intel_hda_addr(uint32_t lbase,uint32_t ubase)223 static hwaddr intel_hda_addr(uint32_t lbase, uint32_t ubase)
224 {
225 return ((uint64_t)ubase << 32) | lbase;
226 }
227
intel_hda_update_int_sts(IntelHDAState * d)228 static void intel_hda_update_int_sts(IntelHDAState *d)
229 {
230 uint32_t sts = 0;
231 uint32_t i;
232
233 /* update controller status */
234 if (d->rirb_sts & ICH6_RBSTS_IRQ) {
235 sts |= (1 << 30);
236 }
237 if (d->rirb_sts & ICH6_RBSTS_OVERRUN) {
238 sts |= (1 << 30);
239 }
240 if (d->state_sts & d->wake_en) {
241 sts |= (1 << 30);
242 }
243
244 /* update stream status */
245 for (i = 0; i < 8; i++) {
246 /* buffer completion interrupt */
247 if (d->st[i].ctl & (1 << 26)) {
248 sts |= (1 << i);
249 }
250 }
251
252 /* update global status */
253 if (sts & d->int_ctl) {
254 sts |= (1U << 31);
255 }
256
257 d->int_sts = sts;
258 }
259
intel_hda_update_irq(IntelHDAState * d)260 static void intel_hda_update_irq(IntelHDAState *d)
261 {
262 bool msi = msi_enabled(&d->pci);
263 int level;
264
265 intel_hda_update_int_sts(d);
266 if (d->int_sts & (1U << 31) && d->int_ctl & (1U << 31)) {
267 level = 1;
268 } else {
269 level = 0;
270 }
271 dprint(d, 2, "%s: level %d [%s]\n", __func__,
272 level, msi ? "msi" : "intx");
273 if (msi) {
274 if (level) {
275 msi_notify(&d->pci, 0);
276 }
277 } else {
278 pci_set_irq(&d->pci, level);
279 }
280 }
281
intel_hda_send_command(IntelHDAState * d,uint32_t verb)282 static int intel_hda_send_command(IntelHDAState *d, uint32_t verb)
283 {
284 uint32_t cad, nid, data;
285 HDACodecDevice *codec;
286 HDACodecDeviceClass *cdc;
287
288 cad = (verb >> 28) & 0x0f;
289 if (verb & (1 << 27)) {
290 /* indirect node addressing, not specified in HDA 1.0 */
291 dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __func__);
292 return -1;
293 }
294 nid = (verb >> 20) & 0x7f;
295 data = verb & 0xfffff;
296
297 codec = hda_codec_find(&d->codecs, cad);
298 if (codec == NULL) {
299 dprint(d, 1, "%s: addressed non-existing codec\n", __func__);
300 return -1;
301 }
302 cdc = HDA_CODEC_DEVICE_GET_CLASS(codec);
303 cdc->command(codec, nid, data);
304 return 0;
305 }
306
intel_hda_corb_run(IntelHDAState * d)307 static void intel_hda_corb_run(IntelHDAState *d)
308 {
309 hwaddr addr;
310 uint32_t rp, verb;
311
312 if (d->ics & ICH6_IRS_BUSY) {
313 dprint(d, 2, "%s: [icw] verb 0x%08x\n", __func__, d->icw);
314 intel_hda_send_command(d, d->icw);
315 return;
316 }
317
318 for (;;) {
319 if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) {
320 dprint(d, 2, "%s: !run\n", __func__);
321 return;
322 }
323 if ((d->corb_rp & 0xff) == d->corb_wp) {
324 dprint(d, 2, "%s: corb ring empty\n", __func__);
325 return;
326 }
327 if (d->rirb_count == d->rirb_cnt) {
328 dprint(d, 2, "%s: rirb count reached\n", __func__);
329 return;
330 }
331
332 rp = (d->corb_rp + 1) & 0xff;
333 addr = intel_hda_addr(d->corb_lbase, d->corb_ubase);
334 ldl_le_pci_dma(&d->pci, addr + 4 * rp, &verb, MEMTXATTRS_UNSPECIFIED);
335 d->corb_rp = rp;
336
337 dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __func__, rp, verb);
338 intel_hda_send_command(d, verb);
339 }
340 }
341
intel_hda_response(HDACodecDevice * dev,bool solicited,uint32_t response)342 static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response)
343 {
344 const MemTxAttrs attrs = { .memory = true };
345 HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
346 IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
347 hwaddr addr;
348 uint32_t wp, ex;
349 MemTxResult res = MEMTX_OK;
350
351 if (d->ics & ICH6_IRS_BUSY) {
352 dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n",
353 __func__, response, dev->cad);
354 d->irr = response;
355 d->ics &= ~(ICH6_IRS_BUSY | 0xf0);
356 d->ics |= (ICH6_IRS_VALID | (dev->cad << 4));
357 return;
358 }
359
360 if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) {
361 dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __func__);
362 return;
363 }
364
365 ex = (solicited ? 0 : (1 << 4)) | dev->cad;
366 wp = (d->rirb_wp + 1) & 0xff;
367 addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase);
368 res |= stl_le_pci_dma(&d->pci, addr + 8 * wp, response, attrs);
369 res |= stl_le_pci_dma(&d->pci, addr + 8 * wp + 4, ex, attrs);
370 if (res != MEMTX_OK && (d->rirb_ctl & ICH6_RBCTL_OVERRUN_EN)) {
371 d->rirb_sts |= ICH6_RBSTS_OVERRUN;
372 intel_hda_update_irq(d);
373 }
374 d->rirb_wp = wp;
375
376 dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n",
377 __func__, wp, response, ex);
378
379 d->rirb_count++;
380 if (d->rirb_count == d->rirb_cnt) {
381 dprint(d, 2, "%s: rirb count reached (%d)\n", __func__, d->rirb_count);
382 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
383 d->rirb_sts |= ICH6_RBSTS_IRQ;
384 intel_hda_update_irq(d);
385 }
386 } else if ((d->corb_rp & 0xff) == d->corb_wp) {
387 dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __func__,
388 d->rirb_count, d->rirb_cnt);
389 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
390 d->rirb_sts |= ICH6_RBSTS_IRQ;
391 intel_hda_update_irq(d);
392 }
393 }
394 }
395
intel_hda_xfer(HDACodecDevice * dev,uint32_t stnr,bool output,uint8_t * buf,uint32_t len)396 static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
397 uint8_t *buf, uint32_t len)
398 {
399 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
400 HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
401 IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
402 hwaddr addr;
403 uint32_t s, copy, left;
404 IntelHDAStream *st;
405 bool irq = false;
406
407 st = output ? d->st + 4 : d->st;
408 for (s = 0; s < 4; s++) {
409 if (stnr == ((st[s].ctl >> 20) & 0x0f)) {
410 st = st + s;
411 break;
412 }
413 }
414 if (s == 4) {
415 return false;
416 }
417 if (st->bpl == NULL) {
418 return false;
419 }
420
421 left = len;
422 s = st->bentries;
423 while (left > 0 && s-- > 0) {
424 copy = left;
425 if (copy > st->bsize - st->lpib)
426 copy = st->bsize - st->lpib;
427 if (copy > st->bpl[st->be].len - st->bp)
428 copy = st->bpl[st->be].len - st->bp;
429
430 dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n",
431 st->be, st->bp, st->bpl[st->be].len, copy);
432
433 pci_dma_rw(&d->pci, st->bpl[st->be].addr + st->bp, buf, copy, !output,
434 attrs);
435 st->lpib += copy;
436 st->bp += copy;
437 buf += copy;
438 left -= copy;
439
440 if (st->bpl[st->be].len == st->bp) {
441 /* bpl entry filled */
442 if (st->bpl[st->be].flags & 0x01) {
443 irq = true;
444 }
445 st->bp = 0;
446 st->be++;
447 if (st->be == st->bentries) {
448 /* bpl wrap around */
449 st->be = 0;
450 st->lpib = 0;
451 }
452 }
453 }
454 if (d->dp_lbase & 0x01) {
455 s = st - d->st;
456 addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase);
457 stl_le_pci_dma(&d->pci, addr + 8 * s, st->lpib, attrs);
458 }
459 dprint(d, 3, "dma: --\n");
460
461 if (irq) {
462 st->ctl |= (1 << 26); /* buffer completion interrupt */
463 intel_hda_update_irq(d);
464 }
465 return true;
466 }
467
intel_hda_parse_bdl(IntelHDAState * d,IntelHDAStream * st)468 static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)
469 {
470 hwaddr addr;
471 uint8_t buf[16];
472 uint32_t i;
473
474 addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);
475 st->bentries = st->lvi +1;
476 g_free(st->bpl);
477 st->bpl = g_new(bpl, st->bentries);
478 for (i = 0; i < st->bentries; i++, addr += 16) {
479 pci_dma_read(&d->pci, addr, buf, 16);
480 st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf);
481 st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8));
482 st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));
483 dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n",
484 i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags);
485 }
486
487 st->bsize = st->cbl;
488 st->lpib = 0;
489 st->be = 0;
490 st->bp = 0;
491 }
492
intel_hda_notify_codecs(IntelHDAState * d,uint32_t stream,bool running,bool output)493 static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running, bool output)
494 {
495 BusChild *kid;
496 HDACodecDevice *cdev;
497
498 QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) {
499 DeviceState *qdev = kid->child;
500 HDACodecDeviceClass *cdc;
501
502 cdev = HDA_CODEC_DEVICE(qdev);
503 cdc = HDA_CODEC_DEVICE_GET_CLASS(cdev);
504 if (cdc->stream) {
505 cdc->stream(cdev, stream, running, output);
506 }
507 }
508 }
509
510 /* --------------------------------------------------------------------- */
511
intel_hda_set_g_ctl(IntelHDAState * d,const IntelHDAReg * reg,uint32_t old)512 static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
513 {
514 if ((d->g_ctl & ICH6_GCTL_RESET) == 0) {
515 device_cold_reset(DEVICE(d));
516 }
517 }
518
intel_hda_set_wake_en(IntelHDAState * d,const IntelHDAReg * reg,uint32_t old)519 static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
520 {
521 intel_hda_update_irq(d);
522 }
523
intel_hda_set_state_sts(IntelHDAState * d,const IntelHDAReg * reg,uint32_t old)524 static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
525 {
526 intel_hda_update_irq(d);
527 }
528
intel_hda_set_int_ctl(IntelHDAState * d,const IntelHDAReg * reg,uint32_t old)529 static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
530 {
531 intel_hda_update_irq(d);
532 }
533
intel_hda_get_wall_clk(IntelHDAState * d,const IntelHDAReg * reg)534 static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg)
535 {
536 int64_t ns;
537
538 ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - d->wall_base_ns;
539 d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */
540 }
541
intel_hda_set_corb_wp(IntelHDAState * d,const IntelHDAReg * reg,uint32_t old)542 static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
543 {
544 intel_hda_corb_run(d);
545 }
546
intel_hda_set_corb_ctl(IntelHDAState * d,const IntelHDAReg * reg,uint32_t old)547 static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
548 {
549 intel_hda_corb_run(d);
550 }
551
intel_hda_set_rirb_wp(IntelHDAState * d,const IntelHDAReg * reg,uint32_t old)552 static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
553 {
554 if (d->rirb_wp & ICH6_RIRBWP_RST) {
555 d->rirb_wp = 0;
556 }
557 }
558
intel_hda_set_rirb_sts(IntelHDAState * d,const IntelHDAReg * reg,uint32_t old)559 static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
560 {
561 intel_hda_update_irq(d);
562
563 if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) {
564 /* cleared ICH6_RBSTS_IRQ */
565 d->rirb_count = 0;
566 intel_hda_corb_run(d);
567 }
568 }
569
intel_hda_set_ics(IntelHDAState * d,const IntelHDAReg * reg,uint32_t old)570 static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
571 {
572 if (d->ics & ICH6_IRS_BUSY) {
573 intel_hda_corb_run(d);
574 }
575 }
576
intel_hda_set_st_ctl(IntelHDAState * d,const IntelHDAReg * reg,uint32_t old)577 static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
578 {
579 bool output = reg->stream >= 4;
580 IntelHDAStream *st = d->st + reg->stream;
581
582 if (st->ctl & 0x01) {
583 /* reset */
584 dprint(d, 1, "st #%d: reset\n", reg->stream);
585 st->ctl = SD_STS_FIFO_READY << 24 | SD_CTL_STREAM_RESET;
586 }
587 if ((st->ctl & 0x02) != (old & 0x02)) {
588 uint32_t stnr = (st->ctl >> 20) & 0x0f;
589 /* run bit flipped */
590 if (st->ctl & 0x02) {
591 /* start */
592 dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n",
593 reg->stream, stnr, st->cbl);
594 intel_hda_parse_bdl(d, st);
595 intel_hda_notify_codecs(d, stnr, true, output);
596 } else {
597 /* stop */
598 dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr);
599 intel_hda_notify_codecs(d, stnr, false, output);
600 }
601 }
602 intel_hda_update_irq(d);
603 }
604
605 /* --------------------------------------------------------------------- */
606
607 #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o))
608
609 static const struct IntelHDAReg regtab[] = {
610 /* global */
611 [ ICH6_REG_GCAP ] = {
612 .name = "GCAP",
613 .size = 2,
614 .reset = 0x4401,
615 },
616 [ ICH6_REG_VMIN ] = {
617 .name = "VMIN",
618 .size = 1,
619 },
620 [ ICH6_REG_VMAJ ] = {
621 .name = "VMAJ",
622 .size = 1,
623 .reset = 1,
624 },
625 [ ICH6_REG_OUTPAY ] = {
626 .name = "OUTPAY",
627 .size = 2,
628 .reset = 0x3c,
629 },
630 [ ICH6_REG_INPAY ] = {
631 .name = "INPAY",
632 .size = 2,
633 .reset = 0x1d,
634 },
635 [ ICH6_REG_GCTL ] = {
636 .name = "GCTL",
637 .size = 4,
638 .wmask = 0x0103,
639 .offset = offsetof(IntelHDAState, g_ctl),
640 .whandler = intel_hda_set_g_ctl,
641 },
642 [ ICH6_REG_WAKEEN ] = {
643 .name = "WAKEEN",
644 .size = 2,
645 .wmask = 0x7fff,
646 .offset = offsetof(IntelHDAState, wake_en),
647 .whandler = intel_hda_set_wake_en,
648 },
649 [ ICH6_REG_STATESTS ] = {
650 .name = "STATESTS",
651 .size = 2,
652 .wmask = 0x7fff,
653 .wclear = 0x7fff,
654 .offset = offsetof(IntelHDAState, state_sts),
655 .whandler = intel_hda_set_state_sts,
656 },
657
658 /* interrupts */
659 [ ICH6_REG_INTCTL ] = {
660 .name = "INTCTL",
661 .size = 4,
662 .wmask = 0xc00000ff,
663 .offset = offsetof(IntelHDAState, int_ctl),
664 .whandler = intel_hda_set_int_ctl,
665 },
666 [ ICH6_REG_INTSTS ] = {
667 .name = "INTSTS",
668 .size = 4,
669 .wmask = 0xc00000ff,
670 .wclear = 0xc00000ff,
671 .offset = offsetof(IntelHDAState, int_sts),
672 },
673
674 /* misc */
675 [ ICH6_REG_WALLCLK ] = {
676 .name = "WALLCLK",
677 .size = 4,
678 .offset = offsetof(IntelHDAState, wall_clk),
679 .rhandler = intel_hda_get_wall_clk,
680 },
681
682 /* dma engine */
683 [ ICH6_REG_CORBLBASE ] = {
684 .name = "CORBLBASE",
685 .size = 4,
686 .wmask = 0xffffff80,
687 .offset = offsetof(IntelHDAState, corb_lbase),
688 },
689 [ ICH6_REG_CORBUBASE ] = {
690 .name = "CORBUBASE",
691 .size = 4,
692 .wmask = 0xffffffff,
693 .offset = offsetof(IntelHDAState, corb_ubase),
694 },
695 [ ICH6_REG_CORBWP ] = {
696 .name = "CORBWP",
697 .size = 2,
698 .wmask = 0xff,
699 .offset = offsetof(IntelHDAState, corb_wp),
700 .whandler = intel_hda_set_corb_wp,
701 },
702 [ ICH6_REG_CORBRP ] = {
703 .name = "CORBRP",
704 .size = 2,
705 .wmask = 0x80ff,
706 .offset = offsetof(IntelHDAState, corb_rp),
707 },
708 [ ICH6_REG_CORBCTL ] = {
709 .name = "CORBCTL",
710 .size = 1,
711 .wmask = 0x03,
712 .offset = offsetof(IntelHDAState, corb_ctl),
713 .whandler = intel_hda_set_corb_ctl,
714 },
715 [ ICH6_REG_CORBSTS ] = {
716 .name = "CORBSTS",
717 .size = 1,
718 .wmask = 0x01,
719 .wclear = 0x01,
720 .offset = offsetof(IntelHDAState, corb_sts),
721 },
722 [ ICH6_REG_CORBSIZE ] = {
723 .name = "CORBSIZE",
724 .size = 1,
725 .reset = 0x42,
726 .offset = offsetof(IntelHDAState, corb_size),
727 },
728 [ ICH6_REG_RIRBLBASE ] = {
729 .name = "RIRBLBASE",
730 .size = 4,
731 .wmask = 0xffffff80,
732 .offset = offsetof(IntelHDAState, rirb_lbase),
733 },
734 [ ICH6_REG_RIRBUBASE ] = {
735 .name = "RIRBUBASE",
736 .size = 4,
737 .wmask = 0xffffffff,
738 .offset = offsetof(IntelHDAState, rirb_ubase),
739 },
740 [ ICH6_REG_RIRBWP ] = {
741 .name = "RIRBWP",
742 .size = 2,
743 .wmask = 0x8000,
744 .offset = offsetof(IntelHDAState, rirb_wp),
745 .whandler = intel_hda_set_rirb_wp,
746 },
747 [ ICH6_REG_RINTCNT ] = {
748 .name = "RINTCNT",
749 .size = 2,
750 .wmask = 0xff,
751 .offset = offsetof(IntelHDAState, rirb_cnt),
752 },
753 [ ICH6_REG_RIRBCTL ] = {
754 .name = "RIRBCTL",
755 .size = 1,
756 .wmask = 0x07,
757 .offset = offsetof(IntelHDAState, rirb_ctl),
758 },
759 [ ICH6_REG_RIRBSTS ] = {
760 .name = "RIRBSTS",
761 .size = 1,
762 .wmask = 0x05,
763 .wclear = 0x05,
764 .offset = offsetof(IntelHDAState, rirb_sts),
765 .whandler = intel_hda_set_rirb_sts,
766 },
767 [ ICH6_REG_RIRBSIZE ] = {
768 .name = "RIRBSIZE",
769 .size = 1,
770 .reset = 0x42,
771 .offset = offsetof(IntelHDAState, rirb_size),
772 },
773
774 [ ICH6_REG_DPLBASE ] = {
775 .name = "DPLBASE",
776 .size = 4,
777 .wmask = 0xffffff81,
778 .offset = offsetof(IntelHDAState, dp_lbase),
779 },
780 [ ICH6_REG_DPUBASE ] = {
781 .name = "DPUBASE",
782 .size = 4,
783 .wmask = 0xffffffff,
784 .offset = offsetof(IntelHDAState, dp_ubase),
785 },
786
787 [ ICH6_REG_IC ] = {
788 .name = "ICW",
789 .size = 4,
790 .wmask = 0xffffffff,
791 .offset = offsetof(IntelHDAState, icw),
792 },
793 [ ICH6_REG_IR ] = {
794 .name = "IRR",
795 .size = 4,
796 .offset = offsetof(IntelHDAState, irr),
797 },
798 [ ICH6_REG_IRS ] = {
799 .name = "ICS",
800 .size = 2,
801 .wmask = 0x0003,
802 .wclear = 0x0002,
803 .offset = offsetof(IntelHDAState, ics),
804 .whandler = intel_hda_set_ics,
805 },
806
807 #define HDA_STREAM(_t, _i) \
808 [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \
809 .stream = _i, \
810 .name = _t stringify(_i) " CTL", \
811 .size = 4, \
812 .wmask = 0x1cff001f, \
813 .offset = offsetof(IntelHDAState, st[_i].ctl), \
814 .whandler = intel_hda_set_st_ctl, \
815 }, \
816 [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \
817 .stream = _i, \
818 .name = _t stringify(_i) " CTL(stnr)", \
819 .size = 1, \
820 .shift = 16, \
821 .wmask = 0x00ff0000, \
822 .offset = offsetof(IntelHDAState, st[_i].ctl), \
823 .whandler = intel_hda_set_st_ctl, \
824 }, \
825 [ ST_REG(_i, ICH6_REG_SD_STS)] = { \
826 .stream = _i, \
827 .name = _t stringify(_i) " CTL(sts)", \
828 .size = 1, \
829 .shift = 24, \
830 .wmask = 0x1c000000, \
831 .wclear = 0x1c000000, \
832 .offset = offsetof(IntelHDAState, st[_i].ctl), \
833 .whandler = intel_hda_set_st_ctl, \
834 .reset = SD_STS_FIFO_READY << 24 \
835 }, \
836 [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \
837 .stream = _i, \
838 .name = _t stringify(_i) " LPIB", \
839 .size = 4, \
840 .offset = offsetof(IntelHDAState, st[_i].lpib), \
841 }, \
842 [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \
843 .stream = _i, \
844 .name = _t stringify(_i) " CBL", \
845 .size = 4, \
846 .wmask = 0xffffffff, \
847 .offset = offsetof(IntelHDAState, st[_i].cbl), \
848 }, \
849 [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \
850 .stream = _i, \
851 .name = _t stringify(_i) " LVI", \
852 .size = 2, \
853 .wmask = 0x00ff, \
854 .offset = offsetof(IntelHDAState, st[_i].lvi), \
855 }, \
856 [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \
857 .stream = _i, \
858 .name = _t stringify(_i) " FIFOS", \
859 .size = 2, \
860 .reset = HDA_BUFFER_SIZE, \
861 }, \
862 [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \
863 .stream = _i, \
864 .name = _t stringify(_i) " FMT", \
865 .size = 2, \
866 .wmask = 0x7f7f, \
867 .offset = offsetof(IntelHDAState, st[_i].fmt), \
868 }, \
869 [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \
870 .stream = _i, \
871 .name = _t stringify(_i) " BDLPL", \
872 .size = 4, \
873 .wmask = 0xffffff80, \
874 .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \
875 }, \
876 [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \
877 .stream = _i, \
878 .name = _t stringify(_i) " BDLPU", \
879 .size = 4, \
880 .wmask = 0xffffffff, \
881 .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \
882 }, \
883
884 HDA_STREAM("IN", 0)
885 HDA_STREAM("IN", 1)
886 HDA_STREAM("IN", 2)
887 HDA_STREAM("IN", 3)
888
889 HDA_STREAM("OUT", 4)
890 HDA_STREAM("OUT", 5)
891 HDA_STREAM("OUT", 6)
892 HDA_STREAM("OUT", 7)
893
894 };
895
intel_hda_reg_find(IntelHDAState * d,hwaddr addr)896 static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, hwaddr addr)
897 {
898 const IntelHDAReg *reg;
899
900 if (addr >= ARRAY_SIZE(regtab)) {
901 goto noreg;
902 }
903 reg = regtab+addr;
904 if (reg->name == NULL) {
905 goto noreg;
906 }
907 return reg;
908
909 noreg:
910 dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr);
911 return NULL;
912 }
913
intel_hda_reg_addr(IntelHDAState * d,const IntelHDAReg * reg)914 static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg)
915 {
916 uint8_t *addr = (void*)d;
917
918 addr += reg->offset;
919 return (uint32_t*)addr;
920 }
921
intel_hda_reg_write(IntelHDAState * d,const IntelHDAReg * reg,uint32_t val,uint32_t wmask)922 static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val,
923 uint32_t wmask)
924 {
925 uint32_t *addr;
926 uint32_t old;
927
928 if (!reg) {
929 return;
930 }
931 if (!reg->wmask) {
932 qemu_log_mask(LOG_GUEST_ERROR, "intel-hda: write to r/o reg %s\n",
933 reg->name);
934 return;
935 }
936
937 if (d->debug) {
938 time_t now = time(NULL);
939 if (d->last_write && d->last_reg == reg && d->last_val == val) {
940 d->repeat_count++;
941 if (d->last_sec != now) {
942 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
943 d->last_sec = now;
944 d->repeat_count = 0;
945 }
946 } else {
947 if (d->repeat_count) {
948 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
949 }
950 dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask);
951 d->last_write = 1;
952 d->last_reg = reg;
953 d->last_val = val;
954 d->last_sec = now;
955 d->repeat_count = 0;
956 }
957 }
958 assert(reg->offset != 0);
959
960 addr = intel_hda_reg_addr(d, reg);
961 old = *addr;
962
963 if (reg->shift) {
964 val <<= reg->shift;
965 wmask <<= reg->shift;
966 }
967 wmask &= reg->wmask;
968 *addr &= ~wmask;
969 *addr |= wmask & val;
970 *addr &= ~(val & reg->wclear);
971
972 if (reg->whandler) {
973 reg->whandler(d, reg, old);
974 }
975 }
976
intel_hda_reg_read(IntelHDAState * d,const IntelHDAReg * reg,uint32_t rmask)977 static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg,
978 uint32_t rmask)
979 {
980 uint32_t *addr, ret;
981
982 if (!reg) {
983 return 0;
984 }
985
986 if (reg->rhandler) {
987 reg->rhandler(d, reg);
988 }
989
990 if (reg->offset == 0) {
991 /* constant read-only register */
992 ret = reg->reset;
993 } else {
994 addr = intel_hda_reg_addr(d, reg);
995 ret = *addr;
996 if (reg->shift) {
997 ret >>= reg->shift;
998 }
999 ret &= rmask;
1000 }
1001 if (d->debug) {
1002 time_t now = time(NULL);
1003 if (!d->last_write && d->last_reg == reg && d->last_val == ret) {
1004 d->repeat_count++;
1005 if (d->last_sec != now) {
1006 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
1007 d->last_sec = now;
1008 d->repeat_count = 0;
1009 }
1010 } else {
1011 if (d->repeat_count) {
1012 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
1013 }
1014 dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask);
1015 d->last_write = 0;
1016 d->last_reg = reg;
1017 d->last_val = ret;
1018 d->last_sec = now;
1019 d->repeat_count = 0;
1020 }
1021 }
1022 return ret;
1023 }
1024
intel_hda_regs_reset(IntelHDAState * d)1025 static void intel_hda_regs_reset(IntelHDAState *d)
1026 {
1027 uint32_t *addr;
1028 int i;
1029
1030 for (i = 0; i < ARRAY_SIZE(regtab); i++) {
1031 if (regtab[i].name == NULL) {
1032 continue;
1033 }
1034 if (regtab[i].offset == 0) {
1035 continue;
1036 }
1037 addr = intel_hda_reg_addr(d, regtab + i);
1038 *addr = regtab[i].reset;
1039 }
1040 }
1041
1042 /* --------------------------------------------------------------------- */
1043
intel_hda_mmio_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)1044 static void intel_hda_mmio_write(void *opaque, hwaddr addr, uint64_t val,
1045 unsigned size)
1046 {
1047 IntelHDAState *d = opaque;
1048 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1049
1050 intel_hda_reg_write(d, reg, val, MAKE_64BIT_MASK(0, size * 8));
1051 }
1052
intel_hda_mmio_read(void * opaque,hwaddr addr,unsigned size)1053 static uint64_t intel_hda_mmio_read(void *opaque, hwaddr addr, unsigned size)
1054 {
1055 IntelHDAState *d = opaque;
1056 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1057
1058 return intel_hda_reg_read(d, reg, MAKE_64BIT_MASK(0, size * 8));
1059 }
1060
1061 static const MemoryRegionOps intel_hda_mmio_ops = {
1062 .read = intel_hda_mmio_read,
1063 .write = intel_hda_mmio_write,
1064 .impl = {
1065 .min_access_size = 1,
1066 .max_access_size = 4,
1067 },
1068 .endianness = DEVICE_NATIVE_ENDIAN,
1069 };
1070
1071 /* --------------------------------------------------------------------- */
1072
intel_hda_reset(DeviceState * dev)1073 static void intel_hda_reset(DeviceState *dev)
1074 {
1075 BusChild *kid;
1076 IntelHDAState *d = INTEL_HDA(dev);
1077 HDACodecDevice *cdev;
1078
1079 intel_hda_regs_reset(d);
1080 d->wall_base_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1081
1082 QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) {
1083 DeviceState *qdev = kid->child;
1084 cdev = HDA_CODEC_DEVICE(qdev);
1085 d->state_sts |= (1 << cdev->cad);
1086 }
1087 intel_hda_update_irq(d);
1088 }
1089
intel_hda_realize(PCIDevice * pci,Error ** errp)1090 static void intel_hda_realize(PCIDevice *pci, Error **errp)
1091 {
1092 IntelHDAState *d = INTEL_HDA(pci);
1093 uint8_t *conf = d->pci.config;
1094 Error *err = NULL;
1095 int ret;
1096
1097 d->name = object_get_typename(OBJECT(d));
1098
1099 pci_config_set_interrupt_pin(conf, 1);
1100
1101 /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
1102 conf[0x40] = 0x01;
1103
1104 if (d->msi != ON_OFF_AUTO_OFF) {
1105 ret = msi_init(&d->pci, d->old_msi_addr ? 0x50 : 0x60,
1106 1, true, false, &err);
1107 /* Any error other than -ENOTSUP(board's MSI support is broken)
1108 * is a programming error */
1109 assert(!ret || ret == -ENOTSUP);
1110 if (ret && d->msi == ON_OFF_AUTO_ON) {
1111 /* Can't satisfy user's explicit msi=on request, fail */
1112 error_append_hint(&err, "You have to use msi=auto (default) or "
1113 "msi=off with this machine type.\n");
1114 error_propagate(errp, err);
1115 return;
1116 }
1117 assert(!err || d->msi == ON_OFF_AUTO_AUTO);
1118 /* With msi=auto, we fall back to MSI off silently */
1119 error_free(err);
1120 }
1121
1122 memory_region_init(&d->container, OBJECT(d),
1123 "intel-hda-container", 0x4000);
1124 memory_region_init_io(&d->mmio, OBJECT(d), &intel_hda_mmio_ops, d,
1125 "intel-hda", 0x2000);
1126 memory_region_add_subregion(&d->container, 0x0000, &d->mmio);
1127 memory_region_init_alias(&d->alias, OBJECT(d), "intel-hda-alias",
1128 &d->mmio, 0, 0x2000);
1129 memory_region_add_subregion(&d->container, 0x2000, &d->alias);
1130 pci_register_bar(&d->pci, 0, 0, &d->container);
1131
1132 hda_codec_bus_init(DEVICE(pci), &d->codecs, sizeof(d->codecs),
1133 intel_hda_response, intel_hda_xfer);
1134 }
1135
intel_hda_exit(PCIDevice * pci)1136 static void intel_hda_exit(PCIDevice *pci)
1137 {
1138 IntelHDAState *d = INTEL_HDA(pci);
1139
1140 msi_uninit(&d->pci);
1141 }
1142
intel_hda_post_load(void * opaque,int version)1143 static int intel_hda_post_load(void *opaque, int version)
1144 {
1145 IntelHDAState* d = opaque;
1146 int i;
1147
1148 dprint(d, 1, "%s\n", __func__);
1149 for (i = 0; i < ARRAY_SIZE(d->st); i++) {
1150 if (d->st[i].ctl & 0x02) {
1151 intel_hda_parse_bdl(d, &d->st[i]);
1152 }
1153 }
1154 intel_hda_update_irq(d);
1155 return 0;
1156 }
1157
1158 static const VMStateDescription vmstate_intel_hda_stream = {
1159 .name = "intel-hda-stream",
1160 .version_id = 1,
1161 .fields = (const VMStateField[]) {
1162 VMSTATE_UINT32(ctl, IntelHDAStream),
1163 VMSTATE_UINT32(lpib, IntelHDAStream),
1164 VMSTATE_UINT32(cbl, IntelHDAStream),
1165 VMSTATE_UINT32(lvi, IntelHDAStream),
1166 VMSTATE_UINT32(fmt, IntelHDAStream),
1167 VMSTATE_UINT32(bdlp_lbase, IntelHDAStream),
1168 VMSTATE_UINT32(bdlp_ubase, IntelHDAStream),
1169 VMSTATE_END_OF_LIST()
1170 }
1171 };
1172
1173 static const VMStateDescription vmstate_intel_hda = {
1174 .name = "intel-hda",
1175 .version_id = 1,
1176 .post_load = intel_hda_post_load,
1177 .fields = (const VMStateField[]) {
1178 VMSTATE_PCI_DEVICE(pci, IntelHDAState),
1179
1180 /* registers */
1181 VMSTATE_UINT32(g_ctl, IntelHDAState),
1182 VMSTATE_UINT32(wake_en, IntelHDAState),
1183 VMSTATE_UINT32(state_sts, IntelHDAState),
1184 VMSTATE_UINT32(int_ctl, IntelHDAState),
1185 VMSTATE_UINT32(int_sts, IntelHDAState),
1186 VMSTATE_UINT32(wall_clk, IntelHDAState),
1187 VMSTATE_UINT32(corb_lbase, IntelHDAState),
1188 VMSTATE_UINT32(corb_ubase, IntelHDAState),
1189 VMSTATE_UINT32(corb_rp, IntelHDAState),
1190 VMSTATE_UINT32(corb_wp, IntelHDAState),
1191 VMSTATE_UINT32(corb_ctl, IntelHDAState),
1192 VMSTATE_UINT32(corb_sts, IntelHDAState),
1193 VMSTATE_UINT32(corb_size, IntelHDAState),
1194 VMSTATE_UINT32(rirb_lbase, IntelHDAState),
1195 VMSTATE_UINT32(rirb_ubase, IntelHDAState),
1196 VMSTATE_UINT32(rirb_wp, IntelHDAState),
1197 VMSTATE_UINT32(rirb_cnt, IntelHDAState),
1198 VMSTATE_UINT32(rirb_ctl, IntelHDAState),
1199 VMSTATE_UINT32(rirb_sts, IntelHDAState),
1200 VMSTATE_UINT32(rirb_size, IntelHDAState),
1201 VMSTATE_UINT32(dp_lbase, IntelHDAState),
1202 VMSTATE_UINT32(dp_ubase, IntelHDAState),
1203 VMSTATE_UINT32(icw, IntelHDAState),
1204 VMSTATE_UINT32(irr, IntelHDAState),
1205 VMSTATE_UINT32(ics, IntelHDAState),
1206 VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0,
1207 vmstate_intel_hda_stream,
1208 IntelHDAStream),
1209
1210 /* additional state info */
1211 VMSTATE_UINT32(rirb_count, IntelHDAState),
1212 VMSTATE_INT64(wall_base_ns, IntelHDAState),
1213
1214 VMSTATE_END_OF_LIST()
1215 }
1216 };
1217
1218 static Property intel_hda_properties[] = {
1219 DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0),
1220 DEFINE_PROP_ON_OFF_AUTO("msi", IntelHDAState, msi, ON_OFF_AUTO_AUTO),
1221 DEFINE_PROP_BOOL("old_msi_addr", IntelHDAState, old_msi_addr, false),
1222 DEFINE_PROP_END_OF_LIST(),
1223 };
1224
intel_hda_class_init(ObjectClass * klass,void * data)1225 static void intel_hda_class_init(ObjectClass *klass, void *data)
1226 {
1227 DeviceClass *dc = DEVICE_CLASS(klass);
1228 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1229
1230 k->realize = intel_hda_realize;
1231 k->exit = intel_hda_exit;
1232 k->vendor_id = PCI_VENDOR_ID_INTEL;
1233 k->class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO;
1234 dc->reset = intel_hda_reset;
1235 dc->vmsd = &vmstate_intel_hda;
1236 device_class_set_props(dc, intel_hda_properties);
1237 }
1238
intel_hda_class_init_ich6(ObjectClass * klass,void * data)1239 static void intel_hda_class_init_ich6(ObjectClass *klass, void *data)
1240 {
1241 DeviceClass *dc = DEVICE_CLASS(klass);
1242 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1243
1244 k->device_id = 0x2668;
1245 k->revision = 1;
1246 set_bit(DEVICE_CATEGORY_SOUND, dc->categories);
1247 dc->desc = "Intel HD Audio Controller (ich6)";
1248 }
1249
intel_hda_class_init_ich9(ObjectClass * klass,void * data)1250 static void intel_hda_class_init_ich9(ObjectClass *klass, void *data)
1251 {
1252 DeviceClass *dc = DEVICE_CLASS(klass);
1253 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1254
1255 k->device_id = 0x293e;
1256 k->revision = 3;
1257 set_bit(DEVICE_CATEGORY_SOUND, dc->categories);
1258 dc->desc = "Intel HD Audio Controller (ich9)";
1259 }
1260
1261 static const TypeInfo intel_hda_info = {
1262 .name = TYPE_INTEL_HDA_GENERIC,
1263 .parent = TYPE_PCI_DEVICE,
1264 .instance_size = sizeof(IntelHDAState),
1265 .class_init = intel_hda_class_init,
1266 .abstract = true,
1267 .interfaces = (InterfaceInfo[]) {
1268 { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1269 { },
1270 },
1271 };
1272
1273 static const TypeInfo intel_hda_info_ich6 = {
1274 .name = "intel-hda",
1275 .parent = TYPE_INTEL_HDA_GENERIC,
1276 .class_init = intel_hda_class_init_ich6,
1277 };
1278
1279 static const TypeInfo intel_hda_info_ich9 = {
1280 .name = "ich9-intel-hda",
1281 .parent = TYPE_INTEL_HDA_GENERIC,
1282 .class_init = intel_hda_class_init_ich9,
1283 };
1284
hda_codec_device_class_init(ObjectClass * klass,void * data)1285 static void hda_codec_device_class_init(ObjectClass *klass, void *data)
1286 {
1287 DeviceClass *k = DEVICE_CLASS(klass);
1288 k->realize = hda_codec_dev_realize;
1289 k->unrealize = hda_codec_dev_unrealize;
1290 set_bit(DEVICE_CATEGORY_SOUND, k->categories);
1291 k->bus_type = TYPE_HDA_BUS;
1292 device_class_set_props(k, hda_props);
1293 }
1294
1295 static const TypeInfo hda_codec_device_type_info = {
1296 .name = TYPE_HDA_CODEC_DEVICE,
1297 .parent = TYPE_DEVICE,
1298 .instance_size = sizeof(HDACodecDevice),
1299 .abstract = true,
1300 .class_size = sizeof(HDACodecDeviceClass),
1301 .class_init = hda_codec_device_class_init,
1302 };
1303
1304 /*
1305 * create intel hda controller with codec attached to it,
1306 * so '-soundhw hda' works.
1307 */
intel_hda_and_codec_init(PCIBus * bus,const char * audiodev)1308 static int intel_hda_and_codec_init(PCIBus *bus, const char *audiodev)
1309 {
1310 DeviceState *controller;
1311 BusState *hdabus;
1312 DeviceState *codec;
1313
1314 controller = DEVICE(pci_create_simple(bus, -1, "intel-hda"));
1315 hdabus = QLIST_FIRST(&controller->child_bus);
1316 codec = qdev_new("hda-duplex");
1317 qdev_prop_set_string(codec, "audiodev", audiodev);
1318 qdev_realize_and_unref(codec, hdabus, &error_fatal);
1319 return 0;
1320 }
1321
intel_hda_register_types(void)1322 static void intel_hda_register_types(void)
1323 {
1324 type_register_static(&hda_codec_bus_info);
1325 type_register_static(&intel_hda_info);
1326 type_register_static(&intel_hda_info_ich6);
1327 type_register_static(&intel_hda_info_ich9);
1328 type_register_static(&hda_codec_device_type_info);
1329 pci_register_soundhw("hda", "Intel HD Audio", intel_hda_and_codec_init);
1330 }
1331
1332 type_init(intel_hda_register_types)
1333