xref: /openbmc/linux/fs/exec.c (revision 360823a09426347ea8f232b0b0b5156d0aed0302)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/fs/exec.c
4   *
5   *  Copyright (C) 1991, 1992  Linus Torvalds
6   */
7  
8  /*
9   * #!-checking implemented by tytso.
10   */
11  /*
12   * Demand-loading implemented 01.12.91 - no need to read anything but
13   * the header into memory. The inode of the executable is put into
14   * "current->executable", and page faults do the actual loading. Clean.
15   *
16   * Once more I can proudly say that linux stood up to being changed: it
17   * was less than 2 hours work to get demand-loading completely implemented.
18   *
19   * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20   * current->executable is only used by the procfs.  This allows a dispatch
21   * table to check for several different types  of binary formats.  We keep
22   * trying until we recognize the file or we run out of supported binary
23   * formats.
24   */
25  
26  #include <linux/kernel_read_file.h>
27  #include <linux/slab.h>
28  #include <linux/file.h>
29  #include <linux/fdtable.h>
30  #include <linux/mm.h>
31  #include <linux/stat.h>
32  #include <linux/fcntl.h>
33  #include <linux/swap.h>
34  #include <linux/string.h>
35  #include <linux/init.h>
36  #include <linux/sched/mm.h>
37  #include <linux/sched/coredump.h>
38  #include <linux/sched/signal.h>
39  #include <linux/sched/numa_balancing.h>
40  #include <linux/sched/task.h>
41  #include <linux/pagemap.h>
42  #include <linux/perf_event.h>
43  #include <linux/highmem.h>
44  #include <linux/spinlock.h>
45  #include <linux/key.h>
46  #include <linux/personality.h>
47  #include <linux/binfmts.h>
48  #include <linux/utsname.h>
49  #include <linux/pid_namespace.h>
50  #include <linux/module.h>
51  #include <linux/namei.h>
52  #include <linux/mount.h>
53  #include <linux/security.h>
54  #include <linux/syscalls.h>
55  #include <linux/tsacct_kern.h>
56  #include <linux/cn_proc.h>
57  #include <linux/audit.h>
58  #include <linux/kmod.h>
59  #include <linux/fsnotify.h>
60  #include <linux/fs_struct.h>
61  #include <linux/oom.h>
62  #include <linux/compat.h>
63  #include <linux/vmalloc.h>
64  #include <linux/io_uring.h>
65  #include <linux/syscall_user_dispatch.h>
66  #include <linux/coredump.h>
67  #include <linux/time_namespace.h>
68  #include <linux/user_events.h>
69  
70  #include <linux/uaccess.h>
71  #include <asm/mmu_context.h>
72  #include <asm/tlb.h>
73  
74  #include <trace/events/task.h>
75  #include "internal.h"
76  
77  #include <trace/events/sched.h>
78  
79  static int bprm_creds_from_file(struct linux_binprm *bprm);
80  
81  int suid_dumpable = 0;
82  
83  static LIST_HEAD(formats);
84  static DEFINE_RWLOCK(binfmt_lock);
85  
__register_binfmt(struct linux_binfmt * fmt,int insert)86  void __register_binfmt(struct linux_binfmt * fmt, int insert)
87  {
88  	write_lock(&binfmt_lock);
89  	insert ? list_add(&fmt->lh, &formats) :
90  		 list_add_tail(&fmt->lh, &formats);
91  	write_unlock(&binfmt_lock);
92  }
93  
94  EXPORT_SYMBOL(__register_binfmt);
95  
unregister_binfmt(struct linux_binfmt * fmt)96  void unregister_binfmt(struct linux_binfmt * fmt)
97  {
98  	write_lock(&binfmt_lock);
99  	list_del(&fmt->lh);
100  	write_unlock(&binfmt_lock);
101  }
102  
103  EXPORT_SYMBOL(unregister_binfmt);
104  
put_binfmt(struct linux_binfmt * fmt)105  static inline void put_binfmt(struct linux_binfmt * fmt)
106  {
107  	module_put(fmt->module);
108  }
109  
path_noexec(const struct path * path)110  bool path_noexec(const struct path *path)
111  {
112  	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113  	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114  }
115  
116  #ifdef CONFIG_USELIB
117  /*
118   * Note that a shared library must be both readable and executable due to
119   * security reasons.
120   *
121   * Also note that we take the address to load from the file itself.
122   */
SYSCALL_DEFINE1(uselib,const char __user *,library)123  SYSCALL_DEFINE1(uselib, const char __user *, library)
124  {
125  	struct linux_binfmt *fmt;
126  	struct file *file;
127  	struct filename *tmp = getname(library);
128  	int error = PTR_ERR(tmp);
129  	static const struct open_flags uselib_flags = {
130  		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131  		.acc_mode = MAY_READ | MAY_EXEC,
132  		.intent = LOOKUP_OPEN,
133  		.lookup_flags = LOOKUP_FOLLOW,
134  	};
135  
136  	if (IS_ERR(tmp))
137  		goto out;
138  
139  	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
140  	putname(tmp);
141  	error = PTR_ERR(file);
142  	if (IS_ERR(file))
143  		goto out;
144  
145  	/*
146  	 * Check do_open_execat() for an explanation.
147  	 */
148  	error = -EACCES;
149  	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
150  	    path_noexec(&file->f_path))
151  		goto exit;
152  
153  	error = -ENOEXEC;
154  
155  	read_lock(&binfmt_lock);
156  	list_for_each_entry(fmt, &formats, lh) {
157  		if (!fmt->load_shlib)
158  			continue;
159  		if (!try_module_get(fmt->module))
160  			continue;
161  		read_unlock(&binfmt_lock);
162  		error = fmt->load_shlib(file);
163  		read_lock(&binfmt_lock);
164  		put_binfmt(fmt);
165  		if (error != -ENOEXEC)
166  			break;
167  	}
168  	read_unlock(&binfmt_lock);
169  exit:
170  	fput(file);
171  out:
172  	return error;
173  }
174  #endif /* #ifdef CONFIG_USELIB */
175  
176  #ifdef CONFIG_MMU
177  /*
178   * The nascent bprm->mm is not visible until exec_mmap() but it can
179   * use a lot of memory, account these pages in current->mm temporary
180   * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
181   * change the counter back via acct_arg_size(0).
182   */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)183  static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
184  {
185  	struct mm_struct *mm = current->mm;
186  	long diff = (long)(pages - bprm->vma_pages);
187  
188  	if (!mm || !diff)
189  		return;
190  
191  	bprm->vma_pages = pages;
192  	add_mm_counter(mm, MM_ANONPAGES, diff);
193  }
194  
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)195  static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
196  		int write)
197  {
198  	struct page *page;
199  	struct vm_area_struct *vma = bprm->vma;
200  	struct mm_struct *mm = bprm->mm;
201  	int ret;
202  
203  	/*
204  	 * Avoid relying on expanding the stack down in GUP (which
205  	 * does not work for STACK_GROWSUP anyway), and just do it
206  	 * by hand ahead of time.
207  	 */
208  	if (write && pos < vma->vm_start) {
209  		mmap_write_lock(mm);
210  		ret = expand_downwards(vma, pos);
211  		if (unlikely(ret < 0)) {
212  			mmap_write_unlock(mm);
213  			return NULL;
214  		}
215  		mmap_write_downgrade(mm);
216  	} else
217  		mmap_read_lock(mm);
218  
219  	/*
220  	 * We are doing an exec().  'current' is the process
221  	 * doing the exec and 'mm' is the new process's mm.
222  	 */
223  	ret = get_user_pages_remote(mm, pos, 1,
224  			write ? FOLL_WRITE : 0,
225  			&page, NULL);
226  	mmap_read_unlock(mm);
227  	if (ret <= 0)
228  		return NULL;
229  
230  	if (write)
231  		acct_arg_size(bprm, vma_pages(vma));
232  
233  	return page;
234  }
235  
put_arg_page(struct page * page)236  static void put_arg_page(struct page *page)
237  {
238  	put_page(page);
239  }
240  
free_arg_pages(struct linux_binprm * bprm)241  static void free_arg_pages(struct linux_binprm *bprm)
242  {
243  }
244  
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)245  static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
246  		struct page *page)
247  {
248  	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
249  }
250  
__bprm_mm_init(struct linux_binprm * bprm)251  static int __bprm_mm_init(struct linux_binprm *bprm)
252  {
253  	int err;
254  	struct vm_area_struct *vma = NULL;
255  	struct mm_struct *mm = bprm->mm;
256  
257  	bprm->vma = vma = vm_area_alloc(mm);
258  	if (!vma)
259  		return -ENOMEM;
260  	vma_set_anonymous(vma);
261  
262  	if (mmap_write_lock_killable(mm)) {
263  		err = -EINTR;
264  		goto err_free;
265  	}
266  
267  	/*
268  	 * Place the stack at the largest stack address the architecture
269  	 * supports. Later, we'll move this to an appropriate place. We don't
270  	 * use STACK_TOP because that can depend on attributes which aren't
271  	 * configured yet.
272  	 */
273  	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
274  	vma->vm_end = STACK_TOP_MAX;
275  	vma->vm_start = vma->vm_end - PAGE_SIZE;
276  	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
277  	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
278  
279  	err = insert_vm_struct(mm, vma);
280  	if (err)
281  		goto err;
282  
283  	mm->stack_vm = mm->total_vm = 1;
284  	mmap_write_unlock(mm);
285  	bprm->p = vma->vm_end - sizeof(void *);
286  	return 0;
287  err:
288  	mmap_write_unlock(mm);
289  err_free:
290  	bprm->vma = NULL;
291  	vm_area_free(vma);
292  	return err;
293  }
294  
valid_arg_len(struct linux_binprm * bprm,long len)295  static bool valid_arg_len(struct linux_binprm *bprm, long len)
296  {
297  	return len <= MAX_ARG_STRLEN;
298  }
299  
300  #else
301  
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)302  static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
303  {
304  }
305  
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)306  static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
307  		int write)
308  {
309  	struct page *page;
310  
311  	page = bprm->page[pos / PAGE_SIZE];
312  	if (!page && write) {
313  		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
314  		if (!page)
315  			return NULL;
316  		bprm->page[pos / PAGE_SIZE] = page;
317  	}
318  
319  	return page;
320  }
321  
put_arg_page(struct page * page)322  static void put_arg_page(struct page *page)
323  {
324  }
325  
free_arg_page(struct linux_binprm * bprm,int i)326  static void free_arg_page(struct linux_binprm *bprm, int i)
327  {
328  	if (bprm->page[i]) {
329  		__free_page(bprm->page[i]);
330  		bprm->page[i] = NULL;
331  	}
332  }
333  
free_arg_pages(struct linux_binprm * bprm)334  static void free_arg_pages(struct linux_binprm *bprm)
335  {
336  	int i;
337  
338  	for (i = 0; i < MAX_ARG_PAGES; i++)
339  		free_arg_page(bprm, i);
340  }
341  
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)342  static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
343  		struct page *page)
344  {
345  }
346  
__bprm_mm_init(struct linux_binprm * bprm)347  static int __bprm_mm_init(struct linux_binprm *bprm)
348  {
349  	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
350  	return 0;
351  }
352  
valid_arg_len(struct linux_binprm * bprm,long len)353  static bool valid_arg_len(struct linux_binprm *bprm, long len)
354  {
355  	return len <= bprm->p;
356  }
357  
358  #endif /* CONFIG_MMU */
359  
360  /*
361   * Create a new mm_struct and populate it with a temporary stack
362   * vm_area_struct.  We don't have enough context at this point to set the stack
363   * flags, permissions, and offset, so we use temporary values.  We'll update
364   * them later in setup_arg_pages().
365   */
bprm_mm_init(struct linux_binprm * bprm)366  static int bprm_mm_init(struct linux_binprm *bprm)
367  {
368  	int err;
369  	struct mm_struct *mm = NULL;
370  
371  	bprm->mm = mm = mm_alloc();
372  	err = -ENOMEM;
373  	if (!mm)
374  		goto err;
375  
376  	/* Save current stack limit for all calculations made during exec. */
377  	task_lock(current->group_leader);
378  	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
379  	task_unlock(current->group_leader);
380  
381  	err = __bprm_mm_init(bprm);
382  	if (err)
383  		goto err;
384  
385  	return 0;
386  
387  err:
388  	if (mm) {
389  		bprm->mm = NULL;
390  		mmdrop(mm);
391  	}
392  
393  	return err;
394  }
395  
396  struct user_arg_ptr {
397  #ifdef CONFIG_COMPAT
398  	bool is_compat;
399  #endif
400  	union {
401  		const char __user *const __user *native;
402  #ifdef CONFIG_COMPAT
403  		const compat_uptr_t __user *compat;
404  #endif
405  	} ptr;
406  };
407  
get_user_arg_ptr(struct user_arg_ptr argv,int nr)408  static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
409  {
410  	const char __user *native;
411  
412  #ifdef CONFIG_COMPAT
413  	if (unlikely(argv.is_compat)) {
414  		compat_uptr_t compat;
415  
416  		if (get_user(compat, argv.ptr.compat + nr))
417  			return ERR_PTR(-EFAULT);
418  
419  		return compat_ptr(compat);
420  	}
421  #endif
422  
423  	if (get_user(native, argv.ptr.native + nr))
424  		return ERR_PTR(-EFAULT);
425  
426  	return native;
427  }
428  
429  /*
430   * count() counts the number of strings in array ARGV.
431   */
count(struct user_arg_ptr argv,int max)432  static int count(struct user_arg_ptr argv, int max)
433  {
434  	int i = 0;
435  
436  	if (argv.ptr.native != NULL) {
437  		for (;;) {
438  			const char __user *p = get_user_arg_ptr(argv, i);
439  
440  			if (!p)
441  				break;
442  
443  			if (IS_ERR(p))
444  				return -EFAULT;
445  
446  			if (i >= max)
447  				return -E2BIG;
448  			++i;
449  
450  			if (fatal_signal_pending(current))
451  				return -ERESTARTNOHAND;
452  			cond_resched();
453  		}
454  	}
455  	return i;
456  }
457  
count_strings_kernel(const char * const * argv)458  static int count_strings_kernel(const char *const *argv)
459  {
460  	int i;
461  
462  	if (!argv)
463  		return 0;
464  
465  	for (i = 0; argv[i]; ++i) {
466  		if (i >= MAX_ARG_STRINGS)
467  			return -E2BIG;
468  		if (fatal_signal_pending(current))
469  			return -ERESTARTNOHAND;
470  		cond_resched();
471  	}
472  	return i;
473  }
474  
bprm_stack_limits(struct linux_binprm * bprm)475  static int bprm_stack_limits(struct linux_binprm *bprm)
476  {
477  	unsigned long limit, ptr_size;
478  
479  	/*
480  	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
481  	 * (whichever is smaller) for the argv+env strings.
482  	 * This ensures that:
483  	 *  - the remaining binfmt code will not run out of stack space,
484  	 *  - the program will have a reasonable amount of stack left
485  	 *    to work from.
486  	 */
487  	limit = _STK_LIM / 4 * 3;
488  	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
489  	/*
490  	 * We've historically supported up to 32 pages (ARG_MAX)
491  	 * of argument strings even with small stacks
492  	 */
493  	limit = max_t(unsigned long, limit, ARG_MAX);
494  	/*
495  	 * We must account for the size of all the argv and envp pointers to
496  	 * the argv and envp strings, since they will also take up space in
497  	 * the stack. They aren't stored until much later when we can't
498  	 * signal to the parent that the child has run out of stack space.
499  	 * Instead, calculate it here so it's possible to fail gracefully.
500  	 *
501  	 * In the case of argc = 0, make sure there is space for adding a
502  	 * empty string (which will bump argc to 1), to ensure confused
503  	 * userspace programs don't start processing from argv[1], thinking
504  	 * argc can never be 0, to keep them from walking envp by accident.
505  	 * See do_execveat_common().
506  	 */
507  	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
508  	if (limit <= ptr_size)
509  		return -E2BIG;
510  	limit -= ptr_size;
511  
512  	bprm->argmin = bprm->p - limit;
513  	return 0;
514  }
515  
516  /*
517   * 'copy_strings()' copies argument/environment strings from the old
518   * processes's memory to the new process's stack.  The call to get_user_pages()
519   * ensures the destination page is created and not swapped out.
520   */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)521  static int copy_strings(int argc, struct user_arg_ptr argv,
522  			struct linux_binprm *bprm)
523  {
524  	struct page *kmapped_page = NULL;
525  	char *kaddr = NULL;
526  	unsigned long kpos = 0;
527  	int ret;
528  
529  	while (argc-- > 0) {
530  		const char __user *str;
531  		int len;
532  		unsigned long pos;
533  
534  		ret = -EFAULT;
535  		str = get_user_arg_ptr(argv, argc);
536  		if (IS_ERR(str))
537  			goto out;
538  
539  		len = strnlen_user(str, MAX_ARG_STRLEN);
540  		if (!len)
541  			goto out;
542  
543  		ret = -E2BIG;
544  		if (!valid_arg_len(bprm, len))
545  			goto out;
546  
547  		/* We're going to work our way backwards. */
548  		pos = bprm->p;
549  		str += len;
550  		bprm->p -= len;
551  #ifdef CONFIG_MMU
552  		if (bprm->p < bprm->argmin)
553  			goto out;
554  #endif
555  
556  		while (len > 0) {
557  			int offset, bytes_to_copy;
558  
559  			if (fatal_signal_pending(current)) {
560  				ret = -ERESTARTNOHAND;
561  				goto out;
562  			}
563  			cond_resched();
564  
565  			offset = pos % PAGE_SIZE;
566  			if (offset == 0)
567  				offset = PAGE_SIZE;
568  
569  			bytes_to_copy = offset;
570  			if (bytes_to_copy > len)
571  				bytes_to_copy = len;
572  
573  			offset -= bytes_to_copy;
574  			pos -= bytes_to_copy;
575  			str -= bytes_to_copy;
576  			len -= bytes_to_copy;
577  
578  			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
579  				struct page *page;
580  
581  				page = get_arg_page(bprm, pos, 1);
582  				if (!page) {
583  					ret = -E2BIG;
584  					goto out;
585  				}
586  
587  				if (kmapped_page) {
588  					flush_dcache_page(kmapped_page);
589  					kunmap_local(kaddr);
590  					put_arg_page(kmapped_page);
591  				}
592  				kmapped_page = page;
593  				kaddr = kmap_local_page(kmapped_page);
594  				kpos = pos & PAGE_MASK;
595  				flush_arg_page(bprm, kpos, kmapped_page);
596  			}
597  			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
598  				ret = -EFAULT;
599  				goto out;
600  			}
601  		}
602  	}
603  	ret = 0;
604  out:
605  	if (kmapped_page) {
606  		flush_dcache_page(kmapped_page);
607  		kunmap_local(kaddr);
608  		put_arg_page(kmapped_page);
609  	}
610  	return ret;
611  }
612  
613  /*
614   * Copy and argument/environment string from the kernel to the processes stack.
615   */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)616  int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
617  {
618  	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
619  	unsigned long pos = bprm->p;
620  
621  	if (len == 0)
622  		return -EFAULT;
623  	if (!valid_arg_len(bprm, len))
624  		return -E2BIG;
625  
626  	/* We're going to work our way backwards. */
627  	arg += len;
628  	bprm->p -= len;
629  	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
630  		return -E2BIG;
631  
632  	while (len > 0) {
633  		unsigned int bytes_to_copy = min_t(unsigned int, len,
634  				min_not_zero(offset_in_page(pos), PAGE_SIZE));
635  		struct page *page;
636  
637  		pos -= bytes_to_copy;
638  		arg -= bytes_to_copy;
639  		len -= bytes_to_copy;
640  
641  		page = get_arg_page(bprm, pos, 1);
642  		if (!page)
643  			return -E2BIG;
644  		flush_arg_page(bprm, pos & PAGE_MASK, page);
645  		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
646  		put_arg_page(page);
647  	}
648  
649  	return 0;
650  }
651  EXPORT_SYMBOL(copy_string_kernel);
652  
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)653  static int copy_strings_kernel(int argc, const char *const *argv,
654  			       struct linux_binprm *bprm)
655  {
656  	while (argc-- > 0) {
657  		int ret = copy_string_kernel(argv[argc], bprm);
658  		if (ret < 0)
659  			return ret;
660  		if (fatal_signal_pending(current))
661  			return -ERESTARTNOHAND;
662  		cond_resched();
663  	}
664  	return 0;
665  }
666  
667  #ifdef CONFIG_MMU
668  
669  /*
670   * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
671   * the binfmt code determines where the new stack should reside, we shift it to
672   * its final location.  The process proceeds as follows:
673   *
674   * 1) Use shift to calculate the new vma endpoints.
675   * 2) Extend vma to cover both the old and new ranges.  This ensures the
676   *    arguments passed to subsequent functions are consistent.
677   * 3) Move vma's page tables to the new range.
678   * 4) Free up any cleared pgd range.
679   * 5) Shrink the vma to cover only the new range.
680   */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)681  static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
682  {
683  	struct mm_struct *mm = vma->vm_mm;
684  	unsigned long old_start = vma->vm_start;
685  	unsigned long old_end = vma->vm_end;
686  	unsigned long length = old_end - old_start;
687  	unsigned long new_start = old_start - shift;
688  	unsigned long new_end = old_end - shift;
689  	VMA_ITERATOR(vmi, mm, new_start);
690  	struct vm_area_struct *next;
691  	struct mmu_gather tlb;
692  
693  	BUG_ON(new_start > new_end);
694  
695  	/*
696  	 * ensure there are no vmas between where we want to go
697  	 * and where we are
698  	 */
699  	if (vma != vma_next(&vmi))
700  		return -EFAULT;
701  
702  	vma_iter_prev_range(&vmi);
703  	/*
704  	 * cover the whole range: [new_start, old_end)
705  	 */
706  	if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
707  		return -ENOMEM;
708  
709  	/*
710  	 * move the page tables downwards, on failure we rely on
711  	 * process cleanup to remove whatever mess we made.
712  	 */
713  	if (length != move_page_tables(vma, old_start,
714  				       vma, new_start, length, false))
715  		return -ENOMEM;
716  
717  	lru_add_drain();
718  	tlb_gather_mmu(&tlb, mm);
719  	next = vma_next(&vmi);
720  	if (new_end > old_start) {
721  		/*
722  		 * when the old and new regions overlap clear from new_end.
723  		 */
724  		free_pgd_range(&tlb, new_end, old_end, new_end,
725  			next ? next->vm_start : USER_PGTABLES_CEILING);
726  	} else {
727  		/*
728  		 * otherwise, clean from old_start; this is done to not touch
729  		 * the address space in [new_end, old_start) some architectures
730  		 * have constraints on va-space that make this illegal (IA64) -
731  		 * for the others its just a little faster.
732  		 */
733  		free_pgd_range(&tlb, old_start, old_end, new_end,
734  			next ? next->vm_start : USER_PGTABLES_CEILING);
735  	}
736  	tlb_finish_mmu(&tlb);
737  
738  	vma_prev(&vmi);
739  	/* Shrink the vma to just the new range */
740  	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
741  }
742  
743  /*
744   * Finalizes the stack vm_area_struct. The flags and permissions are updated,
745   * the stack is optionally relocated, and some extra space is added.
746   */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)747  int setup_arg_pages(struct linux_binprm *bprm,
748  		    unsigned long stack_top,
749  		    int executable_stack)
750  {
751  	unsigned long ret;
752  	unsigned long stack_shift;
753  	struct mm_struct *mm = current->mm;
754  	struct vm_area_struct *vma = bprm->vma;
755  	struct vm_area_struct *prev = NULL;
756  	unsigned long vm_flags;
757  	unsigned long stack_base;
758  	unsigned long stack_size;
759  	unsigned long stack_expand;
760  	unsigned long rlim_stack;
761  	struct mmu_gather tlb;
762  	struct vma_iterator vmi;
763  
764  #ifdef CONFIG_STACK_GROWSUP
765  	/* Limit stack size */
766  	stack_base = bprm->rlim_stack.rlim_max;
767  
768  	stack_base = calc_max_stack_size(stack_base);
769  
770  	/* Add space for stack randomization. */
771  	if (current->flags & PF_RANDOMIZE)
772  		stack_base += (STACK_RND_MASK << PAGE_SHIFT);
773  
774  	/* Make sure we didn't let the argument array grow too large. */
775  	if (vma->vm_end - vma->vm_start > stack_base)
776  		return -ENOMEM;
777  
778  	stack_base = PAGE_ALIGN(stack_top - stack_base);
779  
780  	stack_shift = vma->vm_start - stack_base;
781  	mm->arg_start = bprm->p - stack_shift;
782  	bprm->p = vma->vm_end - stack_shift;
783  #else
784  	stack_top = arch_align_stack(stack_top);
785  	stack_top = PAGE_ALIGN(stack_top);
786  
787  	if (unlikely(stack_top < mmap_min_addr) ||
788  	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
789  		return -ENOMEM;
790  
791  	stack_shift = vma->vm_end - stack_top;
792  
793  	bprm->p -= stack_shift;
794  	mm->arg_start = bprm->p;
795  #endif
796  
797  	if (bprm->loader)
798  		bprm->loader -= stack_shift;
799  	bprm->exec -= stack_shift;
800  
801  	if (mmap_write_lock_killable(mm))
802  		return -EINTR;
803  
804  	vm_flags = VM_STACK_FLAGS;
805  
806  	/*
807  	 * Adjust stack execute permissions; explicitly enable for
808  	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
809  	 * (arch default) otherwise.
810  	 */
811  	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
812  		vm_flags |= VM_EXEC;
813  	else if (executable_stack == EXSTACK_DISABLE_X)
814  		vm_flags &= ~VM_EXEC;
815  	vm_flags |= mm->def_flags;
816  	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
817  
818  	vma_iter_init(&vmi, mm, vma->vm_start);
819  
820  	tlb_gather_mmu(&tlb, mm);
821  	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
822  			vm_flags);
823  	tlb_finish_mmu(&tlb);
824  
825  	if (ret)
826  		goto out_unlock;
827  	BUG_ON(prev != vma);
828  
829  	if (unlikely(vm_flags & VM_EXEC)) {
830  		pr_warn_once("process '%pD4' started with executable stack\n",
831  			     bprm->file);
832  	}
833  
834  	/* Move stack pages down in memory. */
835  	if (stack_shift) {
836  		ret = shift_arg_pages(vma, stack_shift);
837  		if (ret)
838  			goto out_unlock;
839  	}
840  
841  	/* mprotect_fixup is overkill to remove the temporary stack flags */
842  	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
843  
844  	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
845  	stack_size = vma->vm_end - vma->vm_start;
846  	/*
847  	 * Align this down to a page boundary as expand_stack
848  	 * will align it up.
849  	 */
850  	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
851  
852  	stack_expand = min(rlim_stack, stack_size + stack_expand);
853  
854  #ifdef CONFIG_STACK_GROWSUP
855  	stack_base = vma->vm_start + stack_expand;
856  #else
857  	stack_base = vma->vm_end - stack_expand;
858  #endif
859  	current->mm->start_stack = bprm->p;
860  	ret = expand_stack_locked(vma, stack_base);
861  	if (ret)
862  		ret = -EFAULT;
863  
864  out_unlock:
865  	mmap_write_unlock(mm);
866  	return ret;
867  }
868  EXPORT_SYMBOL(setup_arg_pages);
869  
870  #else
871  
872  /*
873   * Transfer the program arguments and environment from the holding pages
874   * onto the stack. The provided stack pointer is adjusted accordingly.
875   */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)876  int transfer_args_to_stack(struct linux_binprm *bprm,
877  			   unsigned long *sp_location)
878  {
879  	unsigned long index, stop, sp;
880  	int ret = 0;
881  
882  	stop = bprm->p >> PAGE_SHIFT;
883  	sp = *sp_location;
884  
885  	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
886  		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
887  		char *src = kmap_local_page(bprm->page[index]) + offset;
888  		sp -= PAGE_SIZE - offset;
889  		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
890  			ret = -EFAULT;
891  		kunmap_local(src);
892  		if (ret)
893  			goto out;
894  	}
895  
896  	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
897  	*sp_location = sp;
898  
899  out:
900  	return ret;
901  }
902  EXPORT_SYMBOL(transfer_args_to_stack);
903  
904  #endif /* CONFIG_MMU */
905  
do_open_execat(int fd,struct filename * name,int flags)906  static struct file *do_open_execat(int fd, struct filename *name, int flags)
907  {
908  	struct file *file;
909  	int err;
910  	struct open_flags open_exec_flags = {
911  		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
912  		.acc_mode = MAY_EXEC,
913  		.intent = LOOKUP_OPEN,
914  		.lookup_flags = LOOKUP_FOLLOW,
915  	};
916  
917  	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
918  		return ERR_PTR(-EINVAL);
919  	if (flags & AT_SYMLINK_NOFOLLOW)
920  		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
921  	if (flags & AT_EMPTY_PATH)
922  		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
923  
924  	file = do_filp_open(fd, name, &open_exec_flags);
925  	if (IS_ERR(file))
926  		return file;
927  
928  	/*
929  	 * In the past the regular type check was here. It moved to may_open() in
930  	 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
931  	 * an invariant that all non-regular files error out before we get here.
932  	 */
933  	err = -EACCES;
934  	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
935  	    path_noexec(&file->f_path))
936  		goto exit;
937  
938  	err = deny_write_access(file);
939  	if (err)
940  		goto exit;
941  
942  	return file;
943  
944  exit:
945  	fput(file);
946  	return ERR_PTR(err);
947  }
948  
open_exec(const char * name)949  struct file *open_exec(const char *name)
950  {
951  	struct filename *filename = getname_kernel(name);
952  	struct file *f = ERR_CAST(filename);
953  
954  	if (!IS_ERR(filename)) {
955  		f = do_open_execat(AT_FDCWD, filename, 0);
956  		putname(filename);
957  	}
958  	return f;
959  }
960  EXPORT_SYMBOL(open_exec);
961  
962  #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)963  ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
964  {
965  	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
966  	if (res > 0)
967  		flush_icache_user_range(addr, addr + len);
968  	return res;
969  }
970  EXPORT_SYMBOL(read_code);
971  #endif
972  
973  /*
974   * Maps the mm_struct mm into the current task struct.
975   * On success, this function returns with exec_update_lock
976   * held for writing.
977   */
exec_mmap(struct mm_struct * mm)978  static int exec_mmap(struct mm_struct *mm)
979  {
980  	struct task_struct *tsk;
981  	struct mm_struct *old_mm, *active_mm;
982  	int ret;
983  
984  	/* Notify parent that we're no longer interested in the old VM */
985  	tsk = current;
986  	old_mm = current->mm;
987  	exec_mm_release(tsk, old_mm);
988  	if (old_mm)
989  		sync_mm_rss(old_mm);
990  
991  	ret = down_write_killable(&tsk->signal->exec_update_lock);
992  	if (ret)
993  		return ret;
994  
995  	if (old_mm) {
996  		/*
997  		 * If there is a pending fatal signal perhaps a signal
998  		 * whose default action is to create a coredump get
999  		 * out and die instead of going through with the exec.
1000  		 */
1001  		ret = mmap_read_lock_killable(old_mm);
1002  		if (ret) {
1003  			up_write(&tsk->signal->exec_update_lock);
1004  			return ret;
1005  		}
1006  	}
1007  
1008  	task_lock(tsk);
1009  	membarrier_exec_mmap(mm);
1010  
1011  	local_irq_disable();
1012  	active_mm = tsk->active_mm;
1013  	tsk->active_mm = mm;
1014  	tsk->mm = mm;
1015  	mm_init_cid(mm);
1016  	/*
1017  	 * This prevents preemption while active_mm is being loaded and
1018  	 * it and mm are being updated, which could cause problems for
1019  	 * lazy tlb mm refcounting when these are updated by context
1020  	 * switches. Not all architectures can handle irqs off over
1021  	 * activate_mm yet.
1022  	 */
1023  	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1024  		local_irq_enable();
1025  	activate_mm(active_mm, mm);
1026  	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1027  		local_irq_enable();
1028  	lru_gen_add_mm(mm);
1029  	task_unlock(tsk);
1030  	lru_gen_use_mm(mm);
1031  	if (old_mm) {
1032  		mmap_read_unlock(old_mm);
1033  		BUG_ON(active_mm != old_mm);
1034  		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1035  		mm_update_next_owner(old_mm);
1036  		mmput(old_mm);
1037  		return 0;
1038  	}
1039  	mmdrop_lazy_tlb(active_mm);
1040  	return 0;
1041  }
1042  
de_thread(struct task_struct * tsk)1043  static int de_thread(struct task_struct *tsk)
1044  {
1045  	struct signal_struct *sig = tsk->signal;
1046  	struct sighand_struct *oldsighand = tsk->sighand;
1047  	spinlock_t *lock = &oldsighand->siglock;
1048  
1049  	if (thread_group_empty(tsk))
1050  		goto no_thread_group;
1051  
1052  	/*
1053  	 * Kill all other threads in the thread group.
1054  	 */
1055  	spin_lock_irq(lock);
1056  	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1057  		/*
1058  		 * Another group action in progress, just
1059  		 * return so that the signal is processed.
1060  		 */
1061  		spin_unlock_irq(lock);
1062  		return -EAGAIN;
1063  	}
1064  
1065  	sig->group_exec_task = tsk;
1066  	sig->notify_count = zap_other_threads(tsk);
1067  	if (!thread_group_leader(tsk))
1068  		sig->notify_count--;
1069  
1070  	while (sig->notify_count) {
1071  		__set_current_state(TASK_KILLABLE);
1072  		spin_unlock_irq(lock);
1073  		schedule();
1074  		if (__fatal_signal_pending(tsk))
1075  			goto killed;
1076  		spin_lock_irq(lock);
1077  	}
1078  	spin_unlock_irq(lock);
1079  
1080  	/*
1081  	 * At this point all other threads have exited, all we have to
1082  	 * do is to wait for the thread group leader to become inactive,
1083  	 * and to assume its PID:
1084  	 */
1085  	if (!thread_group_leader(tsk)) {
1086  		struct task_struct *leader = tsk->group_leader;
1087  
1088  		for (;;) {
1089  			cgroup_threadgroup_change_begin(tsk);
1090  			write_lock_irq(&tasklist_lock);
1091  			/*
1092  			 * Do this under tasklist_lock to ensure that
1093  			 * exit_notify() can't miss ->group_exec_task
1094  			 */
1095  			sig->notify_count = -1;
1096  			if (likely(leader->exit_state))
1097  				break;
1098  			__set_current_state(TASK_KILLABLE);
1099  			write_unlock_irq(&tasklist_lock);
1100  			cgroup_threadgroup_change_end(tsk);
1101  			schedule();
1102  			if (__fatal_signal_pending(tsk))
1103  				goto killed;
1104  		}
1105  
1106  		/*
1107  		 * The only record we have of the real-time age of a
1108  		 * process, regardless of execs it's done, is start_time.
1109  		 * All the past CPU time is accumulated in signal_struct
1110  		 * from sister threads now dead.  But in this non-leader
1111  		 * exec, nothing survives from the original leader thread,
1112  		 * whose birth marks the true age of this process now.
1113  		 * When we take on its identity by switching to its PID, we
1114  		 * also take its birthdate (always earlier than our own).
1115  		 */
1116  		tsk->start_time = leader->start_time;
1117  		tsk->start_boottime = leader->start_boottime;
1118  
1119  		BUG_ON(!same_thread_group(leader, tsk));
1120  		/*
1121  		 * An exec() starts a new thread group with the
1122  		 * TGID of the previous thread group. Rehash the
1123  		 * two threads with a switched PID, and release
1124  		 * the former thread group leader:
1125  		 */
1126  
1127  		/* Become a process group leader with the old leader's pid.
1128  		 * The old leader becomes a thread of the this thread group.
1129  		 */
1130  		exchange_tids(tsk, leader);
1131  		transfer_pid(leader, tsk, PIDTYPE_TGID);
1132  		transfer_pid(leader, tsk, PIDTYPE_PGID);
1133  		transfer_pid(leader, tsk, PIDTYPE_SID);
1134  
1135  		list_replace_rcu(&leader->tasks, &tsk->tasks);
1136  		list_replace_init(&leader->sibling, &tsk->sibling);
1137  
1138  		tsk->group_leader = tsk;
1139  		leader->group_leader = tsk;
1140  
1141  		tsk->exit_signal = SIGCHLD;
1142  		leader->exit_signal = -1;
1143  
1144  		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1145  		leader->exit_state = EXIT_DEAD;
1146  
1147  		/*
1148  		 * We are going to release_task()->ptrace_unlink() silently,
1149  		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1150  		 * the tracer won't block again waiting for this thread.
1151  		 */
1152  		if (unlikely(leader->ptrace))
1153  			__wake_up_parent(leader, leader->parent);
1154  		write_unlock_irq(&tasklist_lock);
1155  		cgroup_threadgroup_change_end(tsk);
1156  
1157  		release_task(leader);
1158  	}
1159  
1160  	sig->group_exec_task = NULL;
1161  	sig->notify_count = 0;
1162  
1163  no_thread_group:
1164  	/* we have changed execution domain */
1165  	tsk->exit_signal = SIGCHLD;
1166  
1167  	BUG_ON(!thread_group_leader(tsk));
1168  	return 0;
1169  
1170  killed:
1171  	/* protects against exit_notify() and __exit_signal() */
1172  	read_lock(&tasklist_lock);
1173  	sig->group_exec_task = NULL;
1174  	sig->notify_count = 0;
1175  	read_unlock(&tasklist_lock);
1176  	return -EAGAIN;
1177  }
1178  
1179  
1180  /*
1181   * This function makes sure the current process has its own signal table,
1182   * so that flush_signal_handlers can later reset the handlers without
1183   * disturbing other processes.  (Other processes might share the signal
1184   * table via the CLONE_SIGHAND option to clone().)
1185   */
unshare_sighand(struct task_struct * me)1186  static int unshare_sighand(struct task_struct *me)
1187  {
1188  	struct sighand_struct *oldsighand = me->sighand;
1189  
1190  	if (refcount_read(&oldsighand->count) != 1) {
1191  		struct sighand_struct *newsighand;
1192  		/*
1193  		 * This ->sighand is shared with the CLONE_SIGHAND
1194  		 * but not CLONE_THREAD task, switch to the new one.
1195  		 */
1196  		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1197  		if (!newsighand)
1198  			return -ENOMEM;
1199  
1200  		refcount_set(&newsighand->count, 1);
1201  
1202  		write_lock_irq(&tasklist_lock);
1203  		spin_lock(&oldsighand->siglock);
1204  		memcpy(newsighand->action, oldsighand->action,
1205  		       sizeof(newsighand->action));
1206  		rcu_assign_pointer(me->sighand, newsighand);
1207  		spin_unlock(&oldsighand->siglock);
1208  		write_unlock_irq(&tasklist_lock);
1209  
1210  		__cleanup_sighand(oldsighand);
1211  	}
1212  	return 0;
1213  }
1214  
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1215  char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1216  {
1217  	task_lock(tsk);
1218  	/* Always NUL terminated and zero-padded */
1219  	strscpy_pad(buf, tsk->comm, buf_size);
1220  	task_unlock(tsk);
1221  	return buf;
1222  }
1223  EXPORT_SYMBOL_GPL(__get_task_comm);
1224  
1225  /*
1226   * These functions flushes out all traces of the currently running executable
1227   * so that a new one can be started
1228   */
1229  
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1230  void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1231  {
1232  	task_lock(tsk);
1233  	trace_task_rename(tsk, buf);
1234  	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1235  	task_unlock(tsk);
1236  	perf_event_comm(tsk, exec);
1237  }
1238  
1239  /*
1240   * Calling this is the point of no return. None of the failures will be
1241   * seen by userspace since either the process is already taking a fatal
1242   * signal (via de_thread() or coredump), or will have SEGV raised
1243   * (after exec_mmap()) by search_binary_handler (see below).
1244   */
begin_new_exec(struct linux_binprm * bprm)1245  int begin_new_exec(struct linux_binprm * bprm)
1246  {
1247  	struct task_struct *me = current;
1248  	int retval;
1249  
1250  	/* Once we are committed compute the creds */
1251  	retval = bprm_creds_from_file(bprm);
1252  	if (retval)
1253  		return retval;
1254  
1255  	/*
1256  	 * Ensure all future errors are fatal.
1257  	 */
1258  	bprm->point_of_no_return = true;
1259  
1260  	/*
1261  	 * Make this the only thread in the thread group.
1262  	 */
1263  	retval = de_thread(me);
1264  	if (retval)
1265  		goto out;
1266  
1267  	/*
1268  	 * Cancel any io_uring activity across execve
1269  	 */
1270  	io_uring_task_cancel();
1271  
1272  	/* Ensure the files table is not shared. */
1273  	retval = unshare_files();
1274  	if (retval)
1275  		goto out;
1276  
1277  	/*
1278  	 * Must be called _before_ exec_mmap() as bprm->mm is
1279  	 * not visible until then. Doing it here also ensures
1280  	 * we don't race against replace_mm_exe_file().
1281  	 */
1282  	retval = set_mm_exe_file(bprm->mm, bprm->file);
1283  	if (retval)
1284  		goto out;
1285  
1286  	/* If the binary is not readable then enforce mm->dumpable=0 */
1287  	would_dump(bprm, bprm->file);
1288  	if (bprm->have_execfd)
1289  		would_dump(bprm, bprm->executable);
1290  
1291  	/*
1292  	 * Release all of the old mmap stuff
1293  	 */
1294  	acct_arg_size(bprm, 0);
1295  	retval = exec_mmap(bprm->mm);
1296  	if (retval)
1297  		goto out;
1298  
1299  	bprm->mm = NULL;
1300  
1301  	retval = exec_task_namespaces();
1302  	if (retval)
1303  		goto out_unlock;
1304  
1305  #ifdef CONFIG_POSIX_TIMERS
1306  	spin_lock_irq(&me->sighand->siglock);
1307  	posix_cpu_timers_exit(me);
1308  	spin_unlock_irq(&me->sighand->siglock);
1309  	exit_itimers(me);
1310  	flush_itimer_signals();
1311  #endif
1312  
1313  	/*
1314  	 * Make the signal table private.
1315  	 */
1316  	retval = unshare_sighand(me);
1317  	if (retval)
1318  		goto out_unlock;
1319  
1320  	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1321  					PF_NOFREEZE | PF_NO_SETAFFINITY);
1322  	flush_thread();
1323  	me->personality &= ~bprm->per_clear;
1324  
1325  	clear_syscall_work_syscall_user_dispatch(me);
1326  
1327  	/*
1328  	 * We have to apply CLOEXEC before we change whether the process is
1329  	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1330  	 * trying to access the should-be-closed file descriptors of a process
1331  	 * undergoing exec(2).
1332  	 */
1333  	do_close_on_exec(me->files);
1334  
1335  	if (bprm->secureexec) {
1336  		/* Make sure parent cannot signal privileged process. */
1337  		me->pdeath_signal = 0;
1338  
1339  		/*
1340  		 * For secureexec, reset the stack limit to sane default to
1341  		 * avoid bad behavior from the prior rlimits. This has to
1342  		 * happen before arch_pick_mmap_layout(), which examines
1343  		 * RLIMIT_STACK, but after the point of no return to avoid
1344  		 * needing to clean up the change on failure.
1345  		 */
1346  		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1347  			bprm->rlim_stack.rlim_cur = _STK_LIM;
1348  	}
1349  
1350  	me->sas_ss_sp = me->sas_ss_size = 0;
1351  
1352  	/*
1353  	 * Figure out dumpability. Note that this checking only of current
1354  	 * is wrong, but userspace depends on it. This should be testing
1355  	 * bprm->secureexec instead.
1356  	 */
1357  	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1358  	    !(uid_eq(current_euid(), current_uid()) &&
1359  	      gid_eq(current_egid(), current_gid())))
1360  		set_dumpable(current->mm, suid_dumpable);
1361  	else
1362  		set_dumpable(current->mm, SUID_DUMP_USER);
1363  
1364  	perf_event_exec();
1365  
1366  	/*
1367  	 * If the original filename was empty, alloc_bprm() made up a path
1368  	 * that will probably not be useful to admins running ps or similar.
1369  	 * Let's fix it up to be something reasonable.
1370  	 */
1371  	if (bprm->comm_from_dentry) {
1372  		/*
1373  		 * Hold RCU lock to keep the name from being freed behind our back.
1374  		 * Use acquire semantics to make sure the terminating NUL from
1375  		 * __d_alloc() is seen.
1376  		 *
1377  		 * Note, we're deliberately sloppy here. We don't need to care about
1378  		 * detecting a concurrent rename and just want a terminated name.
1379  		 */
1380  		rcu_read_lock();
1381  		__set_task_comm(me, smp_load_acquire(&bprm->file->f_path.dentry->d_name.name),
1382  				true);
1383  		rcu_read_unlock();
1384  	} else {
1385  		__set_task_comm(me, kbasename(bprm->filename), true);
1386  	}
1387  
1388  	/* An exec changes our domain. We are no longer part of the thread
1389  	   group */
1390  	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1391  	flush_signal_handlers(me, 0);
1392  
1393  	retval = set_cred_ucounts(bprm->cred);
1394  	if (retval < 0)
1395  		goto out_unlock;
1396  
1397  	/*
1398  	 * install the new credentials for this executable
1399  	 */
1400  	security_bprm_committing_creds(bprm);
1401  
1402  	commit_creds(bprm->cred);
1403  	bprm->cred = NULL;
1404  
1405  	/*
1406  	 * Disable monitoring for regular users
1407  	 * when executing setuid binaries. Must
1408  	 * wait until new credentials are committed
1409  	 * by commit_creds() above
1410  	 */
1411  	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1412  		perf_event_exit_task(me);
1413  	/*
1414  	 * cred_guard_mutex must be held at least to this point to prevent
1415  	 * ptrace_attach() from altering our determination of the task's
1416  	 * credentials; any time after this it may be unlocked.
1417  	 */
1418  	security_bprm_committed_creds(bprm);
1419  
1420  	/* Pass the opened binary to the interpreter. */
1421  	if (bprm->have_execfd) {
1422  		retval = get_unused_fd_flags(0);
1423  		if (retval < 0)
1424  			goto out_unlock;
1425  		fd_install(retval, bprm->executable);
1426  		bprm->executable = NULL;
1427  		bprm->execfd = retval;
1428  	}
1429  	return 0;
1430  
1431  out_unlock:
1432  	up_write(&me->signal->exec_update_lock);
1433  	if (!bprm->cred)
1434  		mutex_unlock(&me->signal->cred_guard_mutex);
1435  
1436  out:
1437  	return retval;
1438  }
1439  EXPORT_SYMBOL(begin_new_exec);
1440  
would_dump(struct linux_binprm * bprm,struct file * file)1441  void would_dump(struct linux_binprm *bprm, struct file *file)
1442  {
1443  	struct inode *inode = file_inode(file);
1444  	struct mnt_idmap *idmap = file_mnt_idmap(file);
1445  	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1446  		struct user_namespace *old, *user_ns;
1447  		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1448  
1449  		/* Ensure mm->user_ns contains the executable */
1450  		user_ns = old = bprm->mm->user_ns;
1451  		while ((user_ns != &init_user_ns) &&
1452  		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1453  			user_ns = user_ns->parent;
1454  
1455  		if (old != user_ns) {
1456  			bprm->mm->user_ns = get_user_ns(user_ns);
1457  			put_user_ns(old);
1458  		}
1459  	}
1460  }
1461  EXPORT_SYMBOL(would_dump);
1462  
setup_new_exec(struct linux_binprm * bprm)1463  void setup_new_exec(struct linux_binprm * bprm)
1464  {
1465  	/* Setup things that can depend upon the personality */
1466  	struct task_struct *me = current;
1467  
1468  	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1469  
1470  	arch_setup_new_exec();
1471  
1472  	/* Set the new mm task size. We have to do that late because it may
1473  	 * depend on TIF_32BIT which is only updated in flush_thread() on
1474  	 * some architectures like powerpc
1475  	 */
1476  	me->mm->task_size = TASK_SIZE;
1477  	up_write(&me->signal->exec_update_lock);
1478  	mutex_unlock(&me->signal->cred_guard_mutex);
1479  }
1480  EXPORT_SYMBOL(setup_new_exec);
1481  
1482  /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1483  void finalize_exec(struct linux_binprm *bprm)
1484  {
1485  	/* Store any stack rlimit changes before starting thread. */
1486  	task_lock(current->group_leader);
1487  	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1488  	task_unlock(current->group_leader);
1489  }
1490  EXPORT_SYMBOL(finalize_exec);
1491  
1492  /*
1493   * Prepare credentials and lock ->cred_guard_mutex.
1494   * setup_new_exec() commits the new creds and drops the lock.
1495   * Or, if exec fails before, free_bprm() should release ->cred
1496   * and unlock.
1497   */
prepare_bprm_creds(struct linux_binprm * bprm)1498  static int prepare_bprm_creds(struct linux_binprm *bprm)
1499  {
1500  	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1501  		return -ERESTARTNOINTR;
1502  
1503  	bprm->cred = prepare_exec_creds();
1504  	if (likely(bprm->cred))
1505  		return 0;
1506  
1507  	mutex_unlock(&current->signal->cred_guard_mutex);
1508  	return -ENOMEM;
1509  }
1510  
free_bprm(struct linux_binprm * bprm)1511  static void free_bprm(struct linux_binprm *bprm)
1512  {
1513  	if (bprm->mm) {
1514  		acct_arg_size(bprm, 0);
1515  		mmput(bprm->mm);
1516  	}
1517  	free_arg_pages(bprm);
1518  	if (bprm->cred) {
1519  		mutex_unlock(&current->signal->cred_guard_mutex);
1520  		abort_creds(bprm->cred);
1521  	}
1522  	if (bprm->file) {
1523  		allow_write_access(bprm->file);
1524  		fput(bprm->file);
1525  	}
1526  	if (bprm->executable)
1527  		fput(bprm->executable);
1528  	/* If a binfmt changed the interp, free it. */
1529  	if (bprm->interp != bprm->filename)
1530  		kfree(bprm->interp);
1531  	kfree(bprm->fdpath);
1532  	kfree(bprm);
1533  }
1534  
alloc_bprm(int fd,struct filename * filename)1535  static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1536  {
1537  	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1538  	int retval = -ENOMEM;
1539  	if (!bprm)
1540  		goto out;
1541  
1542  	if (fd == AT_FDCWD || filename->name[0] == '/') {
1543  		bprm->filename = filename->name;
1544  	} else {
1545  		if (filename->name[0] == '\0') {
1546  			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1547  			bprm->comm_from_dentry = 1;
1548  		} else {
1549  			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1550  						  fd, filename->name);
1551  		}
1552  		if (!bprm->fdpath)
1553  			goto out_free;
1554  
1555  		bprm->filename = bprm->fdpath;
1556  	}
1557  	bprm->interp = bprm->filename;
1558  
1559  	retval = bprm_mm_init(bprm);
1560  	if (retval)
1561  		goto out_free;
1562  	return bprm;
1563  
1564  out_free:
1565  	free_bprm(bprm);
1566  out:
1567  	return ERR_PTR(retval);
1568  }
1569  
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1570  int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1571  {
1572  	/* If a binfmt changed the interp, free it first. */
1573  	if (bprm->interp != bprm->filename)
1574  		kfree(bprm->interp);
1575  	bprm->interp = kstrdup(interp, GFP_KERNEL);
1576  	if (!bprm->interp)
1577  		return -ENOMEM;
1578  	return 0;
1579  }
1580  EXPORT_SYMBOL(bprm_change_interp);
1581  
1582  /*
1583   * determine how safe it is to execute the proposed program
1584   * - the caller must hold ->cred_guard_mutex to protect against
1585   *   PTRACE_ATTACH or seccomp thread-sync
1586   */
check_unsafe_exec(struct linux_binprm * bprm)1587  static void check_unsafe_exec(struct linux_binprm *bprm)
1588  {
1589  	struct task_struct *p = current, *t;
1590  	unsigned n_fs;
1591  
1592  	if (p->ptrace)
1593  		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1594  
1595  	/*
1596  	 * This isn't strictly necessary, but it makes it harder for LSMs to
1597  	 * mess up.
1598  	 */
1599  	if (task_no_new_privs(current))
1600  		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1601  
1602  	/*
1603  	 * If another task is sharing our fs, we cannot safely
1604  	 * suid exec because the differently privileged task
1605  	 * will be able to manipulate the current directory, etc.
1606  	 * It would be nice to force an unshare instead...
1607  	 */
1608  	t = p;
1609  	n_fs = 1;
1610  	spin_lock(&p->fs->lock);
1611  	rcu_read_lock();
1612  	while_each_thread(p, t) {
1613  		if (t->fs == p->fs)
1614  			n_fs++;
1615  	}
1616  	rcu_read_unlock();
1617  
1618  	if (p->fs->users > n_fs)
1619  		bprm->unsafe |= LSM_UNSAFE_SHARE;
1620  	else
1621  		p->fs->in_exec = 1;
1622  	spin_unlock(&p->fs->lock);
1623  }
1624  
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1625  static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1626  {
1627  	/* Handle suid and sgid on files */
1628  	struct mnt_idmap *idmap;
1629  	struct inode *inode = file_inode(file);
1630  	unsigned int mode;
1631  	vfsuid_t vfsuid;
1632  	vfsgid_t vfsgid;
1633  	int err;
1634  
1635  	if (!mnt_may_suid(file->f_path.mnt))
1636  		return;
1637  
1638  	if (task_no_new_privs(current))
1639  		return;
1640  
1641  	mode = READ_ONCE(inode->i_mode);
1642  	if (!(mode & (S_ISUID|S_ISGID)))
1643  		return;
1644  
1645  	idmap = file_mnt_idmap(file);
1646  
1647  	/* Be careful if suid/sgid is set */
1648  	inode_lock(inode);
1649  
1650  	/* Atomically reload and check mode/uid/gid now that lock held. */
1651  	mode = inode->i_mode;
1652  	vfsuid = i_uid_into_vfsuid(idmap, inode);
1653  	vfsgid = i_gid_into_vfsgid(idmap, inode);
1654  	err = inode_permission(idmap, inode, MAY_EXEC);
1655  	inode_unlock(inode);
1656  
1657  	/* Did the exec bit vanish out from under us? Give up. */
1658  	if (err)
1659  		return;
1660  
1661  	/* We ignore suid/sgid if there are no mappings for them in the ns */
1662  	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1663  	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1664  		return;
1665  
1666  	if (mode & S_ISUID) {
1667  		bprm->per_clear |= PER_CLEAR_ON_SETID;
1668  		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1669  	}
1670  
1671  	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1672  		bprm->per_clear |= PER_CLEAR_ON_SETID;
1673  		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1674  	}
1675  }
1676  
1677  /*
1678   * Compute brpm->cred based upon the final binary.
1679   */
bprm_creds_from_file(struct linux_binprm * bprm)1680  static int bprm_creds_from_file(struct linux_binprm *bprm)
1681  {
1682  	/* Compute creds based on which file? */
1683  	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1684  
1685  	bprm_fill_uid(bprm, file);
1686  	return security_bprm_creds_from_file(bprm, file);
1687  }
1688  
1689  /*
1690   * Fill the binprm structure from the inode.
1691   * Read the first BINPRM_BUF_SIZE bytes
1692   *
1693   * This may be called multiple times for binary chains (scripts for example).
1694   */
prepare_binprm(struct linux_binprm * bprm)1695  static int prepare_binprm(struct linux_binprm *bprm)
1696  {
1697  	loff_t pos = 0;
1698  
1699  	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1700  	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1701  }
1702  
1703  /*
1704   * Arguments are '\0' separated strings found at the location bprm->p
1705   * points to; chop off the first by relocating brpm->p to right after
1706   * the first '\0' encountered.
1707   */
remove_arg_zero(struct linux_binprm * bprm)1708  int remove_arg_zero(struct linux_binprm *bprm)
1709  {
1710  	int ret = 0;
1711  	unsigned long offset;
1712  	char *kaddr;
1713  	struct page *page;
1714  
1715  	if (!bprm->argc)
1716  		return 0;
1717  
1718  	do {
1719  		offset = bprm->p & ~PAGE_MASK;
1720  		page = get_arg_page(bprm, bprm->p, 0);
1721  		if (!page) {
1722  			ret = -EFAULT;
1723  			goto out;
1724  		}
1725  		kaddr = kmap_local_page(page);
1726  
1727  		for (; offset < PAGE_SIZE && kaddr[offset];
1728  				offset++, bprm->p++)
1729  			;
1730  
1731  		kunmap_local(kaddr);
1732  		put_arg_page(page);
1733  	} while (offset == PAGE_SIZE);
1734  
1735  	bprm->p++;
1736  	bprm->argc--;
1737  	ret = 0;
1738  
1739  out:
1740  	return ret;
1741  }
1742  EXPORT_SYMBOL(remove_arg_zero);
1743  
1744  #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1745  /*
1746   * cycle the list of binary formats handler, until one recognizes the image
1747   */
search_binary_handler(struct linux_binprm * bprm)1748  static int search_binary_handler(struct linux_binprm *bprm)
1749  {
1750  	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1751  	struct linux_binfmt *fmt;
1752  	int retval;
1753  
1754  	retval = prepare_binprm(bprm);
1755  	if (retval < 0)
1756  		return retval;
1757  
1758  	retval = security_bprm_check(bprm);
1759  	if (retval)
1760  		return retval;
1761  
1762  	retval = -ENOENT;
1763   retry:
1764  	read_lock(&binfmt_lock);
1765  	list_for_each_entry(fmt, &formats, lh) {
1766  		if (!try_module_get(fmt->module))
1767  			continue;
1768  		read_unlock(&binfmt_lock);
1769  
1770  		retval = fmt->load_binary(bprm);
1771  
1772  		read_lock(&binfmt_lock);
1773  		put_binfmt(fmt);
1774  		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1775  			read_unlock(&binfmt_lock);
1776  			return retval;
1777  		}
1778  	}
1779  	read_unlock(&binfmt_lock);
1780  
1781  	if (need_retry) {
1782  		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1783  		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1784  			return retval;
1785  		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1786  			return retval;
1787  		need_retry = false;
1788  		goto retry;
1789  	}
1790  
1791  	return retval;
1792  }
1793  
1794  /* binfmt handlers will call back into begin_new_exec() on success. */
exec_binprm(struct linux_binprm * bprm)1795  static int exec_binprm(struct linux_binprm *bprm)
1796  {
1797  	pid_t old_pid, old_vpid;
1798  	int ret, depth;
1799  
1800  	/* Need to fetch pid before load_binary changes it */
1801  	old_pid = current->pid;
1802  	rcu_read_lock();
1803  	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1804  	rcu_read_unlock();
1805  
1806  	/* This allows 4 levels of binfmt rewrites before failing hard. */
1807  	for (depth = 0;; depth++) {
1808  		struct file *exec;
1809  		if (depth > 5)
1810  			return -ELOOP;
1811  
1812  		ret = search_binary_handler(bprm);
1813  		if (ret < 0)
1814  			return ret;
1815  		if (!bprm->interpreter)
1816  			break;
1817  
1818  		exec = bprm->file;
1819  		bprm->file = bprm->interpreter;
1820  		bprm->interpreter = NULL;
1821  
1822  		allow_write_access(exec);
1823  		if (unlikely(bprm->have_execfd)) {
1824  			if (bprm->executable) {
1825  				fput(exec);
1826  				return -ENOEXEC;
1827  			}
1828  			bprm->executable = exec;
1829  		} else
1830  			fput(exec);
1831  	}
1832  
1833  	audit_bprm(bprm);
1834  	trace_sched_process_exec(current, old_pid, bprm);
1835  	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1836  	proc_exec_connector(current);
1837  	return 0;
1838  }
1839  
1840  /*
1841   * sys_execve() executes a new program.
1842   */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1843  static int bprm_execve(struct linux_binprm *bprm,
1844  		       int fd, struct filename *filename, int flags)
1845  {
1846  	struct file *file;
1847  	int retval;
1848  
1849  	retval = prepare_bprm_creds(bprm);
1850  	if (retval)
1851  		return retval;
1852  
1853  	/*
1854  	 * Check for unsafe execution states before exec_binprm(), which
1855  	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1856  	 * where setuid-ness is evaluated.
1857  	 */
1858  	check_unsafe_exec(bprm);
1859  	current->in_execve = 1;
1860  	sched_mm_cid_before_execve(current);
1861  
1862  	file = do_open_execat(fd, filename, flags);
1863  	retval = PTR_ERR(file);
1864  	if (IS_ERR(file))
1865  		goto out_unmark;
1866  
1867  	sched_exec();
1868  
1869  	bprm->file = file;
1870  	/*
1871  	 * Record that a name derived from an O_CLOEXEC fd will be
1872  	 * inaccessible after exec.  This allows the code in exec to
1873  	 * choose to fail when the executable is not mmaped into the
1874  	 * interpreter and an open file descriptor is not passed to
1875  	 * the interpreter.  This makes for a better user experience
1876  	 * than having the interpreter start and then immediately fail
1877  	 * when it finds the executable is inaccessible.
1878  	 */
1879  	if (bprm->fdpath && get_close_on_exec(fd))
1880  		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1881  
1882  	/* Set the unchanging part of bprm->cred */
1883  	retval = security_bprm_creds_for_exec(bprm);
1884  	if (retval)
1885  		goto out;
1886  
1887  	retval = exec_binprm(bprm);
1888  	if (retval < 0)
1889  		goto out;
1890  
1891  	sched_mm_cid_after_execve(current);
1892  	/* execve succeeded */
1893  	current->fs->in_exec = 0;
1894  	current->in_execve = 0;
1895  	rseq_execve(current);
1896  	user_events_execve(current);
1897  	acct_update_integrals(current);
1898  	task_numa_free(current, false);
1899  	return retval;
1900  
1901  out:
1902  	/*
1903  	 * If past the point of no return ensure the code never
1904  	 * returns to the userspace process.  Use an existing fatal
1905  	 * signal if present otherwise terminate the process with
1906  	 * SIGSEGV.
1907  	 */
1908  	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1909  		force_fatal_sig(SIGSEGV);
1910  
1911  out_unmark:
1912  	sched_mm_cid_after_execve(current);
1913  	current->fs->in_exec = 0;
1914  	current->in_execve = 0;
1915  
1916  	return retval;
1917  }
1918  
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1919  static int do_execveat_common(int fd, struct filename *filename,
1920  			      struct user_arg_ptr argv,
1921  			      struct user_arg_ptr envp,
1922  			      int flags)
1923  {
1924  	struct linux_binprm *bprm;
1925  	int retval;
1926  
1927  	if (IS_ERR(filename))
1928  		return PTR_ERR(filename);
1929  
1930  	/*
1931  	 * We move the actual failure in case of RLIMIT_NPROC excess from
1932  	 * set*uid() to execve() because too many poorly written programs
1933  	 * don't check setuid() return code.  Here we additionally recheck
1934  	 * whether NPROC limit is still exceeded.
1935  	 */
1936  	if ((current->flags & PF_NPROC_EXCEEDED) &&
1937  	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1938  		retval = -EAGAIN;
1939  		goto out_ret;
1940  	}
1941  
1942  	/* We're below the limit (still or again), so we don't want to make
1943  	 * further execve() calls fail. */
1944  	current->flags &= ~PF_NPROC_EXCEEDED;
1945  
1946  	bprm = alloc_bprm(fd, filename);
1947  	if (IS_ERR(bprm)) {
1948  		retval = PTR_ERR(bprm);
1949  		goto out_ret;
1950  	}
1951  
1952  	retval = count(argv, MAX_ARG_STRINGS);
1953  	if (retval == 0)
1954  		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1955  			     current->comm, bprm->filename);
1956  	if (retval < 0)
1957  		goto out_free;
1958  	bprm->argc = retval;
1959  
1960  	retval = count(envp, MAX_ARG_STRINGS);
1961  	if (retval < 0)
1962  		goto out_free;
1963  	bprm->envc = retval;
1964  
1965  	retval = bprm_stack_limits(bprm);
1966  	if (retval < 0)
1967  		goto out_free;
1968  
1969  	retval = copy_string_kernel(bprm->filename, bprm);
1970  	if (retval < 0)
1971  		goto out_free;
1972  	bprm->exec = bprm->p;
1973  
1974  	retval = copy_strings(bprm->envc, envp, bprm);
1975  	if (retval < 0)
1976  		goto out_free;
1977  
1978  	retval = copy_strings(bprm->argc, argv, bprm);
1979  	if (retval < 0)
1980  		goto out_free;
1981  
1982  	/*
1983  	 * When argv is empty, add an empty string ("") as argv[0] to
1984  	 * ensure confused userspace programs that start processing
1985  	 * from argv[1] won't end up walking envp. See also
1986  	 * bprm_stack_limits().
1987  	 */
1988  	if (bprm->argc == 0) {
1989  		retval = copy_string_kernel("", bprm);
1990  		if (retval < 0)
1991  			goto out_free;
1992  		bprm->argc = 1;
1993  	}
1994  
1995  	retval = bprm_execve(bprm, fd, filename, flags);
1996  out_free:
1997  	free_bprm(bprm);
1998  
1999  out_ret:
2000  	putname(filename);
2001  	return retval;
2002  }
2003  
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)2004  int kernel_execve(const char *kernel_filename,
2005  		  const char *const *argv, const char *const *envp)
2006  {
2007  	struct filename *filename;
2008  	struct linux_binprm *bprm;
2009  	int fd = AT_FDCWD;
2010  	int retval;
2011  
2012  	/* It is non-sense for kernel threads to call execve */
2013  	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
2014  		return -EINVAL;
2015  
2016  	filename = getname_kernel(kernel_filename);
2017  	if (IS_ERR(filename))
2018  		return PTR_ERR(filename);
2019  
2020  	bprm = alloc_bprm(fd, filename);
2021  	if (IS_ERR(bprm)) {
2022  		retval = PTR_ERR(bprm);
2023  		goto out_ret;
2024  	}
2025  
2026  	retval = count_strings_kernel(argv);
2027  	if (WARN_ON_ONCE(retval == 0))
2028  		retval = -EINVAL;
2029  	if (retval < 0)
2030  		goto out_free;
2031  	bprm->argc = retval;
2032  
2033  	retval = count_strings_kernel(envp);
2034  	if (retval < 0)
2035  		goto out_free;
2036  	bprm->envc = retval;
2037  
2038  	retval = bprm_stack_limits(bprm);
2039  	if (retval < 0)
2040  		goto out_free;
2041  
2042  	retval = copy_string_kernel(bprm->filename, bprm);
2043  	if (retval < 0)
2044  		goto out_free;
2045  	bprm->exec = bprm->p;
2046  
2047  	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2048  	if (retval < 0)
2049  		goto out_free;
2050  
2051  	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2052  	if (retval < 0)
2053  		goto out_free;
2054  
2055  	retval = bprm_execve(bprm, fd, filename, 0);
2056  out_free:
2057  	free_bprm(bprm);
2058  out_ret:
2059  	putname(filename);
2060  	return retval;
2061  }
2062  
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2063  static int do_execve(struct filename *filename,
2064  	const char __user *const __user *__argv,
2065  	const char __user *const __user *__envp)
2066  {
2067  	struct user_arg_ptr argv = { .ptr.native = __argv };
2068  	struct user_arg_ptr envp = { .ptr.native = __envp };
2069  	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2070  }
2071  
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2072  static int do_execveat(int fd, struct filename *filename,
2073  		const char __user *const __user *__argv,
2074  		const char __user *const __user *__envp,
2075  		int flags)
2076  {
2077  	struct user_arg_ptr argv = { .ptr.native = __argv };
2078  	struct user_arg_ptr envp = { .ptr.native = __envp };
2079  
2080  	return do_execveat_common(fd, filename, argv, envp, flags);
2081  }
2082  
2083  #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2084  static int compat_do_execve(struct filename *filename,
2085  	const compat_uptr_t __user *__argv,
2086  	const compat_uptr_t __user *__envp)
2087  {
2088  	struct user_arg_ptr argv = {
2089  		.is_compat = true,
2090  		.ptr.compat = __argv,
2091  	};
2092  	struct user_arg_ptr envp = {
2093  		.is_compat = true,
2094  		.ptr.compat = __envp,
2095  	};
2096  	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2097  }
2098  
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2099  static int compat_do_execveat(int fd, struct filename *filename,
2100  			      const compat_uptr_t __user *__argv,
2101  			      const compat_uptr_t __user *__envp,
2102  			      int flags)
2103  {
2104  	struct user_arg_ptr argv = {
2105  		.is_compat = true,
2106  		.ptr.compat = __argv,
2107  	};
2108  	struct user_arg_ptr envp = {
2109  		.is_compat = true,
2110  		.ptr.compat = __envp,
2111  	};
2112  	return do_execveat_common(fd, filename, argv, envp, flags);
2113  }
2114  #endif
2115  
set_binfmt(struct linux_binfmt * new)2116  void set_binfmt(struct linux_binfmt *new)
2117  {
2118  	struct mm_struct *mm = current->mm;
2119  
2120  	if (mm->binfmt)
2121  		module_put(mm->binfmt->module);
2122  
2123  	mm->binfmt = new;
2124  	if (new)
2125  		__module_get(new->module);
2126  }
2127  EXPORT_SYMBOL(set_binfmt);
2128  
2129  /*
2130   * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2131   */
set_dumpable(struct mm_struct * mm,int value)2132  void set_dumpable(struct mm_struct *mm, int value)
2133  {
2134  	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2135  		return;
2136  
2137  	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2138  }
2139  
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2140  SYSCALL_DEFINE3(execve,
2141  		const char __user *, filename,
2142  		const char __user *const __user *, argv,
2143  		const char __user *const __user *, envp)
2144  {
2145  	return do_execve(getname(filename), argv, envp);
2146  }
2147  
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2148  SYSCALL_DEFINE5(execveat,
2149  		int, fd, const char __user *, filename,
2150  		const char __user *const __user *, argv,
2151  		const char __user *const __user *, envp,
2152  		int, flags)
2153  {
2154  	return do_execveat(fd,
2155  			   getname_uflags(filename, flags),
2156  			   argv, envp, flags);
2157  }
2158  
2159  #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2160  COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2161  	const compat_uptr_t __user *, argv,
2162  	const compat_uptr_t __user *, envp)
2163  {
2164  	return compat_do_execve(getname(filename), argv, envp);
2165  }
2166  
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2167  COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2168  		       const char __user *, filename,
2169  		       const compat_uptr_t __user *, argv,
2170  		       const compat_uptr_t __user *, envp,
2171  		       int,  flags)
2172  {
2173  	return compat_do_execveat(fd,
2174  				  getname_uflags(filename, flags),
2175  				  argv, envp, flags);
2176  }
2177  #endif
2178  
2179  #ifdef CONFIG_SYSCTL
2180  
proc_dointvec_minmax_coredump(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2181  static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2182  		void *buffer, size_t *lenp, loff_t *ppos)
2183  {
2184  	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2185  
2186  	if (!error)
2187  		validate_coredump_safety();
2188  	return error;
2189  }
2190  
2191  static struct ctl_table fs_exec_sysctls[] = {
2192  	{
2193  		.procname	= "suid_dumpable",
2194  		.data		= &suid_dumpable,
2195  		.maxlen		= sizeof(int),
2196  		.mode		= 0644,
2197  		.proc_handler	= proc_dointvec_minmax_coredump,
2198  		.extra1		= SYSCTL_ZERO,
2199  		.extra2		= SYSCTL_TWO,
2200  	},
2201  	{ }
2202  };
2203  
init_fs_exec_sysctls(void)2204  static int __init init_fs_exec_sysctls(void)
2205  {
2206  	register_sysctl_init("fs", fs_exec_sysctls);
2207  	return 0;
2208  }
2209  
2210  fs_initcall(init_fs_exec_sysctls);
2211  #endif /* CONFIG_SYSCTL */
2212