xref: /openbmc/qemu/hw/net/lan9118.c (revision a53b931645183bd0c15dd19ae0708fc3c81ecf1d)
1  /*
2   * SMSC LAN9118 Ethernet interface emulation
3   *
4   * Copyright (c) 2009 CodeSourcery, LLC.
5   * Written by Paul Brook
6   *
7   * This code is licensed under the GNU GPL v2
8   *
9   * Contributions after 2012-01-13 are licensed under the terms of the
10   * GNU GPL, version 2 or (at your option) any later version.
11   */
12  
13  #include "qemu/osdep.h"
14  #include "hw/sysbus.h"
15  #include "migration/vmstate.h"
16  #include "net/net.h"
17  #include "net/eth.h"
18  #include "hw/irq.h"
19  #include "hw/net/lan9118.h"
20  #include "hw/ptimer.h"
21  #include "hw/qdev-properties.h"
22  #include "qapi/error.h"
23  #include "qemu/log.h"
24  #include "qemu/module.h"
25  #include <zlib.h> /* for crc32 */
26  #include "qom/object.h"
27  
28  //#define DEBUG_LAN9118
29  
30  #ifdef DEBUG_LAN9118
31  #define DPRINTF(fmt, ...) \
32  do { printf("lan9118: " fmt , ## __VA_ARGS__); } while (0)
33  #else
34  #define DPRINTF(fmt, ...) do {} while(0)
35  #endif
36  
37  /* The tx and rx fifo ports are a range of aliased 32-bit registers */
38  #define RX_DATA_FIFO_PORT_FIRST 0x00
39  #define RX_DATA_FIFO_PORT_LAST 0x1f
40  #define TX_DATA_FIFO_PORT_FIRST 0x20
41  #define TX_DATA_FIFO_PORT_LAST 0x3f
42  
43  #define RX_STATUS_FIFO_PORT 0x40
44  #define RX_STATUS_FIFO_PEEK 0x44
45  #define TX_STATUS_FIFO_PORT 0x48
46  #define TX_STATUS_FIFO_PEEK 0x4c
47  
48  #define CSR_ID_REV      0x50
49  #define CSR_IRQ_CFG     0x54
50  #define CSR_INT_STS     0x58
51  #define CSR_INT_EN      0x5c
52  #define CSR_BYTE_TEST   0x64
53  #define CSR_FIFO_INT    0x68
54  #define CSR_RX_CFG      0x6c
55  #define CSR_TX_CFG      0x70
56  #define CSR_HW_CFG      0x74
57  #define CSR_RX_DP_CTRL  0x78
58  #define CSR_RX_FIFO_INF 0x7c
59  #define CSR_TX_FIFO_INF 0x80
60  #define CSR_PMT_CTRL    0x84
61  #define CSR_GPIO_CFG    0x88
62  #define CSR_GPT_CFG     0x8c
63  #define CSR_GPT_CNT     0x90
64  #define CSR_WORD_SWAP   0x98
65  #define CSR_FREE_RUN    0x9c
66  #define CSR_RX_DROP     0xa0
67  #define CSR_MAC_CSR_CMD 0xa4
68  #define CSR_MAC_CSR_DATA 0xa8
69  #define CSR_AFC_CFG     0xac
70  #define CSR_E2P_CMD     0xb0
71  #define CSR_E2P_DATA    0xb4
72  
73  #define E2P_CMD_MAC_ADDR_LOADED 0x100
74  
75  /* IRQ_CFG */
76  #define IRQ_INT         0x00001000
77  #define IRQ_EN          0x00000100
78  #define IRQ_POL         0x00000010
79  #define IRQ_TYPE        0x00000001
80  
81  /* INT_STS/INT_EN */
82  #define SW_INT          0x80000000
83  #define TXSTOP_INT      0x02000000
84  #define RXSTOP_INT      0x01000000
85  #define RXDFH_INT       0x00800000
86  #define TX_IOC_INT      0x00200000
87  #define RXD_INT         0x00100000
88  #define GPT_INT         0x00080000
89  #define PHY_INT         0x00040000
90  #define PME_INT         0x00020000
91  #define TXSO_INT        0x00010000
92  #define RWT_INT         0x00008000
93  #define RXE_INT         0x00004000
94  #define TXE_INT         0x00002000
95  #define TDFU_INT        0x00000800
96  #define TDFO_INT        0x00000400
97  #define TDFA_INT        0x00000200
98  #define TSFF_INT        0x00000100
99  #define TSFL_INT        0x00000080
100  #define RXDF_INT        0x00000040
101  #define RDFL_INT        0x00000020
102  #define RSFF_INT        0x00000010
103  #define RSFL_INT        0x00000008
104  #define GPIO2_INT       0x00000004
105  #define GPIO1_INT       0x00000002
106  #define GPIO0_INT       0x00000001
107  #define RESERVED_INT    0x7c001000
108  
109  #define MAC_CR          1
110  #define MAC_ADDRH       2
111  #define MAC_ADDRL       3
112  #define MAC_HASHH       4
113  #define MAC_HASHL       5
114  #define MAC_MII_ACC     6
115  #define MAC_MII_DATA    7
116  #define MAC_FLOW        8
117  #define MAC_VLAN1       9 /* TODO */
118  #define MAC_VLAN2       10 /* TODO */
119  #define MAC_WUFF        11 /* TODO */
120  #define MAC_WUCSR       12 /* TODO */
121  
122  #define MAC_CR_RXALL    0x80000000
123  #define MAC_CR_RCVOWN   0x00800000
124  #define MAC_CR_LOOPBK   0x00200000
125  #define MAC_CR_FDPX     0x00100000
126  #define MAC_CR_MCPAS    0x00080000
127  #define MAC_CR_PRMS     0x00040000
128  #define MAC_CR_INVFILT  0x00020000
129  #define MAC_CR_PASSBAD  0x00010000
130  #define MAC_CR_HO       0x00008000
131  #define MAC_CR_HPFILT   0x00002000
132  #define MAC_CR_LCOLL    0x00001000
133  #define MAC_CR_BCAST    0x00000800
134  #define MAC_CR_DISRTY   0x00000400
135  #define MAC_CR_PADSTR   0x00000100
136  #define MAC_CR_BOLMT    0x000000c0
137  #define MAC_CR_DFCHK    0x00000020
138  #define MAC_CR_TXEN     0x00000008
139  #define MAC_CR_RXEN     0x00000004
140  #define MAC_CR_RESERVED 0x7f404213
141  
142  #define PHY_INT_ENERGYON            0x80
143  #define PHY_INT_AUTONEG_COMPLETE    0x40
144  #define PHY_INT_FAULT               0x20
145  #define PHY_INT_DOWN                0x10
146  #define PHY_INT_AUTONEG_LP          0x08
147  #define PHY_INT_PARFAULT            0x04
148  #define PHY_INT_AUTONEG_PAGE        0x02
149  
150  #define GPT_TIMER_EN    0x20000000
151  
152  /*
153   * The MAC Interface Layer (MIL), within the MAC, contains a 2K Byte transmit
154   * and a 128 Byte receive FIFO which is separate from the TX and RX FIFOs.
155   */
156  #define MIL_TXFIFO_SIZE         2048
157  
158  enum tx_state {
159      TX_IDLE,
160      TX_B,
161      TX_DATA
162  };
163  
164  typedef struct {
165      /* state is a tx_state but we can't put enums in VMStateDescriptions. */
166      uint32_t state;
167      uint32_t cmd_a;
168      uint32_t cmd_b;
169      int32_t buffer_size;
170      int32_t offset;
171      int32_t pad;
172      int32_t fifo_used;
173      int32_t len;
174      uint8_t data[MIL_TXFIFO_SIZE];
175  } LAN9118Packet;
176  
177  static const VMStateDescription vmstate_lan9118_packet = {
178      .name = "lan9118_packet",
179      .version_id = 1,
180      .minimum_version_id = 1,
181      .fields = (const VMStateField[]) {
182          VMSTATE_UINT32(state, LAN9118Packet),
183          VMSTATE_UINT32(cmd_a, LAN9118Packet),
184          VMSTATE_UINT32(cmd_b, LAN9118Packet),
185          VMSTATE_INT32(buffer_size, LAN9118Packet),
186          VMSTATE_INT32(offset, LAN9118Packet),
187          VMSTATE_INT32(pad, LAN9118Packet),
188          VMSTATE_INT32(fifo_used, LAN9118Packet),
189          VMSTATE_INT32(len, LAN9118Packet),
190          VMSTATE_UINT8_ARRAY(data, LAN9118Packet, MIL_TXFIFO_SIZE),
191          VMSTATE_END_OF_LIST()
192      }
193  };
194  
195  OBJECT_DECLARE_SIMPLE_TYPE(lan9118_state, LAN9118)
196  
197  struct lan9118_state {
198      SysBusDevice parent_obj;
199  
200      NICState *nic;
201      NICConf conf;
202      qemu_irq irq;
203      MemoryRegion mmio;
204      ptimer_state *timer;
205  
206      uint32_t irq_cfg;
207      uint32_t int_sts;
208      uint32_t int_en;
209      uint32_t fifo_int;
210      uint32_t rx_cfg;
211      uint32_t tx_cfg;
212      uint32_t hw_cfg;
213      uint32_t pmt_ctrl;
214      uint32_t gpio_cfg;
215      uint32_t gpt_cfg;
216      uint32_t word_swap;
217      uint32_t free_timer_start;
218      uint32_t mac_cmd;
219      uint32_t mac_data;
220      uint32_t afc_cfg;
221      uint32_t e2p_cmd;
222      uint32_t e2p_data;
223  
224      uint32_t mac_cr;
225      uint32_t mac_hashh;
226      uint32_t mac_hashl;
227      uint32_t mac_mii_acc;
228      uint32_t mac_mii_data;
229      uint32_t mac_flow;
230  
231      uint32_t phy_status;
232      uint32_t phy_control;
233      uint32_t phy_advertise;
234      uint32_t phy_int;
235      uint32_t phy_int_mask;
236  
237      int32_t eeprom_writable;
238      uint8_t eeprom[128];
239  
240      int32_t tx_fifo_size;
241      LAN9118Packet *txp;
242      LAN9118Packet tx_packet;
243  
244      int32_t tx_status_fifo_used;
245      int32_t tx_status_fifo_head;
246      uint32_t tx_status_fifo[512];
247  
248      int32_t rx_status_fifo_size;
249      int32_t rx_status_fifo_used;
250      int32_t rx_status_fifo_head;
251      uint32_t rx_status_fifo[896];
252      int32_t rx_fifo_size;
253      int32_t rx_fifo_used;
254      int32_t rx_fifo_head;
255      uint32_t rx_fifo[3360];
256      int32_t rx_packet_size_head;
257      int32_t rx_packet_size_tail;
258      int32_t rx_packet_size[1024];
259  
260      int32_t rxp_offset;
261      int32_t rxp_size;
262      int32_t rxp_pad;
263  
264      uint32_t write_word_prev_offset;
265      uint32_t write_word_n;
266      uint16_t write_word_l;
267      uint16_t write_word_h;
268      uint32_t read_word_prev_offset;
269      uint32_t read_word_n;
270      uint32_t read_long;
271  
272      uint32_t mode_16bit;
273  };
274  
275  static const VMStateDescription vmstate_lan9118 = {
276      .name = "lan9118",
277      .version_id = 2,
278      .minimum_version_id = 1,
279      .fields = (const VMStateField[]) {
280          VMSTATE_PTIMER(timer, lan9118_state),
281          VMSTATE_UINT32(irq_cfg, lan9118_state),
282          VMSTATE_UINT32(int_sts, lan9118_state),
283          VMSTATE_UINT32(int_en, lan9118_state),
284          VMSTATE_UINT32(fifo_int, lan9118_state),
285          VMSTATE_UINT32(rx_cfg, lan9118_state),
286          VMSTATE_UINT32(tx_cfg, lan9118_state),
287          VMSTATE_UINT32(hw_cfg, lan9118_state),
288          VMSTATE_UINT32(pmt_ctrl, lan9118_state),
289          VMSTATE_UINT32(gpio_cfg, lan9118_state),
290          VMSTATE_UINT32(gpt_cfg, lan9118_state),
291          VMSTATE_UINT32(word_swap, lan9118_state),
292          VMSTATE_UINT32(free_timer_start, lan9118_state),
293          VMSTATE_UINT32(mac_cmd, lan9118_state),
294          VMSTATE_UINT32(mac_data, lan9118_state),
295          VMSTATE_UINT32(afc_cfg, lan9118_state),
296          VMSTATE_UINT32(e2p_cmd, lan9118_state),
297          VMSTATE_UINT32(e2p_data, lan9118_state),
298          VMSTATE_UINT32(mac_cr, lan9118_state),
299          VMSTATE_UINT32(mac_hashh, lan9118_state),
300          VMSTATE_UINT32(mac_hashl, lan9118_state),
301          VMSTATE_UINT32(mac_mii_acc, lan9118_state),
302          VMSTATE_UINT32(mac_mii_data, lan9118_state),
303          VMSTATE_UINT32(mac_flow, lan9118_state),
304          VMSTATE_UINT32(phy_status, lan9118_state),
305          VMSTATE_UINT32(phy_control, lan9118_state),
306          VMSTATE_UINT32(phy_advertise, lan9118_state),
307          VMSTATE_UINT32(phy_int, lan9118_state),
308          VMSTATE_UINT32(phy_int_mask, lan9118_state),
309          VMSTATE_INT32(eeprom_writable, lan9118_state),
310          VMSTATE_UINT8_ARRAY(eeprom, lan9118_state, 128),
311          VMSTATE_INT32(tx_fifo_size, lan9118_state),
312          /* txp always points at tx_packet so need not be saved */
313          VMSTATE_STRUCT(tx_packet, lan9118_state, 0,
314                         vmstate_lan9118_packet, LAN9118Packet),
315          VMSTATE_INT32(tx_status_fifo_used, lan9118_state),
316          VMSTATE_INT32(tx_status_fifo_head, lan9118_state),
317          VMSTATE_UINT32_ARRAY(tx_status_fifo, lan9118_state, 512),
318          VMSTATE_INT32(rx_status_fifo_size, lan9118_state),
319          VMSTATE_INT32(rx_status_fifo_used, lan9118_state),
320          VMSTATE_INT32(rx_status_fifo_head, lan9118_state),
321          VMSTATE_UINT32_ARRAY(rx_status_fifo, lan9118_state, 896),
322          VMSTATE_INT32(rx_fifo_size, lan9118_state),
323          VMSTATE_INT32(rx_fifo_used, lan9118_state),
324          VMSTATE_INT32(rx_fifo_head, lan9118_state),
325          VMSTATE_UINT32_ARRAY(rx_fifo, lan9118_state, 3360),
326          VMSTATE_INT32(rx_packet_size_head, lan9118_state),
327          VMSTATE_INT32(rx_packet_size_tail, lan9118_state),
328          VMSTATE_INT32_ARRAY(rx_packet_size, lan9118_state, 1024),
329          VMSTATE_INT32(rxp_offset, lan9118_state),
330          VMSTATE_INT32(rxp_size, lan9118_state),
331          VMSTATE_INT32(rxp_pad, lan9118_state),
332          VMSTATE_UINT32_V(write_word_prev_offset, lan9118_state, 2),
333          VMSTATE_UINT32_V(write_word_n, lan9118_state, 2),
334          VMSTATE_UINT16_V(write_word_l, lan9118_state, 2),
335          VMSTATE_UINT16_V(write_word_h, lan9118_state, 2),
336          VMSTATE_UINT32_V(read_word_prev_offset, lan9118_state, 2),
337          VMSTATE_UINT32_V(read_word_n, lan9118_state, 2),
338          VMSTATE_UINT32_V(read_long, lan9118_state, 2),
339          VMSTATE_UINT32_V(mode_16bit, lan9118_state, 2),
340          VMSTATE_END_OF_LIST()
341      }
342  };
343  
lan9118_update(lan9118_state * s)344  static void lan9118_update(lan9118_state *s)
345  {
346      int level;
347  
348      /* TODO: Implement FIFO level IRQs.  */
349      level = (s->int_sts & s->int_en) != 0;
350      if (level) {
351          s->irq_cfg |= IRQ_INT;
352      } else {
353          s->irq_cfg &= ~IRQ_INT;
354      }
355      if ((s->irq_cfg & IRQ_EN) == 0) {
356          level = 0;
357      }
358      if ((s->irq_cfg & (IRQ_TYPE | IRQ_POL)) != (IRQ_TYPE | IRQ_POL)) {
359          /* Interrupt is active low unless we're configured as
360           * active-high polarity, push-pull type.
361           */
362          level = !level;
363      }
364      qemu_set_irq(s->irq, level);
365  }
366  
lan9118_mac_changed(lan9118_state * s)367  static void lan9118_mac_changed(lan9118_state *s)
368  {
369      qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
370  }
371  
lan9118_reload_eeprom(lan9118_state * s)372  static void lan9118_reload_eeprom(lan9118_state *s)
373  {
374      int i;
375      if (s->eeprom[0] != 0xa5) {
376          s->e2p_cmd &= ~E2P_CMD_MAC_ADDR_LOADED;
377          DPRINTF("MACADDR load failed\n");
378          return;
379      }
380      for (i = 0; i < 6; i++) {
381          s->conf.macaddr.a[i] = s->eeprom[i + 1];
382      }
383      s->e2p_cmd |= E2P_CMD_MAC_ADDR_LOADED;
384      DPRINTF("MACADDR loaded from eeprom\n");
385      lan9118_mac_changed(s);
386  }
387  
phy_update_irq(lan9118_state * s)388  static void phy_update_irq(lan9118_state *s)
389  {
390      if (s->phy_int & s->phy_int_mask) {
391          s->int_sts |= PHY_INT;
392      } else {
393          s->int_sts &= ~PHY_INT;
394      }
395      lan9118_update(s);
396  }
397  
phy_update_link(lan9118_state * s)398  static void phy_update_link(lan9118_state *s)
399  {
400      /* Autonegotiation status mirrors link status.  */
401      if (qemu_get_queue(s->nic)->link_down) {
402          s->phy_status &= ~0x0024;
403          s->phy_int |= PHY_INT_DOWN;
404      } else {
405          s->phy_status |= 0x0024;
406          s->phy_int |= PHY_INT_ENERGYON;
407          s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
408      }
409      phy_update_irq(s);
410  }
411  
lan9118_set_link(NetClientState * nc)412  static void lan9118_set_link(NetClientState *nc)
413  {
414      phy_update_link(qemu_get_nic_opaque(nc));
415  }
416  
phy_reset(lan9118_state * s)417  static void phy_reset(lan9118_state *s)
418  {
419      s->phy_status = 0x7809;
420      s->phy_control = 0x3000;
421      s->phy_advertise = 0x01e1;
422      s->phy_int_mask = 0;
423      s->phy_int = 0;
424      phy_update_link(s);
425  }
426  
lan9118_reset(DeviceState * d)427  static void lan9118_reset(DeviceState *d)
428  {
429      lan9118_state *s = LAN9118(d);
430  
431      s->irq_cfg &= (IRQ_TYPE | IRQ_POL);
432      s->int_sts = 0;
433      s->int_en = 0;
434      s->fifo_int = 0x48000000;
435      s->rx_cfg = 0;
436      s->tx_cfg = 0;
437      s->hw_cfg = s->mode_16bit ? 0x00050000 : 0x00050004;
438      s->pmt_ctrl &= 0x45;
439      s->gpio_cfg = 0;
440      s->txp->fifo_used = 0;
441      s->txp->state = TX_IDLE;
442      s->txp->cmd_a = 0xffffffffu;
443      s->txp->cmd_b = 0xffffffffu;
444      s->txp->len = 0;
445      s->txp->fifo_used = 0;
446      s->tx_fifo_size = 4608;
447      s->tx_status_fifo_used = 0;
448      s->rx_status_fifo_size = 704;
449      s->rx_fifo_size = 2640;
450      s->rx_fifo_used = 0;
451      s->rx_status_fifo_size = 176;
452      s->rx_status_fifo_used = 0;
453      s->rxp_offset = 0;
454      s->rxp_size = 0;
455      s->rxp_pad = 0;
456      s->rx_packet_size_tail = s->rx_packet_size_head;
457      s->rx_packet_size[s->rx_packet_size_head] = 0;
458      s->mac_cmd = 0;
459      s->mac_data = 0;
460      s->afc_cfg = 0;
461      s->e2p_cmd = 0;
462      s->e2p_data = 0;
463      s->free_timer_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / 40;
464  
465      ptimer_transaction_begin(s->timer);
466      ptimer_stop(s->timer);
467      ptimer_set_count(s->timer, 0xffff);
468      ptimer_transaction_commit(s->timer);
469      s->gpt_cfg = 0xffff;
470  
471      s->mac_cr = MAC_CR_PRMS;
472      s->mac_hashh = 0;
473      s->mac_hashl = 0;
474      s->mac_mii_acc = 0;
475      s->mac_mii_data = 0;
476      s->mac_flow = 0;
477  
478      s->read_word_n = 0;
479      s->write_word_n = 0;
480  
481      phy_reset(s);
482  
483      s->eeprom_writable = 0;
484      lan9118_reload_eeprom(s);
485  }
486  
rx_fifo_push(lan9118_state * s,uint32_t val)487  static void rx_fifo_push(lan9118_state *s, uint32_t val)
488  {
489      int fifo_pos;
490      fifo_pos = s->rx_fifo_head + s->rx_fifo_used;
491      if (fifo_pos >= s->rx_fifo_size)
492        fifo_pos -= s->rx_fifo_size;
493      s->rx_fifo[fifo_pos] = val;
494      s->rx_fifo_used++;
495  }
496  
497  /* Return nonzero if the packet is accepted by the filter.  */
lan9118_filter(lan9118_state * s,const uint8_t * addr)498  static int lan9118_filter(lan9118_state *s, const uint8_t *addr)
499  {
500      int multicast;
501      uint32_t hash;
502  
503      if (s->mac_cr & MAC_CR_PRMS) {
504          return 1;
505      }
506      if (addr[0] == 0xff && addr[1] == 0xff && addr[2] == 0xff &&
507          addr[3] == 0xff && addr[4] == 0xff && addr[5] == 0xff) {
508          return (s->mac_cr & MAC_CR_BCAST) == 0;
509      }
510  
511      multicast = addr[0] & 1;
512      if (multicast &&s->mac_cr & MAC_CR_MCPAS) {
513          return 1;
514      }
515      if (multicast ? (s->mac_cr & MAC_CR_HPFILT) == 0
516                    : (s->mac_cr & MAC_CR_HO) == 0) {
517          /* Exact matching.  */
518          hash = memcmp(addr, s->conf.macaddr.a, 6);
519          if (s->mac_cr & MAC_CR_INVFILT) {
520              return hash != 0;
521          } else {
522              return hash == 0;
523          }
524      } else {
525          /* Hash matching  */
526          hash = net_crc32(addr, ETH_ALEN) >> 26;
527          if (hash & 0x20) {
528              return (s->mac_hashh >> (hash & 0x1f)) & 1;
529          } else {
530              return (s->mac_hashl >> (hash & 0x1f)) & 1;
531          }
532      }
533  }
534  
lan9118_receive(NetClientState * nc,const uint8_t * buf,size_t size)535  static ssize_t lan9118_receive(NetClientState *nc, const uint8_t *buf,
536                                 size_t size)
537  {
538      lan9118_state *s = qemu_get_nic_opaque(nc);
539      int fifo_len;
540      int offset;
541      int src_pos;
542      int n;
543      int filter;
544      uint32_t val;
545      uint32_t crc;
546      uint32_t status;
547  
548      if ((s->mac_cr & MAC_CR_RXEN) == 0) {
549          return -1;
550      }
551  
552      if (size >= MIL_TXFIFO_SIZE || size < 14) {
553          return -1;
554      }
555  
556      /* TODO: Implement FIFO overflow notification.  */
557      if (s->rx_status_fifo_used == s->rx_status_fifo_size) {
558          return -1;
559      }
560  
561      filter = lan9118_filter(s, buf);
562      if (!filter && (s->mac_cr & MAC_CR_RXALL) == 0) {
563          return size;
564      }
565  
566      offset = (s->rx_cfg >> 8) & 0x1f;
567      n = offset & 3;
568      fifo_len = (size + n + 3) >> 2;
569      /* Add a word for the CRC.  */
570      fifo_len++;
571      if (s->rx_fifo_size - s->rx_fifo_used < fifo_len) {
572          return -1;
573      }
574  
575      DPRINTF("Got packet len:%d fifo:%d filter:%s\n",
576              (int)size, fifo_len, filter ? "pass" : "fail");
577      val = 0;
578      crc = bswap32(crc32(~0, buf, size));
579      for (src_pos = 0; src_pos < size; src_pos++) {
580          val = (val >> 8) | ((uint32_t)buf[src_pos] << 24);
581          n++;
582          if (n == 4) {
583              n = 0;
584              rx_fifo_push(s, val);
585              val = 0;
586          }
587      }
588      if (n) {
589          val >>= ((4 - n) * 8);
590          val |= crc << (n * 8);
591          rx_fifo_push(s, val);
592          val = crc >> ((4 - n) * 8);
593          rx_fifo_push(s, val);
594      } else {
595          rx_fifo_push(s, crc);
596      }
597      n = s->rx_status_fifo_head + s->rx_status_fifo_used;
598      if (n >= s->rx_status_fifo_size) {
599          n -= s->rx_status_fifo_size;
600      }
601      s->rx_packet_size[s->rx_packet_size_tail] = fifo_len;
602      s->rx_packet_size_tail = (s->rx_packet_size_tail + 1023) & 1023;
603      s->rx_status_fifo_used++;
604  
605      status = (size + 4) << 16;
606      if (buf[0] == 0xff && buf[1] == 0xff && buf[2] == 0xff &&
607          buf[3] == 0xff && buf[4] == 0xff && buf[5] == 0xff) {
608          status |= 0x00002000;
609      } else if (buf[0] & 1) {
610          status |= 0x00000400;
611      }
612      if (!filter) {
613          status |= 0x40000000;
614      }
615      s->rx_status_fifo[n] = status;
616  
617      if (s->rx_status_fifo_used > (s->fifo_int & 0xff)) {
618          s->int_sts |= RSFL_INT;
619      }
620      lan9118_update(s);
621  
622      return size;
623  }
624  
rx_fifo_pop(lan9118_state * s)625  static uint32_t rx_fifo_pop(lan9118_state *s)
626  {
627      int n;
628      uint32_t val;
629  
630      if (s->rxp_size == 0 && s->rxp_pad == 0) {
631          s->rxp_size = s->rx_packet_size[s->rx_packet_size_head];
632          s->rx_packet_size[s->rx_packet_size_head] = 0;
633          if (s->rxp_size != 0) {
634              s->rx_packet_size_head = (s->rx_packet_size_head + 1023) & 1023;
635              s->rxp_offset = (s->rx_cfg >> 10) & 7;
636              n = s->rxp_offset + s->rxp_size;
637              switch (s->rx_cfg >> 30) {
638              case 1:
639                  n = (-n) & 3;
640                  break;
641              case 2:
642                  n = (-n) & 7;
643                  break;
644              default:
645                  n = 0;
646                  break;
647              }
648              s->rxp_pad = n;
649              DPRINTF("Pop packet size:%d offset:%d pad: %d\n",
650                      s->rxp_size, s->rxp_offset, s->rxp_pad);
651          }
652      }
653      if (s->rxp_offset > 0) {
654          s->rxp_offset--;
655          val = 0;
656      } else if (s->rxp_size > 0) {
657          s->rxp_size--;
658          val = s->rx_fifo[s->rx_fifo_head++];
659          if (s->rx_fifo_head >= s->rx_fifo_size) {
660              s->rx_fifo_head -= s->rx_fifo_size;
661          }
662          s->rx_fifo_used--;
663      } else if (s->rxp_pad > 0) {
664          s->rxp_pad--;
665          val =  0;
666      } else {
667          DPRINTF("RX underflow\n");
668          s->int_sts |= RXE_INT;
669          val =  0;
670      }
671      lan9118_update(s);
672      return val;
673  }
674  
do_tx_packet(lan9118_state * s)675  static void do_tx_packet(lan9118_state *s)
676  {
677      int n;
678      uint32_t status;
679  
680      /* FIXME: Honor TX disable, and allow queueing of packets.  */
681      if (s->phy_control & 0x4000)  {
682          /* This assumes the receive routine doesn't touch the VLANClient.  */
683          qemu_receive_packet(qemu_get_queue(s->nic), s->txp->data, s->txp->len);
684      } else {
685          qemu_send_packet(qemu_get_queue(s->nic), s->txp->data, s->txp->len);
686      }
687      s->txp->fifo_used = 0;
688  
689      if (s->tx_status_fifo_used == 512) {
690          /* Status FIFO full */
691          return;
692      }
693      /* Add entry to status FIFO.  */
694      status = s->txp->cmd_b & 0xffff0000u;
695      DPRINTF("Sent packet tag:%04x len %d\n", status >> 16, s->txp->len);
696      n = (s->tx_status_fifo_head + s->tx_status_fifo_used) & 511;
697      s->tx_status_fifo[n] = status;
698      s->tx_status_fifo_used++;
699  
700      /*
701       * Generate TSFL interrupt if TX FIFO level exceeds the level
702       * specified in the FIFO_INT TX Status Level field.
703       */
704      if (s->tx_status_fifo_used > ((s->fifo_int >> 16) & 0xff)) {
705          s->int_sts |= TSFL_INT;
706      }
707      if (s->tx_status_fifo_used == 512) {
708          s->int_sts |= TSFF_INT;
709          /* TODO: Stop transmission.  */
710      }
711  }
712  
rx_status_fifo_pop(lan9118_state * s)713  static uint32_t rx_status_fifo_pop(lan9118_state *s)
714  {
715      uint32_t val;
716  
717      val = s->rx_status_fifo[s->rx_status_fifo_head];
718      if (s->rx_status_fifo_used != 0) {
719          s->rx_status_fifo_used--;
720          s->rx_status_fifo_head++;
721          if (s->rx_status_fifo_head >= s->rx_status_fifo_size) {
722              s->rx_status_fifo_head -= s->rx_status_fifo_size;
723          }
724          /* ??? What value should be returned when the FIFO is empty?  */
725          DPRINTF("RX status pop 0x%08x\n", val);
726      }
727      return val;
728  }
729  
tx_status_fifo_pop(lan9118_state * s)730  static uint32_t tx_status_fifo_pop(lan9118_state *s)
731  {
732      uint32_t val;
733  
734      val = s->tx_status_fifo[s->tx_status_fifo_head];
735      if (s->tx_status_fifo_used != 0) {
736          s->tx_status_fifo_used--;
737          s->tx_status_fifo_head = (s->tx_status_fifo_head + 1) & 511;
738          /* ??? What value should be returned when the FIFO is empty?  */
739      }
740      return val;
741  }
742  
tx_fifo_push(lan9118_state * s,uint32_t val)743  static void tx_fifo_push(lan9118_state *s, uint32_t val)
744  {
745      int n;
746  
747      if (s->txp->fifo_used == s->tx_fifo_size) {
748          s->int_sts |= TDFO_INT;
749          return;
750      }
751      switch (s->txp->state) {
752      case TX_IDLE:
753          s->txp->cmd_a = val & 0x831f37ff;
754          s->txp->fifo_used++;
755          s->txp->state = TX_B;
756          s->txp->buffer_size = extract32(s->txp->cmd_a, 0, 11);
757          s->txp->offset = extract32(s->txp->cmd_a, 16, 5);
758          break;
759      case TX_B:
760          if (s->txp->cmd_a & 0x2000) {
761              /* First segment */
762              s->txp->cmd_b = val;
763              s->txp->fifo_used++;
764              /* End alignment does not include command words.  */
765              n = (s->txp->buffer_size + s->txp->offset + 3) >> 2;
766              switch ((n >> 24) & 3) {
767              case 1:
768                  n = (-n) & 3;
769                  break;
770              case 2:
771                  n = (-n) & 7;
772                  break;
773              default:
774                  n = 0;
775              }
776              s->txp->pad = n;
777              s->txp->len = 0;
778          }
779          DPRINTF("Block len:%d offset:%d pad:%d cmd %08x\n",
780                  s->txp->buffer_size, s->txp->offset, s->txp->pad,
781                  s->txp->cmd_a);
782          s->txp->state = TX_DATA;
783          break;
784      case TX_DATA:
785          if (s->txp->offset >= 4) {
786              s->txp->offset -= 4;
787              break;
788          }
789          if (s->txp->buffer_size <= 0 && s->txp->pad != 0) {
790              s->txp->pad--;
791          } else {
792              n = MIN(4, s->txp->buffer_size + s->txp->offset);
793              while (s->txp->offset) {
794                  val >>= 8;
795                  n--;
796                  s->txp->offset--;
797              }
798              /* Documentation is somewhat unclear on the ordering of bytes
799                 in FIFO words.  Empirical results show it to be little-endian.
800                 */
801              while (n--) {
802                  if (s->txp->len == MIL_TXFIFO_SIZE) {
803                      /*
804                       * No more space in the FIFO. The datasheet is not
805                       * precise about this case. We choose what is easiest
806                       * to model: the packet is truncated, and TXE is raised.
807                       *
808                       * Note, it could be a fragmented packet, but we currently
809                       * do not handle that (see earlier TX_B case).
810                       */
811                      qemu_log_mask(LOG_GUEST_ERROR,
812                                    "MIL TX FIFO overrun, discarding %u byte%s\n",
813                                    n, n > 1 ? "s" : "");
814                      s->int_sts |= TXE_INT;
815                      break;
816                  }
817                  s->txp->data[s->txp->len] = val & 0xff;
818                  s->txp->len++;
819                  val >>= 8;
820                  s->txp->buffer_size--;
821              }
822              s->txp->fifo_used++;
823          }
824          if (s->txp->buffer_size <= 0 && s->txp->pad == 0) {
825              if (s->txp->cmd_a & 0x1000) {
826                  do_tx_packet(s);
827              }
828              if (s->txp->cmd_a & 0x80000000) {
829                  s->int_sts |= TX_IOC_INT;
830              }
831              s->txp->state = TX_IDLE;
832          }
833          break;
834      }
835  }
836  
do_phy_read(lan9118_state * s,int reg)837  static uint32_t do_phy_read(lan9118_state *s, int reg)
838  {
839      uint32_t val;
840  
841      switch (reg) {
842      case 0: /* Basic Control */
843          return s->phy_control;
844      case 1: /* Basic Status */
845          return s->phy_status;
846      case 2: /* ID1 */
847          return 0x0007;
848      case 3: /* ID2 */
849          return 0xc0d1;
850      case 4: /* Auto-neg advertisement */
851          return s->phy_advertise;
852      case 5: /* Auto-neg Link Partner Ability */
853          return 0x0f71;
854      case 6: /* Auto-neg Expansion */
855          return 1;
856          /* TODO 17, 18, 27, 29, 30, 31 */
857      case 29: /* Interrupt source.  */
858          val = s->phy_int;
859          s->phy_int = 0;
860          phy_update_irq(s);
861          return val;
862      case 30: /* Interrupt mask */
863          return s->phy_int_mask;
864      default:
865          qemu_log_mask(LOG_GUEST_ERROR,
866                        "do_phy_read: PHY read reg %d\n", reg);
867          return 0;
868      }
869  }
870  
do_phy_write(lan9118_state * s,int reg,uint32_t val)871  static void do_phy_write(lan9118_state *s, int reg, uint32_t val)
872  {
873      switch (reg) {
874      case 0: /* Basic Control */
875          if (val & 0x8000) {
876              phy_reset(s);
877              break;
878          }
879          s->phy_control = val & 0x7980;
880          /* Complete autonegotiation immediately.  */
881          if (val & 0x1000) {
882              s->phy_status |= 0x0020;
883          }
884          break;
885      case 4: /* Auto-neg advertisement */
886          s->phy_advertise = (val & 0x2d7f) | 0x80;
887          break;
888          /* TODO 17, 18, 27, 31 */
889      case 30: /* Interrupt mask */
890          s->phy_int_mask = val & 0xff;
891          phy_update_irq(s);
892          break;
893      default:
894          qemu_log_mask(LOG_GUEST_ERROR,
895                        "do_phy_write: PHY write reg %d = 0x%04x\n", reg, val);
896      }
897  }
898  
do_mac_write(lan9118_state * s,int reg,uint32_t val)899  static void do_mac_write(lan9118_state *s, int reg, uint32_t val)
900  {
901      switch (reg) {
902      case MAC_CR:
903          if ((s->mac_cr & MAC_CR_RXEN) != 0 && (val & MAC_CR_RXEN) == 0) {
904              s->int_sts |= RXSTOP_INT;
905          }
906          s->mac_cr = val & ~MAC_CR_RESERVED;
907          DPRINTF("MAC_CR: %08x\n", val);
908          break;
909      case MAC_ADDRH:
910          s->conf.macaddr.a[4] = val & 0xff;
911          s->conf.macaddr.a[5] = (val >> 8) & 0xff;
912          lan9118_mac_changed(s);
913          break;
914      case MAC_ADDRL:
915          s->conf.macaddr.a[0] = val & 0xff;
916          s->conf.macaddr.a[1] = (val >> 8) & 0xff;
917          s->conf.macaddr.a[2] = (val >> 16) & 0xff;
918          s->conf.macaddr.a[3] = (val >> 24) & 0xff;
919          lan9118_mac_changed(s);
920          break;
921      case MAC_HASHH:
922          s->mac_hashh = val;
923          break;
924      case MAC_HASHL:
925          s->mac_hashl = val;
926          break;
927      case MAC_MII_ACC:
928          s->mac_mii_acc = val & 0xffc2;
929          if (val & 2) {
930              DPRINTF("PHY write %d = 0x%04x\n",
931                      (val >> 6) & 0x1f, s->mac_mii_data);
932              do_phy_write(s, (val >> 6) & 0x1f, s->mac_mii_data);
933          } else {
934              s->mac_mii_data = do_phy_read(s, (val >> 6) & 0x1f);
935              DPRINTF("PHY read %d = 0x%04x\n",
936                      (val >> 6) & 0x1f, s->mac_mii_data);
937          }
938          break;
939      case MAC_MII_DATA:
940          s->mac_mii_data = val & 0xffff;
941          break;
942      case MAC_FLOW:
943          s->mac_flow = val & 0xffff0000;
944          break;
945      case MAC_VLAN1:
946          /* Writing to this register changes a condition for
947           * FrameTooLong bit in rx_status.  Since we do not set
948           * FrameTooLong anyway, just ignore write to this.
949           */
950          break;
951      default:
952          qemu_log_mask(LOG_GUEST_ERROR,
953                        "lan9118: Unimplemented MAC register write: %d = 0x%x\n",
954                   s->mac_cmd & 0xf, val);
955      }
956  }
957  
do_mac_read(lan9118_state * s,int reg)958  static uint32_t do_mac_read(lan9118_state *s, int reg)
959  {
960      switch (reg) {
961      case MAC_CR:
962          return s->mac_cr;
963      case MAC_ADDRH:
964          return s->conf.macaddr.a[4] | (s->conf.macaddr.a[5] << 8);
965      case MAC_ADDRL:
966          return s->conf.macaddr.a[0] | (s->conf.macaddr.a[1] << 8)
967                 | (s->conf.macaddr.a[2] << 16) | (s->conf.macaddr.a[3] << 24);
968      case MAC_HASHH:
969          return s->mac_hashh;
970      case MAC_HASHL:
971          return s->mac_hashl;
972      case MAC_MII_ACC:
973          return s->mac_mii_acc;
974      case MAC_MII_DATA:
975          return s->mac_mii_data;
976      case MAC_FLOW:
977          return s->mac_flow;
978      default:
979          qemu_log_mask(LOG_GUEST_ERROR,
980                        "lan9118: Unimplemented MAC register read: %d\n",
981                   s->mac_cmd & 0xf);
982          return 0;
983      }
984  }
985  
lan9118_eeprom_cmd(lan9118_state * s,int cmd,int addr)986  static void lan9118_eeprom_cmd(lan9118_state *s, int cmd, int addr)
987  {
988      s->e2p_cmd = (s->e2p_cmd & E2P_CMD_MAC_ADDR_LOADED) | (cmd << 28) | addr;
989      switch (cmd) {
990      case 0:
991          s->e2p_data = s->eeprom[addr];
992          DPRINTF("EEPROM Read %d = 0x%02x\n", addr, s->e2p_data);
993          break;
994      case 1:
995          s->eeprom_writable = 0;
996          DPRINTF("EEPROM Write Disable\n");
997          break;
998      case 2: /* EWEN */
999          s->eeprom_writable = 1;
1000          DPRINTF("EEPROM Write Enable\n");
1001          break;
1002      case 3: /* WRITE */
1003          if (s->eeprom_writable) {
1004              s->eeprom[addr] &= s->e2p_data;
1005              DPRINTF("EEPROM Write %d = 0x%02x\n", addr, s->e2p_data);
1006          } else {
1007              DPRINTF("EEPROM Write %d (ignored)\n", addr);
1008          }
1009          break;
1010      case 4: /* WRAL */
1011          if (s->eeprom_writable) {
1012              for (addr = 0; addr < 128; addr++) {
1013                  s->eeprom[addr] &= s->e2p_data;
1014              }
1015              DPRINTF("EEPROM Write All 0x%02x\n", s->e2p_data);
1016          } else {
1017              DPRINTF("EEPROM Write All (ignored)\n");
1018          }
1019          break;
1020      case 5: /* ERASE */
1021          if (s->eeprom_writable) {
1022              s->eeprom[addr] = 0xff;
1023              DPRINTF("EEPROM Erase %d\n", addr);
1024          } else {
1025              DPRINTF("EEPROM Erase %d (ignored)\n", addr);
1026          }
1027          break;
1028      case 6: /* ERAL */
1029          if (s->eeprom_writable) {
1030              memset(s->eeprom, 0xff, 128);
1031              DPRINTF("EEPROM Erase All\n");
1032          } else {
1033              DPRINTF("EEPROM Erase All (ignored)\n");
1034          }
1035          break;
1036      case 7: /* RELOAD */
1037          lan9118_reload_eeprom(s);
1038          break;
1039      }
1040  }
1041  
lan9118_tick(void * opaque)1042  static void lan9118_tick(void *opaque)
1043  {
1044      lan9118_state *s = (lan9118_state *)opaque;
1045      if (s->int_en & GPT_INT) {
1046          s->int_sts |= GPT_INT;
1047      }
1048      lan9118_update(s);
1049  }
1050  
lan9118_writel(void * opaque,hwaddr offset,uint64_t val,unsigned size)1051  static void lan9118_writel(void *opaque, hwaddr offset,
1052                             uint64_t val, unsigned size)
1053  {
1054      lan9118_state *s = (lan9118_state *)opaque;
1055      offset &= 0xff;
1056  
1057      //DPRINTF("Write reg 0x%02x = 0x%08x\n", (int)offset, val);
1058      if (offset >= TX_DATA_FIFO_PORT_FIRST &&
1059          offset <= TX_DATA_FIFO_PORT_LAST) {
1060          /* TX FIFO */
1061          tx_fifo_push(s, val);
1062          return;
1063      }
1064      switch (offset) {
1065      case CSR_IRQ_CFG:
1066          /* TODO: Implement interrupt deassertion intervals.  */
1067          val &= (IRQ_EN | IRQ_POL | IRQ_TYPE);
1068          s->irq_cfg = (s->irq_cfg & IRQ_INT) | val;
1069          break;
1070      case CSR_INT_STS:
1071          s->int_sts &= ~val;
1072          break;
1073      case CSR_INT_EN:
1074          s->int_en = val & ~RESERVED_INT;
1075          s->int_sts |= val & SW_INT;
1076          break;
1077      case CSR_FIFO_INT:
1078          DPRINTF("FIFO INT levels %08x\n", val);
1079          s->fifo_int = val;
1080          break;
1081      case CSR_RX_CFG:
1082          if (val & 0x8000) {
1083              /* RX_DUMP */
1084              s->rx_fifo_used = 0;
1085              s->rx_status_fifo_used = 0;
1086              s->rx_packet_size_tail = s->rx_packet_size_head;
1087              s->rx_packet_size[s->rx_packet_size_head] = 0;
1088          }
1089          s->rx_cfg = val & 0xcfff1ff0;
1090          break;
1091      case CSR_TX_CFG:
1092          if (val & 0x8000) {
1093              s->tx_status_fifo_used = 0;
1094          }
1095          if (val & 0x4000) {
1096              s->txp->state = TX_IDLE;
1097              s->txp->fifo_used = 0;
1098              s->txp->cmd_a = 0xffffffff;
1099          }
1100          s->tx_cfg = val & 6;
1101          break;
1102      case CSR_HW_CFG:
1103          if (val & 1) {
1104              /* SRST */
1105              lan9118_reset(DEVICE(s));
1106          } else {
1107              s->hw_cfg = (val & 0x003f300) | (s->hw_cfg & 0x4);
1108          }
1109          break;
1110      case CSR_RX_DP_CTRL:
1111          if (val & 0x80000000) {
1112              /* Skip forward to next packet.  */
1113              s->rxp_pad = 0;
1114              s->rxp_offset = 0;
1115              if (s->rxp_size == 0) {
1116                  /* Pop a word to start the next packet.  */
1117                  rx_fifo_pop(s);
1118                  s->rxp_pad = 0;
1119                  s->rxp_offset = 0;
1120              }
1121              s->rx_fifo_head += s->rxp_size;
1122              if (s->rx_fifo_head >= s->rx_fifo_size) {
1123                  s->rx_fifo_head -= s->rx_fifo_size;
1124              }
1125          }
1126          break;
1127      case CSR_PMT_CTRL:
1128          if (val & 0x400) {
1129              phy_reset(s);
1130          }
1131          s->pmt_ctrl &= ~0x34e;
1132          s->pmt_ctrl |= (val & 0x34e);
1133          break;
1134      case CSR_GPIO_CFG:
1135          /* Probably just enabling LEDs.  */
1136          s->gpio_cfg = val & 0x7777071f;
1137          break;
1138      case CSR_GPT_CFG:
1139          if ((s->gpt_cfg ^ val) & GPT_TIMER_EN) {
1140              ptimer_transaction_begin(s->timer);
1141              if (val & GPT_TIMER_EN) {
1142                  ptimer_set_count(s->timer, val & 0xffff);
1143                  ptimer_run(s->timer, 0);
1144              } else {
1145                  ptimer_stop(s->timer);
1146                  ptimer_set_count(s->timer, 0xffff);
1147              }
1148              ptimer_transaction_commit(s->timer);
1149          }
1150          s->gpt_cfg = val & (GPT_TIMER_EN | 0xffff);
1151          break;
1152      case CSR_WORD_SWAP:
1153          /* Ignored because we're in 32-bit mode.  */
1154          s->word_swap = val;
1155          break;
1156      case CSR_MAC_CSR_CMD:
1157          s->mac_cmd = val & 0x4000000f;
1158          if (val & 0x80000000) {
1159              if (val & 0x40000000) {
1160                  s->mac_data = do_mac_read(s, val & 0xf);
1161                  DPRINTF("MAC read %d = 0x%08x\n", val & 0xf, s->mac_data);
1162              } else {
1163                  DPRINTF("MAC write %d = 0x%08x\n", val & 0xf, s->mac_data);
1164                  do_mac_write(s, val & 0xf, s->mac_data);
1165              }
1166          }
1167          break;
1168      case CSR_MAC_CSR_DATA:
1169          s->mac_data = val;
1170          break;
1171      case CSR_AFC_CFG:
1172          s->afc_cfg = val & 0x00ffffff;
1173          break;
1174      case CSR_E2P_CMD:
1175          lan9118_eeprom_cmd(s, (val >> 28) & 7, val & 0x7f);
1176          break;
1177      case CSR_E2P_DATA:
1178          s->e2p_data = val & 0xff;
1179          break;
1180  
1181      default:
1182          qemu_log_mask(LOG_GUEST_ERROR, "lan9118_write: Bad reg 0x%x = %x\n",
1183                        (int)offset, (int)val);
1184          break;
1185      }
1186      lan9118_update(s);
1187  }
1188  
lan9118_writew(void * opaque,hwaddr offset,uint32_t val)1189  static void lan9118_writew(void *opaque, hwaddr offset,
1190                             uint32_t val)
1191  {
1192      lan9118_state *s = (lan9118_state *)opaque;
1193      offset &= 0xff;
1194  
1195      if (s->write_word_prev_offset != (offset & ~0x3)) {
1196          /* New offset, reset word counter */
1197          s->write_word_n = 0;
1198          s->write_word_prev_offset = offset & ~0x3;
1199      }
1200  
1201      if (offset & 0x2) {
1202          s->write_word_h = val;
1203      } else {
1204          s->write_word_l = val;
1205      }
1206  
1207      //DPRINTF("Writew reg 0x%02x = 0x%08x\n", (int)offset, val);
1208      s->write_word_n++;
1209      if (s->write_word_n == 2) {
1210          s->write_word_n = 0;
1211          lan9118_writel(s, offset & ~3, s->write_word_l +
1212                  (s->write_word_h << 16), 4);
1213      }
1214  }
1215  
lan9118_16bit_mode_write(void * opaque,hwaddr offset,uint64_t val,unsigned size)1216  static void lan9118_16bit_mode_write(void *opaque, hwaddr offset,
1217                                       uint64_t val, unsigned size)
1218  {
1219      switch (size) {
1220      case 2:
1221          lan9118_writew(opaque, offset, (uint32_t)val);
1222          return;
1223      case 4:
1224          lan9118_writel(opaque, offset, val, size);
1225          return;
1226      }
1227  
1228      qemu_log_mask(LOG_GUEST_ERROR,
1229                    "lan9118_16bit_mode_write: Bad size 0x%x\n", size);
1230  }
1231  
lan9118_readl(void * opaque,hwaddr offset,unsigned size)1232  static uint64_t lan9118_readl(void *opaque, hwaddr offset,
1233                                unsigned size)
1234  {
1235      lan9118_state *s = (lan9118_state *)opaque;
1236  
1237      //DPRINTF("Read reg 0x%02x\n", (int)offset);
1238      if (offset <= RX_DATA_FIFO_PORT_LAST) {
1239          /* RX FIFO */
1240          return rx_fifo_pop(s);
1241      }
1242      switch (offset) {
1243      case RX_STATUS_FIFO_PORT:
1244          return rx_status_fifo_pop(s);
1245      case RX_STATUS_FIFO_PEEK:
1246          return s->rx_status_fifo[s->rx_status_fifo_head];
1247      case TX_STATUS_FIFO_PORT:
1248          return tx_status_fifo_pop(s);
1249      case TX_STATUS_FIFO_PEEK:
1250          return s->tx_status_fifo[s->tx_status_fifo_head];
1251      case CSR_ID_REV:
1252          return 0x01180001;
1253      case CSR_IRQ_CFG:
1254          return s->irq_cfg;
1255      case CSR_INT_STS:
1256          return s->int_sts;
1257      case CSR_INT_EN:
1258          return s->int_en;
1259      case CSR_BYTE_TEST:
1260          return 0x87654321;
1261      case CSR_FIFO_INT:
1262          return s->fifo_int;
1263      case CSR_RX_CFG:
1264          return s->rx_cfg;
1265      case CSR_TX_CFG:
1266          return s->tx_cfg;
1267      case CSR_HW_CFG:
1268          return s->hw_cfg;
1269      case CSR_RX_DP_CTRL:
1270          return 0;
1271      case CSR_RX_FIFO_INF:
1272          return (s->rx_status_fifo_used << 16) | (s->rx_fifo_used << 2);
1273      case CSR_TX_FIFO_INF:
1274          return (s->tx_status_fifo_used << 16)
1275                 | (s->tx_fifo_size - s->txp->fifo_used);
1276      case CSR_PMT_CTRL:
1277          return s->pmt_ctrl;
1278      case CSR_GPIO_CFG:
1279          return s->gpio_cfg;
1280      case CSR_GPT_CFG:
1281          return s->gpt_cfg;
1282      case CSR_GPT_CNT:
1283          return ptimer_get_count(s->timer);
1284      case CSR_WORD_SWAP:
1285          return s->word_swap;
1286      case CSR_FREE_RUN:
1287          return (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / 40) - s->free_timer_start;
1288      case CSR_RX_DROP:
1289          /* TODO: Implement dropped frames counter.  */
1290          return 0;
1291      case CSR_MAC_CSR_CMD:
1292          return s->mac_cmd;
1293      case CSR_MAC_CSR_DATA:
1294          return s->mac_data;
1295      case CSR_AFC_CFG:
1296          return s->afc_cfg;
1297      case CSR_E2P_CMD:
1298          return s->e2p_cmd;
1299      case CSR_E2P_DATA:
1300          return s->e2p_data;
1301      }
1302      qemu_log_mask(LOG_GUEST_ERROR, "lan9118_read: Bad reg 0x%x\n", (int)offset);
1303      return 0;
1304  }
1305  
lan9118_readw(void * opaque,hwaddr offset)1306  static uint32_t lan9118_readw(void *opaque, hwaddr offset)
1307  {
1308      lan9118_state *s = (lan9118_state *)opaque;
1309      uint32_t val;
1310  
1311      if (s->read_word_prev_offset != (offset & ~0x3)) {
1312          /* New offset, reset word counter */
1313          s->read_word_n = 0;
1314          s->read_word_prev_offset = offset & ~0x3;
1315      }
1316  
1317      s->read_word_n++;
1318      if (s->read_word_n == 1) {
1319          s->read_long = lan9118_readl(s, offset & ~3, 4);
1320      } else {
1321          s->read_word_n = 0;
1322      }
1323  
1324      if (offset & 2) {
1325          val = s->read_long >> 16;
1326      } else {
1327          val = s->read_long & 0xFFFF;
1328      }
1329  
1330      //DPRINTF("Readw reg 0x%02x, val 0x%x\n", (int)offset, val);
1331      return val;
1332  }
1333  
lan9118_16bit_mode_read(void * opaque,hwaddr offset,unsigned size)1334  static uint64_t lan9118_16bit_mode_read(void *opaque, hwaddr offset,
1335                                          unsigned size)
1336  {
1337      switch (size) {
1338      case 2:
1339          return lan9118_readw(opaque, offset);
1340      case 4:
1341          return lan9118_readl(opaque, offset, size);
1342      }
1343  
1344      qemu_log_mask(LOG_GUEST_ERROR,
1345                    "lan9118_16bit_mode_read: Bad size 0x%x\n", size);
1346      return 0;
1347  }
1348  
1349  static const MemoryRegionOps lan9118_mem_ops = {
1350      .read = lan9118_readl,
1351      .write = lan9118_writel,
1352      .endianness = DEVICE_NATIVE_ENDIAN,
1353  };
1354  
1355  static const MemoryRegionOps lan9118_16bit_mem_ops = {
1356      .read = lan9118_16bit_mode_read,
1357      .write = lan9118_16bit_mode_write,
1358      .endianness = DEVICE_NATIVE_ENDIAN,
1359  };
1360  
1361  static NetClientInfo net_lan9118_info = {
1362      .type = NET_CLIENT_DRIVER_NIC,
1363      .size = sizeof(NICState),
1364      .receive = lan9118_receive,
1365      .link_status_changed = lan9118_set_link,
1366  };
1367  
lan9118_realize(DeviceState * dev,Error ** errp)1368  static void lan9118_realize(DeviceState *dev, Error **errp)
1369  {
1370      SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1371      lan9118_state *s = LAN9118(dev);
1372      int i;
1373      const MemoryRegionOps *mem_ops =
1374              s->mode_16bit ? &lan9118_16bit_mem_ops : &lan9118_mem_ops;
1375  
1376      memory_region_init_io(&s->mmio, OBJECT(dev), mem_ops, s,
1377                            "lan9118-mmio", 0x100);
1378      sysbus_init_mmio(sbd, &s->mmio);
1379      sysbus_init_irq(sbd, &s->irq);
1380      qemu_macaddr_default_if_unset(&s->conf.macaddr);
1381  
1382      s->nic = qemu_new_nic(&net_lan9118_info, &s->conf,
1383                            object_get_typename(OBJECT(dev)), dev->id,
1384                            &dev->mem_reentrancy_guard, s);
1385      qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1386      s->eeprom[0] = 0xa5;
1387      for (i = 0; i < 6; i++) {
1388          s->eeprom[i + 1] = s->conf.macaddr.a[i];
1389      }
1390      s->pmt_ctrl = 1;
1391      s->txp = &s->tx_packet;
1392  
1393      s->timer = ptimer_init(lan9118_tick, s, PTIMER_POLICY_LEGACY);
1394      ptimer_transaction_begin(s->timer);
1395      ptimer_set_freq(s->timer, 10000);
1396      ptimer_set_limit(s->timer, 0xffff, 1);
1397      ptimer_transaction_commit(s->timer);
1398  }
1399  
1400  static Property lan9118_properties[] = {
1401      DEFINE_NIC_PROPERTIES(lan9118_state, conf),
1402      DEFINE_PROP_UINT32("mode_16bit", lan9118_state, mode_16bit, 0),
1403      DEFINE_PROP_END_OF_LIST(),
1404  };
1405  
lan9118_class_init(ObjectClass * klass,void * data)1406  static void lan9118_class_init(ObjectClass *klass, void *data)
1407  {
1408      DeviceClass *dc = DEVICE_CLASS(klass);
1409  
1410      device_class_set_legacy_reset(dc, lan9118_reset);
1411      device_class_set_props(dc, lan9118_properties);
1412      dc->vmsd = &vmstate_lan9118;
1413      dc->realize = lan9118_realize;
1414  }
1415  
1416  static const TypeInfo lan9118_info = {
1417      .name          = TYPE_LAN9118,
1418      .parent        = TYPE_SYS_BUS_DEVICE,
1419      .instance_size = sizeof(lan9118_state),
1420      .class_init    = lan9118_class_init,
1421  };
1422  
lan9118_register_types(void)1423  static void lan9118_register_types(void)
1424  {
1425      type_register_static(&lan9118_info);
1426  }
1427  
1428  /* Legacy helper function.  Should go away when machine config files are
1429     implemented.  */
lan9118_init(uint32_t base,qemu_irq irq)1430  void lan9118_init(uint32_t base, qemu_irq irq)
1431  {
1432      DeviceState *dev;
1433      SysBusDevice *s;
1434  
1435      dev = qdev_new(TYPE_LAN9118);
1436      qemu_configure_nic_device(dev, true, NULL);
1437      s = SYS_BUS_DEVICE(dev);
1438      sysbus_realize_and_unref(s, &error_fatal);
1439      sysbus_mmio_map(s, 0, base);
1440      sysbus_connect_irq(s, 0, irq);
1441  }
1442  
1443  type_init(lan9118_register_types)
1444