1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/wait.h> 13 #include <linux/sched.h> 14 #include <linux/completion.h> 15 #include <linux/string.h> 16 #include <linux/mm.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/hyperv.h> 23 #include <linux/blkdev.h> 24 #include <linux/dma-mapping.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_host.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_tcq.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_devinfo.h> 33 #include <scsi/scsi_dbg.h> 34 #include <scsi/scsi_transport_fc.h> 35 #include <scsi/scsi_transport.h> 36 37 /* 38 * All wire protocol details (storage protocol between the guest and the host) 39 * are consolidated here. 40 * 41 * Begin protocol definitions. 42 */ 43 44 /* 45 * Version history: 46 * V1 Beta: 0.1 47 * V1 RC < 2008/1/31: 1.0 48 * V1 RC > 2008/1/31: 2.0 49 * Win7: 4.2 50 * Win8: 5.1 51 * Win8.1: 6.0 52 * Win10: 6.2 53 */ 54 55 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ 56 (((MINOR_) & 0xff))) 57 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) 58 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) 59 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) 60 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) 61 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) 62 63 /* channel callback timeout in ms */ 64 #define CALLBACK_TIMEOUT 2 65 66 /* Packet structure describing virtual storage requests. */ 67 enum vstor_packet_operation { 68 VSTOR_OPERATION_COMPLETE_IO = 1, 69 VSTOR_OPERATION_REMOVE_DEVICE = 2, 70 VSTOR_OPERATION_EXECUTE_SRB = 3, 71 VSTOR_OPERATION_RESET_LUN = 4, 72 VSTOR_OPERATION_RESET_ADAPTER = 5, 73 VSTOR_OPERATION_RESET_BUS = 6, 74 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, 75 VSTOR_OPERATION_END_INITIALIZATION = 8, 76 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, 77 VSTOR_OPERATION_QUERY_PROPERTIES = 10, 78 VSTOR_OPERATION_ENUMERATE_BUS = 11, 79 VSTOR_OPERATION_FCHBA_DATA = 12, 80 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, 81 VSTOR_OPERATION_MAXIMUM = 13 82 }; 83 84 /* 85 * WWN packet for Fibre Channel HBA 86 */ 87 88 struct hv_fc_wwn_packet { 89 u8 primary_active; 90 u8 reserved1[3]; 91 u8 primary_port_wwn[8]; 92 u8 primary_node_wwn[8]; 93 u8 secondary_port_wwn[8]; 94 u8 secondary_node_wwn[8]; 95 }; 96 97 98 99 /* 100 * SRB Flag Bits 101 */ 102 103 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 104 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 105 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 106 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 107 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 108 #define SRB_FLAGS_DATA_IN 0x00000040 109 #define SRB_FLAGS_DATA_OUT 0x00000080 110 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 111 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) 112 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 113 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 114 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 115 116 /* 117 * This flag indicates the request is part of the workflow for processing a D3. 118 */ 119 #define SRB_FLAGS_D3_PROCESSING 0x00000800 120 #define SRB_FLAGS_IS_ACTIVE 0x00010000 121 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 122 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 123 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 124 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 125 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 126 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 127 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 128 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 129 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 130 131 #define SP_UNTAGGED ((unsigned char) ~0) 132 #define SRB_SIMPLE_TAG_REQUEST 0x20 133 134 /* 135 * Platform neutral description of a scsi request - 136 * this remains the same across the write regardless of 32/64 bit 137 * note: it's patterned off the SCSI_PASS_THROUGH structure 138 */ 139 #define STORVSC_MAX_CMD_LEN 0x10 140 141 /* Sense buffer size is the same for all versions since Windows 8 */ 142 #define STORVSC_SENSE_BUFFER_SIZE 0x14 143 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 144 145 /* 146 * The storage protocol version is determined during the 147 * initial exchange with the host. It will indicate which 148 * storage functionality is available in the host. 149 */ 150 static int vmstor_proto_version; 151 152 static bool hv_dev_is_fc(struct hv_device *hv_dev); 153 154 #define STORVSC_LOGGING_NONE 0 155 #define STORVSC_LOGGING_ERROR 1 156 #define STORVSC_LOGGING_WARN 2 157 158 static int logging_level = STORVSC_LOGGING_ERROR; 159 module_param(logging_level, int, S_IRUGO|S_IWUSR); 160 MODULE_PARM_DESC(logging_level, 161 "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); 162 do_logging(int level)163 static inline bool do_logging(int level) 164 { 165 return logging_level >= level; 166 } 167 168 #define storvsc_log(dev, level, fmt, ...) \ 169 do { \ 170 if (do_logging(level)) \ 171 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ 172 } while (0) 173 174 #define storvsc_log_ratelimited(dev, level, fmt, ...) \ 175 do { \ 176 if (do_logging(level)) \ 177 dev_warn_ratelimited(&(dev)->device, fmt, ##__VA_ARGS__); \ 178 } while (0) 179 180 struct vmscsi_request { 181 u16 length; 182 u8 srb_status; 183 u8 scsi_status; 184 185 u8 port_number; 186 u8 path_id; 187 u8 target_id; 188 u8 lun; 189 190 u8 cdb_length; 191 u8 sense_info_length; 192 u8 data_in; 193 u8 reserved; 194 195 u32 data_transfer_length; 196 197 union { 198 u8 cdb[STORVSC_MAX_CMD_LEN]; 199 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; 200 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; 201 }; 202 /* 203 * The following was added in win8. 204 */ 205 u16 reserve; 206 u8 queue_tag; 207 u8 queue_action; 208 u32 srb_flags; 209 u32 time_out_value; 210 u32 queue_sort_ey; 211 212 } __attribute((packed)); 213 214 /* 215 * The list of windows version in order of preference. 216 */ 217 218 static const int protocol_version[] = { 219 VMSTOR_PROTO_VERSION_WIN10, 220 VMSTOR_PROTO_VERSION_WIN8_1, 221 VMSTOR_PROTO_VERSION_WIN8, 222 }; 223 224 225 /* 226 * This structure is sent during the initialization phase to get the different 227 * properties of the channel. 228 */ 229 230 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 231 232 struct vmstorage_channel_properties { 233 u32 reserved; 234 u16 max_channel_cnt; 235 u16 reserved1; 236 237 u32 flags; 238 u32 max_transfer_bytes; 239 240 u64 reserved2; 241 } __packed; 242 243 /* This structure is sent during the storage protocol negotiations. */ 244 struct vmstorage_protocol_version { 245 /* Major (MSW) and minor (LSW) version numbers. */ 246 u16 major_minor; 247 248 /* 249 * Revision number is auto-incremented whenever this file is changed 250 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not 251 * definitely indicate incompatibility--but it does indicate mismatched 252 * builds. 253 * This is only used on the windows side. Just set it to 0. 254 */ 255 u16 revision; 256 } __packed; 257 258 /* Channel Property Flags */ 259 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 260 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 261 262 struct vstor_packet { 263 /* Requested operation type */ 264 enum vstor_packet_operation operation; 265 266 /* Flags - see below for values */ 267 u32 flags; 268 269 /* Status of the request returned from the server side. */ 270 u32 status; 271 272 /* Data payload area */ 273 union { 274 /* 275 * Structure used to forward SCSI commands from the 276 * client to the server. 277 */ 278 struct vmscsi_request vm_srb; 279 280 /* Structure used to query channel properties. */ 281 struct vmstorage_channel_properties storage_channel_properties; 282 283 /* Used during version negotiations. */ 284 struct vmstorage_protocol_version version; 285 286 /* Fibre channel address packet */ 287 struct hv_fc_wwn_packet wwn_packet; 288 289 /* Number of sub-channels to create */ 290 u16 sub_channel_count; 291 292 /* This will be the maximum of the union members */ 293 u8 buffer[0x34]; 294 }; 295 } __packed; 296 297 /* 298 * Packet Flags: 299 * 300 * This flag indicates that the server should send back a completion for this 301 * packet. 302 */ 303 304 #define REQUEST_COMPLETION_FLAG 0x1 305 306 /* Matches Windows-end */ 307 enum storvsc_request_type { 308 WRITE_TYPE = 0, 309 READ_TYPE, 310 UNKNOWN_TYPE, 311 }; 312 313 /* 314 * SRB status codes and masks. In the 8-bit field, the two high order bits 315 * are flags, while the remaining 6 bits are an integer status code. The 316 * definitions here include only the subset of the integer status codes that 317 * are tested for in this driver. 318 */ 319 #define SRB_STATUS_AUTOSENSE_VALID 0x80 320 #define SRB_STATUS_QUEUE_FROZEN 0x40 321 322 /* SRB status integer codes */ 323 #define SRB_STATUS_SUCCESS 0x01 324 #define SRB_STATUS_ABORTED 0x02 325 #define SRB_STATUS_ERROR 0x04 326 #define SRB_STATUS_INVALID_REQUEST 0x06 327 #define SRB_STATUS_TIMEOUT 0x09 328 #define SRB_STATUS_SELECTION_TIMEOUT 0x0A 329 #define SRB_STATUS_BUS_RESET 0x0E 330 #define SRB_STATUS_DATA_OVERRUN 0x12 331 #define SRB_STATUS_INVALID_LUN 0x20 332 #define SRB_STATUS_INTERNAL_ERROR 0x30 333 334 #define SRB_STATUS(status) \ 335 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) 336 /* 337 * This is the end of Protocol specific defines. 338 */ 339 340 static int storvsc_ringbuffer_size = (128 * 1024); 341 static int aligned_ringbuffer_size; 342 static u32 max_outstanding_req_per_channel; 343 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth); 344 345 static int storvsc_vcpus_per_sub_channel = 4; 346 static unsigned int storvsc_max_hw_queues; 347 348 module_param(storvsc_ringbuffer_size, int, S_IRUGO); 349 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); 350 351 module_param(storvsc_max_hw_queues, uint, 0644); 352 MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues"); 353 354 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); 355 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); 356 357 static int ring_avail_percent_lowater = 10; 358 module_param(ring_avail_percent_lowater, int, S_IRUGO); 359 MODULE_PARM_DESC(ring_avail_percent_lowater, 360 "Select a channel if available ring size > this in percent"); 361 362 /* 363 * Timeout in seconds for all devices managed by this driver. 364 */ 365 static int storvsc_timeout = 180; 366 367 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 368 static struct scsi_transport_template *fc_transport_template; 369 #endif 370 371 static struct scsi_host_template scsi_driver; 372 static void storvsc_on_channel_callback(void *context); 373 374 #define STORVSC_MAX_LUNS_PER_TARGET 255 375 #define STORVSC_MAX_TARGETS 2 376 #define STORVSC_MAX_CHANNELS 8 377 378 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 379 #define STORVSC_FC_MAX_TARGETS 128 380 #define STORVSC_FC_MAX_CHANNELS 8 381 #define STORVSC_FC_MAX_XFER_SIZE ((u32)(512 * 1024)) 382 383 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 384 #define STORVSC_IDE_MAX_TARGETS 1 385 #define STORVSC_IDE_MAX_CHANNELS 1 386 387 /* 388 * Upper bound on the size of a storvsc packet. 389 */ 390 #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\ 391 sizeof(struct vstor_packet)) 392 393 struct storvsc_cmd_request { 394 struct scsi_cmnd *cmd; 395 396 struct hv_device *device; 397 398 /* Synchronize the request/response if needed */ 399 struct completion wait_event; 400 401 struct vmbus_channel_packet_multipage_buffer mpb; 402 struct vmbus_packet_mpb_array *payload; 403 u32 payload_sz; 404 405 struct vstor_packet vstor_packet; 406 }; 407 408 409 /* A storvsc device is a device object that contains a vmbus channel */ 410 struct storvsc_device { 411 struct hv_device *device; 412 413 bool destroy; 414 bool drain_notify; 415 atomic_t num_outstanding_req; 416 struct Scsi_Host *host; 417 418 wait_queue_head_t waiting_to_drain; 419 420 /* 421 * Each unique Port/Path/Target represents 1 channel ie scsi 422 * controller. In reality, the pathid, targetid is always 0 423 * and the port is set by us 424 */ 425 unsigned int port_number; 426 unsigned char path_id; 427 unsigned char target_id; 428 429 /* 430 * Max I/O, the device can support. 431 */ 432 u32 max_transfer_bytes; 433 /* 434 * Number of sub-channels we will open. 435 */ 436 u16 num_sc; 437 struct vmbus_channel **stor_chns; 438 /* 439 * Mask of CPUs bound to subchannels. 440 */ 441 struct cpumask alloced_cpus; 442 /* 443 * Serializes modifications of stor_chns[] from storvsc_do_io() 444 * and storvsc_change_target_cpu(). 445 */ 446 spinlock_t lock; 447 /* Used for vsc/vsp channel reset process */ 448 struct storvsc_cmd_request init_request; 449 struct storvsc_cmd_request reset_request; 450 /* 451 * Currently active port and node names for FC devices. 452 */ 453 u64 node_name; 454 u64 port_name; 455 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 456 struct fc_rport *rport; 457 #endif 458 }; 459 460 struct hv_host_device { 461 struct hv_device *dev; 462 unsigned int port; 463 unsigned char path; 464 unsigned char target; 465 struct workqueue_struct *handle_error_wq; 466 struct work_struct host_scan_work; 467 struct Scsi_Host *host; 468 }; 469 470 struct storvsc_scan_work { 471 struct work_struct work; 472 struct Scsi_Host *host; 473 u8 lun; 474 u8 tgt_id; 475 }; 476 storvsc_device_scan(struct work_struct * work)477 static void storvsc_device_scan(struct work_struct *work) 478 { 479 struct storvsc_scan_work *wrk; 480 struct scsi_device *sdev; 481 482 wrk = container_of(work, struct storvsc_scan_work, work); 483 484 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 485 if (!sdev) 486 goto done; 487 scsi_rescan_device(sdev); 488 scsi_device_put(sdev); 489 490 done: 491 kfree(wrk); 492 } 493 storvsc_host_scan(struct work_struct * work)494 static void storvsc_host_scan(struct work_struct *work) 495 { 496 struct Scsi_Host *host; 497 struct scsi_device *sdev; 498 struct hv_host_device *host_device = 499 container_of(work, struct hv_host_device, host_scan_work); 500 501 host = host_device->host; 502 /* 503 * Before scanning the host, first check to see if any of the 504 * currently known devices have been hot removed. We issue a 505 * "unit ready" command against all currently known devices. 506 * This I/O will result in an error for devices that have been 507 * removed. As part of handling the I/O error, we remove the device. 508 * 509 * When a LUN is added or removed, the host sends us a signal to 510 * scan the host. Thus we are forced to discover the LUNs that 511 * may have been removed this way. 512 */ 513 mutex_lock(&host->scan_mutex); 514 shost_for_each_device(sdev, host) 515 scsi_test_unit_ready(sdev, 1, 1, NULL); 516 mutex_unlock(&host->scan_mutex); 517 /* 518 * Now scan the host to discover LUNs that may have been added. 519 */ 520 scsi_scan_host(host); 521 } 522 storvsc_remove_lun(struct work_struct * work)523 static void storvsc_remove_lun(struct work_struct *work) 524 { 525 struct storvsc_scan_work *wrk; 526 struct scsi_device *sdev; 527 528 wrk = container_of(work, struct storvsc_scan_work, work); 529 if (!scsi_host_get(wrk->host)) 530 goto done; 531 532 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 533 534 if (sdev) { 535 scsi_remove_device(sdev); 536 scsi_device_put(sdev); 537 } 538 scsi_host_put(wrk->host); 539 540 done: 541 kfree(wrk); 542 } 543 544 545 /* 546 * We can get incoming messages from the host that are not in response to 547 * messages that we have sent out. An example of this would be messages 548 * received by the guest to notify dynamic addition/removal of LUNs. To 549 * deal with potential race conditions where the driver may be in the 550 * midst of being unloaded when we might receive an unsolicited message 551 * from the host, we have implemented a mechanism to gurantee sequential 552 * consistency: 553 * 554 * 1) Once the device is marked as being destroyed, we will fail all 555 * outgoing messages. 556 * 2) We permit incoming messages when the device is being destroyed, 557 * only to properly account for messages already sent out. 558 */ 559 get_out_stor_device(struct hv_device * device)560 static inline struct storvsc_device *get_out_stor_device( 561 struct hv_device *device) 562 { 563 struct storvsc_device *stor_device; 564 565 stor_device = hv_get_drvdata(device); 566 567 if (stor_device && stor_device->destroy) 568 stor_device = NULL; 569 570 return stor_device; 571 } 572 573 storvsc_wait_to_drain(struct storvsc_device * dev)574 static inline void storvsc_wait_to_drain(struct storvsc_device *dev) 575 { 576 dev->drain_notify = true; 577 wait_event(dev->waiting_to_drain, 578 atomic_read(&dev->num_outstanding_req) == 0); 579 dev->drain_notify = false; 580 } 581 get_in_stor_device(struct hv_device * device)582 static inline struct storvsc_device *get_in_stor_device( 583 struct hv_device *device) 584 { 585 struct storvsc_device *stor_device; 586 587 stor_device = hv_get_drvdata(device); 588 589 if (!stor_device) 590 goto get_in_err; 591 592 /* 593 * If the device is being destroyed; allow incoming 594 * traffic only to cleanup outstanding requests. 595 */ 596 597 if (stor_device->destroy && 598 (atomic_read(&stor_device->num_outstanding_req) == 0)) 599 stor_device = NULL; 600 601 get_in_err: 602 return stor_device; 603 604 } 605 storvsc_change_target_cpu(struct vmbus_channel * channel,u32 old,u32 new)606 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old, 607 u32 new) 608 { 609 struct storvsc_device *stor_device; 610 struct vmbus_channel *cur_chn; 611 bool old_is_alloced = false; 612 struct hv_device *device; 613 unsigned long flags; 614 int cpu; 615 616 device = channel->primary_channel ? 617 channel->primary_channel->device_obj 618 : channel->device_obj; 619 stor_device = get_out_stor_device(device); 620 if (!stor_device) 621 return; 622 623 /* See storvsc_do_io() -> get_og_chn(). */ 624 spin_lock_irqsave(&stor_device->lock, flags); 625 626 /* 627 * Determines if the storvsc device has other channels assigned to 628 * the "old" CPU to update the alloced_cpus mask and the stor_chns 629 * array. 630 */ 631 if (device->channel != channel && device->channel->target_cpu == old) { 632 cur_chn = device->channel; 633 old_is_alloced = true; 634 goto old_is_alloced; 635 } 636 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) { 637 if (cur_chn == channel) 638 continue; 639 if (cur_chn->target_cpu == old) { 640 old_is_alloced = true; 641 goto old_is_alloced; 642 } 643 } 644 645 old_is_alloced: 646 if (old_is_alloced) 647 WRITE_ONCE(stor_device->stor_chns[old], cur_chn); 648 else 649 cpumask_clear_cpu(old, &stor_device->alloced_cpus); 650 651 /* "Flush" the stor_chns array. */ 652 for_each_possible_cpu(cpu) { 653 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu( 654 cpu, &stor_device->alloced_cpus)) 655 WRITE_ONCE(stor_device->stor_chns[cpu], NULL); 656 } 657 658 WRITE_ONCE(stor_device->stor_chns[new], channel); 659 cpumask_set_cpu(new, &stor_device->alloced_cpus); 660 661 spin_unlock_irqrestore(&stor_device->lock, flags); 662 } 663 storvsc_next_request_id(struct vmbus_channel * channel,u64 rqst_addr)664 static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr) 665 { 666 struct storvsc_cmd_request *request = 667 (struct storvsc_cmd_request *)(unsigned long)rqst_addr; 668 669 if (rqst_addr == VMBUS_RQST_INIT) 670 return VMBUS_RQST_INIT; 671 if (rqst_addr == VMBUS_RQST_RESET) 672 return VMBUS_RQST_RESET; 673 674 /* 675 * Cannot return an ID of 0, which is reserved for an unsolicited 676 * message from Hyper-V. 677 */ 678 return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1; 679 } 680 handle_sc_creation(struct vmbus_channel * new_sc)681 static void handle_sc_creation(struct vmbus_channel *new_sc) 682 { 683 struct hv_device *device = new_sc->primary_channel->device_obj; 684 struct device *dev = &device->device; 685 struct storvsc_device *stor_device; 686 struct vmstorage_channel_properties props; 687 int ret; 688 689 stor_device = get_out_stor_device(device); 690 if (!stor_device) 691 return; 692 693 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 694 new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE; 695 696 new_sc->next_request_id_callback = storvsc_next_request_id; 697 698 ret = vmbus_open(new_sc, 699 aligned_ringbuffer_size, 700 aligned_ringbuffer_size, 701 (void *)&props, 702 sizeof(struct vmstorage_channel_properties), 703 storvsc_on_channel_callback, new_sc); 704 705 /* In case vmbus_open() fails, we don't use the sub-channel. */ 706 if (ret != 0) { 707 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); 708 return; 709 } 710 711 new_sc->change_target_cpu_callback = storvsc_change_target_cpu; 712 713 /* Add the sub-channel to the array of available channels. */ 714 stor_device->stor_chns[new_sc->target_cpu] = new_sc; 715 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); 716 } 717 handle_multichannel_storage(struct hv_device * device,int max_chns)718 static void handle_multichannel_storage(struct hv_device *device, int max_chns) 719 { 720 struct device *dev = &device->device; 721 struct storvsc_device *stor_device; 722 int num_sc; 723 struct storvsc_cmd_request *request; 724 struct vstor_packet *vstor_packet; 725 int ret, t; 726 727 /* 728 * If the number of CPUs is artificially restricted, such as 729 * with maxcpus=1 on the kernel boot line, Hyper-V could offer 730 * sub-channels >= the number of CPUs. These sub-channels 731 * should not be created. The primary channel is already created 732 * and assigned to one CPU, so check against # CPUs - 1. 733 */ 734 num_sc = min((int)(num_online_cpus() - 1), max_chns); 735 if (!num_sc) 736 return; 737 738 stor_device = get_out_stor_device(device); 739 if (!stor_device) 740 return; 741 742 stor_device->num_sc = num_sc; 743 request = &stor_device->init_request; 744 vstor_packet = &request->vstor_packet; 745 746 /* 747 * Establish a handler for dealing with subchannels. 748 */ 749 vmbus_set_sc_create_callback(device->channel, handle_sc_creation); 750 751 /* 752 * Request the host to create sub-channels. 753 */ 754 memset(request, 0, sizeof(struct storvsc_cmd_request)); 755 init_completion(&request->wait_event); 756 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; 757 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 758 vstor_packet->sub_channel_count = num_sc; 759 760 ret = vmbus_sendpacket(device->channel, vstor_packet, 761 sizeof(struct vstor_packet), 762 VMBUS_RQST_INIT, 763 VM_PKT_DATA_INBAND, 764 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 765 766 if (ret != 0) { 767 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); 768 return; 769 } 770 771 t = wait_for_completion_timeout(&request->wait_event, 10*HZ); 772 if (t == 0) { 773 dev_err(dev, "Failed to create sub-channel: timed out\n"); 774 return; 775 } 776 777 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 778 vstor_packet->status != 0) { 779 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n", 780 vstor_packet->operation, vstor_packet->status); 781 return; 782 } 783 784 /* 785 * We need to do nothing here, because vmbus_process_offer() 786 * invokes channel->sc_creation_callback, which will open and use 787 * the sub-channel(s). 788 */ 789 } 790 cache_wwn(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet)791 static void cache_wwn(struct storvsc_device *stor_device, 792 struct vstor_packet *vstor_packet) 793 { 794 /* 795 * Cache the currently active port and node ww names. 796 */ 797 if (vstor_packet->wwn_packet.primary_active) { 798 stor_device->node_name = 799 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); 800 stor_device->port_name = 801 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); 802 } else { 803 stor_device->node_name = 804 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); 805 stor_device->port_name = 806 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); 807 } 808 } 809 810 storvsc_execute_vstor_op(struct hv_device * device,struct storvsc_cmd_request * request,bool status_check)811 static int storvsc_execute_vstor_op(struct hv_device *device, 812 struct storvsc_cmd_request *request, 813 bool status_check) 814 { 815 struct storvsc_device *stor_device; 816 struct vstor_packet *vstor_packet; 817 int ret, t; 818 819 stor_device = get_out_stor_device(device); 820 if (!stor_device) 821 return -ENODEV; 822 823 vstor_packet = &request->vstor_packet; 824 825 init_completion(&request->wait_event); 826 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 827 828 ret = vmbus_sendpacket(device->channel, vstor_packet, 829 sizeof(struct vstor_packet), 830 VMBUS_RQST_INIT, 831 VM_PKT_DATA_INBAND, 832 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 833 if (ret != 0) 834 return ret; 835 836 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 837 if (t == 0) 838 return -ETIMEDOUT; 839 840 if (!status_check) 841 return ret; 842 843 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 844 vstor_packet->status != 0) 845 return -EINVAL; 846 847 return ret; 848 } 849 storvsc_channel_init(struct hv_device * device,bool is_fc)850 static int storvsc_channel_init(struct hv_device *device, bool is_fc) 851 { 852 struct storvsc_device *stor_device; 853 struct storvsc_cmd_request *request; 854 struct vstor_packet *vstor_packet; 855 int ret, i; 856 int max_chns; 857 bool process_sub_channels = false; 858 859 stor_device = get_out_stor_device(device); 860 if (!stor_device) 861 return -ENODEV; 862 863 request = &stor_device->init_request; 864 vstor_packet = &request->vstor_packet; 865 866 /* 867 * Now, initiate the vsc/vsp initialization protocol on the open 868 * channel 869 */ 870 memset(request, 0, sizeof(struct storvsc_cmd_request)); 871 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; 872 ret = storvsc_execute_vstor_op(device, request, true); 873 if (ret) 874 return ret; 875 /* 876 * Query host supported protocol version. 877 */ 878 879 for (i = 0; i < ARRAY_SIZE(protocol_version); i++) { 880 /* reuse the packet for version range supported */ 881 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 882 vstor_packet->operation = 883 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; 884 885 vstor_packet->version.major_minor = protocol_version[i]; 886 887 /* 888 * The revision number is only used in Windows; set it to 0. 889 */ 890 vstor_packet->version.revision = 0; 891 ret = storvsc_execute_vstor_op(device, request, false); 892 if (ret != 0) 893 return ret; 894 895 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) 896 return -EINVAL; 897 898 if (vstor_packet->status == 0) { 899 vmstor_proto_version = protocol_version[i]; 900 901 break; 902 } 903 } 904 905 if (vstor_packet->status != 0) { 906 dev_err(&device->device, "Obsolete Hyper-V version\n"); 907 return -EINVAL; 908 } 909 910 911 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 912 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; 913 ret = storvsc_execute_vstor_op(device, request, true); 914 if (ret != 0) 915 return ret; 916 917 /* 918 * Check to see if multi-channel support is there. 919 * Hosts that implement protocol version of 5.1 and above 920 * support multi-channel. 921 */ 922 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; 923 924 /* 925 * Allocate state to manage the sub-channels. 926 * We allocate an array based on the numbers of possible CPUs 927 * (Hyper-V does not support cpu online/offline). 928 * This Array will be sparseley populated with unique 929 * channels - primary + sub-channels. 930 * We will however populate all the slots to evenly distribute 931 * the load. 932 */ 933 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *), 934 GFP_KERNEL); 935 if (stor_device->stor_chns == NULL) 936 return -ENOMEM; 937 938 device->channel->change_target_cpu_callback = storvsc_change_target_cpu; 939 940 stor_device->stor_chns[device->channel->target_cpu] = device->channel; 941 cpumask_set_cpu(device->channel->target_cpu, 942 &stor_device->alloced_cpus); 943 944 if (vstor_packet->storage_channel_properties.flags & 945 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) 946 process_sub_channels = true; 947 948 stor_device->max_transfer_bytes = 949 vstor_packet->storage_channel_properties.max_transfer_bytes; 950 951 if (!is_fc) 952 goto done; 953 954 /* 955 * For FC devices retrieve FC HBA data. 956 */ 957 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 958 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; 959 ret = storvsc_execute_vstor_op(device, request, true); 960 if (ret != 0) 961 return ret; 962 963 /* 964 * Cache the currently active port and node ww names. 965 */ 966 cache_wwn(stor_device, vstor_packet); 967 968 done: 969 970 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 971 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; 972 ret = storvsc_execute_vstor_op(device, request, true); 973 if (ret != 0) 974 return ret; 975 976 if (process_sub_channels) 977 handle_multichannel_storage(device, max_chns); 978 979 return ret; 980 } 981 storvsc_handle_error(struct vmscsi_request * vm_srb,struct scsi_cmnd * scmnd,struct Scsi_Host * host,u8 asc,u8 ascq)982 static void storvsc_handle_error(struct vmscsi_request *vm_srb, 983 struct scsi_cmnd *scmnd, 984 struct Scsi_Host *host, 985 u8 asc, u8 ascq) 986 { 987 struct storvsc_scan_work *wrk; 988 void (*process_err_fn)(struct work_struct *work); 989 struct hv_host_device *host_dev = shost_priv(host); 990 991 switch (SRB_STATUS(vm_srb->srb_status)) { 992 case SRB_STATUS_ERROR: 993 case SRB_STATUS_ABORTED: 994 case SRB_STATUS_INVALID_REQUEST: 995 case SRB_STATUS_INTERNAL_ERROR: 996 case SRB_STATUS_TIMEOUT: 997 case SRB_STATUS_SELECTION_TIMEOUT: 998 case SRB_STATUS_BUS_RESET: 999 case SRB_STATUS_DATA_OVERRUN: 1000 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) { 1001 /* Check for capacity change */ 1002 if ((asc == 0x2a) && (ascq == 0x9)) { 1003 process_err_fn = storvsc_device_scan; 1004 /* Retry the I/O that triggered this. */ 1005 set_host_byte(scmnd, DID_REQUEUE); 1006 goto do_work; 1007 } 1008 1009 /* 1010 * Check for "Operating parameters have changed" 1011 * due to Hyper-V changing the VHD/VHDX BlockSize 1012 * when adding/removing a differencing disk. This 1013 * causes discard_granularity to change, so do a 1014 * rescan to pick up the new granularity. We don't 1015 * want scsi_report_sense() to output a message 1016 * that a sysadmin wouldn't know what to do with. 1017 */ 1018 if ((asc == 0x3f) && (ascq != 0x03) && 1019 (ascq != 0x0e)) { 1020 process_err_fn = storvsc_device_scan; 1021 set_host_byte(scmnd, DID_REQUEUE); 1022 goto do_work; 1023 } 1024 1025 /* 1026 * Otherwise, let upper layer deal with the 1027 * error when sense message is present 1028 */ 1029 return; 1030 } 1031 1032 /* 1033 * If there is an error; offline the device since all 1034 * error recovery strategies would have already been 1035 * deployed on the host side. However, if the command 1036 * were a pass-through command deal with it appropriately. 1037 */ 1038 switch (scmnd->cmnd[0]) { 1039 case ATA_16: 1040 case ATA_12: 1041 set_host_byte(scmnd, DID_PASSTHROUGH); 1042 break; 1043 /* 1044 * On some Hyper-V hosts TEST_UNIT_READY command can 1045 * return SRB_STATUS_ERROR. Let the upper level code 1046 * deal with it based on the sense information. 1047 */ 1048 case TEST_UNIT_READY: 1049 break; 1050 default: 1051 set_host_byte(scmnd, DID_ERROR); 1052 } 1053 return; 1054 1055 case SRB_STATUS_INVALID_LUN: 1056 set_host_byte(scmnd, DID_NO_CONNECT); 1057 process_err_fn = storvsc_remove_lun; 1058 goto do_work; 1059 1060 } 1061 return; 1062 1063 do_work: 1064 /* 1065 * We need to schedule work to process this error; schedule it. 1066 */ 1067 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); 1068 if (!wrk) { 1069 set_host_byte(scmnd, DID_BAD_TARGET); 1070 return; 1071 } 1072 1073 wrk->host = host; 1074 wrk->lun = vm_srb->lun; 1075 wrk->tgt_id = vm_srb->target_id; 1076 INIT_WORK(&wrk->work, process_err_fn); 1077 queue_work(host_dev->handle_error_wq, &wrk->work); 1078 } 1079 1080 storvsc_command_completion(struct storvsc_cmd_request * cmd_request,struct storvsc_device * stor_dev)1081 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, 1082 struct storvsc_device *stor_dev) 1083 { 1084 struct scsi_cmnd *scmnd = cmd_request->cmd; 1085 struct scsi_sense_hdr sense_hdr; 1086 struct vmscsi_request *vm_srb; 1087 u32 data_transfer_length; 1088 struct Scsi_Host *host; 1089 u32 payload_sz = cmd_request->payload_sz; 1090 void *payload = cmd_request->payload; 1091 bool sense_ok; 1092 1093 host = stor_dev->host; 1094 1095 vm_srb = &cmd_request->vstor_packet.vm_srb; 1096 data_transfer_length = vm_srb->data_transfer_length; 1097 1098 scmnd->result = vm_srb->scsi_status; 1099 1100 if (scmnd->result) { 1101 sense_ok = scsi_normalize_sense(scmnd->sense_buffer, 1102 SCSI_SENSE_BUFFERSIZE, &sense_hdr); 1103 1104 if (sense_ok && do_logging(STORVSC_LOGGING_WARN)) 1105 scsi_print_sense_hdr(scmnd->device, "storvsc", 1106 &sense_hdr); 1107 } 1108 1109 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { 1110 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, 1111 sense_hdr.ascq); 1112 /* 1113 * The Windows driver set data_transfer_length on 1114 * SRB_STATUS_DATA_OVERRUN. On other errors, this value 1115 * is untouched. In these cases we set it to 0. 1116 */ 1117 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) 1118 data_transfer_length = 0; 1119 } 1120 1121 /* Validate data_transfer_length (from Hyper-V) */ 1122 if (data_transfer_length > cmd_request->payload->range.len) 1123 data_transfer_length = cmd_request->payload->range.len; 1124 1125 scsi_set_resid(scmnd, 1126 cmd_request->payload->range.len - data_transfer_length); 1127 1128 scsi_done(scmnd); 1129 1130 if (payload_sz > 1131 sizeof(struct vmbus_channel_packet_multipage_buffer)) 1132 kfree(payload); 1133 } 1134 storvsc_on_io_completion(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet,struct storvsc_cmd_request * request)1135 static void storvsc_on_io_completion(struct storvsc_device *stor_device, 1136 struct vstor_packet *vstor_packet, 1137 struct storvsc_cmd_request *request) 1138 { 1139 struct vstor_packet *stor_pkt; 1140 struct hv_device *device = stor_device->device; 1141 1142 stor_pkt = &request->vstor_packet; 1143 1144 /* 1145 * The current SCSI handling on the host side does 1146 * not correctly handle: 1147 * INQUIRY command with page code parameter set to 0x80 1148 * MODE_SENSE command with cmd[2] == 0x1c 1149 * MAINTENANCE_IN is not supported by HyperV FC passthrough 1150 * 1151 * Setup srb and scsi status so this won't be fatal. 1152 * We do this so we can distinguish truly fatal failues 1153 * (srb status == 0x4) and off-line the device in that case. 1154 */ 1155 1156 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || 1157 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE) || 1158 (stor_pkt->vm_srb.cdb[0] == MAINTENANCE_IN && 1159 hv_dev_is_fc(device))) { 1160 vstor_packet->vm_srb.scsi_status = 0; 1161 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; 1162 } 1163 1164 /* Copy over the status...etc */ 1165 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; 1166 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; 1167 1168 /* 1169 * Copy over the sense_info_length, but limit to the known max 1170 * size if Hyper-V returns a bad value. 1171 */ 1172 stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE, 1173 vstor_packet->vm_srb.sense_info_length); 1174 1175 if (vstor_packet->vm_srb.scsi_status != 0 || 1176 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) { 1177 1178 /* 1179 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can 1180 * return errors when detecting devices using TEST_UNIT_READY, 1181 * and logging these as errors produces unhelpful noise. 1182 */ 1183 int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ? 1184 STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR; 1185 1186 storvsc_log_ratelimited(device, loglevel, 1187 "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n", 1188 scsi_cmd_to_rq(request->cmd)->tag, 1189 stor_pkt->vm_srb.cdb[0], 1190 vstor_packet->vm_srb.scsi_status, 1191 vstor_packet->vm_srb.srb_status, 1192 vstor_packet->status); 1193 } 1194 1195 if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION && 1196 (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID)) 1197 memcpy(request->cmd->sense_buffer, 1198 vstor_packet->vm_srb.sense_data, 1199 stor_pkt->vm_srb.sense_info_length); 1200 1201 stor_pkt->vm_srb.data_transfer_length = 1202 vstor_packet->vm_srb.data_transfer_length; 1203 1204 storvsc_command_completion(request, stor_device); 1205 1206 if (atomic_dec_and_test(&stor_device->num_outstanding_req) && 1207 stor_device->drain_notify) 1208 wake_up(&stor_device->waiting_to_drain); 1209 } 1210 storvsc_on_receive(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet,struct storvsc_cmd_request * request)1211 static void storvsc_on_receive(struct storvsc_device *stor_device, 1212 struct vstor_packet *vstor_packet, 1213 struct storvsc_cmd_request *request) 1214 { 1215 struct hv_host_device *host_dev; 1216 switch (vstor_packet->operation) { 1217 case VSTOR_OPERATION_COMPLETE_IO: 1218 storvsc_on_io_completion(stor_device, vstor_packet, request); 1219 break; 1220 1221 case VSTOR_OPERATION_REMOVE_DEVICE: 1222 case VSTOR_OPERATION_ENUMERATE_BUS: 1223 host_dev = shost_priv(stor_device->host); 1224 queue_work( 1225 host_dev->handle_error_wq, &host_dev->host_scan_work); 1226 break; 1227 1228 case VSTOR_OPERATION_FCHBA_DATA: 1229 cache_wwn(stor_device, vstor_packet); 1230 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1231 fc_host_node_name(stor_device->host) = stor_device->node_name; 1232 fc_host_port_name(stor_device->host) = stor_device->port_name; 1233 #endif 1234 break; 1235 default: 1236 break; 1237 } 1238 } 1239 storvsc_on_channel_callback(void * context)1240 static void storvsc_on_channel_callback(void *context) 1241 { 1242 struct vmbus_channel *channel = (struct vmbus_channel *)context; 1243 const struct vmpacket_descriptor *desc; 1244 struct hv_device *device; 1245 struct storvsc_device *stor_device; 1246 struct Scsi_Host *shost; 1247 unsigned long time_limit = jiffies + msecs_to_jiffies(CALLBACK_TIMEOUT); 1248 1249 if (channel->primary_channel != NULL) 1250 device = channel->primary_channel->device_obj; 1251 else 1252 device = channel->device_obj; 1253 1254 stor_device = get_in_stor_device(device); 1255 if (!stor_device) 1256 return; 1257 1258 shost = stor_device->host; 1259 1260 foreach_vmbus_pkt(desc, channel) { 1261 struct vstor_packet *packet = hv_pkt_data(desc); 1262 struct storvsc_cmd_request *request = NULL; 1263 u32 pktlen = hv_pkt_datalen(desc); 1264 u64 rqst_id = desc->trans_id; 1265 u32 minlen = rqst_id ? sizeof(struct vstor_packet) : 1266 sizeof(enum vstor_packet_operation); 1267 1268 if (unlikely(time_after(jiffies, time_limit))) { 1269 hv_pkt_iter_close(channel); 1270 return; 1271 } 1272 1273 if (pktlen < minlen) { 1274 dev_err(&device->device, 1275 "Invalid pkt: id=%llu, len=%u, minlen=%u\n", 1276 rqst_id, pktlen, minlen); 1277 continue; 1278 } 1279 1280 if (rqst_id == VMBUS_RQST_INIT) { 1281 request = &stor_device->init_request; 1282 } else if (rqst_id == VMBUS_RQST_RESET) { 1283 request = &stor_device->reset_request; 1284 } else { 1285 /* Hyper-V can send an unsolicited message with ID of 0 */ 1286 if (rqst_id == 0) { 1287 /* 1288 * storvsc_on_receive() looks at the vstor_packet in the message 1289 * from the ring buffer. 1290 * 1291 * - If the operation in the vstor_packet is COMPLETE_IO, then 1292 * we call storvsc_on_io_completion(), and dereference the 1293 * guest memory address. Make sure we don't call 1294 * storvsc_on_io_completion() with a guest memory address 1295 * that is zero if Hyper-V were to construct and send such 1296 * a bogus packet. 1297 * 1298 * - If the operation in the vstor_packet is FCHBA_DATA, then 1299 * we call cache_wwn(), and access the data payload area of 1300 * the packet (wwn_packet); however, there is no guarantee 1301 * that the packet is big enough to contain such area. 1302 * Future-proof the code by rejecting such a bogus packet. 1303 */ 1304 if (packet->operation == VSTOR_OPERATION_COMPLETE_IO || 1305 packet->operation == VSTOR_OPERATION_FCHBA_DATA) { 1306 dev_err(&device->device, "Invalid packet with ID of 0\n"); 1307 continue; 1308 } 1309 } else { 1310 struct scsi_cmnd *scmnd; 1311 1312 /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */ 1313 scmnd = scsi_host_find_tag(shost, rqst_id - 1); 1314 if (scmnd == NULL) { 1315 dev_err(&device->device, "Incorrect transaction ID\n"); 1316 continue; 1317 } 1318 request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd); 1319 scsi_dma_unmap(scmnd); 1320 } 1321 1322 storvsc_on_receive(stor_device, packet, request); 1323 continue; 1324 } 1325 1326 memcpy(&request->vstor_packet, packet, 1327 sizeof(struct vstor_packet)); 1328 complete(&request->wait_event); 1329 } 1330 } 1331 storvsc_connect_to_vsp(struct hv_device * device,u32 ring_size,bool is_fc)1332 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, 1333 bool is_fc) 1334 { 1335 struct vmstorage_channel_properties props; 1336 int ret; 1337 1338 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 1339 1340 device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE; 1341 device->channel->next_request_id_callback = storvsc_next_request_id; 1342 1343 ret = vmbus_open(device->channel, 1344 ring_size, 1345 ring_size, 1346 (void *)&props, 1347 sizeof(struct vmstorage_channel_properties), 1348 storvsc_on_channel_callback, device->channel); 1349 1350 if (ret != 0) 1351 return ret; 1352 1353 ret = storvsc_channel_init(device, is_fc); 1354 1355 return ret; 1356 } 1357 storvsc_dev_remove(struct hv_device * device)1358 static int storvsc_dev_remove(struct hv_device *device) 1359 { 1360 struct storvsc_device *stor_device; 1361 1362 stor_device = hv_get_drvdata(device); 1363 1364 stor_device->destroy = true; 1365 1366 /* Make sure flag is set before waiting */ 1367 wmb(); 1368 1369 /* 1370 * At this point, all outbound traffic should be disable. We 1371 * only allow inbound traffic (responses) to proceed so that 1372 * outstanding requests can be completed. 1373 */ 1374 1375 storvsc_wait_to_drain(stor_device); 1376 1377 /* 1378 * Since we have already drained, we don't need to busy wait 1379 * as was done in final_release_stor_device() 1380 * Note that we cannot set the ext pointer to NULL until 1381 * we have drained - to drain the outgoing packets, we need to 1382 * allow incoming packets. 1383 */ 1384 hv_set_drvdata(device, NULL); 1385 1386 /* Close the channel */ 1387 vmbus_close(device->channel); 1388 1389 kfree(stor_device->stor_chns); 1390 kfree(stor_device); 1391 return 0; 1392 } 1393 get_og_chn(struct storvsc_device * stor_device,u16 q_num)1394 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, 1395 u16 q_num) 1396 { 1397 u16 slot = 0; 1398 u16 hash_qnum; 1399 const struct cpumask *node_mask; 1400 int num_channels, tgt_cpu; 1401 1402 if (stor_device->num_sc == 0) { 1403 stor_device->stor_chns[q_num] = stor_device->device->channel; 1404 return stor_device->device->channel; 1405 } 1406 1407 /* 1408 * Our channel array is sparsley populated and we 1409 * initiated I/O on a processor/hw-q that does not 1410 * currently have a designated channel. Fix this. 1411 * The strategy is simple: 1412 * I. Ensure NUMA locality 1413 * II. Distribute evenly (best effort) 1414 */ 1415 1416 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1417 1418 num_channels = 0; 1419 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1420 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1421 num_channels++; 1422 } 1423 if (num_channels == 0) { 1424 stor_device->stor_chns[q_num] = stor_device->device->channel; 1425 return stor_device->device->channel; 1426 } 1427 1428 hash_qnum = q_num; 1429 while (hash_qnum >= num_channels) 1430 hash_qnum -= num_channels; 1431 1432 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1433 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1434 continue; 1435 if (slot == hash_qnum) 1436 break; 1437 slot++; 1438 } 1439 1440 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; 1441 1442 return stor_device->stor_chns[q_num]; 1443 } 1444 1445 storvsc_do_io(struct hv_device * device,struct storvsc_cmd_request * request,u16 q_num)1446 static int storvsc_do_io(struct hv_device *device, 1447 struct storvsc_cmd_request *request, u16 q_num) 1448 { 1449 struct storvsc_device *stor_device; 1450 struct vstor_packet *vstor_packet; 1451 struct vmbus_channel *outgoing_channel, *channel; 1452 unsigned long flags; 1453 int ret = 0; 1454 const struct cpumask *node_mask; 1455 int tgt_cpu; 1456 1457 vstor_packet = &request->vstor_packet; 1458 stor_device = get_out_stor_device(device); 1459 1460 if (!stor_device) 1461 return -ENODEV; 1462 1463 1464 request->device = device; 1465 /* 1466 * Select an appropriate channel to send the request out. 1467 */ 1468 /* See storvsc_change_target_cpu(). */ 1469 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]); 1470 if (outgoing_channel != NULL) { 1471 if (outgoing_channel->target_cpu == q_num) { 1472 /* 1473 * Ideally, we want to pick a different channel if 1474 * available on the same NUMA node. 1475 */ 1476 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1477 for_each_cpu_wrap(tgt_cpu, 1478 &stor_device->alloced_cpus, q_num + 1) { 1479 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1480 continue; 1481 if (tgt_cpu == q_num) 1482 continue; 1483 channel = READ_ONCE( 1484 stor_device->stor_chns[tgt_cpu]); 1485 if (channel == NULL) 1486 continue; 1487 if (hv_get_avail_to_write_percent( 1488 &channel->outbound) 1489 > ring_avail_percent_lowater) { 1490 outgoing_channel = channel; 1491 goto found_channel; 1492 } 1493 } 1494 1495 /* 1496 * All the other channels on the same NUMA node are 1497 * busy. Try to use the channel on the current CPU 1498 */ 1499 if (hv_get_avail_to_write_percent( 1500 &outgoing_channel->outbound) 1501 > ring_avail_percent_lowater) 1502 goto found_channel; 1503 1504 /* 1505 * If we reach here, all the channels on the current 1506 * NUMA node are busy. Try to find a channel in 1507 * other NUMA nodes 1508 */ 1509 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1510 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1511 continue; 1512 channel = READ_ONCE( 1513 stor_device->stor_chns[tgt_cpu]); 1514 if (channel == NULL) 1515 continue; 1516 if (hv_get_avail_to_write_percent( 1517 &channel->outbound) 1518 > ring_avail_percent_lowater) { 1519 outgoing_channel = channel; 1520 goto found_channel; 1521 } 1522 } 1523 } 1524 } else { 1525 spin_lock_irqsave(&stor_device->lock, flags); 1526 outgoing_channel = stor_device->stor_chns[q_num]; 1527 if (outgoing_channel != NULL) { 1528 spin_unlock_irqrestore(&stor_device->lock, flags); 1529 goto found_channel; 1530 } 1531 outgoing_channel = get_og_chn(stor_device, q_num); 1532 spin_unlock_irqrestore(&stor_device->lock, flags); 1533 } 1534 1535 found_channel: 1536 vstor_packet->flags |= REQUEST_COMPLETION_FLAG; 1537 1538 vstor_packet->vm_srb.length = sizeof(struct vmscsi_request); 1539 1540 1541 vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE; 1542 1543 1544 vstor_packet->vm_srb.data_transfer_length = 1545 request->payload->range.len; 1546 1547 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; 1548 1549 if (request->payload->range.len) { 1550 1551 ret = vmbus_sendpacket_mpb_desc(outgoing_channel, 1552 request->payload, request->payload_sz, 1553 vstor_packet, 1554 sizeof(struct vstor_packet), 1555 (unsigned long)request); 1556 } else { 1557 ret = vmbus_sendpacket(outgoing_channel, vstor_packet, 1558 sizeof(struct vstor_packet), 1559 (unsigned long)request, 1560 VM_PKT_DATA_INBAND, 1561 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1562 } 1563 1564 if (ret != 0) 1565 return ret; 1566 1567 atomic_inc(&stor_device->num_outstanding_req); 1568 1569 return ret; 1570 } 1571 storvsc_device_alloc(struct scsi_device * sdevice)1572 static int storvsc_device_alloc(struct scsi_device *sdevice) 1573 { 1574 /* 1575 * Set blist flag to permit the reading of the VPD pages even when 1576 * the target may claim SPC-2 compliance. MSFT targets currently 1577 * claim SPC-2 compliance while they implement post SPC-2 features. 1578 * With this flag we can correctly handle WRITE_SAME_16 issues. 1579 * 1580 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but 1581 * still supports REPORT LUN. 1582 */ 1583 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; 1584 1585 return 0; 1586 } 1587 storvsc_device_configure(struct scsi_device * sdevice)1588 static int storvsc_device_configure(struct scsi_device *sdevice) 1589 { 1590 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); 1591 1592 /* storvsc devices don't support MAINTENANCE_IN SCSI cmd */ 1593 sdevice->no_report_opcodes = 1; 1594 sdevice->no_write_same = 1; 1595 1596 /* 1597 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 1598 * if the device is a MSFT virtual device. If the host is 1599 * WIN10 or newer, allow write_same. 1600 */ 1601 if (!strncmp(sdevice->vendor, "Msft", 4)) { 1602 switch (vmstor_proto_version) { 1603 case VMSTOR_PROTO_VERSION_WIN8: 1604 case VMSTOR_PROTO_VERSION_WIN8_1: 1605 sdevice->scsi_level = SCSI_SPC_3; 1606 break; 1607 } 1608 1609 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) 1610 sdevice->no_write_same = 0; 1611 } 1612 1613 return 0; 1614 } 1615 storvsc_get_chs(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int * info)1616 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, 1617 sector_t capacity, int *info) 1618 { 1619 sector_t nsect = capacity; 1620 sector_t cylinders = nsect; 1621 int heads, sectors_pt; 1622 1623 /* 1624 * We are making up these values; let us keep it simple. 1625 */ 1626 heads = 0xff; 1627 sectors_pt = 0x3f; /* Sectors per track */ 1628 sector_div(cylinders, heads * sectors_pt); 1629 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) 1630 cylinders = 0xffff; 1631 1632 info[0] = heads; 1633 info[1] = sectors_pt; 1634 info[2] = (int)cylinders; 1635 1636 return 0; 1637 } 1638 storvsc_host_reset_handler(struct scsi_cmnd * scmnd)1639 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) 1640 { 1641 struct hv_host_device *host_dev = shost_priv(scmnd->device->host); 1642 struct hv_device *device = host_dev->dev; 1643 1644 struct storvsc_device *stor_device; 1645 struct storvsc_cmd_request *request; 1646 struct vstor_packet *vstor_packet; 1647 int ret, t; 1648 1649 stor_device = get_out_stor_device(device); 1650 if (!stor_device) 1651 return FAILED; 1652 1653 request = &stor_device->reset_request; 1654 vstor_packet = &request->vstor_packet; 1655 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1656 1657 init_completion(&request->wait_event); 1658 1659 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; 1660 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 1661 vstor_packet->vm_srb.path_id = stor_device->path_id; 1662 1663 ret = vmbus_sendpacket(device->channel, vstor_packet, 1664 sizeof(struct vstor_packet), 1665 VMBUS_RQST_RESET, 1666 VM_PKT_DATA_INBAND, 1667 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1668 if (ret != 0) 1669 return FAILED; 1670 1671 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 1672 if (t == 0) 1673 return TIMEOUT_ERROR; 1674 1675 1676 /* 1677 * At this point, all outstanding requests in the adapter 1678 * should have been flushed out and return to us 1679 * There is a potential race here where the host may be in 1680 * the process of responding when we return from here. 1681 * Just wait for all in-transit packets to be accounted for 1682 * before we return from here. 1683 */ 1684 storvsc_wait_to_drain(stor_device); 1685 1686 return SUCCESS; 1687 } 1688 1689 /* 1690 * The host guarantees to respond to each command, although I/O latencies might 1691 * be unbounded on Azure. Reset the timer unconditionally to give the host a 1692 * chance to perform EH. 1693 */ storvsc_eh_timed_out(struct scsi_cmnd * scmnd)1694 static enum scsi_timeout_action storvsc_eh_timed_out(struct scsi_cmnd *scmnd) 1695 { 1696 return SCSI_EH_RESET_TIMER; 1697 } 1698 storvsc_scsi_cmd_ok(struct scsi_cmnd * scmnd)1699 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) 1700 { 1701 bool allowed = true; 1702 u8 scsi_op = scmnd->cmnd[0]; 1703 1704 switch (scsi_op) { 1705 /* the host does not handle WRITE_SAME, log accident usage */ 1706 case WRITE_SAME: 1707 /* 1708 * smartd sends this command and the host does not handle 1709 * this. So, don't send it. 1710 */ 1711 case SET_WINDOW: 1712 set_host_byte(scmnd, DID_ERROR); 1713 allowed = false; 1714 break; 1715 default: 1716 break; 1717 } 1718 return allowed; 1719 } 1720 storvsc_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * scmnd)1721 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) 1722 { 1723 int ret; 1724 struct hv_host_device *host_dev = shost_priv(host); 1725 struct hv_device *dev = host_dev->dev; 1726 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); 1727 struct scatterlist *sgl; 1728 struct vmscsi_request *vm_srb; 1729 struct vmbus_packet_mpb_array *payload; 1730 u32 payload_sz; 1731 u32 length; 1732 1733 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { 1734 /* 1735 * On legacy hosts filter unimplemented commands. 1736 * Future hosts are expected to correctly handle 1737 * unsupported commands. Furthermore, it is 1738 * possible that some of the currently 1739 * unsupported commands maybe supported in 1740 * future versions of the host. 1741 */ 1742 if (!storvsc_scsi_cmd_ok(scmnd)) { 1743 scsi_done(scmnd); 1744 return 0; 1745 } 1746 } 1747 1748 /* Setup the cmd request */ 1749 cmd_request->cmd = scmnd; 1750 1751 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet)); 1752 vm_srb = &cmd_request->vstor_packet.vm_srb; 1753 vm_srb->time_out_value = 60; 1754 1755 vm_srb->srb_flags |= 1756 SRB_FLAGS_DISABLE_SYNCH_TRANSFER; 1757 1758 if (scmnd->device->tagged_supported) { 1759 vm_srb->srb_flags |= 1760 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); 1761 vm_srb->queue_tag = SP_UNTAGGED; 1762 vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST; 1763 } 1764 1765 /* Build the SRB */ 1766 switch (scmnd->sc_data_direction) { 1767 case DMA_TO_DEVICE: 1768 vm_srb->data_in = WRITE_TYPE; 1769 vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT; 1770 break; 1771 case DMA_FROM_DEVICE: 1772 vm_srb->data_in = READ_TYPE; 1773 vm_srb->srb_flags |= SRB_FLAGS_DATA_IN; 1774 break; 1775 case DMA_NONE: 1776 vm_srb->data_in = UNKNOWN_TYPE; 1777 vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; 1778 break; 1779 default: 1780 /* 1781 * This is DMA_BIDIRECTIONAL or something else we are never 1782 * supposed to see here. 1783 */ 1784 WARN(1, "Unexpected data direction: %d\n", 1785 scmnd->sc_data_direction); 1786 return -EINVAL; 1787 } 1788 1789 1790 vm_srb->port_number = host_dev->port; 1791 vm_srb->path_id = scmnd->device->channel; 1792 vm_srb->target_id = scmnd->device->id; 1793 vm_srb->lun = scmnd->device->lun; 1794 1795 vm_srb->cdb_length = scmnd->cmd_len; 1796 1797 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); 1798 1799 sgl = (struct scatterlist *)scsi_sglist(scmnd); 1800 1801 length = scsi_bufflen(scmnd); 1802 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; 1803 payload->range.len = 0; 1804 payload_sz = 0; 1805 1806 if (scsi_sg_count(scmnd)) { 1807 unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset); 1808 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length); 1809 struct scatterlist *sg; 1810 unsigned long hvpfn, hvpfns_to_add; 1811 int j, i = 0, sg_count; 1812 1813 payload_sz = (hvpg_count * sizeof(u64) + 1814 sizeof(struct vmbus_packet_mpb_array)); 1815 1816 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) { 1817 payload = kzalloc(payload_sz, GFP_ATOMIC); 1818 if (!payload) 1819 return SCSI_MLQUEUE_DEVICE_BUSY; 1820 } 1821 1822 payload->range.len = length; 1823 payload->range.offset = offset_in_hvpg; 1824 1825 sg_count = scsi_dma_map(scmnd); 1826 if (sg_count < 0) { 1827 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1828 goto err_free_payload; 1829 } 1830 1831 for_each_sg(sgl, sg, sg_count, j) { 1832 /* 1833 * Init values for the current sgl entry. hvpfns_to_add 1834 * is in units of Hyper-V size pages. Handling the 1835 * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles 1836 * values of sgl->offset that are larger than PAGE_SIZE. 1837 * Such offsets are handled even on other than the first 1838 * sgl entry, provided they are a multiple of PAGE_SIZE. 1839 */ 1840 hvpfn = HVPFN_DOWN(sg_dma_address(sg)); 1841 hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) + 1842 sg_dma_len(sg)) - hvpfn; 1843 1844 /* 1845 * Fill the next portion of the PFN array with 1846 * sequential Hyper-V PFNs for the continguous physical 1847 * memory described by the sgl entry. The end of the 1848 * last sgl should be reached at the same time that 1849 * the PFN array is filled. 1850 */ 1851 while (hvpfns_to_add--) 1852 payload->range.pfn_array[i++] = hvpfn++; 1853 } 1854 } 1855 1856 cmd_request->payload = payload; 1857 cmd_request->payload_sz = payload_sz; 1858 1859 /* Invokes the vsc to start an IO */ 1860 ret = storvsc_do_io(dev, cmd_request, get_cpu()); 1861 put_cpu(); 1862 1863 if (ret) 1864 scsi_dma_unmap(scmnd); 1865 1866 if (ret == -EAGAIN) { 1867 /* no more space */ 1868 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1869 goto err_free_payload; 1870 } 1871 1872 return 0; 1873 1874 err_free_payload: 1875 if (payload_sz > sizeof(cmd_request->mpb)) 1876 kfree(payload); 1877 1878 return ret; 1879 } 1880 1881 static struct scsi_host_template scsi_driver = { 1882 .module = THIS_MODULE, 1883 .name = "storvsc_host_t", 1884 .cmd_size = sizeof(struct storvsc_cmd_request), 1885 .bios_param = storvsc_get_chs, 1886 .queuecommand = storvsc_queuecommand, 1887 .eh_host_reset_handler = storvsc_host_reset_handler, 1888 .proc_name = "storvsc_host", 1889 .eh_timed_out = storvsc_eh_timed_out, 1890 .slave_alloc = storvsc_device_alloc, 1891 .slave_configure = storvsc_device_configure, 1892 .cmd_per_lun = 2048, 1893 .this_id = -1, 1894 /* Ensure there are no gaps in presented sgls */ 1895 .virt_boundary_mask = HV_HYP_PAGE_SIZE - 1, 1896 .no_write_same = 1, 1897 .track_queue_depth = 1, 1898 .change_queue_depth = storvsc_change_queue_depth, 1899 }; 1900 1901 enum { 1902 SCSI_GUID, 1903 IDE_GUID, 1904 SFC_GUID, 1905 }; 1906 1907 static const struct hv_vmbus_device_id id_table[] = { 1908 /* SCSI guid */ 1909 { HV_SCSI_GUID, 1910 .driver_data = SCSI_GUID 1911 }, 1912 /* IDE guid */ 1913 { HV_IDE_GUID, 1914 .driver_data = IDE_GUID 1915 }, 1916 /* Fibre Channel GUID */ 1917 { 1918 HV_SYNTHFC_GUID, 1919 .driver_data = SFC_GUID 1920 }, 1921 { }, 1922 }; 1923 1924 MODULE_DEVICE_TABLE(vmbus, id_table); 1925 1926 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID }; 1927 hv_dev_is_fc(struct hv_device * hv_dev)1928 static bool hv_dev_is_fc(struct hv_device *hv_dev) 1929 { 1930 return guid_equal(&fc_guid.guid, &hv_dev->dev_type); 1931 } 1932 storvsc_probe(struct hv_device * device,const struct hv_vmbus_device_id * dev_id)1933 static int storvsc_probe(struct hv_device *device, 1934 const struct hv_vmbus_device_id *dev_id) 1935 { 1936 int ret; 1937 int num_cpus = num_online_cpus(); 1938 int num_present_cpus = num_present_cpus(); 1939 struct Scsi_Host *host; 1940 struct hv_host_device *host_dev; 1941 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); 1942 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false); 1943 int target = 0; 1944 struct storvsc_device *stor_device; 1945 int max_sub_channels = 0; 1946 u32 max_xfer_bytes; 1947 1948 /* 1949 * We support sub-channels for storage on SCSI and FC controllers. 1950 * The number of sub-channels offerred is based on the number of 1951 * VCPUs in the guest. 1952 */ 1953 if (!dev_is_ide) 1954 max_sub_channels = 1955 (num_cpus - 1) / storvsc_vcpus_per_sub_channel; 1956 1957 scsi_driver.can_queue = max_outstanding_req_per_channel * 1958 (max_sub_channels + 1) * 1959 (100 - ring_avail_percent_lowater) / 100; 1960 1961 host = scsi_host_alloc(&scsi_driver, 1962 sizeof(struct hv_host_device)); 1963 if (!host) 1964 return -ENOMEM; 1965 1966 host_dev = shost_priv(host); 1967 memset(host_dev, 0, sizeof(struct hv_host_device)); 1968 1969 host_dev->port = host->host_no; 1970 host_dev->dev = device; 1971 host_dev->host = host; 1972 1973 1974 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); 1975 if (!stor_device) { 1976 ret = -ENOMEM; 1977 goto err_out0; 1978 } 1979 1980 stor_device->destroy = false; 1981 init_waitqueue_head(&stor_device->waiting_to_drain); 1982 stor_device->device = device; 1983 stor_device->host = host; 1984 spin_lock_init(&stor_device->lock); 1985 hv_set_drvdata(device, stor_device); 1986 dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1); 1987 1988 stor_device->port_number = host->host_no; 1989 ret = storvsc_connect_to_vsp(device, aligned_ringbuffer_size, is_fc); 1990 if (ret) 1991 goto err_out1; 1992 1993 host_dev->path = stor_device->path_id; 1994 host_dev->target = stor_device->target_id; 1995 1996 switch (dev_id->driver_data) { 1997 case SFC_GUID: 1998 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; 1999 host->max_id = STORVSC_FC_MAX_TARGETS; 2000 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; 2001 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2002 host->transportt = fc_transport_template; 2003 #endif 2004 break; 2005 2006 case SCSI_GUID: 2007 host->max_lun = STORVSC_MAX_LUNS_PER_TARGET; 2008 host->max_id = STORVSC_MAX_TARGETS; 2009 host->max_channel = STORVSC_MAX_CHANNELS - 1; 2010 break; 2011 2012 default: 2013 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; 2014 host->max_id = STORVSC_IDE_MAX_TARGETS; 2015 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; 2016 break; 2017 } 2018 /* max cmd length */ 2019 host->max_cmd_len = STORVSC_MAX_CMD_LEN; 2020 /* 2021 * Any reasonable Hyper-V configuration should provide 2022 * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE, 2023 * protecting it from any weird value. 2024 */ 2025 max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE); 2026 if (is_fc) 2027 max_xfer_bytes = min(max_xfer_bytes, STORVSC_FC_MAX_XFER_SIZE); 2028 2029 /* max_hw_sectors_kb */ 2030 host->max_sectors = max_xfer_bytes >> 9; 2031 /* 2032 * There are 2 requirements for Hyper-V storvsc sgl segments, 2033 * based on which the below calculation for max segments is 2034 * done: 2035 * 2036 * 1. Except for the first and last sgl segment, all sgl segments 2037 * should be align to HV_HYP_PAGE_SIZE, that also means the 2038 * maximum number of segments in a sgl can be calculated by 2039 * dividing the total max transfer length by HV_HYP_PAGE_SIZE. 2040 * 2041 * 2. Except for the first and last, each entry in the SGL must 2042 * have an offset that is a multiple of HV_HYP_PAGE_SIZE. 2043 */ 2044 host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1; 2045 /* 2046 * For non-IDE disks, the host supports multiple channels. 2047 * Set the number of HW queues we are supporting. 2048 */ 2049 if (!dev_is_ide) { 2050 if (storvsc_max_hw_queues > num_present_cpus) { 2051 storvsc_max_hw_queues = 0; 2052 storvsc_log(device, STORVSC_LOGGING_WARN, 2053 "Resetting invalid storvsc_max_hw_queues value to default.\n"); 2054 } 2055 if (storvsc_max_hw_queues) 2056 host->nr_hw_queues = storvsc_max_hw_queues; 2057 else 2058 host->nr_hw_queues = num_present_cpus; 2059 } 2060 2061 /* 2062 * Set the error handler work queue. 2063 */ 2064 host_dev->handle_error_wq = 2065 alloc_ordered_workqueue("storvsc_error_wq_%d", 2066 0, 2067 host->host_no); 2068 if (!host_dev->handle_error_wq) { 2069 ret = -ENOMEM; 2070 goto err_out2; 2071 } 2072 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); 2073 /* Register the HBA and start the scsi bus scan */ 2074 ret = scsi_add_host(host, &device->device); 2075 if (ret != 0) 2076 goto err_out3; 2077 2078 if (!dev_is_ide) { 2079 scsi_scan_host(host); 2080 } else { 2081 target = (device->dev_instance.b[5] << 8 | 2082 device->dev_instance.b[4]); 2083 ret = scsi_add_device(host, 0, target, 0); 2084 if (ret) 2085 goto err_out4; 2086 } 2087 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2088 if (host->transportt == fc_transport_template) { 2089 struct fc_rport_identifiers ids = { 2090 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, 2091 }; 2092 2093 fc_host_node_name(host) = stor_device->node_name; 2094 fc_host_port_name(host) = stor_device->port_name; 2095 stor_device->rport = fc_remote_port_add(host, 0, &ids); 2096 if (!stor_device->rport) { 2097 ret = -ENOMEM; 2098 goto err_out4; 2099 } 2100 } 2101 #endif 2102 return 0; 2103 2104 err_out4: 2105 scsi_remove_host(host); 2106 2107 err_out3: 2108 destroy_workqueue(host_dev->handle_error_wq); 2109 2110 err_out2: 2111 /* 2112 * Once we have connected with the host, we would need to 2113 * invoke storvsc_dev_remove() to rollback this state and 2114 * this call also frees up the stor_device; hence the jump around 2115 * err_out1 label. 2116 */ 2117 storvsc_dev_remove(device); 2118 goto err_out0; 2119 2120 err_out1: 2121 kfree(stor_device->stor_chns); 2122 kfree(stor_device); 2123 2124 err_out0: 2125 scsi_host_put(host); 2126 return ret; 2127 } 2128 2129 /* Change a scsi target's queue depth */ storvsc_change_queue_depth(struct scsi_device * sdev,int queue_depth)2130 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth) 2131 { 2132 if (queue_depth > scsi_driver.can_queue) 2133 queue_depth = scsi_driver.can_queue; 2134 2135 return scsi_change_queue_depth(sdev, queue_depth); 2136 } 2137 storvsc_remove(struct hv_device * dev)2138 static void storvsc_remove(struct hv_device *dev) 2139 { 2140 struct storvsc_device *stor_device = hv_get_drvdata(dev); 2141 struct Scsi_Host *host = stor_device->host; 2142 struct hv_host_device *host_dev = shost_priv(host); 2143 2144 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2145 if (host->transportt == fc_transport_template) { 2146 fc_remote_port_delete(stor_device->rport); 2147 fc_remove_host(host); 2148 } 2149 #endif 2150 destroy_workqueue(host_dev->handle_error_wq); 2151 scsi_remove_host(host); 2152 storvsc_dev_remove(dev); 2153 scsi_host_put(host); 2154 } 2155 storvsc_suspend(struct hv_device * hv_dev)2156 static int storvsc_suspend(struct hv_device *hv_dev) 2157 { 2158 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev); 2159 struct Scsi_Host *host = stor_device->host; 2160 struct hv_host_device *host_dev = shost_priv(host); 2161 2162 storvsc_wait_to_drain(stor_device); 2163 2164 drain_workqueue(host_dev->handle_error_wq); 2165 2166 vmbus_close(hv_dev->channel); 2167 2168 kfree(stor_device->stor_chns); 2169 stor_device->stor_chns = NULL; 2170 2171 cpumask_clear(&stor_device->alloced_cpus); 2172 2173 return 0; 2174 } 2175 storvsc_resume(struct hv_device * hv_dev)2176 static int storvsc_resume(struct hv_device *hv_dev) 2177 { 2178 int ret; 2179 2180 ret = storvsc_connect_to_vsp(hv_dev, aligned_ringbuffer_size, 2181 hv_dev_is_fc(hv_dev)); 2182 return ret; 2183 } 2184 2185 static struct hv_driver storvsc_drv = { 2186 .name = KBUILD_MODNAME, 2187 .id_table = id_table, 2188 .probe = storvsc_probe, 2189 .remove = storvsc_remove, 2190 .suspend = storvsc_suspend, 2191 .resume = storvsc_resume, 2192 .driver = { 2193 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2194 }, 2195 }; 2196 2197 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2198 static struct fc_function_template fc_transport_functions = { 2199 .show_host_node_name = 1, 2200 .show_host_port_name = 1, 2201 }; 2202 #endif 2203 storvsc_drv_init(void)2204 static int __init storvsc_drv_init(void) 2205 { 2206 int ret; 2207 2208 /* 2209 * Divide the ring buffer data size (which is 1 page less 2210 * than the ring buffer size since that page is reserved for 2211 * the ring buffer indices) by the max request size (which is 2212 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) 2213 */ 2214 aligned_ringbuffer_size = VMBUS_RING_SIZE(storvsc_ringbuffer_size); 2215 max_outstanding_req_per_channel = 2216 ((aligned_ringbuffer_size - PAGE_SIZE) / 2217 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + 2218 sizeof(struct vstor_packet) + sizeof(u64), 2219 sizeof(u64))); 2220 2221 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2222 fc_transport_template = fc_attach_transport(&fc_transport_functions); 2223 if (!fc_transport_template) 2224 return -ENODEV; 2225 #endif 2226 2227 ret = vmbus_driver_register(&storvsc_drv); 2228 2229 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2230 if (ret) 2231 fc_release_transport(fc_transport_template); 2232 #endif 2233 2234 return ret; 2235 } 2236 storvsc_drv_exit(void)2237 static void __exit storvsc_drv_exit(void) 2238 { 2239 vmbus_driver_unregister(&storvsc_drv); 2240 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2241 fc_release_transport(fc_transport_template); 2242 #endif 2243 } 2244 2245 MODULE_LICENSE("GPL"); 2246 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); 2247 module_init(storvsc_drv_init); 2248 module_exit(storvsc_drv_exit); 2249