xref: /openbmc/linux/drivers/scsi/storvsc_drv.c (revision 360823a09426347ea8f232b0b0b5156d0aed0302)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (c) 2009, Microsoft Corporation.
4   *
5   * Authors:
6   *   Haiyang Zhang <haiyangz@microsoft.com>
7   *   Hank Janssen  <hjanssen@microsoft.com>
8   *   K. Y. Srinivasan <kys@microsoft.com>
9   */
10  
11  #include <linux/kernel.h>
12  #include <linux/wait.h>
13  #include <linux/sched.h>
14  #include <linux/completion.h>
15  #include <linux/string.h>
16  #include <linux/mm.h>
17  #include <linux/delay.h>
18  #include <linux/init.h>
19  #include <linux/slab.h>
20  #include <linux/module.h>
21  #include <linux/device.h>
22  #include <linux/hyperv.h>
23  #include <linux/blkdev.h>
24  #include <linux/dma-mapping.h>
25  
26  #include <scsi/scsi.h>
27  #include <scsi/scsi_cmnd.h>
28  #include <scsi/scsi_host.h>
29  #include <scsi/scsi_device.h>
30  #include <scsi/scsi_tcq.h>
31  #include <scsi/scsi_eh.h>
32  #include <scsi/scsi_devinfo.h>
33  #include <scsi/scsi_dbg.h>
34  #include <scsi/scsi_transport_fc.h>
35  #include <scsi/scsi_transport.h>
36  
37  /*
38   * All wire protocol details (storage protocol between the guest and the host)
39   * are consolidated here.
40   *
41   * Begin protocol definitions.
42   */
43  
44  /*
45   * Version history:
46   * V1 Beta: 0.1
47   * V1 RC < 2008/1/31: 1.0
48   * V1 RC > 2008/1/31:  2.0
49   * Win7: 4.2
50   * Win8: 5.1
51   * Win8.1: 6.0
52   * Win10: 6.2
53   */
54  
55  #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_)	((((MAJOR_) & 0xff) << 8) | \
56  						(((MINOR_) & 0xff)))
57  #define VMSTOR_PROTO_VERSION_WIN6	VMSTOR_PROTO_VERSION(2, 0)
58  #define VMSTOR_PROTO_VERSION_WIN7	VMSTOR_PROTO_VERSION(4, 2)
59  #define VMSTOR_PROTO_VERSION_WIN8	VMSTOR_PROTO_VERSION(5, 1)
60  #define VMSTOR_PROTO_VERSION_WIN8_1	VMSTOR_PROTO_VERSION(6, 0)
61  #define VMSTOR_PROTO_VERSION_WIN10	VMSTOR_PROTO_VERSION(6, 2)
62  
63  /* channel callback timeout in ms */
64  #define CALLBACK_TIMEOUT               2
65  
66  /*  Packet structure describing virtual storage requests. */
67  enum vstor_packet_operation {
68  	VSTOR_OPERATION_COMPLETE_IO		= 1,
69  	VSTOR_OPERATION_REMOVE_DEVICE		= 2,
70  	VSTOR_OPERATION_EXECUTE_SRB		= 3,
71  	VSTOR_OPERATION_RESET_LUN		= 4,
72  	VSTOR_OPERATION_RESET_ADAPTER		= 5,
73  	VSTOR_OPERATION_RESET_BUS		= 6,
74  	VSTOR_OPERATION_BEGIN_INITIALIZATION	= 7,
75  	VSTOR_OPERATION_END_INITIALIZATION	= 8,
76  	VSTOR_OPERATION_QUERY_PROTOCOL_VERSION	= 9,
77  	VSTOR_OPERATION_QUERY_PROPERTIES	= 10,
78  	VSTOR_OPERATION_ENUMERATE_BUS		= 11,
79  	VSTOR_OPERATION_FCHBA_DATA              = 12,
80  	VSTOR_OPERATION_CREATE_SUB_CHANNELS     = 13,
81  	VSTOR_OPERATION_MAXIMUM                 = 13
82  };
83  
84  /*
85   * WWN packet for Fibre Channel HBA
86   */
87  
88  struct hv_fc_wwn_packet {
89  	u8	primary_active;
90  	u8	reserved1[3];
91  	u8	primary_port_wwn[8];
92  	u8	primary_node_wwn[8];
93  	u8	secondary_port_wwn[8];
94  	u8	secondary_node_wwn[8];
95  };
96  
97  
98  
99  /*
100   * SRB Flag Bits
101   */
102  
103  #define SRB_FLAGS_QUEUE_ACTION_ENABLE		0x00000002
104  #define SRB_FLAGS_DISABLE_DISCONNECT		0x00000004
105  #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER	0x00000008
106  #define SRB_FLAGS_BYPASS_FROZEN_QUEUE		0x00000010
107  #define SRB_FLAGS_DISABLE_AUTOSENSE		0x00000020
108  #define SRB_FLAGS_DATA_IN			0x00000040
109  #define SRB_FLAGS_DATA_OUT			0x00000080
110  #define SRB_FLAGS_NO_DATA_TRANSFER		0x00000000
111  #define SRB_FLAGS_UNSPECIFIED_DIRECTION	(SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT)
112  #define SRB_FLAGS_NO_QUEUE_FREEZE		0x00000100
113  #define SRB_FLAGS_ADAPTER_CACHE_ENABLE		0x00000200
114  #define SRB_FLAGS_FREE_SENSE_BUFFER		0x00000400
115  
116  /*
117   * This flag indicates the request is part of the workflow for processing a D3.
118   */
119  #define SRB_FLAGS_D3_PROCESSING			0x00000800
120  #define SRB_FLAGS_IS_ACTIVE			0x00010000
121  #define SRB_FLAGS_ALLOCATED_FROM_ZONE		0x00020000
122  #define SRB_FLAGS_SGLIST_FROM_POOL		0x00040000
123  #define SRB_FLAGS_BYPASS_LOCKED_QUEUE		0x00080000
124  #define SRB_FLAGS_NO_KEEP_AWAKE			0x00100000
125  #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE	0x00200000
126  #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT	0x00400000
127  #define SRB_FLAGS_DONT_START_NEXT_PACKET	0x00800000
128  #define SRB_FLAGS_PORT_DRIVER_RESERVED		0x0F000000
129  #define SRB_FLAGS_CLASS_DRIVER_RESERVED		0xF0000000
130  
131  #define SP_UNTAGGED			((unsigned char) ~0)
132  #define SRB_SIMPLE_TAG_REQUEST		0x20
133  
134  /*
135   * Platform neutral description of a scsi request -
136   * this remains the same across the write regardless of 32/64 bit
137   * note: it's patterned off the SCSI_PASS_THROUGH structure
138   */
139  #define STORVSC_MAX_CMD_LEN			0x10
140  
141  /* Sense buffer size is the same for all versions since Windows 8 */
142  #define STORVSC_SENSE_BUFFER_SIZE		0x14
143  #define STORVSC_MAX_BUF_LEN_WITH_PADDING	0x14
144  
145  /*
146   * The storage protocol version is determined during the
147   * initial exchange with the host.  It will indicate which
148   * storage functionality is available in the host.
149  */
150  static int vmstor_proto_version;
151  
152  static bool hv_dev_is_fc(struct hv_device *hv_dev);
153  
154  #define STORVSC_LOGGING_NONE	0
155  #define STORVSC_LOGGING_ERROR	1
156  #define STORVSC_LOGGING_WARN	2
157  
158  static int logging_level = STORVSC_LOGGING_ERROR;
159  module_param(logging_level, int, S_IRUGO|S_IWUSR);
160  MODULE_PARM_DESC(logging_level,
161  	"Logging level, 0 - None, 1 - Error (default), 2 - Warning.");
162  
do_logging(int level)163  static inline bool do_logging(int level)
164  {
165  	return logging_level >= level;
166  }
167  
168  #define storvsc_log(dev, level, fmt, ...)			\
169  do {								\
170  	if (do_logging(level))					\
171  		dev_warn(&(dev)->device, fmt, ##__VA_ARGS__);	\
172  } while (0)
173  
174  #define storvsc_log_ratelimited(dev, level, fmt, ...)				\
175  do {										\
176  	if (do_logging(level))							\
177  		dev_warn_ratelimited(&(dev)->device, fmt, ##__VA_ARGS__);	\
178  } while (0)
179  
180  struct vmscsi_request {
181  	u16 length;
182  	u8 srb_status;
183  	u8 scsi_status;
184  
185  	u8  port_number;
186  	u8  path_id;
187  	u8  target_id;
188  	u8  lun;
189  
190  	u8  cdb_length;
191  	u8  sense_info_length;
192  	u8  data_in;
193  	u8  reserved;
194  
195  	u32 data_transfer_length;
196  
197  	union {
198  		u8 cdb[STORVSC_MAX_CMD_LEN];
199  		u8 sense_data[STORVSC_SENSE_BUFFER_SIZE];
200  		u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING];
201  	};
202  	/*
203  	 * The following was added in win8.
204  	 */
205  	u16 reserve;
206  	u8  queue_tag;
207  	u8  queue_action;
208  	u32 srb_flags;
209  	u32 time_out_value;
210  	u32 queue_sort_ey;
211  
212  } __attribute((packed));
213  
214  /*
215   * The list of windows version in order of preference.
216   */
217  
218  static const int protocol_version[] = {
219  		VMSTOR_PROTO_VERSION_WIN10,
220  		VMSTOR_PROTO_VERSION_WIN8_1,
221  		VMSTOR_PROTO_VERSION_WIN8,
222  };
223  
224  
225  /*
226   * This structure is sent during the initialization phase to get the different
227   * properties of the channel.
228   */
229  
230  #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL		0x1
231  
232  struct vmstorage_channel_properties {
233  	u32 reserved;
234  	u16 max_channel_cnt;
235  	u16 reserved1;
236  
237  	u32 flags;
238  	u32   max_transfer_bytes;
239  
240  	u64  reserved2;
241  } __packed;
242  
243  /*  This structure is sent during the storage protocol negotiations. */
244  struct vmstorage_protocol_version {
245  	/* Major (MSW) and minor (LSW) version numbers. */
246  	u16 major_minor;
247  
248  	/*
249  	 * Revision number is auto-incremented whenever this file is changed
250  	 * (See FILL_VMSTOR_REVISION macro above).  Mismatch does not
251  	 * definitely indicate incompatibility--but it does indicate mismatched
252  	 * builds.
253  	 * This is only used on the windows side. Just set it to 0.
254  	 */
255  	u16 revision;
256  } __packed;
257  
258  /* Channel Property Flags */
259  #define STORAGE_CHANNEL_REMOVABLE_FLAG		0x1
260  #define STORAGE_CHANNEL_EMULATED_IDE_FLAG	0x2
261  
262  struct vstor_packet {
263  	/* Requested operation type */
264  	enum vstor_packet_operation operation;
265  
266  	/*  Flags - see below for values */
267  	u32 flags;
268  
269  	/* Status of the request returned from the server side. */
270  	u32 status;
271  
272  	/* Data payload area */
273  	union {
274  		/*
275  		 * Structure used to forward SCSI commands from the
276  		 * client to the server.
277  		 */
278  		struct vmscsi_request vm_srb;
279  
280  		/* Structure used to query channel properties. */
281  		struct vmstorage_channel_properties storage_channel_properties;
282  
283  		/* Used during version negotiations. */
284  		struct vmstorage_protocol_version version;
285  
286  		/* Fibre channel address packet */
287  		struct hv_fc_wwn_packet wwn_packet;
288  
289  		/* Number of sub-channels to create */
290  		u16 sub_channel_count;
291  
292  		/* This will be the maximum of the union members */
293  		u8  buffer[0x34];
294  	};
295  } __packed;
296  
297  /*
298   * Packet Flags:
299   *
300   * This flag indicates that the server should send back a completion for this
301   * packet.
302   */
303  
304  #define REQUEST_COMPLETION_FLAG	0x1
305  
306  /* Matches Windows-end */
307  enum storvsc_request_type {
308  	WRITE_TYPE = 0,
309  	READ_TYPE,
310  	UNKNOWN_TYPE,
311  };
312  
313  /*
314   * SRB status codes and masks. In the 8-bit field, the two high order bits
315   * are flags, while the remaining 6 bits are an integer status code.  The
316   * definitions here include only the subset of the integer status codes that
317   * are tested for in this driver.
318   */
319  #define SRB_STATUS_AUTOSENSE_VALID	0x80
320  #define SRB_STATUS_QUEUE_FROZEN		0x40
321  
322  /* SRB status integer codes */
323  #define SRB_STATUS_SUCCESS		0x01
324  #define SRB_STATUS_ABORTED		0x02
325  #define SRB_STATUS_ERROR		0x04
326  #define SRB_STATUS_INVALID_REQUEST	0x06
327  #define SRB_STATUS_TIMEOUT		0x09
328  #define SRB_STATUS_SELECTION_TIMEOUT	0x0A
329  #define SRB_STATUS_BUS_RESET		0x0E
330  #define SRB_STATUS_DATA_OVERRUN		0x12
331  #define SRB_STATUS_INVALID_LUN		0x20
332  #define SRB_STATUS_INTERNAL_ERROR	0x30
333  
334  #define SRB_STATUS(status) \
335  	(status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN))
336  /*
337   * This is the end of Protocol specific defines.
338   */
339  
340  static int storvsc_ringbuffer_size = (128 * 1024);
341  static int aligned_ringbuffer_size;
342  static u32 max_outstanding_req_per_channel;
343  static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth);
344  
345  static int storvsc_vcpus_per_sub_channel = 4;
346  static unsigned int storvsc_max_hw_queues;
347  
348  module_param(storvsc_ringbuffer_size, int, S_IRUGO);
349  MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)");
350  
351  module_param(storvsc_max_hw_queues, uint, 0644);
352  MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues");
353  
354  module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO);
355  MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels");
356  
357  static int ring_avail_percent_lowater = 10;
358  module_param(ring_avail_percent_lowater, int, S_IRUGO);
359  MODULE_PARM_DESC(ring_avail_percent_lowater,
360  		"Select a channel if available ring size > this in percent");
361  
362  /*
363   * Timeout in seconds for all devices managed by this driver.
364   */
365  static int storvsc_timeout = 180;
366  
367  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
368  static struct scsi_transport_template *fc_transport_template;
369  #endif
370  
371  static struct scsi_host_template scsi_driver;
372  static void storvsc_on_channel_callback(void *context);
373  
374  #define STORVSC_MAX_LUNS_PER_TARGET			255
375  #define STORVSC_MAX_TARGETS				2
376  #define STORVSC_MAX_CHANNELS				8
377  
378  #define STORVSC_FC_MAX_LUNS_PER_TARGET			255
379  #define STORVSC_FC_MAX_TARGETS				128
380  #define STORVSC_FC_MAX_CHANNELS				8
381  #define STORVSC_FC_MAX_XFER_SIZE			((u32)(512 * 1024))
382  
383  #define STORVSC_IDE_MAX_LUNS_PER_TARGET			64
384  #define STORVSC_IDE_MAX_TARGETS				1
385  #define STORVSC_IDE_MAX_CHANNELS			1
386  
387  /*
388   * Upper bound on the size of a storvsc packet.
389   */
390  #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\
391  			      sizeof(struct vstor_packet))
392  
393  struct storvsc_cmd_request {
394  	struct scsi_cmnd *cmd;
395  
396  	struct hv_device *device;
397  
398  	/* Synchronize the request/response if needed */
399  	struct completion wait_event;
400  
401  	struct vmbus_channel_packet_multipage_buffer mpb;
402  	struct vmbus_packet_mpb_array *payload;
403  	u32 payload_sz;
404  
405  	struct vstor_packet vstor_packet;
406  };
407  
408  
409  /* A storvsc device is a device object that contains a vmbus channel */
410  struct storvsc_device {
411  	struct hv_device *device;
412  
413  	bool	 destroy;
414  	bool	 drain_notify;
415  	atomic_t num_outstanding_req;
416  	struct Scsi_Host *host;
417  
418  	wait_queue_head_t waiting_to_drain;
419  
420  	/*
421  	 * Each unique Port/Path/Target represents 1 channel ie scsi
422  	 * controller. In reality, the pathid, targetid is always 0
423  	 * and the port is set by us
424  	 */
425  	unsigned int port_number;
426  	unsigned char path_id;
427  	unsigned char target_id;
428  
429  	/*
430  	 * Max I/O, the device can support.
431  	 */
432  	u32   max_transfer_bytes;
433  	/*
434  	 * Number of sub-channels we will open.
435  	 */
436  	u16 num_sc;
437  	struct vmbus_channel **stor_chns;
438  	/*
439  	 * Mask of CPUs bound to subchannels.
440  	 */
441  	struct cpumask alloced_cpus;
442  	/*
443  	 * Serializes modifications of stor_chns[] from storvsc_do_io()
444  	 * and storvsc_change_target_cpu().
445  	 */
446  	spinlock_t lock;
447  	/* Used for vsc/vsp channel reset process */
448  	struct storvsc_cmd_request init_request;
449  	struct storvsc_cmd_request reset_request;
450  	/*
451  	 * Currently active port and node names for FC devices.
452  	 */
453  	u64 node_name;
454  	u64 port_name;
455  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
456  	struct fc_rport *rport;
457  #endif
458  };
459  
460  struct hv_host_device {
461  	struct hv_device *dev;
462  	unsigned int port;
463  	unsigned char path;
464  	unsigned char target;
465  	struct workqueue_struct *handle_error_wq;
466  	struct work_struct host_scan_work;
467  	struct Scsi_Host *host;
468  };
469  
470  struct storvsc_scan_work {
471  	struct work_struct work;
472  	struct Scsi_Host *host;
473  	u8 lun;
474  	u8 tgt_id;
475  };
476  
storvsc_device_scan(struct work_struct * work)477  static void storvsc_device_scan(struct work_struct *work)
478  {
479  	struct storvsc_scan_work *wrk;
480  	struct scsi_device *sdev;
481  
482  	wrk = container_of(work, struct storvsc_scan_work, work);
483  
484  	sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
485  	if (!sdev)
486  		goto done;
487  	scsi_rescan_device(sdev);
488  	scsi_device_put(sdev);
489  
490  done:
491  	kfree(wrk);
492  }
493  
storvsc_host_scan(struct work_struct * work)494  static void storvsc_host_scan(struct work_struct *work)
495  {
496  	struct Scsi_Host *host;
497  	struct scsi_device *sdev;
498  	struct hv_host_device *host_device =
499  		container_of(work, struct hv_host_device, host_scan_work);
500  
501  	host = host_device->host;
502  	/*
503  	 * Before scanning the host, first check to see if any of the
504  	 * currently known devices have been hot removed. We issue a
505  	 * "unit ready" command against all currently known devices.
506  	 * This I/O will result in an error for devices that have been
507  	 * removed. As part of handling the I/O error, we remove the device.
508  	 *
509  	 * When a LUN is added or removed, the host sends us a signal to
510  	 * scan the host. Thus we are forced to discover the LUNs that
511  	 * may have been removed this way.
512  	 */
513  	mutex_lock(&host->scan_mutex);
514  	shost_for_each_device(sdev, host)
515  		scsi_test_unit_ready(sdev, 1, 1, NULL);
516  	mutex_unlock(&host->scan_mutex);
517  	/*
518  	 * Now scan the host to discover LUNs that may have been added.
519  	 */
520  	scsi_scan_host(host);
521  }
522  
storvsc_remove_lun(struct work_struct * work)523  static void storvsc_remove_lun(struct work_struct *work)
524  {
525  	struct storvsc_scan_work *wrk;
526  	struct scsi_device *sdev;
527  
528  	wrk = container_of(work, struct storvsc_scan_work, work);
529  	if (!scsi_host_get(wrk->host))
530  		goto done;
531  
532  	sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
533  
534  	if (sdev) {
535  		scsi_remove_device(sdev);
536  		scsi_device_put(sdev);
537  	}
538  	scsi_host_put(wrk->host);
539  
540  done:
541  	kfree(wrk);
542  }
543  
544  
545  /*
546   * We can get incoming messages from the host that are not in response to
547   * messages that we have sent out. An example of this would be messages
548   * received by the guest to notify dynamic addition/removal of LUNs. To
549   * deal with potential race conditions where the driver may be in the
550   * midst of being unloaded when we might receive an unsolicited message
551   * from the host, we have implemented a mechanism to gurantee sequential
552   * consistency:
553   *
554   * 1) Once the device is marked as being destroyed, we will fail all
555   *    outgoing messages.
556   * 2) We permit incoming messages when the device is being destroyed,
557   *    only to properly account for messages already sent out.
558   */
559  
get_out_stor_device(struct hv_device * device)560  static inline struct storvsc_device *get_out_stor_device(
561  					struct hv_device *device)
562  {
563  	struct storvsc_device *stor_device;
564  
565  	stor_device = hv_get_drvdata(device);
566  
567  	if (stor_device && stor_device->destroy)
568  		stor_device = NULL;
569  
570  	return stor_device;
571  }
572  
573  
storvsc_wait_to_drain(struct storvsc_device * dev)574  static inline void storvsc_wait_to_drain(struct storvsc_device *dev)
575  {
576  	dev->drain_notify = true;
577  	wait_event(dev->waiting_to_drain,
578  		   atomic_read(&dev->num_outstanding_req) == 0);
579  	dev->drain_notify = false;
580  }
581  
get_in_stor_device(struct hv_device * device)582  static inline struct storvsc_device *get_in_stor_device(
583  					struct hv_device *device)
584  {
585  	struct storvsc_device *stor_device;
586  
587  	stor_device = hv_get_drvdata(device);
588  
589  	if (!stor_device)
590  		goto get_in_err;
591  
592  	/*
593  	 * If the device is being destroyed; allow incoming
594  	 * traffic only to cleanup outstanding requests.
595  	 */
596  
597  	if (stor_device->destroy  &&
598  		(atomic_read(&stor_device->num_outstanding_req) == 0))
599  		stor_device = NULL;
600  
601  get_in_err:
602  	return stor_device;
603  
604  }
605  
storvsc_change_target_cpu(struct vmbus_channel * channel,u32 old,u32 new)606  static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old,
607  				      u32 new)
608  {
609  	struct storvsc_device *stor_device;
610  	struct vmbus_channel *cur_chn;
611  	bool old_is_alloced = false;
612  	struct hv_device *device;
613  	unsigned long flags;
614  	int cpu;
615  
616  	device = channel->primary_channel ?
617  			channel->primary_channel->device_obj
618  				: channel->device_obj;
619  	stor_device = get_out_stor_device(device);
620  	if (!stor_device)
621  		return;
622  
623  	/* See storvsc_do_io() -> get_og_chn(). */
624  	spin_lock_irqsave(&stor_device->lock, flags);
625  
626  	/*
627  	 * Determines if the storvsc device has other channels assigned to
628  	 * the "old" CPU to update the alloced_cpus mask and the stor_chns
629  	 * array.
630  	 */
631  	if (device->channel != channel && device->channel->target_cpu == old) {
632  		cur_chn = device->channel;
633  		old_is_alloced = true;
634  		goto old_is_alloced;
635  	}
636  	list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) {
637  		if (cur_chn == channel)
638  			continue;
639  		if (cur_chn->target_cpu == old) {
640  			old_is_alloced = true;
641  			goto old_is_alloced;
642  		}
643  	}
644  
645  old_is_alloced:
646  	if (old_is_alloced)
647  		WRITE_ONCE(stor_device->stor_chns[old], cur_chn);
648  	else
649  		cpumask_clear_cpu(old, &stor_device->alloced_cpus);
650  
651  	/* "Flush" the stor_chns array. */
652  	for_each_possible_cpu(cpu) {
653  		if (stor_device->stor_chns[cpu] && !cpumask_test_cpu(
654  					cpu, &stor_device->alloced_cpus))
655  			WRITE_ONCE(stor_device->stor_chns[cpu], NULL);
656  	}
657  
658  	WRITE_ONCE(stor_device->stor_chns[new], channel);
659  	cpumask_set_cpu(new, &stor_device->alloced_cpus);
660  
661  	spin_unlock_irqrestore(&stor_device->lock, flags);
662  }
663  
storvsc_next_request_id(struct vmbus_channel * channel,u64 rqst_addr)664  static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr)
665  {
666  	struct storvsc_cmd_request *request =
667  		(struct storvsc_cmd_request *)(unsigned long)rqst_addr;
668  
669  	if (rqst_addr == VMBUS_RQST_INIT)
670  		return VMBUS_RQST_INIT;
671  	if (rqst_addr == VMBUS_RQST_RESET)
672  		return VMBUS_RQST_RESET;
673  
674  	/*
675  	 * Cannot return an ID of 0, which is reserved for an unsolicited
676  	 * message from Hyper-V.
677  	 */
678  	return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1;
679  }
680  
handle_sc_creation(struct vmbus_channel * new_sc)681  static void handle_sc_creation(struct vmbus_channel *new_sc)
682  {
683  	struct hv_device *device = new_sc->primary_channel->device_obj;
684  	struct device *dev = &device->device;
685  	struct storvsc_device *stor_device;
686  	struct vmstorage_channel_properties props;
687  	int ret;
688  
689  	stor_device = get_out_stor_device(device);
690  	if (!stor_device)
691  		return;
692  
693  	memset(&props, 0, sizeof(struct vmstorage_channel_properties));
694  	new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE;
695  
696  	new_sc->next_request_id_callback = storvsc_next_request_id;
697  
698  	ret = vmbus_open(new_sc,
699  			 aligned_ringbuffer_size,
700  			 aligned_ringbuffer_size,
701  			 (void *)&props,
702  			 sizeof(struct vmstorage_channel_properties),
703  			 storvsc_on_channel_callback, new_sc);
704  
705  	/* In case vmbus_open() fails, we don't use the sub-channel. */
706  	if (ret != 0) {
707  		dev_err(dev, "Failed to open sub-channel: err=%d\n", ret);
708  		return;
709  	}
710  
711  	new_sc->change_target_cpu_callback = storvsc_change_target_cpu;
712  
713  	/* Add the sub-channel to the array of available channels. */
714  	stor_device->stor_chns[new_sc->target_cpu] = new_sc;
715  	cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus);
716  }
717  
handle_multichannel_storage(struct hv_device * device,int max_chns)718  static void  handle_multichannel_storage(struct hv_device *device, int max_chns)
719  {
720  	struct device *dev = &device->device;
721  	struct storvsc_device *stor_device;
722  	int num_sc;
723  	struct storvsc_cmd_request *request;
724  	struct vstor_packet *vstor_packet;
725  	int ret, t;
726  
727  	/*
728  	 * If the number of CPUs is artificially restricted, such as
729  	 * with maxcpus=1 on the kernel boot line, Hyper-V could offer
730  	 * sub-channels >= the number of CPUs. These sub-channels
731  	 * should not be created. The primary channel is already created
732  	 * and assigned to one CPU, so check against # CPUs - 1.
733  	 */
734  	num_sc = min((int)(num_online_cpus() - 1), max_chns);
735  	if (!num_sc)
736  		return;
737  
738  	stor_device = get_out_stor_device(device);
739  	if (!stor_device)
740  		return;
741  
742  	stor_device->num_sc = num_sc;
743  	request = &stor_device->init_request;
744  	vstor_packet = &request->vstor_packet;
745  
746  	/*
747  	 * Establish a handler for dealing with subchannels.
748  	 */
749  	vmbus_set_sc_create_callback(device->channel, handle_sc_creation);
750  
751  	/*
752  	 * Request the host to create sub-channels.
753  	 */
754  	memset(request, 0, sizeof(struct storvsc_cmd_request));
755  	init_completion(&request->wait_event);
756  	vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS;
757  	vstor_packet->flags = REQUEST_COMPLETION_FLAG;
758  	vstor_packet->sub_channel_count = num_sc;
759  
760  	ret = vmbus_sendpacket(device->channel, vstor_packet,
761  			       sizeof(struct vstor_packet),
762  			       VMBUS_RQST_INIT,
763  			       VM_PKT_DATA_INBAND,
764  			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
765  
766  	if (ret != 0) {
767  		dev_err(dev, "Failed to create sub-channel: err=%d\n", ret);
768  		return;
769  	}
770  
771  	t = wait_for_completion_timeout(&request->wait_event, 10*HZ);
772  	if (t == 0) {
773  		dev_err(dev, "Failed to create sub-channel: timed out\n");
774  		return;
775  	}
776  
777  	if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
778  	    vstor_packet->status != 0) {
779  		dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n",
780  			vstor_packet->operation, vstor_packet->status);
781  		return;
782  	}
783  
784  	/*
785  	 * We need to do nothing here, because vmbus_process_offer()
786  	 * invokes channel->sc_creation_callback, which will open and use
787  	 * the sub-channel(s).
788  	 */
789  }
790  
cache_wwn(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet)791  static void cache_wwn(struct storvsc_device *stor_device,
792  		      struct vstor_packet *vstor_packet)
793  {
794  	/*
795  	 * Cache the currently active port and node ww names.
796  	 */
797  	if (vstor_packet->wwn_packet.primary_active) {
798  		stor_device->node_name =
799  			wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn);
800  		stor_device->port_name =
801  			wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn);
802  	} else {
803  		stor_device->node_name =
804  			wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn);
805  		stor_device->port_name =
806  			wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn);
807  	}
808  }
809  
810  
storvsc_execute_vstor_op(struct hv_device * device,struct storvsc_cmd_request * request,bool status_check)811  static int storvsc_execute_vstor_op(struct hv_device *device,
812  				    struct storvsc_cmd_request *request,
813  				    bool status_check)
814  {
815  	struct storvsc_device *stor_device;
816  	struct vstor_packet *vstor_packet;
817  	int ret, t;
818  
819  	stor_device = get_out_stor_device(device);
820  	if (!stor_device)
821  		return -ENODEV;
822  
823  	vstor_packet = &request->vstor_packet;
824  
825  	init_completion(&request->wait_event);
826  	vstor_packet->flags = REQUEST_COMPLETION_FLAG;
827  
828  	ret = vmbus_sendpacket(device->channel, vstor_packet,
829  			       sizeof(struct vstor_packet),
830  			       VMBUS_RQST_INIT,
831  			       VM_PKT_DATA_INBAND,
832  			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
833  	if (ret != 0)
834  		return ret;
835  
836  	t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
837  	if (t == 0)
838  		return -ETIMEDOUT;
839  
840  	if (!status_check)
841  		return ret;
842  
843  	if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
844  	    vstor_packet->status != 0)
845  		return -EINVAL;
846  
847  	return ret;
848  }
849  
storvsc_channel_init(struct hv_device * device,bool is_fc)850  static int storvsc_channel_init(struct hv_device *device, bool is_fc)
851  {
852  	struct storvsc_device *stor_device;
853  	struct storvsc_cmd_request *request;
854  	struct vstor_packet *vstor_packet;
855  	int ret, i;
856  	int max_chns;
857  	bool process_sub_channels = false;
858  
859  	stor_device = get_out_stor_device(device);
860  	if (!stor_device)
861  		return -ENODEV;
862  
863  	request = &stor_device->init_request;
864  	vstor_packet = &request->vstor_packet;
865  
866  	/*
867  	 * Now, initiate the vsc/vsp initialization protocol on the open
868  	 * channel
869  	 */
870  	memset(request, 0, sizeof(struct storvsc_cmd_request));
871  	vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION;
872  	ret = storvsc_execute_vstor_op(device, request, true);
873  	if (ret)
874  		return ret;
875  	/*
876  	 * Query host supported protocol version.
877  	 */
878  
879  	for (i = 0; i < ARRAY_SIZE(protocol_version); i++) {
880  		/* reuse the packet for version range supported */
881  		memset(vstor_packet, 0, sizeof(struct vstor_packet));
882  		vstor_packet->operation =
883  			VSTOR_OPERATION_QUERY_PROTOCOL_VERSION;
884  
885  		vstor_packet->version.major_minor = protocol_version[i];
886  
887  		/*
888  		 * The revision number is only used in Windows; set it to 0.
889  		 */
890  		vstor_packet->version.revision = 0;
891  		ret = storvsc_execute_vstor_op(device, request, false);
892  		if (ret != 0)
893  			return ret;
894  
895  		if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO)
896  			return -EINVAL;
897  
898  		if (vstor_packet->status == 0) {
899  			vmstor_proto_version = protocol_version[i];
900  
901  			break;
902  		}
903  	}
904  
905  	if (vstor_packet->status != 0) {
906  		dev_err(&device->device, "Obsolete Hyper-V version\n");
907  		return -EINVAL;
908  	}
909  
910  
911  	memset(vstor_packet, 0, sizeof(struct vstor_packet));
912  	vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES;
913  	ret = storvsc_execute_vstor_op(device, request, true);
914  	if (ret != 0)
915  		return ret;
916  
917  	/*
918  	 * Check to see if multi-channel support is there.
919  	 * Hosts that implement protocol version of 5.1 and above
920  	 * support multi-channel.
921  	 */
922  	max_chns = vstor_packet->storage_channel_properties.max_channel_cnt;
923  
924  	/*
925  	 * Allocate state to manage the sub-channels.
926  	 * We allocate an array based on the numbers of possible CPUs
927  	 * (Hyper-V does not support cpu online/offline).
928  	 * This Array will be sparseley populated with unique
929  	 * channels - primary + sub-channels.
930  	 * We will however populate all the slots to evenly distribute
931  	 * the load.
932  	 */
933  	stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *),
934  					 GFP_KERNEL);
935  	if (stor_device->stor_chns == NULL)
936  		return -ENOMEM;
937  
938  	device->channel->change_target_cpu_callback = storvsc_change_target_cpu;
939  
940  	stor_device->stor_chns[device->channel->target_cpu] = device->channel;
941  	cpumask_set_cpu(device->channel->target_cpu,
942  			&stor_device->alloced_cpus);
943  
944  	if (vstor_packet->storage_channel_properties.flags &
945  	    STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL)
946  		process_sub_channels = true;
947  
948  	stor_device->max_transfer_bytes =
949  		vstor_packet->storage_channel_properties.max_transfer_bytes;
950  
951  	if (!is_fc)
952  		goto done;
953  
954  	/*
955  	 * For FC devices retrieve FC HBA data.
956  	 */
957  	memset(vstor_packet, 0, sizeof(struct vstor_packet));
958  	vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA;
959  	ret = storvsc_execute_vstor_op(device, request, true);
960  	if (ret != 0)
961  		return ret;
962  
963  	/*
964  	 * Cache the currently active port and node ww names.
965  	 */
966  	cache_wwn(stor_device, vstor_packet);
967  
968  done:
969  
970  	memset(vstor_packet, 0, sizeof(struct vstor_packet));
971  	vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION;
972  	ret = storvsc_execute_vstor_op(device, request, true);
973  	if (ret != 0)
974  		return ret;
975  
976  	if (process_sub_channels)
977  		handle_multichannel_storage(device, max_chns);
978  
979  	return ret;
980  }
981  
storvsc_handle_error(struct vmscsi_request * vm_srb,struct scsi_cmnd * scmnd,struct Scsi_Host * host,u8 asc,u8 ascq)982  static void storvsc_handle_error(struct vmscsi_request *vm_srb,
983  				struct scsi_cmnd *scmnd,
984  				struct Scsi_Host *host,
985  				u8 asc, u8 ascq)
986  {
987  	struct storvsc_scan_work *wrk;
988  	void (*process_err_fn)(struct work_struct *work);
989  	struct hv_host_device *host_dev = shost_priv(host);
990  
991  	switch (SRB_STATUS(vm_srb->srb_status)) {
992  	case SRB_STATUS_ERROR:
993  	case SRB_STATUS_ABORTED:
994  	case SRB_STATUS_INVALID_REQUEST:
995  	case SRB_STATUS_INTERNAL_ERROR:
996  	case SRB_STATUS_TIMEOUT:
997  	case SRB_STATUS_SELECTION_TIMEOUT:
998  	case SRB_STATUS_BUS_RESET:
999  	case SRB_STATUS_DATA_OVERRUN:
1000  		if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) {
1001  			/* Check for capacity change */
1002  			if ((asc == 0x2a) && (ascq == 0x9)) {
1003  				process_err_fn = storvsc_device_scan;
1004  				/* Retry the I/O that triggered this. */
1005  				set_host_byte(scmnd, DID_REQUEUE);
1006  				goto do_work;
1007  			}
1008  
1009  			/*
1010  			 * Check for "Operating parameters have changed"
1011  			 * due to Hyper-V changing the VHD/VHDX BlockSize
1012  			 * when adding/removing a differencing disk. This
1013  			 * causes discard_granularity to change, so do a
1014  			 * rescan to pick up the new granularity. We don't
1015  			 * want scsi_report_sense() to output a message
1016  			 * that a sysadmin wouldn't know what to do with.
1017  			 */
1018  			if ((asc == 0x3f) && (ascq != 0x03) &&
1019  					(ascq != 0x0e)) {
1020  				process_err_fn = storvsc_device_scan;
1021  				set_host_byte(scmnd, DID_REQUEUE);
1022  				goto do_work;
1023  			}
1024  
1025  			/*
1026  			 * Otherwise, let upper layer deal with the
1027  			 * error when sense message is present
1028  			 */
1029  			return;
1030  		}
1031  
1032  		/*
1033  		 * If there is an error; offline the device since all
1034  		 * error recovery strategies would have already been
1035  		 * deployed on the host side. However, if the command
1036  		 * were a pass-through command deal with it appropriately.
1037  		 */
1038  		switch (scmnd->cmnd[0]) {
1039  		case ATA_16:
1040  		case ATA_12:
1041  			set_host_byte(scmnd, DID_PASSTHROUGH);
1042  			break;
1043  		/*
1044  		 * On some Hyper-V hosts TEST_UNIT_READY command can
1045  		 * return SRB_STATUS_ERROR. Let the upper level code
1046  		 * deal with it based on the sense information.
1047  		 */
1048  		case TEST_UNIT_READY:
1049  			break;
1050  		default:
1051  			set_host_byte(scmnd, DID_ERROR);
1052  		}
1053  		return;
1054  
1055  	case SRB_STATUS_INVALID_LUN:
1056  		set_host_byte(scmnd, DID_NO_CONNECT);
1057  		process_err_fn = storvsc_remove_lun;
1058  		goto do_work;
1059  
1060  	}
1061  	return;
1062  
1063  do_work:
1064  	/*
1065  	 * We need to schedule work to process this error; schedule it.
1066  	 */
1067  	wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
1068  	if (!wrk) {
1069  		set_host_byte(scmnd, DID_BAD_TARGET);
1070  		return;
1071  	}
1072  
1073  	wrk->host = host;
1074  	wrk->lun = vm_srb->lun;
1075  	wrk->tgt_id = vm_srb->target_id;
1076  	INIT_WORK(&wrk->work, process_err_fn);
1077  	queue_work(host_dev->handle_error_wq, &wrk->work);
1078  }
1079  
1080  
storvsc_command_completion(struct storvsc_cmd_request * cmd_request,struct storvsc_device * stor_dev)1081  static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request,
1082  				       struct storvsc_device *stor_dev)
1083  {
1084  	struct scsi_cmnd *scmnd = cmd_request->cmd;
1085  	struct scsi_sense_hdr sense_hdr;
1086  	struct vmscsi_request *vm_srb;
1087  	u32 data_transfer_length;
1088  	struct Scsi_Host *host;
1089  	u32 payload_sz = cmd_request->payload_sz;
1090  	void *payload = cmd_request->payload;
1091  	bool sense_ok;
1092  
1093  	host = stor_dev->host;
1094  
1095  	vm_srb = &cmd_request->vstor_packet.vm_srb;
1096  	data_transfer_length = vm_srb->data_transfer_length;
1097  
1098  	scmnd->result = vm_srb->scsi_status;
1099  
1100  	if (scmnd->result) {
1101  		sense_ok = scsi_normalize_sense(scmnd->sense_buffer,
1102  				SCSI_SENSE_BUFFERSIZE, &sense_hdr);
1103  
1104  		if (sense_ok && do_logging(STORVSC_LOGGING_WARN))
1105  			scsi_print_sense_hdr(scmnd->device, "storvsc",
1106  					     &sense_hdr);
1107  	}
1108  
1109  	if (vm_srb->srb_status != SRB_STATUS_SUCCESS) {
1110  		storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc,
1111  					 sense_hdr.ascq);
1112  		/*
1113  		 * The Windows driver set data_transfer_length on
1114  		 * SRB_STATUS_DATA_OVERRUN. On other errors, this value
1115  		 * is untouched.  In these cases we set it to 0.
1116  		 */
1117  		if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN)
1118  			data_transfer_length = 0;
1119  	}
1120  
1121  	/* Validate data_transfer_length (from Hyper-V) */
1122  	if (data_transfer_length > cmd_request->payload->range.len)
1123  		data_transfer_length = cmd_request->payload->range.len;
1124  
1125  	scsi_set_resid(scmnd,
1126  		cmd_request->payload->range.len - data_transfer_length);
1127  
1128  	scsi_done(scmnd);
1129  
1130  	if (payload_sz >
1131  		sizeof(struct vmbus_channel_packet_multipage_buffer))
1132  		kfree(payload);
1133  }
1134  
storvsc_on_io_completion(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet,struct storvsc_cmd_request * request)1135  static void storvsc_on_io_completion(struct storvsc_device *stor_device,
1136  				  struct vstor_packet *vstor_packet,
1137  				  struct storvsc_cmd_request *request)
1138  {
1139  	struct vstor_packet *stor_pkt;
1140  	struct hv_device *device = stor_device->device;
1141  
1142  	stor_pkt = &request->vstor_packet;
1143  
1144  	/*
1145  	 * The current SCSI handling on the host side does
1146  	 * not correctly handle:
1147  	 * INQUIRY command with page code parameter set to 0x80
1148  	 * MODE_SENSE command with cmd[2] == 0x1c
1149  	 * MAINTENANCE_IN is not supported by HyperV FC passthrough
1150  	 *
1151  	 * Setup srb and scsi status so this won't be fatal.
1152  	 * We do this so we can distinguish truly fatal failues
1153  	 * (srb status == 0x4) and off-line the device in that case.
1154  	 */
1155  
1156  	if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) ||
1157  	   (stor_pkt->vm_srb.cdb[0] == MODE_SENSE) ||
1158  	   (stor_pkt->vm_srb.cdb[0] == MAINTENANCE_IN &&
1159  	   hv_dev_is_fc(device))) {
1160  		vstor_packet->vm_srb.scsi_status = 0;
1161  		vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS;
1162  	}
1163  
1164  	/* Copy over the status...etc */
1165  	stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status;
1166  	stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status;
1167  
1168  	/*
1169  	 * Copy over the sense_info_length, but limit to the known max
1170  	 * size if Hyper-V returns a bad value.
1171  	 */
1172  	stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE,
1173  		vstor_packet->vm_srb.sense_info_length);
1174  
1175  	if (vstor_packet->vm_srb.scsi_status != 0 ||
1176  	    vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) {
1177  
1178  		/*
1179  		 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can
1180  		 * return errors when detecting devices using TEST_UNIT_READY,
1181  		 * and logging these as errors produces unhelpful noise.
1182  		 */
1183  		int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ?
1184  			STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR;
1185  
1186  		storvsc_log_ratelimited(device, loglevel,
1187  			"tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n",
1188  			scsi_cmd_to_rq(request->cmd)->tag,
1189  			stor_pkt->vm_srb.cdb[0],
1190  			vstor_packet->vm_srb.scsi_status,
1191  			vstor_packet->vm_srb.srb_status,
1192  			vstor_packet->status);
1193  	}
1194  
1195  	if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION &&
1196  	    (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID))
1197  		memcpy(request->cmd->sense_buffer,
1198  		       vstor_packet->vm_srb.sense_data,
1199  		       stor_pkt->vm_srb.sense_info_length);
1200  
1201  	stor_pkt->vm_srb.data_transfer_length =
1202  		vstor_packet->vm_srb.data_transfer_length;
1203  
1204  	storvsc_command_completion(request, stor_device);
1205  
1206  	if (atomic_dec_and_test(&stor_device->num_outstanding_req) &&
1207  		stor_device->drain_notify)
1208  		wake_up(&stor_device->waiting_to_drain);
1209  }
1210  
storvsc_on_receive(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet,struct storvsc_cmd_request * request)1211  static void storvsc_on_receive(struct storvsc_device *stor_device,
1212  			     struct vstor_packet *vstor_packet,
1213  			     struct storvsc_cmd_request *request)
1214  {
1215  	struct hv_host_device *host_dev;
1216  	switch (vstor_packet->operation) {
1217  	case VSTOR_OPERATION_COMPLETE_IO:
1218  		storvsc_on_io_completion(stor_device, vstor_packet, request);
1219  		break;
1220  
1221  	case VSTOR_OPERATION_REMOVE_DEVICE:
1222  	case VSTOR_OPERATION_ENUMERATE_BUS:
1223  		host_dev = shost_priv(stor_device->host);
1224  		queue_work(
1225  			host_dev->handle_error_wq, &host_dev->host_scan_work);
1226  		break;
1227  
1228  	case VSTOR_OPERATION_FCHBA_DATA:
1229  		cache_wwn(stor_device, vstor_packet);
1230  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1231  		fc_host_node_name(stor_device->host) = stor_device->node_name;
1232  		fc_host_port_name(stor_device->host) = stor_device->port_name;
1233  #endif
1234  		break;
1235  	default:
1236  		break;
1237  	}
1238  }
1239  
storvsc_on_channel_callback(void * context)1240  static void storvsc_on_channel_callback(void *context)
1241  {
1242  	struct vmbus_channel *channel = (struct vmbus_channel *)context;
1243  	const struct vmpacket_descriptor *desc;
1244  	struct hv_device *device;
1245  	struct storvsc_device *stor_device;
1246  	struct Scsi_Host *shost;
1247  	unsigned long time_limit = jiffies + msecs_to_jiffies(CALLBACK_TIMEOUT);
1248  
1249  	if (channel->primary_channel != NULL)
1250  		device = channel->primary_channel->device_obj;
1251  	else
1252  		device = channel->device_obj;
1253  
1254  	stor_device = get_in_stor_device(device);
1255  	if (!stor_device)
1256  		return;
1257  
1258  	shost = stor_device->host;
1259  
1260  	foreach_vmbus_pkt(desc, channel) {
1261  		struct vstor_packet *packet = hv_pkt_data(desc);
1262  		struct storvsc_cmd_request *request = NULL;
1263  		u32 pktlen = hv_pkt_datalen(desc);
1264  		u64 rqst_id = desc->trans_id;
1265  		u32 minlen = rqst_id ? sizeof(struct vstor_packet) :
1266  			sizeof(enum vstor_packet_operation);
1267  
1268  		if (unlikely(time_after(jiffies, time_limit))) {
1269  			hv_pkt_iter_close(channel);
1270  			return;
1271  		}
1272  
1273  		if (pktlen < minlen) {
1274  			dev_err(&device->device,
1275  				"Invalid pkt: id=%llu, len=%u, minlen=%u\n",
1276  				rqst_id, pktlen, minlen);
1277  			continue;
1278  		}
1279  
1280  		if (rqst_id == VMBUS_RQST_INIT) {
1281  			request = &stor_device->init_request;
1282  		} else if (rqst_id == VMBUS_RQST_RESET) {
1283  			request = &stor_device->reset_request;
1284  		} else {
1285  			/* Hyper-V can send an unsolicited message with ID of 0 */
1286  			if (rqst_id == 0) {
1287  				/*
1288  				 * storvsc_on_receive() looks at the vstor_packet in the message
1289  				 * from the ring buffer.
1290  				 *
1291  				 * - If the operation in the vstor_packet is COMPLETE_IO, then
1292  				 *   we call storvsc_on_io_completion(), and dereference the
1293  				 *   guest memory address.  Make sure we don't call
1294  				 *   storvsc_on_io_completion() with a guest memory address
1295  				 *   that is zero if Hyper-V were to construct and send such
1296  				 *   a bogus packet.
1297  				 *
1298  				 * - If the operation in the vstor_packet is FCHBA_DATA, then
1299  				 *   we call cache_wwn(), and access the data payload area of
1300  				 *   the packet (wwn_packet); however, there is no guarantee
1301  				 *   that the packet is big enough to contain such area.
1302  				 *   Future-proof the code by rejecting such a bogus packet.
1303  				 */
1304  				if (packet->operation == VSTOR_OPERATION_COMPLETE_IO ||
1305  				    packet->operation == VSTOR_OPERATION_FCHBA_DATA) {
1306  					dev_err(&device->device, "Invalid packet with ID of 0\n");
1307  					continue;
1308  				}
1309  			} else {
1310  				struct scsi_cmnd *scmnd;
1311  
1312  				/* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */
1313  				scmnd = scsi_host_find_tag(shost, rqst_id - 1);
1314  				if (scmnd == NULL) {
1315  					dev_err(&device->device, "Incorrect transaction ID\n");
1316  					continue;
1317  				}
1318  				request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd);
1319  				scsi_dma_unmap(scmnd);
1320  			}
1321  
1322  			storvsc_on_receive(stor_device, packet, request);
1323  			continue;
1324  		}
1325  
1326  		memcpy(&request->vstor_packet, packet,
1327  		       sizeof(struct vstor_packet));
1328  		complete(&request->wait_event);
1329  	}
1330  }
1331  
storvsc_connect_to_vsp(struct hv_device * device,u32 ring_size,bool is_fc)1332  static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size,
1333  				  bool is_fc)
1334  {
1335  	struct vmstorage_channel_properties props;
1336  	int ret;
1337  
1338  	memset(&props, 0, sizeof(struct vmstorage_channel_properties));
1339  
1340  	device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE;
1341  	device->channel->next_request_id_callback = storvsc_next_request_id;
1342  
1343  	ret = vmbus_open(device->channel,
1344  			 ring_size,
1345  			 ring_size,
1346  			 (void *)&props,
1347  			 sizeof(struct vmstorage_channel_properties),
1348  			 storvsc_on_channel_callback, device->channel);
1349  
1350  	if (ret != 0)
1351  		return ret;
1352  
1353  	ret = storvsc_channel_init(device, is_fc);
1354  
1355  	return ret;
1356  }
1357  
storvsc_dev_remove(struct hv_device * device)1358  static int storvsc_dev_remove(struct hv_device *device)
1359  {
1360  	struct storvsc_device *stor_device;
1361  
1362  	stor_device = hv_get_drvdata(device);
1363  
1364  	stor_device->destroy = true;
1365  
1366  	/* Make sure flag is set before waiting */
1367  	wmb();
1368  
1369  	/*
1370  	 * At this point, all outbound traffic should be disable. We
1371  	 * only allow inbound traffic (responses) to proceed so that
1372  	 * outstanding requests can be completed.
1373  	 */
1374  
1375  	storvsc_wait_to_drain(stor_device);
1376  
1377  	/*
1378  	 * Since we have already drained, we don't need to busy wait
1379  	 * as was done in final_release_stor_device()
1380  	 * Note that we cannot set the ext pointer to NULL until
1381  	 * we have drained - to drain the outgoing packets, we need to
1382  	 * allow incoming packets.
1383  	 */
1384  	hv_set_drvdata(device, NULL);
1385  
1386  	/* Close the channel */
1387  	vmbus_close(device->channel);
1388  
1389  	kfree(stor_device->stor_chns);
1390  	kfree(stor_device);
1391  	return 0;
1392  }
1393  
get_og_chn(struct storvsc_device * stor_device,u16 q_num)1394  static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device,
1395  					u16 q_num)
1396  {
1397  	u16 slot = 0;
1398  	u16 hash_qnum;
1399  	const struct cpumask *node_mask;
1400  	int num_channels, tgt_cpu;
1401  
1402  	if (stor_device->num_sc == 0) {
1403  		stor_device->stor_chns[q_num] = stor_device->device->channel;
1404  		return stor_device->device->channel;
1405  	}
1406  
1407  	/*
1408  	 * Our channel array is sparsley populated and we
1409  	 * initiated I/O on a processor/hw-q that does not
1410  	 * currently have a designated channel. Fix this.
1411  	 * The strategy is simple:
1412  	 * I. Ensure NUMA locality
1413  	 * II. Distribute evenly (best effort)
1414  	 */
1415  
1416  	node_mask = cpumask_of_node(cpu_to_node(q_num));
1417  
1418  	num_channels = 0;
1419  	for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1420  		if (cpumask_test_cpu(tgt_cpu, node_mask))
1421  			num_channels++;
1422  	}
1423  	if (num_channels == 0) {
1424  		stor_device->stor_chns[q_num] = stor_device->device->channel;
1425  		return stor_device->device->channel;
1426  	}
1427  
1428  	hash_qnum = q_num;
1429  	while (hash_qnum >= num_channels)
1430  		hash_qnum -= num_channels;
1431  
1432  	for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1433  		if (!cpumask_test_cpu(tgt_cpu, node_mask))
1434  			continue;
1435  		if (slot == hash_qnum)
1436  			break;
1437  		slot++;
1438  	}
1439  
1440  	stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu];
1441  
1442  	return stor_device->stor_chns[q_num];
1443  }
1444  
1445  
storvsc_do_io(struct hv_device * device,struct storvsc_cmd_request * request,u16 q_num)1446  static int storvsc_do_io(struct hv_device *device,
1447  			 struct storvsc_cmd_request *request, u16 q_num)
1448  {
1449  	struct storvsc_device *stor_device;
1450  	struct vstor_packet *vstor_packet;
1451  	struct vmbus_channel *outgoing_channel, *channel;
1452  	unsigned long flags;
1453  	int ret = 0;
1454  	const struct cpumask *node_mask;
1455  	int tgt_cpu;
1456  
1457  	vstor_packet = &request->vstor_packet;
1458  	stor_device = get_out_stor_device(device);
1459  
1460  	if (!stor_device)
1461  		return -ENODEV;
1462  
1463  
1464  	request->device  = device;
1465  	/*
1466  	 * Select an appropriate channel to send the request out.
1467  	 */
1468  	/* See storvsc_change_target_cpu(). */
1469  	outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]);
1470  	if (outgoing_channel != NULL) {
1471  		if (outgoing_channel->target_cpu == q_num) {
1472  			/*
1473  			 * Ideally, we want to pick a different channel if
1474  			 * available on the same NUMA node.
1475  			 */
1476  			node_mask = cpumask_of_node(cpu_to_node(q_num));
1477  			for_each_cpu_wrap(tgt_cpu,
1478  				 &stor_device->alloced_cpus, q_num + 1) {
1479  				if (!cpumask_test_cpu(tgt_cpu, node_mask))
1480  					continue;
1481  				if (tgt_cpu == q_num)
1482  					continue;
1483  				channel = READ_ONCE(
1484  					stor_device->stor_chns[tgt_cpu]);
1485  				if (channel == NULL)
1486  					continue;
1487  				if (hv_get_avail_to_write_percent(
1488  							&channel->outbound)
1489  						> ring_avail_percent_lowater) {
1490  					outgoing_channel = channel;
1491  					goto found_channel;
1492  				}
1493  			}
1494  
1495  			/*
1496  			 * All the other channels on the same NUMA node are
1497  			 * busy. Try to use the channel on the current CPU
1498  			 */
1499  			if (hv_get_avail_to_write_percent(
1500  						&outgoing_channel->outbound)
1501  					> ring_avail_percent_lowater)
1502  				goto found_channel;
1503  
1504  			/*
1505  			 * If we reach here, all the channels on the current
1506  			 * NUMA node are busy. Try to find a channel in
1507  			 * other NUMA nodes
1508  			 */
1509  			for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1510  				if (cpumask_test_cpu(tgt_cpu, node_mask))
1511  					continue;
1512  				channel = READ_ONCE(
1513  					stor_device->stor_chns[tgt_cpu]);
1514  				if (channel == NULL)
1515  					continue;
1516  				if (hv_get_avail_to_write_percent(
1517  							&channel->outbound)
1518  						> ring_avail_percent_lowater) {
1519  					outgoing_channel = channel;
1520  					goto found_channel;
1521  				}
1522  			}
1523  		}
1524  	} else {
1525  		spin_lock_irqsave(&stor_device->lock, flags);
1526  		outgoing_channel = stor_device->stor_chns[q_num];
1527  		if (outgoing_channel != NULL) {
1528  			spin_unlock_irqrestore(&stor_device->lock, flags);
1529  			goto found_channel;
1530  		}
1531  		outgoing_channel = get_og_chn(stor_device, q_num);
1532  		spin_unlock_irqrestore(&stor_device->lock, flags);
1533  	}
1534  
1535  found_channel:
1536  	vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
1537  
1538  	vstor_packet->vm_srb.length = sizeof(struct vmscsi_request);
1539  
1540  
1541  	vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE;
1542  
1543  
1544  	vstor_packet->vm_srb.data_transfer_length =
1545  	request->payload->range.len;
1546  
1547  	vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB;
1548  
1549  	if (request->payload->range.len) {
1550  
1551  		ret = vmbus_sendpacket_mpb_desc(outgoing_channel,
1552  				request->payload, request->payload_sz,
1553  				vstor_packet,
1554  				sizeof(struct vstor_packet),
1555  				(unsigned long)request);
1556  	} else {
1557  		ret = vmbus_sendpacket(outgoing_channel, vstor_packet,
1558  			       sizeof(struct vstor_packet),
1559  			       (unsigned long)request,
1560  			       VM_PKT_DATA_INBAND,
1561  			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1562  	}
1563  
1564  	if (ret != 0)
1565  		return ret;
1566  
1567  	atomic_inc(&stor_device->num_outstanding_req);
1568  
1569  	return ret;
1570  }
1571  
storvsc_device_alloc(struct scsi_device * sdevice)1572  static int storvsc_device_alloc(struct scsi_device *sdevice)
1573  {
1574  	/*
1575  	 * Set blist flag to permit the reading of the VPD pages even when
1576  	 * the target may claim SPC-2 compliance. MSFT targets currently
1577  	 * claim SPC-2 compliance while they implement post SPC-2 features.
1578  	 * With this flag we can correctly handle WRITE_SAME_16 issues.
1579  	 *
1580  	 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but
1581  	 * still supports REPORT LUN.
1582  	 */
1583  	sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES;
1584  
1585  	return 0;
1586  }
1587  
storvsc_device_configure(struct scsi_device * sdevice)1588  static int storvsc_device_configure(struct scsi_device *sdevice)
1589  {
1590  	blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ));
1591  
1592  	/* storvsc devices don't support MAINTENANCE_IN SCSI cmd */
1593  	sdevice->no_report_opcodes = 1;
1594  	sdevice->no_write_same = 1;
1595  
1596  	/*
1597  	 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3
1598  	 * if the device is a MSFT virtual device.  If the host is
1599  	 * WIN10 or newer, allow write_same.
1600  	 */
1601  	if (!strncmp(sdevice->vendor, "Msft", 4)) {
1602  		switch (vmstor_proto_version) {
1603  		case VMSTOR_PROTO_VERSION_WIN8:
1604  		case VMSTOR_PROTO_VERSION_WIN8_1:
1605  			sdevice->scsi_level = SCSI_SPC_3;
1606  			break;
1607  		}
1608  
1609  		if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10)
1610  			sdevice->no_write_same = 0;
1611  	}
1612  
1613  	return 0;
1614  }
1615  
storvsc_get_chs(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int * info)1616  static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev,
1617  			   sector_t capacity, int *info)
1618  {
1619  	sector_t nsect = capacity;
1620  	sector_t cylinders = nsect;
1621  	int heads, sectors_pt;
1622  
1623  	/*
1624  	 * We are making up these values; let us keep it simple.
1625  	 */
1626  	heads = 0xff;
1627  	sectors_pt = 0x3f;      /* Sectors per track */
1628  	sector_div(cylinders, heads * sectors_pt);
1629  	if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect)
1630  		cylinders = 0xffff;
1631  
1632  	info[0] = heads;
1633  	info[1] = sectors_pt;
1634  	info[2] = (int)cylinders;
1635  
1636  	return 0;
1637  }
1638  
storvsc_host_reset_handler(struct scsi_cmnd * scmnd)1639  static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd)
1640  {
1641  	struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
1642  	struct hv_device *device = host_dev->dev;
1643  
1644  	struct storvsc_device *stor_device;
1645  	struct storvsc_cmd_request *request;
1646  	struct vstor_packet *vstor_packet;
1647  	int ret, t;
1648  
1649  	stor_device = get_out_stor_device(device);
1650  	if (!stor_device)
1651  		return FAILED;
1652  
1653  	request = &stor_device->reset_request;
1654  	vstor_packet = &request->vstor_packet;
1655  	memset(vstor_packet, 0, sizeof(struct vstor_packet));
1656  
1657  	init_completion(&request->wait_event);
1658  
1659  	vstor_packet->operation = VSTOR_OPERATION_RESET_BUS;
1660  	vstor_packet->flags = REQUEST_COMPLETION_FLAG;
1661  	vstor_packet->vm_srb.path_id = stor_device->path_id;
1662  
1663  	ret = vmbus_sendpacket(device->channel, vstor_packet,
1664  			       sizeof(struct vstor_packet),
1665  			       VMBUS_RQST_RESET,
1666  			       VM_PKT_DATA_INBAND,
1667  			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1668  	if (ret != 0)
1669  		return FAILED;
1670  
1671  	t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
1672  	if (t == 0)
1673  		return TIMEOUT_ERROR;
1674  
1675  
1676  	/*
1677  	 * At this point, all outstanding requests in the adapter
1678  	 * should have been flushed out and return to us
1679  	 * There is a potential race here where the host may be in
1680  	 * the process of responding when we return from here.
1681  	 * Just wait for all in-transit packets to be accounted for
1682  	 * before we return from here.
1683  	 */
1684  	storvsc_wait_to_drain(stor_device);
1685  
1686  	return SUCCESS;
1687  }
1688  
1689  /*
1690   * The host guarantees to respond to each command, although I/O latencies might
1691   * be unbounded on Azure.  Reset the timer unconditionally to give the host a
1692   * chance to perform EH.
1693   */
storvsc_eh_timed_out(struct scsi_cmnd * scmnd)1694  static enum scsi_timeout_action storvsc_eh_timed_out(struct scsi_cmnd *scmnd)
1695  {
1696  	return SCSI_EH_RESET_TIMER;
1697  }
1698  
storvsc_scsi_cmd_ok(struct scsi_cmnd * scmnd)1699  static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd)
1700  {
1701  	bool allowed = true;
1702  	u8 scsi_op = scmnd->cmnd[0];
1703  
1704  	switch (scsi_op) {
1705  	/* the host does not handle WRITE_SAME, log accident usage */
1706  	case WRITE_SAME:
1707  	/*
1708  	 * smartd sends this command and the host does not handle
1709  	 * this. So, don't send it.
1710  	 */
1711  	case SET_WINDOW:
1712  		set_host_byte(scmnd, DID_ERROR);
1713  		allowed = false;
1714  		break;
1715  	default:
1716  		break;
1717  	}
1718  	return allowed;
1719  }
1720  
storvsc_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * scmnd)1721  static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd)
1722  {
1723  	int ret;
1724  	struct hv_host_device *host_dev = shost_priv(host);
1725  	struct hv_device *dev = host_dev->dev;
1726  	struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd);
1727  	struct scatterlist *sgl;
1728  	struct vmscsi_request *vm_srb;
1729  	struct vmbus_packet_mpb_array  *payload;
1730  	u32 payload_sz;
1731  	u32 length;
1732  
1733  	if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) {
1734  		/*
1735  		 * On legacy hosts filter unimplemented commands.
1736  		 * Future hosts are expected to correctly handle
1737  		 * unsupported commands. Furthermore, it is
1738  		 * possible that some of the currently
1739  		 * unsupported commands maybe supported in
1740  		 * future versions of the host.
1741  		 */
1742  		if (!storvsc_scsi_cmd_ok(scmnd)) {
1743  			scsi_done(scmnd);
1744  			return 0;
1745  		}
1746  	}
1747  
1748  	/* Setup the cmd request */
1749  	cmd_request->cmd = scmnd;
1750  
1751  	memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet));
1752  	vm_srb = &cmd_request->vstor_packet.vm_srb;
1753  	vm_srb->time_out_value = 60;
1754  
1755  	vm_srb->srb_flags |=
1756  		SRB_FLAGS_DISABLE_SYNCH_TRANSFER;
1757  
1758  	if (scmnd->device->tagged_supported) {
1759  		vm_srb->srb_flags |=
1760  		(SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE);
1761  		vm_srb->queue_tag = SP_UNTAGGED;
1762  		vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST;
1763  	}
1764  
1765  	/* Build the SRB */
1766  	switch (scmnd->sc_data_direction) {
1767  	case DMA_TO_DEVICE:
1768  		vm_srb->data_in = WRITE_TYPE;
1769  		vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT;
1770  		break;
1771  	case DMA_FROM_DEVICE:
1772  		vm_srb->data_in = READ_TYPE;
1773  		vm_srb->srb_flags |= SRB_FLAGS_DATA_IN;
1774  		break;
1775  	case DMA_NONE:
1776  		vm_srb->data_in = UNKNOWN_TYPE;
1777  		vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER;
1778  		break;
1779  	default:
1780  		/*
1781  		 * This is DMA_BIDIRECTIONAL or something else we are never
1782  		 * supposed to see here.
1783  		 */
1784  		WARN(1, "Unexpected data direction: %d\n",
1785  		     scmnd->sc_data_direction);
1786  		return -EINVAL;
1787  	}
1788  
1789  
1790  	vm_srb->port_number = host_dev->port;
1791  	vm_srb->path_id = scmnd->device->channel;
1792  	vm_srb->target_id = scmnd->device->id;
1793  	vm_srb->lun = scmnd->device->lun;
1794  
1795  	vm_srb->cdb_length = scmnd->cmd_len;
1796  
1797  	memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length);
1798  
1799  	sgl = (struct scatterlist *)scsi_sglist(scmnd);
1800  
1801  	length = scsi_bufflen(scmnd);
1802  	payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb;
1803  	payload->range.len = 0;
1804  	payload_sz = 0;
1805  
1806  	if (scsi_sg_count(scmnd)) {
1807  		unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset);
1808  		unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length);
1809  		struct scatterlist *sg;
1810  		unsigned long hvpfn, hvpfns_to_add;
1811  		int j, i = 0, sg_count;
1812  
1813  		payload_sz = (hvpg_count * sizeof(u64) +
1814  			      sizeof(struct vmbus_packet_mpb_array));
1815  
1816  		if (hvpg_count > MAX_PAGE_BUFFER_COUNT) {
1817  			payload = kzalloc(payload_sz, GFP_ATOMIC);
1818  			if (!payload)
1819  				return SCSI_MLQUEUE_DEVICE_BUSY;
1820  		}
1821  
1822  		payload->range.len = length;
1823  		payload->range.offset = offset_in_hvpg;
1824  
1825  		sg_count = scsi_dma_map(scmnd);
1826  		if (sg_count < 0) {
1827  			ret = SCSI_MLQUEUE_DEVICE_BUSY;
1828  			goto err_free_payload;
1829  		}
1830  
1831  		for_each_sg(sgl, sg, sg_count, j) {
1832  			/*
1833  			 * Init values for the current sgl entry. hvpfns_to_add
1834  			 * is in units of Hyper-V size pages. Handling the
1835  			 * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles
1836  			 * values of sgl->offset that are larger than PAGE_SIZE.
1837  			 * Such offsets are handled even on other than the first
1838  			 * sgl entry, provided they are a multiple of PAGE_SIZE.
1839  			 */
1840  			hvpfn = HVPFN_DOWN(sg_dma_address(sg));
1841  			hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) +
1842  						 sg_dma_len(sg)) - hvpfn;
1843  
1844  			/*
1845  			 * Fill the next portion of the PFN array with
1846  			 * sequential Hyper-V PFNs for the continguous physical
1847  			 * memory described by the sgl entry. The end of the
1848  			 * last sgl should be reached at the same time that
1849  			 * the PFN array is filled.
1850  			 */
1851  			while (hvpfns_to_add--)
1852  				payload->range.pfn_array[i++] = hvpfn++;
1853  		}
1854  	}
1855  
1856  	cmd_request->payload = payload;
1857  	cmd_request->payload_sz = payload_sz;
1858  
1859  	/* Invokes the vsc to start an IO */
1860  	ret = storvsc_do_io(dev, cmd_request, get_cpu());
1861  	put_cpu();
1862  
1863  	if (ret)
1864  		scsi_dma_unmap(scmnd);
1865  
1866  	if (ret == -EAGAIN) {
1867  		/* no more space */
1868  		ret = SCSI_MLQUEUE_DEVICE_BUSY;
1869  		goto err_free_payload;
1870  	}
1871  
1872  	return 0;
1873  
1874  err_free_payload:
1875  	if (payload_sz > sizeof(cmd_request->mpb))
1876  		kfree(payload);
1877  
1878  	return ret;
1879  }
1880  
1881  static struct scsi_host_template scsi_driver = {
1882  	.module	=		THIS_MODULE,
1883  	.name =			"storvsc_host_t",
1884  	.cmd_size =             sizeof(struct storvsc_cmd_request),
1885  	.bios_param =		storvsc_get_chs,
1886  	.queuecommand =		storvsc_queuecommand,
1887  	.eh_host_reset_handler =	storvsc_host_reset_handler,
1888  	.proc_name =		"storvsc_host",
1889  	.eh_timed_out =		storvsc_eh_timed_out,
1890  	.slave_alloc =		storvsc_device_alloc,
1891  	.slave_configure =	storvsc_device_configure,
1892  	.cmd_per_lun =		2048,
1893  	.this_id =		-1,
1894  	/* Ensure there are no gaps in presented sgls */
1895  	.virt_boundary_mask =	HV_HYP_PAGE_SIZE - 1,
1896  	.no_write_same =	1,
1897  	.track_queue_depth =	1,
1898  	.change_queue_depth =	storvsc_change_queue_depth,
1899  };
1900  
1901  enum {
1902  	SCSI_GUID,
1903  	IDE_GUID,
1904  	SFC_GUID,
1905  };
1906  
1907  static const struct hv_vmbus_device_id id_table[] = {
1908  	/* SCSI guid */
1909  	{ HV_SCSI_GUID,
1910  	  .driver_data = SCSI_GUID
1911  	},
1912  	/* IDE guid */
1913  	{ HV_IDE_GUID,
1914  	  .driver_data = IDE_GUID
1915  	},
1916  	/* Fibre Channel GUID */
1917  	{
1918  	  HV_SYNTHFC_GUID,
1919  	  .driver_data = SFC_GUID
1920  	},
1921  	{ },
1922  };
1923  
1924  MODULE_DEVICE_TABLE(vmbus, id_table);
1925  
1926  static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID };
1927  
hv_dev_is_fc(struct hv_device * hv_dev)1928  static bool hv_dev_is_fc(struct hv_device *hv_dev)
1929  {
1930  	return guid_equal(&fc_guid.guid, &hv_dev->dev_type);
1931  }
1932  
storvsc_probe(struct hv_device * device,const struct hv_vmbus_device_id * dev_id)1933  static int storvsc_probe(struct hv_device *device,
1934  			const struct hv_vmbus_device_id *dev_id)
1935  {
1936  	int ret;
1937  	int num_cpus = num_online_cpus();
1938  	int num_present_cpus = num_present_cpus();
1939  	struct Scsi_Host *host;
1940  	struct hv_host_device *host_dev;
1941  	bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false);
1942  	bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false);
1943  	int target = 0;
1944  	struct storvsc_device *stor_device;
1945  	int max_sub_channels = 0;
1946  	u32 max_xfer_bytes;
1947  
1948  	/*
1949  	 * We support sub-channels for storage on SCSI and FC controllers.
1950  	 * The number of sub-channels offerred is based on the number of
1951  	 * VCPUs in the guest.
1952  	 */
1953  	if (!dev_is_ide)
1954  		max_sub_channels =
1955  			(num_cpus - 1) / storvsc_vcpus_per_sub_channel;
1956  
1957  	scsi_driver.can_queue = max_outstanding_req_per_channel *
1958  				(max_sub_channels + 1) *
1959  				(100 - ring_avail_percent_lowater) / 100;
1960  
1961  	host = scsi_host_alloc(&scsi_driver,
1962  			       sizeof(struct hv_host_device));
1963  	if (!host)
1964  		return -ENOMEM;
1965  
1966  	host_dev = shost_priv(host);
1967  	memset(host_dev, 0, sizeof(struct hv_host_device));
1968  
1969  	host_dev->port = host->host_no;
1970  	host_dev->dev = device;
1971  	host_dev->host = host;
1972  
1973  
1974  	stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL);
1975  	if (!stor_device) {
1976  		ret = -ENOMEM;
1977  		goto err_out0;
1978  	}
1979  
1980  	stor_device->destroy = false;
1981  	init_waitqueue_head(&stor_device->waiting_to_drain);
1982  	stor_device->device = device;
1983  	stor_device->host = host;
1984  	spin_lock_init(&stor_device->lock);
1985  	hv_set_drvdata(device, stor_device);
1986  	dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1);
1987  
1988  	stor_device->port_number = host->host_no;
1989  	ret = storvsc_connect_to_vsp(device, aligned_ringbuffer_size, is_fc);
1990  	if (ret)
1991  		goto err_out1;
1992  
1993  	host_dev->path = stor_device->path_id;
1994  	host_dev->target = stor_device->target_id;
1995  
1996  	switch (dev_id->driver_data) {
1997  	case SFC_GUID:
1998  		host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET;
1999  		host->max_id = STORVSC_FC_MAX_TARGETS;
2000  		host->max_channel = STORVSC_FC_MAX_CHANNELS - 1;
2001  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2002  		host->transportt = fc_transport_template;
2003  #endif
2004  		break;
2005  
2006  	case SCSI_GUID:
2007  		host->max_lun = STORVSC_MAX_LUNS_PER_TARGET;
2008  		host->max_id = STORVSC_MAX_TARGETS;
2009  		host->max_channel = STORVSC_MAX_CHANNELS - 1;
2010  		break;
2011  
2012  	default:
2013  		host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET;
2014  		host->max_id = STORVSC_IDE_MAX_TARGETS;
2015  		host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1;
2016  		break;
2017  	}
2018  	/* max cmd length */
2019  	host->max_cmd_len = STORVSC_MAX_CMD_LEN;
2020  	/*
2021  	 * Any reasonable Hyper-V configuration should provide
2022  	 * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE,
2023  	 * protecting it from any weird value.
2024  	 */
2025  	max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE);
2026  	if (is_fc)
2027  		max_xfer_bytes = min(max_xfer_bytes, STORVSC_FC_MAX_XFER_SIZE);
2028  
2029  	/* max_hw_sectors_kb */
2030  	host->max_sectors = max_xfer_bytes >> 9;
2031  	/*
2032  	 * There are 2 requirements for Hyper-V storvsc sgl segments,
2033  	 * based on which the below calculation for max segments is
2034  	 * done:
2035  	 *
2036  	 * 1. Except for the first and last sgl segment, all sgl segments
2037  	 *    should be align to HV_HYP_PAGE_SIZE, that also means the
2038  	 *    maximum number of segments in a sgl can be calculated by
2039  	 *    dividing the total max transfer length by HV_HYP_PAGE_SIZE.
2040  	 *
2041  	 * 2. Except for the first and last, each entry in the SGL must
2042  	 *    have an offset that is a multiple of HV_HYP_PAGE_SIZE.
2043  	 */
2044  	host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1;
2045  	/*
2046  	 * For non-IDE disks, the host supports multiple channels.
2047  	 * Set the number of HW queues we are supporting.
2048  	 */
2049  	if (!dev_is_ide) {
2050  		if (storvsc_max_hw_queues > num_present_cpus) {
2051  			storvsc_max_hw_queues = 0;
2052  			storvsc_log(device, STORVSC_LOGGING_WARN,
2053  				"Resetting invalid storvsc_max_hw_queues value to default.\n");
2054  		}
2055  		if (storvsc_max_hw_queues)
2056  			host->nr_hw_queues = storvsc_max_hw_queues;
2057  		else
2058  			host->nr_hw_queues = num_present_cpus;
2059  	}
2060  
2061  	/*
2062  	 * Set the error handler work queue.
2063  	 */
2064  	host_dev->handle_error_wq =
2065  			alloc_ordered_workqueue("storvsc_error_wq_%d",
2066  						0,
2067  						host->host_no);
2068  	if (!host_dev->handle_error_wq) {
2069  		ret = -ENOMEM;
2070  		goto err_out2;
2071  	}
2072  	INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan);
2073  	/* Register the HBA and start the scsi bus scan */
2074  	ret = scsi_add_host(host, &device->device);
2075  	if (ret != 0)
2076  		goto err_out3;
2077  
2078  	if (!dev_is_ide) {
2079  		scsi_scan_host(host);
2080  	} else {
2081  		target = (device->dev_instance.b[5] << 8 |
2082  			 device->dev_instance.b[4]);
2083  		ret = scsi_add_device(host, 0, target, 0);
2084  		if (ret)
2085  			goto err_out4;
2086  	}
2087  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2088  	if (host->transportt == fc_transport_template) {
2089  		struct fc_rport_identifiers ids = {
2090  			.roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR,
2091  		};
2092  
2093  		fc_host_node_name(host) = stor_device->node_name;
2094  		fc_host_port_name(host) = stor_device->port_name;
2095  		stor_device->rport = fc_remote_port_add(host, 0, &ids);
2096  		if (!stor_device->rport) {
2097  			ret = -ENOMEM;
2098  			goto err_out4;
2099  		}
2100  	}
2101  #endif
2102  	return 0;
2103  
2104  err_out4:
2105  	scsi_remove_host(host);
2106  
2107  err_out3:
2108  	destroy_workqueue(host_dev->handle_error_wq);
2109  
2110  err_out2:
2111  	/*
2112  	 * Once we have connected with the host, we would need to
2113  	 * invoke storvsc_dev_remove() to rollback this state and
2114  	 * this call also frees up the stor_device; hence the jump around
2115  	 * err_out1 label.
2116  	 */
2117  	storvsc_dev_remove(device);
2118  	goto err_out0;
2119  
2120  err_out1:
2121  	kfree(stor_device->stor_chns);
2122  	kfree(stor_device);
2123  
2124  err_out0:
2125  	scsi_host_put(host);
2126  	return ret;
2127  }
2128  
2129  /* Change a scsi target's queue depth */
storvsc_change_queue_depth(struct scsi_device * sdev,int queue_depth)2130  static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth)
2131  {
2132  	if (queue_depth > scsi_driver.can_queue)
2133  		queue_depth = scsi_driver.can_queue;
2134  
2135  	return scsi_change_queue_depth(sdev, queue_depth);
2136  }
2137  
storvsc_remove(struct hv_device * dev)2138  static void storvsc_remove(struct hv_device *dev)
2139  {
2140  	struct storvsc_device *stor_device = hv_get_drvdata(dev);
2141  	struct Scsi_Host *host = stor_device->host;
2142  	struct hv_host_device *host_dev = shost_priv(host);
2143  
2144  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2145  	if (host->transportt == fc_transport_template) {
2146  		fc_remote_port_delete(stor_device->rport);
2147  		fc_remove_host(host);
2148  	}
2149  #endif
2150  	destroy_workqueue(host_dev->handle_error_wq);
2151  	scsi_remove_host(host);
2152  	storvsc_dev_remove(dev);
2153  	scsi_host_put(host);
2154  }
2155  
storvsc_suspend(struct hv_device * hv_dev)2156  static int storvsc_suspend(struct hv_device *hv_dev)
2157  {
2158  	struct storvsc_device *stor_device = hv_get_drvdata(hv_dev);
2159  	struct Scsi_Host *host = stor_device->host;
2160  	struct hv_host_device *host_dev = shost_priv(host);
2161  
2162  	storvsc_wait_to_drain(stor_device);
2163  
2164  	drain_workqueue(host_dev->handle_error_wq);
2165  
2166  	vmbus_close(hv_dev->channel);
2167  
2168  	kfree(stor_device->stor_chns);
2169  	stor_device->stor_chns = NULL;
2170  
2171  	cpumask_clear(&stor_device->alloced_cpus);
2172  
2173  	return 0;
2174  }
2175  
storvsc_resume(struct hv_device * hv_dev)2176  static int storvsc_resume(struct hv_device *hv_dev)
2177  {
2178  	int ret;
2179  
2180  	ret = storvsc_connect_to_vsp(hv_dev, aligned_ringbuffer_size,
2181  				     hv_dev_is_fc(hv_dev));
2182  	return ret;
2183  }
2184  
2185  static struct hv_driver storvsc_drv = {
2186  	.name = KBUILD_MODNAME,
2187  	.id_table = id_table,
2188  	.probe = storvsc_probe,
2189  	.remove = storvsc_remove,
2190  	.suspend = storvsc_suspend,
2191  	.resume = storvsc_resume,
2192  	.driver = {
2193  		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2194  	},
2195  };
2196  
2197  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2198  static struct fc_function_template fc_transport_functions = {
2199  	.show_host_node_name = 1,
2200  	.show_host_port_name = 1,
2201  };
2202  #endif
2203  
storvsc_drv_init(void)2204  static int __init storvsc_drv_init(void)
2205  {
2206  	int ret;
2207  
2208  	/*
2209  	 * Divide the ring buffer data size (which is 1 page less
2210  	 * than the ring buffer size since that page is reserved for
2211  	 * the ring buffer indices) by the max request size (which is
2212  	 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64)
2213  	 */
2214  	aligned_ringbuffer_size = VMBUS_RING_SIZE(storvsc_ringbuffer_size);
2215  	max_outstanding_req_per_channel =
2216  		((aligned_ringbuffer_size - PAGE_SIZE) /
2217  		ALIGN(MAX_MULTIPAGE_BUFFER_PACKET +
2218  		sizeof(struct vstor_packet) + sizeof(u64),
2219  		sizeof(u64)));
2220  
2221  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2222  	fc_transport_template = fc_attach_transport(&fc_transport_functions);
2223  	if (!fc_transport_template)
2224  		return -ENODEV;
2225  #endif
2226  
2227  	ret = vmbus_driver_register(&storvsc_drv);
2228  
2229  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2230  	if (ret)
2231  		fc_release_transport(fc_transport_template);
2232  #endif
2233  
2234  	return ret;
2235  }
2236  
storvsc_drv_exit(void)2237  static void __exit storvsc_drv_exit(void)
2238  {
2239  	vmbus_driver_unregister(&storvsc_drv);
2240  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2241  	fc_release_transport(fc_transport_template);
2242  #endif
2243  }
2244  
2245  MODULE_LICENSE("GPL");
2246  MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver");
2247  module_init(storvsc_drv_init);
2248  module_exit(storvsc_drv_exit);
2249