1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * x86 SMP booting functions
4 *
5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 * Copyright 2001 Andi Kleen, SuSE Labs.
8 *
9 * Much of the core SMP work is based on previous work by Thomas Radke, to
10 * whom a great many thanks are extended.
11 *
12 * Thanks to Intel for making available several different Pentium,
13 * Pentium Pro and Pentium-II/Xeon MP machines.
14 * Original development of Linux SMP code supported by Caldera.
15 *
16 * Fixes
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
27 * from Jose Renau
28 * Ingo Molnar : various cleanups and rewrites
29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 * Andi Kleen : Changed for SMP boot into long mode.
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 * Andi Kleen : Converted to new state machine.
36 * Ashok Raj : CPU hotplug support
37 * Glauber Costa : i386 and x86_64 integration
38 */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/kexec.h>
57 #include <linux/numa.h>
58 #include <linux/pgtable.h>
59 #include <linux/overflow.h>
60 #include <linux/stackprotector.h>
61 #include <linux/cpuhotplug.h>
62 #include <linux/mc146818rtc.h>
63 #include <linux/acpi.h>
64
65 #include <asm/acpi.h>
66 #include <asm/cacheinfo.h>
67 #include <asm/desc.h>
68 #include <asm/nmi.h>
69 #include <asm/irq.h>
70 #include <asm/realmode.h>
71 #include <asm/cpu.h>
72 #include <asm/numa.h>
73 #include <asm/tlbflush.h>
74 #include <asm/mtrr.h>
75 #include <asm/mwait.h>
76 #include <asm/apic.h>
77 #include <asm/io_apic.h>
78 #include <asm/fpu/api.h>
79 #include <asm/setup.h>
80 #include <asm/uv/uv.h>
81 #include <asm/microcode.h>
82 #include <asm/i8259.h>
83 #include <asm/misc.h>
84 #include <asm/qspinlock.h>
85 #include <asm/intel-family.h>
86 #include <asm/cpu_device_id.h>
87 #include <asm/spec-ctrl.h>
88 #include <asm/hw_irq.h>
89 #include <asm/stackprotector.h>
90 #include <asm/sev.h>
91
92 /* representing HT siblings of each logical CPU */
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
95
96 /* representing HT and core siblings of each logical CPU */
97 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
98 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
99
100 /* representing HT, core, and die siblings of each logical CPU */
101 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
102 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
103
104 /* Per CPU bogomips and other parameters */
105 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
106 EXPORT_PER_CPU_SYMBOL(cpu_info);
107
108 /* CPUs which are the primary SMT threads */
109 struct cpumask __cpu_primary_thread_mask __read_mostly;
110
111 /* Representing CPUs for which sibling maps can be computed */
112 static cpumask_var_t cpu_sibling_setup_mask;
113
114 struct mwait_cpu_dead {
115 unsigned int control;
116 unsigned int status;
117 };
118
119 #define CPUDEAD_MWAIT_WAIT 0xDEADBEEF
120 #define CPUDEAD_MWAIT_KEXEC_HLT 0x4A17DEAD
121
122 /*
123 * Cache line aligned data for mwait_play_dead(). Separate on purpose so
124 * that it's unlikely to be touched by other CPUs.
125 */
126 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
127
128 /* Logical package management. We might want to allocate that dynamically */
129 unsigned int __max_logical_packages __read_mostly;
130 EXPORT_SYMBOL(__max_logical_packages);
131 static unsigned int logical_packages __read_mostly;
132 static unsigned int logical_die __read_mostly;
133
134 /* Maximum number of SMT threads on any online core */
135 int __read_mostly __max_smt_threads = 1;
136
137 /* Flag to indicate if a complete sched domain rebuild is required */
138 bool x86_topology_update;
139
arch_update_cpu_topology(void)140 int arch_update_cpu_topology(void)
141 {
142 int retval = x86_topology_update;
143
144 x86_topology_update = false;
145 return retval;
146 }
147
148 static unsigned int smpboot_warm_reset_vector_count;
149
smpboot_setup_warm_reset_vector(unsigned long start_eip)150 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
151 {
152 unsigned long flags;
153
154 spin_lock_irqsave(&rtc_lock, flags);
155 if (!smpboot_warm_reset_vector_count++) {
156 CMOS_WRITE(0xa, 0xf);
157 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
158 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
159 }
160 spin_unlock_irqrestore(&rtc_lock, flags);
161 }
162
smpboot_restore_warm_reset_vector(void)163 static inline void smpboot_restore_warm_reset_vector(void)
164 {
165 unsigned long flags;
166
167 /*
168 * Paranoid: Set warm reset code and vector here back
169 * to default values.
170 */
171 spin_lock_irqsave(&rtc_lock, flags);
172 if (!--smpboot_warm_reset_vector_count) {
173 CMOS_WRITE(0, 0xf);
174 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
175 }
176 spin_unlock_irqrestore(&rtc_lock, flags);
177
178 }
179
180 /* Run the next set of setup steps for the upcoming CPU */
ap_starting(void)181 static void ap_starting(void)
182 {
183 int cpuid = smp_processor_id();
184
185 /* Mop up eventual mwait_play_dead() wreckage */
186 this_cpu_write(mwait_cpu_dead.status, 0);
187 this_cpu_write(mwait_cpu_dead.control, 0);
188
189 /*
190 * If woken up by an INIT in an 82489DX configuration the alive
191 * synchronization guarantees that the CPU does not reach this
192 * point before an INIT_deassert IPI reaches the local APIC, so it
193 * is now safe to touch the local APIC.
194 *
195 * Set up this CPU, first the APIC, which is probably redundant on
196 * most boards.
197 */
198 apic_ap_setup();
199
200 /* Save the processor parameters. */
201 smp_store_cpu_info(cpuid);
202
203 /*
204 * The topology information must be up to date before
205 * notify_cpu_starting().
206 */
207 set_cpu_sibling_map(cpuid);
208
209 ap_init_aperfmperf();
210
211 pr_debug("Stack at about %p\n", &cpuid);
212
213 wmb();
214
215 /*
216 * This runs the AP through all the cpuhp states to its target
217 * state CPUHP_ONLINE.
218 */
219 notify_cpu_starting(cpuid);
220 }
221
ap_calibrate_delay(void)222 static void ap_calibrate_delay(void)
223 {
224 /*
225 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
226 * smp_store_cpu_info() stored a value that is close but not as
227 * accurate as the value just calculated.
228 *
229 * As this is invoked after the TSC synchronization check,
230 * calibrate_delay_is_known() will skip the calibration routine
231 * when TSC is synchronized across sockets.
232 */
233 calibrate_delay();
234 cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
235 }
236
237 /*
238 * Activate a secondary processor.
239 */
start_secondary(void * unused)240 static void notrace start_secondary(void *unused)
241 {
242 /*
243 * Don't put *anything* except direct CPU state initialization
244 * before cpu_init(), SMP booting is too fragile that we want to
245 * limit the things done here to the most necessary things.
246 */
247 cr4_init();
248
249 /*
250 * 32-bit specific. 64-bit reaches this code with the correct page
251 * table established. Yet another historical divergence.
252 */
253 if (IS_ENABLED(CONFIG_X86_32)) {
254 /* switch away from the initial page table */
255 load_cr3(swapper_pg_dir);
256 __flush_tlb_all();
257 }
258
259 cpu_init_exception_handling();
260
261 /*
262 * 32-bit systems load the microcode from the ASM startup code for
263 * historical reasons.
264 *
265 * On 64-bit systems load it before reaching the AP alive
266 * synchronization point below so it is not part of the full per
267 * CPU serialized bringup part when "parallel" bringup is enabled.
268 *
269 * That's even safe when hyperthreading is enabled in the CPU as
270 * the core code starts the primary threads first and leaves the
271 * secondary threads waiting for SIPI. Loading microcode on
272 * physical cores concurrently is a safe operation.
273 *
274 * This covers both the Intel specific issue that concurrent
275 * microcode loading on SMT siblings must be prohibited and the
276 * vendor independent issue`that microcode loading which changes
277 * CPUID, MSRs etc. must be strictly serialized to maintain
278 * software state correctness.
279 */
280 if (IS_ENABLED(CONFIG_X86_64))
281 load_ucode_ap();
282
283 /*
284 * Synchronization point with the hotplug core. Sets this CPUs
285 * synchronization state to ALIVE and spin-waits for the control CPU to
286 * release this CPU for further bringup.
287 */
288 cpuhp_ap_sync_alive();
289
290 cpu_init();
291 fpu__init_cpu();
292 rcu_cpu_starting(raw_smp_processor_id());
293 x86_cpuinit.early_percpu_clock_init();
294
295 ap_starting();
296
297 /* Check TSC synchronization with the control CPU. */
298 check_tsc_sync_target();
299
300 /*
301 * Calibrate the delay loop after the TSC synchronization check.
302 * This allows to skip the calibration when TSC is synchronized
303 * across sockets.
304 */
305 ap_calibrate_delay();
306
307 speculative_store_bypass_ht_init();
308
309 /*
310 * Lock vector_lock, set CPU online and bring the vector
311 * allocator online. Online must be set with vector_lock held
312 * to prevent a concurrent irq setup/teardown from seeing a
313 * half valid vector space.
314 */
315 lock_vector_lock();
316 set_cpu_online(smp_processor_id(), true);
317 lapic_online();
318 unlock_vector_lock();
319 x86_platform.nmi_init();
320
321 /* enable local interrupts */
322 local_irq_enable();
323
324 x86_cpuinit.setup_percpu_clockev();
325
326 wmb();
327 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
328 }
329
330 /**
331 * topology_phys_to_logical_pkg - Map a physical package id to a logical
332 * @phys_pkg: The physical package id to map
333 *
334 * Returns logical package id or -1 if not found
335 */
topology_phys_to_logical_pkg(unsigned int phys_pkg)336 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
337 {
338 int cpu;
339
340 for_each_possible_cpu(cpu) {
341 struct cpuinfo_x86 *c = &cpu_data(cpu);
342
343 if (c->initialized && c->phys_proc_id == phys_pkg)
344 return c->logical_proc_id;
345 }
346 return -1;
347 }
348 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
349
350 /**
351 * topology_phys_to_logical_die - Map a physical die id to logical
352 * @die_id: The physical die id to map
353 * @cur_cpu: The CPU for which the mapping is done
354 *
355 * Returns logical die id or -1 if not found
356 */
topology_phys_to_logical_die(unsigned int die_id,unsigned int cur_cpu)357 static int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
358 {
359 int cpu, proc_id = cpu_data(cur_cpu).phys_proc_id;
360
361 for_each_possible_cpu(cpu) {
362 struct cpuinfo_x86 *c = &cpu_data(cpu);
363
364 if (c->initialized && c->cpu_die_id == die_id &&
365 c->phys_proc_id == proc_id)
366 return c->logical_die_id;
367 }
368 return -1;
369 }
370
371 /**
372 * topology_update_package_map - Update the physical to logical package map
373 * @pkg: The physical package id as retrieved via CPUID
374 * @cpu: The cpu for which this is updated
375 */
topology_update_package_map(unsigned int pkg,unsigned int cpu)376 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
377 {
378 int new;
379
380 /* Already available somewhere? */
381 new = topology_phys_to_logical_pkg(pkg);
382 if (new >= 0)
383 goto found;
384
385 new = logical_packages++;
386 if (new != pkg) {
387 pr_info("CPU %u Converting physical %u to logical package %u\n",
388 cpu, pkg, new);
389 }
390 found:
391 cpu_data(cpu).logical_proc_id = new;
392 return 0;
393 }
394 /**
395 * topology_update_die_map - Update the physical to logical die map
396 * @die: The die id as retrieved via CPUID
397 * @cpu: The cpu for which this is updated
398 */
topology_update_die_map(unsigned int die,unsigned int cpu)399 int topology_update_die_map(unsigned int die, unsigned int cpu)
400 {
401 int new;
402
403 /* Already available somewhere? */
404 new = topology_phys_to_logical_die(die, cpu);
405 if (new >= 0)
406 goto found;
407
408 new = logical_die++;
409 if (new != die) {
410 pr_info("CPU %u Converting physical %u to logical die %u\n",
411 cpu, die, new);
412 }
413 found:
414 cpu_data(cpu).logical_die_id = new;
415 return 0;
416 }
417
smp_store_boot_cpu_info(void)418 static void __init smp_store_boot_cpu_info(void)
419 {
420 int id = 0; /* CPU 0 */
421 struct cpuinfo_x86 *c = &cpu_data(id);
422
423 *c = boot_cpu_data;
424 c->cpu_index = id;
425 topology_update_package_map(c->phys_proc_id, id);
426 topology_update_die_map(c->cpu_die_id, id);
427 c->initialized = true;
428 }
429
430 /*
431 * The bootstrap kernel entry code has set these up. Save them for
432 * a given CPU
433 */
smp_store_cpu_info(int id)434 void smp_store_cpu_info(int id)
435 {
436 struct cpuinfo_x86 *c = &cpu_data(id);
437
438 /* Copy boot_cpu_data only on the first bringup */
439 if (!c->initialized)
440 *c = boot_cpu_data;
441 c->cpu_index = id;
442 /*
443 * During boot time, CPU0 has this setup already. Save the info when
444 * bringing up an AP.
445 */
446 identify_secondary_cpu(c);
447 c->initialized = true;
448 }
449
450 static bool
topology_same_node(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)451 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
452 {
453 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
454
455 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
456 }
457
458 static bool
topology_sane(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o,const char * name)459 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
460 {
461 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
462
463 return !WARN_ONCE(!topology_same_node(c, o),
464 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
465 "[node: %d != %d]. Ignoring dependency.\n",
466 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
467 }
468
469 #define link_mask(mfunc, c1, c2) \
470 do { \
471 cpumask_set_cpu((c1), mfunc(c2)); \
472 cpumask_set_cpu((c2), mfunc(c1)); \
473 } while (0)
474
match_smt(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)475 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
476 {
477 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
478 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
479
480 if (c->phys_proc_id == o->phys_proc_id &&
481 c->cpu_die_id == o->cpu_die_id &&
482 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
483 if (c->cpu_core_id == o->cpu_core_id)
484 return topology_sane(c, o, "smt");
485
486 if ((c->cu_id != 0xff) &&
487 (o->cu_id != 0xff) &&
488 (c->cu_id == o->cu_id))
489 return topology_sane(c, o, "smt");
490 }
491
492 } else if (c->phys_proc_id == o->phys_proc_id &&
493 c->cpu_die_id == o->cpu_die_id &&
494 c->cpu_core_id == o->cpu_core_id) {
495 return topology_sane(c, o, "smt");
496 }
497
498 return false;
499 }
500
match_die(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)501 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
502 {
503 if (c->phys_proc_id == o->phys_proc_id &&
504 c->cpu_die_id == o->cpu_die_id)
505 return true;
506 return false;
507 }
508
match_l2c(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)509 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
510 {
511 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
512
513 /* If the arch didn't set up l2c_id, fall back to SMT */
514 if (per_cpu(cpu_l2c_id, cpu1) == BAD_APICID)
515 return match_smt(c, o);
516
517 /* Do not match if L2 cache id does not match: */
518 if (per_cpu(cpu_l2c_id, cpu1) != per_cpu(cpu_l2c_id, cpu2))
519 return false;
520
521 return topology_sane(c, o, "l2c");
522 }
523
524 /*
525 * Unlike the other levels, we do not enforce keeping a
526 * multicore group inside a NUMA node. If this happens, we will
527 * discard the MC level of the topology later.
528 */
match_pkg(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)529 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
530 {
531 if (c->phys_proc_id == o->phys_proc_id)
532 return true;
533 return false;
534 }
535
536 /*
537 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
538 *
539 * Any Intel CPU that has multiple nodes per package and does not
540 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
541 *
542 * When in SNC mode, these CPUs enumerate an LLC that is shared
543 * by multiple NUMA nodes. The LLC is shared for off-package data
544 * access but private to the NUMA node (half of the package) for
545 * on-package access. CPUID (the source of the information about
546 * the LLC) can only enumerate the cache as shared or unshared,
547 * but not this particular configuration.
548 */
549
550 static const struct x86_cpu_id intel_cod_cpu[] = {
551 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0), /* COD */
552 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0), /* COD */
553 X86_MATCH_INTEL_FAM6_MODEL(ANY, 1), /* SNC */
554 {}
555 };
556
match_llc(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)557 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
558 {
559 const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
560 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
561 bool intel_snc = id && id->driver_data;
562
563 /* Do not match if we do not have a valid APICID for cpu: */
564 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
565 return false;
566
567 /* Do not match if LLC id does not match: */
568 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
569 return false;
570
571 /*
572 * Allow the SNC topology without warning. Return of false
573 * means 'c' does not share the LLC of 'o'. This will be
574 * reflected to userspace.
575 */
576 if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
577 return false;
578
579 return topology_sane(c, o, "llc");
580 }
581
582
x86_sched_itmt_flags(void)583 static inline int x86_sched_itmt_flags(void)
584 {
585 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
586 }
587
588 #ifdef CONFIG_SCHED_MC
x86_core_flags(void)589 static int x86_core_flags(void)
590 {
591 return cpu_core_flags() | x86_sched_itmt_flags();
592 }
593 #endif
594 #ifdef CONFIG_SCHED_SMT
x86_smt_flags(void)595 static int x86_smt_flags(void)
596 {
597 return cpu_smt_flags();
598 }
599 #endif
600 #ifdef CONFIG_SCHED_CLUSTER
x86_cluster_flags(void)601 static int x86_cluster_flags(void)
602 {
603 return cpu_cluster_flags() | x86_sched_itmt_flags();
604 }
605 #endif
606
x86_die_flags(void)607 static int x86_die_flags(void)
608 {
609 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
610 return x86_sched_itmt_flags();
611
612 return 0;
613 }
614
615 /*
616 * Set if a package/die has multiple NUMA nodes inside.
617 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
618 * Sub-NUMA Clustering have this.
619 */
620 static bool x86_has_numa_in_package;
621
622 static struct sched_domain_topology_level x86_topology[6];
623
build_sched_topology(void)624 static void __init build_sched_topology(void)
625 {
626 int i = 0;
627
628 #ifdef CONFIG_SCHED_SMT
629 x86_topology[i++] = (struct sched_domain_topology_level){
630 cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
631 };
632 #endif
633 #ifdef CONFIG_SCHED_CLUSTER
634 x86_topology[i++] = (struct sched_domain_topology_level){
635 cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
636 };
637 #endif
638 #ifdef CONFIG_SCHED_MC
639 x86_topology[i++] = (struct sched_domain_topology_level){
640 cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
641 };
642 #endif
643 /*
644 * When there is NUMA topology inside the package skip the DIE domain
645 * since the NUMA domains will auto-magically create the right spanning
646 * domains based on the SLIT.
647 */
648 if (!x86_has_numa_in_package) {
649 x86_topology[i++] = (struct sched_domain_topology_level){
650 cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(DIE)
651 };
652 }
653
654 /*
655 * There must be one trailing NULL entry left.
656 */
657 BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
658
659 set_sched_topology(x86_topology);
660 }
661
set_cpu_sibling_map(int cpu)662 void set_cpu_sibling_map(int cpu)
663 {
664 bool has_smt = smp_num_siblings > 1;
665 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
666 struct cpuinfo_x86 *c = &cpu_data(cpu);
667 struct cpuinfo_x86 *o;
668 int i, threads;
669
670 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
671
672 if (!has_mp) {
673 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
674 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
675 cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
676 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
677 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
678 c->booted_cores = 1;
679 return;
680 }
681
682 for_each_cpu(i, cpu_sibling_setup_mask) {
683 o = &cpu_data(i);
684
685 if (match_pkg(c, o) && !topology_same_node(c, o))
686 x86_has_numa_in_package = true;
687
688 if ((i == cpu) || (has_smt && match_smt(c, o)))
689 link_mask(topology_sibling_cpumask, cpu, i);
690
691 if ((i == cpu) || (has_mp && match_llc(c, o)))
692 link_mask(cpu_llc_shared_mask, cpu, i);
693
694 if ((i == cpu) || (has_mp && match_l2c(c, o)))
695 link_mask(cpu_l2c_shared_mask, cpu, i);
696
697 if ((i == cpu) || (has_mp && match_die(c, o)))
698 link_mask(topology_die_cpumask, cpu, i);
699 }
700
701 threads = cpumask_weight(topology_sibling_cpumask(cpu));
702 if (threads > __max_smt_threads)
703 __max_smt_threads = threads;
704
705 for_each_cpu(i, topology_sibling_cpumask(cpu))
706 cpu_data(i).smt_active = threads > 1;
707
708 /*
709 * This needs a separate iteration over the cpus because we rely on all
710 * topology_sibling_cpumask links to be set-up.
711 */
712 for_each_cpu(i, cpu_sibling_setup_mask) {
713 o = &cpu_data(i);
714
715 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
716 link_mask(topology_core_cpumask, cpu, i);
717
718 /*
719 * Does this new cpu bringup a new core?
720 */
721 if (threads == 1) {
722 /*
723 * for each core in package, increment
724 * the booted_cores for this new cpu
725 */
726 if (cpumask_first(
727 topology_sibling_cpumask(i)) == i)
728 c->booted_cores++;
729 /*
730 * increment the core count for all
731 * the other cpus in this package
732 */
733 if (i != cpu)
734 cpu_data(i).booted_cores++;
735 } else if (i != cpu && !c->booted_cores)
736 c->booted_cores = cpu_data(i).booted_cores;
737 }
738 }
739 }
740
741 /* maps the cpu to the sched domain representing multi-core */
cpu_coregroup_mask(int cpu)742 const struct cpumask *cpu_coregroup_mask(int cpu)
743 {
744 return cpu_llc_shared_mask(cpu);
745 }
746
cpu_clustergroup_mask(int cpu)747 const struct cpumask *cpu_clustergroup_mask(int cpu)
748 {
749 return cpu_l2c_shared_mask(cpu);
750 }
751
impress_friends(void)752 static void impress_friends(void)
753 {
754 int cpu;
755 unsigned long bogosum = 0;
756 /*
757 * Allow the user to impress friends.
758 */
759 pr_debug("Before bogomips\n");
760 for_each_online_cpu(cpu)
761 bogosum += cpu_data(cpu).loops_per_jiffy;
762
763 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
764 num_online_cpus(),
765 bogosum/(500000/HZ),
766 (bogosum/(5000/HZ))%100);
767
768 pr_debug("Before bogocount - setting activated=1\n");
769 }
770
771 /*
772 * The Multiprocessor Specification 1.4 (1997) example code suggests
773 * that there should be a 10ms delay between the BSP asserting INIT
774 * and de-asserting INIT, when starting a remote processor.
775 * But that slows boot and resume on modern processors, which include
776 * many cores and don't require that delay.
777 *
778 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
779 * Modern processor families are quirked to remove the delay entirely.
780 */
781 #define UDELAY_10MS_DEFAULT 10000
782
783 static unsigned int init_udelay = UINT_MAX;
784
cpu_init_udelay(char * str)785 static int __init cpu_init_udelay(char *str)
786 {
787 get_option(&str, &init_udelay);
788
789 return 0;
790 }
791 early_param("cpu_init_udelay", cpu_init_udelay);
792
smp_quirk_init_udelay(void)793 static void __init smp_quirk_init_udelay(void)
794 {
795 /* if cmdline changed it from default, leave it alone */
796 if (init_udelay != UINT_MAX)
797 return;
798
799 /* if modern processor, use no delay */
800 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
801 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
802 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
803 init_udelay = 0;
804 return;
805 }
806 /* else, use legacy delay */
807 init_udelay = UDELAY_10MS_DEFAULT;
808 }
809
810 /*
811 * Wake up AP by INIT, INIT, STARTUP sequence.
812 */
send_init_sequence(int phys_apicid)813 static void send_init_sequence(int phys_apicid)
814 {
815 int maxlvt = lapic_get_maxlvt();
816
817 /* Be paranoid about clearing APIC errors. */
818 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
819 /* Due to the Pentium erratum 3AP. */
820 if (maxlvt > 3)
821 apic_write(APIC_ESR, 0);
822 apic_read(APIC_ESR);
823 }
824
825 /* Assert INIT on the target CPU */
826 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
827 safe_apic_wait_icr_idle();
828
829 udelay(init_udelay);
830
831 /* Deassert INIT on the target CPU */
832 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
833 safe_apic_wait_icr_idle();
834 }
835
836 /*
837 * Wake up AP by INIT, INIT, STARTUP sequence.
838 */
wakeup_secondary_cpu_via_init(int phys_apicid,unsigned long start_eip)839 static int wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
840 {
841 unsigned long send_status = 0, accept_status = 0;
842 int num_starts, j, maxlvt;
843
844 preempt_disable();
845 maxlvt = lapic_get_maxlvt();
846 send_init_sequence(phys_apicid);
847
848 mb();
849
850 /*
851 * Should we send STARTUP IPIs ?
852 *
853 * Determine this based on the APIC version.
854 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
855 */
856 if (APIC_INTEGRATED(boot_cpu_apic_version))
857 num_starts = 2;
858 else
859 num_starts = 0;
860
861 /*
862 * Run STARTUP IPI loop.
863 */
864 pr_debug("#startup loops: %d\n", num_starts);
865
866 for (j = 1; j <= num_starts; j++) {
867 pr_debug("Sending STARTUP #%d\n", j);
868 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
869 apic_write(APIC_ESR, 0);
870 apic_read(APIC_ESR);
871 pr_debug("After apic_write\n");
872
873 /*
874 * STARTUP IPI
875 */
876
877 /* Target chip */
878 /* Boot on the stack */
879 /* Kick the second */
880 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
881 phys_apicid);
882
883 /*
884 * Give the other CPU some time to accept the IPI.
885 */
886 if (init_udelay == 0)
887 udelay(10);
888 else
889 udelay(300);
890
891 pr_debug("Startup point 1\n");
892
893 pr_debug("Waiting for send to finish...\n");
894 send_status = safe_apic_wait_icr_idle();
895
896 /*
897 * Give the other CPU some time to accept the IPI.
898 */
899 if (init_udelay == 0)
900 udelay(10);
901 else
902 udelay(200);
903
904 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
905 apic_write(APIC_ESR, 0);
906 accept_status = (apic_read(APIC_ESR) & 0xEF);
907 if (send_status || accept_status)
908 break;
909 }
910 pr_debug("After Startup\n");
911
912 if (send_status)
913 pr_err("APIC never delivered???\n");
914 if (accept_status)
915 pr_err("APIC delivery error (%lx)\n", accept_status);
916
917 preempt_enable();
918 return (send_status | accept_status);
919 }
920
921 /* reduce the number of lines printed when booting a large cpu count system */
announce_cpu(int cpu,int apicid)922 static void announce_cpu(int cpu, int apicid)
923 {
924 static int width, node_width, first = 1;
925 static int current_node = NUMA_NO_NODE;
926 int node = early_cpu_to_node(cpu);
927
928 if (!width)
929 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
930
931 if (!node_width)
932 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
933
934 if (system_state < SYSTEM_RUNNING) {
935 if (first)
936 pr_info("x86: Booting SMP configuration:\n");
937
938 if (node != current_node) {
939 if (current_node > (-1))
940 pr_cont("\n");
941 current_node = node;
942
943 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
944 node_width - num_digits(node), " ", node);
945 }
946
947 /* Add padding for the BSP */
948 if (first)
949 pr_cont("%*s", width + 1, " ");
950 first = 0;
951
952 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
953 } else
954 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
955 node, cpu, apicid);
956 }
957
common_cpu_up(unsigned int cpu,struct task_struct * idle)958 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
959 {
960 int ret;
961
962 /* Just in case we booted with a single CPU. */
963 alternatives_enable_smp();
964
965 per_cpu(pcpu_hot.current_task, cpu) = idle;
966 cpu_init_stack_canary(cpu, idle);
967
968 /* Initialize the interrupt stack(s) */
969 ret = irq_init_percpu_irqstack(cpu);
970 if (ret)
971 return ret;
972
973 #ifdef CONFIG_X86_32
974 /* Stack for startup_32 can be just as for start_secondary onwards */
975 per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
976 #endif
977 return 0;
978 }
979
980 /*
981 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
982 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
983 * Returns zero if startup was successfully sent, else error code from
984 * ->wakeup_secondary_cpu.
985 */
do_boot_cpu(int apicid,int cpu,struct task_struct * idle)986 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
987 {
988 unsigned long start_ip = real_mode_header->trampoline_start;
989 int ret;
990
991 #ifdef CONFIG_X86_64
992 /* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
993 if (apic->wakeup_secondary_cpu_64)
994 start_ip = real_mode_header->trampoline_start64;
995 #endif
996 idle->thread.sp = (unsigned long)task_pt_regs(idle);
997 initial_code = (unsigned long)start_secondary;
998
999 if (IS_ENABLED(CONFIG_X86_32)) {
1000 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1001 initial_stack = idle->thread.sp;
1002 } else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
1003 smpboot_control = cpu;
1004 }
1005
1006 /* Enable the espfix hack for this CPU */
1007 init_espfix_ap(cpu);
1008
1009 /* So we see what's up */
1010 announce_cpu(cpu, apicid);
1011
1012 /*
1013 * This grunge runs the startup process for
1014 * the targeted processor.
1015 */
1016 if (x86_platform.legacy.warm_reset) {
1017
1018 pr_debug("Setting warm reset code and vector.\n");
1019
1020 smpboot_setup_warm_reset_vector(start_ip);
1021 /*
1022 * Be paranoid about clearing APIC errors.
1023 */
1024 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1025 apic_write(APIC_ESR, 0);
1026 apic_read(APIC_ESR);
1027 }
1028 }
1029
1030 smp_mb();
1031
1032 /*
1033 * Wake up a CPU in difference cases:
1034 * - Use a method from the APIC driver if one defined, with wakeup
1035 * straight to 64-bit mode preferred over wakeup to RM.
1036 * Otherwise,
1037 * - Use an INIT boot APIC message
1038 */
1039 if (apic->wakeup_secondary_cpu_64)
1040 ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
1041 else if (apic->wakeup_secondary_cpu)
1042 ret = apic->wakeup_secondary_cpu(apicid, start_ip);
1043 else
1044 ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
1045
1046 /* If the wakeup mechanism failed, cleanup the warm reset vector */
1047 if (ret)
1048 arch_cpuhp_cleanup_kick_cpu(cpu);
1049 return ret;
1050 }
1051
native_kick_ap(unsigned int cpu,struct task_struct * tidle)1052 int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
1053 {
1054 int apicid = apic->cpu_present_to_apicid(cpu);
1055 int err;
1056
1057 lockdep_assert_irqs_enabled();
1058
1059 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1060
1061 if (apicid == BAD_APICID || !physid_isset(apicid, phys_cpu_present_map) ||
1062 !apic_id_valid(apicid)) {
1063 pr_err("%s: bad cpu %d\n", __func__, cpu);
1064 return -EINVAL;
1065 }
1066
1067 /*
1068 * Save current MTRR state in case it was changed since early boot
1069 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1070 */
1071 mtrr_save_state();
1072
1073 /* the FPU context is blank, nobody can own it */
1074 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1075
1076 err = common_cpu_up(cpu, tidle);
1077 if (err)
1078 return err;
1079
1080 err = do_boot_cpu(apicid, cpu, tidle);
1081 if (err)
1082 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1083
1084 return err;
1085 }
1086
arch_cpuhp_kick_ap_alive(unsigned int cpu,struct task_struct * tidle)1087 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
1088 {
1089 return smp_ops.kick_ap_alive(cpu, tidle);
1090 }
1091
arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)1092 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
1093 {
1094 /* Cleanup possible dangling ends... */
1095 if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
1096 smpboot_restore_warm_reset_vector();
1097 }
1098
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)1099 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
1100 {
1101 if (smp_ops.cleanup_dead_cpu)
1102 smp_ops.cleanup_dead_cpu(cpu);
1103
1104 if (system_state == SYSTEM_RUNNING)
1105 pr_info("CPU %u is now offline\n", cpu);
1106 }
1107
arch_cpuhp_sync_state_poll(void)1108 void arch_cpuhp_sync_state_poll(void)
1109 {
1110 if (smp_ops.poll_sync_state)
1111 smp_ops.poll_sync_state();
1112 }
1113
1114 /**
1115 * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1116 */
arch_disable_smp_support(void)1117 void __init arch_disable_smp_support(void)
1118 {
1119 disable_ioapic_support();
1120 }
1121
1122 /*
1123 * Fall back to non SMP mode after errors.
1124 *
1125 * RED-PEN audit/test this more. I bet there is more state messed up here.
1126 */
disable_smp(void)1127 static __init void disable_smp(void)
1128 {
1129 pr_info("SMP disabled\n");
1130
1131 disable_ioapic_support();
1132
1133 init_cpu_present(cpumask_of(0));
1134 init_cpu_possible(cpumask_of(0));
1135
1136 if (smp_found_config)
1137 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1138 else
1139 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1140 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1141 cpumask_set_cpu(0, topology_core_cpumask(0));
1142 cpumask_set_cpu(0, topology_die_cpumask(0));
1143 }
1144
smp_cpu_index_default(void)1145 static void __init smp_cpu_index_default(void)
1146 {
1147 int i;
1148 struct cpuinfo_x86 *c;
1149
1150 for_each_possible_cpu(i) {
1151 c = &cpu_data(i);
1152 /* mark all to hotplug */
1153 c->cpu_index = nr_cpu_ids;
1154 }
1155 }
1156
smp_prepare_cpus_common(void)1157 void __init smp_prepare_cpus_common(void)
1158 {
1159 unsigned int i;
1160
1161 smp_cpu_index_default();
1162
1163 /*
1164 * Setup boot CPU information
1165 */
1166 smp_store_boot_cpu_info(); /* Final full version of the data */
1167 mb();
1168
1169 for_each_possible_cpu(i) {
1170 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1171 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1172 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1173 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1174 zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1175 }
1176
1177 set_cpu_sibling_map(0);
1178 }
1179
1180 #ifdef CONFIG_X86_64
1181 /* Establish whether parallel bringup can be supported. */
arch_cpuhp_init_parallel_bringup(void)1182 bool __init arch_cpuhp_init_parallel_bringup(void)
1183 {
1184 if (!x86_cpuinit.parallel_bringup) {
1185 pr_info("Parallel CPU startup disabled by the platform\n");
1186 return false;
1187 }
1188
1189 smpboot_control = STARTUP_READ_APICID;
1190 pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1191 return true;
1192 }
1193 #endif
1194
1195 /*
1196 * Prepare for SMP bootup.
1197 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1198 * for common interface support.
1199 */
native_smp_prepare_cpus(unsigned int max_cpus)1200 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1201 {
1202 smp_prepare_cpus_common();
1203
1204 switch (apic_intr_mode) {
1205 case APIC_PIC:
1206 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1207 disable_smp();
1208 return;
1209 case APIC_SYMMETRIC_IO_NO_ROUTING:
1210 disable_smp();
1211 /* Setup local timer */
1212 x86_init.timers.setup_percpu_clockev();
1213 return;
1214 case APIC_VIRTUAL_WIRE:
1215 case APIC_SYMMETRIC_IO:
1216 break;
1217 }
1218
1219 /* Setup local timer */
1220 x86_init.timers.setup_percpu_clockev();
1221
1222 pr_info("CPU0: ");
1223 print_cpu_info(&cpu_data(0));
1224
1225 uv_system_init();
1226
1227 smp_quirk_init_udelay();
1228
1229 speculative_store_bypass_ht_init();
1230
1231 snp_set_wakeup_secondary_cpu();
1232 }
1233
arch_thaw_secondary_cpus_begin(void)1234 void arch_thaw_secondary_cpus_begin(void)
1235 {
1236 set_cache_aps_delayed_init(true);
1237 }
1238
arch_thaw_secondary_cpus_end(void)1239 void arch_thaw_secondary_cpus_end(void)
1240 {
1241 cache_aps_init();
1242 }
1243
1244 /*
1245 * Early setup to make printk work.
1246 */
native_smp_prepare_boot_cpu(void)1247 void __init native_smp_prepare_boot_cpu(void)
1248 {
1249 int me = smp_processor_id();
1250
1251 /* SMP handles this from setup_per_cpu_areas() */
1252 if (!IS_ENABLED(CONFIG_SMP))
1253 switch_gdt_and_percpu_base(me);
1254
1255 native_pv_lock_init();
1256 }
1257
calculate_max_logical_packages(void)1258 void __init calculate_max_logical_packages(void)
1259 {
1260 int ncpus;
1261
1262 /*
1263 * Today neither Intel nor AMD support heterogeneous systems so
1264 * extrapolate the boot cpu's data to all packages.
1265 */
1266 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1267 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1268 pr_info("Max logical packages: %u\n", __max_logical_packages);
1269 }
1270
native_smp_cpus_done(unsigned int max_cpus)1271 void __init native_smp_cpus_done(unsigned int max_cpus)
1272 {
1273 pr_debug("Boot done\n");
1274
1275 calculate_max_logical_packages();
1276 build_sched_topology();
1277 nmi_selftest();
1278 impress_friends();
1279 cache_aps_init();
1280 }
1281
1282 static int __initdata setup_possible_cpus = -1;
_setup_possible_cpus(char * str)1283 static int __init _setup_possible_cpus(char *str)
1284 {
1285 get_option(&str, &setup_possible_cpus);
1286 return 0;
1287 }
1288 early_param("possible_cpus", _setup_possible_cpus);
1289
1290
1291 /*
1292 * cpu_possible_mask should be static, it cannot change as cpu's
1293 * are onlined, or offlined. The reason is per-cpu data-structures
1294 * are allocated by some modules at init time, and don't expect to
1295 * do this dynamically on cpu arrival/departure.
1296 * cpu_present_mask on the other hand can change dynamically.
1297 * In case when cpu_hotplug is not compiled, then we resort to current
1298 * behaviour, which is cpu_possible == cpu_present.
1299 * - Ashok Raj
1300 *
1301 * Three ways to find out the number of additional hotplug CPUs:
1302 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1303 * - The user can overwrite it with possible_cpus=NUM
1304 * - Otherwise don't reserve additional CPUs.
1305 * We do this because additional CPUs waste a lot of memory.
1306 * -AK
1307 */
prefill_possible_map(void)1308 __init void prefill_possible_map(void)
1309 {
1310 int i, possible;
1311
1312 i = setup_max_cpus ?: 1;
1313 if (setup_possible_cpus == -1) {
1314 possible = num_processors;
1315 #ifdef CONFIG_HOTPLUG_CPU
1316 if (setup_max_cpus)
1317 possible += disabled_cpus;
1318 #else
1319 if (possible > i)
1320 possible = i;
1321 #endif
1322 } else
1323 possible = setup_possible_cpus;
1324
1325 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1326
1327 /* nr_cpu_ids could be reduced via nr_cpus= */
1328 if (possible > nr_cpu_ids) {
1329 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1330 possible, nr_cpu_ids);
1331 possible = nr_cpu_ids;
1332 }
1333
1334 #ifdef CONFIG_HOTPLUG_CPU
1335 if (!setup_max_cpus)
1336 #endif
1337 if (possible > i) {
1338 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1339 possible, setup_max_cpus);
1340 possible = i;
1341 }
1342
1343 set_nr_cpu_ids(possible);
1344
1345 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1346 possible, max_t(int, possible - num_processors, 0));
1347
1348 reset_cpu_possible_mask();
1349
1350 for (i = 0; i < possible; i++)
1351 set_cpu_possible(i, true);
1352 }
1353
1354 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)1355 void __init setup_cpu_local_masks(void)
1356 {
1357 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1358 }
1359
1360 #ifdef CONFIG_HOTPLUG_CPU
1361
1362 /* Recompute SMT state for all CPUs on offline */
recompute_smt_state(void)1363 static void recompute_smt_state(void)
1364 {
1365 int max_threads, cpu;
1366
1367 max_threads = 0;
1368 for_each_online_cpu (cpu) {
1369 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1370
1371 if (threads > max_threads)
1372 max_threads = threads;
1373 }
1374 __max_smt_threads = max_threads;
1375 }
1376
remove_siblinginfo(int cpu)1377 static void remove_siblinginfo(int cpu)
1378 {
1379 int sibling;
1380 struct cpuinfo_x86 *c = &cpu_data(cpu);
1381
1382 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1383 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1384 /*/
1385 * last thread sibling in this cpu core going down
1386 */
1387 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1388 cpu_data(sibling).booted_cores--;
1389 }
1390
1391 for_each_cpu(sibling, topology_die_cpumask(cpu))
1392 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1393
1394 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1395 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1396 if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1397 cpu_data(sibling).smt_active = false;
1398 }
1399
1400 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1401 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1402 for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1403 cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1404 cpumask_clear(cpu_llc_shared_mask(cpu));
1405 cpumask_clear(cpu_l2c_shared_mask(cpu));
1406 cpumask_clear(topology_sibling_cpumask(cpu));
1407 cpumask_clear(topology_core_cpumask(cpu));
1408 cpumask_clear(topology_die_cpumask(cpu));
1409 c->cpu_core_id = 0;
1410 c->booted_cores = 0;
1411 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1412 recompute_smt_state();
1413 }
1414
remove_cpu_from_maps(int cpu)1415 static void remove_cpu_from_maps(int cpu)
1416 {
1417 set_cpu_online(cpu, false);
1418 numa_remove_cpu(cpu);
1419 }
1420
cpu_disable_common(void)1421 void cpu_disable_common(void)
1422 {
1423 int cpu = smp_processor_id();
1424
1425 remove_siblinginfo(cpu);
1426
1427 /* It's now safe to remove this processor from the online map */
1428 lock_vector_lock();
1429 remove_cpu_from_maps(cpu);
1430 unlock_vector_lock();
1431 fixup_irqs();
1432 lapic_offline();
1433 }
1434
native_cpu_disable(void)1435 int native_cpu_disable(void)
1436 {
1437 int ret;
1438
1439 ret = lapic_can_unplug_cpu();
1440 if (ret)
1441 return ret;
1442
1443 cpu_disable_common();
1444
1445 /*
1446 * Disable the local APIC. Otherwise IPI broadcasts will reach
1447 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1448 * messages.
1449 *
1450 * Disabling the APIC must happen after cpu_disable_common()
1451 * which invokes fixup_irqs().
1452 *
1453 * Disabling the APIC preserves already set bits in IRR, but
1454 * an interrupt arriving after disabling the local APIC does not
1455 * set the corresponding IRR bit.
1456 *
1457 * fixup_irqs() scans IRR for set bits so it can raise a not
1458 * yet handled interrupt on the new destination CPU via an IPI
1459 * but obviously it can't do so for IRR bits which are not set.
1460 * IOW, interrupts arriving after disabling the local APIC will
1461 * be lost.
1462 */
1463 apic_soft_disable();
1464
1465 return 0;
1466 }
1467
play_dead_common(void)1468 void play_dead_common(void)
1469 {
1470 idle_task_exit();
1471
1472 cpuhp_ap_report_dead();
1473
1474 local_irq_disable();
1475 }
1476
1477 /*
1478 * We need to flush the caches before going to sleep, lest we have
1479 * dirty data in our caches when we come back up.
1480 */
mwait_play_dead(void)1481 static inline void mwait_play_dead(void)
1482 {
1483 struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1484 unsigned int eax, ebx, ecx, edx;
1485 unsigned int highest_cstate = 0;
1486 unsigned int highest_subcstate = 0;
1487 int i;
1488
1489 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1490 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1491 return;
1492 if (!this_cpu_has(X86_FEATURE_MWAIT))
1493 return;
1494 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1495 return;
1496 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1497 return;
1498
1499 eax = CPUID_MWAIT_LEAF;
1500 ecx = 0;
1501 native_cpuid(&eax, &ebx, &ecx, &edx);
1502
1503 /*
1504 * eax will be 0 if EDX enumeration is not valid.
1505 * Initialized below to cstate, sub_cstate value when EDX is valid.
1506 */
1507 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1508 eax = 0;
1509 } else {
1510 edx >>= MWAIT_SUBSTATE_SIZE;
1511 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1512 if (edx & MWAIT_SUBSTATE_MASK) {
1513 highest_cstate = i;
1514 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1515 }
1516 }
1517 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1518 (highest_subcstate - 1);
1519 }
1520
1521 /* Set up state for the kexec() hack below */
1522 md->status = CPUDEAD_MWAIT_WAIT;
1523 md->control = CPUDEAD_MWAIT_WAIT;
1524
1525 wbinvd();
1526
1527 while (1) {
1528 /*
1529 * The CLFLUSH is a workaround for erratum AAI65 for
1530 * the Xeon 7400 series. It's not clear it is actually
1531 * needed, but it should be harmless in either case.
1532 * The WBINVD is insufficient due to the spurious-wakeup
1533 * case where we return around the loop.
1534 */
1535 mb();
1536 clflush(md);
1537 mb();
1538 __monitor(md, 0, 0);
1539 mb();
1540 __mwait(eax, 0);
1541
1542 if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1543 /*
1544 * Kexec is about to happen. Don't go back into mwait() as
1545 * the kexec kernel might overwrite text and data including
1546 * page tables and stack. So mwait() would resume when the
1547 * monitor cache line is written to and then the CPU goes
1548 * south due to overwritten text, page tables and stack.
1549 *
1550 * Note: This does _NOT_ protect against a stray MCE, NMI,
1551 * SMI. They will resume execution at the instruction
1552 * following the HLT instruction and run into the problem
1553 * which this is trying to prevent.
1554 */
1555 WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1556 while(1)
1557 native_halt();
1558 }
1559 }
1560 }
1561
1562 /*
1563 * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1564 * mwait_play_dead().
1565 */
smp_kick_mwait_play_dead(void)1566 void smp_kick_mwait_play_dead(void)
1567 {
1568 u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1569 struct mwait_cpu_dead *md;
1570 unsigned int cpu, i;
1571
1572 for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1573 md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1574
1575 /* Does it sit in mwait_play_dead() ? */
1576 if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1577 continue;
1578
1579 /* Wait up to 5ms */
1580 for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1581 /* Bring it out of mwait */
1582 WRITE_ONCE(md->control, newstate);
1583 udelay(5);
1584 }
1585
1586 if (READ_ONCE(md->status) != newstate)
1587 pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1588 }
1589 }
1590
hlt_play_dead(void)1591 void __noreturn hlt_play_dead(void)
1592 {
1593 if (__this_cpu_read(cpu_info.x86) >= 4)
1594 wbinvd();
1595
1596 while (1)
1597 native_halt();
1598 }
1599
native_play_dead(void)1600 void native_play_dead(void)
1601 {
1602 play_dead_common();
1603 tboot_shutdown(TB_SHUTDOWN_WFS);
1604
1605 mwait_play_dead();
1606 if (cpuidle_play_dead())
1607 hlt_play_dead();
1608 }
1609
1610 #else /* ... !CONFIG_HOTPLUG_CPU */
native_cpu_disable(void)1611 int native_cpu_disable(void)
1612 {
1613 return -ENOSYS;
1614 }
1615
native_play_dead(void)1616 void native_play_dead(void)
1617 {
1618 BUG();
1619 }
1620
1621 #endif
1622