xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0-only
2  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3  
4  #include <linux/kernel.h>
5  #include <linux/sched.h>
6  #include <linux/sched/clock.h>
7  #include <linux/init.h>
8  #include <linux/export.h>
9  #include <linux/timer.h>
10  #include <linux/acpi_pmtmr.h>
11  #include <linux/cpufreq.h>
12  #include <linux/delay.h>
13  #include <linux/clocksource.h>
14  #include <linux/percpu.h>
15  #include <linux/timex.h>
16  #include <linux/static_key.h>
17  #include <linux/static_call.h>
18  
19  #include <asm/hpet.h>
20  #include <asm/timer.h>
21  #include <asm/vgtod.h>
22  #include <asm/time.h>
23  #include <asm/delay.h>
24  #include <asm/hypervisor.h>
25  #include <asm/nmi.h>
26  #include <asm/x86_init.h>
27  #include <asm/geode.h>
28  #include <asm/apic.h>
29  #include <asm/intel-family.h>
30  #include <asm/i8259.h>
31  #include <asm/uv/uv.h>
32  
33  unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
34  EXPORT_SYMBOL(cpu_khz);
35  
36  unsigned int __read_mostly tsc_khz;
37  EXPORT_SYMBOL(tsc_khz);
38  
39  #define KHZ	1000
40  
41  /*
42   * TSC can be unstable due to cpufreq or due to unsynced TSCs
43   */
44  static int __read_mostly tsc_unstable;
45  static unsigned int __initdata tsc_early_khz;
46  
47  static DEFINE_STATIC_KEY_FALSE(__use_tsc);
48  
49  int tsc_clocksource_reliable;
50  
51  static int __read_mostly tsc_force_recalibrate;
52  
53  static u32 art_to_tsc_numerator;
54  static u32 art_to_tsc_denominator;
55  static u64 art_to_tsc_offset;
56  static struct clocksource *art_related_clocksource;
57  
58  struct cyc2ns {
59  	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
60  	seqcount_latch_t   seq;		/* 32 + 4    = 36 */
61  
62  }; /* fits one cacheline */
63  
64  static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
65  
tsc_early_khz_setup(char * buf)66  static int __init tsc_early_khz_setup(char *buf)
67  {
68  	return kstrtouint(buf, 0, &tsc_early_khz);
69  }
70  early_param("tsc_early_khz", tsc_early_khz_setup);
71  
__cyc2ns_read(struct cyc2ns_data * data)72  __always_inline void __cyc2ns_read(struct cyc2ns_data *data)
73  {
74  	int seq, idx;
75  
76  	do {
77  		seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
78  		idx = seq & 1;
79  
80  		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
81  		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
82  		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
83  
84  	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
85  }
86  
cyc2ns_read_begin(struct cyc2ns_data * data)87  __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
88  {
89  	preempt_disable_notrace();
90  	__cyc2ns_read(data);
91  }
92  
cyc2ns_read_end(void)93  __always_inline void cyc2ns_read_end(void)
94  {
95  	preempt_enable_notrace();
96  }
97  
98  /*
99   * Accelerators for sched_clock()
100   * convert from cycles(64bits) => nanoseconds (64bits)
101   *  basic equation:
102   *              ns = cycles / (freq / ns_per_sec)
103   *              ns = cycles * (ns_per_sec / freq)
104   *              ns = cycles * (10^9 / (cpu_khz * 10^3))
105   *              ns = cycles * (10^6 / cpu_khz)
106   *
107   *      Then we use scaling math (suggested by george@mvista.com) to get:
108   *              ns = cycles * (10^6 * SC / cpu_khz) / SC
109   *              ns = cycles * cyc2ns_scale / SC
110   *
111   *      And since SC is a constant power of two, we can convert the div
112   *  into a shift. The larger SC is, the more accurate the conversion, but
113   *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
114   *  (64-bit result) can be used.
115   *
116   *  We can use khz divisor instead of mhz to keep a better precision.
117   *  (mathieu.desnoyers@polymtl.ca)
118   *
119   *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
120   */
121  
__cycles_2_ns(unsigned long long cyc)122  static __always_inline unsigned long long __cycles_2_ns(unsigned long long cyc)
123  {
124  	struct cyc2ns_data data;
125  	unsigned long long ns;
126  
127  	__cyc2ns_read(&data);
128  
129  	ns = data.cyc2ns_offset;
130  	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
131  
132  	return ns;
133  }
134  
cycles_2_ns(unsigned long long cyc)135  static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
136  {
137  	unsigned long long ns;
138  	preempt_disable_notrace();
139  	ns = __cycles_2_ns(cyc);
140  	preempt_enable_notrace();
141  	return ns;
142  }
143  
__set_cyc2ns_scale(unsigned long khz,int cpu,unsigned long long tsc_now)144  static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
145  {
146  	unsigned long long ns_now;
147  	struct cyc2ns_data data;
148  	struct cyc2ns *c2n;
149  
150  	ns_now = cycles_2_ns(tsc_now);
151  
152  	/*
153  	 * Compute a new multiplier as per the above comment and ensure our
154  	 * time function is continuous; see the comment near struct
155  	 * cyc2ns_data.
156  	 */
157  	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
158  			       NSEC_PER_MSEC, 0);
159  
160  	/*
161  	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
162  	 * not expected to be greater than 31 due to the original published
163  	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
164  	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
165  	 */
166  	if (data.cyc2ns_shift == 32) {
167  		data.cyc2ns_shift = 31;
168  		data.cyc2ns_mul >>= 1;
169  	}
170  
171  	data.cyc2ns_offset = ns_now -
172  		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
173  
174  	c2n = per_cpu_ptr(&cyc2ns, cpu);
175  
176  	raw_write_seqcount_latch(&c2n->seq);
177  	c2n->data[0] = data;
178  	raw_write_seqcount_latch(&c2n->seq);
179  	c2n->data[1] = data;
180  }
181  
set_cyc2ns_scale(unsigned long khz,int cpu,unsigned long long tsc_now)182  static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
183  {
184  	unsigned long flags;
185  
186  	local_irq_save(flags);
187  	sched_clock_idle_sleep_event();
188  
189  	if (khz)
190  		__set_cyc2ns_scale(khz, cpu, tsc_now);
191  
192  	sched_clock_idle_wakeup_event();
193  	local_irq_restore(flags);
194  }
195  
196  /*
197   * Initialize cyc2ns for boot cpu
198   */
cyc2ns_init_boot_cpu(void)199  static void __init cyc2ns_init_boot_cpu(void)
200  {
201  	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
202  
203  	seqcount_latch_init(&c2n->seq);
204  	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
205  }
206  
207  /*
208   * Secondary CPUs do not run through tsc_init(), so set up
209   * all the scale factors for all CPUs, assuming the same
210   * speed as the bootup CPU.
211   */
cyc2ns_init_secondary_cpus(void)212  static void __init cyc2ns_init_secondary_cpus(void)
213  {
214  	unsigned int cpu, this_cpu = smp_processor_id();
215  	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
216  	struct cyc2ns_data *data = c2n->data;
217  
218  	for_each_possible_cpu(cpu) {
219  		if (cpu != this_cpu) {
220  			seqcount_latch_init(&c2n->seq);
221  			c2n = per_cpu_ptr(&cyc2ns, cpu);
222  			c2n->data[0] = data[0];
223  			c2n->data[1] = data[1];
224  		}
225  	}
226  }
227  
228  /*
229   * Scheduler clock - returns current time in nanosec units.
230   */
native_sched_clock(void)231  noinstr u64 native_sched_clock(void)
232  {
233  	if (static_branch_likely(&__use_tsc)) {
234  		u64 tsc_now = rdtsc();
235  
236  		/* return the value in ns */
237  		return __cycles_2_ns(tsc_now);
238  	}
239  
240  	/*
241  	 * Fall back to jiffies if there's no TSC available:
242  	 * ( But note that we still use it if the TSC is marked
243  	 *   unstable. We do this because unlike Time Of Day,
244  	 *   the scheduler clock tolerates small errors and it's
245  	 *   very important for it to be as fast as the platform
246  	 *   can achieve it. )
247  	 */
248  
249  	/* No locking but a rare wrong value is not a big deal: */
250  	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
251  }
252  
253  /*
254   * Generate a sched_clock if you already have a TSC value.
255   */
native_sched_clock_from_tsc(u64 tsc)256  u64 native_sched_clock_from_tsc(u64 tsc)
257  {
258  	return cycles_2_ns(tsc);
259  }
260  
261  /* We need to define a real function for sched_clock, to override the
262     weak default version */
263  #ifdef CONFIG_PARAVIRT
sched_clock_noinstr(void)264  noinstr u64 sched_clock_noinstr(void)
265  {
266  	return paravirt_sched_clock();
267  }
268  
using_native_sched_clock(void)269  bool using_native_sched_clock(void)
270  {
271  	return static_call_query(pv_sched_clock) == native_sched_clock;
272  }
273  #else
274  u64 sched_clock_noinstr(void) __attribute__((alias("native_sched_clock")));
275  
using_native_sched_clock(void)276  bool using_native_sched_clock(void) { return true; }
277  #endif
278  
sched_clock(void)279  notrace u64 sched_clock(void)
280  {
281  	u64 now;
282  	preempt_disable_notrace();
283  	now = sched_clock_noinstr();
284  	preempt_enable_notrace();
285  	return now;
286  }
287  
check_tsc_unstable(void)288  int check_tsc_unstable(void)
289  {
290  	return tsc_unstable;
291  }
292  EXPORT_SYMBOL_GPL(check_tsc_unstable);
293  
294  #ifdef CONFIG_X86_TSC
notsc_setup(char * str)295  int __init notsc_setup(char *str)
296  {
297  	mark_tsc_unstable("boot parameter notsc");
298  	return 1;
299  }
300  #else
301  /*
302   * disable flag for tsc. Takes effect by clearing the TSC cpu flag
303   * in cpu/common.c
304   */
notsc_setup(char * str)305  int __init notsc_setup(char *str)
306  {
307  	setup_clear_cpu_cap(X86_FEATURE_TSC);
308  	return 1;
309  }
310  #endif
311  
312  __setup("notsc", notsc_setup);
313  
314  static int no_sched_irq_time;
315  static int no_tsc_watchdog;
316  static int tsc_as_watchdog;
317  
tsc_setup(char * str)318  static int __init tsc_setup(char *str)
319  {
320  	if (!strcmp(str, "reliable"))
321  		tsc_clocksource_reliable = 1;
322  	if (!strncmp(str, "noirqtime", 9))
323  		no_sched_irq_time = 1;
324  	if (!strcmp(str, "unstable"))
325  		mark_tsc_unstable("boot parameter");
326  	if (!strcmp(str, "nowatchdog")) {
327  		no_tsc_watchdog = 1;
328  		if (tsc_as_watchdog)
329  			pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n",
330  				 __func__);
331  		tsc_as_watchdog = 0;
332  	}
333  	if (!strcmp(str, "recalibrate"))
334  		tsc_force_recalibrate = 1;
335  	if (!strcmp(str, "watchdog")) {
336  		if (no_tsc_watchdog)
337  			pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n",
338  				 __func__);
339  		else
340  			tsc_as_watchdog = 1;
341  	}
342  	return 1;
343  }
344  
345  __setup("tsc=", tsc_setup);
346  
347  #define MAX_RETRIES		5
348  #define TSC_DEFAULT_THRESHOLD	0x20000
349  
350  /*
351   * Read TSC and the reference counters. Take care of any disturbances
352   */
tsc_read_refs(u64 * p,int hpet)353  static u64 tsc_read_refs(u64 *p, int hpet)
354  {
355  	u64 t1, t2;
356  	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
357  	int i;
358  
359  	for (i = 0; i < MAX_RETRIES; i++) {
360  		t1 = get_cycles();
361  		if (hpet)
362  			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
363  		else
364  			*p = acpi_pm_read_early();
365  		t2 = get_cycles();
366  		if ((t2 - t1) < thresh)
367  			return t2;
368  	}
369  	return ULLONG_MAX;
370  }
371  
372  /*
373   * Calculate the TSC frequency from HPET reference
374   */
calc_hpet_ref(u64 deltatsc,u64 hpet1,u64 hpet2)375  static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
376  {
377  	u64 tmp;
378  
379  	if (hpet2 < hpet1)
380  		hpet2 += 0x100000000ULL;
381  	hpet2 -= hpet1;
382  	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
383  	do_div(tmp, 1000000);
384  	deltatsc = div64_u64(deltatsc, tmp);
385  
386  	return (unsigned long) deltatsc;
387  }
388  
389  /*
390   * Calculate the TSC frequency from PMTimer reference
391   */
calc_pmtimer_ref(u64 deltatsc,u64 pm1,u64 pm2)392  static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
393  {
394  	u64 tmp;
395  
396  	if (!pm1 && !pm2)
397  		return ULONG_MAX;
398  
399  	if (pm2 < pm1)
400  		pm2 += (u64)ACPI_PM_OVRRUN;
401  	pm2 -= pm1;
402  	tmp = pm2 * 1000000000LL;
403  	do_div(tmp, PMTMR_TICKS_PER_SEC);
404  	do_div(deltatsc, tmp);
405  
406  	return (unsigned long) deltatsc;
407  }
408  
409  #define CAL_MS		10
410  #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
411  #define CAL_PIT_LOOPS	1000
412  
413  #define CAL2_MS		50
414  #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
415  #define CAL2_PIT_LOOPS	5000
416  
417  
418  /*
419   * Try to calibrate the TSC against the Programmable
420   * Interrupt Timer and return the frequency of the TSC
421   * in kHz.
422   *
423   * Return ULONG_MAX on failure to calibrate.
424   */
pit_calibrate_tsc(u32 latch,unsigned long ms,int loopmin)425  static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
426  {
427  	u64 tsc, t1, t2, delta;
428  	unsigned long tscmin, tscmax;
429  	int pitcnt;
430  
431  	if (!has_legacy_pic()) {
432  		/*
433  		 * Relies on tsc_early_delay_calibrate() to have given us semi
434  		 * usable udelay(), wait for the same 50ms we would have with
435  		 * the PIT loop below.
436  		 */
437  		udelay(10 * USEC_PER_MSEC);
438  		udelay(10 * USEC_PER_MSEC);
439  		udelay(10 * USEC_PER_MSEC);
440  		udelay(10 * USEC_PER_MSEC);
441  		udelay(10 * USEC_PER_MSEC);
442  		return ULONG_MAX;
443  	}
444  
445  	/* Set the Gate high, disable speaker */
446  	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
447  
448  	/*
449  	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
450  	 * count mode), binary count. Set the latch register to 50ms
451  	 * (LSB then MSB) to begin countdown.
452  	 */
453  	outb(0xb0, 0x43);
454  	outb(latch & 0xff, 0x42);
455  	outb(latch >> 8, 0x42);
456  
457  	tsc = t1 = t2 = get_cycles();
458  
459  	pitcnt = 0;
460  	tscmax = 0;
461  	tscmin = ULONG_MAX;
462  	while ((inb(0x61) & 0x20) == 0) {
463  		t2 = get_cycles();
464  		delta = t2 - tsc;
465  		tsc = t2;
466  		if ((unsigned long) delta < tscmin)
467  			tscmin = (unsigned int) delta;
468  		if ((unsigned long) delta > tscmax)
469  			tscmax = (unsigned int) delta;
470  		pitcnt++;
471  	}
472  
473  	/*
474  	 * Sanity checks:
475  	 *
476  	 * If we were not able to read the PIT more than loopmin
477  	 * times, then we have been hit by a massive SMI
478  	 *
479  	 * If the maximum is 10 times larger than the minimum,
480  	 * then we got hit by an SMI as well.
481  	 */
482  	if (pitcnt < loopmin || tscmax > 10 * tscmin)
483  		return ULONG_MAX;
484  
485  	/* Calculate the PIT value */
486  	delta = t2 - t1;
487  	do_div(delta, ms);
488  	return delta;
489  }
490  
491  /*
492   * This reads the current MSB of the PIT counter, and
493   * checks if we are running on sufficiently fast and
494   * non-virtualized hardware.
495   *
496   * Our expectations are:
497   *
498   *  - the PIT is running at roughly 1.19MHz
499   *
500   *  - each IO is going to take about 1us on real hardware,
501   *    but we allow it to be much faster (by a factor of 10) or
502   *    _slightly_ slower (ie we allow up to a 2us read+counter
503   *    update - anything else implies a unacceptably slow CPU
504   *    or PIT for the fast calibration to work.
505   *
506   *  - with 256 PIT ticks to read the value, we have 214us to
507   *    see the same MSB (and overhead like doing a single TSC
508   *    read per MSB value etc).
509   *
510   *  - We're doing 2 reads per loop (LSB, MSB), and we expect
511   *    them each to take about a microsecond on real hardware.
512   *    So we expect a count value of around 100. But we'll be
513   *    generous, and accept anything over 50.
514   *
515   *  - if the PIT is stuck, and we see *many* more reads, we
516   *    return early (and the next caller of pit_expect_msb()
517   *    then consider it a failure when they don't see the
518   *    next expected value).
519   *
520   * These expectations mean that we know that we have seen the
521   * transition from one expected value to another with a fairly
522   * high accuracy, and we didn't miss any events. We can thus
523   * use the TSC value at the transitions to calculate a pretty
524   * good value for the TSC frequency.
525   */
pit_verify_msb(unsigned char val)526  static inline int pit_verify_msb(unsigned char val)
527  {
528  	/* Ignore LSB */
529  	inb(0x42);
530  	return inb(0x42) == val;
531  }
532  
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)533  static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
534  {
535  	int count;
536  	u64 tsc = 0, prev_tsc = 0;
537  
538  	for (count = 0; count < 50000; count++) {
539  		if (!pit_verify_msb(val))
540  			break;
541  		prev_tsc = tsc;
542  		tsc = get_cycles();
543  	}
544  	*deltap = get_cycles() - prev_tsc;
545  	*tscp = tsc;
546  
547  	/*
548  	 * We require _some_ success, but the quality control
549  	 * will be based on the error terms on the TSC values.
550  	 */
551  	return count > 5;
552  }
553  
554  /*
555   * How many MSB values do we want to see? We aim for
556   * a maximum error rate of 500ppm (in practice the
557   * real error is much smaller), but refuse to spend
558   * more than 50ms on it.
559   */
560  #define MAX_QUICK_PIT_MS 50
561  #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
562  
quick_pit_calibrate(void)563  static unsigned long quick_pit_calibrate(void)
564  {
565  	int i;
566  	u64 tsc, delta;
567  	unsigned long d1, d2;
568  
569  	if (!has_legacy_pic())
570  		return 0;
571  
572  	/* Set the Gate high, disable speaker */
573  	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
574  
575  	/*
576  	 * Counter 2, mode 0 (one-shot), binary count
577  	 *
578  	 * NOTE! Mode 2 decrements by two (and then the
579  	 * output is flipped each time, giving the same
580  	 * final output frequency as a decrement-by-one),
581  	 * so mode 0 is much better when looking at the
582  	 * individual counts.
583  	 */
584  	outb(0xb0, 0x43);
585  
586  	/* Start at 0xffff */
587  	outb(0xff, 0x42);
588  	outb(0xff, 0x42);
589  
590  	/*
591  	 * The PIT starts counting at the next edge, so we
592  	 * need to delay for a microsecond. The easiest way
593  	 * to do that is to just read back the 16-bit counter
594  	 * once from the PIT.
595  	 */
596  	pit_verify_msb(0);
597  
598  	if (pit_expect_msb(0xff, &tsc, &d1)) {
599  		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
600  			if (!pit_expect_msb(0xff-i, &delta, &d2))
601  				break;
602  
603  			delta -= tsc;
604  
605  			/*
606  			 * Extrapolate the error and fail fast if the error will
607  			 * never be below 500 ppm.
608  			 */
609  			if (i == 1 &&
610  			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
611  				return 0;
612  
613  			/*
614  			 * Iterate until the error is less than 500 ppm
615  			 */
616  			if (d1+d2 >= delta >> 11)
617  				continue;
618  
619  			/*
620  			 * Check the PIT one more time to verify that
621  			 * all TSC reads were stable wrt the PIT.
622  			 *
623  			 * This also guarantees serialization of the
624  			 * last cycle read ('d2') in pit_expect_msb.
625  			 */
626  			if (!pit_verify_msb(0xfe - i))
627  				break;
628  			goto success;
629  		}
630  	}
631  	pr_info("Fast TSC calibration failed\n");
632  	return 0;
633  
634  success:
635  	/*
636  	 * Ok, if we get here, then we've seen the
637  	 * MSB of the PIT decrement 'i' times, and the
638  	 * error has shrunk to less than 500 ppm.
639  	 *
640  	 * As a result, we can depend on there not being
641  	 * any odd delays anywhere, and the TSC reads are
642  	 * reliable (within the error).
643  	 *
644  	 * kHz = ticks / time-in-seconds / 1000;
645  	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
646  	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
647  	 */
648  	delta *= PIT_TICK_RATE;
649  	do_div(delta, i*256*1000);
650  	pr_info("Fast TSC calibration using PIT\n");
651  	return delta;
652  }
653  
654  /**
655   * native_calibrate_tsc
656   * Determine TSC frequency via CPUID, else return 0.
657   */
native_calibrate_tsc(void)658  unsigned long native_calibrate_tsc(void)
659  {
660  	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
661  	unsigned int crystal_khz;
662  
663  	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
664  		return 0;
665  
666  	if (boot_cpu_data.cpuid_level < 0x15)
667  		return 0;
668  
669  	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
670  
671  	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
672  	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
673  
674  	if (ebx_numerator == 0 || eax_denominator == 0)
675  		return 0;
676  
677  	crystal_khz = ecx_hz / 1000;
678  
679  	/*
680  	 * Denverton SoCs don't report crystal clock, and also don't support
681  	 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
682  	 * clock.
683  	 */
684  	if (crystal_khz == 0 &&
685  			boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
686  		crystal_khz = 25000;
687  
688  	/*
689  	 * TSC frequency reported directly by CPUID is a "hardware reported"
690  	 * frequency and is the most accurate one so far we have. This
691  	 * is considered a known frequency.
692  	 */
693  	if (crystal_khz != 0)
694  		setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
695  
696  	/*
697  	 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
698  	 * clock, but we can easily calculate it to a high degree of accuracy
699  	 * by considering the crystal ratio and the CPU speed.
700  	 */
701  	if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
702  		unsigned int eax_base_mhz, ebx, ecx, edx;
703  
704  		cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
705  		crystal_khz = eax_base_mhz * 1000 *
706  			eax_denominator / ebx_numerator;
707  	}
708  
709  	if (crystal_khz == 0)
710  		return 0;
711  
712  	/*
713  	 * For Atom SoCs TSC is the only reliable clocksource.
714  	 * Mark TSC reliable so no watchdog on it.
715  	 */
716  	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
717  		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
718  
719  #ifdef CONFIG_X86_LOCAL_APIC
720  	/*
721  	 * The local APIC appears to be fed by the core crystal clock
722  	 * (which sounds entirely sensible). We can set the global
723  	 * lapic_timer_period here to avoid having to calibrate the APIC
724  	 * timer later.
725  	 */
726  	lapic_timer_period = crystal_khz * 1000 / HZ;
727  #endif
728  
729  	return crystal_khz * ebx_numerator / eax_denominator;
730  }
731  
cpu_khz_from_cpuid(void)732  static unsigned long cpu_khz_from_cpuid(void)
733  {
734  	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
735  
736  	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
737  		return 0;
738  
739  	if (boot_cpu_data.cpuid_level < 0x16)
740  		return 0;
741  
742  	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
743  
744  	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
745  
746  	return eax_base_mhz * 1000;
747  }
748  
749  /*
750   * calibrate cpu using pit, hpet, and ptimer methods. They are available
751   * later in boot after acpi is initialized.
752   */
pit_hpet_ptimer_calibrate_cpu(void)753  static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
754  {
755  	u64 tsc1, tsc2, delta, ref1, ref2;
756  	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
757  	unsigned long flags, latch, ms;
758  	int hpet = is_hpet_enabled(), i, loopmin;
759  
760  	/*
761  	 * Run 5 calibration loops to get the lowest frequency value
762  	 * (the best estimate). We use two different calibration modes
763  	 * here:
764  	 *
765  	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
766  	 * load a timeout of 50ms. We read the time right after we
767  	 * started the timer and wait until the PIT count down reaches
768  	 * zero. In each wait loop iteration we read the TSC and check
769  	 * the delta to the previous read. We keep track of the min
770  	 * and max values of that delta. The delta is mostly defined
771  	 * by the IO time of the PIT access, so we can detect when
772  	 * any disturbance happened between the two reads. If the
773  	 * maximum time is significantly larger than the minimum time,
774  	 * then we discard the result and have another try.
775  	 *
776  	 * 2) Reference counter. If available we use the HPET or the
777  	 * PMTIMER as a reference to check the sanity of that value.
778  	 * We use separate TSC readouts and check inside of the
779  	 * reference read for any possible disturbance. We discard
780  	 * disturbed values here as well. We do that around the PIT
781  	 * calibration delay loop as we have to wait for a certain
782  	 * amount of time anyway.
783  	 */
784  
785  	/* Preset PIT loop values */
786  	latch = CAL_LATCH;
787  	ms = CAL_MS;
788  	loopmin = CAL_PIT_LOOPS;
789  
790  	for (i = 0; i < 3; i++) {
791  		unsigned long tsc_pit_khz;
792  
793  		/*
794  		 * Read the start value and the reference count of
795  		 * hpet/pmtimer when available. Then do the PIT
796  		 * calibration, which will take at least 50ms, and
797  		 * read the end value.
798  		 */
799  		local_irq_save(flags);
800  		tsc1 = tsc_read_refs(&ref1, hpet);
801  		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
802  		tsc2 = tsc_read_refs(&ref2, hpet);
803  		local_irq_restore(flags);
804  
805  		/* Pick the lowest PIT TSC calibration so far */
806  		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
807  
808  		/* hpet or pmtimer available ? */
809  		if (ref1 == ref2)
810  			continue;
811  
812  		/* Check, whether the sampling was disturbed */
813  		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
814  			continue;
815  
816  		tsc2 = (tsc2 - tsc1) * 1000000LL;
817  		if (hpet)
818  			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
819  		else
820  			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
821  
822  		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
823  
824  		/* Check the reference deviation */
825  		delta = ((u64) tsc_pit_min) * 100;
826  		do_div(delta, tsc_ref_min);
827  
828  		/*
829  		 * If both calibration results are inside a 10% window
830  		 * then we can be sure, that the calibration
831  		 * succeeded. We break out of the loop right away. We
832  		 * use the reference value, as it is more precise.
833  		 */
834  		if (delta >= 90 && delta <= 110) {
835  			pr_info("PIT calibration matches %s. %d loops\n",
836  				hpet ? "HPET" : "PMTIMER", i + 1);
837  			return tsc_ref_min;
838  		}
839  
840  		/*
841  		 * Check whether PIT failed more than once. This
842  		 * happens in virtualized environments. We need to
843  		 * give the virtual PC a slightly longer timeframe for
844  		 * the HPET/PMTIMER to make the result precise.
845  		 */
846  		if (i == 1 && tsc_pit_min == ULONG_MAX) {
847  			latch = CAL2_LATCH;
848  			ms = CAL2_MS;
849  			loopmin = CAL2_PIT_LOOPS;
850  		}
851  	}
852  
853  	/*
854  	 * Now check the results.
855  	 */
856  	if (tsc_pit_min == ULONG_MAX) {
857  		/* PIT gave no useful value */
858  		pr_warn("Unable to calibrate against PIT\n");
859  
860  		/* We don't have an alternative source, disable TSC */
861  		if (!hpet && !ref1 && !ref2) {
862  			pr_notice("No reference (HPET/PMTIMER) available\n");
863  			return 0;
864  		}
865  
866  		/* The alternative source failed as well, disable TSC */
867  		if (tsc_ref_min == ULONG_MAX) {
868  			pr_warn("HPET/PMTIMER calibration failed\n");
869  			return 0;
870  		}
871  
872  		/* Use the alternative source */
873  		pr_info("using %s reference calibration\n",
874  			hpet ? "HPET" : "PMTIMER");
875  
876  		return tsc_ref_min;
877  	}
878  
879  	/* We don't have an alternative source, use the PIT calibration value */
880  	if (!hpet && !ref1 && !ref2) {
881  		pr_info("Using PIT calibration value\n");
882  		return tsc_pit_min;
883  	}
884  
885  	/* The alternative source failed, use the PIT calibration value */
886  	if (tsc_ref_min == ULONG_MAX) {
887  		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
888  		return tsc_pit_min;
889  	}
890  
891  	/*
892  	 * The calibration values differ too much. In doubt, we use
893  	 * the PIT value as we know that there are PMTIMERs around
894  	 * running at double speed. At least we let the user know:
895  	 */
896  	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
897  		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
898  	pr_info("Using PIT calibration value\n");
899  	return tsc_pit_min;
900  }
901  
902  /**
903   * native_calibrate_cpu_early - can calibrate the cpu early in boot
904   */
native_calibrate_cpu_early(void)905  unsigned long native_calibrate_cpu_early(void)
906  {
907  	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
908  
909  	if (!fast_calibrate)
910  		fast_calibrate = cpu_khz_from_msr();
911  	if (!fast_calibrate) {
912  		local_irq_save(flags);
913  		fast_calibrate = quick_pit_calibrate();
914  		local_irq_restore(flags);
915  	}
916  	return fast_calibrate;
917  }
918  
919  
920  /**
921   * native_calibrate_cpu - calibrate the cpu
922   */
native_calibrate_cpu(void)923  static unsigned long native_calibrate_cpu(void)
924  {
925  	unsigned long tsc_freq = native_calibrate_cpu_early();
926  
927  	if (!tsc_freq)
928  		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
929  
930  	return tsc_freq;
931  }
932  
recalibrate_cpu_khz(void)933  void recalibrate_cpu_khz(void)
934  {
935  #ifndef CONFIG_SMP
936  	unsigned long cpu_khz_old = cpu_khz;
937  
938  	if (!boot_cpu_has(X86_FEATURE_TSC))
939  		return;
940  
941  	cpu_khz = x86_platform.calibrate_cpu();
942  	tsc_khz = x86_platform.calibrate_tsc();
943  	if (tsc_khz == 0)
944  		tsc_khz = cpu_khz;
945  	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
946  		cpu_khz = tsc_khz;
947  	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
948  						    cpu_khz_old, cpu_khz);
949  #endif
950  }
951  EXPORT_SYMBOL_GPL(recalibrate_cpu_khz);
952  
953  
954  static unsigned long long cyc2ns_suspend;
955  
tsc_save_sched_clock_state(void)956  void tsc_save_sched_clock_state(void)
957  {
958  	if (!sched_clock_stable())
959  		return;
960  
961  	cyc2ns_suspend = sched_clock();
962  }
963  
964  /*
965   * Even on processors with invariant TSC, TSC gets reset in some the
966   * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
967   * arbitrary value (still sync'd across cpu's) during resume from such sleep
968   * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
969   * that sched_clock() continues from the point where it was left off during
970   * suspend.
971   */
tsc_restore_sched_clock_state(void)972  void tsc_restore_sched_clock_state(void)
973  {
974  	unsigned long long offset;
975  	unsigned long flags;
976  	int cpu;
977  
978  	if (!sched_clock_stable())
979  		return;
980  
981  	local_irq_save(flags);
982  
983  	/*
984  	 * We're coming out of suspend, there's no concurrency yet; don't
985  	 * bother being nice about the RCU stuff, just write to both
986  	 * data fields.
987  	 */
988  
989  	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
990  	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
991  
992  	offset = cyc2ns_suspend - sched_clock();
993  
994  	for_each_possible_cpu(cpu) {
995  		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
996  		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
997  	}
998  
999  	local_irq_restore(flags);
1000  }
1001  
1002  #ifdef CONFIG_CPU_FREQ
1003  /*
1004   * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
1005   * changes.
1006   *
1007   * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
1008   * as unstable and give up in those cases.
1009   *
1010   * Should fix up last_tsc too. Currently gettimeofday in the
1011   * first tick after the change will be slightly wrong.
1012   */
1013  
1014  static unsigned int  ref_freq;
1015  static unsigned long loops_per_jiffy_ref;
1016  static unsigned long tsc_khz_ref;
1017  
time_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)1018  static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1019  				void *data)
1020  {
1021  	struct cpufreq_freqs *freq = data;
1022  
1023  	if (num_online_cpus() > 1) {
1024  		mark_tsc_unstable("cpufreq changes on SMP");
1025  		return 0;
1026  	}
1027  
1028  	if (!ref_freq) {
1029  		ref_freq = freq->old;
1030  		loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
1031  		tsc_khz_ref = tsc_khz;
1032  	}
1033  
1034  	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1035  	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1036  		boot_cpu_data.loops_per_jiffy =
1037  			cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1038  
1039  		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1040  		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1041  			mark_tsc_unstable("cpufreq changes");
1042  
1043  		set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1044  	}
1045  
1046  	return 0;
1047  }
1048  
1049  static struct notifier_block time_cpufreq_notifier_block = {
1050  	.notifier_call  = time_cpufreq_notifier
1051  };
1052  
cpufreq_register_tsc_scaling(void)1053  static int __init cpufreq_register_tsc_scaling(void)
1054  {
1055  	if (!boot_cpu_has(X86_FEATURE_TSC))
1056  		return 0;
1057  	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1058  		return 0;
1059  	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1060  				CPUFREQ_TRANSITION_NOTIFIER);
1061  	return 0;
1062  }
1063  
1064  core_initcall(cpufreq_register_tsc_scaling);
1065  
1066  #endif /* CONFIG_CPU_FREQ */
1067  
1068  #define ART_CPUID_LEAF (0x15)
1069  #define ART_MIN_DENOMINATOR (1)
1070  
1071  
1072  /*
1073   * If ART is present detect the numerator:denominator to convert to TSC
1074   */
detect_art(void)1075  static void __init detect_art(void)
1076  {
1077  	unsigned int unused[2];
1078  
1079  	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1080  		return;
1081  
1082  	/*
1083  	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1084  	 * and the TSC counter resets must not occur asynchronously.
1085  	 */
1086  	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1087  	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1088  	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1089  	    tsc_async_resets)
1090  		return;
1091  
1092  	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1093  	      &art_to_tsc_numerator, unused, unused+1);
1094  
1095  	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1096  		return;
1097  
1098  	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1099  
1100  	/* Make this sticky over multiple CPU init calls */
1101  	setup_force_cpu_cap(X86_FEATURE_ART);
1102  }
1103  
1104  
1105  /* clocksource code */
1106  
tsc_resume(struct clocksource * cs)1107  static void tsc_resume(struct clocksource *cs)
1108  {
1109  	tsc_verify_tsc_adjust(true);
1110  }
1111  
1112  /*
1113   * We used to compare the TSC to the cycle_last value in the clocksource
1114   * structure to avoid a nasty time-warp. This can be observed in a
1115   * very small window right after one CPU updated cycle_last under
1116   * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1117   * is smaller than the cycle_last reference value due to a TSC which
1118   * is slightly behind. This delta is nowhere else observable, but in
1119   * that case it results in a forward time jump in the range of hours
1120   * due to the unsigned delta calculation of the time keeping core
1121   * code, which is necessary to support wrapping clocksources like pm
1122   * timer.
1123   *
1124   * This sanity check is now done in the core timekeeping code.
1125   * checking the result of read_tsc() - cycle_last for being negative.
1126   * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1127   */
read_tsc(struct clocksource * cs)1128  static u64 read_tsc(struct clocksource *cs)
1129  {
1130  	return (u64)rdtsc_ordered();
1131  }
1132  
tsc_cs_mark_unstable(struct clocksource * cs)1133  static void tsc_cs_mark_unstable(struct clocksource *cs)
1134  {
1135  	if (tsc_unstable)
1136  		return;
1137  
1138  	tsc_unstable = 1;
1139  	if (using_native_sched_clock())
1140  		clear_sched_clock_stable();
1141  	disable_sched_clock_irqtime();
1142  	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1143  }
1144  
tsc_cs_tick_stable(struct clocksource * cs)1145  static void tsc_cs_tick_stable(struct clocksource *cs)
1146  {
1147  	if (tsc_unstable)
1148  		return;
1149  
1150  	if (using_native_sched_clock())
1151  		sched_clock_tick_stable();
1152  }
1153  
tsc_cs_enable(struct clocksource * cs)1154  static int tsc_cs_enable(struct clocksource *cs)
1155  {
1156  	vclocks_set_used(VDSO_CLOCKMODE_TSC);
1157  	return 0;
1158  }
1159  
1160  /*
1161   * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1162   */
1163  static struct clocksource clocksource_tsc_early = {
1164  	.name			= "tsc-early",
1165  	.rating			= 299,
1166  	.uncertainty_margin	= 32 * NSEC_PER_MSEC,
1167  	.read			= read_tsc,
1168  	.mask			= CLOCKSOURCE_MASK(64),
1169  	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1170  				  CLOCK_SOURCE_MUST_VERIFY,
1171  	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1172  	.enable			= tsc_cs_enable,
1173  	.resume			= tsc_resume,
1174  	.mark_unstable		= tsc_cs_mark_unstable,
1175  	.tick_stable		= tsc_cs_tick_stable,
1176  	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1177  };
1178  
1179  /*
1180   * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1181   * this one will immediately take over. We will only register if TSC has
1182   * been found good.
1183   */
1184  static struct clocksource clocksource_tsc = {
1185  	.name			= "tsc",
1186  	.rating			= 300,
1187  	.read			= read_tsc,
1188  	.mask			= CLOCKSOURCE_MASK(64),
1189  	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1190  				  CLOCK_SOURCE_VALID_FOR_HRES |
1191  				  CLOCK_SOURCE_MUST_VERIFY |
1192  				  CLOCK_SOURCE_VERIFY_PERCPU,
1193  	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1194  	.enable			= tsc_cs_enable,
1195  	.resume			= tsc_resume,
1196  	.mark_unstable		= tsc_cs_mark_unstable,
1197  	.tick_stable		= tsc_cs_tick_stable,
1198  	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1199  };
1200  
mark_tsc_unstable(char * reason)1201  void mark_tsc_unstable(char *reason)
1202  {
1203  	if (tsc_unstable)
1204  		return;
1205  
1206  	tsc_unstable = 1;
1207  	if (using_native_sched_clock())
1208  		clear_sched_clock_stable();
1209  	disable_sched_clock_irqtime();
1210  	pr_info("Marking TSC unstable due to %s\n", reason);
1211  
1212  	clocksource_mark_unstable(&clocksource_tsc_early);
1213  	clocksource_mark_unstable(&clocksource_tsc);
1214  }
1215  
1216  EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1217  
tsc_disable_clocksource_watchdog(void)1218  static void __init tsc_disable_clocksource_watchdog(void)
1219  {
1220  	clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1221  	clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1222  }
1223  
tsc_clocksource_watchdog_disabled(void)1224  bool tsc_clocksource_watchdog_disabled(void)
1225  {
1226  	return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) &&
1227  	       tsc_as_watchdog && !no_tsc_watchdog;
1228  }
1229  
check_system_tsc_reliable(void)1230  static void __init check_system_tsc_reliable(void)
1231  {
1232  #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1233  	if (is_geode_lx()) {
1234  		/* RTSC counts during suspend */
1235  #define RTSC_SUSP 0x100
1236  		unsigned long res_low, res_high;
1237  
1238  		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1239  		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1240  		if (res_low & RTSC_SUSP)
1241  			tsc_clocksource_reliable = 1;
1242  	}
1243  #endif
1244  	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1245  		tsc_clocksource_reliable = 1;
1246  
1247  	/*
1248  	 * Disable the clocksource watchdog when the system has:
1249  	 *  - TSC running at constant frequency
1250  	 *  - TSC which does not stop in C-States
1251  	 *  - the TSC_ADJUST register which allows to detect even minimal
1252  	 *    modifications
1253  	 *  - not more than two sockets. As the number of sockets cannot be
1254  	 *    evaluated at the early boot stage where this has to be
1255  	 *    invoked, check the number of online memory nodes as a
1256  	 *    fallback solution which is an reasonable estimate.
1257  	 */
1258  	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1259  	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
1260  	    boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
1261  	    nr_online_nodes <= 4)
1262  		tsc_disable_clocksource_watchdog();
1263  }
1264  
1265  /*
1266   * Make an educated guess if the TSC is trustworthy and synchronized
1267   * over all CPUs.
1268   */
unsynchronized_tsc(void)1269  int unsynchronized_tsc(void)
1270  {
1271  	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1272  		return 1;
1273  
1274  #ifdef CONFIG_SMP
1275  	if (apic_is_clustered_box())
1276  		return 1;
1277  #endif
1278  
1279  	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1280  		return 0;
1281  
1282  	if (tsc_clocksource_reliable)
1283  		return 0;
1284  	/*
1285  	 * Intel systems are normally all synchronized.
1286  	 * Exceptions must mark TSC as unstable:
1287  	 */
1288  	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1289  		/* assume multi socket systems are not synchronized: */
1290  		if (num_possible_cpus() > 1)
1291  			return 1;
1292  	}
1293  
1294  	return 0;
1295  }
1296  
1297  /*
1298   * Convert ART to TSC given numerator/denominator found in detect_art()
1299   */
convert_art_to_tsc(u64 art)1300  struct system_counterval_t convert_art_to_tsc(u64 art)
1301  {
1302  	u64 tmp, res, rem;
1303  
1304  	rem = do_div(art, art_to_tsc_denominator);
1305  
1306  	res = art * art_to_tsc_numerator;
1307  	tmp = rem * art_to_tsc_numerator;
1308  
1309  	do_div(tmp, art_to_tsc_denominator);
1310  	res += tmp + art_to_tsc_offset;
1311  
1312  	return (struct system_counterval_t) {.cs = art_related_clocksource,
1313  			.cycles = res};
1314  }
1315  EXPORT_SYMBOL(convert_art_to_tsc);
1316  
1317  /**
1318   * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1319   * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1320   *
1321   * PTM requires all timestamps to be in units of nanoseconds. When user
1322   * software requests a cross-timestamp, this function converts system timestamp
1323   * to TSC.
1324   *
1325   * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1326   * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1327   * that this flag is set before conversion to TSC is attempted.
1328   *
1329   * Return:
1330   * struct system_counterval_t - system counter value with the pointer to the
1331   *	corresponding clocksource
1332   *	@cycles:	System counter value
1333   *	@cs:		Clocksource corresponding to system counter value. Used
1334   *			by timekeeping code to verify comparability of two cycle
1335   *			values.
1336   */
1337  
convert_art_ns_to_tsc(u64 art_ns)1338  struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1339  {
1340  	u64 tmp, res, rem;
1341  
1342  	rem = do_div(art_ns, USEC_PER_SEC);
1343  
1344  	res = art_ns * tsc_khz;
1345  	tmp = rem * tsc_khz;
1346  
1347  	do_div(tmp, USEC_PER_SEC);
1348  	res += tmp;
1349  
1350  	return (struct system_counterval_t) { .cs = art_related_clocksource,
1351  					      .cycles = res};
1352  }
1353  EXPORT_SYMBOL(convert_art_ns_to_tsc);
1354  
1355  
1356  static void tsc_refine_calibration_work(struct work_struct *work);
1357  static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1358  /**
1359   * tsc_refine_calibration_work - Further refine tsc freq calibration
1360   * @work - ignored.
1361   *
1362   * This functions uses delayed work over a period of a
1363   * second to further refine the TSC freq value. Since this is
1364   * timer based, instead of loop based, we don't block the boot
1365   * process while this longer calibration is done.
1366   *
1367   * If there are any calibration anomalies (too many SMIs, etc),
1368   * or the refined calibration is off by 1% of the fast early
1369   * calibration, we throw out the new calibration and use the
1370   * early calibration.
1371   */
tsc_refine_calibration_work(struct work_struct * work)1372  static void tsc_refine_calibration_work(struct work_struct *work)
1373  {
1374  	static u64 tsc_start = ULLONG_MAX, ref_start;
1375  	static int hpet;
1376  	u64 tsc_stop, ref_stop, delta;
1377  	unsigned long freq;
1378  	int cpu;
1379  
1380  	/* Don't bother refining TSC on unstable systems */
1381  	if (tsc_unstable)
1382  		goto unreg;
1383  
1384  	/*
1385  	 * Since the work is started early in boot, we may be
1386  	 * delayed the first time we expire. So set the workqueue
1387  	 * again once we know timers are working.
1388  	 */
1389  	if (tsc_start == ULLONG_MAX) {
1390  restart:
1391  		/*
1392  		 * Only set hpet once, to avoid mixing hardware
1393  		 * if the hpet becomes enabled later.
1394  		 */
1395  		hpet = is_hpet_enabled();
1396  		tsc_start = tsc_read_refs(&ref_start, hpet);
1397  		schedule_delayed_work(&tsc_irqwork, HZ);
1398  		return;
1399  	}
1400  
1401  	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1402  
1403  	/* hpet or pmtimer available ? */
1404  	if (ref_start == ref_stop)
1405  		goto out;
1406  
1407  	/* Check, whether the sampling was disturbed */
1408  	if (tsc_stop == ULLONG_MAX)
1409  		goto restart;
1410  
1411  	delta = tsc_stop - tsc_start;
1412  	delta *= 1000000LL;
1413  	if (hpet)
1414  		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1415  	else
1416  		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1417  
1418  	/* Will hit this only if tsc_force_recalibrate has been set */
1419  	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1420  
1421  		/* Warn if the deviation exceeds 500 ppm */
1422  		if (abs(tsc_khz - freq) > (tsc_khz >> 11)) {
1423  			pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n");
1424  			pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n",
1425  				(unsigned long)tsc_khz / 1000,
1426  				(unsigned long)tsc_khz % 1000);
1427  		}
1428  
1429  		pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n",
1430  			hpet ? "HPET" : "PM_TIMER",
1431  			(unsigned long)freq / 1000,
1432  			(unsigned long)freq % 1000);
1433  
1434  		return;
1435  	}
1436  
1437  	/* Make sure we're within 1% */
1438  	if (abs(tsc_khz - freq) > tsc_khz/100)
1439  		goto out;
1440  
1441  	tsc_khz = freq;
1442  	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1443  		(unsigned long)tsc_khz / 1000,
1444  		(unsigned long)tsc_khz % 1000);
1445  
1446  	/* Inform the TSC deadline clockevent devices about the recalibration */
1447  	lapic_update_tsc_freq();
1448  
1449  	/* Update the sched_clock() rate to match the clocksource one */
1450  	for_each_possible_cpu(cpu)
1451  		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1452  
1453  out:
1454  	if (tsc_unstable)
1455  		goto unreg;
1456  
1457  	if (boot_cpu_has(X86_FEATURE_ART))
1458  		art_related_clocksource = &clocksource_tsc;
1459  	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1460  unreg:
1461  	clocksource_unregister(&clocksource_tsc_early);
1462  }
1463  
1464  
init_tsc_clocksource(void)1465  static int __init init_tsc_clocksource(void)
1466  {
1467  	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1468  		return 0;
1469  
1470  	if (tsc_unstable) {
1471  		clocksource_unregister(&clocksource_tsc_early);
1472  		return 0;
1473  	}
1474  
1475  	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1476  		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1477  
1478  	/*
1479  	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1480  	 * the refined calibration and directly register it as a clocksource.
1481  	 */
1482  	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1483  		if (boot_cpu_has(X86_FEATURE_ART))
1484  			art_related_clocksource = &clocksource_tsc;
1485  		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1486  		clocksource_unregister(&clocksource_tsc_early);
1487  
1488  		if (!tsc_force_recalibrate)
1489  			return 0;
1490  	}
1491  
1492  	schedule_delayed_work(&tsc_irqwork, 0);
1493  	return 0;
1494  }
1495  /*
1496   * We use device_initcall here, to ensure we run after the hpet
1497   * is fully initialized, which may occur at fs_initcall time.
1498   */
1499  device_initcall(init_tsc_clocksource);
1500  
determine_cpu_tsc_frequencies(bool early)1501  static bool __init determine_cpu_tsc_frequencies(bool early)
1502  {
1503  	/* Make sure that cpu and tsc are not already calibrated */
1504  	WARN_ON(cpu_khz || tsc_khz);
1505  
1506  	if (early) {
1507  		cpu_khz = x86_platform.calibrate_cpu();
1508  		if (tsc_early_khz)
1509  			tsc_khz = tsc_early_khz;
1510  		else
1511  			tsc_khz = x86_platform.calibrate_tsc();
1512  	} else {
1513  		/* We should not be here with non-native cpu calibration */
1514  		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1515  		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1516  	}
1517  
1518  	/*
1519  	 * Trust non-zero tsc_khz as authoritative,
1520  	 * and use it to sanity check cpu_khz,
1521  	 * which will be off if system timer is off.
1522  	 */
1523  	if (tsc_khz == 0)
1524  		tsc_khz = cpu_khz;
1525  	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1526  		cpu_khz = tsc_khz;
1527  
1528  	if (tsc_khz == 0)
1529  		return false;
1530  
1531  	pr_info("Detected %lu.%03lu MHz processor\n",
1532  		(unsigned long)cpu_khz / KHZ,
1533  		(unsigned long)cpu_khz % KHZ);
1534  
1535  	if (cpu_khz != tsc_khz) {
1536  		pr_info("Detected %lu.%03lu MHz TSC",
1537  			(unsigned long)tsc_khz / KHZ,
1538  			(unsigned long)tsc_khz % KHZ);
1539  	}
1540  	return true;
1541  }
1542  
get_loops_per_jiffy(void)1543  static unsigned long __init get_loops_per_jiffy(void)
1544  {
1545  	u64 lpj = (u64)tsc_khz * KHZ;
1546  
1547  	do_div(lpj, HZ);
1548  	return lpj;
1549  }
1550  
tsc_enable_sched_clock(void)1551  static void __init tsc_enable_sched_clock(void)
1552  {
1553  	loops_per_jiffy = get_loops_per_jiffy();
1554  	use_tsc_delay();
1555  
1556  	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1557  	tsc_store_and_check_tsc_adjust(true);
1558  	cyc2ns_init_boot_cpu();
1559  	static_branch_enable(&__use_tsc);
1560  }
1561  
tsc_early_init(void)1562  void __init tsc_early_init(void)
1563  {
1564  	if (!boot_cpu_has(X86_FEATURE_TSC))
1565  		return;
1566  	/* Don't change UV TSC multi-chassis synchronization */
1567  	if (is_early_uv_system())
1568  		return;
1569  	if (!determine_cpu_tsc_frequencies(true))
1570  		return;
1571  	tsc_enable_sched_clock();
1572  }
1573  
tsc_init(void)1574  void __init tsc_init(void)
1575  {
1576  	if (!cpu_feature_enabled(X86_FEATURE_TSC)) {
1577  		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1578  		return;
1579  	}
1580  
1581  	/*
1582  	 * native_calibrate_cpu_early can only calibrate using methods that are
1583  	 * available early in boot.
1584  	 */
1585  	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1586  		x86_platform.calibrate_cpu = native_calibrate_cpu;
1587  
1588  	if (!tsc_khz) {
1589  		/* We failed to determine frequencies earlier, try again */
1590  		if (!determine_cpu_tsc_frequencies(false)) {
1591  			mark_tsc_unstable("could not calculate TSC khz");
1592  			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1593  			return;
1594  		}
1595  		tsc_enable_sched_clock();
1596  	}
1597  
1598  	cyc2ns_init_secondary_cpus();
1599  
1600  	if (!no_sched_irq_time)
1601  		enable_sched_clock_irqtime();
1602  
1603  	lpj_fine = get_loops_per_jiffy();
1604  
1605  	check_system_tsc_reliable();
1606  
1607  	if (unsynchronized_tsc()) {
1608  		mark_tsc_unstable("TSCs unsynchronized");
1609  		return;
1610  	}
1611  
1612  	if (tsc_clocksource_reliable || no_tsc_watchdog)
1613  		tsc_disable_clocksource_watchdog();
1614  
1615  	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1616  	detect_art();
1617  }
1618  
1619  #ifdef CONFIG_SMP
1620  /*
1621   * Check whether existing calibration data can be reused.
1622   */
calibrate_delay_is_known(void)1623  unsigned long calibrate_delay_is_known(void)
1624  {
1625  	int sibling, cpu = smp_processor_id();
1626  	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1627  	const struct cpumask *mask = topology_core_cpumask(cpu);
1628  
1629  	/*
1630  	 * If TSC has constant frequency and TSC is synchronized across
1631  	 * sockets then reuse CPU0 calibration.
1632  	 */
1633  	if (constant_tsc && !tsc_unstable)
1634  		return cpu_data(0).loops_per_jiffy;
1635  
1636  	/*
1637  	 * If TSC has constant frequency and TSC is not synchronized across
1638  	 * sockets and this is not the first CPU in the socket, then reuse
1639  	 * the calibration value of an already online CPU on that socket.
1640  	 *
1641  	 * This assumes that CONSTANT_TSC is consistent for all CPUs in a
1642  	 * socket.
1643  	 */
1644  	if (!constant_tsc || !mask)
1645  		return 0;
1646  
1647  	sibling = cpumask_any_but(mask, cpu);
1648  	if (sibling < nr_cpu_ids)
1649  		return cpu_data(sibling).loops_per_jiffy;
1650  	return 0;
1651  }
1652  #endif
1653