1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for DBRI sound chip found on Sparcs.
4 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
5 *
6 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
7 *
8 * Based entirely upon drivers/sbus/audio/dbri.c which is:
9 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
10 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
11 *
12 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
13 * on Sun SPARCStation 10, 20, LX and Voyager models.
14 *
15 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
16 * data time multiplexer with ISDN support (aka T7259)
17 * Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
18 * CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
19 * Documentation:
20 * - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
21 * Sparc Technology Business (courtesy of Sun Support)
22 * - Data sheet of the T7903, a newer but very similar ISA bus equivalent
23 * available from the Lucent (formerly AT&T microelectronics) home
24 * page.
25 * - https://www.freesoft.org/Linux/DBRI/
26 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
27 * Interfaces: CHI, Audio In & Out, 2 bits parallel
28 * Documentation: from the Crystal Semiconductor home page.
29 *
30 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
31 * memory and a serial device (long pipes, no. 0-15) or between two serial
32 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
33 * device (short pipes).
34 * A timeslot defines the bit-offset and no. of bits read from a serial device.
35 * The timeslots are linked to 6 circular lists, one for each direction for
36 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
37 * (the second one is a monitor/tee pipe, valid only for serial input).
38 *
39 * The mmcodec is connected via the CHI bus and needs the data & some
40 * parameters (volume, output selection) time multiplexed in 8 byte
41 * chunks. It also has a control mode, which serves for audio format setting.
42 *
43 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
44 * the same CHI bus, so I thought perhaps it is possible to use the on-board
45 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
46 * audio devices. But the SUN HW group decided against it, at least on my
47 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
48 * connected.
49 *
50 * I've tried to stick to the following function naming conventions:
51 * snd_* ALSA stuff
52 * cs4215_* CS4215 codec specific stuff
53 * dbri_* DBRI high-level stuff
54 * other DBRI low-level stuff
55 */
56
57 #include <linux/interrupt.h>
58 #include <linux/delay.h>
59 #include <linux/irq.h>
60 #include <linux/io.h>
61 #include <linux/dma-mapping.h>
62 #include <linux/gfp.h>
63
64 #include <sound/core.h>
65 #include <sound/pcm.h>
66 #include <sound/pcm_params.h>
67 #include <sound/info.h>
68 #include <sound/control.h>
69 #include <sound/initval.h>
70
71 #include <linux/of.h>
72 #include <linux/platform_device.h>
73 #include <linux/atomic.h>
74 #include <linux/module.h>
75
76 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
77 MODULE_DESCRIPTION("Sun DBRI");
78 MODULE_LICENSE("GPL");
79
80 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
81 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
82 /* Enable this card */
83 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
84
85 module_param_array(index, int, NULL, 0444);
86 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
87 module_param_array(id, charp, NULL, 0444);
88 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
89 module_param_array(enable, bool, NULL, 0444);
90 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
91
92 #undef DBRI_DEBUG
93
94 #define D_INT (1<<0)
95 #define D_GEN (1<<1)
96 #define D_CMD (1<<2)
97 #define D_MM (1<<3)
98 #define D_USR (1<<4)
99 #define D_DESC (1<<5)
100
101 static int dbri_debug;
102 module_param(dbri_debug, int, 0644);
103 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
104
105 #ifdef DBRI_DEBUG
106 static const char * const cmds[] = {
107 "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
108 "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
109 };
110
111 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
112
113 #else
114 #define dprintk(a, x...) do { } while (0)
115
116 #endif /* DBRI_DEBUG */
117
118 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) | \
119 (intr << 27) | \
120 value)
121
122 /***************************************************************************
123 CS4215 specific definitions and structures
124 ****************************************************************************/
125
126 struct cs4215 {
127 __u8 data[4]; /* Data mode: Time slots 5-8 */
128 __u8 ctrl[4]; /* Ctrl mode: Time slots 1-4 */
129 __u8 onboard;
130 __u8 offset; /* Bit offset from frame sync to time slot 1 */
131 volatile __u32 status;
132 volatile __u32 version;
133 __u8 precision; /* In bits, either 8 or 16 */
134 __u8 channels; /* 1 or 2 */
135 };
136
137 /*
138 * Control mode first
139 */
140
141 /* Time Slot 1, Status register */
142 #define CS4215_CLB (1<<2) /* Control Latch Bit */
143 #define CS4215_OLB (1<<3) /* 1: line: 2.0V, speaker 4V */
144 /* 0: line: 2.8V, speaker 8V */
145 #define CS4215_MLB (1<<4) /* 1: Microphone: 20dB gain disabled */
146 #define CS4215_RSRVD_1 (1<<5)
147
148 /* Time Slot 2, Data Format Register */
149 #define CS4215_DFR_LINEAR16 0
150 #define CS4215_DFR_ULAW 1
151 #define CS4215_DFR_ALAW 2
152 #define CS4215_DFR_LINEAR8 3
153 #define CS4215_DFR_STEREO (1<<2)
154 static struct {
155 unsigned short freq;
156 unsigned char xtal;
157 unsigned char csval;
158 } CS4215_FREQ[] = {
159 { 8000, (1 << 4), (0 << 3) },
160 { 16000, (1 << 4), (1 << 3) },
161 { 27429, (1 << 4), (2 << 3) }, /* Actually 24428.57 */
162 { 32000, (1 << 4), (3 << 3) },
163 /* { NA, (1 << 4), (4 << 3) }, */
164 /* { NA, (1 << 4), (5 << 3) }, */
165 { 48000, (1 << 4), (6 << 3) },
166 { 9600, (1 << 4), (7 << 3) },
167 { 5512, (2 << 4), (0 << 3) }, /* Actually 5512.5 */
168 { 11025, (2 << 4), (1 << 3) },
169 { 18900, (2 << 4), (2 << 3) },
170 { 22050, (2 << 4), (3 << 3) },
171 { 37800, (2 << 4), (4 << 3) },
172 { 44100, (2 << 4), (5 << 3) },
173 { 33075, (2 << 4), (6 << 3) },
174 { 6615, (2 << 4), (7 << 3) },
175 { 0, 0, 0}
176 };
177
178 #define CS4215_HPF (1<<7) /* High Pass Filter, 1: Enabled */
179
180 #define CS4215_12_MASK 0xfcbf /* Mask off reserved bits in slot 1 & 2 */
181
182 /* Time Slot 3, Serial Port Control register */
183 #define CS4215_XEN (1<<0) /* 0: Enable serial output */
184 #define CS4215_XCLK (1<<1) /* 1: Master mode: Generate SCLK */
185 #define CS4215_BSEL_64 (0<<2) /* Bitrate: 64 bits per frame */
186 #define CS4215_BSEL_128 (1<<2)
187 #define CS4215_BSEL_256 (2<<2)
188 #define CS4215_MCK_MAST (0<<4) /* Master clock */
189 #define CS4215_MCK_XTL1 (1<<4) /* 24.576 MHz clock source */
190 #define CS4215_MCK_XTL2 (2<<4) /* 16.9344 MHz clock source */
191 #define CS4215_MCK_CLK1 (3<<4) /* Clockin, 256 x Fs */
192 #define CS4215_MCK_CLK2 (4<<4) /* Clockin, see DFR */
193
194 /* Time Slot 4, Test Register */
195 #define CS4215_DAD (1<<0) /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
196 #define CS4215_ENL (1<<1) /* Enable Loopback Testing */
197
198 /* Time Slot 5, Parallel Port Register */
199 /* Read only here and the same as the in data mode */
200
201 /* Time Slot 6, Reserved */
202
203 /* Time Slot 7, Version Register */
204 #define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
205
206 /* Time Slot 8, Reserved */
207
208 /*
209 * Data mode
210 */
211 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data */
212
213 /* Time Slot 5, Output Setting */
214 #define CS4215_LO(v) v /* Left Output Attenuation 0x3f: -94.5 dB */
215 #define CS4215_LE (1<<6) /* Line Out Enable */
216 #define CS4215_HE (1<<7) /* Headphone Enable */
217
218 /* Time Slot 6, Output Setting */
219 #define CS4215_RO(v) v /* Right Output Attenuation 0x3f: -94.5 dB */
220 #define CS4215_SE (1<<6) /* Speaker Enable */
221 #define CS4215_ADI (1<<7) /* A/D Data Invalid: Busy in calibration */
222
223 /* Time Slot 7, Input Setting */
224 #define CS4215_LG(v) v /* Left Gain Setting 0xf: 22.5 dB */
225 #define CS4215_IS (1<<4) /* Input Select: 1=Microphone, 0=Line */
226 #define CS4215_OVR (1<<5) /* 1: Over range condition occurred */
227 #define CS4215_PIO0 (1<<6) /* Parallel I/O 0 */
228 #define CS4215_PIO1 (1<<7)
229
230 /* Time Slot 8, Input Setting */
231 #define CS4215_RG(v) v /* Right Gain Setting 0xf: 22.5 dB */
232 #define CS4215_MA(v) (v<<4) /* Monitor Path Attenuation 0xf: mute */
233
234 /***************************************************************************
235 DBRI specific definitions and structures
236 ****************************************************************************/
237
238 /* DBRI main registers */
239 #define REG0 0x00 /* Status and Control */
240 #define REG1 0x04 /* Mode and Interrupt */
241 #define REG2 0x08 /* Parallel IO */
242 #define REG3 0x0c /* Test */
243 #define REG8 0x20 /* Command Queue Pointer */
244 #define REG9 0x24 /* Interrupt Queue Pointer */
245
246 #define DBRI_NO_CMDS 64
247 #define DBRI_INT_BLK 64
248 #define DBRI_NO_DESCS 64
249 #define DBRI_NO_PIPES 32
250 #define DBRI_MAX_PIPE (DBRI_NO_PIPES - 1)
251
252 #define DBRI_REC 0
253 #define DBRI_PLAY 1
254 #define DBRI_NO_STREAMS 2
255
256 /* One transmit/receive descriptor */
257 /* When ba != 0 descriptor is used */
258 struct dbri_mem {
259 volatile __u32 word1;
260 __u32 ba; /* Transmit/Receive Buffer Address */
261 __u32 nda; /* Next Descriptor Address */
262 volatile __u32 word4;
263 };
264
265 /* This structure is in a DMA region where it can accessed by both
266 * the CPU and the DBRI
267 */
268 struct dbri_dma {
269 s32 cmd[DBRI_NO_CMDS]; /* Place for commands */
270 volatile s32 intr[DBRI_INT_BLK]; /* Interrupt field */
271 struct dbri_mem desc[DBRI_NO_DESCS]; /* Xmit/receive descriptors */
272 };
273
274 #define dbri_dma_off(member, elem) \
275 ((u32)(unsigned long) \
276 (&(((struct dbri_dma *)0)->member[elem])))
277
278 enum in_or_out { PIPEinput, PIPEoutput };
279
280 struct dbri_pipe {
281 u32 sdp; /* SDP command word */
282 int nextpipe; /* Next pipe in linked list */
283 int length; /* Length of timeslot (bits) */
284 int first_desc; /* Index of first descriptor */
285 int desc; /* Index of active descriptor */
286 volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
287 };
288
289 /* Per stream (playback or record) information */
290 struct dbri_streaminfo {
291 struct snd_pcm_substream *substream;
292 u32 dvma_buffer; /* Device view of ALSA DMA buffer */
293 int size; /* Size of DMA buffer */
294 size_t offset; /* offset in user buffer */
295 int pipe; /* Data pipe used */
296 int left_gain; /* mixer elements */
297 int right_gain;
298 };
299
300 /* This structure holds the information for both chips (DBRI & CS4215) */
301 struct snd_dbri {
302 int regs_size, irq; /* Needed for unload */
303 struct platform_device *op; /* OF device info */
304 spinlock_t lock;
305
306 struct dbri_dma *dma; /* Pointer to our DMA block */
307 dma_addr_t dma_dvma; /* DBRI visible DMA address */
308
309 void __iomem *regs; /* dbri HW regs */
310 int dbri_irqp; /* intr queue pointer */
311
312 struct dbri_pipe pipes[DBRI_NO_PIPES]; /* DBRI's 32 data pipes */
313 int next_desc[DBRI_NO_DESCS]; /* Index of next desc, or -1 */
314 spinlock_t cmdlock; /* Protects cmd queue accesses */
315 s32 *cmdptr; /* Pointer to the last queued cmd */
316
317 int chi_bpf;
318
319 struct cs4215 mm; /* mmcodec special info */
320 /* per stream (playback/record) info */
321 struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
322 };
323
324 #define DBRI_MAX_VOLUME 63 /* Output volume */
325 #define DBRI_MAX_GAIN 15 /* Input gain */
326
327 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
328 #define D_P (1<<15) /* Program command & queue pointer valid */
329 #define D_G (1<<14) /* Allow 4-Word SBus Burst */
330 #define D_S (1<<13) /* Allow 16-Word SBus Burst */
331 #define D_E (1<<12) /* Allow 8-Word SBus Burst */
332 #define D_X (1<<7) /* Sanity Timer Disable */
333 #define D_T (1<<6) /* Permit activation of the TE interface */
334 #define D_N (1<<5) /* Permit activation of the NT interface */
335 #define D_C (1<<4) /* Permit activation of the CHI interface */
336 #define D_F (1<<3) /* Force Sanity Timer Time-Out */
337 #define D_D (1<<2) /* Disable Master Mode */
338 #define D_H (1<<1) /* Halt for Analysis */
339 #define D_R (1<<0) /* Soft Reset */
340
341 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
342 #define D_LITTLE_END (1<<8) /* Byte Order */
343 #define D_BIG_END (0<<8) /* Byte Order */
344 #define D_MRR (1<<4) /* Multiple Error Ack on SBus (read only) */
345 #define D_MLE (1<<3) /* Multiple Late Error on SBus (read only) */
346 #define D_LBG (1<<2) /* Lost Bus Grant on SBus (read only) */
347 #define D_MBE (1<<1) /* Burst Error on SBus (read only) */
348 #define D_IR (1<<0) /* Interrupt Indicator (read only) */
349
350 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
351 #define D_ENPIO3 (1<<7) /* Enable Pin 3 */
352 #define D_ENPIO2 (1<<6) /* Enable Pin 2 */
353 #define D_ENPIO1 (1<<5) /* Enable Pin 1 */
354 #define D_ENPIO0 (1<<4) /* Enable Pin 0 */
355 #define D_ENPIO (0xf0) /* Enable all the pins */
356 #define D_PIO3 (1<<3) /* Pin 3: 1: Data mode, 0: Ctrl mode */
357 #define D_PIO2 (1<<2) /* Pin 2: 1: Onboard PDN */
358 #define D_PIO1 (1<<1) /* Pin 1: 0: Reset */
359 #define D_PIO0 (1<<0) /* Pin 0: 1: Speakerbox PDN */
360
361 /* DBRI Commands (Page 20) */
362 #define D_WAIT 0x0 /* Stop execution */
363 #define D_PAUSE 0x1 /* Flush long pipes */
364 #define D_JUMP 0x2 /* New command queue */
365 #define D_IIQ 0x3 /* Initialize Interrupt Queue */
366 #define D_REX 0x4 /* Report command execution via interrupt */
367 #define D_SDP 0x5 /* Setup Data Pipe */
368 #define D_CDP 0x6 /* Continue Data Pipe (reread NULL Pointer) */
369 #define D_DTS 0x7 /* Define Time Slot */
370 #define D_SSP 0x8 /* Set short Data Pipe */
371 #define D_CHI 0x9 /* Set CHI Global Mode */
372 #define D_NT 0xa /* NT Command */
373 #define D_TE 0xb /* TE Command */
374 #define D_CDEC 0xc /* Codec setup */
375 #define D_TEST 0xd /* No comment */
376 #define D_CDM 0xe /* CHI Data mode command */
377
378 /* Special bits for some commands */
379 #define D_PIPE(v) ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
380
381 /* Setup Data Pipe */
382 /* IRM */
383 #define D_SDP_2SAME (1<<18) /* Report 2nd time in a row value received */
384 #define D_SDP_CHANGE (2<<18) /* Report any changes */
385 #define D_SDP_EVERY (3<<18) /* Report any changes */
386 #define D_SDP_EOL (1<<17) /* EOL interrupt enable */
387 #define D_SDP_IDLE (1<<16) /* HDLC idle interrupt enable */
388
389 /* Pipe data MODE */
390 #define D_SDP_MEM (0<<13) /* To/from memory */
391 #define D_SDP_HDLC (2<<13)
392 #define D_SDP_HDLC_D (3<<13) /* D Channel (prio control) */
393 #define D_SDP_SER (4<<13) /* Serial to serial */
394 #define D_SDP_FIXED (6<<13) /* Short only */
395 #define D_SDP_MODE(v) ((v)&(7<<13))
396
397 #define D_SDP_TO_SER (1<<12) /* Direction */
398 #define D_SDP_FROM_SER (0<<12) /* Direction */
399 #define D_SDP_MSB (1<<11) /* Bit order within Byte */
400 #define D_SDP_LSB (0<<11) /* Bit order within Byte */
401 #define D_SDP_P (1<<10) /* Pointer Valid */
402 #define D_SDP_A (1<<8) /* Abort */
403 #define D_SDP_C (1<<7) /* Clear */
404
405 /* Define Time Slot */
406 #define D_DTS_VI (1<<17) /* Valid Input Time-Slot Descriptor */
407 #define D_DTS_VO (1<<16) /* Valid Output Time-Slot Descriptor */
408 #define D_DTS_INS (1<<15) /* Insert Time Slot */
409 #define D_DTS_DEL (0<<15) /* Delete Time Slot */
410 #define D_DTS_PRVIN(v) ((v)<<10) /* Previous In Pipe */
411 #define D_DTS_PRVOUT(v) ((v)<<5) /* Previous Out Pipe */
412
413 /* Time Slot defines */
414 #define D_TS_LEN(v) ((v)<<24) /* Number of bits in this time slot */
415 #define D_TS_CYCLE(v) ((v)<<14) /* Bit Count at start of TS */
416 #define D_TS_DI (1<<13) /* Data Invert */
417 #define D_TS_1CHANNEL (0<<10) /* Single Channel / Normal mode */
418 #define D_TS_MONITOR (2<<10) /* Monitor pipe */
419 #define D_TS_NONCONTIG (3<<10) /* Non contiguous mode */
420 #define D_TS_ANCHOR (7<<10) /* Starting short pipes */
421 #define D_TS_MON(v) ((v)<<5) /* Monitor Pipe */
422 #define D_TS_NEXT(v) ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
423
424 /* Concentration Highway Interface Modes */
425 #define D_CHI_CHICM(v) ((v)<<16) /* Clock mode */
426 #define D_CHI_IR (1<<15) /* Immediate Interrupt Report */
427 #define D_CHI_EN (1<<14) /* CHIL Interrupt enabled */
428 #define D_CHI_OD (1<<13) /* Open Drain Enable */
429 #define D_CHI_FE (1<<12) /* Sample CHIFS on Rising Frame Edge */
430 #define D_CHI_FD (1<<11) /* Frame Drive */
431 #define D_CHI_BPF(v) ((v)<<0) /* Bits per Frame */
432
433 /* NT: These are here for completeness */
434 #define D_NT_FBIT (1<<17) /* Frame Bit */
435 #define D_NT_NBF (1<<16) /* Number of bad frames to loose framing */
436 #define D_NT_IRM_IMM (1<<15) /* Interrupt Report & Mask: Immediate */
437 #define D_NT_IRM_EN (1<<14) /* Interrupt Report & Mask: Enable */
438 #define D_NT_ISNT (1<<13) /* Configure interface as NT */
439 #define D_NT_FT (1<<12) /* Fixed Timing */
440 #define D_NT_EZ (1<<11) /* Echo Channel is Zeros */
441 #define D_NT_IFA (1<<10) /* Inhibit Final Activation */
442 #define D_NT_ACT (1<<9) /* Activate Interface */
443 #define D_NT_MFE (1<<8) /* Multiframe Enable */
444 #define D_NT_RLB(v) ((v)<<5) /* Remote Loopback */
445 #define D_NT_LLB(v) ((v)<<2) /* Local Loopback */
446 #define D_NT_FACT (1<<1) /* Force Activation */
447 #define D_NT_ABV (1<<0) /* Activate Bipolar Violation */
448
449 /* Codec Setup */
450 #define D_CDEC_CK(v) ((v)<<24) /* Clock Select */
451 #define D_CDEC_FED(v) ((v)<<12) /* FSCOD Falling Edge Delay */
452 #define D_CDEC_RED(v) ((v)<<0) /* FSCOD Rising Edge Delay */
453
454 /* Test */
455 #define D_TEST_RAM(v) ((v)<<16) /* RAM Pointer */
456 #define D_TEST_SIZE(v) ((v)<<11) /* */
457 #define D_TEST_ROMONOFF 0x5 /* Toggle ROM opcode monitor on/off */
458 #define D_TEST_PROC 0x6 /* Microprocessor test */
459 #define D_TEST_SER 0x7 /* Serial-Controller test */
460 #define D_TEST_RAMREAD 0x8 /* Copy from Ram to system memory */
461 #define D_TEST_RAMWRITE 0x9 /* Copy into Ram from system memory */
462 #define D_TEST_RAMBIST 0xa /* RAM Built-In Self Test */
463 #define D_TEST_MCBIST 0xb /* Microcontroller Built-In Self Test */
464 #define D_TEST_DUMP 0xe /* ROM Dump */
465
466 /* CHI Data Mode */
467 #define D_CDM_THI (1 << 8) /* Transmit Data on CHIDR Pin */
468 #define D_CDM_RHI (1 << 7) /* Receive Data on CHIDX Pin */
469 #define D_CDM_RCE (1 << 6) /* Receive on Rising Edge of CHICK */
470 #define D_CDM_XCE (1 << 2) /* Transmit Data on Rising Edge of CHICK */
471 #define D_CDM_XEN (1 << 1) /* Transmit Highway Enable */
472 #define D_CDM_REN (1 << 0) /* Receive Highway Enable */
473
474 /* The Interrupts */
475 #define D_INTR_BRDY 1 /* Buffer Ready for processing */
476 #define D_INTR_MINT 2 /* Marked Interrupt in RD/TD */
477 #define D_INTR_IBEG 3 /* Flag to idle transition detected (HDLC) */
478 #define D_INTR_IEND 4 /* Idle to flag transition detected (HDLC) */
479 #define D_INTR_EOL 5 /* End of List */
480 #define D_INTR_CMDI 6 /* Command has bean read */
481 #define D_INTR_XCMP 8 /* Transmission of frame complete */
482 #define D_INTR_SBRI 9 /* BRI status change info */
483 #define D_INTR_FXDT 10 /* Fixed data change */
484 #define D_INTR_CHIL 11 /* CHI lost frame sync (channel 36 only) */
485 #define D_INTR_COLL 11 /* Unrecoverable D-Channel collision */
486 #define D_INTR_DBYT 12 /* Dropped by frame slip */
487 #define D_INTR_RBYT 13 /* Repeated by frame slip */
488 #define D_INTR_LINT 14 /* Lost Interrupt */
489 #define D_INTR_UNDR 15 /* DMA underrun */
490
491 #define D_INTR_TE 32
492 #define D_INTR_NT 34
493 #define D_INTR_CHI 36
494 #define D_INTR_CMD 38
495
496 #define D_INTR_GETCHAN(v) (((v) >> 24) & 0x3f)
497 #define D_INTR_GETCODE(v) (((v) >> 20) & 0xf)
498 #define D_INTR_GETCMD(v) (((v) >> 16) & 0xf)
499 #define D_INTR_GETVAL(v) ((v) & 0xffff)
500 #define D_INTR_GETRVAL(v) ((v) & 0xfffff)
501
502 #define D_P_0 0 /* TE receive anchor */
503 #define D_P_1 1 /* TE transmit anchor */
504 #define D_P_2 2 /* NT transmit anchor */
505 #define D_P_3 3 /* NT receive anchor */
506 #define D_P_4 4 /* CHI send data */
507 #define D_P_5 5 /* CHI receive data */
508 #define D_P_6 6 /* */
509 #define D_P_7 7 /* */
510 #define D_P_8 8 /* */
511 #define D_P_9 9 /* */
512 #define D_P_10 10 /* */
513 #define D_P_11 11 /* */
514 #define D_P_12 12 /* */
515 #define D_P_13 13 /* */
516 #define D_P_14 14 /* */
517 #define D_P_15 15 /* */
518 #define D_P_16 16 /* CHI anchor pipe */
519 #define D_P_17 17 /* CHI send */
520 #define D_P_18 18 /* CHI receive */
521 #define D_P_19 19 /* CHI receive */
522 #define D_P_20 20 /* CHI receive */
523 #define D_P_21 21 /* */
524 #define D_P_22 22 /* */
525 #define D_P_23 23 /* */
526 #define D_P_24 24 /* */
527 #define D_P_25 25 /* */
528 #define D_P_26 26 /* */
529 #define D_P_27 27 /* */
530 #define D_P_28 28 /* */
531 #define D_P_29 29 /* */
532 #define D_P_30 30 /* */
533 #define D_P_31 31 /* */
534
535 /* Transmit descriptor defines */
536 #define DBRI_TD_F (1 << 31) /* End of Frame */
537 #define DBRI_TD_D (1 << 30) /* Do not append CRC */
538 #define DBRI_TD_CNT(v) ((v) << 16) /* Number of valid bytes in the buffer */
539 #define DBRI_TD_B (1 << 15) /* Final interrupt */
540 #define DBRI_TD_M (1 << 14) /* Marker interrupt */
541 #define DBRI_TD_I (1 << 13) /* Transmit Idle Characters */
542 #define DBRI_TD_FCNT(v) (v) /* Flag Count */
543 #define DBRI_TD_UNR (1 << 3) /* Underrun: transmitter is out of data */
544 #define DBRI_TD_ABT (1 << 2) /* Abort: frame aborted */
545 #define DBRI_TD_TBC (1 << 0) /* Transmit buffer Complete */
546 #define DBRI_TD_STATUS(v) ((v) & 0xff) /* Transmit status */
547 /* Maximum buffer size per TD: almost 8KB */
548 #define DBRI_TD_MAXCNT ((1 << 13) - 4)
549
550 /* Receive descriptor defines */
551 #define DBRI_RD_F (1 << 31) /* End of Frame */
552 #define DBRI_RD_C (1 << 30) /* Completed buffer */
553 #define DBRI_RD_B (1 << 15) /* Final interrupt */
554 #define DBRI_RD_M (1 << 14) /* Marker interrupt */
555 #define DBRI_RD_BCNT(v) (v) /* Buffer size */
556 #define DBRI_RD_CRC (1 << 7) /* 0: CRC is correct */
557 #define DBRI_RD_BBC (1 << 6) /* 1: Bad Byte received */
558 #define DBRI_RD_ABT (1 << 5) /* Abort: frame aborted */
559 #define DBRI_RD_OVRN (1 << 3) /* Overrun: data lost */
560 #define DBRI_RD_STATUS(v) ((v) & 0xff) /* Receive status */
561 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff) /* Valid bytes in the buffer */
562
563 /* stream_info[] access */
564 /* Translate the ALSA direction into the array index */
565 #define DBRI_STREAMNO(substream) \
566 (substream->stream == \
567 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
568
569 /* Return a pointer to dbri_streaminfo */
570 #define DBRI_STREAM(dbri, substream) \
571 &dbri->stream_info[DBRI_STREAMNO(substream)]
572
573 /*
574 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
575 * So we have to reverse the bits. Note: not all bit lengths are supported
576 */
reverse_bytes(__u32 b,int len)577 static __u32 reverse_bytes(__u32 b, int len)
578 {
579 switch (len) {
580 case 32:
581 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
582 fallthrough;
583 case 16:
584 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
585 fallthrough;
586 case 8:
587 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
588 fallthrough;
589 case 4:
590 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
591 fallthrough;
592 case 2:
593 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
594 case 1:
595 case 0:
596 break;
597 default:
598 printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
599 }
600
601 return b;
602 }
603
604 /*
605 ****************************************************************************
606 ************** DBRI initialization and command synchronization *************
607 ****************************************************************************
608
609 Commands are sent to the DBRI by building a list of them in memory,
610 then writing the address of the first list item to DBRI register 8.
611 The list is terminated with a WAIT command, which generates a
612 CPU interrupt to signal completion.
613
614 Since the DBRI can run in parallel with the CPU, several means of
615 synchronization present themselves. The method implemented here uses
616 the dbri_cmdwait() to wait for execution of batch of sent commands.
617
618 A circular command buffer is used here. A new command is being added
619 while another can be executed. The scheme works by adding two WAIT commands
620 after each sent batch of commands. When the next batch is prepared it is
621 added after the WAIT commands then the WAITs are replaced with single JUMP
622 command to the new batch. Then the DBRI is forced to reread the last WAIT
623 command (replaced by the JUMP by then). If the DBRI is still executing
624 previous commands the request to reread the WAIT command is ignored.
625
626 Every time a routine wants to write commands to the DBRI, it must
627 first call dbri_cmdlock() and get pointer to a free space in
628 dbri->dma->cmd buffer. After this, the commands can be written to
629 the buffer, and dbri_cmdsend() is called with the final pointer value
630 to send them to the DBRI.
631
632 */
633
634 #define MAXLOOPS 20
635 /*
636 * Wait for the current command string to execute
637 */
dbri_cmdwait(struct snd_dbri * dbri)638 static void dbri_cmdwait(struct snd_dbri *dbri)
639 {
640 int maxloops = MAXLOOPS;
641 unsigned long flags;
642
643 /* Delay if previous commands are still being processed */
644 spin_lock_irqsave(&dbri->lock, flags);
645 while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
646 spin_unlock_irqrestore(&dbri->lock, flags);
647 msleep_interruptible(1);
648 spin_lock_irqsave(&dbri->lock, flags);
649 }
650 spin_unlock_irqrestore(&dbri->lock, flags);
651
652 if (maxloops == 0)
653 printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
654 else
655 dprintk(D_CMD, "Chip completed command buffer (%d)\n",
656 MAXLOOPS - maxloops - 1);
657 }
658 /*
659 * Lock the command queue and return pointer to space for len cmd words
660 * It locks the cmdlock spinlock.
661 */
dbri_cmdlock(struct snd_dbri * dbri,int len)662 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
663 {
664 u32 dvma_addr = (u32)dbri->dma_dvma;
665
666 /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
667 len += 2;
668 spin_lock(&dbri->cmdlock);
669 if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
670 return dbri->cmdptr + 2;
671 else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
672 return dbri->dma->cmd;
673 else
674 printk(KERN_ERR "DBRI: no space for commands.");
675
676 return NULL;
677 }
678
679 /*
680 * Send prepared cmd string. It works by writing a JUMP cmd into
681 * the last WAIT cmd and force DBRI to reread the cmd.
682 * The JUMP cmd points to the new cmd string.
683 * It also releases the cmdlock spinlock.
684 *
685 * Lock must be held before calling this.
686 */
dbri_cmdsend(struct snd_dbri * dbri,s32 * cmd,int len)687 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
688 {
689 u32 dvma_addr = (u32)dbri->dma_dvma;
690 s32 tmp, addr;
691 static int wait_id;
692
693 wait_id++;
694 wait_id &= 0xffff; /* restrict it to a 16 bit counter. */
695 *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
696 *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
697
698 /* Replace the last command with JUMP */
699 addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
700 *(dbri->cmdptr+1) = addr;
701 *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
702
703 #ifdef DBRI_DEBUG
704 if (cmd > dbri->cmdptr) {
705 s32 *ptr;
706
707 for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
708 dprintk(D_CMD, "cmd: %lx:%08x\n",
709 (unsigned long)ptr, *ptr);
710 } else {
711 s32 *ptr = dbri->cmdptr;
712
713 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
714 ptr++;
715 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
716 for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
717 dprintk(D_CMD, "cmd: %lx:%08x\n",
718 (unsigned long)ptr, *ptr);
719 }
720 #endif
721
722 /* Reread the last command */
723 tmp = sbus_readl(dbri->regs + REG0);
724 tmp |= D_P;
725 sbus_writel(tmp, dbri->regs + REG0);
726
727 dbri->cmdptr = cmd;
728 spin_unlock(&dbri->cmdlock);
729 }
730
731 /* Lock must be held when calling this */
dbri_reset(struct snd_dbri * dbri)732 static void dbri_reset(struct snd_dbri *dbri)
733 {
734 int i;
735 u32 tmp;
736
737 dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
738 sbus_readl(dbri->regs + REG0),
739 sbus_readl(dbri->regs + REG2),
740 sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
741
742 sbus_writel(D_R, dbri->regs + REG0); /* Soft Reset */
743 for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
744 udelay(10);
745
746 /* A brute approach - DBRI falls back to working burst size by itself
747 * On SS20 D_S does not work, so do not try so high. */
748 tmp = sbus_readl(dbri->regs + REG0);
749 tmp |= D_G | D_E;
750 tmp &= ~D_S;
751 sbus_writel(tmp, dbri->regs + REG0);
752 }
753
754 /* Lock must not be held before calling this */
dbri_initialize(struct snd_dbri * dbri)755 static void dbri_initialize(struct snd_dbri *dbri)
756 {
757 u32 dvma_addr = (u32)dbri->dma_dvma;
758 s32 *cmd;
759 u32 dma_addr;
760 unsigned long flags;
761 int n;
762
763 spin_lock_irqsave(&dbri->lock, flags);
764
765 dbri_reset(dbri);
766
767 /* Initialize pipes */
768 for (n = 0; n < DBRI_NO_PIPES; n++)
769 dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
770
771 spin_lock_init(&dbri->cmdlock);
772 /*
773 * Initialize the interrupt ring buffer.
774 */
775 dma_addr = dvma_addr + dbri_dma_off(intr, 0);
776 dbri->dma->intr[0] = dma_addr;
777 dbri->dbri_irqp = 1;
778 /*
779 * Set up the interrupt queue
780 */
781 spin_lock(&dbri->cmdlock);
782 cmd = dbri->cmdptr = dbri->dma->cmd;
783 *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
784 *(cmd++) = dma_addr;
785 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
786 dbri->cmdptr = cmd;
787 *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
788 *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
789 dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
790 sbus_writel(dma_addr, dbri->regs + REG8);
791 spin_unlock(&dbri->cmdlock);
792
793 spin_unlock_irqrestore(&dbri->lock, flags);
794 dbri_cmdwait(dbri);
795 }
796
797 /*
798 ****************************************************************************
799 ************************** DBRI data pipe management ***********************
800 ****************************************************************************
801
802 While DBRI control functions use the command and interrupt buffers, the
803 main data path takes the form of data pipes, which can be short (command
804 and interrupt driven), or long (attached to DMA buffers). These functions
805 provide a rudimentary means of setting up and managing the DBRI's pipes,
806 but the calling functions have to make sure they respect the pipes' linked
807 list ordering, among other things. The transmit and receive functions
808 here interface closely with the transmit and receive interrupt code.
809
810 */
pipe_active(struct snd_dbri * dbri,int pipe)811 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
812 {
813 return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
814 }
815
816 /* reset_pipe(dbri, pipe)
817 *
818 * Called on an in-use pipe to clear anything being transmitted or received
819 * Lock must be held before calling this.
820 */
reset_pipe(struct snd_dbri * dbri,int pipe)821 static void reset_pipe(struct snd_dbri *dbri, int pipe)
822 {
823 int sdp;
824 int desc;
825 s32 *cmd;
826
827 if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
828 printk(KERN_ERR "DBRI: reset_pipe called with "
829 "illegal pipe number\n");
830 return;
831 }
832
833 sdp = dbri->pipes[pipe].sdp;
834 if (sdp == 0) {
835 printk(KERN_ERR "DBRI: reset_pipe called "
836 "on uninitialized pipe\n");
837 return;
838 }
839
840 cmd = dbri_cmdlock(dbri, 3);
841 *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
842 *(cmd++) = 0;
843 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
844 dbri_cmdsend(dbri, cmd, 3);
845
846 desc = dbri->pipes[pipe].first_desc;
847 if (desc >= 0)
848 do {
849 dbri->dma->desc[desc].ba = 0;
850 dbri->dma->desc[desc].nda = 0;
851 desc = dbri->next_desc[desc];
852 } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
853
854 dbri->pipes[pipe].desc = -1;
855 dbri->pipes[pipe].first_desc = -1;
856 }
857
858 /*
859 * Lock must be held before calling this.
860 */
setup_pipe(struct snd_dbri * dbri,int pipe,int sdp)861 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
862 {
863 if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
864 printk(KERN_ERR "DBRI: setup_pipe called "
865 "with illegal pipe number\n");
866 return;
867 }
868
869 if ((sdp & 0xf800) != sdp) {
870 printk(KERN_ERR "DBRI: setup_pipe called "
871 "with strange SDP value\n");
872 /* sdp &= 0xf800; */
873 }
874
875 /* If this is a fixed receive pipe, arrange for an interrupt
876 * every time its data changes
877 */
878 if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
879 sdp |= D_SDP_CHANGE;
880
881 sdp |= D_PIPE(pipe);
882 dbri->pipes[pipe].sdp = sdp;
883 dbri->pipes[pipe].desc = -1;
884 dbri->pipes[pipe].first_desc = -1;
885
886 reset_pipe(dbri, pipe);
887 }
888
889 /*
890 * Lock must be held before calling this.
891 */
link_time_slot(struct snd_dbri * dbri,int pipe,int prevpipe,int nextpipe,int length,int cycle)892 static void link_time_slot(struct snd_dbri *dbri, int pipe,
893 int prevpipe, int nextpipe,
894 int length, int cycle)
895 {
896 s32 *cmd;
897 int val;
898
899 if (pipe < 0 || pipe > DBRI_MAX_PIPE
900 || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
901 || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
902 printk(KERN_ERR
903 "DBRI: link_time_slot called with illegal pipe number\n");
904 return;
905 }
906
907 if (dbri->pipes[pipe].sdp == 0
908 || dbri->pipes[prevpipe].sdp == 0
909 || dbri->pipes[nextpipe].sdp == 0) {
910 printk(KERN_ERR "DBRI: link_time_slot called "
911 "on uninitialized pipe\n");
912 return;
913 }
914
915 dbri->pipes[prevpipe].nextpipe = pipe;
916 dbri->pipes[pipe].nextpipe = nextpipe;
917 dbri->pipes[pipe].length = length;
918
919 cmd = dbri_cmdlock(dbri, 4);
920
921 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
922 /* Deal with CHI special case:
923 * "If transmission on edges 0 or 1 is desired, then cycle n
924 * (where n = # of bit times per frame...) must be used."
925 * - DBRI data sheet, page 11
926 */
927 if (prevpipe == 16 && cycle == 0)
928 cycle = dbri->chi_bpf;
929
930 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
931 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
932 *(cmd++) = 0;
933 *(cmd++) =
934 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
935 } else {
936 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
937 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
938 *(cmd++) =
939 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
940 *(cmd++) = 0;
941 }
942 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
943
944 dbri_cmdsend(dbri, cmd, 4);
945 }
946
947 #if 0
948 /*
949 * Lock must be held before calling this.
950 */
951 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
952 enum in_or_out direction, int prevpipe,
953 int nextpipe)
954 {
955 s32 *cmd;
956 int val;
957
958 if (pipe < 0 || pipe > DBRI_MAX_PIPE
959 || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
960 || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
961 printk(KERN_ERR
962 "DBRI: unlink_time_slot called with illegal pipe number\n");
963 return;
964 }
965
966 cmd = dbri_cmdlock(dbri, 4);
967
968 if (direction == PIPEinput) {
969 val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
970 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
971 *(cmd++) = D_TS_NEXT(nextpipe);
972 *(cmd++) = 0;
973 } else {
974 val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
975 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
976 *(cmd++) = 0;
977 *(cmd++) = D_TS_NEXT(nextpipe);
978 }
979 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
980
981 dbri_cmdsend(dbri, cmd, 4);
982 }
983 #endif
984
985 /* xmit_fixed() / recv_fixed()
986 *
987 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
988 * expected to change much, and which we don't need to buffer.
989 * The DBRI only interrupts us when the data changes (receive pipes),
990 * or only changes the data when this function is called (transmit pipes).
991 * Only short pipes (numbers 16-31) can be used in fixed data mode.
992 *
993 * These function operate on a 32-bit field, no matter how large
994 * the actual time slot is. The interrupt handler takes care of bit
995 * ordering and alignment. An 8-bit time slot will always end up
996 * in the low-order 8 bits, filled either MSB-first or LSB-first,
997 * depending on the settings passed to setup_pipe().
998 *
999 * Lock must not be held before calling it.
1000 */
xmit_fixed(struct snd_dbri * dbri,int pipe,unsigned int data)1001 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
1002 {
1003 s32 *cmd;
1004 unsigned long flags;
1005
1006 if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1007 printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1008 return;
1009 }
1010
1011 if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1012 printk(KERN_ERR "DBRI: xmit_fixed: "
1013 "Uninitialized pipe %d\n", pipe);
1014 return;
1015 }
1016
1017 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1018 printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1019 return;
1020 }
1021
1022 if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1023 printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1024 pipe);
1025 return;
1026 }
1027
1028 /* DBRI short pipes always transmit LSB first */
1029
1030 if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1031 data = reverse_bytes(data, dbri->pipes[pipe].length);
1032
1033 cmd = dbri_cmdlock(dbri, 3);
1034
1035 *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1036 *(cmd++) = data;
1037 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1038
1039 spin_lock_irqsave(&dbri->lock, flags);
1040 dbri_cmdsend(dbri, cmd, 3);
1041 spin_unlock_irqrestore(&dbri->lock, flags);
1042 dbri_cmdwait(dbri);
1043
1044 }
1045
recv_fixed(struct snd_dbri * dbri,int pipe,volatile __u32 * ptr)1046 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1047 {
1048 if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1049 printk(KERN_ERR "DBRI: recv_fixed called with "
1050 "illegal pipe number\n");
1051 return;
1052 }
1053
1054 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1055 printk(KERN_ERR "DBRI: recv_fixed called on "
1056 "non-fixed pipe %d\n", pipe);
1057 return;
1058 }
1059
1060 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1061 printk(KERN_ERR "DBRI: recv_fixed called on "
1062 "transmit pipe %d\n", pipe);
1063 return;
1064 }
1065
1066 dbri->pipes[pipe].recv_fixed_ptr = ptr;
1067 }
1068
1069 /* setup_descs()
1070 *
1071 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1072 * with a DMA buffer.
1073 *
1074 * Only pipe numbers 0-15 can be used in this mode.
1075 *
1076 * This function takes a stream number pointing to a data buffer,
1077 * and work by building chains of descriptors which identify the
1078 * data buffers. Buffers too large for a single descriptor will
1079 * be spread across multiple descriptors.
1080 *
1081 * All descriptors create a ring buffer.
1082 *
1083 * Lock must be held before calling this.
1084 */
setup_descs(struct snd_dbri * dbri,int streamno,unsigned int period)1085 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1086 {
1087 struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1088 u32 dvma_addr = (u32)dbri->dma_dvma;
1089 __u32 dvma_buffer;
1090 int desc;
1091 int len;
1092 int first_desc = -1;
1093 int last_desc = -1;
1094
1095 if (info->pipe < 0 || info->pipe > 15) {
1096 printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1097 return -2;
1098 }
1099
1100 if (dbri->pipes[info->pipe].sdp == 0) {
1101 printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1102 info->pipe);
1103 return -2;
1104 }
1105
1106 dvma_buffer = info->dvma_buffer;
1107 len = info->size;
1108
1109 if (streamno == DBRI_PLAY) {
1110 if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1111 printk(KERN_ERR "DBRI: setup_descs: "
1112 "Called on receive pipe %d\n", info->pipe);
1113 return -2;
1114 }
1115 } else {
1116 if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1117 printk(KERN_ERR
1118 "DBRI: setup_descs: Called on transmit pipe %d\n",
1119 info->pipe);
1120 return -2;
1121 }
1122 /* Should be able to queue multiple buffers
1123 * to receive on a pipe
1124 */
1125 if (pipe_active(dbri, info->pipe)) {
1126 printk(KERN_ERR "DBRI: recv_on_pipe: "
1127 "Called on active pipe %d\n", info->pipe);
1128 return -2;
1129 }
1130
1131 /* Make sure buffer size is multiple of four */
1132 len &= ~3;
1133 }
1134
1135 /* Free descriptors if pipe has any */
1136 desc = dbri->pipes[info->pipe].first_desc;
1137 if (desc >= 0)
1138 do {
1139 dbri->dma->desc[desc].ba = 0;
1140 dbri->dma->desc[desc].nda = 0;
1141 desc = dbri->next_desc[desc];
1142 } while (desc != -1 &&
1143 desc != dbri->pipes[info->pipe].first_desc);
1144
1145 dbri->pipes[info->pipe].desc = -1;
1146 dbri->pipes[info->pipe].first_desc = -1;
1147
1148 desc = 0;
1149 while (len > 0) {
1150 int mylen;
1151
1152 for (; desc < DBRI_NO_DESCS; desc++) {
1153 if (!dbri->dma->desc[desc].ba)
1154 break;
1155 }
1156
1157 if (desc == DBRI_NO_DESCS) {
1158 printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1159 return -1;
1160 }
1161
1162 if (len > DBRI_TD_MAXCNT)
1163 mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1164 else
1165 mylen = len;
1166
1167 if (mylen > period)
1168 mylen = period;
1169
1170 dbri->next_desc[desc] = -1;
1171 dbri->dma->desc[desc].ba = dvma_buffer;
1172 dbri->dma->desc[desc].nda = 0;
1173
1174 if (streamno == DBRI_PLAY) {
1175 dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1176 dbri->dma->desc[desc].word4 = 0;
1177 dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1178 } else {
1179 dbri->dma->desc[desc].word1 = 0;
1180 dbri->dma->desc[desc].word4 =
1181 DBRI_RD_B | DBRI_RD_BCNT(mylen);
1182 }
1183
1184 if (first_desc == -1)
1185 first_desc = desc;
1186 else {
1187 dbri->next_desc[last_desc] = desc;
1188 dbri->dma->desc[last_desc].nda =
1189 dvma_addr + dbri_dma_off(desc, desc);
1190 }
1191
1192 last_desc = desc;
1193 dvma_buffer += mylen;
1194 len -= mylen;
1195 }
1196
1197 if (first_desc == -1 || last_desc == -1) {
1198 printk(KERN_ERR "DBRI: setup_descs: "
1199 " Not enough descriptors available\n");
1200 return -1;
1201 }
1202
1203 dbri->dma->desc[last_desc].nda =
1204 dvma_addr + dbri_dma_off(desc, first_desc);
1205 dbri->next_desc[last_desc] = first_desc;
1206 dbri->pipes[info->pipe].first_desc = first_desc;
1207 dbri->pipes[info->pipe].desc = first_desc;
1208
1209 #ifdef DBRI_DEBUG
1210 for (desc = first_desc; desc != -1;) {
1211 dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1212 desc,
1213 dbri->dma->desc[desc].word1,
1214 dbri->dma->desc[desc].ba,
1215 dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1216 desc = dbri->next_desc[desc];
1217 if (desc == first_desc)
1218 break;
1219 }
1220 #endif
1221 return 0;
1222 }
1223
1224 /*
1225 ****************************************************************************
1226 ************************** DBRI - CHI interface ****************************
1227 ****************************************************************************
1228
1229 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1230 multiplexed serial interface which the DBRI can operate in either master
1231 (give clock/frame sync) or slave (take clock/frame sync) mode.
1232
1233 */
1234
1235 enum master_or_slave { CHImaster, CHIslave };
1236
1237 /*
1238 * Lock must not be held before calling it.
1239 */
reset_chi(struct snd_dbri * dbri,enum master_or_slave master_or_slave,int bits_per_frame)1240 static void reset_chi(struct snd_dbri *dbri,
1241 enum master_or_slave master_or_slave,
1242 int bits_per_frame)
1243 {
1244 s32 *cmd;
1245 int val;
1246
1247 /* Set CHI Anchor: Pipe 16 */
1248
1249 cmd = dbri_cmdlock(dbri, 4);
1250 val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1251 | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1252 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1253 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1254 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1255 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1256 dbri_cmdsend(dbri, cmd, 4);
1257
1258 dbri->pipes[16].sdp = 1;
1259 dbri->pipes[16].nextpipe = 16;
1260
1261 cmd = dbri_cmdlock(dbri, 4);
1262
1263 if (master_or_slave == CHIslave) {
1264 /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1265 *
1266 * CHICM = 0 (slave mode, 8 kHz frame rate)
1267 * IR = give immediate CHI status interrupt
1268 * EN = give CHI status interrupt upon change
1269 */
1270 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1271 } else {
1272 /* Setup DBRI for CHI Master - generate clock, FS
1273 *
1274 * BPF = bits per 8 kHz frame
1275 * 12.288 MHz / CHICM_divisor = clock rate
1276 * FD = 1 - drive CHIFS on rising edge of CHICK
1277 */
1278 int clockrate = bits_per_frame * 8;
1279 int divisor = 12288 / clockrate;
1280
1281 if (divisor > 255 || divisor * clockrate != 12288)
1282 printk(KERN_ERR "DBRI: illegal bits_per_frame "
1283 "in setup_chi\n");
1284
1285 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1286 | D_CHI_BPF(bits_per_frame));
1287 }
1288
1289 dbri->chi_bpf = bits_per_frame;
1290
1291 /* CHI Data Mode
1292 *
1293 * RCE = 0 - receive on falling edge of CHICK
1294 * XCE = 1 - transmit on rising edge of CHICK
1295 * XEN = 1 - enable transmitter
1296 * REN = 1 - enable receiver
1297 */
1298
1299 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1300 *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1301 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1302
1303 dbri_cmdsend(dbri, cmd, 4);
1304 }
1305
1306 /*
1307 ****************************************************************************
1308 *********************** CS4215 audio codec management **********************
1309 ****************************************************************************
1310
1311 In the standard SPARC audio configuration, the CS4215 codec is attached
1312 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1313
1314 * Lock must not be held before calling it.
1315
1316 */
cs4215_setup_pipes(struct snd_dbri * dbri)1317 static void cs4215_setup_pipes(struct snd_dbri *dbri)
1318 {
1319 unsigned long flags;
1320
1321 spin_lock_irqsave(&dbri->lock, flags);
1322 /*
1323 * Data mode:
1324 * Pipe 4: Send timeslots 1-4 (audio data)
1325 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1326 * Pipe 6: Receive timeslots 1-4 (audio data)
1327 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1328 * interrupt, and the rest of the data (slot 5 and 8) is
1329 * not relevant for us (only for doublechecking).
1330 *
1331 * Control mode:
1332 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1333 * Pipe 18: Receive timeslot 1 (clb).
1334 * Pipe 19: Receive timeslot 7 (version).
1335 */
1336
1337 setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1338 setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1339 setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1340 setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1341
1342 setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1343 setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1344 setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1345 spin_unlock_irqrestore(&dbri->lock, flags);
1346
1347 dbri_cmdwait(dbri);
1348 }
1349
cs4215_init_data(struct cs4215 * mm)1350 static int cs4215_init_data(struct cs4215 *mm)
1351 {
1352 /*
1353 * No action, memory resetting only.
1354 *
1355 * Data Time Slot 5-8
1356 * Speaker,Line and Headphone enable. Gain set to the half.
1357 * Input is mike.
1358 */
1359 mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1360 mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1361 mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1362 mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1363
1364 /*
1365 * Control Time Slot 1-4
1366 * 0: Default I/O voltage scale
1367 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1368 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1369 * 3: Tests disabled
1370 */
1371 mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1372 mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1373 mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1374 mm->ctrl[3] = 0;
1375
1376 mm->status = 0;
1377 mm->version = 0xff;
1378 mm->precision = 8; /* For ULAW */
1379 mm->channels = 1;
1380
1381 return 0;
1382 }
1383
cs4215_setdata(struct snd_dbri * dbri,int muted)1384 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1385 {
1386 if (muted) {
1387 dbri->mm.data[0] |= 63;
1388 dbri->mm.data[1] |= 63;
1389 dbri->mm.data[2] &= ~15;
1390 dbri->mm.data[3] &= ~15;
1391 } else {
1392 /* Start by setting the playback attenuation. */
1393 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1394 int left_gain = info->left_gain & 0x3f;
1395 int right_gain = info->right_gain & 0x3f;
1396
1397 dbri->mm.data[0] &= ~0x3f; /* Reset the volume bits */
1398 dbri->mm.data[1] &= ~0x3f;
1399 dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1400 dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1401
1402 /* Now set the recording gain. */
1403 info = &dbri->stream_info[DBRI_REC];
1404 left_gain = info->left_gain & 0xf;
1405 right_gain = info->right_gain & 0xf;
1406 dbri->mm.data[2] |= CS4215_LG(left_gain);
1407 dbri->mm.data[3] |= CS4215_RG(right_gain);
1408 }
1409
1410 xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1411 }
1412
1413 /*
1414 * Set the CS4215 to data mode.
1415 */
cs4215_open(struct snd_dbri * dbri)1416 static void cs4215_open(struct snd_dbri *dbri)
1417 {
1418 int data_width;
1419 u32 tmp;
1420 unsigned long flags;
1421
1422 dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1423 dbri->mm.channels, dbri->mm.precision);
1424
1425 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1426 * to make sure this takes. This avoids clicking noises.
1427 */
1428
1429 cs4215_setdata(dbri, 1);
1430 udelay(125);
1431
1432 /*
1433 * Data mode:
1434 * Pipe 4: Send timeslots 1-4 (audio data)
1435 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1436 * Pipe 6: Receive timeslots 1-4 (audio data)
1437 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1438 * interrupt, and the rest of the data (slot 5 and 8) is
1439 * not relevant for us (only for doublechecking).
1440 *
1441 * Just like in control mode, the time slots are all offset by eight
1442 * bits. The CS4215, it seems, observes TSIN (the delayed signal)
1443 * even if it's the CHI master. Don't ask me...
1444 */
1445 spin_lock_irqsave(&dbri->lock, flags);
1446 tmp = sbus_readl(dbri->regs + REG0);
1447 tmp &= ~(D_C); /* Disable CHI */
1448 sbus_writel(tmp, dbri->regs + REG0);
1449
1450 /* Switch CS4215 to data mode - set PIO3 to 1 */
1451 sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1452 (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1453
1454 reset_chi(dbri, CHIslave, 128);
1455
1456 /* Note: this next doesn't work for 8-bit stereo, because the two
1457 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1458 * (See CS4215 datasheet Fig 15)
1459 *
1460 * DBRI non-contiguous mode would be required to make this work.
1461 */
1462 data_width = dbri->mm.channels * dbri->mm.precision;
1463
1464 link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1465 link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1466 link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1467 link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1468
1469 /* FIXME: enable CHI after _setdata? */
1470 tmp = sbus_readl(dbri->regs + REG0);
1471 tmp |= D_C; /* Enable CHI */
1472 sbus_writel(tmp, dbri->regs + REG0);
1473 spin_unlock_irqrestore(&dbri->lock, flags);
1474
1475 cs4215_setdata(dbri, 0);
1476 }
1477
1478 /*
1479 * Send the control information (i.e. audio format)
1480 */
cs4215_setctrl(struct snd_dbri * dbri)1481 static int cs4215_setctrl(struct snd_dbri *dbri)
1482 {
1483 int i, val;
1484 u32 tmp;
1485 unsigned long flags;
1486
1487 /* FIXME - let the CPU do something useful during these delays */
1488
1489 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1490 * to make sure this takes. This avoids clicking noises.
1491 */
1492 cs4215_setdata(dbri, 1);
1493 udelay(125);
1494
1495 /*
1496 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1497 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1498 */
1499 val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1500 sbus_writel(val, dbri->regs + REG2);
1501 dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1502 udelay(34);
1503
1504 /* In Control mode, the CS4215 is a slave device, so the DBRI must
1505 * operate as CHI master, supplying clocking and frame synchronization.
1506 *
1507 * In Data mode, however, the CS4215 must be CHI master to insure
1508 * that its data stream is synchronous with its codec.
1509 *
1510 * The upshot of all this? We start by putting the DBRI into master
1511 * mode, program the CS4215 in Control mode, then switch the CS4215
1512 * into Data mode and put the DBRI into slave mode. Various timing
1513 * requirements must be observed along the way.
1514 *
1515 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1516 * others?), the addressing of the CS4215's time slots is
1517 * offset by eight bits, so we add eight to all the "cycle"
1518 * values in the Define Time Slot (DTS) commands. This is
1519 * done in hardware by a TI 248 that delays the DBRI->4215
1520 * frame sync signal by eight clock cycles. Anybody know why?
1521 */
1522 spin_lock_irqsave(&dbri->lock, flags);
1523 tmp = sbus_readl(dbri->regs + REG0);
1524 tmp &= ~D_C; /* Disable CHI */
1525 sbus_writel(tmp, dbri->regs + REG0);
1526
1527 reset_chi(dbri, CHImaster, 128);
1528
1529 /*
1530 * Control mode:
1531 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1532 * Pipe 18: Receive timeslot 1 (clb).
1533 * Pipe 19: Receive timeslot 7 (version).
1534 */
1535
1536 link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1537 link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1538 link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1539 spin_unlock_irqrestore(&dbri->lock, flags);
1540
1541 /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1542 dbri->mm.ctrl[0] &= ~CS4215_CLB;
1543 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1544
1545 spin_lock_irqsave(&dbri->lock, flags);
1546 tmp = sbus_readl(dbri->regs + REG0);
1547 tmp |= D_C; /* Enable CHI */
1548 sbus_writel(tmp, dbri->regs + REG0);
1549 spin_unlock_irqrestore(&dbri->lock, flags);
1550
1551 for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1552 msleep_interruptible(1);
1553
1554 if (i == 0) {
1555 dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1556 dbri->mm.status);
1557 return -1;
1558 }
1559
1560 /* Disable changes to our copy of the version number, as we are about
1561 * to leave control mode.
1562 */
1563 recv_fixed(dbri, 19, NULL);
1564
1565 /* Terminate CS4215 control mode - data sheet says
1566 * "Set CLB=1 and send two more frames of valid control info"
1567 */
1568 dbri->mm.ctrl[0] |= CS4215_CLB;
1569 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1570
1571 /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1572 udelay(250);
1573
1574 cs4215_setdata(dbri, 0);
1575
1576 return 0;
1577 }
1578
1579 /*
1580 * Setup the codec with the sampling rate, audio format and number of
1581 * channels.
1582 * As part of the process we resend the settings for the data
1583 * timeslots as well.
1584 */
cs4215_prepare(struct snd_dbri * dbri,unsigned int rate,snd_pcm_format_t format,unsigned int channels)1585 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1586 snd_pcm_format_t format, unsigned int channels)
1587 {
1588 int freq_idx;
1589 int ret = 0;
1590
1591 /* Lookup index for this rate */
1592 for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1593 if (CS4215_FREQ[freq_idx].freq == rate)
1594 break;
1595 }
1596 if (CS4215_FREQ[freq_idx].freq != rate) {
1597 printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1598 return -1;
1599 }
1600
1601 switch (format) {
1602 case SNDRV_PCM_FORMAT_MU_LAW:
1603 dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1604 dbri->mm.precision = 8;
1605 break;
1606 case SNDRV_PCM_FORMAT_A_LAW:
1607 dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1608 dbri->mm.precision = 8;
1609 break;
1610 case SNDRV_PCM_FORMAT_U8:
1611 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1612 dbri->mm.precision = 8;
1613 break;
1614 case SNDRV_PCM_FORMAT_S16_BE:
1615 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1616 dbri->mm.precision = 16;
1617 break;
1618 default:
1619 printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1620 return -1;
1621 }
1622
1623 /* Add rate parameters */
1624 dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1625 dbri->mm.ctrl[2] = CS4215_XCLK |
1626 CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1627
1628 dbri->mm.channels = channels;
1629 if (channels == 2)
1630 dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1631
1632 ret = cs4215_setctrl(dbri);
1633 if (ret == 0)
1634 cs4215_open(dbri); /* set codec to data mode */
1635
1636 return ret;
1637 }
1638
1639 /*
1640 *
1641 */
cs4215_init(struct snd_dbri * dbri)1642 static int cs4215_init(struct snd_dbri *dbri)
1643 {
1644 u32 reg2 = sbus_readl(dbri->regs + REG2);
1645 dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1646
1647 /* Look for the cs4215 chips */
1648 if (reg2 & D_PIO2) {
1649 dprintk(D_MM, "Onboard CS4215 detected\n");
1650 dbri->mm.onboard = 1;
1651 }
1652 if (reg2 & D_PIO0) {
1653 dprintk(D_MM, "Speakerbox detected\n");
1654 dbri->mm.onboard = 0;
1655
1656 if (reg2 & D_PIO2) {
1657 printk(KERN_INFO "DBRI: Using speakerbox / "
1658 "ignoring onboard mmcodec.\n");
1659 sbus_writel(D_ENPIO2, dbri->regs + REG2);
1660 }
1661 }
1662
1663 if (!(reg2 & (D_PIO0 | D_PIO2))) {
1664 printk(KERN_ERR "DBRI: no mmcodec found.\n");
1665 return -EIO;
1666 }
1667
1668 cs4215_setup_pipes(dbri);
1669 cs4215_init_data(&dbri->mm);
1670
1671 /* Enable capture of the status & version timeslots. */
1672 recv_fixed(dbri, 18, &dbri->mm.status);
1673 recv_fixed(dbri, 19, &dbri->mm.version);
1674
1675 dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1676 if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1677 dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1678 dbri->mm.offset);
1679 return -EIO;
1680 }
1681 dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1682
1683 return 0;
1684 }
1685
1686 /*
1687 ****************************************************************************
1688 *************************** DBRI interrupt handler *************************
1689 ****************************************************************************
1690
1691 The DBRI communicates with the CPU mainly via a circular interrupt
1692 buffer. When an interrupt is signaled, the CPU walks through the
1693 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1694 Complicated interrupts are handled by dedicated functions (which
1695 appear first in this file). Any pending interrupts can be serviced by
1696 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1697 interrupts are disabled.
1698
1699 */
1700
1701 /* xmit_descs()
1702 *
1703 * Starts transmitting the current TD's for recording/playing.
1704 * For playback, ALSA has filled the DMA memory with new data (we hope).
1705 */
xmit_descs(struct snd_dbri * dbri)1706 static void xmit_descs(struct snd_dbri *dbri)
1707 {
1708 struct dbri_streaminfo *info;
1709 u32 dvma_addr;
1710 s32 *cmd;
1711 unsigned long flags;
1712 int first_td;
1713
1714 if (dbri == NULL)
1715 return; /* Disabled */
1716
1717 dvma_addr = (u32)dbri->dma_dvma;
1718 info = &dbri->stream_info[DBRI_REC];
1719 spin_lock_irqsave(&dbri->lock, flags);
1720
1721 if (info->pipe >= 0) {
1722 first_td = dbri->pipes[info->pipe].first_desc;
1723
1724 dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1725
1726 /* Stream could be closed by the time we run. */
1727 if (first_td >= 0) {
1728 cmd = dbri_cmdlock(dbri, 2);
1729 *(cmd++) = DBRI_CMD(D_SDP, 0,
1730 dbri->pipes[info->pipe].sdp
1731 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1732 *(cmd++) = dvma_addr +
1733 dbri_dma_off(desc, first_td);
1734 dbri_cmdsend(dbri, cmd, 2);
1735
1736 /* Reset our admin of the pipe. */
1737 dbri->pipes[info->pipe].desc = first_td;
1738 }
1739 }
1740
1741 info = &dbri->stream_info[DBRI_PLAY];
1742
1743 if (info->pipe >= 0) {
1744 first_td = dbri->pipes[info->pipe].first_desc;
1745
1746 dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1747
1748 /* Stream could be closed by the time we run. */
1749 if (first_td >= 0) {
1750 cmd = dbri_cmdlock(dbri, 2);
1751 *(cmd++) = DBRI_CMD(D_SDP, 0,
1752 dbri->pipes[info->pipe].sdp
1753 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1754 *(cmd++) = dvma_addr +
1755 dbri_dma_off(desc, first_td);
1756 dbri_cmdsend(dbri, cmd, 2);
1757
1758 /* Reset our admin of the pipe. */
1759 dbri->pipes[info->pipe].desc = first_td;
1760 }
1761 }
1762
1763 spin_unlock_irqrestore(&dbri->lock, flags);
1764 }
1765
1766 /* transmission_complete_intr()
1767 *
1768 * Called by main interrupt handler when DBRI signals transmission complete
1769 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1770 *
1771 * Walks through the pipe's list of transmit buffer descriptors and marks
1772 * them as available. Stops when the first descriptor is found without
1773 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1774 *
1775 * The DMA buffers are not released. They form a ring buffer and
1776 * they are filled by ALSA while others are transmitted by DMA.
1777 *
1778 */
1779
transmission_complete_intr(struct snd_dbri * dbri,int pipe)1780 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1781 {
1782 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1783 int td = dbri->pipes[pipe].desc;
1784 int status;
1785
1786 while (td >= 0) {
1787 if (td >= DBRI_NO_DESCS) {
1788 printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1789 return;
1790 }
1791
1792 status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1793 if (!(status & DBRI_TD_TBC))
1794 break;
1795
1796 dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1797
1798 dbri->dma->desc[td].word4 = 0; /* Reset it for next time. */
1799 info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1800
1801 td = dbri->next_desc[td];
1802 dbri->pipes[pipe].desc = td;
1803 }
1804
1805 /* Notify ALSA */
1806 spin_unlock(&dbri->lock);
1807 snd_pcm_period_elapsed(info->substream);
1808 spin_lock(&dbri->lock);
1809 }
1810
reception_complete_intr(struct snd_dbri * dbri,int pipe)1811 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1812 {
1813 struct dbri_streaminfo *info;
1814 int rd = dbri->pipes[pipe].desc;
1815 s32 status;
1816
1817 if (rd < 0 || rd >= DBRI_NO_DESCS) {
1818 printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1819 return;
1820 }
1821
1822 dbri->pipes[pipe].desc = dbri->next_desc[rd];
1823 status = dbri->dma->desc[rd].word1;
1824 dbri->dma->desc[rd].word1 = 0; /* Reset it for next time. */
1825
1826 info = &dbri->stream_info[DBRI_REC];
1827 info->offset += DBRI_RD_CNT(status);
1828
1829 /* FIXME: Check status */
1830
1831 dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1832 rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1833
1834 /* Notify ALSA */
1835 spin_unlock(&dbri->lock);
1836 snd_pcm_period_elapsed(info->substream);
1837 spin_lock(&dbri->lock);
1838 }
1839
dbri_process_one_interrupt(struct snd_dbri * dbri,int x)1840 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1841 {
1842 int val = D_INTR_GETVAL(x);
1843 int channel = D_INTR_GETCHAN(x);
1844 int command = D_INTR_GETCMD(x);
1845 int code = D_INTR_GETCODE(x);
1846 #ifdef DBRI_DEBUG
1847 int rval = D_INTR_GETRVAL(x);
1848 #endif
1849
1850 if (channel == D_INTR_CMD) {
1851 dprintk(D_CMD, "INTR: Command: %-5s Value:%d\n",
1852 cmds[command], val);
1853 } else {
1854 dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1855 channel, code, rval);
1856 }
1857
1858 switch (code) {
1859 case D_INTR_CMDI:
1860 if (command != D_WAIT)
1861 printk(KERN_ERR "DBRI: Command read interrupt\n");
1862 break;
1863 case D_INTR_BRDY:
1864 reception_complete_intr(dbri, channel);
1865 break;
1866 case D_INTR_XCMP:
1867 case D_INTR_MINT:
1868 transmission_complete_intr(dbri, channel);
1869 break;
1870 case D_INTR_UNDR:
1871 /* UNDR - Transmission underrun
1872 * resend SDP command with clear pipe bit (C) set
1873 */
1874 {
1875 /* FIXME: do something useful in case of underrun */
1876 printk(KERN_ERR "DBRI: Underrun error\n");
1877 #if 0
1878 s32 *cmd;
1879 int pipe = channel;
1880 int td = dbri->pipes[pipe].desc;
1881
1882 dbri->dma->desc[td].word4 = 0;
1883 cmd = dbri_cmdlock(dbri, NoGetLock);
1884 *(cmd++) = DBRI_CMD(D_SDP, 0,
1885 dbri->pipes[pipe].sdp
1886 | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1887 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1888 dbri_cmdsend(dbri, cmd);
1889 #endif
1890 }
1891 break;
1892 case D_INTR_FXDT:
1893 /* FXDT - Fixed data change */
1894 if (dbri->pipes[channel].sdp & D_SDP_MSB)
1895 val = reverse_bytes(val, dbri->pipes[channel].length);
1896
1897 if (dbri->pipes[channel].recv_fixed_ptr)
1898 *(dbri->pipes[channel].recv_fixed_ptr) = val;
1899 break;
1900 default:
1901 if (channel != D_INTR_CMD)
1902 printk(KERN_WARNING
1903 "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1904 }
1905 }
1906
1907 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1908 * buffer until it finds a zero word (indicating nothing more to do
1909 * right now). Non-zero words require processing and are handed off
1910 * to dbri_process_one_interrupt AFTER advancing the pointer.
1911 */
dbri_process_interrupt_buffer(struct snd_dbri * dbri)1912 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1913 {
1914 s32 x;
1915
1916 while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1917 dbri->dma->intr[dbri->dbri_irqp] = 0;
1918 dbri->dbri_irqp++;
1919 if (dbri->dbri_irqp == DBRI_INT_BLK)
1920 dbri->dbri_irqp = 1;
1921
1922 dbri_process_one_interrupt(dbri, x);
1923 }
1924 }
1925
snd_dbri_interrupt(int irq,void * dev_id)1926 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1927 {
1928 struct snd_dbri *dbri = dev_id;
1929 static int errcnt;
1930 int x;
1931
1932 if (dbri == NULL)
1933 return IRQ_NONE;
1934 spin_lock(&dbri->lock);
1935
1936 /*
1937 * Read it, so the interrupt goes away.
1938 */
1939 x = sbus_readl(dbri->regs + REG1);
1940
1941 if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1942 u32 tmp;
1943
1944 if (x & D_MRR)
1945 printk(KERN_ERR
1946 "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1947 x);
1948 if (x & D_MLE)
1949 printk(KERN_ERR
1950 "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1951 x);
1952 if (x & D_LBG)
1953 printk(KERN_ERR
1954 "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1955 if (x & D_MBE)
1956 printk(KERN_ERR
1957 "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1958
1959 /* Some of these SBus errors cause the chip's SBus circuitry
1960 * to be disabled, so just re-enable and try to keep going.
1961 *
1962 * The only one I've seen is MRR, which will be triggered
1963 * if you let a transmit pipe underrun, then try to CDP it.
1964 *
1965 * If these things persist, we reset the chip.
1966 */
1967 if ((++errcnt) % 10 == 0) {
1968 dprintk(D_INT, "Interrupt errors exceeded.\n");
1969 dbri_reset(dbri);
1970 } else {
1971 tmp = sbus_readl(dbri->regs + REG0);
1972 tmp &= ~(D_D);
1973 sbus_writel(tmp, dbri->regs + REG0);
1974 }
1975 }
1976
1977 dbri_process_interrupt_buffer(dbri);
1978
1979 spin_unlock(&dbri->lock);
1980
1981 return IRQ_HANDLED;
1982 }
1983
1984 /****************************************************************************
1985 PCM Interface
1986 ****************************************************************************/
1987 static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1988 .info = SNDRV_PCM_INFO_MMAP |
1989 SNDRV_PCM_INFO_INTERLEAVED |
1990 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1991 SNDRV_PCM_INFO_MMAP_VALID |
1992 SNDRV_PCM_INFO_BATCH,
1993 .formats = SNDRV_PCM_FMTBIT_MU_LAW |
1994 SNDRV_PCM_FMTBIT_A_LAW |
1995 SNDRV_PCM_FMTBIT_U8 |
1996 SNDRV_PCM_FMTBIT_S16_BE,
1997 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1998 .rate_min = 5512,
1999 .rate_max = 48000,
2000 .channels_min = 1,
2001 .channels_max = 2,
2002 .buffer_bytes_max = 64 * 1024,
2003 .period_bytes_min = 1,
2004 .period_bytes_max = DBRI_TD_MAXCNT,
2005 .periods_min = 1,
2006 .periods_max = 1024,
2007 };
2008
snd_hw_rule_format(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)2009 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2010 struct snd_pcm_hw_rule *rule)
2011 {
2012 struct snd_interval *c = hw_param_interval(params,
2013 SNDRV_PCM_HW_PARAM_CHANNELS);
2014 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2015 struct snd_mask fmt;
2016
2017 snd_mask_any(&fmt);
2018 if (c->min > 1) {
2019 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2020 return snd_mask_refine(f, &fmt);
2021 }
2022 return 0;
2023 }
2024
snd_hw_rule_channels(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)2025 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2026 struct snd_pcm_hw_rule *rule)
2027 {
2028 struct snd_interval *c = hw_param_interval(params,
2029 SNDRV_PCM_HW_PARAM_CHANNELS);
2030 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2031 struct snd_interval ch;
2032
2033 snd_interval_any(&ch);
2034 if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2035 ch.min = 1;
2036 ch.max = 1;
2037 ch.integer = 1;
2038 return snd_interval_refine(c, &ch);
2039 }
2040 return 0;
2041 }
2042
snd_dbri_open(struct snd_pcm_substream * substream)2043 static int snd_dbri_open(struct snd_pcm_substream *substream)
2044 {
2045 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2046 struct snd_pcm_runtime *runtime = substream->runtime;
2047 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2048 unsigned long flags;
2049
2050 dprintk(D_USR, "open audio output.\n");
2051 runtime->hw = snd_dbri_pcm_hw;
2052
2053 spin_lock_irqsave(&dbri->lock, flags);
2054 info->substream = substream;
2055 info->offset = 0;
2056 info->dvma_buffer = 0;
2057 info->pipe = -1;
2058 spin_unlock_irqrestore(&dbri->lock, flags);
2059
2060 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2061 snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2062 -1);
2063 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2064 snd_hw_rule_channels, NULL,
2065 SNDRV_PCM_HW_PARAM_CHANNELS,
2066 -1);
2067
2068 cs4215_open(dbri);
2069
2070 return 0;
2071 }
2072
snd_dbri_close(struct snd_pcm_substream * substream)2073 static int snd_dbri_close(struct snd_pcm_substream *substream)
2074 {
2075 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2076 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2077
2078 dprintk(D_USR, "close audio output.\n");
2079 info->substream = NULL;
2080 info->offset = 0;
2081
2082 return 0;
2083 }
2084
snd_dbri_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params)2085 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2086 struct snd_pcm_hw_params *hw_params)
2087 {
2088 struct snd_pcm_runtime *runtime = substream->runtime;
2089 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2090 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2091 int direction;
2092 int ret;
2093
2094 /* set sampling rate, audio format and number of channels */
2095 ret = cs4215_prepare(dbri, params_rate(hw_params),
2096 params_format(hw_params),
2097 params_channels(hw_params));
2098 if (ret != 0)
2099 return ret;
2100
2101 /* hw_params can get called multiple times. Only map the DMA once.
2102 */
2103 if (info->dvma_buffer == 0) {
2104 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2105 direction = DMA_TO_DEVICE;
2106 else
2107 direction = DMA_FROM_DEVICE;
2108
2109 info->dvma_buffer =
2110 dma_map_single(&dbri->op->dev,
2111 runtime->dma_area,
2112 params_buffer_bytes(hw_params),
2113 direction);
2114 }
2115
2116 direction = params_buffer_bytes(hw_params);
2117 dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2118 direction, info->dvma_buffer);
2119 return 0;
2120 }
2121
snd_dbri_hw_free(struct snd_pcm_substream * substream)2122 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2123 {
2124 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2125 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2126 int direction;
2127
2128 dprintk(D_USR, "hw_free.\n");
2129
2130 /* hw_free can get called multiple times. Only unmap the DMA once.
2131 */
2132 if (info->dvma_buffer) {
2133 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2134 direction = DMA_TO_DEVICE;
2135 else
2136 direction = DMA_FROM_DEVICE;
2137
2138 dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2139 substream->runtime->buffer_size, direction);
2140 info->dvma_buffer = 0;
2141 }
2142 if (info->pipe != -1) {
2143 reset_pipe(dbri, info->pipe);
2144 info->pipe = -1;
2145 }
2146
2147 return 0;
2148 }
2149
snd_dbri_prepare(struct snd_pcm_substream * substream)2150 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2151 {
2152 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2153 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2154 int ret;
2155
2156 info->size = snd_pcm_lib_buffer_bytes(substream);
2157 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2158 info->pipe = 4; /* Send pipe */
2159 else
2160 info->pipe = 6; /* Receive pipe */
2161
2162 spin_lock_irq(&dbri->lock);
2163 info->offset = 0;
2164
2165 /* Setup the all the transmit/receive descriptors to cover the
2166 * whole DMA buffer.
2167 */
2168 ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2169 snd_pcm_lib_period_bytes(substream));
2170
2171 spin_unlock_irq(&dbri->lock);
2172
2173 dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2174 return ret;
2175 }
2176
snd_dbri_trigger(struct snd_pcm_substream * substream,int cmd)2177 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2178 {
2179 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2180 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2181 int ret = 0;
2182
2183 switch (cmd) {
2184 case SNDRV_PCM_TRIGGER_START:
2185 dprintk(D_USR, "start audio, period is %d bytes\n",
2186 (int)snd_pcm_lib_period_bytes(substream));
2187 /* Re-submit the TDs. */
2188 xmit_descs(dbri);
2189 break;
2190 case SNDRV_PCM_TRIGGER_STOP:
2191 dprintk(D_USR, "stop audio.\n");
2192 reset_pipe(dbri, info->pipe);
2193 break;
2194 default:
2195 ret = -EINVAL;
2196 }
2197
2198 return ret;
2199 }
2200
snd_dbri_pointer(struct snd_pcm_substream * substream)2201 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2202 {
2203 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2204 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2205 snd_pcm_uframes_t ret;
2206
2207 ret = bytes_to_frames(substream->runtime, info->offset)
2208 % substream->runtime->buffer_size;
2209 dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2210 ret, substream->runtime->buffer_size);
2211 return ret;
2212 }
2213
2214 static const struct snd_pcm_ops snd_dbri_ops = {
2215 .open = snd_dbri_open,
2216 .close = snd_dbri_close,
2217 .hw_params = snd_dbri_hw_params,
2218 .hw_free = snd_dbri_hw_free,
2219 .prepare = snd_dbri_prepare,
2220 .trigger = snd_dbri_trigger,
2221 .pointer = snd_dbri_pointer,
2222 };
2223
snd_dbri_pcm(struct snd_card * card)2224 static int snd_dbri_pcm(struct snd_card *card)
2225 {
2226 struct snd_pcm *pcm;
2227 int err;
2228
2229 err = snd_pcm_new(card,
2230 /* ID */ "sun_dbri",
2231 /* device */ 0,
2232 /* playback count */ 1,
2233 /* capture count */ 1, &pcm);
2234 if (err < 0)
2235 return err;
2236
2237 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2238 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2239
2240 pcm->private_data = card->private_data;
2241 pcm->info_flags = 0;
2242 strcpy(pcm->name, card->shortname);
2243
2244 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
2245 NULL, 64 * 1024, 64 * 1024);
2246 return 0;
2247 }
2248
2249 /*****************************************************************************
2250 Mixer interface
2251 *****************************************************************************/
2252
snd_cs4215_info_volume(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2253 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2254 struct snd_ctl_elem_info *uinfo)
2255 {
2256 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2257 uinfo->count = 2;
2258 uinfo->value.integer.min = 0;
2259 if (kcontrol->private_value == DBRI_PLAY)
2260 uinfo->value.integer.max = DBRI_MAX_VOLUME;
2261 else
2262 uinfo->value.integer.max = DBRI_MAX_GAIN;
2263 return 0;
2264 }
2265
snd_cs4215_get_volume(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2266 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2267 struct snd_ctl_elem_value *ucontrol)
2268 {
2269 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2270 struct dbri_streaminfo *info;
2271
2272 if (snd_BUG_ON(!dbri))
2273 return -EINVAL;
2274 info = &dbri->stream_info[kcontrol->private_value];
2275
2276 ucontrol->value.integer.value[0] = info->left_gain;
2277 ucontrol->value.integer.value[1] = info->right_gain;
2278 return 0;
2279 }
2280
snd_cs4215_put_volume(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2281 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2282 struct snd_ctl_elem_value *ucontrol)
2283 {
2284 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2285 struct dbri_streaminfo *info =
2286 &dbri->stream_info[kcontrol->private_value];
2287 unsigned int vol[2];
2288 int changed = 0;
2289
2290 vol[0] = ucontrol->value.integer.value[0];
2291 vol[1] = ucontrol->value.integer.value[1];
2292 if (kcontrol->private_value == DBRI_PLAY) {
2293 if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2294 return -EINVAL;
2295 } else {
2296 if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2297 return -EINVAL;
2298 }
2299
2300 if (info->left_gain != vol[0]) {
2301 info->left_gain = vol[0];
2302 changed = 1;
2303 }
2304 if (info->right_gain != vol[1]) {
2305 info->right_gain = vol[1];
2306 changed = 1;
2307 }
2308 if (changed) {
2309 /* First mute outputs, and wait 1/8000 sec (125 us)
2310 * to make sure this takes. This avoids clicking noises.
2311 */
2312 cs4215_setdata(dbri, 1);
2313 udelay(125);
2314 cs4215_setdata(dbri, 0);
2315 }
2316 return changed;
2317 }
2318
snd_cs4215_info_single(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2319 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2320 struct snd_ctl_elem_info *uinfo)
2321 {
2322 int mask = (kcontrol->private_value >> 16) & 0xff;
2323
2324 uinfo->type = (mask == 1) ?
2325 SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2326 uinfo->count = 1;
2327 uinfo->value.integer.min = 0;
2328 uinfo->value.integer.max = mask;
2329 return 0;
2330 }
2331
snd_cs4215_get_single(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2332 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2333 struct snd_ctl_elem_value *ucontrol)
2334 {
2335 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2336 int elem = kcontrol->private_value & 0xff;
2337 int shift = (kcontrol->private_value >> 8) & 0xff;
2338 int mask = (kcontrol->private_value >> 16) & 0xff;
2339 int invert = (kcontrol->private_value >> 24) & 1;
2340
2341 if (snd_BUG_ON(!dbri))
2342 return -EINVAL;
2343
2344 if (elem < 4)
2345 ucontrol->value.integer.value[0] =
2346 (dbri->mm.data[elem] >> shift) & mask;
2347 else
2348 ucontrol->value.integer.value[0] =
2349 (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2350
2351 if (invert == 1)
2352 ucontrol->value.integer.value[0] =
2353 mask - ucontrol->value.integer.value[0];
2354 return 0;
2355 }
2356
snd_cs4215_put_single(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2357 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2358 struct snd_ctl_elem_value *ucontrol)
2359 {
2360 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2361 int elem = kcontrol->private_value & 0xff;
2362 int shift = (kcontrol->private_value >> 8) & 0xff;
2363 int mask = (kcontrol->private_value >> 16) & 0xff;
2364 int invert = (kcontrol->private_value >> 24) & 1;
2365 int changed = 0;
2366 unsigned short val;
2367
2368 if (snd_BUG_ON(!dbri))
2369 return -EINVAL;
2370
2371 val = (ucontrol->value.integer.value[0] & mask);
2372 if (invert == 1)
2373 val = mask - val;
2374 val <<= shift;
2375
2376 if (elem < 4) {
2377 dbri->mm.data[elem] = (dbri->mm.data[elem] &
2378 ~(mask << shift)) | val;
2379 changed = (val != dbri->mm.data[elem]);
2380 } else {
2381 dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2382 ~(mask << shift)) | val;
2383 changed = (val != dbri->mm.ctrl[elem - 4]);
2384 }
2385
2386 dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2387 "mixer-value=%ld, mm-value=0x%x\n",
2388 mask, changed, ucontrol->value.integer.value[0],
2389 dbri->mm.data[elem & 3]);
2390
2391 if (changed) {
2392 /* First mute outputs, and wait 1/8000 sec (125 us)
2393 * to make sure this takes. This avoids clicking noises.
2394 */
2395 cs4215_setdata(dbri, 1);
2396 udelay(125);
2397 cs4215_setdata(dbri, 0);
2398 }
2399 return changed;
2400 }
2401
2402 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2403 timeslots. Shift is the bit offset in the timeslot, mask defines the
2404 number of bits. invert is a boolean for use with attenuation.
2405 */
2406 #define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2407 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
2408 .info = snd_cs4215_info_single, \
2409 .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2410 .private_value = (entry) | ((shift) << 8) | ((mask) << 16) | \
2411 ((invert) << 24) },
2412
2413 static const struct snd_kcontrol_new dbri_controls[] = {
2414 {
2415 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2416 .name = "Playback Volume",
2417 .info = snd_cs4215_info_volume,
2418 .get = snd_cs4215_get_volume,
2419 .put = snd_cs4215_put_volume,
2420 .private_value = DBRI_PLAY,
2421 },
2422 CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2423 CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2424 CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2425 {
2426 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2427 .name = "Capture Volume",
2428 .info = snd_cs4215_info_volume,
2429 .get = snd_cs4215_get_volume,
2430 .put = snd_cs4215_put_volume,
2431 .private_value = DBRI_REC,
2432 },
2433 /* FIXME: mic/line switch */
2434 CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2435 CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2436 CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2437 CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2438 };
2439
snd_dbri_mixer(struct snd_card * card)2440 static int snd_dbri_mixer(struct snd_card *card)
2441 {
2442 int idx, err;
2443 struct snd_dbri *dbri;
2444
2445 if (snd_BUG_ON(!card || !card->private_data))
2446 return -EINVAL;
2447 dbri = card->private_data;
2448
2449 strcpy(card->mixername, card->shortname);
2450
2451 for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2452 err = snd_ctl_add(card,
2453 snd_ctl_new1(&dbri_controls[idx], dbri));
2454 if (err < 0)
2455 return err;
2456 }
2457
2458 for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2459 dbri->stream_info[idx].left_gain = 0;
2460 dbri->stream_info[idx].right_gain = 0;
2461 }
2462
2463 return 0;
2464 }
2465
2466 /****************************************************************************
2467 /proc interface
2468 ****************************************************************************/
dbri_regs_read(struct snd_info_entry * entry,struct snd_info_buffer * buffer)2469 static void dbri_regs_read(struct snd_info_entry *entry,
2470 struct snd_info_buffer *buffer)
2471 {
2472 struct snd_dbri *dbri = entry->private_data;
2473
2474 snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2475 snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2476 snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2477 snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2478 }
2479
2480 #ifdef DBRI_DEBUG
dbri_debug_read(struct snd_info_entry * entry,struct snd_info_buffer * buffer)2481 static void dbri_debug_read(struct snd_info_entry *entry,
2482 struct snd_info_buffer *buffer)
2483 {
2484 struct snd_dbri *dbri = entry->private_data;
2485 int pipe;
2486 snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2487
2488 for (pipe = 0; pipe < 32; pipe++) {
2489 if (pipe_active(dbri, pipe)) {
2490 struct dbri_pipe *pptr = &dbri->pipes[pipe];
2491 snd_iprintf(buffer,
2492 "Pipe %d: %s SDP=0x%x desc=%d, "
2493 "len=%d next %d\n",
2494 pipe,
2495 (pptr->sdp & D_SDP_TO_SER) ? "output" :
2496 "input",
2497 pptr->sdp, pptr->desc,
2498 pptr->length, pptr->nextpipe);
2499 }
2500 }
2501 }
2502 #endif
2503
snd_dbri_proc(struct snd_card * card)2504 static void snd_dbri_proc(struct snd_card *card)
2505 {
2506 struct snd_dbri *dbri = card->private_data;
2507
2508 snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
2509 #ifdef DBRI_DEBUG
2510 snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
2511 #endif
2512 }
2513
2514 /*
2515 ****************************************************************************
2516 **************************** Initialization ********************************
2517 ****************************************************************************
2518 */
2519 static void snd_dbri_free(struct snd_dbri *dbri);
2520
snd_dbri_create(struct snd_card * card,struct platform_device * op,int irq,int dev)2521 static int snd_dbri_create(struct snd_card *card,
2522 struct platform_device *op,
2523 int irq, int dev)
2524 {
2525 struct snd_dbri *dbri = card->private_data;
2526 int err;
2527
2528 spin_lock_init(&dbri->lock);
2529 dbri->op = op;
2530 dbri->irq = irq;
2531
2532 dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2533 &dbri->dma_dvma, GFP_KERNEL);
2534 if (!dbri->dma)
2535 return -ENOMEM;
2536
2537 dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2538 dbri->dma, dbri->dma_dvma);
2539
2540 /* Map the registers into memory. */
2541 dbri->regs_size = resource_size(&op->resource[0]);
2542 dbri->regs = of_ioremap(&op->resource[0], 0,
2543 dbri->regs_size, "DBRI Registers");
2544 if (!dbri->regs) {
2545 printk(KERN_ERR "DBRI: could not allocate registers\n");
2546 dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2547 (void *)dbri->dma, dbri->dma_dvma);
2548 return -EIO;
2549 }
2550
2551 err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2552 "DBRI audio", dbri);
2553 if (err) {
2554 printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2555 of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2556 dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2557 (void *)dbri->dma, dbri->dma_dvma);
2558 return err;
2559 }
2560
2561 /* Do low level initialization of the DBRI and CS4215 chips */
2562 dbri_initialize(dbri);
2563 err = cs4215_init(dbri);
2564 if (err) {
2565 snd_dbri_free(dbri);
2566 return err;
2567 }
2568
2569 return 0;
2570 }
2571
snd_dbri_free(struct snd_dbri * dbri)2572 static void snd_dbri_free(struct snd_dbri *dbri)
2573 {
2574 dprintk(D_GEN, "snd_dbri_free\n");
2575 dbri_reset(dbri);
2576
2577 if (dbri->irq)
2578 free_irq(dbri->irq, dbri);
2579
2580 if (dbri->regs)
2581 of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2582
2583 if (dbri->dma)
2584 dma_free_coherent(&dbri->op->dev,
2585 sizeof(struct dbri_dma),
2586 (void *)dbri->dma, dbri->dma_dvma);
2587 }
2588
dbri_probe(struct platform_device * op)2589 static int dbri_probe(struct platform_device *op)
2590 {
2591 struct snd_dbri *dbri;
2592 struct resource *rp;
2593 struct snd_card *card;
2594 static int dev;
2595 int irq;
2596 int err;
2597
2598 if (dev >= SNDRV_CARDS)
2599 return -ENODEV;
2600 if (!enable[dev]) {
2601 dev++;
2602 return -ENOENT;
2603 }
2604
2605 irq = op->archdata.irqs[0];
2606 if (irq <= 0) {
2607 printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2608 return -ENODEV;
2609 }
2610
2611 err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2612 sizeof(struct snd_dbri), &card);
2613 if (err < 0)
2614 return err;
2615
2616 strcpy(card->driver, "DBRI");
2617 strcpy(card->shortname, "Sun DBRI");
2618 rp = &op->resource[0];
2619 sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2620 card->shortname,
2621 rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2622
2623 err = snd_dbri_create(card, op, irq, dev);
2624 if (err < 0) {
2625 snd_card_free(card);
2626 return err;
2627 }
2628
2629 dbri = card->private_data;
2630 err = snd_dbri_pcm(card);
2631 if (err < 0)
2632 goto _err;
2633
2634 err = snd_dbri_mixer(card);
2635 if (err < 0)
2636 goto _err;
2637
2638 /* /proc file handling */
2639 snd_dbri_proc(card);
2640 dev_set_drvdata(&op->dev, card);
2641
2642 err = snd_card_register(card);
2643 if (err < 0)
2644 goto _err;
2645
2646 printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2647 dev, dbri->regs,
2648 dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2649 dev++;
2650
2651 return 0;
2652
2653 _err:
2654 snd_dbri_free(dbri);
2655 snd_card_free(card);
2656 return err;
2657 }
2658
dbri_remove(struct platform_device * op)2659 static void dbri_remove(struct platform_device *op)
2660 {
2661 struct snd_card *card = dev_get_drvdata(&op->dev);
2662
2663 snd_dbri_free(card->private_data);
2664 snd_card_free(card);
2665 }
2666
2667 static const struct of_device_id dbri_match[] = {
2668 {
2669 .name = "SUNW,DBRIe",
2670 },
2671 {
2672 .name = "SUNW,DBRIf",
2673 },
2674 {},
2675 };
2676
2677 MODULE_DEVICE_TABLE(of, dbri_match);
2678
2679 static struct platform_driver dbri_sbus_driver = {
2680 .driver = {
2681 .name = "dbri",
2682 .of_match_table = dbri_match,
2683 },
2684 .probe = dbri_probe,
2685 .remove_new = dbri_remove,
2686 };
2687
2688 module_platform_driver(dbri_sbus_driver);
2689