1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "misc.h"
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "bio.h"
24 #include "check-integrity.h"
25 #include "locking.h"
26 #include "rcu-string.h"
27 #include "backref.h"
28 #include "disk-io.h"
29 #include "subpage.h"
30 #include "zoned.h"
31 #include "block-group.h"
32 #include "compression.h"
33 #include "fs.h"
34 #include "accessors.h"
35 #include "file-item.h"
36 #include "file.h"
37 #include "dev-replace.h"
38 #include "super.h"
39 #include "transaction.h"
40
41 static struct kmem_cache *extent_buffer_cache;
42
43 #ifdef CONFIG_BTRFS_DEBUG
btrfs_leak_debug_add_eb(struct extent_buffer * eb)44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
45 {
46 struct btrfs_fs_info *fs_info = eb->fs_info;
47 unsigned long flags;
48
49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
50 list_add(&eb->leak_list, &fs_info->allocated_ebs);
51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
52 }
53
btrfs_leak_debug_del_eb(struct extent_buffer * eb)54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
55 {
56 struct btrfs_fs_info *fs_info = eb->fs_info;
57 unsigned long flags;
58
59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
60 list_del(&eb->leak_list);
61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
62 }
63
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
65 {
66 struct extent_buffer *eb;
67 unsigned long flags;
68
69 /*
70 * If we didn't get into open_ctree our allocated_ebs will not be
71 * initialized, so just skip this.
72 */
73 if (!fs_info->allocated_ebs.next)
74 return;
75
76 WARN_ON(!list_empty(&fs_info->allocated_ebs));
77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
78 while (!list_empty(&fs_info->allocated_ebs)) {
79 eb = list_first_entry(&fs_info->allocated_ebs,
80 struct extent_buffer, leak_list);
81 pr_err(
82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
84 btrfs_header_owner(eb));
85 list_del(&eb->leak_list);
86 kmem_cache_free(extent_buffer_cache, eb);
87 }
88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
89 }
90 #else
91 #define btrfs_leak_debug_add_eb(eb) do {} while (0)
92 #define btrfs_leak_debug_del_eb(eb) do {} while (0)
93 #endif
94
95 /*
96 * Structure to record info about the bio being assembled, and other info like
97 * how many bytes are there before stripe/ordered extent boundary.
98 */
99 struct btrfs_bio_ctrl {
100 struct btrfs_bio *bbio;
101 enum btrfs_compression_type compress_type;
102 u32 len_to_oe_boundary;
103 blk_opf_t opf;
104 btrfs_bio_end_io_t end_io_func;
105 struct writeback_control *wbc;
106 };
107
submit_one_bio(struct btrfs_bio_ctrl * bio_ctrl)108 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
109 {
110 struct btrfs_bio *bbio = bio_ctrl->bbio;
111
112 if (!bbio)
113 return;
114
115 /* Caller should ensure the bio has at least some range added */
116 ASSERT(bbio->bio.bi_iter.bi_size);
117
118 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
119 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
120 btrfs_submit_compressed_read(bbio);
121 else
122 btrfs_submit_bio(bbio, 0);
123
124 /* The bbio is owned by the end_io handler now */
125 bio_ctrl->bbio = NULL;
126 }
127
128 /*
129 * Submit or fail the current bio in the bio_ctrl structure.
130 */
submit_write_bio(struct btrfs_bio_ctrl * bio_ctrl,int ret)131 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
132 {
133 struct btrfs_bio *bbio = bio_ctrl->bbio;
134
135 if (!bbio)
136 return;
137
138 if (ret) {
139 ASSERT(ret < 0);
140 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
141 /* The bio is owned by the end_io handler now */
142 bio_ctrl->bbio = NULL;
143 } else {
144 submit_one_bio(bio_ctrl);
145 }
146 }
147
extent_buffer_init_cachep(void)148 int __init extent_buffer_init_cachep(void)
149 {
150 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
151 sizeof(struct extent_buffer), 0,
152 SLAB_MEM_SPREAD, NULL);
153 if (!extent_buffer_cache)
154 return -ENOMEM;
155
156 return 0;
157 }
158
extent_buffer_free_cachep(void)159 void __cold extent_buffer_free_cachep(void)
160 {
161 /*
162 * Make sure all delayed rcu free are flushed before we
163 * destroy caches.
164 */
165 rcu_barrier();
166 kmem_cache_destroy(extent_buffer_cache);
167 }
168
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)169 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
170 {
171 unsigned long index = start >> PAGE_SHIFT;
172 unsigned long end_index = end >> PAGE_SHIFT;
173 struct page *page;
174
175 while (index <= end_index) {
176 page = find_get_page(inode->i_mapping, index);
177 BUG_ON(!page); /* Pages should be in the extent_io_tree */
178 clear_page_dirty_for_io(page);
179 put_page(page);
180 index++;
181 }
182 }
183
process_one_page(struct btrfs_fs_info * fs_info,struct page * page,struct page * locked_page,unsigned long page_ops,u64 start,u64 end)184 static void process_one_page(struct btrfs_fs_info *fs_info,
185 struct page *page, struct page *locked_page,
186 unsigned long page_ops, u64 start, u64 end)
187 {
188 u32 len;
189
190 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
191 len = end + 1 - start;
192
193 if (page_ops & PAGE_SET_ORDERED)
194 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
195 if (page_ops & PAGE_START_WRITEBACK) {
196 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
197 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
198 }
199 if (page_ops & PAGE_END_WRITEBACK)
200 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
201
202 if (page != locked_page && (page_ops & PAGE_UNLOCK))
203 btrfs_page_end_writer_lock(fs_info, page, start, len);
204 }
205
__process_pages_contig(struct address_space * mapping,struct page * locked_page,u64 start,u64 end,unsigned long page_ops)206 static void __process_pages_contig(struct address_space *mapping,
207 struct page *locked_page, u64 start, u64 end,
208 unsigned long page_ops)
209 {
210 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
211 pgoff_t start_index = start >> PAGE_SHIFT;
212 pgoff_t end_index = end >> PAGE_SHIFT;
213 pgoff_t index = start_index;
214 struct folio_batch fbatch;
215 int i;
216
217 folio_batch_init(&fbatch);
218 while (index <= end_index) {
219 int found_folios;
220
221 found_folios = filemap_get_folios_contig(mapping, &index,
222 end_index, &fbatch);
223 for (i = 0; i < found_folios; i++) {
224 struct folio *folio = fbatch.folios[i];
225
226 process_one_page(fs_info, &folio->page, locked_page,
227 page_ops, start, end);
228 }
229 folio_batch_release(&fbatch);
230 cond_resched();
231 }
232 }
233
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)234 static noinline void __unlock_for_delalloc(struct inode *inode,
235 struct page *locked_page,
236 u64 start, u64 end)
237 {
238 unsigned long index = start >> PAGE_SHIFT;
239 unsigned long end_index = end >> PAGE_SHIFT;
240
241 ASSERT(locked_page);
242 if (index == locked_page->index && end_index == index)
243 return;
244
245 __process_pages_contig(inode->i_mapping, locked_page, start, end,
246 PAGE_UNLOCK);
247 }
248
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 start,u64 end)249 static noinline int lock_delalloc_pages(struct inode *inode,
250 struct page *locked_page,
251 u64 start,
252 u64 end)
253 {
254 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
255 struct address_space *mapping = inode->i_mapping;
256 pgoff_t start_index = start >> PAGE_SHIFT;
257 pgoff_t end_index = end >> PAGE_SHIFT;
258 pgoff_t index = start_index;
259 u64 processed_end = start;
260 struct folio_batch fbatch;
261
262 if (index == locked_page->index && index == end_index)
263 return 0;
264
265 folio_batch_init(&fbatch);
266 while (index <= end_index) {
267 unsigned int found_folios, i;
268
269 found_folios = filemap_get_folios_contig(mapping, &index,
270 end_index, &fbatch);
271 if (found_folios == 0)
272 goto out;
273
274 for (i = 0; i < found_folios; i++) {
275 struct page *page = &fbatch.folios[i]->page;
276 u32 len = end + 1 - start;
277
278 if (page == locked_page)
279 continue;
280
281 if (btrfs_page_start_writer_lock(fs_info, page, start,
282 len))
283 goto out;
284
285 if (!PageDirty(page) || page->mapping != mapping) {
286 btrfs_page_end_writer_lock(fs_info, page, start,
287 len);
288 goto out;
289 }
290
291 processed_end = page_offset(page) + PAGE_SIZE - 1;
292 }
293 folio_batch_release(&fbatch);
294 cond_resched();
295 }
296
297 return 0;
298 out:
299 folio_batch_release(&fbatch);
300 if (processed_end > start)
301 __unlock_for_delalloc(inode, locked_page, start, processed_end);
302 return -EAGAIN;
303 }
304
305 /*
306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
307 * more than @max_bytes.
308 *
309 * @start: The original start bytenr to search.
310 * Will store the extent range start bytenr.
311 * @end: The original end bytenr of the search range
312 * Will store the extent range end bytenr.
313 *
314 * Return true if we find a delalloc range which starts inside the original
315 * range, and @start/@end will store the delalloc range start/end.
316 *
317 * Return false if we can't find any delalloc range which starts inside the
318 * original range, and @start/@end will be the non-delalloc range start/end.
319 */
320 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct page * locked_page,u64 * start,u64 * end)321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
322 struct page *locked_page, u64 *start,
323 u64 *end)
324 {
325 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
327 const u64 orig_start = *start;
328 const u64 orig_end = *end;
329 /* The sanity tests may not set a valid fs_info. */
330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
331 u64 delalloc_start;
332 u64 delalloc_end;
333 bool found;
334 struct extent_state *cached_state = NULL;
335 int ret;
336 int loops = 0;
337
338 /* Caller should pass a valid @end to indicate the search range end */
339 ASSERT(orig_end > orig_start);
340
341 /* The range should at least cover part of the page */
342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
343 orig_end <= page_offset(locked_page)));
344 again:
345 /* step one, find a bunch of delalloc bytes starting at start */
346 delalloc_start = *start;
347 delalloc_end = 0;
348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
349 max_bytes, &cached_state);
350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
351 *start = delalloc_start;
352
353 /* @delalloc_end can be -1, never go beyond @orig_end */
354 *end = min(delalloc_end, orig_end);
355 free_extent_state(cached_state);
356 return false;
357 }
358
359 /*
360 * start comes from the offset of locked_page. We have to lock
361 * pages in order, so we can't process delalloc bytes before
362 * locked_page
363 */
364 if (delalloc_start < *start)
365 delalloc_start = *start;
366
367 /*
368 * make sure to limit the number of pages we try to lock down
369 */
370 if (delalloc_end + 1 - delalloc_start > max_bytes)
371 delalloc_end = delalloc_start + max_bytes - 1;
372
373 /* step two, lock all the pages after the page that has start */
374 ret = lock_delalloc_pages(inode, locked_page,
375 delalloc_start, delalloc_end);
376 ASSERT(!ret || ret == -EAGAIN);
377 if (ret == -EAGAIN) {
378 /* some of the pages are gone, lets avoid looping by
379 * shortening the size of the delalloc range we're searching
380 */
381 free_extent_state(cached_state);
382 cached_state = NULL;
383 if (!loops) {
384 max_bytes = PAGE_SIZE;
385 loops = 1;
386 goto again;
387 } else {
388 found = false;
389 goto out_failed;
390 }
391 }
392
393 /* step three, lock the state bits for the whole range */
394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
395
396 /* then test to make sure it is all still delalloc */
397 ret = test_range_bit(tree, delalloc_start, delalloc_end,
398 EXTENT_DELALLOC, 1, cached_state);
399 if (!ret) {
400 unlock_extent(tree, delalloc_start, delalloc_end,
401 &cached_state);
402 __unlock_for_delalloc(inode, locked_page,
403 delalloc_start, delalloc_end);
404 cond_resched();
405 goto again;
406 }
407 free_extent_state(cached_state);
408 *start = delalloc_start;
409 *end = delalloc_end;
410 out_failed:
411 return found;
412 }
413
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,struct page * locked_page,u32 clear_bits,unsigned long page_ops)414 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
415 struct page *locked_page,
416 u32 clear_bits, unsigned long page_ops)
417 {
418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
419
420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
421 start, end, page_ops);
422 }
423
btrfs_verify_page(struct page * page,u64 start)424 static bool btrfs_verify_page(struct page *page, u64 start)
425 {
426 if (!fsverity_active(page->mapping->host) ||
427 PageUptodate(page) ||
428 start >= i_size_read(page->mapping->host))
429 return true;
430 return fsverity_verify_page(page);
431 }
432
end_page_read(struct page * page,bool uptodate,u64 start,u32 len)433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
434 {
435 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
436
437 ASSERT(page_offset(page) <= start &&
438 start + len <= page_offset(page) + PAGE_SIZE);
439
440 if (uptodate && btrfs_verify_page(page, start))
441 btrfs_page_set_uptodate(fs_info, page, start, len);
442 else
443 btrfs_page_clear_uptodate(fs_info, page, start, len);
444
445 if (!btrfs_is_subpage(fs_info, page))
446 unlock_page(page);
447 else
448 btrfs_subpage_end_reader(fs_info, page, start, len);
449 }
450
451 /*
452 * after a writepage IO is done, we need to:
453 * clear the uptodate bits on error
454 * clear the writeback bits in the extent tree for this IO
455 * end_page_writeback if the page has no more pending IO
456 *
457 * Scheduling is not allowed, so the extent state tree is expected
458 * to have one and only one object corresponding to this IO.
459 */
end_bio_extent_writepage(struct btrfs_bio * bbio)460 static void end_bio_extent_writepage(struct btrfs_bio *bbio)
461 {
462 struct bio *bio = &bbio->bio;
463 int error = blk_status_to_errno(bio->bi_status);
464 struct bio_vec *bvec;
465 struct bvec_iter_all iter_all;
466
467 ASSERT(!bio_flagged(bio, BIO_CLONED));
468 bio_for_each_segment_all(bvec, bio, iter_all) {
469 struct page *page = bvec->bv_page;
470 struct inode *inode = page->mapping->host;
471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
472 const u32 sectorsize = fs_info->sectorsize;
473 u64 start = page_offset(page) + bvec->bv_offset;
474 u32 len = bvec->bv_len;
475
476 /* Our read/write should always be sector aligned. */
477 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
478 btrfs_err(fs_info,
479 "partial page write in btrfs with offset %u and length %u",
480 bvec->bv_offset, bvec->bv_len);
481 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
482 btrfs_info(fs_info,
483 "incomplete page write with offset %u and length %u",
484 bvec->bv_offset, bvec->bv_len);
485
486 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error);
487 if (error)
488 mapping_set_error(page->mapping, error);
489 btrfs_page_clear_writeback(fs_info, page, start, len);
490 }
491
492 bio_put(bio);
493 }
494
495 /*
496 * Record previously processed extent range
497 *
498 * For endio_readpage_release_extent() to handle a full extent range, reducing
499 * the extent io operations.
500 */
501 struct processed_extent {
502 struct btrfs_inode *inode;
503 /* Start of the range in @inode */
504 u64 start;
505 /* End of the range in @inode */
506 u64 end;
507 bool uptodate;
508 };
509
510 /*
511 * Try to release processed extent range
512 *
513 * May not release the extent range right now if the current range is
514 * contiguous to processed extent.
515 *
516 * Will release processed extent when any of @inode, @uptodate, the range is
517 * no longer contiguous to the processed range.
518 *
519 * Passing @inode == NULL will force processed extent to be released.
520 */
endio_readpage_release_extent(struct processed_extent * processed,struct btrfs_inode * inode,u64 start,u64 end,bool uptodate)521 static void endio_readpage_release_extent(struct processed_extent *processed,
522 struct btrfs_inode *inode, u64 start, u64 end,
523 bool uptodate)
524 {
525 struct extent_state *cached = NULL;
526 struct extent_io_tree *tree;
527
528 /* The first extent, initialize @processed */
529 if (!processed->inode)
530 goto update;
531
532 /*
533 * Contiguous to processed extent, just uptodate the end.
534 *
535 * Several things to notice:
536 *
537 * - bio can be merged as long as on-disk bytenr is contiguous
538 * This means we can have page belonging to other inodes, thus need to
539 * check if the inode still matches.
540 * - bvec can contain range beyond current page for multi-page bvec
541 * Thus we need to do processed->end + 1 >= start check
542 */
543 if (processed->inode == inode && processed->uptodate == uptodate &&
544 processed->end + 1 >= start && end >= processed->end) {
545 processed->end = end;
546 return;
547 }
548
549 tree = &processed->inode->io_tree;
550 /*
551 * Now we don't have range contiguous to the processed range, release
552 * the processed range now.
553 */
554 unlock_extent(tree, processed->start, processed->end, &cached);
555
556 update:
557 /* Update processed to current range */
558 processed->inode = inode;
559 processed->start = start;
560 processed->end = end;
561 processed->uptodate = uptodate;
562 }
563
begin_page_read(struct btrfs_fs_info * fs_info,struct page * page)564 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
565 {
566 ASSERT(PageLocked(page));
567 if (!btrfs_is_subpage(fs_info, page))
568 return;
569
570 ASSERT(PagePrivate(page));
571 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
572 }
573
574 /*
575 * after a readpage IO is done, we need to:
576 * clear the uptodate bits on error
577 * set the uptodate bits if things worked
578 * set the page up to date if all extents in the tree are uptodate
579 * clear the lock bit in the extent tree
580 * unlock the page if there are no other extents locked for it
581 *
582 * Scheduling is not allowed, so the extent state tree is expected
583 * to have one and only one object corresponding to this IO.
584 */
end_bio_extent_readpage(struct btrfs_bio * bbio)585 static void end_bio_extent_readpage(struct btrfs_bio *bbio)
586 {
587 struct bio *bio = &bbio->bio;
588 struct bio_vec *bvec;
589 struct processed_extent processed = { 0 };
590 /*
591 * The offset to the beginning of a bio, since one bio can never be
592 * larger than UINT_MAX, u32 here is enough.
593 */
594 u32 bio_offset = 0;
595 struct bvec_iter_all iter_all;
596
597 ASSERT(!bio_flagged(bio, BIO_CLONED));
598 bio_for_each_segment_all(bvec, bio, iter_all) {
599 bool uptodate = !bio->bi_status;
600 struct page *page = bvec->bv_page;
601 struct inode *inode = page->mapping->host;
602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
603 const u32 sectorsize = fs_info->sectorsize;
604 u64 start;
605 u64 end;
606 u32 len;
607
608 btrfs_debug(fs_info,
609 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
610 bio->bi_iter.bi_sector, bio->bi_status,
611 bbio->mirror_num);
612
613 /*
614 * We always issue full-sector reads, but if some block in a
615 * page fails to read, blk_update_request() will advance
616 * bv_offset and adjust bv_len to compensate. Print a warning
617 * for unaligned offsets, and an error if they don't add up to
618 * a full sector.
619 */
620 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
621 btrfs_err(fs_info,
622 "partial page read in btrfs with offset %u and length %u",
623 bvec->bv_offset, bvec->bv_len);
624 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
625 sectorsize))
626 btrfs_info(fs_info,
627 "incomplete page read with offset %u and length %u",
628 bvec->bv_offset, bvec->bv_len);
629
630 start = page_offset(page) + bvec->bv_offset;
631 end = start + bvec->bv_len - 1;
632 len = bvec->bv_len;
633
634 if (likely(uptodate)) {
635 loff_t i_size = i_size_read(inode);
636 pgoff_t end_index = i_size >> PAGE_SHIFT;
637
638 /*
639 * Zero out the remaining part if this range straddles
640 * i_size.
641 *
642 * Here we should only zero the range inside the bvec,
643 * not touch anything else.
644 *
645 * NOTE: i_size is exclusive while end is inclusive.
646 */
647 if (page->index == end_index && i_size <= end) {
648 u32 zero_start = max(offset_in_page(i_size),
649 offset_in_page(start));
650
651 zero_user_segment(page, zero_start,
652 offset_in_page(end) + 1);
653 }
654 }
655
656 /* Update page status and unlock. */
657 end_page_read(page, uptodate, start, len);
658 endio_readpage_release_extent(&processed, BTRFS_I(inode),
659 start, end, uptodate);
660
661 ASSERT(bio_offset + len > bio_offset);
662 bio_offset += len;
663
664 }
665 /* Release the last extent */
666 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
667 bio_put(bio);
668 }
669
670 /*
671 * Populate every free slot in a provided array with pages.
672 *
673 * @nr_pages: number of pages to allocate
674 * @page_array: the array to fill with pages; any existing non-null entries in
675 * the array will be skipped
676 *
677 * Return: 0 if all pages were able to be allocated;
678 * -ENOMEM otherwise, the partially allocated pages would be freed and
679 * the array slots zeroed
680 */
btrfs_alloc_page_array(unsigned int nr_pages,struct page ** page_array)681 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
682 {
683 unsigned int allocated;
684
685 for (allocated = 0; allocated < nr_pages;) {
686 unsigned int last = allocated;
687
688 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
689 if (unlikely(allocated == last)) {
690 /* No progress, fail and do cleanup. */
691 for (int i = 0; i < allocated; i++) {
692 __free_page(page_array[i]);
693 page_array[i] = NULL;
694 }
695 return -ENOMEM;
696 }
697 }
698 return 0;
699 }
700
btrfs_bio_is_contig(struct btrfs_bio_ctrl * bio_ctrl,struct page * page,u64 disk_bytenr,unsigned int pg_offset)701 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
702 struct page *page, u64 disk_bytenr,
703 unsigned int pg_offset)
704 {
705 struct bio *bio = &bio_ctrl->bbio->bio;
706 struct bio_vec *bvec = bio_last_bvec_all(bio);
707 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
708
709 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
710 /*
711 * For compression, all IO should have its logical bytenr set
712 * to the starting bytenr of the compressed extent.
713 */
714 return bio->bi_iter.bi_sector == sector;
715 }
716
717 /*
718 * The contig check requires the following conditions to be met:
719 *
720 * 1) The pages are belonging to the same inode
721 * This is implied by the call chain.
722 *
723 * 2) The range has adjacent logical bytenr
724 *
725 * 3) The range has adjacent file offset
726 * This is required for the usage of btrfs_bio->file_offset.
727 */
728 return bio_end_sector(bio) == sector &&
729 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
730 page_offset(page) + pg_offset;
731 }
732
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,u64 file_offset)733 static void alloc_new_bio(struct btrfs_inode *inode,
734 struct btrfs_bio_ctrl *bio_ctrl,
735 u64 disk_bytenr, u64 file_offset)
736 {
737 struct btrfs_fs_info *fs_info = inode->root->fs_info;
738 struct btrfs_bio *bbio;
739
740 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
741 bio_ctrl->end_io_func, NULL);
742 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
743 bbio->inode = inode;
744 bbio->file_offset = file_offset;
745 bio_ctrl->bbio = bbio;
746 bio_ctrl->len_to_oe_boundary = U32_MAX;
747
748 /* Limit data write bios to the ordered boundary. */
749 if (bio_ctrl->wbc) {
750 struct btrfs_ordered_extent *ordered;
751
752 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
753 if (ordered) {
754 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
755 ordered->file_offset +
756 ordered->disk_num_bytes - file_offset);
757 bbio->ordered = ordered;
758 }
759
760 /*
761 * Pick the last added device to support cgroup writeback. For
762 * multi-device file systems this means blk-cgroup policies have
763 * to always be set on the last added/replaced device.
764 * This is a bit odd but has been like that for a long time.
765 */
766 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
767 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
768 }
769 }
770
771 /*
772 * @disk_bytenr: logical bytenr where the write will be
773 * @page: page to add to the bio
774 * @size: portion of page that we want to write to
775 * @pg_offset: offset of the new bio or to check whether we are adding
776 * a contiguous page to the previous one
777 *
778 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
779 * new one in @bio_ctrl->bbio.
780 * The mirror number for this IO should already be initizlied in
781 * @bio_ctrl->mirror_num.
782 */
submit_extent_page(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,struct page * page,size_t size,unsigned long pg_offset)783 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
784 u64 disk_bytenr, struct page *page,
785 size_t size, unsigned long pg_offset)
786 {
787 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
788
789 ASSERT(pg_offset + size <= PAGE_SIZE);
790 ASSERT(bio_ctrl->end_io_func);
791
792 if (bio_ctrl->bbio &&
793 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
794 submit_one_bio(bio_ctrl);
795
796 do {
797 u32 len = size;
798
799 /* Allocate new bio if needed */
800 if (!bio_ctrl->bbio) {
801 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
802 page_offset(page) + pg_offset);
803 }
804
805 /* Cap to the current ordered extent boundary if there is one. */
806 if (len > bio_ctrl->len_to_oe_boundary) {
807 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
808 ASSERT(is_data_inode(&inode->vfs_inode));
809 len = bio_ctrl->len_to_oe_boundary;
810 }
811
812 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
813 /* bio full: move on to a new one */
814 submit_one_bio(bio_ctrl);
815 continue;
816 }
817
818 if (bio_ctrl->wbc)
819 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
820
821 size -= len;
822 pg_offset += len;
823 disk_bytenr += len;
824
825 /*
826 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
827 * sector aligned. alloc_new_bio() then sets it to the end of
828 * our ordered extent for writes into zoned devices.
829 *
830 * When len_to_oe_boundary is tracking an ordered extent, we
831 * trust the ordered extent code to align things properly, and
832 * the check above to cap our write to the ordered extent
833 * boundary is correct.
834 *
835 * When len_to_oe_boundary is U32_MAX, the cap above would
836 * result in a 4095 byte IO for the last page right before
837 * we hit the bio limit of UINT_MAX. bio_add_page() has all
838 * the checks required to make sure we don't overflow the bio,
839 * and we should just ignore len_to_oe_boundary completely
840 * unless we're using it to track an ordered extent.
841 *
842 * It's pretty hard to make a bio sized U32_MAX, but it can
843 * happen when the page cache is able to feed us contiguous
844 * pages for large extents.
845 */
846 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
847 bio_ctrl->len_to_oe_boundary -= len;
848
849 /* Ordered extent boundary: move on to a new bio. */
850 if (bio_ctrl->len_to_oe_boundary == 0)
851 submit_one_bio(bio_ctrl);
852 } while (size);
853 }
854
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page,struct btrfs_subpage * prealloc)855 static int attach_extent_buffer_page(struct extent_buffer *eb,
856 struct page *page,
857 struct btrfs_subpage *prealloc)
858 {
859 struct btrfs_fs_info *fs_info = eb->fs_info;
860 int ret = 0;
861
862 /*
863 * If the page is mapped to btree inode, we should hold the private
864 * lock to prevent race.
865 * For cloned or dummy extent buffers, their pages are not mapped and
866 * will not race with any other ebs.
867 */
868 if (page->mapping)
869 lockdep_assert_held(&page->mapping->private_lock);
870
871 if (fs_info->nodesize >= PAGE_SIZE) {
872 if (!PagePrivate(page))
873 attach_page_private(page, eb);
874 else
875 WARN_ON(page->private != (unsigned long)eb);
876 return 0;
877 }
878
879 /* Already mapped, just free prealloc */
880 if (PagePrivate(page)) {
881 btrfs_free_subpage(prealloc);
882 return 0;
883 }
884
885 if (prealloc)
886 /* Has preallocated memory for subpage */
887 attach_page_private(page, prealloc);
888 else
889 /* Do new allocation to attach subpage */
890 ret = btrfs_attach_subpage(fs_info, page,
891 BTRFS_SUBPAGE_METADATA);
892 return ret;
893 }
894
set_page_extent_mapped(struct page * page)895 int set_page_extent_mapped(struct page *page)
896 {
897 struct btrfs_fs_info *fs_info;
898
899 ASSERT(page->mapping);
900
901 if (PagePrivate(page))
902 return 0;
903
904 fs_info = btrfs_sb(page->mapping->host->i_sb);
905
906 if (btrfs_is_subpage(fs_info, page))
907 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
908
909 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
910 return 0;
911 }
912
clear_page_extent_mapped(struct page * page)913 void clear_page_extent_mapped(struct page *page)
914 {
915 struct btrfs_fs_info *fs_info;
916
917 ASSERT(page->mapping);
918
919 if (!PagePrivate(page))
920 return;
921
922 fs_info = btrfs_sb(page->mapping->host->i_sb);
923 if (btrfs_is_subpage(fs_info, page))
924 return btrfs_detach_subpage(fs_info, page);
925
926 detach_page_private(page);
927 }
928
929 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,struct extent_map ** em_cached)930 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
931 u64 start, u64 len, struct extent_map **em_cached)
932 {
933 struct extent_map *em;
934
935 if (em_cached && *em_cached) {
936 em = *em_cached;
937 if (extent_map_in_tree(em) && start >= em->start &&
938 start < extent_map_end(em)) {
939 refcount_inc(&em->refs);
940 return em;
941 }
942
943 free_extent_map(em);
944 *em_cached = NULL;
945 }
946
947 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
948 if (em_cached && !IS_ERR(em)) {
949 BUG_ON(*em_cached);
950 refcount_inc(&em->refs);
951 *em_cached = em;
952 }
953 return em;
954 }
955 /*
956 * basic readpage implementation. Locked extent state structs are inserted
957 * into the tree that are removed when the IO is done (by the end_io
958 * handlers)
959 * XXX JDM: This needs looking at to ensure proper page locking
960 * return 0 on success, otherwise return error
961 */
btrfs_do_readpage(struct page * page,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,u64 * prev_em_start)962 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
963 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
964 {
965 struct inode *inode = page->mapping->host;
966 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
967 u64 start = page_offset(page);
968 const u64 end = start + PAGE_SIZE - 1;
969 u64 cur = start;
970 u64 extent_offset;
971 u64 last_byte = i_size_read(inode);
972 u64 block_start;
973 struct extent_map *em;
974 int ret = 0;
975 size_t pg_offset = 0;
976 size_t iosize;
977 size_t blocksize = fs_info->sectorsize;
978 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
979
980 ret = set_page_extent_mapped(page);
981 if (ret < 0) {
982 unlock_extent(tree, start, end, NULL);
983 unlock_page(page);
984 return ret;
985 }
986
987 if (page->index == last_byte >> PAGE_SHIFT) {
988 size_t zero_offset = offset_in_page(last_byte);
989
990 if (zero_offset) {
991 iosize = PAGE_SIZE - zero_offset;
992 memzero_page(page, zero_offset, iosize);
993 }
994 }
995 bio_ctrl->end_io_func = end_bio_extent_readpage;
996 begin_page_read(fs_info, page);
997 while (cur <= end) {
998 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
999 bool force_bio_submit = false;
1000 u64 disk_bytenr;
1001
1002 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1003 if (cur >= last_byte) {
1004 iosize = PAGE_SIZE - pg_offset;
1005 memzero_page(page, pg_offset, iosize);
1006 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1007 end_page_read(page, true, cur, iosize);
1008 break;
1009 }
1010 em = __get_extent_map(inode, page, pg_offset, cur,
1011 end - cur + 1, em_cached);
1012 if (IS_ERR(em)) {
1013 unlock_extent(tree, cur, end, NULL);
1014 end_page_read(page, false, cur, end + 1 - cur);
1015 return PTR_ERR(em);
1016 }
1017 extent_offset = cur - em->start;
1018 BUG_ON(extent_map_end(em) <= cur);
1019 BUG_ON(end < cur);
1020
1021 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1022 compress_type = em->compress_type;
1023
1024 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1025 iosize = ALIGN(iosize, blocksize);
1026 if (compress_type != BTRFS_COMPRESS_NONE)
1027 disk_bytenr = em->block_start;
1028 else
1029 disk_bytenr = em->block_start + extent_offset;
1030 block_start = em->block_start;
1031 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1032 block_start = EXTENT_MAP_HOLE;
1033
1034 /*
1035 * If we have a file range that points to a compressed extent
1036 * and it's followed by a consecutive file range that points
1037 * to the same compressed extent (possibly with a different
1038 * offset and/or length, so it either points to the whole extent
1039 * or only part of it), we must make sure we do not submit a
1040 * single bio to populate the pages for the 2 ranges because
1041 * this makes the compressed extent read zero out the pages
1042 * belonging to the 2nd range. Imagine the following scenario:
1043 *
1044 * File layout
1045 * [0 - 8K] [8K - 24K]
1046 * | |
1047 * | |
1048 * points to extent X, points to extent X,
1049 * offset 4K, length of 8K offset 0, length 16K
1050 *
1051 * [extent X, compressed length = 4K uncompressed length = 16K]
1052 *
1053 * If the bio to read the compressed extent covers both ranges,
1054 * it will decompress extent X into the pages belonging to the
1055 * first range and then it will stop, zeroing out the remaining
1056 * pages that belong to the other range that points to extent X.
1057 * So here we make sure we submit 2 bios, one for the first
1058 * range and another one for the third range. Both will target
1059 * the same physical extent from disk, but we can't currently
1060 * make the compressed bio endio callback populate the pages
1061 * for both ranges because each compressed bio is tightly
1062 * coupled with a single extent map, and each range can have
1063 * an extent map with a different offset value relative to the
1064 * uncompressed data of our extent and different lengths. This
1065 * is a corner case so we prioritize correctness over
1066 * non-optimal behavior (submitting 2 bios for the same extent).
1067 */
1068 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1069 prev_em_start && *prev_em_start != (u64)-1 &&
1070 *prev_em_start != em->start)
1071 force_bio_submit = true;
1072
1073 if (prev_em_start)
1074 *prev_em_start = em->start;
1075
1076 free_extent_map(em);
1077 em = NULL;
1078
1079 /* we've found a hole, just zero and go on */
1080 if (block_start == EXTENT_MAP_HOLE) {
1081 memzero_page(page, pg_offset, iosize);
1082
1083 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1084 end_page_read(page, true, cur, iosize);
1085 cur = cur + iosize;
1086 pg_offset += iosize;
1087 continue;
1088 }
1089 /* the get_extent function already copied into the page */
1090 if (block_start == EXTENT_MAP_INLINE) {
1091 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1092 end_page_read(page, true, cur, iosize);
1093 cur = cur + iosize;
1094 pg_offset += iosize;
1095 continue;
1096 }
1097
1098 if (bio_ctrl->compress_type != compress_type) {
1099 submit_one_bio(bio_ctrl);
1100 bio_ctrl->compress_type = compress_type;
1101 }
1102
1103 if (force_bio_submit)
1104 submit_one_bio(bio_ctrl);
1105 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1106 pg_offset);
1107 cur = cur + iosize;
1108 pg_offset += iosize;
1109 }
1110
1111 return 0;
1112 }
1113
btrfs_read_folio(struct file * file,struct folio * folio)1114 int btrfs_read_folio(struct file *file, struct folio *folio)
1115 {
1116 struct page *page = &folio->page;
1117 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1118 u64 start = page_offset(page);
1119 u64 end = start + PAGE_SIZE - 1;
1120 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1121 int ret;
1122
1123 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1124
1125 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1126 /*
1127 * If btrfs_do_readpage() failed we will want to submit the assembled
1128 * bio to do the cleanup.
1129 */
1130 submit_one_bio(&bio_ctrl);
1131 return ret;
1132 }
1133
contiguous_readpages(struct page * pages[],int nr_pages,u64 start,u64 end,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,u64 * prev_em_start)1134 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1135 u64 start, u64 end,
1136 struct extent_map **em_cached,
1137 struct btrfs_bio_ctrl *bio_ctrl,
1138 u64 *prev_em_start)
1139 {
1140 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1141 int index;
1142
1143 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1144
1145 for (index = 0; index < nr_pages; index++) {
1146 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1147 prev_em_start);
1148 put_page(pages[index]);
1149 }
1150 }
1151
1152 /*
1153 * helper for __extent_writepage, doing all of the delayed allocation setup.
1154 *
1155 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1156 * to write the page (copy into inline extent). In this case the IO has
1157 * been started and the page is already unlocked.
1158 *
1159 * This returns 0 if all went well (page still locked)
1160 * This returns < 0 if there were errors (page still locked)
1161 */
writepage_delalloc(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc)1162 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1163 struct page *page, struct writeback_control *wbc)
1164 {
1165 const u64 page_start = page_offset(page);
1166 const u64 page_end = page_start + PAGE_SIZE - 1;
1167 u64 delalloc_start = page_start;
1168 u64 delalloc_end = page_end;
1169 u64 delalloc_to_write = 0;
1170 int ret = 0;
1171
1172 while (delalloc_start < page_end) {
1173 delalloc_end = page_end;
1174 if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1175 &delalloc_start, &delalloc_end)) {
1176 delalloc_start = delalloc_end + 1;
1177 continue;
1178 }
1179
1180 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1181 delalloc_end, wbc);
1182 if (ret < 0)
1183 return ret;
1184
1185 delalloc_start = delalloc_end + 1;
1186 }
1187
1188 /*
1189 * delalloc_end is already one less than the total length, so
1190 * we don't subtract one from PAGE_SIZE
1191 */
1192 delalloc_to_write +=
1193 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1194
1195 /*
1196 * If btrfs_run_dealloc_range() already started I/O and unlocked
1197 * the pages, we just need to account for them here.
1198 */
1199 if (ret == 1) {
1200 wbc->nr_to_write -= delalloc_to_write;
1201 return 1;
1202 }
1203
1204 if (wbc->nr_to_write < delalloc_to_write) {
1205 int thresh = 8192;
1206
1207 if (delalloc_to_write < thresh * 2)
1208 thresh = delalloc_to_write;
1209 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1210 thresh);
1211 }
1212
1213 return 0;
1214 }
1215
1216 /*
1217 * Find the first byte we need to write.
1218 *
1219 * For subpage, one page can contain several sectors, and
1220 * __extent_writepage_io() will just grab all extent maps in the page
1221 * range and try to submit all non-inline/non-compressed extents.
1222 *
1223 * This is a big problem for subpage, we shouldn't re-submit already written
1224 * data at all.
1225 * This function will lookup subpage dirty bit to find which range we really
1226 * need to submit.
1227 *
1228 * Return the next dirty range in [@start, @end).
1229 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1230 */
find_next_dirty_byte(struct btrfs_fs_info * fs_info,struct page * page,u64 * start,u64 * end)1231 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1232 struct page *page, u64 *start, u64 *end)
1233 {
1234 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1235 struct btrfs_subpage_info *spi = fs_info->subpage_info;
1236 u64 orig_start = *start;
1237 /* Declare as unsigned long so we can use bitmap ops */
1238 unsigned long flags;
1239 int range_start_bit;
1240 int range_end_bit;
1241
1242 /*
1243 * For regular sector size == page size case, since one page only
1244 * contains one sector, we return the page offset directly.
1245 */
1246 if (!btrfs_is_subpage(fs_info, page)) {
1247 *start = page_offset(page);
1248 *end = page_offset(page) + PAGE_SIZE;
1249 return;
1250 }
1251
1252 range_start_bit = spi->dirty_offset +
1253 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1254
1255 /* We should have the page locked, but just in case */
1256 spin_lock_irqsave(&subpage->lock, flags);
1257 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1258 spi->dirty_offset + spi->bitmap_nr_bits);
1259 spin_unlock_irqrestore(&subpage->lock, flags);
1260
1261 range_start_bit -= spi->dirty_offset;
1262 range_end_bit -= spi->dirty_offset;
1263
1264 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1265 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1266 }
1267
1268 /*
1269 * helper for __extent_writepage. This calls the writepage start hooks,
1270 * and does the loop to map the page into extents and bios.
1271 *
1272 * We return 1 if the IO is started and the page is unlocked,
1273 * 0 if all went well (page still locked)
1274 * < 0 if there were errors (page still locked)
1275 */
__extent_writepage_io(struct btrfs_inode * inode,struct page * page,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size,int * nr_ret)1276 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1277 struct page *page,
1278 struct btrfs_bio_ctrl *bio_ctrl,
1279 loff_t i_size,
1280 int *nr_ret)
1281 {
1282 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1283 u64 cur = page_offset(page);
1284 u64 end = cur + PAGE_SIZE - 1;
1285 u64 extent_offset;
1286 u64 block_start;
1287 struct extent_map *em;
1288 int ret = 0;
1289 int nr = 0;
1290
1291 ret = btrfs_writepage_cow_fixup(page);
1292 if (ret) {
1293 /* Fixup worker will requeue */
1294 redirty_page_for_writepage(bio_ctrl->wbc, page);
1295 unlock_page(page);
1296 return 1;
1297 }
1298
1299 bio_ctrl->end_io_func = end_bio_extent_writepage;
1300 while (cur <= end) {
1301 u32 len = end - cur + 1;
1302 u64 disk_bytenr;
1303 u64 em_end;
1304 u64 dirty_range_start = cur;
1305 u64 dirty_range_end;
1306 u32 iosize;
1307
1308 if (cur >= i_size) {
1309 btrfs_mark_ordered_io_finished(inode, page, cur, len,
1310 true);
1311 /*
1312 * This range is beyond i_size, thus we don't need to
1313 * bother writing back.
1314 * But we still need to clear the dirty subpage bit, or
1315 * the next time the page gets dirtied, we will try to
1316 * writeback the sectors with subpage dirty bits,
1317 * causing writeback without ordered extent.
1318 */
1319 btrfs_page_clear_dirty(fs_info, page, cur, len);
1320 break;
1321 }
1322
1323 find_next_dirty_byte(fs_info, page, &dirty_range_start,
1324 &dirty_range_end);
1325 if (cur < dirty_range_start) {
1326 cur = dirty_range_start;
1327 continue;
1328 }
1329
1330 em = btrfs_get_extent(inode, NULL, 0, cur, len);
1331 if (IS_ERR(em)) {
1332 ret = PTR_ERR_OR_ZERO(em);
1333 goto out_error;
1334 }
1335
1336 extent_offset = cur - em->start;
1337 em_end = extent_map_end(em);
1338 ASSERT(cur <= em_end);
1339 ASSERT(cur < end);
1340 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1341 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1342
1343 block_start = em->block_start;
1344 disk_bytenr = em->block_start + extent_offset;
1345
1346 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
1347 ASSERT(block_start != EXTENT_MAP_HOLE);
1348 ASSERT(block_start != EXTENT_MAP_INLINE);
1349
1350 /*
1351 * Note that em_end from extent_map_end() and dirty_range_end from
1352 * find_next_dirty_byte() are all exclusive
1353 */
1354 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1355 free_extent_map(em);
1356 em = NULL;
1357
1358 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1359 if (!PageWriteback(page)) {
1360 btrfs_err(inode->root->fs_info,
1361 "page %lu not writeback, cur %llu end %llu",
1362 page->index, cur, end);
1363 }
1364
1365 /*
1366 * Although the PageDirty bit is cleared before entering this
1367 * function, subpage dirty bit is not cleared.
1368 * So clear subpage dirty bit here so next time we won't submit
1369 * page for range already written to disk.
1370 */
1371 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
1372
1373 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1374 cur - page_offset(page));
1375 cur += iosize;
1376 nr++;
1377 }
1378
1379 btrfs_page_assert_not_dirty(fs_info, page);
1380 *nr_ret = nr;
1381 return 0;
1382
1383 out_error:
1384 /*
1385 * If we finish without problem, we should not only clear page dirty,
1386 * but also empty subpage dirty bits
1387 */
1388 *nr_ret = nr;
1389 return ret;
1390 }
1391
1392 /*
1393 * the writepage semantics are similar to regular writepage. extent
1394 * records are inserted to lock ranges in the tree, and as dirty areas
1395 * are found, they are marked writeback. Then the lock bits are removed
1396 * and the end_io handler clears the writeback ranges
1397 *
1398 * Return 0 if everything goes well.
1399 * Return <0 for error.
1400 */
__extent_writepage(struct page * page,struct btrfs_bio_ctrl * bio_ctrl)1401 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1402 {
1403 struct folio *folio = page_folio(page);
1404 struct inode *inode = page->mapping->host;
1405 const u64 page_start = page_offset(page);
1406 int ret;
1407 int nr = 0;
1408 size_t pg_offset;
1409 loff_t i_size = i_size_read(inode);
1410 unsigned long end_index = i_size >> PAGE_SHIFT;
1411
1412 trace___extent_writepage(page, inode, bio_ctrl->wbc);
1413
1414 WARN_ON(!PageLocked(page));
1415
1416 pg_offset = offset_in_page(i_size);
1417 if (page->index > end_index ||
1418 (page->index == end_index && !pg_offset)) {
1419 folio_invalidate(folio, 0, folio_size(folio));
1420 folio_unlock(folio);
1421 return 0;
1422 }
1423
1424 if (page->index == end_index)
1425 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1426
1427 ret = set_page_extent_mapped(page);
1428 if (ret < 0)
1429 goto done;
1430
1431 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1432 if (ret == 1)
1433 return 0;
1434 if (ret)
1435 goto done;
1436
1437 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1438 if (ret == 1)
1439 return 0;
1440
1441 bio_ctrl->wbc->nr_to_write--;
1442
1443 done:
1444 if (nr == 0) {
1445 /* make sure the mapping tag for page dirty gets cleared */
1446 set_page_writeback(page);
1447 end_page_writeback(page);
1448 }
1449 if (ret) {
1450 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1451 PAGE_SIZE, !ret);
1452 mapping_set_error(page->mapping, ret);
1453 }
1454 unlock_page(page);
1455 ASSERT(ret <= 0);
1456 return ret;
1457 }
1458
wait_on_extent_buffer_writeback(struct extent_buffer * eb)1459 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1460 {
1461 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1462 TASK_UNINTERRUPTIBLE);
1463 }
1464
1465 /*
1466 * Lock extent buffer status and pages for writeback.
1467 *
1468 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1469 * extent buffer is not dirty)
1470 * Return %true is the extent buffer is submitted to bio.
1471 */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct writeback_control * wbc)1472 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1473 struct writeback_control *wbc)
1474 {
1475 struct btrfs_fs_info *fs_info = eb->fs_info;
1476 bool ret = false;
1477
1478 btrfs_tree_lock(eb);
1479 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1480 btrfs_tree_unlock(eb);
1481 if (wbc->sync_mode != WB_SYNC_ALL)
1482 return false;
1483 wait_on_extent_buffer_writeback(eb);
1484 btrfs_tree_lock(eb);
1485 }
1486
1487 /*
1488 * We need to do this to prevent races in people who check if the eb is
1489 * under IO since we can end up having no IO bits set for a short period
1490 * of time.
1491 */
1492 spin_lock(&eb->refs_lock);
1493 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1494 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1495 spin_unlock(&eb->refs_lock);
1496 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1497 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1498 -eb->len,
1499 fs_info->dirty_metadata_batch);
1500 ret = true;
1501 } else {
1502 spin_unlock(&eb->refs_lock);
1503 }
1504 btrfs_tree_unlock(eb);
1505 return ret;
1506 }
1507
set_btree_ioerr(struct extent_buffer * eb)1508 static void set_btree_ioerr(struct extent_buffer *eb)
1509 {
1510 struct btrfs_fs_info *fs_info = eb->fs_info;
1511
1512 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1513
1514 /*
1515 * A read may stumble upon this buffer later, make sure that it gets an
1516 * error and knows there was an error.
1517 */
1518 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1519
1520 /*
1521 * We need to set the mapping with the io error as well because a write
1522 * error will flip the file system readonly, and then syncfs() will
1523 * return a 0 because we are readonly if we don't modify the err seq for
1524 * the superblock.
1525 */
1526 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1527
1528 /*
1529 * If writeback for a btree extent that doesn't belong to a log tree
1530 * failed, increment the counter transaction->eb_write_errors.
1531 * We do this because while the transaction is running and before it's
1532 * committing (when we call filemap_fdata[write|wait]_range against
1533 * the btree inode), we might have
1534 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1535 * returns an error or an error happens during writeback, when we're
1536 * committing the transaction we wouldn't know about it, since the pages
1537 * can be no longer dirty nor marked anymore for writeback (if a
1538 * subsequent modification to the extent buffer didn't happen before the
1539 * transaction commit), which makes filemap_fdata[write|wait]_range not
1540 * able to find the pages tagged with SetPageError at transaction
1541 * commit time. So if this happens we must abort the transaction,
1542 * otherwise we commit a super block with btree roots that point to
1543 * btree nodes/leafs whose content on disk is invalid - either garbage
1544 * or the content of some node/leaf from a past generation that got
1545 * cowed or deleted and is no longer valid.
1546 *
1547 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1548 * not be enough - we need to distinguish between log tree extents vs
1549 * non-log tree extents, and the next filemap_fdatawait_range() call
1550 * will catch and clear such errors in the mapping - and that call might
1551 * be from a log sync and not from a transaction commit. Also, checking
1552 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1553 * not done and would not be reliable - the eb might have been released
1554 * from memory and reading it back again means that flag would not be
1555 * set (since it's a runtime flag, not persisted on disk).
1556 *
1557 * Using the flags below in the btree inode also makes us achieve the
1558 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1559 * writeback for all dirty pages and before filemap_fdatawait_range()
1560 * is called, the writeback for all dirty pages had already finished
1561 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1562 * filemap_fdatawait_range() would return success, as it could not know
1563 * that writeback errors happened (the pages were no longer tagged for
1564 * writeback).
1565 */
1566 switch (eb->log_index) {
1567 case -1:
1568 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1569 break;
1570 case 0:
1571 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1572 break;
1573 case 1:
1574 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1575 break;
1576 default:
1577 BUG(); /* unexpected, logic error */
1578 }
1579 }
1580
1581 /*
1582 * The endio specific version which won't touch any unsafe spinlock in endio
1583 * context.
1584 */
find_extent_buffer_nolock(struct btrfs_fs_info * fs_info,u64 start)1585 static struct extent_buffer *find_extent_buffer_nolock(
1586 struct btrfs_fs_info *fs_info, u64 start)
1587 {
1588 struct extent_buffer *eb;
1589
1590 rcu_read_lock();
1591 eb = radix_tree_lookup(&fs_info->buffer_radix,
1592 start >> fs_info->sectorsize_bits);
1593 if (eb && atomic_inc_not_zero(&eb->refs)) {
1594 rcu_read_unlock();
1595 return eb;
1596 }
1597 rcu_read_unlock();
1598 return NULL;
1599 }
1600
extent_buffer_write_end_io(struct btrfs_bio * bbio)1601 static void extent_buffer_write_end_io(struct btrfs_bio *bbio)
1602 {
1603 struct extent_buffer *eb = bbio->private;
1604 struct btrfs_fs_info *fs_info = eb->fs_info;
1605 bool uptodate = !bbio->bio.bi_status;
1606 struct bvec_iter_all iter_all;
1607 struct bio_vec *bvec;
1608 u32 bio_offset = 0;
1609
1610 if (!uptodate)
1611 set_btree_ioerr(eb);
1612
1613 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
1614 u64 start = eb->start + bio_offset;
1615 struct page *page = bvec->bv_page;
1616 u32 len = bvec->bv_len;
1617
1618 btrfs_page_clear_writeback(fs_info, page, start, len);
1619 bio_offset += len;
1620 }
1621
1622 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1623 smp_mb__after_atomic();
1624 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1625
1626 bio_put(&bbio->bio);
1627 }
1628
prepare_eb_write(struct extent_buffer * eb)1629 static void prepare_eb_write(struct extent_buffer *eb)
1630 {
1631 u32 nritems;
1632 unsigned long start;
1633 unsigned long end;
1634
1635 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1636
1637 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1638 nritems = btrfs_header_nritems(eb);
1639 if (btrfs_header_level(eb) > 0) {
1640 end = btrfs_node_key_ptr_offset(eb, nritems);
1641 memzero_extent_buffer(eb, end, eb->len - end);
1642 } else {
1643 /*
1644 * Leaf:
1645 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1646 */
1647 start = btrfs_item_nr_offset(eb, nritems);
1648 end = btrfs_item_nr_offset(eb, 0);
1649 if (nritems == 0)
1650 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1651 else
1652 end += btrfs_item_offset(eb, nritems - 1);
1653 memzero_extent_buffer(eb, start, end - start);
1654 }
1655 }
1656
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc)1657 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1658 struct writeback_control *wbc)
1659 {
1660 struct btrfs_fs_info *fs_info = eb->fs_info;
1661 struct btrfs_bio *bbio;
1662
1663 prepare_eb_write(eb);
1664
1665 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1666 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1667 eb->fs_info, extent_buffer_write_end_io, eb);
1668 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1669 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1670 wbc_init_bio(wbc, &bbio->bio);
1671 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1672 bbio->file_offset = eb->start;
1673 if (fs_info->nodesize < PAGE_SIZE) {
1674 struct page *p = eb->pages[0];
1675
1676 lock_page(p);
1677 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len);
1678 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start,
1679 eb->len)) {
1680 clear_page_dirty_for_io(p);
1681 wbc->nr_to_write--;
1682 }
1683 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p));
1684 wbc_account_cgroup_owner(wbc, p, eb->len);
1685 unlock_page(p);
1686 } else {
1687 for (int i = 0; i < num_extent_pages(eb); i++) {
1688 struct page *p = eb->pages[i];
1689
1690 lock_page(p);
1691 clear_page_dirty_for_io(p);
1692 set_page_writeback(p);
1693 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0);
1694 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE);
1695 wbc->nr_to_write--;
1696 unlock_page(p);
1697 }
1698 }
1699 btrfs_submit_bio(bbio, 0);
1700 }
1701
1702 /*
1703 * Submit one subpage btree page.
1704 *
1705 * The main difference to submit_eb_page() is:
1706 * - Page locking
1707 * For subpage, we don't rely on page locking at all.
1708 *
1709 * - Flush write bio
1710 * We only flush bio if we may be unable to fit current extent buffers into
1711 * current bio.
1712 *
1713 * Return >=0 for the number of submitted extent buffers.
1714 * Return <0 for fatal error.
1715 */
submit_eb_subpage(struct page * page,struct writeback_control * wbc)1716 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1717 {
1718 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1719 int submitted = 0;
1720 u64 page_start = page_offset(page);
1721 int bit_start = 0;
1722 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1723
1724 /* Lock and write each dirty extent buffers in the range */
1725 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1726 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1727 struct extent_buffer *eb;
1728 unsigned long flags;
1729 u64 start;
1730
1731 /*
1732 * Take private lock to ensure the subpage won't be detached
1733 * in the meantime.
1734 */
1735 spin_lock(&page->mapping->private_lock);
1736 if (!PagePrivate(page)) {
1737 spin_unlock(&page->mapping->private_lock);
1738 break;
1739 }
1740 spin_lock_irqsave(&subpage->lock, flags);
1741 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1742 subpage->bitmaps)) {
1743 spin_unlock_irqrestore(&subpage->lock, flags);
1744 spin_unlock(&page->mapping->private_lock);
1745 bit_start++;
1746 continue;
1747 }
1748
1749 start = page_start + bit_start * fs_info->sectorsize;
1750 bit_start += sectors_per_node;
1751
1752 /*
1753 * Here we just want to grab the eb without touching extra
1754 * spin locks, so call find_extent_buffer_nolock().
1755 */
1756 eb = find_extent_buffer_nolock(fs_info, start);
1757 spin_unlock_irqrestore(&subpage->lock, flags);
1758 spin_unlock(&page->mapping->private_lock);
1759
1760 /*
1761 * The eb has already reached 0 refs thus find_extent_buffer()
1762 * doesn't return it. We don't need to write back such eb
1763 * anyway.
1764 */
1765 if (!eb)
1766 continue;
1767
1768 if (lock_extent_buffer_for_io(eb, wbc)) {
1769 write_one_eb(eb, wbc);
1770 submitted++;
1771 }
1772 free_extent_buffer(eb);
1773 }
1774 return submitted;
1775 }
1776
1777 /*
1778 * Submit all page(s) of one extent buffer.
1779 *
1780 * @page: the page of one extent buffer
1781 * @eb_context: to determine if we need to submit this page, if current page
1782 * belongs to this eb, we don't need to submit
1783 *
1784 * The caller should pass each page in their bytenr order, and here we use
1785 * @eb_context to determine if we have submitted pages of one extent buffer.
1786 *
1787 * If we have, we just skip until we hit a new page that doesn't belong to
1788 * current @eb_context.
1789 *
1790 * If not, we submit all the page(s) of the extent buffer.
1791 *
1792 * Return >0 if we have submitted the extent buffer successfully.
1793 * Return 0 if we don't need to submit the page, as it's already submitted by
1794 * previous call.
1795 * Return <0 for fatal error.
1796 */
submit_eb_page(struct page * page,struct btrfs_eb_write_context * ctx)1797 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1798 {
1799 struct writeback_control *wbc = ctx->wbc;
1800 struct address_space *mapping = page->mapping;
1801 struct extent_buffer *eb;
1802 int ret;
1803
1804 if (!PagePrivate(page))
1805 return 0;
1806
1807 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
1808 return submit_eb_subpage(page, wbc);
1809
1810 spin_lock(&mapping->private_lock);
1811 if (!PagePrivate(page)) {
1812 spin_unlock(&mapping->private_lock);
1813 return 0;
1814 }
1815
1816 eb = (struct extent_buffer *)page->private;
1817
1818 /*
1819 * Shouldn't happen and normally this would be a BUG_ON but no point
1820 * crashing the machine for something we can survive anyway.
1821 */
1822 if (WARN_ON(!eb)) {
1823 spin_unlock(&mapping->private_lock);
1824 return 0;
1825 }
1826
1827 if (eb == ctx->eb) {
1828 spin_unlock(&mapping->private_lock);
1829 return 0;
1830 }
1831 ret = atomic_inc_not_zero(&eb->refs);
1832 spin_unlock(&mapping->private_lock);
1833 if (!ret)
1834 return 0;
1835
1836 ctx->eb = eb;
1837
1838 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1839 if (ret) {
1840 if (ret == -EBUSY)
1841 ret = 0;
1842 free_extent_buffer(eb);
1843 return ret;
1844 }
1845
1846 if (!lock_extent_buffer_for_io(eb, wbc)) {
1847 free_extent_buffer(eb);
1848 return 0;
1849 }
1850 /* Implies write in zoned mode. */
1851 if (ctx->zoned_bg) {
1852 /* Mark the last eb in the block group. */
1853 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1854 ctx->zoned_bg->meta_write_pointer += eb->len;
1855 }
1856 write_one_eb(eb, wbc);
1857 free_extent_buffer(eb);
1858 return 1;
1859 }
1860
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)1861 int btree_write_cache_pages(struct address_space *mapping,
1862 struct writeback_control *wbc)
1863 {
1864 struct btrfs_eb_write_context ctx = { .wbc = wbc };
1865 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
1866 int ret = 0;
1867 int done = 0;
1868 int nr_to_write_done = 0;
1869 struct folio_batch fbatch;
1870 unsigned int nr_folios;
1871 pgoff_t index;
1872 pgoff_t end; /* Inclusive */
1873 int scanned = 0;
1874 xa_mark_t tag;
1875
1876 folio_batch_init(&fbatch);
1877 if (wbc->range_cyclic) {
1878 index = mapping->writeback_index; /* Start from prev offset */
1879 end = -1;
1880 /*
1881 * Start from the beginning does not need to cycle over the
1882 * range, mark it as scanned.
1883 */
1884 scanned = (index == 0);
1885 } else {
1886 index = wbc->range_start >> PAGE_SHIFT;
1887 end = wbc->range_end >> PAGE_SHIFT;
1888 scanned = 1;
1889 }
1890 if (wbc->sync_mode == WB_SYNC_ALL)
1891 tag = PAGECACHE_TAG_TOWRITE;
1892 else
1893 tag = PAGECACHE_TAG_DIRTY;
1894 btrfs_zoned_meta_io_lock(fs_info);
1895 retry:
1896 if (wbc->sync_mode == WB_SYNC_ALL)
1897 tag_pages_for_writeback(mapping, index, end);
1898 while (!done && !nr_to_write_done && (index <= end) &&
1899 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1900 tag, &fbatch))) {
1901 unsigned i;
1902
1903 for (i = 0; i < nr_folios; i++) {
1904 struct folio *folio = fbatch.folios[i];
1905
1906 ret = submit_eb_page(&folio->page, &ctx);
1907 if (ret == 0)
1908 continue;
1909 if (ret < 0) {
1910 done = 1;
1911 break;
1912 }
1913
1914 /*
1915 * the filesystem may choose to bump up nr_to_write.
1916 * We have to make sure to honor the new nr_to_write
1917 * at any time
1918 */
1919 nr_to_write_done = wbc->nr_to_write <= 0;
1920 }
1921 folio_batch_release(&fbatch);
1922 cond_resched();
1923 }
1924 if (!scanned && !done) {
1925 /*
1926 * We hit the last page and there is more work to be done: wrap
1927 * back to the start of the file
1928 */
1929 scanned = 1;
1930 index = 0;
1931 goto retry;
1932 }
1933 /*
1934 * If something went wrong, don't allow any metadata write bio to be
1935 * submitted.
1936 *
1937 * This would prevent use-after-free if we had dirty pages not
1938 * cleaned up, which can still happen by fuzzed images.
1939 *
1940 * - Bad extent tree
1941 * Allowing existing tree block to be allocated for other trees.
1942 *
1943 * - Log tree operations
1944 * Exiting tree blocks get allocated to log tree, bumps its
1945 * generation, then get cleaned in tree re-balance.
1946 * Such tree block will not be written back, since it's clean,
1947 * thus no WRITTEN flag set.
1948 * And after log writes back, this tree block is not traced by
1949 * any dirty extent_io_tree.
1950 *
1951 * - Offending tree block gets re-dirtied from its original owner
1952 * Since it has bumped generation, no WRITTEN flag, it can be
1953 * reused without COWing. This tree block will not be traced
1954 * by btrfs_transaction::dirty_pages.
1955 *
1956 * Now such dirty tree block will not be cleaned by any dirty
1957 * extent io tree. Thus we don't want to submit such wild eb
1958 * if the fs already has error.
1959 *
1960 * We can get ret > 0 from submit_extent_page() indicating how many ebs
1961 * were submitted. Reset it to 0 to avoid false alerts for the caller.
1962 */
1963 if (ret > 0)
1964 ret = 0;
1965 if (!ret && BTRFS_FS_ERROR(fs_info))
1966 ret = -EROFS;
1967
1968 if (ctx.zoned_bg)
1969 btrfs_put_block_group(ctx.zoned_bg);
1970 btrfs_zoned_meta_io_unlock(fs_info);
1971 return ret;
1972 }
1973
1974 /*
1975 * Walk the list of dirty pages of the given address space and write all of them.
1976 *
1977 * @mapping: address space structure to write
1978 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1979 * @bio_ctrl: holds context for the write, namely the bio
1980 *
1981 * If a page is already under I/O, write_cache_pages() skips it, even
1982 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1983 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1984 * and msync() need to guarantee that all the data which was dirty at the time
1985 * the call was made get new I/O started against them. If wbc->sync_mode is
1986 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1987 * existing IO to complete.
1988 */
extent_write_cache_pages(struct address_space * mapping,struct btrfs_bio_ctrl * bio_ctrl)1989 static int extent_write_cache_pages(struct address_space *mapping,
1990 struct btrfs_bio_ctrl *bio_ctrl)
1991 {
1992 struct writeback_control *wbc = bio_ctrl->wbc;
1993 struct inode *inode = mapping->host;
1994 int ret = 0;
1995 int done = 0;
1996 int nr_to_write_done = 0;
1997 struct folio_batch fbatch;
1998 unsigned int nr_folios;
1999 pgoff_t index;
2000 pgoff_t end; /* Inclusive */
2001 pgoff_t done_index;
2002 int range_whole = 0;
2003 int scanned = 0;
2004 xa_mark_t tag;
2005
2006 /*
2007 * We have to hold onto the inode so that ordered extents can do their
2008 * work when the IO finishes. The alternative to this is failing to add
2009 * an ordered extent if the igrab() fails there and that is a huge pain
2010 * to deal with, so instead just hold onto the inode throughout the
2011 * writepages operation. If it fails here we are freeing up the inode
2012 * anyway and we'd rather not waste our time writing out stuff that is
2013 * going to be truncated anyway.
2014 */
2015 if (!igrab(inode))
2016 return 0;
2017
2018 folio_batch_init(&fbatch);
2019 if (wbc->range_cyclic) {
2020 index = mapping->writeback_index; /* Start from prev offset */
2021 end = -1;
2022 /*
2023 * Start from the beginning does not need to cycle over the
2024 * range, mark it as scanned.
2025 */
2026 scanned = (index == 0);
2027 } else {
2028 index = wbc->range_start >> PAGE_SHIFT;
2029 end = wbc->range_end >> PAGE_SHIFT;
2030 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2031 range_whole = 1;
2032 scanned = 1;
2033 }
2034
2035 /*
2036 * We do the tagged writepage as long as the snapshot flush bit is set
2037 * and we are the first one who do the filemap_flush() on this inode.
2038 *
2039 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2040 * not race in and drop the bit.
2041 */
2042 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2043 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2044 &BTRFS_I(inode)->runtime_flags))
2045 wbc->tagged_writepages = 1;
2046
2047 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2048 tag = PAGECACHE_TAG_TOWRITE;
2049 else
2050 tag = PAGECACHE_TAG_DIRTY;
2051 retry:
2052 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2053 tag_pages_for_writeback(mapping, index, end);
2054 done_index = index;
2055 while (!done && !nr_to_write_done && (index <= end) &&
2056 (nr_folios = filemap_get_folios_tag(mapping, &index,
2057 end, tag, &fbatch))) {
2058 unsigned i;
2059
2060 for (i = 0; i < nr_folios; i++) {
2061 struct folio *folio = fbatch.folios[i];
2062
2063 done_index = folio_next_index(folio);
2064 /*
2065 * At this point we hold neither the i_pages lock nor
2066 * the page lock: the page may be truncated or
2067 * invalidated (changing page->mapping to NULL),
2068 * or even swizzled back from swapper_space to
2069 * tmpfs file mapping
2070 */
2071 if (!folio_trylock(folio)) {
2072 submit_write_bio(bio_ctrl, 0);
2073 folio_lock(folio);
2074 }
2075
2076 if (unlikely(folio->mapping != mapping)) {
2077 folio_unlock(folio);
2078 continue;
2079 }
2080
2081 if (!folio_test_dirty(folio)) {
2082 /* Someone wrote it for us. */
2083 folio_unlock(folio);
2084 continue;
2085 }
2086
2087 if (wbc->sync_mode != WB_SYNC_NONE) {
2088 if (folio_test_writeback(folio))
2089 submit_write_bio(bio_ctrl, 0);
2090 folio_wait_writeback(folio);
2091 }
2092
2093 if (folio_test_writeback(folio) ||
2094 !folio_clear_dirty_for_io(folio)) {
2095 folio_unlock(folio);
2096 continue;
2097 }
2098
2099 ret = __extent_writepage(&folio->page, bio_ctrl);
2100 if (ret < 0) {
2101 done = 1;
2102 break;
2103 }
2104
2105 /*
2106 * The filesystem may choose to bump up nr_to_write.
2107 * We have to make sure to honor the new nr_to_write
2108 * at any time.
2109 */
2110 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2111 wbc->nr_to_write <= 0);
2112 }
2113 folio_batch_release(&fbatch);
2114 cond_resched();
2115 }
2116 if (!scanned && !done) {
2117 /*
2118 * We hit the last page and there is more work to be done: wrap
2119 * back to the start of the file
2120 */
2121 scanned = 1;
2122 index = 0;
2123
2124 /*
2125 * If we're looping we could run into a page that is locked by a
2126 * writer and that writer could be waiting on writeback for a
2127 * page in our current bio, and thus deadlock, so flush the
2128 * write bio here.
2129 */
2130 submit_write_bio(bio_ctrl, 0);
2131 goto retry;
2132 }
2133
2134 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2135 mapping->writeback_index = done_index;
2136
2137 btrfs_add_delayed_iput(BTRFS_I(inode));
2138 return ret;
2139 }
2140
2141 /*
2142 * Submit the pages in the range to bio for call sites which delalloc range has
2143 * already been ran (aka, ordered extent inserted) and all pages are still
2144 * locked.
2145 */
extent_write_locked_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)2146 void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2147 u64 start, u64 end, struct writeback_control *wbc,
2148 bool pages_dirty)
2149 {
2150 bool found_error = false;
2151 int ret = 0;
2152 struct address_space *mapping = inode->i_mapping;
2153 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2154 const u32 sectorsize = fs_info->sectorsize;
2155 loff_t i_size = i_size_read(inode);
2156 u64 cur = start;
2157 struct btrfs_bio_ctrl bio_ctrl = {
2158 .wbc = wbc,
2159 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2160 };
2161
2162 if (wbc->no_cgroup_owner)
2163 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2164
2165 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2166
2167 while (cur <= end) {
2168 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2169 u32 cur_len = cur_end + 1 - cur;
2170 struct page *page;
2171 int nr = 0;
2172
2173 page = find_get_page(mapping, cur >> PAGE_SHIFT);
2174 ASSERT(PageLocked(page));
2175 if (pages_dirty && page != locked_page)
2176 ASSERT(PageDirty(page));
2177
2178 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2179 i_size, &nr);
2180 if (ret == 1)
2181 goto next_page;
2182
2183 /* Make sure the mapping tag for page dirty gets cleared. */
2184 if (nr == 0) {
2185 set_page_writeback(page);
2186 end_page_writeback(page);
2187 }
2188 if (ret) {
2189 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2190 cur, cur_len, !ret);
2191 mapping_set_error(page->mapping, ret);
2192 }
2193 btrfs_page_unlock_writer(fs_info, page, cur, cur_len);
2194 if (ret < 0)
2195 found_error = true;
2196 next_page:
2197 put_page(page);
2198 cur = cur_end + 1;
2199 }
2200
2201 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2202 }
2203
extent_writepages(struct address_space * mapping,struct writeback_control * wbc)2204 int extent_writepages(struct address_space *mapping,
2205 struct writeback_control *wbc)
2206 {
2207 struct inode *inode = mapping->host;
2208 int ret = 0;
2209 struct btrfs_bio_ctrl bio_ctrl = {
2210 .wbc = wbc,
2211 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2212 };
2213
2214 /*
2215 * Allow only a single thread to do the reloc work in zoned mode to
2216 * protect the write pointer updates.
2217 */
2218 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2219 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2220 submit_write_bio(&bio_ctrl, ret);
2221 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2222 return ret;
2223 }
2224
extent_readahead(struct readahead_control * rac)2225 void extent_readahead(struct readahead_control *rac)
2226 {
2227 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2228 struct page *pagepool[16];
2229 struct extent_map *em_cached = NULL;
2230 u64 prev_em_start = (u64)-1;
2231 int nr;
2232
2233 while ((nr = readahead_page_batch(rac, pagepool))) {
2234 u64 contig_start = readahead_pos(rac);
2235 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2236
2237 contiguous_readpages(pagepool, nr, contig_start, contig_end,
2238 &em_cached, &bio_ctrl, &prev_em_start);
2239 }
2240
2241 if (em_cached)
2242 free_extent_map(em_cached);
2243 submit_one_bio(&bio_ctrl);
2244 }
2245
2246 /*
2247 * basic invalidate_folio code, this waits on any locked or writeback
2248 * ranges corresponding to the folio, and then deletes any extent state
2249 * records from the tree
2250 */
extent_invalidate_folio(struct extent_io_tree * tree,struct folio * folio,size_t offset)2251 int extent_invalidate_folio(struct extent_io_tree *tree,
2252 struct folio *folio, size_t offset)
2253 {
2254 struct extent_state *cached_state = NULL;
2255 u64 start = folio_pos(folio);
2256 u64 end = start + folio_size(folio) - 1;
2257 size_t blocksize = btrfs_sb(folio->mapping->host->i_sb)->sectorsize;
2258
2259 /* This function is only called for the btree inode */
2260 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2261
2262 start += ALIGN(offset, blocksize);
2263 if (start > end)
2264 return 0;
2265
2266 lock_extent(tree, start, end, &cached_state);
2267 folio_wait_writeback(folio);
2268
2269 /*
2270 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2271 * so here we only need to unlock the extent range to free any
2272 * existing extent state.
2273 */
2274 unlock_extent(tree, start, end, &cached_state);
2275 return 0;
2276 }
2277
2278 /*
2279 * a helper for release_folio, this tests for areas of the page that
2280 * are locked or under IO and drops the related state bits if it is safe
2281 * to drop the page.
2282 */
try_release_extent_state(struct extent_io_tree * tree,struct page * page,gfp_t mask)2283 static int try_release_extent_state(struct extent_io_tree *tree,
2284 struct page *page, gfp_t mask)
2285 {
2286 u64 start = page_offset(page);
2287 u64 end = start + PAGE_SIZE - 1;
2288 int ret = 1;
2289
2290 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
2291 ret = 0;
2292 } else {
2293 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2294 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2295 EXTENT_QGROUP_RESERVED);
2296
2297 /*
2298 * At this point we can safely clear everything except the
2299 * locked bit, the nodatasum bit and the delalloc new bit.
2300 * The delalloc new bit will be cleared by ordered extent
2301 * completion.
2302 */
2303 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2304
2305 /* if clear_extent_bit failed for enomem reasons,
2306 * we can't allow the release to continue.
2307 */
2308 if (ret < 0)
2309 ret = 0;
2310 else
2311 ret = 1;
2312 }
2313 return ret;
2314 }
2315
2316 /*
2317 * a helper for release_folio. As long as there are no locked extents
2318 * in the range corresponding to the page, both state records and extent
2319 * map records are removed
2320 */
try_release_extent_mapping(struct page * page,gfp_t mask)2321 int try_release_extent_mapping(struct page *page, gfp_t mask)
2322 {
2323 struct extent_map *em;
2324 u64 start = page_offset(page);
2325 u64 end = start + PAGE_SIZE - 1;
2326 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2327 struct extent_io_tree *tree = &btrfs_inode->io_tree;
2328 struct extent_map_tree *map = &btrfs_inode->extent_tree;
2329
2330 if (gfpflags_allow_blocking(mask) &&
2331 page->mapping->host->i_size > SZ_16M) {
2332 u64 len;
2333 while (start <= end) {
2334 struct btrfs_fs_info *fs_info;
2335 u64 cur_gen;
2336
2337 len = end - start + 1;
2338 write_lock(&map->lock);
2339 em = lookup_extent_mapping(map, start, len);
2340 if (!em) {
2341 write_unlock(&map->lock);
2342 break;
2343 }
2344 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2345 em->start != start) {
2346 write_unlock(&map->lock);
2347 free_extent_map(em);
2348 break;
2349 }
2350 if (test_range_bit(tree, em->start,
2351 extent_map_end(em) - 1,
2352 EXTENT_LOCKED, 0, NULL))
2353 goto next;
2354 /*
2355 * If it's not in the list of modified extents, used
2356 * by a fast fsync, we can remove it. If it's being
2357 * logged we can safely remove it since fsync took an
2358 * extra reference on the em.
2359 */
2360 if (list_empty(&em->list) ||
2361 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
2362 goto remove_em;
2363 /*
2364 * If it's in the list of modified extents, remove it
2365 * only if its generation is older then the current one,
2366 * in which case we don't need it for a fast fsync.
2367 * Otherwise don't remove it, we could be racing with an
2368 * ongoing fast fsync that could miss the new extent.
2369 */
2370 fs_info = btrfs_inode->root->fs_info;
2371 spin_lock(&fs_info->trans_lock);
2372 cur_gen = fs_info->generation;
2373 spin_unlock(&fs_info->trans_lock);
2374 if (em->generation >= cur_gen)
2375 goto next;
2376 remove_em:
2377 /*
2378 * We only remove extent maps that are not in the list of
2379 * modified extents or that are in the list but with a
2380 * generation lower then the current generation, so there
2381 * is no need to set the full fsync flag on the inode (it
2382 * hurts the fsync performance for workloads with a data
2383 * size that exceeds or is close to the system's memory).
2384 */
2385 remove_extent_mapping(map, em);
2386 /* once for the rb tree */
2387 free_extent_map(em);
2388 next:
2389 start = extent_map_end(em);
2390 write_unlock(&map->lock);
2391
2392 /* once for us */
2393 free_extent_map(em);
2394
2395 cond_resched(); /* Allow large-extent preemption. */
2396 }
2397 }
2398 return try_release_extent_state(tree, page, mask);
2399 }
2400
2401 struct btrfs_fiemap_entry {
2402 u64 offset;
2403 u64 phys;
2404 u64 len;
2405 u32 flags;
2406 };
2407
2408 /*
2409 * Indicate the caller of emit_fiemap_extent() that it needs to unlock the file
2410 * range from the inode's io tree, unlock the subvolume tree search path, flush
2411 * the fiemap cache and relock the file range and research the subvolume tree.
2412 * The value here is something negative that can't be confused with a valid
2413 * errno value and different from 1 because that's also a return value from
2414 * fiemap_fill_next_extent() and also it's often used to mean some btree search
2415 * did not find a key, so make it some distinct negative value.
2416 */
2417 #define BTRFS_FIEMAP_FLUSH_CACHE (-(MAX_ERRNO + 1))
2418
2419 /*
2420 * Used to:
2421 *
2422 * - Cache the next entry to be emitted to the fiemap buffer, so that we can
2423 * merge extents that are contiguous and can be grouped as a single one;
2424 *
2425 * - Store extents ready to be written to the fiemap buffer in an intermediary
2426 * buffer. This intermediary buffer is to ensure that in case the fiemap
2427 * buffer is memory mapped to the fiemap target file, we don't deadlock
2428 * during btrfs_page_mkwrite(). This is because during fiemap we are locking
2429 * an extent range in order to prevent races with delalloc flushing and
2430 * ordered extent completion, which is needed in order to reliably detect
2431 * delalloc in holes and prealloc extents. And this can lead to a deadlock
2432 * if the fiemap buffer is memory mapped to the file we are running fiemap
2433 * against (a silly, useless in practice scenario, but possible) because
2434 * btrfs_page_mkwrite() will try to lock the same extent range.
2435 */
2436 struct fiemap_cache {
2437 /* An array of ready fiemap entries. */
2438 struct btrfs_fiemap_entry *entries;
2439 /* Number of entries in the entries array. */
2440 int entries_size;
2441 /* Index of the next entry in the entries array to write to. */
2442 int entries_pos;
2443 /*
2444 * Once the entries array is full, this indicates what's the offset for
2445 * the next file extent item we must search for in the inode's subvolume
2446 * tree after unlocking the extent range in the inode's io tree and
2447 * releasing the search path.
2448 */
2449 u64 next_search_offset;
2450 /*
2451 * This matches struct fiemap_extent_info::fi_mapped_extents, we use it
2452 * to count ourselves emitted extents and stop instead of relying on
2453 * fiemap_fill_next_extent() because we buffer ready fiemap entries at
2454 * the @entries array, and we want to stop as soon as we hit the max
2455 * amount of extents to map, not just to save time but also to make the
2456 * logic at extent_fiemap() simpler.
2457 */
2458 unsigned int extents_mapped;
2459 /* Fields for the cached extent (unsubmitted, not ready, extent). */
2460 u64 offset;
2461 u64 phys;
2462 u64 len;
2463 u32 flags;
2464 bool cached;
2465 };
2466
flush_fiemap_cache(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache)2467 static int flush_fiemap_cache(struct fiemap_extent_info *fieinfo,
2468 struct fiemap_cache *cache)
2469 {
2470 for (int i = 0; i < cache->entries_pos; i++) {
2471 struct btrfs_fiemap_entry *entry = &cache->entries[i];
2472 int ret;
2473
2474 ret = fiemap_fill_next_extent(fieinfo, entry->offset,
2475 entry->phys, entry->len,
2476 entry->flags);
2477 /*
2478 * Ignore 1 (reached max entries) because we keep track of that
2479 * ourselves in emit_fiemap_extent().
2480 */
2481 if (ret < 0)
2482 return ret;
2483 }
2484 cache->entries_pos = 0;
2485
2486 return 0;
2487 }
2488
2489 /*
2490 * Helper to submit fiemap extent.
2491 *
2492 * Will try to merge current fiemap extent specified by @offset, @phys,
2493 * @len and @flags with cached one.
2494 * And only when we fails to merge, cached one will be submitted as
2495 * fiemap extent.
2496 *
2497 * Return value is the same as fiemap_fill_next_extent().
2498 */
emit_fiemap_extent(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,u64 offset,u64 phys,u64 len,u32 flags)2499 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2500 struct fiemap_cache *cache,
2501 u64 offset, u64 phys, u64 len, u32 flags)
2502 {
2503 struct btrfs_fiemap_entry *entry;
2504 u64 cache_end;
2505
2506 /* Set at the end of extent_fiemap(). */
2507 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2508
2509 if (!cache->cached)
2510 goto assign;
2511
2512 /*
2513 * When iterating the extents of the inode, at extent_fiemap(), we may
2514 * find an extent that starts at an offset behind the end offset of the
2515 * previous extent we processed. This happens if fiemap is called
2516 * without FIEMAP_FLAG_SYNC and there are ordered extents completing
2517 * after we had to unlock the file range, release the search path, emit
2518 * the fiemap extents stored in the buffer (cache->entries array) and
2519 * the lock the remainder of the range and re-search the btree.
2520 *
2521 * For example we are in leaf X processing its last item, which is the
2522 * file extent item for file range [512K, 1M[, and after
2523 * btrfs_next_leaf() releases the path, there's an ordered extent that
2524 * completes for the file range [768K, 2M[, and that results in trimming
2525 * the file extent item so that it now corresponds to the file range
2526 * [512K, 768K[ and a new file extent item is inserted for the file
2527 * range [768K, 2M[, which may end up as the last item of leaf X or as
2528 * the first item of the next leaf - in either case btrfs_next_leaf()
2529 * will leave us with a path pointing to the new extent item, for the
2530 * file range [768K, 2M[, since that's the first key that follows the
2531 * last one we processed. So in order not to report overlapping extents
2532 * to user space, we trim the length of the previously cached extent and
2533 * emit it.
2534 *
2535 * Upon calling btrfs_next_leaf() we may also find an extent with an
2536 * offset smaller than or equals to cache->offset, and this happens
2537 * when we had a hole or prealloc extent with several delalloc ranges in
2538 * it, but after btrfs_next_leaf() released the path, delalloc was
2539 * flushed and the resulting ordered extents were completed, so we can
2540 * now have found a file extent item for an offset that is smaller than
2541 * or equals to what we have in cache->offset. We deal with this as
2542 * described below.
2543 */
2544 cache_end = cache->offset + cache->len;
2545 if (cache_end > offset) {
2546 if (offset == cache->offset) {
2547 /*
2548 * We cached a dealloc range (found in the io tree) for
2549 * a hole or prealloc extent and we have now found a
2550 * file extent item for the same offset. What we have
2551 * now is more recent and up to date, so discard what
2552 * we had in the cache and use what we have just found.
2553 */
2554 goto assign;
2555 } else if (offset > cache->offset) {
2556 /*
2557 * The extent range we previously found ends after the
2558 * offset of the file extent item we found and that
2559 * offset falls somewhere in the middle of that previous
2560 * extent range. So adjust the range we previously found
2561 * to end at the offset of the file extent item we have
2562 * just found, since this extent is more up to date.
2563 * Emit that adjusted range and cache the file extent
2564 * item we have just found. This corresponds to the case
2565 * where a previously found file extent item was split
2566 * due to an ordered extent completing.
2567 */
2568 cache->len = offset - cache->offset;
2569 goto emit;
2570 } else {
2571 const u64 range_end = offset + len;
2572
2573 /*
2574 * The offset of the file extent item we have just found
2575 * is behind the cached offset. This means we were
2576 * processing a hole or prealloc extent for which we
2577 * have found delalloc ranges (in the io tree), so what
2578 * we have in the cache is the last delalloc range we
2579 * found while the file extent item we found can be
2580 * either for a whole delalloc range we previously
2581 * emmitted or only a part of that range.
2582 *
2583 * We have two cases here:
2584 *
2585 * 1) The file extent item's range ends at or behind the
2586 * cached extent's end. In this case just ignore the
2587 * current file extent item because we don't want to
2588 * overlap with previous ranges that may have been
2589 * emmitted already;
2590 *
2591 * 2) The file extent item starts behind the currently
2592 * cached extent but its end offset goes beyond the
2593 * end offset of the cached extent. We don't want to
2594 * overlap with a previous range that may have been
2595 * emmitted already, so we emit the currently cached
2596 * extent and then partially store the current file
2597 * extent item's range in the cache, for the subrange
2598 * going the cached extent's end to the end of the
2599 * file extent item.
2600 */
2601 if (range_end <= cache_end)
2602 return 0;
2603
2604 if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC)))
2605 phys += cache_end - offset;
2606
2607 offset = cache_end;
2608 len = range_end - cache_end;
2609 goto emit;
2610 }
2611 }
2612
2613 /*
2614 * Only merges fiemap extents if
2615 * 1) Their logical addresses are continuous
2616 *
2617 * 2) Their physical addresses are continuous
2618 * So truly compressed (physical size smaller than logical size)
2619 * extents won't get merged with each other
2620 *
2621 * 3) Share same flags
2622 */
2623 if (cache->offset + cache->len == offset &&
2624 cache->phys + cache->len == phys &&
2625 cache->flags == flags) {
2626 cache->len += len;
2627 return 0;
2628 }
2629
2630 emit:
2631 /* Not mergeable, need to submit cached one */
2632
2633 if (cache->entries_pos == cache->entries_size) {
2634 /*
2635 * We will need to research for the end offset of the last
2636 * stored extent and not from the current offset, because after
2637 * unlocking the range and releasing the path, if there's a hole
2638 * between that end offset and this current offset, a new extent
2639 * may have been inserted due to a new write, so we don't want
2640 * to miss it.
2641 */
2642 entry = &cache->entries[cache->entries_size - 1];
2643 cache->next_search_offset = entry->offset + entry->len;
2644 cache->cached = false;
2645
2646 return BTRFS_FIEMAP_FLUSH_CACHE;
2647 }
2648
2649 entry = &cache->entries[cache->entries_pos];
2650 entry->offset = cache->offset;
2651 entry->phys = cache->phys;
2652 entry->len = cache->len;
2653 entry->flags = cache->flags;
2654 cache->entries_pos++;
2655 cache->extents_mapped++;
2656
2657 if (cache->extents_mapped == fieinfo->fi_extents_max) {
2658 cache->cached = false;
2659 return 1;
2660 }
2661 assign:
2662 cache->cached = true;
2663 cache->offset = offset;
2664 cache->phys = phys;
2665 cache->len = len;
2666 cache->flags = flags;
2667
2668 return 0;
2669 }
2670
2671 /*
2672 * Emit last fiemap cache
2673 *
2674 * The last fiemap cache may still be cached in the following case:
2675 * 0 4k 8k
2676 * |<- Fiemap range ->|
2677 * |<------------ First extent ----------->|
2678 *
2679 * In this case, the first extent range will be cached but not emitted.
2680 * So we must emit it before ending extent_fiemap().
2681 */
emit_last_fiemap_cache(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache)2682 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2683 struct fiemap_cache *cache)
2684 {
2685 int ret;
2686
2687 if (!cache->cached)
2688 return 0;
2689
2690 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2691 cache->len, cache->flags);
2692 cache->cached = false;
2693 if (ret > 0)
2694 ret = 0;
2695 return ret;
2696 }
2697
fiemap_next_leaf_item(struct btrfs_inode * inode,struct btrfs_path * path)2698 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2699 {
2700 struct extent_buffer *clone;
2701 struct btrfs_key key;
2702 int slot;
2703 int ret;
2704
2705 path->slots[0]++;
2706 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2707 return 0;
2708
2709 ret = btrfs_next_leaf(inode->root, path);
2710 if (ret != 0)
2711 return ret;
2712
2713 /*
2714 * Don't bother with cloning if there are no more file extent items for
2715 * our inode.
2716 */
2717 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2718 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2719 return 1;
2720
2721 /* See the comment at fiemap_search_slot() about why we clone. */
2722 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2723 if (!clone)
2724 return -ENOMEM;
2725
2726 slot = path->slots[0];
2727 btrfs_release_path(path);
2728 path->nodes[0] = clone;
2729 path->slots[0] = slot;
2730
2731 return 0;
2732 }
2733
2734 /*
2735 * Search for the first file extent item that starts at a given file offset or
2736 * the one that starts immediately before that offset.
2737 * Returns: 0 on success, < 0 on error, 1 if not found.
2738 */
fiemap_search_slot(struct btrfs_inode * inode,struct btrfs_path * path,u64 file_offset)2739 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2740 u64 file_offset)
2741 {
2742 const u64 ino = btrfs_ino(inode);
2743 struct btrfs_root *root = inode->root;
2744 struct extent_buffer *clone;
2745 struct btrfs_key key;
2746 int slot;
2747 int ret;
2748
2749 key.objectid = ino;
2750 key.type = BTRFS_EXTENT_DATA_KEY;
2751 key.offset = file_offset;
2752
2753 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2754 if (ret < 0)
2755 return ret;
2756
2757 if (ret > 0 && path->slots[0] > 0) {
2758 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2759 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2760 path->slots[0]--;
2761 }
2762
2763 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2764 ret = btrfs_next_leaf(root, path);
2765 if (ret != 0)
2766 return ret;
2767
2768 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2769 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2770 return 1;
2771 }
2772
2773 /*
2774 * We clone the leaf and use it during fiemap. This is because while
2775 * using the leaf we do expensive things like checking if an extent is
2776 * shared, which can take a long time. In order to prevent blocking
2777 * other tasks for too long, we use a clone of the leaf. We have locked
2778 * the file range in the inode's io tree, so we know none of our file
2779 * extent items can change. This way we avoid blocking other tasks that
2780 * want to insert items for other inodes in the same leaf or b+tree
2781 * rebalance operations (triggered for example when someone is trying
2782 * to push items into this leaf when trying to insert an item in a
2783 * neighbour leaf).
2784 * We also need the private clone because holding a read lock on an
2785 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2786 * when we check if extents are shared, as backref walking may need to
2787 * lock the same leaf we are processing.
2788 */
2789 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2790 if (!clone)
2791 return -ENOMEM;
2792
2793 slot = path->slots[0];
2794 btrfs_release_path(path);
2795 path->nodes[0] = clone;
2796 path->slots[0] = slot;
2797
2798 return 0;
2799 }
2800
2801 /*
2802 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2803 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2804 * extent. The end offset (@end) is inclusive.
2805 */
fiemap_process_hole(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,struct extent_state ** delalloc_cached_state,struct btrfs_backref_share_check_ctx * backref_ctx,u64 disk_bytenr,u64 extent_offset,u64 extent_gen,u64 start,u64 end)2806 static int fiemap_process_hole(struct btrfs_inode *inode,
2807 struct fiemap_extent_info *fieinfo,
2808 struct fiemap_cache *cache,
2809 struct extent_state **delalloc_cached_state,
2810 struct btrfs_backref_share_check_ctx *backref_ctx,
2811 u64 disk_bytenr, u64 extent_offset,
2812 u64 extent_gen,
2813 u64 start, u64 end)
2814 {
2815 const u64 i_size = i_size_read(&inode->vfs_inode);
2816 u64 cur_offset = start;
2817 u64 last_delalloc_end = 0;
2818 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2819 bool checked_extent_shared = false;
2820 int ret;
2821
2822 /*
2823 * There can be no delalloc past i_size, so don't waste time looking for
2824 * it beyond i_size.
2825 */
2826 while (cur_offset < end && cur_offset < i_size) {
2827 u64 delalloc_start;
2828 u64 delalloc_end;
2829 u64 prealloc_start;
2830 u64 prealloc_len = 0;
2831 bool delalloc;
2832
2833 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2834 delalloc_cached_state,
2835 &delalloc_start,
2836 &delalloc_end);
2837 if (!delalloc)
2838 break;
2839
2840 /*
2841 * If this is a prealloc extent we have to report every section
2842 * of it that has no delalloc.
2843 */
2844 if (disk_bytenr != 0) {
2845 if (last_delalloc_end == 0) {
2846 prealloc_start = start;
2847 prealloc_len = delalloc_start - start;
2848 } else {
2849 prealloc_start = last_delalloc_end + 1;
2850 prealloc_len = delalloc_start - prealloc_start;
2851 }
2852 }
2853
2854 if (prealloc_len > 0) {
2855 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2856 ret = btrfs_is_data_extent_shared(inode,
2857 disk_bytenr,
2858 extent_gen,
2859 backref_ctx);
2860 if (ret < 0)
2861 return ret;
2862 else if (ret > 0)
2863 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2864
2865 checked_extent_shared = true;
2866 }
2867 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2868 disk_bytenr + extent_offset,
2869 prealloc_len, prealloc_flags);
2870 if (ret)
2871 return ret;
2872 extent_offset += prealloc_len;
2873 }
2874
2875 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2876 delalloc_end + 1 - delalloc_start,
2877 FIEMAP_EXTENT_DELALLOC |
2878 FIEMAP_EXTENT_UNKNOWN);
2879 if (ret)
2880 return ret;
2881
2882 last_delalloc_end = delalloc_end;
2883 cur_offset = delalloc_end + 1;
2884 extent_offset += cur_offset - delalloc_start;
2885 cond_resched();
2886 }
2887
2888 /*
2889 * Either we found no delalloc for the whole prealloc extent or we have
2890 * a prealloc extent that spans i_size or starts at or after i_size.
2891 */
2892 if (disk_bytenr != 0 && last_delalloc_end < end) {
2893 u64 prealloc_start;
2894 u64 prealloc_len;
2895
2896 if (last_delalloc_end == 0) {
2897 prealloc_start = start;
2898 prealloc_len = end + 1 - start;
2899 } else {
2900 prealloc_start = last_delalloc_end + 1;
2901 prealloc_len = end + 1 - prealloc_start;
2902 }
2903
2904 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2905 ret = btrfs_is_data_extent_shared(inode,
2906 disk_bytenr,
2907 extent_gen,
2908 backref_ctx);
2909 if (ret < 0)
2910 return ret;
2911 else if (ret > 0)
2912 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2913 }
2914 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2915 disk_bytenr + extent_offset,
2916 prealloc_len, prealloc_flags);
2917 if (ret)
2918 return ret;
2919 }
2920
2921 return 0;
2922 }
2923
fiemap_find_last_extent_offset(struct btrfs_inode * inode,struct btrfs_path * path,u64 * last_extent_end_ret)2924 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2925 struct btrfs_path *path,
2926 u64 *last_extent_end_ret)
2927 {
2928 const u64 ino = btrfs_ino(inode);
2929 struct btrfs_root *root = inode->root;
2930 struct extent_buffer *leaf;
2931 struct btrfs_file_extent_item *ei;
2932 struct btrfs_key key;
2933 u64 disk_bytenr;
2934 int ret;
2935
2936 /*
2937 * Lookup the last file extent. We're not using i_size here because
2938 * there might be preallocation past i_size.
2939 */
2940 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2941 /* There can't be a file extent item at offset (u64)-1 */
2942 ASSERT(ret != 0);
2943 if (ret < 0)
2944 return ret;
2945
2946 /*
2947 * For a non-existing key, btrfs_search_slot() always leaves us at a
2948 * slot > 0, except if the btree is empty, which is impossible because
2949 * at least it has the inode item for this inode and all the items for
2950 * the root inode 256.
2951 */
2952 ASSERT(path->slots[0] > 0);
2953 path->slots[0]--;
2954 leaf = path->nodes[0];
2955 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2956 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2957 /* No file extent items in the subvolume tree. */
2958 *last_extent_end_ret = 0;
2959 return 0;
2960 }
2961
2962 /*
2963 * For an inline extent, the disk_bytenr is where inline data starts at,
2964 * so first check if we have an inline extent item before checking if we
2965 * have an implicit hole (disk_bytenr == 0).
2966 */
2967 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2968 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2969 *last_extent_end_ret = btrfs_file_extent_end(path);
2970 return 0;
2971 }
2972
2973 /*
2974 * Find the last file extent item that is not a hole (when NO_HOLES is
2975 * not enabled). This should take at most 2 iterations in the worst
2976 * case: we have one hole file extent item at slot 0 of a leaf and
2977 * another hole file extent item as the last item in the previous leaf.
2978 * This is because we merge file extent items that represent holes.
2979 */
2980 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2981 while (disk_bytenr == 0) {
2982 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2983 if (ret < 0) {
2984 return ret;
2985 } else if (ret > 0) {
2986 /* No file extent items that are not holes. */
2987 *last_extent_end_ret = 0;
2988 return 0;
2989 }
2990 leaf = path->nodes[0];
2991 ei = btrfs_item_ptr(leaf, path->slots[0],
2992 struct btrfs_file_extent_item);
2993 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2994 }
2995
2996 *last_extent_end_ret = btrfs_file_extent_end(path);
2997 return 0;
2998 }
2999
extent_fiemap(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)3000 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3001 u64 start, u64 len)
3002 {
3003 const u64 ino = btrfs_ino(inode);
3004 struct extent_state *cached_state = NULL;
3005 struct extent_state *delalloc_cached_state = NULL;
3006 struct btrfs_path *path;
3007 struct fiemap_cache cache = { 0 };
3008 struct btrfs_backref_share_check_ctx *backref_ctx;
3009 u64 last_extent_end;
3010 u64 prev_extent_end;
3011 u64 range_start;
3012 u64 range_end;
3013 const u64 sectorsize = inode->root->fs_info->sectorsize;
3014 bool stopped = false;
3015 int ret;
3016
3017 cache.entries_size = PAGE_SIZE / sizeof(struct btrfs_fiemap_entry);
3018 cache.entries = kmalloc_array(cache.entries_size,
3019 sizeof(struct btrfs_fiemap_entry),
3020 GFP_KERNEL);
3021 backref_ctx = btrfs_alloc_backref_share_check_ctx();
3022 path = btrfs_alloc_path();
3023 if (!cache.entries || !backref_ctx || !path) {
3024 ret = -ENOMEM;
3025 goto out;
3026 }
3027
3028 restart:
3029 range_start = round_down(start, sectorsize);
3030 range_end = round_up(start + len, sectorsize);
3031 prev_extent_end = range_start;
3032
3033 lock_extent(&inode->io_tree, range_start, range_end, &cached_state);
3034
3035 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3036 if (ret < 0)
3037 goto out_unlock;
3038 btrfs_release_path(path);
3039
3040 path->reada = READA_FORWARD;
3041 ret = fiemap_search_slot(inode, path, range_start);
3042 if (ret < 0) {
3043 goto out_unlock;
3044 } else if (ret > 0) {
3045 /*
3046 * No file extent item found, but we may have delalloc between
3047 * the current offset and i_size. So check for that.
3048 */
3049 ret = 0;
3050 goto check_eof_delalloc;
3051 }
3052
3053 while (prev_extent_end < range_end) {
3054 struct extent_buffer *leaf = path->nodes[0];
3055 struct btrfs_file_extent_item *ei;
3056 struct btrfs_key key;
3057 u64 extent_end;
3058 u64 extent_len;
3059 u64 extent_offset = 0;
3060 u64 extent_gen;
3061 u64 disk_bytenr = 0;
3062 u64 flags = 0;
3063 int extent_type;
3064 u8 compression;
3065
3066 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3067 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3068 break;
3069
3070 extent_end = btrfs_file_extent_end(path);
3071
3072 /*
3073 * The first iteration can leave us at an extent item that ends
3074 * before our range's start. Move to the next item.
3075 */
3076 if (extent_end <= range_start)
3077 goto next_item;
3078
3079 backref_ctx->curr_leaf_bytenr = leaf->start;
3080
3081 /* We have in implicit hole (NO_HOLES feature enabled). */
3082 if (prev_extent_end < key.offset) {
3083 const u64 hole_end = min(key.offset, range_end) - 1;
3084
3085 ret = fiemap_process_hole(inode, fieinfo, &cache,
3086 &delalloc_cached_state,
3087 backref_ctx, 0, 0, 0,
3088 prev_extent_end, hole_end);
3089 if (ret < 0) {
3090 goto out_unlock;
3091 } else if (ret > 0) {
3092 /* fiemap_fill_next_extent() told us to stop. */
3093 stopped = true;
3094 break;
3095 }
3096
3097 /* We've reached the end of the fiemap range, stop. */
3098 if (key.offset >= range_end) {
3099 stopped = true;
3100 break;
3101 }
3102 }
3103
3104 extent_len = extent_end - key.offset;
3105 ei = btrfs_item_ptr(leaf, path->slots[0],
3106 struct btrfs_file_extent_item);
3107 compression = btrfs_file_extent_compression(leaf, ei);
3108 extent_type = btrfs_file_extent_type(leaf, ei);
3109 extent_gen = btrfs_file_extent_generation(leaf, ei);
3110
3111 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3112 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3113 if (compression == BTRFS_COMPRESS_NONE)
3114 extent_offset = btrfs_file_extent_offset(leaf, ei);
3115 }
3116
3117 if (compression != BTRFS_COMPRESS_NONE)
3118 flags |= FIEMAP_EXTENT_ENCODED;
3119
3120 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3121 flags |= FIEMAP_EXTENT_DATA_INLINE;
3122 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3123 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3124 extent_len, flags);
3125 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3126 ret = fiemap_process_hole(inode, fieinfo, &cache,
3127 &delalloc_cached_state,
3128 backref_ctx,
3129 disk_bytenr, extent_offset,
3130 extent_gen, key.offset,
3131 extent_end - 1);
3132 } else if (disk_bytenr == 0) {
3133 /* We have an explicit hole. */
3134 ret = fiemap_process_hole(inode, fieinfo, &cache,
3135 &delalloc_cached_state,
3136 backref_ctx, 0, 0, 0,
3137 key.offset, extent_end - 1);
3138 } else {
3139 /* We have a regular extent. */
3140 if (fieinfo->fi_extents_max) {
3141 ret = btrfs_is_data_extent_shared(inode,
3142 disk_bytenr,
3143 extent_gen,
3144 backref_ctx);
3145 if (ret < 0)
3146 goto out_unlock;
3147 else if (ret > 0)
3148 flags |= FIEMAP_EXTENT_SHARED;
3149 }
3150
3151 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3152 disk_bytenr + extent_offset,
3153 extent_len, flags);
3154 }
3155
3156 if (ret < 0) {
3157 goto out_unlock;
3158 } else if (ret > 0) {
3159 /* emit_fiemap_extent() told us to stop. */
3160 stopped = true;
3161 break;
3162 }
3163
3164 prev_extent_end = extent_end;
3165 next_item:
3166 if (fatal_signal_pending(current)) {
3167 ret = -EINTR;
3168 goto out_unlock;
3169 }
3170
3171 ret = fiemap_next_leaf_item(inode, path);
3172 if (ret < 0) {
3173 goto out_unlock;
3174 } else if (ret > 0) {
3175 /* No more file extent items for this inode. */
3176 break;
3177 }
3178 cond_resched();
3179 }
3180
3181 check_eof_delalloc:
3182 if (!stopped && prev_extent_end < range_end) {
3183 ret = fiemap_process_hole(inode, fieinfo, &cache,
3184 &delalloc_cached_state, backref_ctx,
3185 0, 0, 0, prev_extent_end, range_end - 1);
3186 if (ret < 0)
3187 goto out_unlock;
3188 prev_extent_end = range_end;
3189 }
3190
3191 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3192 const u64 i_size = i_size_read(&inode->vfs_inode);
3193
3194 if (prev_extent_end < i_size) {
3195 u64 delalloc_start;
3196 u64 delalloc_end;
3197 bool delalloc;
3198
3199 delalloc = btrfs_find_delalloc_in_range(inode,
3200 prev_extent_end,
3201 i_size - 1,
3202 &delalloc_cached_state,
3203 &delalloc_start,
3204 &delalloc_end);
3205 if (!delalloc)
3206 cache.flags |= FIEMAP_EXTENT_LAST;
3207 } else {
3208 cache.flags |= FIEMAP_EXTENT_LAST;
3209 }
3210 }
3211
3212 out_unlock:
3213 unlock_extent(&inode->io_tree, range_start, range_end, &cached_state);
3214
3215 if (ret == BTRFS_FIEMAP_FLUSH_CACHE) {
3216 btrfs_release_path(path);
3217 ret = flush_fiemap_cache(fieinfo, &cache);
3218 if (ret)
3219 goto out;
3220 len -= cache.next_search_offset - start;
3221 start = cache.next_search_offset;
3222 goto restart;
3223 } else if (ret < 0) {
3224 goto out;
3225 }
3226
3227 /*
3228 * Must free the path before emitting to the fiemap buffer because we
3229 * may have a non-cloned leaf and if the fiemap buffer is memory mapped
3230 * to a file, a write into it (through btrfs_page_mkwrite()) may trigger
3231 * waiting for an ordered extent that in order to complete needs to
3232 * modify that leaf, therefore leading to a deadlock.
3233 */
3234 btrfs_free_path(path);
3235 path = NULL;
3236
3237 ret = flush_fiemap_cache(fieinfo, &cache);
3238 if (ret)
3239 goto out;
3240
3241 ret = emit_last_fiemap_cache(fieinfo, &cache);
3242 out:
3243 free_extent_state(delalloc_cached_state);
3244 kfree(cache.entries);
3245 btrfs_free_backref_share_ctx(backref_ctx);
3246 btrfs_free_path(path);
3247 return ret;
3248 }
3249
__free_extent_buffer(struct extent_buffer * eb)3250 static void __free_extent_buffer(struct extent_buffer *eb)
3251 {
3252 kmem_cache_free(extent_buffer_cache, eb);
3253 }
3254
extent_buffer_under_io(const struct extent_buffer * eb)3255 static int extent_buffer_under_io(const struct extent_buffer *eb)
3256 {
3257 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3258 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3259 }
3260
page_range_has_eb(struct btrfs_fs_info * fs_info,struct page * page)3261 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
3262 {
3263 struct btrfs_subpage *subpage;
3264
3265 lockdep_assert_held(&page->mapping->private_lock);
3266
3267 if (PagePrivate(page)) {
3268 subpage = (struct btrfs_subpage *)page->private;
3269 if (atomic_read(&subpage->eb_refs))
3270 return true;
3271 /*
3272 * Even there is no eb refs here, we may still have
3273 * end_page_read() call relying on page::private.
3274 */
3275 if (atomic_read(&subpage->readers))
3276 return true;
3277 }
3278 return false;
3279 }
3280
detach_extent_buffer_page(struct extent_buffer * eb,struct page * page)3281 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
3282 {
3283 struct btrfs_fs_info *fs_info = eb->fs_info;
3284 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3285
3286 /*
3287 * For mapped eb, we're going to change the page private, which should
3288 * be done under the private_lock.
3289 */
3290 if (mapped)
3291 spin_lock(&page->mapping->private_lock);
3292
3293 if (!PagePrivate(page)) {
3294 if (mapped)
3295 spin_unlock(&page->mapping->private_lock);
3296 return;
3297 }
3298
3299 if (fs_info->nodesize >= PAGE_SIZE) {
3300 /*
3301 * We do this since we'll remove the pages after we've
3302 * removed the eb from the radix tree, so we could race
3303 * and have this page now attached to the new eb. So
3304 * only clear page_private if it's still connected to
3305 * this eb.
3306 */
3307 if (PagePrivate(page) &&
3308 page->private == (unsigned long)eb) {
3309 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3310 BUG_ON(PageDirty(page));
3311 BUG_ON(PageWriteback(page));
3312 /*
3313 * We need to make sure we haven't be attached
3314 * to a new eb.
3315 */
3316 detach_page_private(page);
3317 }
3318 if (mapped)
3319 spin_unlock(&page->mapping->private_lock);
3320 return;
3321 }
3322
3323 /*
3324 * For subpage, we can have dummy eb with page private. In this case,
3325 * we can directly detach the private as such page is only attached to
3326 * one dummy eb, no sharing.
3327 */
3328 if (!mapped) {
3329 btrfs_detach_subpage(fs_info, page);
3330 return;
3331 }
3332
3333 btrfs_page_dec_eb_refs(fs_info, page);
3334
3335 /*
3336 * We can only detach the page private if there are no other ebs in the
3337 * page range and no unfinished IO.
3338 */
3339 if (!page_range_has_eb(fs_info, page))
3340 btrfs_detach_subpage(fs_info, page);
3341
3342 spin_unlock(&page->mapping->private_lock);
3343 }
3344
3345 /* Release all pages attached to the extent buffer */
btrfs_release_extent_buffer_pages(struct extent_buffer * eb)3346 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3347 {
3348 int i;
3349 int num_pages;
3350
3351 ASSERT(!extent_buffer_under_io(eb));
3352
3353 num_pages = num_extent_pages(eb);
3354 for (i = 0; i < num_pages; i++) {
3355 struct page *page = eb->pages[i];
3356
3357 if (!page)
3358 continue;
3359
3360 detach_extent_buffer_page(eb, page);
3361
3362 /* One for when we allocated the page */
3363 put_page(page);
3364 }
3365 }
3366
3367 /*
3368 * Helper for releasing the extent buffer.
3369 */
btrfs_release_extent_buffer(struct extent_buffer * eb)3370 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3371 {
3372 btrfs_release_extent_buffer_pages(eb);
3373 btrfs_leak_debug_del_eb(eb);
3374 __free_extent_buffer(eb);
3375 }
3376
3377 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)3378 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3379 unsigned long len)
3380 {
3381 struct extent_buffer *eb = NULL;
3382
3383 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3384 eb->start = start;
3385 eb->len = len;
3386 eb->fs_info = fs_info;
3387 init_rwsem(&eb->lock);
3388
3389 btrfs_leak_debug_add_eb(eb);
3390
3391 spin_lock_init(&eb->refs_lock);
3392 atomic_set(&eb->refs, 1);
3393
3394 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3395
3396 return eb;
3397 }
3398
btrfs_clone_extent_buffer(const struct extent_buffer * src)3399 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3400 {
3401 int i;
3402 struct extent_buffer *new;
3403 int num_pages = num_extent_pages(src);
3404 int ret;
3405
3406 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3407 if (new == NULL)
3408 return NULL;
3409
3410 /*
3411 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3412 * btrfs_release_extent_buffer() have different behavior for
3413 * UNMAPPED subpage extent buffer.
3414 */
3415 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3416
3417 ret = btrfs_alloc_page_array(num_pages, new->pages);
3418 if (ret) {
3419 btrfs_release_extent_buffer(new);
3420 return NULL;
3421 }
3422
3423 for (i = 0; i < num_pages; i++) {
3424 int ret;
3425 struct page *p = new->pages[i];
3426
3427 ret = attach_extent_buffer_page(new, p, NULL);
3428 if (ret < 0) {
3429 btrfs_release_extent_buffer(new);
3430 return NULL;
3431 }
3432 WARN_ON(PageDirty(p));
3433 }
3434 copy_extent_buffer_full(new, src);
3435 set_extent_buffer_uptodate(new);
3436
3437 return new;
3438 }
3439
__alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)3440 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3441 u64 start, unsigned long len)
3442 {
3443 struct extent_buffer *eb;
3444 int num_pages;
3445 int i;
3446 int ret;
3447
3448 eb = __alloc_extent_buffer(fs_info, start, len);
3449 if (!eb)
3450 return NULL;
3451
3452 num_pages = num_extent_pages(eb);
3453 ret = btrfs_alloc_page_array(num_pages, eb->pages);
3454 if (ret)
3455 goto err;
3456
3457 for (i = 0; i < num_pages; i++) {
3458 struct page *p = eb->pages[i];
3459
3460 ret = attach_extent_buffer_page(eb, p, NULL);
3461 if (ret < 0)
3462 goto err;
3463 }
3464
3465 set_extent_buffer_uptodate(eb);
3466 btrfs_set_header_nritems(eb, 0);
3467 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3468
3469 return eb;
3470 err:
3471 for (i = 0; i < num_pages; i++) {
3472 if (eb->pages[i]) {
3473 detach_extent_buffer_page(eb, eb->pages[i]);
3474 __free_page(eb->pages[i]);
3475 }
3476 }
3477 __free_extent_buffer(eb);
3478 return NULL;
3479 }
3480
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3481 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3482 u64 start)
3483 {
3484 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3485 }
3486
check_buffer_tree_ref(struct extent_buffer * eb)3487 static void check_buffer_tree_ref(struct extent_buffer *eb)
3488 {
3489 int refs;
3490 /*
3491 * The TREE_REF bit is first set when the extent_buffer is added
3492 * to the radix tree. It is also reset, if unset, when a new reference
3493 * is created by find_extent_buffer.
3494 *
3495 * It is only cleared in two cases: freeing the last non-tree
3496 * reference to the extent_buffer when its STALE bit is set or
3497 * calling release_folio when the tree reference is the only reference.
3498 *
3499 * In both cases, care is taken to ensure that the extent_buffer's
3500 * pages are not under io. However, release_folio can be concurrently
3501 * called with creating new references, which is prone to race
3502 * conditions between the calls to check_buffer_tree_ref in those
3503 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3504 *
3505 * The actual lifetime of the extent_buffer in the radix tree is
3506 * adequately protected by the refcount, but the TREE_REF bit and
3507 * its corresponding reference are not. To protect against this
3508 * class of races, we call check_buffer_tree_ref from the codepaths
3509 * which trigger io. Note that once io is initiated, TREE_REF can no
3510 * longer be cleared, so that is the moment at which any such race is
3511 * best fixed.
3512 */
3513 refs = atomic_read(&eb->refs);
3514 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3515 return;
3516
3517 spin_lock(&eb->refs_lock);
3518 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3519 atomic_inc(&eb->refs);
3520 spin_unlock(&eb->refs_lock);
3521 }
3522
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)3523 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
3524 struct page *accessed)
3525 {
3526 int num_pages, i;
3527
3528 check_buffer_tree_ref(eb);
3529
3530 num_pages = num_extent_pages(eb);
3531 for (i = 0; i < num_pages; i++) {
3532 struct page *p = eb->pages[i];
3533
3534 if (p != accessed)
3535 mark_page_accessed(p);
3536 }
3537 }
3538
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3539 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3540 u64 start)
3541 {
3542 struct extent_buffer *eb;
3543
3544 eb = find_extent_buffer_nolock(fs_info, start);
3545 if (!eb)
3546 return NULL;
3547 /*
3548 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3549 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3550 * another task running free_extent_buffer() might have seen that flag
3551 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3552 * writeback flags not set) and it's still in the tree (flag
3553 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3554 * decrementing the extent buffer's reference count twice. So here we
3555 * could race and increment the eb's reference count, clear its stale
3556 * flag, mark it as dirty and drop our reference before the other task
3557 * finishes executing free_extent_buffer, which would later result in
3558 * an attempt to free an extent buffer that is dirty.
3559 */
3560 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3561 spin_lock(&eb->refs_lock);
3562 spin_unlock(&eb->refs_lock);
3563 }
3564 mark_extent_buffer_accessed(eb, NULL);
3565 return eb;
3566 }
3567
3568 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3569 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3570 u64 start)
3571 {
3572 struct extent_buffer *eb, *exists = NULL;
3573 int ret;
3574
3575 eb = find_extent_buffer(fs_info, start);
3576 if (eb)
3577 return eb;
3578 eb = alloc_dummy_extent_buffer(fs_info, start);
3579 if (!eb)
3580 return ERR_PTR(-ENOMEM);
3581 eb->fs_info = fs_info;
3582 again:
3583 ret = radix_tree_preload(GFP_NOFS);
3584 if (ret) {
3585 exists = ERR_PTR(ret);
3586 goto free_eb;
3587 }
3588 spin_lock(&fs_info->buffer_lock);
3589 ret = radix_tree_insert(&fs_info->buffer_radix,
3590 start >> fs_info->sectorsize_bits, eb);
3591 spin_unlock(&fs_info->buffer_lock);
3592 radix_tree_preload_end();
3593 if (ret == -EEXIST) {
3594 exists = find_extent_buffer(fs_info, start);
3595 if (exists)
3596 goto free_eb;
3597 else
3598 goto again;
3599 }
3600 check_buffer_tree_ref(eb);
3601 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3602
3603 return eb;
3604 free_eb:
3605 btrfs_release_extent_buffer(eb);
3606 return exists;
3607 }
3608 #endif
3609
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page)3610 static struct extent_buffer *grab_extent_buffer(
3611 struct btrfs_fs_info *fs_info, struct page *page)
3612 {
3613 struct extent_buffer *exists;
3614
3615 /*
3616 * For subpage case, we completely rely on radix tree to ensure we
3617 * don't try to insert two ebs for the same bytenr. So here we always
3618 * return NULL and just continue.
3619 */
3620 if (fs_info->nodesize < PAGE_SIZE)
3621 return NULL;
3622
3623 /* Page not yet attached to an extent buffer */
3624 if (!PagePrivate(page))
3625 return NULL;
3626
3627 /*
3628 * We could have already allocated an eb for this page and attached one
3629 * so lets see if we can get a ref on the existing eb, and if we can we
3630 * know it's good and we can just return that one, else we know we can
3631 * just overwrite page->private.
3632 */
3633 exists = (struct extent_buffer *)page->private;
3634 if (atomic_inc_not_zero(&exists->refs))
3635 return exists;
3636
3637 WARN_ON(PageDirty(page));
3638 detach_page_private(page);
3639 return NULL;
3640 }
3641
check_eb_alignment(struct btrfs_fs_info * fs_info,u64 start)3642 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3643 {
3644 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3645 btrfs_err(fs_info, "bad tree block start %llu", start);
3646 return -EINVAL;
3647 }
3648
3649 if (fs_info->nodesize < PAGE_SIZE &&
3650 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3651 btrfs_err(fs_info,
3652 "tree block crosses page boundary, start %llu nodesize %u",
3653 start, fs_info->nodesize);
3654 return -EINVAL;
3655 }
3656 if (fs_info->nodesize >= PAGE_SIZE &&
3657 !PAGE_ALIGNED(start)) {
3658 btrfs_err(fs_info,
3659 "tree block is not page aligned, start %llu nodesize %u",
3660 start, fs_info->nodesize);
3661 return -EINVAL;
3662 }
3663 return 0;
3664 }
3665
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)3666 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3667 u64 start, u64 owner_root, int level)
3668 {
3669 unsigned long len = fs_info->nodesize;
3670 int num_pages;
3671 int i;
3672 unsigned long index = start >> PAGE_SHIFT;
3673 struct extent_buffer *eb;
3674 struct extent_buffer *exists = NULL;
3675 struct page *p;
3676 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3677 struct btrfs_subpage *prealloc = NULL;
3678 u64 lockdep_owner = owner_root;
3679 int uptodate = 1;
3680 int ret;
3681
3682 if (check_eb_alignment(fs_info, start))
3683 return ERR_PTR(-EINVAL);
3684
3685 #if BITS_PER_LONG == 32
3686 if (start >= MAX_LFS_FILESIZE) {
3687 btrfs_err_rl(fs_info,
3688 "extent buffer %llu is beyond 32bit page cache limit", start);
3689 btrfs_err_32bit_limit(fs_info);
3690 return ERR_PTR(-EOVERFLOW);
3691 }
3692 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3693 btrfs_warn_32bit_limit(fs_info);
3694 #endif
3695
3696 eb = find_extent_buffer(fs_info, start);
3697 if (eb)
3698 return eb;
3699
3700 eb = __alloc_extent_buffer(fs_info, start, len);
3701 if (!eb)
3702 return ERR_PTR(-ENOMEM);
3703
3704 /*
3705 * The reloc trees are just snapshots, so we need them to appear to be
3706 * just like any other fs tree WRT lockdep.
3707 */
3708 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3709 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3710
3711 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3712
3713 num_pages = num_extent_pages(eb);
3714
3715 /*
3716 * Preallocate page->private for subpage case, so that we won't
3717 * allocate memory with private_lock nor page lock hold.
3718 *
3719 * The memory will be freed by attach_extent_buffer_page() or freed
3720 * manually if we exit earlier.
3721 */
3722 if (fs_info->nodesize < PAGE_SIZE) {
3723 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3724 if (IS_ERR(prealloc)) {
3725 exists = ERR_CAST(prealloc);
3726 goto free_eb;
3727 }
3728 }
3729
3730 for (i = 0; i < num_pages; i++, index++) {
3731 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
3732 if (!p) {
3733 exists = ERR_PTR(-ENOMEM);
3734 btrfs_free_subpage(prealloc);
3735 goto free_eb;
3736 }
3737
3738 spin_lock(&mapping->private_lock);
3739 exists = grab_extent_buffer(fs_info, p);
3740 if (exists) {
3741 spin_unlock(&mapping->private_lock);
3742 unlock_page(p);
3743 put_page(p);
3744 mark_extent_buffer_accessed(exists, p);
3745 btrfs_free_subpage(prealloc);
3746 goto free_eb;
3747 }
3748 /* Should not fail, as we have preallocated the memory */
3749 ret = attach_extent_buffer_page(eb, p, prealloc);
3750 ASSERT(!ret);
3751 /*
3752 * To inform we have extra eb under allocation, so that
3753 * detach_extent_buffer_page() won't release the page private
3754 * when the eb hasn't yet been inserted into radix tree.
3755 *
3756 * The ref will be decreased when the eb released the page, in
3757 * detach_extent_buffer_page().
3758 * Thus needs no special handling in error path.
3759 */
3760 btrfs_page_inc_eb_refs(fs_info, p);
3761 spin_unlock(&mapping->private_lock);
3762
3763 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
3764 eb->pages[i] = p;
3765 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len))
3766 uptodate = 0;
3767
3768 /*
3769 * We can't unlock the pages just yet since the extent buffer
3770 * hasn't been properly inserted in the radix tree, this
3771 * opens a race with btree_release_folio which can free a page
3772 * while we are still filling in all pages for the buffer and
3773 * we could crash.
3774 */
3775 }
3776 if (uptodate)
3777 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3778 again:
3779 ret = radix_tree_preload(GFP_NOFS);
3780 if (ret) {
3781 exists = ERR_PTR(ret);
3782 goto free_eb;
3783 }
3784
3785 spin_lock(&fs_info->buffer_lock);
3786 ret = radix_tree_insert(&fs_info->buffer_radix,
3787 start >> fs_info->sectorsize_bits, eb);
3788 spin_unlock(&fs_info->buffer_lock);
3789 radix_tree_preload_end();
3790 if (ret == -EEXIST) {
3791 exists = find_extent_buffer(fs_info, start);
3792 if (exists)
3793 goto free_eb;
3794 else
3795 goto again;
3796 }
3797 /* add one reference for the tree */
3798 check_buffer_tree_ref(eb);
3799 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3800
3801 /*
3802 * Now it's safe to unlock the pages because any calls to
3803 * btree_release_folio will correctly detect that a page belongs to a
3804 * live buffer and won't free them prematurely.
3805 */
3806 for (i = 0; i < num_pages; i++)
3807 unlock_page(eb->pages[i]);
3808 return eb;
3809
3810 free_eb:
3811 WARN_ON(!atomic_dec_and_test(&eb->refs));
3812 for (i = 0; i < num_pages; i++) {
3813 if (eb->pages[i])
3814 unlock_page(eb->pages[i]);
3815 }
3816
3817 btrfs_release_extent_buffer(eb);
3818 return exists;
3819 }
3820
btrfs_release_extent_buffer_rcu(struct rcu_head * head)3821 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3822 {
3823 struct extent_buffer *eb =
3824 container_of(head, struct extent_buffer, rcu_head);
3825
3826 __free_extent_buffer(eb);
3827 }
3828
release_extent_buffer(struct extent_buffer * eb)3829 static int release_extent_buffer(struct extent_buffer *eb)
3830 __releases(&eb->refs_lock)
3831 {
3832 lockdep_assert_held(&eb->refs_lock);
3833
3834 WARN_ON(atomic_read(&eb->refs) == 0);
3835 if (atomic_dec_and_test(&eb->refs)) {
3836 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3837 struct btrfs_fs_info *fs_info = eb->fs_info;
3838
3839 spin_unlock(&eb->refs_lock);
3840
3841 spin_lock(&fs_info->buffer_lock);
3842 radix_tree_delete(&fs_info->buffer_radix,
3843 eb->start >> fs_info->sectorsize_bits);
3844 spin_unlock(&fs_info->buffer_lock);
3845 } else {
3846 spin_unlock(&eb->refs_lock);
3847 }
3848
3849 btrfs_leak_debug_del_eb(eb);
3850 /* Should be safe to release our pages at this point */
3851 btrfs_release_extent_buffer_pages(eb);
3852 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3853 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3854 __free_extent_buffer(eb);
3855 return 1;
3856 }
3857 #endif
3858 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3859 return 1;
3860 }
3861 spin_unlock(&eb->refs_lock);
3862
3863 return 0;
3864 }
3865
free_extent_buffer(struct extent_buffer * eb)3866 void free_extent_buffer(struct extent_buffer *eb)
3867 {
3868 int refs;
3869 if (!eb)
3870 return;
3871
3872 refs = atomic_read(&eb->refs);
3873 while (1) {
3874 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3875 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3876 refs == 1))
3877 break;
3878 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3879 return;
3880 }
3881
3882 spin_lock(&eb->refs_lock);
3883 if (atomic_read(&eb->refs) == 2 &&
3884 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3885 !extent_buffer_under_io(eb) &&
3886 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3887 atomic_dec(&eb->refs);
3888
3889 /*
3890 * I know this is terrible, but it's temporary until we stop tracking
3891 * the uptodate bits and such for the extent buffers.
3892 */
3893 release_extent_buffer(eb);
3894 }
3895
free_extent_buffer_stale(struct extent_buffer * eb)3896 void free_extent_buffer_stale(struct extent_buffer *eb)
3897 {
3898 if (!eb)
3899 return;
3900
3901 spin_lock(&eb->refs_lock);
3902 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3903
3904 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3905 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3906 atomic_dec(&eb->refs);
3907 release_extent_buffer(eb);
3908 }
3909
btree_clear_page_dirty(struct page * page)3910 static void btree_clear_page_dirty(struct page *page)
3911 {
3912 ASSERT(PageDirty(page));
3913 ASSERT(PageLocked(page));
3914 clear_page_dirty_for_io(page);
3915 xa_lock_irq(&page->mapping->i_pages);
3916 if (!PageDirty(page))
3917 __xa_clear_mark(&page->mapping->i_pages,
3918 page_index(page), PAGECACHE_TAG_DIRTY);
3919 xa_unlock_irq(&page->mapping->i_pages);
3920 }
3921
clear_subpage_extent_buffer_dirty(const struct extent_buffer * eb)3922 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3923 {
3924 struct btrfs_fs_info *fs_info = eb->fs_info;
3925 struct page *page = eb->pages[0];
3926 bool last;
3927
3928 /* btree_clear_page_dirty() needs page locked */
3929 lock_page(page);
3930 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
3931 eb->len);
3932 if (last)
3933 btree_clear_page_dirty(page);
3934 unlock_page(page);
3935 WARN_ON(atomic_read(&eb->refs) == 0);
3936 }
3937
btrfs_clear_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * eb)3938 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3939 struct extent_buffer *eb)
3940 {
3941 struct btrfs_fs_info *fs_info = eb->fs_info;
3942 int i;
3943 int num_pages;
3944 struct page *page;
3945
3946 btrfs_assert_tree_write_locked(eb);
3947
3948 if (trans && btrfs_header_generation(eb) != trans->transid)
3949 return;
3950
3951 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3952 return;
3953
3954 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3955 fs_info->dirty_metadata_batch);
3956
3957 if (eb->fs_info->nodesize < PAGE_SIZE)
3958 return clear_subpage_extent_buffer_dirty(eb);
3959
3960 num_pages = num_extent_pages(eb);
3961
3962 for (i = 0; i < num_pages; i++) {
3963 page = eb->pages[i];
3964 if (!PageDirty(page))
3965 continue;
3966 lock_page(page);
3967 btree_clear_page_dirty(page);
3968 unlock_page(page);
3969 }
3970 WARN_ON(atomic_read(&eb->refs) == 0);
3971 }
3972
set_extent_buffer_dirty(struct extent_buffer * eb)3973 void set_extent_buffer_dirty(struct extent_buffer *eb)
3974 {
3975 int i;
3976 int num_pages;
3977 bool was_dirty;
3978
3979 check_buffer_tree_ref(eb);
3980
3981 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3982
3983 num_pages = num_extent_pages(eb);
3984 WARN_ON(atomic_read(&eb->refs) == 0);
3985 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3986
3987 if (!was_dirty) {
3988 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3989
3990 /*
3991 * For subpage case, we can have other extent buffers in the
3992 * same page, and in clear_subpage_extent_buffer_dirty() we
3993 * have to clear page dirty without subpage lock held.
3994 * This can cause race where our page gets dirty cleared after
3995 * we just set it.
3996 *
3997 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3998 * its page for other reasons, we can use page lock to prevent
3999 * the above race.
4000 */
4001 if (subpage)
4002 lock_page(eb->pages[0]);
4003 for (i = 0; i < num_pages; i++)
4004 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
4005 eb->start, eb->len);
4006 if (subpage)
4007 unlock_page(eb->pages[0]);
4008 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
4009 eb->len,
4010 eb->fs_info->dirty_metadata_batch);
4011 }
4012 #ifdef CONFIG_BTRFS_DEBUG
4013 for (i = 0; i < num_pages; i++)
4014 ASSERT(PageDirty(eb->pages[i]));
4015 #endif
4016 }
4017
clear_extent_buffer_uptodate(struct extent_buffer * eb)4018 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4019 {
4020 struct btrfs_fs_info *fs_info = eb->fs_info;
4021 struct page *page;
4022 int num_pages;
4023 int i;
4024
4025 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4026 num_pages = num_extent_pages(eb);
4027 for (i = 0; i < num_pages; i++) {
4028 page = eb->pages[i];
4029 if (!page)
4030 continue;
4031
4032 /*
4033 * This is special handling for metadata subpage, as regular
4034 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4035 */
4036 if (fs_info->nodesize >= PAGE_SIZE)
4037 ClearPageUptodate(page);
4038 else
4039 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
4040 eb->len);
4041 }
4042 }
4043
set_extent_buffer_uptodate(struct extent_buffer * eb)4044 void set_extent_buffer_uptodate(struct extent_buffer *eb)
4045 {
4046 struct btrfs_fs_info *fs_info = eb->fs_info;
4047 struct page *page;
4048 int num_pages;
4049 int i;
4050
4051 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4052 num_pages = num_extent_pages(eb);
4053 for (i = 0; i < num_pages; i++) {
4054 page = eb->pages[i];
4055
4056 /*
4057 * This is special handling for metadata subpage, as regular
4058 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4059 */
4060 if (fs_info->nodesize >= PAGE_SIZE)
4061 SetPageUptodate(page);
4062 else
4063 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
4064 eb->len);
4065 }
4066 }
4067
extent_buffer_read_end_io(struct btrfs_bio * bbio)4068 static void extent_buffer_read_end_io(struct btrfs_bio *bbio)
4069 {
4070 struct extent_buffer *eb = bbio->private;
4071 struct btrfs_fs_info *fs_info = eb->fs_info;
4072 bool uptodate = !bbio->bio.bi_status;
4073 struct bvec_iter_all iter_all;
4074 struct bio_vec *bvec;
4075 u32 bio_offset = 0;
4076
4077 eb->read_mirror = bbio->mirror_num;
4078
4079 if (uptodate &&
4080 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
4081 uptodate = false;
4082
4083 if (uptodate) {
4084 set_extent_buffer_uptodate(eb);
4085 } else {
4086 clear_extent_buffer_uptodate(eb);
4087 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4088 }
4089
4090 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
4091 u64 start = eb->start + bio_offset;
4092 struct page *page = bvec->bv_page;
4093 u32 len = bvec->bv_len;
4094
4095 if (uptodate)
4096 btrfs_page_set_uptodate(fs_info, page, start, len);
4097 else
4098 btrfs_page_clear_uptodate(fs_info, page, start, len);
4099
4100 bio_offset += len;
4101 }
4102
4103 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4104 smp_mb__after_atomic();
4105 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4106 free_extent_buffer(eb);
4107
4108 bio_put(&bbio->bio);
4109 }
4110
read_extent_buffer_pages(struct extent_buffer * eb,int wait,int mirror_num,struct btrfs_tree_parent_check * check)4111 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4112 struct btrfs_tree_parent_check *check)
4113 {
4114 int num_pages = num_extent_pages(eb), i;
4115 struct btrfs_bio *bbio;
4116
4117 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4118 return 0;
4119
4120 /*
4121 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4122 * operation, which could potentially still be in flight. In this case
4123 * we simply want to return an error.
4124 */
4125 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4126 return -EIO;
4127
4128 /* Someone else is already reading the buffer, just wait for it. */
4129 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
4130 goto done;
4131
4132 /*
4133 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
4134 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
4135 * started and finished reading the same eb. In this case, UPTODATE
4136 * will now be set, and we shouldn't read it in again.
4137 */
4138 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
4139 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4140 smp_mb__after_atomic();
4141 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4142 return 0;
4143 }
4144
4145 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4146 eb->read_mirror = 0;
4147 check_buffer_tree_ref(eb);
4148 atomic_inc(&eb->refs);
4149
4150 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
4151 REQ_OP_READ | REQ_META, eb->fs_info,
4152 extent_buffer_read_end_io, eb);
4153 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4154 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4155 bbio->file_offset = eb->start;
4156 memcpy(&bbio->parent_check, check, sizeof(*check));
4157 if (eb->fs_info->nodesize < PAGE_SIZE) {
4158 __bio_add_page(&bbio->bio, eb->pages[0], eb->len,
4159 eb->start - page_offset(eb->pages[0]));
4160 } else {
4161 for (i = 0; i < num_pages; i++)
4162 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0);
4163 }
4164 btrfs_submit_bio(bbio, mirror_num);
4165
4166 done:
4167 if (wait == WAIT_COMPLETE) {
4168 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4169 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4170 return -EIO;
4171 }
4172
4173 return 0;
4174 }
4175
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)4176 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4177 unsigned long len)
4178 {
4179 btrfs_warn(eb->fs_info,
4180 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
4181 eb->start, eb->len, start, len);
4182 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4183
4184 return true;
4185 }
4186
4187 /*
4188 * Check if the [start, start + len) range is valid before reading/writing
4189 * the eb.
4190 * NOTE: @start and @len are offset inside the eb, not logical address.
4191 *
4192 * Caller should not touch the dst/src memory if this function returns error.
4193 */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)4194 static inline int check_eb_range(const struct extent_buffer *eb,
4195 unsigned long start, unsigned long len)
4196 {
4197 unsigned long offset;
4198
4199 /* start, start + len should not go beyond eb->len nor overflow */
4200 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4201 return report_eb_range(eb, start, len);
4202
4203 return false;
4204 }
4205
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)4206 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4207 unsigned long start, unsigned long len)
4208 {
4209 size_t cur;
4210 size_t offset;
4211 struct page *page;
4212 char *kaddr;
4213 char *dst = (char *)dstv;
4214 unsigned long i = get_eb_page_index(start);
4215
4216 if (check_eb_range(eb, start, len)) {
4217 /*
4218 * Invalid range hit, reset the memory, so callers won't get
4219 * some random garbage for their uninitialzed memory.
4220 */
4221 memset(dstv, 0, len);
4222 return;
4223 }
4224
4225 offset = get_eb_offset_in_page(eb, start);
4226
4227 while (len > 0) {
4228 page = eb->pages[i];
4229
4230 cur = min(len, (PAGE_SIZE - offset));
4231 kaddr = page_address(page);
4232 memcpy(dst, kaddr + offset, cur);
4233
4234 dst += cur;
4235 len -= cur;
4236 offset = 0;
4237 i++;
4238 }
4239 }
4240
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)4241 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4242 void __user *dstv,
4243 unsigned long start, unsigned long len)
4244 {
4245 size_t cur;
4246 size_t offset;
4247 struct page *page;
4248 char *kaddr;
4249 char __user *dst = (char __user *)dstv;
4250 unsigned long i = get_eb_page_index(start);
4251 int ret = 0;
4252
4253 WARN_ON(start > eb->len);
4254 WARN_ON(start + len > eb->start + eb->len);
4255
4256 offset = get_eb_offset_in_page(eb, start);
4257
4258 while (len > 0) {
4259 page = eb->pages[i];
4260
4261 cur = min(len, (PAGE_SIZE - offset));
4262 kaddr = page_address(page);
4263 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4264 ret = -EFAULT;
4265 break;
4266 }
4267
4268 dst += cur;
4269 len -= cur;
4270 offset = 0;
4271 i++;
4272 }
4273
4274 return ret;
4275 }
4276
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)4277 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4278 unsigned long start, unsigned long len)
4279 {
4280 size_t cur;
4281 size_t offset;
4282 struct page *page;
4283 char *kaddr;
4284 char *ptr = (char *)ptrv;
4285 unsigned long i = get_eb_page_index(start);
4286 int ret = 0;
4287
4288 if (check_eb_range(eb, start, len))
4289 return -EINVAL;
4290
4291 offset = get_eb_offset_in_page(eb, start);
4292
4293 while (len > 0) {
4294 page = eb->pages[i];
4295
4296 cur = min(len, (PAGE_SIZE - offset));
4297
4298 kaddr = page_address(page);
4299 ret = memcmp(ptr, kaddr + offset, cur);
4300 if (ret)
4301 break;
4302
4303 ptr += cur;
4304 len -= cur;
4305 offset = 0;
4306 i++;
4307 }
4308 return ret;
4309 }
4310
4311 /*
4312 * Check that the extent buffer is uptodate.
4313 *
4314 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4315 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4316 */
assert_eb_page_uptodate(const struct extent_buffer * eb,struct page * page)4317 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
4318 struct page *page)
4319 {
4320 struct btrfs_fs_info *fs_info = eb->fs_info;
4321
4322 /*
4323 * If we are using the commit root we could potentially clear a page
4324 * Uptodate while we're using the extent buffer that we've previously
4325 * looked up. We don't want to complain in this case, as the page was
4326 * valid before, we just didn't write it out. Instead we want to catch
4327 * the case where we didn't actually read the block properly, which
4328 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4329 */
4330 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4331 return;
4332
4333 if (fs_info->nodesize < PAGE_SIZE) {
4334 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page,
4335 eb->start, eb->len)))
4336 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len);
4337 } else {
4338 WARN_ON(!PageUptodate(page));
4339 }
4340 }
4341
__write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len,bool use_memmove)4342 static void __write_extent_buffer(const struct extent_buffer *eb,
4343 const void *srcv, unsigned long start,
4344 unsigned long len, bool use_memmove)
4345 {
4346 size_t cur;
4347 size_t offset;
4348 struct page *page;
4349 char *kaddr;
4350 char *src = (char *)srcv;
4351 unsigned long i = get_eb_page_index(start);
4352 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
4353 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4354
4355 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
4356
4357 if (check_eb_range(eb, start, len))
4358 return;
4359
4360 offset = get_eb_offset_in_page(eb, start);
4361
4362 while (len > 0) {
4363 page = eb->pages[i];
4364 if (check_uptodate)
4365 assert_eb_page_uptodate(eb, page);
4366
4367 cur = min(len, PAGE_SIZE - offset);
4368 kaddr = page_address(page);
4369 if (use_memmove)
4370 memmove(kaddr + offset, src, cur);
4371 else
4372 memcpy(kaddr + offset, src, cur);
4373
4374 src += cur;
4375 len -= cur;
4376 offset = 0;
4377 i++;
4378 }
4379 }
4380
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)4381 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4382 unsigned long start, unsigned long len)
4383 {
4384 return __write_extent_buffer(eb, srcv, start, len, false);
4385 }
4386
memset_extent_buffer(const struct extent_buffer * eb,int c,unsigned long start,unsigned long len)4387 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4388 unsigned long start, unsigned long len)
4389 {
4390 unsigned long cur = start;
4391
4392 while (cur < start + len) {
4393 unsigned long index = get_eb_page_index(cur);
4394 unsigned int offset = get_eb_offset_in_page(eb, cur);
4395 unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset);
4396 struct page *page = eb->pages[index];
4397
4398 assert_eb_page_uptodate(eb, page);
4399 memset(page_address(page) + offset, c, cur_len);
4400
4401 cur += cur_len;
4402 }
4403 }
4404
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)4405 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4406 unsigned long len)
4407 {
4408 if (check_eb_range(eb, start, len))
4409 return;
4410 return memset_extent_buffer(eb, 0, start, len);
4411 }
4412
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)4413 void copy_extent_buffer_full(const struct extent_buffer *dst,
4414 const struct extent_buffer *src)
4415 {
4416 unsigned long cur = 0;
4417
4418 ASSERT(dst->len == src->len);
4419
4420 while (cur < src->len) {
4421 unsigned long index = get_eb_page_index(cur);
4422 unsigned long offset = get_eb_offset_in_page(src, cur);
4423 unsigned long cur_len = min(src->len, PAGE_SIZE - offset);
4424 void *addr = page_address(src->pages[index]) + offset;
4425
4426 write_extent_buffer(dst, addr, cur, cur_len);
4427
4428 cur += cur_len;
4429 }
4430 }
4431
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4432 void copy_extent_buffer(const struct extent_buffer *dst,
4433 const struct extent_buffer *src,
4434 unsigned long dst_offset, unsigned long src_offset,
4435 unsigned long len)
4436 {
4437 u64 dst_len = dst->len;
4438 size_t cur;
4439 size_t offset;
4440 struct page *page;
4441 char *kaddr;
4442 unsigned long i = get_eb_page_index(dst_offset);
4443
4444 if (check_eb_range(dst, dst_offset, len) ||
4445 check_eb_range(src, src_offset, len))
4446 return;
4447
4448 WARN_ON(src->len != dst_len);
4449
4450 offset = get_eb_offset_in_page(dst, dst_offset);
4451
4452 while (len > 0) {
4453 page = dst->pages[i];
4454 assert_eb_page_uptodate(dst, page);
4455
4456 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
4457
4458 kaddr = page_address(page);
4459 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4460
4461 src_offset += cur;
4462 len -= cur;
4463 offset = 0;
4464 i++;
4465 }
4466 }
4467
4468 /*
4469 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
4470 * given bit number
4471 * @eb: the extent buffer
4472 * @start: offset of the bitmap item in the extent buffer
4473 * @nr: bit number
4474 * @page_index: return index of the page in the extent buffer that contains the
4475 * given bit number
4476 * @page_offset: return offset into the page given by page_index
4477 *
4478 * This helper hides the ugliness of finding the byte in an extent buffer which
4479 * contains a given bit.
4480 */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * page_index,size_t * page_offset)4481 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4482 unsigned long start, unsigned long nr,
4483 unsigned long *page_index,
4484 size_t *page_offset)
4485 {
4486 size_t byte_offset = BIT_BYTE(nr);
4487 size_t offset;
4488
4489 /*
4490 * The byte we want is the offset of the extent buffer + the offset of
4491 * the bitmap item in the extent buffer + the offset of the byte in the
4492 * bitmap item.
4493 */
4494 offset = start + offset_in_page(eb->start) + byte_offset;
4495
4496 *page_index = offset >> PAGE_SHIFT;
4497 *page_offset = offset_in_page(offset);
4498 }
4499
4500 /*
4501 * Determine whether a bit in a bitmap item is set.
4502 *
4503 * @eb: the extent buffer
4504 * @start: offset of the bitmap item in the extent buffer
4505 * @nr: bit number to test
4506 */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)4507 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4508 unsigned long nr)
4509 {
4510 u8 *kaddr;
4511 struct page *page;
4512 unsigned long i;
4513 size_t offset;
4514
4515 eb_bitmap_offset(eb, start, nr, &i, &offset);
4516 page = eb->pages[i];
4517 assert_eb_page_uptodate(eb, page);
4518 kaddr = page_address(page);
4519 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4520 }
4521
extent_buffer_get_byte(const struct extent_buffer * eb,unsigned long bytenr)4522 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4523 {
4524 unsigned long index = get_eb_page_index(bytenr);
4525
4526 if (check_eb_range(eb, bytenr, 1))
4527 return NULL;
4528 return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr);
4529 }
4530
4531 /*
4532 * Set an area of a bitmap to 1.
4533 *
4534 * @eb: the extent buffer
4535 * @start: offset of the bitmap item in the extent buffer
4536 * @pos: bit number of the first bit
4537 * @len: number of bits to set
4538 */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4539 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4540 unsigned long pos, unsigned long len)
4541 {
4542 unsigned int first_byte = start + BIT_BYTE(pos);
4543 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4544 const bool same_byte = (first_byte == last_byte);
4545 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4546 u8 *kaddr;
4547
4548 if (same_byte)
4549 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4550
4551 /* Handle the first byte. */
4552 kaddr = extent_buffer_get_byte(eb, first_byte);
4553 *kaddr |= mask;
4554 if (same_byte)
4555 return;
4556
4557 /* Handle the byte aligned part. */
4558 ASSERT(first_byte + 1 <= last_byte);
4559 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4560
4561 /* Handle the last byte. */
4562 kaddr = extent_buffer_get_byte(eb, last_byte);
4563 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4564 }
4565
4566
4567 /*
4568 * Clear an area of a bitmap.
4569 *
4570 * @eb: the extent buffer
4571 * @start: offset of the bitmap item in the extent buffer
4572 * @pos: bit number of the first bit
4573 * @len: number of bits to clear
4574 */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4575 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4576 unsigned long start, unsigned long pos,
4577 unsigned long len)
4578 {
4579 unsigned int first_byte = start + BIT_BYTE(pos);
4580 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4581 const bool same_byte = (first_byte == last_byte);
4582 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4583 u8 *kaddr;
4584
4585 if (same_byte)
4586 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4587
4588 /* Handle the first byte. */
4589 kaddr = extent_buffer_get_byte(eb, first_byte);
4590 *kaddr &= ~mask;
4591 if (same_byte)
4592 return;
4593
4594 /* Handle the byte aligned part. */
4595 ASSERT(first_byte + 1 <= last_byte);
4596 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4597
4598 /* Handle the last byte. */
4599 kaddr = extent_buffer_get_byte(eb, last_byte);
4600 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4601 }
4602
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)4603 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4604 {
4605 unsigned long distance = (src > dst) ? src - dst : dst - src;
4606 return distance < len;
4607 }
4608
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4609 void memcpy_extent_buffer(const struct extent_buffer *dst,
4610 unsigned long dst_offset, unsigned long src_offset,
4611 unsigned long len)
4612 {
4613 unsigned long cur_off = 0;
4614
4615 if (check_eb_range(dst, dst_offset, len) ||
4616 check_eb_range(dst, src_offset, len))
4617 return;
4618
4619 while (cur_off < len) {
4620 unsigned long cur_src = cur_off + src_offset;
4621 unsigned long pg_index = get_eb_page_index(cur_src);
4622 unsigned long pg_off = get_eb_offset_in_page(dst, cur_src);
4623 unsigned long cur_len = min(src_offset + len - cur_src,
4624 PAGE_SIZE - pg_off);
4625 void *src_addr = page_address(dst->pages[pg_index]) + pg_off;
4626 const bool use_memmove = areas_overlap(src_offset + cur_off,
4627 dst_offset + cur_off, cur_len);
4628
4629 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4630 use_memmove);
4631 cur_off += cur_len;
4632 }
4633 }
4634
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4635 void memmove_extent_buffer(const struct extent_buffer *dst,
4636 unsigned long dst_offset, unsigned long src_offset,
4637 unsigned long len)
4638 {
4639 unsigned long dst_end = dst_offset + len - 1;
4640 unsigned long src_end = src_offset + len - 1;
4641
4642 if (check_eb_range(dst, dst_offset, len) ||
4643 check_eb_range(dst, src_offset, len))
4644 return;
4645
4646 if (dst_offset < src_offset) {
4647 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4648 return;
4649 }
4650
4651 while (len > 0) {
4652 unsigned long src_i;
4653 size_t cur;
4654 size_t dst_off_in_page;
4655 size_t src_off_in_page;
4656 void *src_addr;
4657 bool use_memmove;
4658
4659 src_i = get_eb_page_index(src_end);
4660
4661 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
4662 src_off_in_page = get_eb_offset_in_page(dst, src_end);
4663
4664 cur = min_t(unsigned long, len, src_off_in_page + 1);
4665 cur = min(cur, dst_off_in_page + 1);
4666
4667 src_addr = page_address(dst->pages[src_i]) + src_off_in_page -
4668 cur + 1;
4669 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4670 cur);
4671
4672 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4673 use_memmove);
4674
4675 dst_end -= cur;
4676 src_end -= cur;
4677 len -= cur;
4678 }
4679 }
4680
4681 #define GANG_LOOKUP_SIZE 16
get_next_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page,u64 bytenr)4682 static struct extent_buffer *get_next_extent_buffer(
4683 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4684 {
4685 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4686 struct extent_buffer *found = NULL;
4687 u64 page_start = page_offset(page);
4688 u64 cur = page_start;
4689
4690 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4691 lockdep_assert_held(&fs_info->buffer_lock);
4692
4693 while (cur < page_start + PAGE_SIZE) {
4694 int ret;
4695 int i;
4696
4697 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4698 (void **)gang, cur >> fs_info->sectorsize_bits,
4699 min_t(unsigned int, GANG_LOOKUP_SIZE,
4700 PAGE_SIZE / fs_info->nodesize));
4701 if (ret == 0)
4702 goto out;
4703 for (i = 0; i < ret; i++) {
4704 /* Already beyond page end */
4705 if (gang[i]->start >= page_start + PAGE_SIZE)
4706 goto out;
4707 /* Found one */
4708 if (gang[i]->start >= bytenr) {
4709 found = gang[i];
4710 goto out;
4711 }
4712 }
4713 cur = gang[ret - 1]->start + gang[ret - 1]->len;
4714 }
4715 out:
4716 return found;
4717 }
4718
try_release_subpage_extent_buffer(struct page * page)4719 static int try_release_subpage_extent_buffer(struct page *page)
4720 {
4721 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4722 u64 cur = page_offset(page);
4723 const u64 end = page_offset(page) + PAGE_SIZE;
4724 int ret;
4725
4726 while (cur < end) {
4727 struct extent_buffer *eb = NULL;
4728
4729 /*
4730 * Unlike try_release_extent_buffer() which uses page->private
4731 * to grab buffer, for subpage case we rely on radix tree, thus
4732 * we need to ensure radix tree consistency.
4733 *
4734 * We also want an atomic snapshot of the radix tree, thus go
4735 * with spinlock rather than RCU.
4736 */
4737 spin_lock(&fs_info->buffer_lock);
4738 eb = get_next_extent_buffer(fs_info, page, cur);
4739 if (!eb) {
4740 /* No more eb in the page range after or at cur */
4741 spin_unlock(&fs_info->buffer_lock);
4742 break;
4743 }
4744 cur = eb->start + eb->len;
4745
4746 /*
4747 * The same as try_release_extent_buffer(), to ensure the eb
4748 * won't disappear out from under us.
4749 */
4750 spin_lock(&eb->refs_lock);
4751 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4752 spin_unlock(&eb->refs_lock);
4753 spin_unlock(&fs_info->buffer_lock);
4754 break;
4755 }
4756 spin_unlock(&fs_info->buffer_lock);
4757
4758 /*
4759 * If tree ref isn't set then we know the ref on this eb is a
4760 * real ref, so just return, this eb will likely be freed soon
4761 * anyway.
4762 */
4763 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4764 spin_unlock(&eb->refs_lock);
4765 break;
4766 }
4767
4768 /*
4769 * Here we don't care about the return value, we will always
4770 * check the page private at the end. And
4771 * release_extent_buffer() will release the refs_lock.
4772 */
4773 release_extent_buffer(eb);
4774 }
4775 /*
4776 * Finally to check if we have cleared page private, as if we have
4777 * released all ebs in the page, the page private should be cleared now.
4778 */
4779 spin_lock(&page->mapping->private_lock);
4780 if (!PagePrivate(page))
4781 ret = 1;
4782 else
4783 ret = 0;
4784 spin_unlock(&page->mapping->private_lock);
4785 return ret;
4786
4787 }
4788
try_release_extent_buffer(struct page * page)4789 int try_release_extent_buffer(struct page *page)
4790 {
4791 struct extent_buffer *eb;
4792
4793 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4794 return try_release_subpage_extent_buffer(page);
4795
4796 /*
4797 * We need to make sure nobody is changing page->private, as we rely on
4798 * page->private as the pointer to extent buffer.
4799 */
4800 spin_lock(&page->mapping->private_lock);
4801 if (!PagePrivate(page)) {
4802 spin_unlock(&page->mapping->private_lock);
4803 return 1;
4804 }
4805
4806 eb = (struct extent_buffer *)page->private;
4807 BUG_ON(!eb);
4808
4809 /*
4810 * This is a little awful but should be ok, we need to make sure that
4811 * the eb doesn't disappear out from under us while we're looking at
4812 * this page.
4813 */
4814 spin_lock(&eb->refs_lock);
4815 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4816 spin_unlock(&eb->refs_lock);
4817 spin_unlock(&page->mapping->private_lock);
4818 return 0;
4819 }
4820 spin_unlock(&page->mapping->private_lock);
4821
4822 /*
4823 * If tree ref isn't set then we know the ref on this eb is a real ref,
4824 * so just return, this page will likely be freed soon anyway.
4825 */
4826 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4827 spin_unlock(&eb->refs_lock);
4828 return 0;
4829 }
4830
4831 return release_extent_buffer(eb);
4832 }
4833
4834 /*
4835 * btrfs_readahead_tree_block - attempt to readahead a child block
4836 * @fs_info: the fs_info
4837 * @bytenr: bytenr to read
4838 * @owner_root: objectid of the root that owns this eb
4839 * @gen: generation for the uptodate check, can be 0
4840 * @level: level for the eb
4841 *
4842 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4843 * normal uptodate check of the eb, without checking the generation. If we have
4844 * to read the block we will not block on anything.
4845 */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)4846 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4847 u64 bytenr, u64 owner_root, u64 gen, int level)
4848 {
4849 struct btrfs_tree_parent_check check = {
4850 .has_first_key = 0,
4851 .level = level,
4852 .transid = gen
4853 };
4854 struct extent_buffer *eb;
4855 int ret;
4856
4857 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4858 if (IS_ERR(eb))
4859 return;
4860
4861 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4862 free_extent_buffer(eb);
4863 return;
4864 }
4865
4866 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4867 if (ret < 0)
4868 free_extent_buffer_stale(eb);
4869 else
4870 free_extent_buffer(eb);
4871 }
4872
4873 /*
4874 * btrfs_readahead_node_child - readahead a node's child block
4875 * @node: parent node we're reading from
4876 * @slot: slot in the parent node for the child we want to read
4877 *
4878 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4879 * the slot in the node provided.
4880 */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)4881 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4882 {
4883 btrfs_readahead_tree_block(node->fs_info,
4884 btrfs_node_blockptr(node, slot),
4885 btrfs_header_owner(node),
4886 btrfs_node_ptr_generation(node, slot),
4887 btrfs_header_level(node) - 1);
4888 }
4889