1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/uv/uv.h>
65 #include <asm/set_memory.h>
66 #include <asm/traps.h>
67 #include <asm/sev.h>
68
69 #include "cpu.h"
70
71 u32 elf_hwcap2 __read_mostly;
72
73 /* Number of siblings per CPU package */
74 int smp_num_siblings = 1;
75 EXPORT_SYMBOL(smp_num_siblings);
76
77 /* Last level cache ID of each logical CPU */
78 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
79
get_llc_id(unsigned int cpu)80 u16 get_llc_id(unsigned int cpu)
81 {
82 return per_cpu(cpu_llc_id, cpu);
83 }
84 EXPORT_SYMBOL_GPL(get_llc_id);
85
86 /* L2 cache ID of each logical CPU */
87 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
88
89 static struct ppin_info {
90 int feature;
91 int msr_ppin_ctl;
92 int msr_ppin;
93 } ppin_info[] = {
94 [X86_VENDOR_INTEL] = {
95 .feature = X86_FEATURE_INTEL_PPIN,
96 .msr_ppin_ctl = MSR_PPIN_CTL,
97 .msr_ppin = MSR_PPIN
98 },
99 [X86_VENDOR_AMD] = {
100 .feature = X86_FEATURE_AMD_PPIN,
101 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
102 .msr_ppin = MSR_AMD_PPIN
103 },
104 };
105
106 static const struct x86_cpu_id ppin_cpuids[] = {
107 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
108 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
109
110 /* Legacy models without CPUID enumeration */
111 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
112 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
113 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
114 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
115 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
116 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
117 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
118 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
119 X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
120 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
121 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
122
123 {}
124 };
125
ppin_init(struct cpuinfo_x86 * c)126 static void ppin_init(struct cpuinfo_x86 *c)
127 {
128 const struct x86_cpu_id *id;
129 unsigned long long val;
130 struct ppin_info *info;
131
132 id = x86_match_cpu(ppin_cpuids);
133 if (!id)
134 return;
135
136 /*
137 * Testing the presence of the MSR is not enough. Need to check
138 * that the PPIN_CTL allows reading of the PPIN.
139 */
140 info = (struct ppin_info *)id->driver_data;
141
142 if (rdmsrl_safe(info->msr_ppin_ctl, &val))
143 goto clear_ppin;
144
145 if ((val & 3UL) == 1UL) {
146 /* PPIN locked in disabled mode */
147 goto clear_ppin;
148 }
149
150 /* If PPIN is disabled, try to enable */
151 if (!(val & 2UL)) {
152 wrmsrl_safe(info->msr_ppin_ctl, val | 2UL);
153 rdmsrl_safe(info->msr_ppin_ctl, &val);
154 }
155
156 /* Is the enable bit set? */
157 if (val & 2UL) {
158 c->ppin = __rdmsr(info->msr_ppin);
159 set_cpu_cap(c, info->feature);
160 return;
161 }
162
163 clear_ppin:
164 clear_cpu_cap(c, info->feature);
165 }
166
default_init(struct cpuinfo_x86 * c)167 static void default_init(struct cpuinfo_x86 *c)
168 {
169 #ifdef CONFIG_X86_64
170 cpu_detect_cache_sizes(c);
171 #else
172 /* Not much we can do here... */
173 /* Check if at least it has cpuid */
174 if (c->cpuid_level == -1) {
175 /* No cpuid. It must be an ancient CPU */
176 if (c->x86 == 4)
177 strcpy(c->x86_model_id, "486");
178 else if (c->x86 == 3)
179 strcpy(c->x86_model_id, "386");
180 }
181 #endif
182 }
183
184 static const struct cpu_dev default_cpu = {
185 .c_init = default_init,
186 .c_vendor = "Unknown",
187 .c_x86_vendor = X86_VENDOR_UNKNOWN,
188 };
189
190 static const struct cpu_dev *this_cpu = &default_cpu;
191
192 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
193 #ifdef CONFIG_X86_64
194 /*
195 * We need valid kernel segments for data and code in long mode too
196 * IRET will check the segment types kkeil 2000/10/28
197 * Also sysret mandates a special GDT layout
198 *
199 * TLS descriptors are currently at a different place compared to i386.
200 * Hopefully nobody expects them at a fixed place (Wine?)
201 */
202 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
203 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
204 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
205 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
206 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
207 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
208 #else
209 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
210 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
211 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
212 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
213 /*
214 * Segments used for calling PnP BIOS have byte granularity.
215 * They code segments and data segments have fixed 64k limits,
216 * the transfer segment sizes are set at run time.
217 */
218 /* 32-bit code */
219 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
220 /* 16-bit code */
221 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
222 /* 16-bit data */
223 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
224 /* 16-bit data */
225 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
226 /* 16-bit data */
227 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
228 /*
229 * The APM segments have byte granularity and their bases
230 * are set at run time. All have 64k limits.
231 */
232 /* 32-bit code */
233 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
234 /* 16-bit code */
235 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
236 /* data */
237 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
238
239 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
240 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
241 #endif
242 } };
243 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
244
245 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)246 static int __init x86_nopcid_setup(char *s)
247 {
248 /* nopcid doesn't accept parameters */
249 if (s)
250 return -EINVAL;
251
252 /* do not emit a message if the feature is not present */
253 if (!boot_cpu_has(X86_FEATURE_PCID))
254 return 0;
255
256 setup_clear_cpu_cap(X86_FEATURE_PCID);
257 pr_info("nopcid: PCID feature disabled\n");
258 return 0;
259 }
260 early_param("nopcid", x86_nopcid_setup);
261 #endif
262
x86_noinvpcid_setup(char * s)263 static int __init x86_noinvpcid_setup(char *s)
264 {
265 /* noinvpcid doesn't accept parameters */
266 if (s)
267 return -EINVAL;
268
269 /* do not emit a message if the feature is not present */
270 if (!boot_cpu_has(X86_FEATURE_INVPCID))
271 return 0;
272
273 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
274 pr_info("noinvpcid: INVPCID feature disabled\n");
275 return 0;
276 }
277 early_param("noinvpcid", x86_noinvpcid_setup);
278
279 #ifdef CONFIG_X86_32
280 static int cachesize_override = -1;
281 static int disable_x86_serial_nr = 1;
282
cachesize_setup(char * str)283 static int __init cachesize_setup(char *str)
284 {
285 get_option(&str, &cachesize_override);
286 return 1;
287 }
288 __setup("cachesize=", cachesize_setup);
289
290 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)291 static inline int flag_is_changeable_p(u32 flag)
292 {
293 u32 f1, f2;
294
295 /*
296 * Cyrix and IDT cpus allow disabling of CPUID
297 * so the code below may return different results
298 * when it is executed before and after enabling
299 * the CPUID. Add "volatile" to not allow gcc to
300 * optimize the subsequent calls to this function.
301 */
302 asm volatile ("pushfl \n\t"
303 "pushfl \n\t"
304 "popl %0 \n\t"
305 "movl %0, %1 \n\t"
306 "xorl %2, %0 \n\t"
307 "pushl %0 \n\t"
308 "popfl \n\t"
309 "pushfl \n\t"
310 "popl %0 \n\t"
311 "popfl \n\t"
312
313 : "=&r" (f1), "=&r" (f2)
314 : "ir" (flag));
315
316 return ((f1^f2) & flag) != 0;
317 }
318
319 /* Probe for the CPUID instruction */
have_cpuid_p(void)320 int have_cpuid_p(void)
321 {
322 return flag_is_changeable_p(X86_EFLAGS_ID);
323 }
324
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)325 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
326 {
327 unsigned long lo, hi;
328
329 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
330 return;
331
332 /* Disable processor serial number: */
333
334 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
335 lo |= 0x200000;
336 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
337
338 pr_notice("CPU serial number disabled.\n");
339 clear_cpu_cap(c, X86_FEATURE_PN);
340
341 /* Disabling the serial number may affect the cpuid level */
342 c->cpuid_level = cpuid_eax(0);
343 }
344
x86_serial_nr_setup(char * s)345 static int __init x86_serial_nr_setup(char *s)
346 {
347 disable_x86_serial_nr = 0;
348 return 1;
349 }
350 __setup("serialnumber", x86_serial_nr_setup);
351 #else
flag_is_changeable_p(u32 flag)352 static inline int flag_is_changeable_p(u32 flag)
353 {
354 return 1;
355 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)356 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
357 {
358 }
359 #endif
360
setup_smep(struct cpuinfo_x86 * c)361 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
362 {
363 if (cpu_has(c, X86_FEATURE_SMEP))
364 cr4_set_bits(X86_CR4_SMEP);
365 }
366
setup_smap(struct cpuinfo_x86 * c)367 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
368 {
369 unsigned long eflags = native_save_fl();
370
371 /* This should have been cleared long ago */
372 BUG_ON(eflags & X86_EFLAGS_AC);
373
374 if (cpu_has(c, X86_FEATURE_SMAP))
375 cr4_set_bits(X86_CR4_SMAP);
376 }
377
setup_umip(struct cpuinfo_x86 * c)378 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
379 {
380 /* Check the boot processor, plus build option for UMIP. */
381 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
382 goto out;
383
384 /* Check the current processor's cpuid bits. */
385 if (!cpu_has(c, X86_FEATURE_UMIP))
386 goto out;
387
388 cr4_set_bits(X86_CR4_UMIP);
389
390 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
391
392 return;
393
394 out:
395 /*
396 * Make sure UMIP is disabled in case it was enabled in a
397 * previous boot (e.g., via kexec).
398 */
399 cr4_clear_bits(X86_CR4_UMIP);
400 }
401
402 /* These bits should not change their value after CPU init is finished. */
403 static const unsigned long cr4_pinned_mask =
404 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
405 X86_CR4_FSGSBASE | X86_CR4_CET;
406 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
407 static unsigned long cr4_pinned_bits __ro_after_init;
408
native_write_cr0(unsigned long val)409 void native_write_cr0(unsigned long val)
410 {
411 unsigned long bits_missing = 0;
412
413 set_register:
414 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
415
416 if (static_branch_likely(&cr_pinning)) {
417 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
418 bits_missing = X86_CR0_WP;
419 val |= bits_missing;
420 goto set_register;
421 }
422 /* Warn after we've set the missing bits. */
423 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
424 }
425 }
426 EXPORT_SYMBOL(native_write_cr0);
427
native_write_cr4(unsigned long val)428 void __no_profile native_write_cr4(unsigned long val)
429 {
430 unsigned long bits_changed = 0;
431
432 set_register:
433 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
434
435 if (static_branch_likely(&cr_pinning)) {
436 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
437 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
438 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
439 goto set_register;
440 }
441 /* Warn after we've corrected the changed bits. */
442 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
443 bits_changed);
444 }
445 }
446 #if IS_MODULE(CONFIG_LKDTM)
447 EXPORT_SYMBOL_GPL(native_write_cr4);
448 #endif
449
cr4_update_irqsoff(unsigned long set,unsigned long clear)450 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
451 {
452 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
453
454 lockdep_assert_irqs_disabled();
455
456 newval = (cr4 & ~clear) | set;
457 if (newval != cr4) {
458 this_cpu_write(cpu_tlbstate.cr4, newval);
459 __write_cr4(newval);
460 }
461 }
462 EXPORT_SYMBOL(cr4_update_irqsoff);
463
464 /* Read the CR4 shadow. */
cr4_read_shadow(void)465 unsigned long cr4_read_shadow(void)
466 {
467 return this_cpu_read(cpu_tlbstate.cr4);
468 }
469 EXPORT_SYMBOL_GPL(cr4_read_shadow);
470
cr4_init(void)471 void cr4_init(void)
472 {
473 unsigned long cr4 = __read_cr4();
474
475 if (boot_cpu_has(X86_FEATURE_PCID))
476 cr4 |= X86_CR4_PCIDE;
477 if (static_branch_likely(&cr_pinning))
478 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
479
480 __write_cr4(cr4);
481
482 /* Initialize cr4 shadow for this CPU. */
483 this_cpu_write(cpu_tlbstate.cr4, cr4);
484 }
485
486 /*
487 * Once CPU feature detection is finished (and boot params have been
488 * parsed), record any of the sensitive CR bits that are set, and
489 * enable CR pinning.
490 */
setup_cr_pinning(void)491 static void __init setup_cr_pinning(void)
492 {
493 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
494 static_key_enable(&cr_pinning.key);
495 }
496
x86_nofsgsbase_setup(char * arg)497 static __init int x86_nofsgsbase_setup(char *arg)
498 {
499 /* Require an exact match without trailing characters. */
500 if (strlen(arg))
501 return 0;
502
503 /* Do not emit a message if the feature is not present. */
504 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
505 return 1;
506
507 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
508 pr_info("FSGSBASE disabled via kernel command line\n");
509 return 1;
510 }
511 __setup("nofsgsbase", x86_nofsgsbase_setup);
512
513 /*
514 * Protection Keys are not available in 32-bit mode.
515 */
516 static bool pku_disabled;
517
setup_pku(struct cpuinfo_x86 * c)518 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
519 {
520 if (c == &boot_cpu_data) {
521 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
522 return;
523 /*
524 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
525 * bit to be set. Enforce it.
526 */
527 setup_force_cpu_cap(X86_FEATURE_OSPKE);
528
529 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
530 return;
531 }
532
533 cr4_set_bits(X86_CR4_PKE);
534 /* Load the default PKRU value */
535 pkru_write_default();
536 }
537
538 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)539 static __init int setup_disable_pku(char *arg)
540 {
541 /*
542 * Do not clear the X86_FEATURE_PKU bit. All of the
543 * runtime checks are against OSPKE so clearing the
544 * bit does nothing.
545 *
546 * This way, we will see "pku" in cpuinfo, but not
547 * "ospke", which is exactly what we want. It shows
548 * that the CPU has PKU, but the OS has not enabled it.
549 * This happens to be exactly how a system would look
550 * if we disabled the config option.
551 */
552 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
553 pku_disabled = true;
554 return 1;
555 }
556 __setup("nopku", setup_disable_pku);
557 #endif
558
559 #ifdef CONFIG_X86_KERNEL_IBT
560
ibt_save(bool disable)561 __noendbr u64 ibt_save(bool disable)
562 {
563 u64 msr = 0;
564
565 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
566 rdmsrl(MSR_IA32_S_CET, msr);
567 if (disable)
568 wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
569 }
570
571 return msr;
572 }
573
ibt_restore(u64 save)574 __noendbr void ibt_restore(u64 save)
575 {
576 u64 msr;
577
578 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
579 rdmsrl(MSR_IA32_S_CET, msr);
580 msr &= ~CET_ENDBR_EN;
581 msr |= (save & CET_ENDBR_EN);
582 wrmsrl(MSR_IA32_S_CET, msr);
583 }
584 }
585
586 #endif
587
setup_cet(struct cpuinfo_x86 * c)588 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
589 {
590 bool user_shstk, kernel_ibt;
591
592 if (!IS_ENABLED(CONFIG_X86_CET))
593 return;
594
595 kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
596 user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
597 IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
598
599 if (!kernel_ibt && !user_shstk)
600 return;
601
602 if (user_shstk)
603 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
604
605 if (kernel_ibt)
606 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
607 else
608 wrmsrl(MSR_IA32_S_CET, 0);
609
610 cr4_set_bits(X86_CR4_CET);
611
612 if (kernel_ibt && ibt_selftest()) {
613 pr_err("IBT selftest: Failed!\n");
614 wrmsrl(MSR_IA32_S_CET, 0);
615 setup_clear_cpu_cap(X86_FEATURE_IBT);
616 }
617 }
618
cet_disable(void)619 __noendbr void cet_disable(void)
620 {
621 if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
622 cpu_feature_enabled(X86_FEATURE_SHSTK)))
623 return;
624
625 wrmsrl(MSR_IA32_S_CET, 0);
626 wrmsrl(MSR_IA32_U_CET, 0);
627 }
628
629 /*
630 * Some CPU features depend on higher CPUID levels, which may not always
631 * be available due to CPUID level capping or broken virtualization
632 * software. Add those features to this table to auto-disable them.
633 */
634 struct cpuid_dependent_feature {
635 u32 feature;
636 u32 level;
637 };
638
639 static const struct cpuid_dependent_feature
640 cpuid_dependent_features[] = {
641 { X86_FEATURE_MWAIT, 0x00000005 },
642 { X86_FEATURE_DCA, 0x00000009 },
643 { X86_FEATURE_XSAVE, 0x0000000d },
644 { 0, 0 }
645 };
646
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)647 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
648 {
649 const struct cpuid_dependent_feature *df;
650
651 for (df = cpuid_dependent_features; df->feature; df++) {
652
653 if (!cpu_has(c, df->feature))
654 continue;
655 /*
656 * Note: cpuid_level is set to -1 if unavailable, but
657 * extended_extended_level is set to 0 if unavailable
658 * and the legitimate extended levels are all negative
659 * when signed; hence the weird messing around with
660 * signs here...
661 */
662 if (!((s32)df->level < 0 ?
663 (u32)df->level > (u32)c->extended_cpuid_level :
664 (s32)df->level > (s32)c->cpuid_level))
665 continue;
666
667 clear_cpu_cap(c, df->feature);
668 if (!warn)
669 continue;
670
671 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
672 x86_cap_flag(df->feature), df->level);
673 }
674 }
675
676 /*
677 * Naming convention should be: <Name> [(<Codename>)]
678 * This table only is used unless init_<vendor>() below doesn't set it;
679 * in particular, if CPUID levels 0x80000002..4 are supported, this
680 * isn't used
681 */
682
683 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)684 static const char *table_lookup_model(struct cpuinfo_x86 *c)
685 {
686 #ifdef CONFIG_X86_32
687 const struct legacy_cpu_model_info *info;
688
689 if (c->x86_model >= 16)
690 return NULL; /* Range check */
691
692 if (!this_cpu)
693 return NULL;
694
695 info = this_cpu->legacy_models;
696
697 while (info->family) {
698 if (info->family == c->x86)
699 return info->model_names[c->x86_model];
700 info++;
701 }
702 #endif
703 return NULL; /* Not found */
704 }
705
706 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
707 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
708 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
709
710 #ifdef CONFIG_X86_32
711 /* The 32-bit entry code needs to find cpu_entry_area. */
712 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
713 #endif
714
715 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)716 void load_direct_gdt(int cpu)
717 {
718 struct desc_ptr gdt_descr;
719
720 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
721 gdt_descr.size = GDT_SIZE - 1;
722 load_gdt(&gdt_descr);
723 }
724 EXPORT_SYMBOL_GPL(load_direct_gdt);
725
726 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)727 void load_fixmap_gdt(int cpu)
728 {
729 struct desc_ptr gdt_descr;
730
731 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
732 gdt_descr.size = GDT_SIZE - 1;
733 load_gdt(&gdt_descr);
734 }
735 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
736
737 /**
738 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
739 * @cpu: The CPU number for which this is invoked
740 *
741 * Invoked during early boot to switch from early GDT and early per CPU to
742 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
743 * switch is implicit by loading the direct GDT. On 64bit this requires
744 * to update GSBASE.
745 */
switch_gdt_and_percpu_base(int cpu)746 void __init switch_gdt_and_percpu_base(int cpu)
747 {
748 load_direct_gdt(cpu);
749
750 #ifdef CONFIG_X86_64
751 /*
752 * No need to load %gs. It is already correct.
753 *
754 * Writing %gs on 64bit would zero GSBASE which would make any per
755 * CPU operation up to the point of the wrmsrl() fault.
756 *
757 * Set GSBASE to the new offset. Until the wrmsrl() happens the
758 * early mapping is still valid. That means the GSBASE update will
759 * lose any prior per CPU data which was not copied over in
760 * setup_per_cpu_areas().
761 *
762 * This works even with stackprotector enabled because the
763 * per CPU stack canary is 0 in both per CPU areas.
764 */
765 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
766 #else
767 /*
768 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
769 * it is required to load FS again so that the 'hidden' part is
770 * updated from the new GDT. Up to this point the early per CPU
771 * translation is active. Any content of the early per CPU data
772 * which was not copied over in setup_per_cpu_areas() is lost.
773 */
774 loadsegment(fs, __KERNEL_PERCPU);
775 #endif
776 }
777
778 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
779
get_model_name(struct cpuinfo_x86 * c)780 static void get_model_name(struct cpuinfo_x86 *c)
781 {
782 unsigned int *v;
783 char *p, *q, *s;
784
785 if (c->extended_cpuid_level < 0x80000004)
786 return;
787
788 v = (unsigned int *)c->x86_model_id;
789 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
790 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
791 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
792 c->x86_model_id[48] = 0;
793
794 /* Trim whitespace */
795 p = q = s = &c->x86_model_id[0];
796
797 while (*p == ' ')
798 p++;
799
800 while (*p) {
801 /* Note the last non-whitespace index */
802 if (!isspace(*p))
803 s = q;
804
805 *q++ = *p++;
806 }
807
808 *(s + 1) = '\0';
809 }
810
detect_num_cpu_cores(struct cpuinfo_x86 * c)811 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
812 {
813 unsigned int eax, ebx, ecx, edx;
814
815 c->x86_max_cores = 1;
816 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
817 return;
818
819 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
820 if (eax & 0x1f)
821 c->x86_max_cores = (eax >> 26) + 1;
822 }
823
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)824 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
825 {
826 unsigned int n, dummy, ebx, ecx, edx, l2size;
827
828 n = c->extended_cpuid_level;
829
830 if (n >= 0x80000005) {
831 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
832 c->x86_cache_size = (ecx>>24) + (edx>>24);
833 #ifdef CONFIG_X86_64
834 /* On K8 L1 TLB is inclusive, so don't count it */
835 c->x86_tlbsize = 0;
836 #endif
837 }
838
839 if (n < 0x80000006) /* Some chips just has a large L1. */
840 return;
841
842 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
843 l2size = ecx >> 16;
844
845 #ifdef CONFIG_X86_64
846 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
847 #else
848 /* do processor-specific cache resizing */
849 if (this_cpu->legacy_cache_size)
850 l2size = this_cpu->legacy_cache_size(c, l2size);
851
852 /* Allow user to override all this if necessary. */
853 if (cachesize_override != -1)
854 l2size = cachesize_override;
855
856 if (l2size == 0)
857 return; /* Again, no L2 cache is possible */
858 #endif
859
860 c->x86_cache_size = l2size;
861 }
862
863 u16 __read_mostly tlb_lli_4k[NR_INFO];
864 u16 __read_mostly tlb_lli_2m[NR_INFO];
865 u16 __read_mostly tlb_lli_4m[NR_INFO];
866 u16 __read_mostly tlb_lld_4k[NR_INFO];
867 u16 __read_mostly tlb_lld_2m[NR_INFO];
868 u16 __read_mostly tlb_lld_4m[NR_INFO];
869 u16 __read_mostly tlb_lld_1g[NR_INFO];
870
cpu_detect_tlb(struct cpuinfo_x86 * c)871 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
872 {
873 if (this_cpu->c_detect_tlb)
874 this_cpu->c_detect_tlb(c);
875
876 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
877 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
878 tlb_lli_4m[ENTRIES]);
879
880 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
881 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
882 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
883 }
884
detect_ht_early(struct cpuinfo_x86 * c)885 int detect_ht_early(struct cpuinfo_x86 *c)
886 {
887 #ifdef CONFIG_SMP
888 u32 eax, ebx, ecx, edx;
889
890 if (!cpu_has(c, X86_FEATURE_HT))
891 return -1;
892
893 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
894 return -1;
895
896 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
897 return -1;
898
899 cpuid(1, &eax, &ebx, &ecx, &edx);
900
901 smp_num_siblings = (ebx & 0xff0000) >> 16;
902 if (smp_num_siblings == 1)
903 pr_info_once("CPU0: Hyper-Threading is disabled\n");
904 #endif
905 return 0;
906 }
907
detect_ht(struct cpuinfo_x86 * c)908 void detect_ht(struct cpuinfo_x86 *c)
909 {
910 #ifdef CONFIG_SMP
911 int index_msb, core_bits;
912
913 if (detect_ht_early(c) < 0)
914 return;
915
916 index_msb = get_count_order(smp_num_siblings);
917 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
918
919 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
920
921 index_msb = get_count_order(smp_num_siblings);
922
923 core_bits = get_count_order(c->x86_max_cores);
924
925 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
926 ((1 << core_bits) - 1);
927 #endif
928 }
929
get_cpu_vendor(struct cpuinfo_x86 * c)930 static void get_cpu_vendor(struct cpuinfo_x86 *c)
931 {
932 char *v = c->x86_vendor_id;
933 int i;
934
935 for (i = 0; i < X86_VENDOR_NUM; i++) {
936 if (!cpu_devs[i])
937 break;
938
939 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
940 (cpu_devs[i]->c_ident[1] &&
941 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
942
943 this_cpu = cpu_devs[i];
944 c->x86_vendor = this_cpu->c_x86_vendor;
945 return;
946 }
947 }
948
949 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
950 "CPU: Your system may be unstable.\n", v);
951
952 c->x86_vendor = X86_VENDOR_UNKNOWN;
953 this_cpu = &default_cpu;
954 }
955
cpu_detect(struct cpuinfo_x86 * c)956 void cpu_detect(struct cpuinfo_x86 *c)
957 {
958 /* Get vendor name */
959 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
960 (unsigned int *)&c->x86_vendor_id[0],
961 (unsigned int *)&c->x86_vendor_id[8],
962 (unsigned int *)&c->x86_vendor_id[4]);
963
964 c->x86 = 4;
965 /* Intel-defined flags: level 0x00000001 */
966 if (c->cpuid_level >= 0x00000001) {
967 u32 junk, tfms, cap0, misc;
968
969 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
970 c->x86 = x86_family(tfms);
971 c->x86_model = x86_model(tfms);
972 c->x86_stepping = x86_stepping(tfms);
973
974 if (cap0 & (1<<19)) {
975 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
976 c->x86_cache_alignment = c->x86_clflush_size;
977 }
978 }
979 }
980
apply_forced_caps(struct cpuinfo_x86 * c)981 static void apply_forced_caps(struct cpuinfo_x86 *c)
982 {
983 int i;
984
985 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
986 c->x86_capability[i] &= ~cpu_caps_cleared[i];
987 c->x86_capability[i] |= cpu_caps_set[i];
988 }
989 }
990
init_speculation_control(struct cpuinfo_x86 * c)991 static void init_speculation_control(struct cpuinfo_x86 *c)
992 {
993 /*
994 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
995 * and they also have a different bit for STIBP support. Also,
996 * a hypervisor might have set the individual AMD bits even on
997 * Intel CPUs, for finer-grained selection of what's available.
998 */
999 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
1000 set_cpu_cap(c, X86_FEATURE_IBRS);
1001 set_cpu_cap(c, X86_FEATURE_IBPB);
1002 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1003 }
1004
1005 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
1006 set_cpu_cap(c, X86_FEATURE_STIBP);
1007
1008 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
1009 cpu_has(c, X86_FEATURE_VIRT_SSBD))
1010 set_cpu_cap(c, X86_FEATURE_SSBD);
1011
1012 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
1013 set_cpu_cap(c, X86_FEATURE_IBRS);
1014 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1015 }
1016
1017 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1018 set_cpu_cap(c, X86_FEATURE_IBPB);
1019
1020 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1021 set_cpu_cap(c, X86_FEATURE_STIBP);
1022 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1023 }
1024
1025 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1026 set_cpu_cap(c, X86_FEATURE_SSBD);
1027 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1028 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1029 }
1030 }
1031
get_cpu_cap(struct cpuinfo_x86 * c)1032 void get_cpu_cap(struct cpuinfo_x86 *c)
1033 {
1034 u32 eax, ebx, ecx, edx;
1035
1036 /* Intel-defined flags: level 0x00000001 */
1037 if (c->cpuid_level >= 0x00000001) {
1038 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1039
1040 c->x86_capability[CPUID_1_ECX] = ecx;
1041 c->x86_capability[CPUID_1_EDX] = edx;
1042 }
1043
1044 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1045 if (c->cpuid_level >= 0x00000006)
1046 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1047
1048 /* Additional Intel-defined flags: level 0x00000007 */
1049 if (c->cpuid_level >= 0x00000007) {
1050 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1051 c->x86_capability[CPUID_7_0_EBX] = ebx;
1052 c->x86_capability[CPUID_7_ECX] = ecx;
1053 c->x86_capability[CPUID_7_EDX] = edx;
1054
1055 /* Check valid sub-leaf index before accessing it */
1056 if (eax >= 1) {
1057 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1058 c->x86_capability[CPUID_7_1_EAX] = eax;
1059 }
1060 }
1061
1062 /* Extended state features: level 0x0000000d */
1063 if (c->cpuid_level >= 0x0000000d) {
1064 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1065
1066 c->x86_capability[CPUID_D_1_EAX] = eax;
1067 }
1068
1069 /* AMD-defined flags: level 0x80000001 */
1070 eax = cpuid_eax(0x80000000);
1071 c->extended_cpuid_level = eax;
1072
1073 if ((eax & 0xffff0000) == 0x80000000) {
1074 if (eax >= 0x80000001) {
1075 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1076
1077 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1078 c->x86_capability[CPUID_8000_0001_EDX] = edx;
1079 }
1080 }
1081
1082 if (c->extended_cpuid_level >= 0x80000007) {
1083 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1084
1085 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1086 c->x86_power = edx;
1087 }
1088
1089 if (c->extended_cpuid_level >= 0x80000008) {
1090 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1091 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1092 }
1093
1094 if (c->extended_cpuid_level >= 0x8000000a)
1095 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1096
1097 if (c->extended_cpuid_level >= 0x8000001f)
1098 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1099
1100 if (c->extended_cpuid_level >= 0x80000021)
1101 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1102
1103 init_scattered_cpuid_features(c);
1104 init_speculation_control(c);
1105
1106 /*
1107 * Clear/Set all flags overridden by options, after probe.
1108 * This needs to happen each time we re-probe, which may happen
1109 * several times during CPU initialization.
1110 */
1111 apply_forced_caps(c);
1112 }
1113
get_cpu_address_sizes(struct cpuinfo_x86 * c)1114 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1115 {
1116 u32 eax, ebx, ecx, edx;
1117
1118 if (c->extended_cpuid_level >= 0x80000008) {
1119 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1120
1121 c->x86_virt_bits = (eax >> 8) & 0xff;
1122 c->x86_phys_bits = eax & 0xff;
1123 }
1124 #ifdef CONFIG_X86_32
1125 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
1126 c->x86_phys_bits = 36;
1127 #endif
1128 c->x86_cache_bits = c->x86_phys_bits;
1129 }
1130
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)1131 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1132 {
1133 #ifdef CONFIG_X86_32
1134 int i;
1135
1136 /*
1137 * First of all, decide if this is a 486 or higher
1138 * It's a 486 if we can modify the AC flag
1139 */
1140 if (flag_is_changeable_p(X86_EFLAGS_AC))
1141 c->x86 = 4;
1142 else
1143 c->x86 = 3;
1144
1145 for (i = 0; i < X86_VENDOR_NUM; i++)
1146 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1147 c->x86_vendor_id[0] = 0;
1148 cpu_devs[i]->c_identify(c);
1149 if (c->x86_vendor_id[0]) {
1150 get_cpu_vendor(c);
1151 break;
1152 }
1153 }
1154 #endif
1155 }
1156
1157 #define NO_SPECULATION BIT(0)
1158 #define NO_MELTDOWN BIT(1)
1159 #define NO_SSB BIT(2)
1160 #define NO_L1TF BIT(3)
1161 #define NO_MDS BIT(4)
1162 #define MSBDS_ONLY BIT(5)
1163 #define NO_SWAPGS BIT(6)
1164 #define NO_ITLB_MULTIHIT BIT(7)
1165 #define NO_SPECTRE_V2 BIT(8)
1166 #define NO_MMIO BIT(9)
1167 #define NO_EIBRS_PBRSB BIT(10)
1168 #define NO_BHI BIT(11)
1169
1170 #define VULNWL(vendor, family, model, whitelist) \
1171 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1172
1173 #define VULNWL_INTEL(model, whitelist) \
1174 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1175
1176 #define VULNWL_AMD(family, whitelist) \
1177 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1178
1179 #define VULNWL_HYGON(family, whitelist) \
1180 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1181
1182 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1183 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1184 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1185 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1186 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1187 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1188 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1189
1190 /* Intel Family 6 */
1191 VULNWL_INTEL(TIGERLAKE, NO_MMIO),
1192 VULNWL_INTEL(TIGERLAKE_L, NO_MMIO),
1193 VULNWL_INTEL(ALDERLAKE, NO_MMIO),
1194 VULNWL_INTEL(ALDERLAKE_L, NO_MMIO),
1195
1196 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1197 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1198 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1199 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1200 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1201
1202 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1203 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1204 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1205 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1206 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1207 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1208
1209 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1210
1211 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1212 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1213
1214 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1215 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1216 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1217
1218 /*
1219 * Technically, swapgs isn't serializing on AMD (despite it previously
1220 * being documented as such in the APM). But according to AMD, %gs is
1221 * updated non-speculatively, and the issuing of %gs-relative memory
1222 * operands will be blocked until the %gs update completes, which is
1223 * good enough for our purposes.
1224 */
1225
1226 VULNWL_INTEL(ATOM_TREMONT, NO_EIBRS_PBRSB),
1227 VULNWL_INTEL(ATOM_TREMONT_L, NO_EIBRS_PBRSB),
1228 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1229
1230 /* AMD Family 0xf - 0x12 */
1231 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1232 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1233 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1234 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1235
1236 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1237 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1238 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1239
1240 /* Zhaoxin Family 7 */
1241 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1242 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1243 {}
1244 };
1245
1246 #define VULNBL(vendor, family, model, blacklist) \
1247 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1248
1249 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1250 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1251 INTEL_FAM6_##model, steppings, \
1252 X86_FEATURE_ANY, issues)
1253
1254 #define VULNBL_AMD(family, blacklist) \
1255 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1256
1257 #define VULNBL_HYGON(family, blacklist) \
1258 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1259
1260 #define SRBDS BIT(0)
1261 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1262 #define MMIO BIT(1)
1263 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1264 #define MMIO_SBDS BIT(2)
1265 /* CPU is affected by RETbleed, speculating where you would not expect it */
1266 #define RETBLEED BIT(3)
1267 /* CPU is affected by SMT (cross-thread) return predictions */
1268 #define SMT_RSB BIT(4)
1269 /* CPU is affected by SRSO */
1270 #define SRSO BIT(5)
1271 /* CPU is affected by GDS */
1272 #define GDS BIT(6)
1273 /* CPU is affected by Register File Data Sampling */
1274 #define RFDS BIT(7)
1275
1276 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1277 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1278 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1279 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1280 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1281 VULNBL_INTEL_STEPPINGS(HASWELL_X, X86_STEPPING_ANY, MMIO),
1282 VULNBL_INTEL_STEPPINGS(BROADWELL_D, X86_STEPPING_ANY, MMIO),
1283 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1284 VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY, MMIO),
1285 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1286 VULNBL_INTEL_STEPPINGS(SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
1287 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1288 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1289 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1290 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1291 VULNBL_INTEL_STEPPINGS(CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED),
1292 VULNBL_INTEL_STEPPINGS(ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1293 VULNBL_INTEL_STEPPINGS(ICELAKE_D, X86_STEPPING_ANY, MMIO | GDS),
1294 VULNBL_INTEL_STEPPINGS(ICELAKE_X, X86_STEPPING_ANY, MMIO | GDS),
1295 VULNBL_INTEL_STEPPINGS(COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1296 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED),
1297 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1298 VULNBL_INTEL_STEPPINGS(TIGERLAKE_L, X86_STEPPING_ANY, GDS),
1299 VULNBL_INTEL_STEPPINGS(TIGERLAKE, X86_STEPPING_ANY, GDS),
1300 VULNBL_INTEL_STEPPINGS(LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1301 VULNBL_INTEL_STEPPINGS(ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
1302 VULNBL_INTEL_STEPPINGS(ALDERLAKE, X86_STEPPING_ANY, RFDS),
1303 VULNBL_INTEL_STEPPINGS(ALDERLAKE_L, X86_STEPPING_ANY, RFDS),
1304 VULNBL_INTEL_STEPPINGS(RAPTORLAKE, X86_STEPPING_ANY, RFDS),
1305 VULNBL_INTEL_STEPPINGS(RAPTORLAKE_P, X86_STEPPING_ANY, RFDS),
1306 VULNBL_INTEL_STEPPINGS(RAPTORLAKE_S, X86_STEPPING_ANY, RFDS),
1307 VULNBL_INTEL_STEPPINGS(ATOM_GRACEMONT, X86_STEPPING_ANY, RFDS),
1308 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RFDS),
1309 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO | RFDS),
1310 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RFDS),
1311 VULNBL_INTEL_STEPPINGS(ATOM_GOLDMONT, X86_STEPPING_ANY, RFDS),
1312 VULNBL_INTEL_STEPPINGS(ATOM_GOLDMONT_D, X86_STEPPING_ANY, RFDS),
1313 VULNBL_INTEL_STEPPINGS(ATOM_GOLDMONT_PLUS, X86_STEPPING_ANY, RFDS),
1314
1315 VULNBL_AMD(0x15, RETBLEED),
1316 VULNBL_AMD(0x16, RETBLEED),
1317 VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1318 VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1319 VULNBL_AMD(0x19, SRSO),
1320 {}
1321 };
1322
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1323 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1324 {
1325 const struct x86_cpu_id *m = x86_match_cpu(table);
1326
1327 return m && !!(m->driver_data & which);
1328 }
1329
x86_read_arch_cap_msr(void)1330 u64 x86_read_arch_cap_msr(void)
1331 {
1332 u64 x86_arch_cap_msr = 0;
1333
1334 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1335 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
1336
1337 return x86_arch_cap_msr;
1338 }
1339
arch_cap_mmio_immune(u64 x86_arch_cap_msr)1340 static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
1341 {
1342 return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
1343 x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
1344 x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
1345 }
1346
vulnerable_to_rfds(u64 x86_arch_cap_msr)1347 static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
1348 {
1349 /* The "immunity" bit trumps everything else: */
1350 if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
1351 return false;
1352
1353 /*
1354 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1355 * indicate that mitigation is needed because guest is running on a
1356 * vulnerable hardware or may migrate to such hardware:
1357 */
1358 if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
1359 return true;
1360
1361 /* Only consult the blacklist when there is no enumeration: */
1362 return cpu_matches(cpu_vuln_blacklist, RFDS);
1363 }
1364
cpu_set_bug_bits(struct cpuinfo_x86 * c)1365 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1366 {
1367 u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
1368
1369 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1370 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1371 !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
1372 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1373
1374 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1375 return;
1376
1377 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1378
1379 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1380 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1381
1382 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1383 !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
1384 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1385 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1386
1387 /*
1388 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1389 * flag and protect from vendor-specific bugs via the whitelist.
1390 */
1391 if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1392 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1393 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1394 !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
1395 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1396 }
1397
1398 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1399 !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
1400 setup_force_cpu_bug(X86_BUG_MDS);
1401 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1402 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1403 }
1404
1405 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1406 setup_force_cpu_bug(X86_BUG_SWAPGS);
1407
1408 /*
1409 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1410 * - TSX is supported or
1411 * - TSX_CTRL is present
1412 *
1413 * TSX_CTRL check is needed for cases when TSX could be disabled before
1414 * the kernel boot e.g. kexec.
1415 * TSX_CTRL check alone is not sufficient for cases when the microcode
1416 * update is not present or running as guest that don't get TSX_CTRL.
1417 */
1418 if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
1419 (cpu_has(c, X86_FEATURE_RTM) ||
1420 (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
1421 setup_force_cpu_bug(X86_BUG_TAA);
1422
1423 /*
1424 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1425 * in the vulnerability blacklist.
1426 *
1427 * Some of the implications and mitigation of Shared Buffers Data
1428 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1429 * SRBDS.
1430 */
1431 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1432 cpu_has(c, X86_FEATURE_RDSEED)) &&
1433 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1434 setup_force_cpu_bug(X86_BUG_SRBDS);
1435
1436 /*
1437 * Processor MMIO Stale Data bug enumeration
1438 *
1439 * Affected CPU list is generally enough to enumerate the vulnerability,
1440 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1441 * not want the guest to enumerate the bug.
1442 *
1443 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1444 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1445 */
1446 if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
1447 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1448 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1449 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1450 setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1451 }
1452
1453 if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1454 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
1455 setup_force_cpu_bug(X86_BUG_RETBLEED);
1456 }
1457
1458 if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1459 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1460
1461 if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1462 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1463 setup_force_cpu_bug(X86_BUG_SRSO);
1464 }
1465
1466 /*
1467 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1468 * an affected processor, the VMM may have disabled the use of GATHER by
1469 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1470 * which means that AVX will be disabled.
1471 */
1472 if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
1473 boot_cpu_has(X86_FEATURE_AVX))
1474 setup_force_cpu_bug(X86_BUG_GDS);
1475
1476 if (vulnerable_to_rfds(x86_arch_cap_msr))
1477 setup_force_cpu_bug(X86_BUG_RFDS);
1478
1479 /* When virtualized, eIBRS could be hidden, assume vulnerable */
1480 if (!(x86_arch_cap_msr & ARCH_CAP_BHI_NO) &&
1481 !cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
1482 (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
1483 boot_cpu_has(X86_FEATURE_HYPERVISOR)))
1484 setup_force_cpu_bug(X86_BUG_BHI);
1485
1486 if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET))
1487 setup_force_cpu_bug(X86_BUG_IBPB_NO_RET);
1488
1489 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1490 return;
1491
1492 /* Rogue Data Cache Load? No! */
1493 if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
1494 return;
1495
1496 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1497
1498 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1499 return;
1500
1501 setup_force_cpu_bug(X86_BUG_L1TF);
1502 }
1503
1504 /*
1505 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1506 * unfortunately, that's not true in practice because of early VIA
1507 * chips and (more importantly) broken virtualizers that are not easy
1508 * to detect. In the latter case it doesn't even *fail* reliably, so
1509 * probing for it doesn't even work. Disable it completely on 32-bit
1510 * unless we can find a reliable way to detect all the broken cases.
1511 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1512 */
detect_nopl(void)1513 static void detect_nopl(void)
1514 {
1515 #ifdef CONFIG_X86_32
1516 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1517 #else
1518 setup_force_cpu_cap(X86_FEATURE_NOPL);
1519 #endif
1520 }
1521
1522 /*
1523 * We parse cpu parameters early because fpu__init_system() is executed
1524 * before parse_early_param().
1525 */
cpu_parse_early_param(void)1526 static void __init cpu_parse_early_param(void)
1527 {
1528 char arg[128];
1529 char *argptr = arg, *opt;
1530 int arglen, taint = 0;
1531
1532 #ifdef CONFIG_X86_32
1533 if (cmdline_find_option_bool(boot_command_line, "no387"))
1534 #ifdef CONFIG_MATH_EMULATION
1535 setup_clear_cpu_cap(X86_FEATURE_FPU);
1536 #else
1537 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1538 #endif
1539
1540 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1541 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1542 #endif
1543
1544 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1545 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1546
1547 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1548 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1549
1550 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1551 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1552
1553 if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1554 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1555
1556 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1557 if (arglen <= 0)
1558 return;
1559
1560 pr_info("Clearing CPUID bits:");
1561
1562 while (argptr) {
1563 bool found __maybe_unused = false;
1564 unsigned int bit;
1565
1566 opt = strsep(&argptr, ",");
1567
1568 /*
1569 * Handle naked numbers first for feature flags which don't
1570 * have names.
1571 */
1572 if (!kstrtouint(opt, 10, &bit)) {
1573 if (bit < NCAPINTS * 32) {
1574
1575 /* empty-string, i.e., ""-defined feature flags */
1576 if (!x86_cap_flags[bit])
1577 pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1578 else
1579 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1580
1581 setup_clear_cpu_cap(bit);
1582 taint++;
1583 }
1584 /*
1585 * The assumption is that there are no feature names with only
1586 * numbers in the name thus go to the next argument.
1587 */
1588 continue;
1589 }
1590
1591 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1592 if (!x86_cap_flag(bit))
1593 continue;
1594
1595 if (strcmp(x86_cap_flag(bit), opt))
1596 continue;
1597
1598 pr_cont(" %s", opt);
1599 setup_clear_cpu_cap(bit);
1600 taint++;
1601 found = true;
1602 break;
1603 }
1604
1605 if (!found)
1606 pr_cont(" (unknown: %s)", opt);
1607 }
1608 pr_cont("\n");
1609
1610 if (taint)
1611 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1612 }
1613
1614 /*
1615 * Do minimum CPU detection early.
1616 * Fields really needed: vendor, cpuid_level, family, model, mask,
1617 * cache alignment.
1618 * The others are not touched to avoid unwanted side effects.
1619 *
1620 * WARNING: this function is only called on the boot CPU. Don't add code
1621 * here that is supposed to run on all CPUs.
1622 */
early_identify_cpu(struct cpuinfo_x86 * c)1623 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1624 {
1625 #ifdef CONFIG_X86_64
1626 c->x86_clflush_size = 64;
1627 c->x86_phys_bits = 36;
1628 c->x86_virt_bits = 48;
1629 #else
1630 c->x86_clflush_size = 32;
1631 c->x86_phys_bits = 32;
1632 c->x86_virt_bits = 32;
1633 #endif
1634 c->x86_cache_alignment = c->x86_clflush_size;
1635
1636 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1637 c->extended_cpuid_level = 0;
1638
1639 if (!have_cpuid_p())
1640 identify_cpu_without_cpuid(c);
1641
1642 /* cyrix could have cpuid enabled via c_identify()*/
1643 if (have_cpuid_p()) {
1644 cpu_detect(c);
1645 get_cpu_vendor(c);
1646 get_cpu_cap(c);
1647 get_cpu_address_sizes(c);
1648 setup_force_cpu_cap(X86_FEATURE_CPUID);
1649 cpu_parse_early_param();
1650
1651 if (this_cpu->c_early_init)
1652 this_cpu->c_early_init(c);
1653
1654 c->cpu_index = 0;
1655 filter_cpuid_features(c, false);
1656
1657 if (this_cpu->c_bsp_init)
1658 this_cpu->c_bsp_init(c);
1659 } else {
1660 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1661 }
1662
1663 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1664
1665 cpu_set_bug_bits(c);
1666
1667 sld_setup(c);
1668
1669 #ifdef CONFIG_X86_32
1670 /*
1671 * Regardless of whether PCID is enumerated, the SDM says
1672 * that it can't be enabled in 32-bit mode.
1673 */
1674 setup_clear_cpu_cap(X86_FEATURE_PCID);
1675 #endif
1676
1677 /*
1678 * Later in the boot process pgtable_l5_enabled() relies on
1679 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1680 * enabled by this point we need to clear the feature bit to avoid
1681 * false-positives at the later stage.
1682 *
1683 * pgtable_l5_enabled() can be false here for several reasons:
1684 * - 5-level paging is disabled compile-time;
1685 * - it's 32-bit kernel;
1686 * - machine doesn't support 5-level paging;
1687 * - user specified 'no5lvl' in kernel command line.
1688 */
1689 if (!pgtable_l5_enabled())
1690 setup_clear_cpu_cap(X86_FEATURE_LA57);
1691
1692 detect_nopl();
1693 }
1694
early_cpu_init(void)1695 void __init early_cpu_init(void)
1696 {
1697 const struct cpu_dev *const *cdev;
1698 int count = 0;
1699
1700 #ifdef CONFIG_PROCESSOR_SELECT
1701 pr_info("KERNEL supported cpus:\n");
1702 #endif
1703
1704 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1705 const struct cpu_dev *cpudev = *cdev;
1706
1707 if (count >= X86_VENDOR_NUM)
1708 break;
1709 cpu_devs[count] = cpudev;
1710 count++;
1711
1712 #ifdef CONFIG_PROCESSOR_SELECT
1713 {
1714 unsigned int j;
1715
1716 for (j = 0; j < 2; j++) {
1717 if (!cpudev->c_ident[j])
1718 continue;
1719 pr_info(" %s %s\n", cpudev->c_vendor,
1720 cpudev->c_ident[j]);
1721 }
1722 }
1723 #endif
1724 }
1725 early_identify_cpu(&boot_cpu_data);
1726 }
1727
detect_null_seg_behavior(void)1728 static bool detect_null_seg_behavior(void)
1729 {
1730 /*
1731 * Empirically, writing zero to a segment selector on AMD does
1732 * not clear the base, whereas writing zero to a segment
1733 * selector on Intel does clear the base. Intel's behavior
1734 * allows slightly faster context switches in the common case
1735 * where GS is unused by the prev and next threads.
1736 *
1737 * Since neither vendor documents this anywhere that I can see,
1738 * detect it directly instead of hard-coding the choice by
1739 * vendor.
1740 *
1741 * I've designated AMD's behavior as the "bug" because it's
1742 * counterintuitive and less friendly.
1743 */
1744
1745 unsigned long old_base, tmp;
1746 rdmsrl(MSR_FS_BASE, old_base);
1747 wrmsrl(MSR_FS_BASE, 1);
1748 loadsegment(fs, 0);
1749 rdmsrl(MSR_FS_BASE, tmp);
1750 wrmsrl(MSR_FS_BASE, old_base);
1751 return tmp == 0;
1752 }
1753
check_null_seg_clears_base(struct cpuinfo_x86 * c)1754 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1755 {
1756 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1757 if (!IS_ENABLED(CONFIG_X86_64))
1758 return;
1759
1760 if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1761 return;
1762
1763 /*
1764 * CPUID bit above wasn't set. If this kernel is still running
1765 * as a HV guest, then the HV has decided not to advertize
1766 * that CPUID bit for whatever reason. For example, one
1767 * member of the migration pool might be vulnerable. Which
1768 * means, the bug is present: set the BUG flag and return.
1769 */
1770 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1771 set_cpu_bug(c, X86_BUG_NULL_SEG);
1772 return;
1773 }
1774
1775 /*
1776 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1777 * 0x18 is the respective family for Hygon.
1778 */
1779 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1780 detect_null_seg_behavior())
1781 return;
1782
1783 /* All the remaining ones are affected */
1784 set_cpu_bug(c, X86_BUG_NULL_SEG);
1785 }
1786
generic_identify(struct cpuinfo_x86 * c)1787 static void generic_identify(struct cpuinfo_x86 *c)
1788 {
1789 c->extended_cpuid_level = 0;
1790
1791 if (!have_cpuid_p())
1792 identify_cpu_without_cpuid(c);
1793
1794 /* cyrix could have cpuid enabled via c_identify()*/
1795 if (!have_cpuid_p())
1796 return;
1797
1798 cpu_detect(c);
1799
1800 get_cpu_vendor(c);
1801
1802 get_cpu_cap(c);
1803
1804 get_cpu_address_sizes(c);
1805
1806 if (c->cpuid_level >= 0x00000001) {
1807 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1808 #ifdef CONFIG_X86_32
1809 # ifdef CONFIG_SMP
1810 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1811 # else
1812 c->apicid = c->initial_apicid;
1813 # endif
1814 #endif
1815 c->phys_proc_id = c->initial_apicid;
1816 }
1817
1818 get_model_name(c); /* Default name */
1819
1820 /*
1821 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1822 * systems that run Linux at CPL > 0 may or may not have the
1823 * issue, but, even if they have the issue, there's absolutely
1824 * nothing we can do about it because we can't use the real IRET
1825 * instruction.
1826 *
1827 * NB: For the time being, only 32-bit kernels support
1828 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1829 * whether to apply espfix using paravirt hooks. If any
1830 * non-paravirt system ever shows up that does *not* have the
1831 * ESPFIX issue, we can change this.
1832 */
1833 #ifdef CONFIG_X86_32
1834 set_cpu_bug(c, X86_BUG_ESPFIX);
1835 #endif
1836 }
1837
1838 /*
1839 * Validate that ACPI/mptables have the same information about the
1840 * effective APIC id and update the package map.
1841 */
validate_apic_and_package_id(struct cpuinfo_x86 * c)1842 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1843 {
1844 #ifdef CONFIG_SMP
1845 unsigned int apicid, cpu = smp_processor_id();
1846
1847 apicid = apic->cpu_present_to_apicid(cpu);
1848
1849 if (apicid != c->apicid) {
1850 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1851 cpu, apicid, c->initial_apicid);
1852 }
1853 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1854 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1855 #else
1856 c->logical_proc_id = 0;
1857 #endif
1858 }
1859
1860 /*
1861 * This does the hard work of actually picking apart the CPU stuff...
1862 */
identify_cpu(struct cpuinfo_x86 * c)1863 static void identify_cpu(struct cpuinfo_x86 *c)
1864 {
1865 int i;
1866
1867 c->loops_per_jiffy = loops_per_jiffy;
1868 c->x86_cache_size = 0;
1869 c->x86_vendor = X86_VENDOR_UNKNOWN;
1870 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1871 c->x86_vendor_id[0] = '\0'; /* Unset */
1872 c->x86_model_id[0] = '\0'; /* Unset */
1873 c->x86_max_cores = 1;
1874 c->x86_coreid_bits = 0;
1875 c->cu_id = 0xff;
1876 #ifdef CONFIG_X86_64
1877 c->x86_clflush_size = 64;
1878 c->x86_phys_bits = 36;
1879 c->x86_virt_bits = 48;
1880 #else
1881 c->cpuid_level = -1; /* CPUID not detected */
1882 c->x86_clflush_size = 32;
1883 c->x86_phys_bits = 32;
1884 c->x86_virt_bits = 32;
1885 #endif
1886 c->x86_cache_alignment = c->x86_clflush_size;
1887 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1888 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1889 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1890 #endif
1891
1892 generic_identify(c);
1893
1894 if (this_cpu->c_identify)
1895 this_cpu->c_identify(c);
1896
1897 /* Clear/Set all flags overridden by options, after probe */
1898 apply_forced_caps(c);
1899
1900 #ifdef CONFIG_X86_64
1901 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1902 #endif
1903
1904
1905 /*
1906 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1907 * Hygon will clear it in ->c_init() below.
1908 */
1909 set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1910
1911 /*
1912 * Vendor-specific initialization. In this section we
1913 * canonicalize the feature flags, meaning if there are
1914 * features a certain CPU supports which CPUID doesn't
1915 * tell us, CPUID claiming incorrect flags, or other bugs,
1916 * we handle them here.
1917 *
1918 * At the end of this section, c->x86_capability better
1919 * indicate the features this CPU genuinely supports!
1920 */
1921 if (this_cpu->c_init)
1922 this_cpu->c_init(c);
1923
1924 /* Disable the PN if appropriate */
1925 squash_the_stupid_serial_number(c);
1926
1927 /* Set up SMEP/SMAP/UMIP */
1928 setup_smep(c);
1929 setup_smap(c);
1930 setup_umip(c);
1931
1932 /* Enable FSGSBASE instructions if available. */
1933 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1934 cr4_set_bits(X86_CR4_FSGSBASE);
1935 elf_hwcap2 |= HWCAP2_FSGSBASE;
1936 }
1937
1938 /*
1939 * The vendor-specific functions might have changed features.
1940 * Now we do "generic changes."
1941 */
1942
1943 /* Filter out anything that depends on CPUID levels we don't have */
1944 filter_cpuid_features(c, true);
1945
1946 /* If the model name is still unset, do table lookup. */
1947 if (!c->x86_model_id[0]) {
1948 const char *p;
1949 p = table_lookup_model(c);
1950 if (p)
1951 strcpy(c->x86_model_id, p);
1952 else
1953 /* Last resort... */
1954 sprintf(c->x86_model_id, "%02x/%02x",
1955 c->x86, c->x86_model);
1956 }
1957
1958 #ifdef CONFIG_X86_64
1959 detect_ht(c);
1960 #endif
1961
1962 x86_init_rdrand(c);
1963 setup_pku(c);
1964 setup_cet(c);
1965
1966 /*
1967 * Clear/Set all flags overridden by options, need do it
1968 * before following smp all cpus cap AND.
1969 */
1970 apply_forced_caps(c);
1971
1972 /*
1973 * On SMP, boot_cpu_data holds the common feature set between
1974 * all CPUs; so make sure that we indicate which features are
1975 * common between the CPUs. The first time this routine gets
1976 * executed, c == &boot_cpu_data.
1977 */
1978 if (c != &boot_cpu_data) {
1979 /* AND the already accumulated flags with these */
1980 for (i = 0; i < NCAPINTS; i++)
1981 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1982
1983 /* OR, i.e. replicate the bug flags */
1984 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1985 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1986 }
1987
1988 ppin_init(c);
1989
1990 /* Init Machine Check Exception if available. */
1991 mcheck_cpu_init(c);
1992
1993 select_idle_routine(c);
1994
1995 #ifdef CONFIG_NUMA
1996 numa_add_cpu(smp_processor_id());
1997 #endif
1998 }
1999
2000 /*
2001 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
2002 * on 32-bit kernels:
2003 */
2004 #ifdef CONFIG_X86_32
enable_sep_cpu(void)2005 void enable_sep_cpu(void)
2006 {
2007 struct tss_struct *tss;
2008 int cpu;
2009
2010 if (!boot_cpu_has(X86_FEATURE_SEP))
2011 return;
2012
2013 cpu = get_cpu();
2014 tss = &per_cpu(cpu_tss_rw, cpu);
2015
2016 /*
2017 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
2018 * see the big comment in struct x86_hw_tss's definition.
2019 */
2020
2021 tss->x86_tss.ss1 = __KERNEL_CS;
2022 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
2023 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
2024 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
2025
2026 put_cpu();
2027 }
2028 #endif
2029
identify_boot_cpu(void)2030 static __init void identify_boot_cpu(void)
2031 {
2032 identify_cpu(&boot_cpu_data);
2033 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
2034 pr_info("CET detected: Indirect Branch Tracking enabled\n");
2035 #ifdef CONFIG_X86_32
2036 enable_sep_cpu();
2037 #endif
2038 cpu_detect_tlb(&boot_cpu_data);
2039 setup_cr_pinning();
2040
2041 tsx_init();
2042 lkgs_init();
2043 }
2044
identify_secondary_cpu(struct cpuinfo_x86 * c)2045 void identify_secondary_cpu(struct cpuinfo_x86 *c)
2046 {
2047 BUG_ON(c == &boot_cpu_data);
2048 identify_cpu(c);
2049 #ifdef CONFIG_X86_32
2050 enable_sep_cpu();
2051 #endif
2052 validate_apic_and_package_id(c);
2053 x86_spec_ctrl_setup_ap();
2054 update_srbds_msr();
2055 if (boot_cpu_has_bug(X86_BUG_GDS))
2056 update_gds_msr();
2057
2058 tsx_ap_init();
2059 }
2060
print_cpu_info(struct cpuinfo_x86 * c)2061 void print_cpu_info(struct cpuinfo_x86 *c)
2062 {
2063 const char *vendor = NULL;
2064
2065 if (c->x86_vendor < X86_VENDOR_NUM) {
2066 vendor = this_cpu->c_vendor;
2067 } else {
2068 if (c->cpuid_level >= 0)
2069 vendor = c->x86_vendor_id;
2070 }
2071
2072 if (vendor && !strstr(c->x86_model_id, vendor))
2073 pr_cont("%s ", vendor);
2074
2075 if (c->x86_model_id[0])
2076 pr_cont("%s", c->x86_model_id);
2077 else
2078 pr_cont("%d86", c->x86);
2079
2080 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2081
2082 if (c->x86_stepping || c->cpuid_level >= 0)
2083 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2084 else
2085 pr_cont(")\n");
2086 }
2087
2088 /*
2089 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
2090 * function prevents it from becoming an environment variable for init.
2091 */
setup_clearcpuid(char * arg)2092 static __init int setup_clearcpuid(char *arg)
2093 {
2094 return 1;
2095 }
2096 __setup("clearcpuid=", setup_clearcpuid);
2097
2098 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2099 .current_task = &init_task,
2100 .preempt_count = INIT_PREEMPT_COUNT,
2101 .top_of_stack = TOP_OF_INIT_STACK,
2102 };
2103 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2104
2105 #ifdef CONFIG_X86_64
2106 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2107 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2108 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2109
wrmsrl_cstar(unsigned long val)2110 static void wrmsrl_cstar(unsigned long val)
2111 {
2112 /*
2113 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2114 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2115 * guest. Avoid the pointless write on all Intel CPUs.
2116 */
2117 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2118 wrmsrl(MSR_CSTAR, val);
2119 }
2120
2121 /* May not be marked __init: used by software suspend */
syscall_init(void)2122 void syscall_init(void)
2123 {
2124 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2125 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2126
2127 #ifdef CONFIG_IA32_EMULATION
2128 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2129 /*
2130 * This only works on Intel CPUs.
2131 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2132 * This does not cause SYSENTER to jump to the wrong location, because
2133 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2134 */
2135 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2136 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2137 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2138 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2139 #else
2140 wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2141 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2142 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2143 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2144 #endif
2145
2146 /*
2147 * Flags to clear on syscall; clear as much as possible
2148 * to minimize user space-kernel interference.
2149 */
2150 wrmsrl(MSR_SYSCALL_MASK,
2151 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2152 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2153 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2154 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2155 X86_EFLAGS_AC|X86_EFLAGS_ID);
2156 }
2157
2158 #else /* CONFIG_X86_64 */
2159
2160 #ifdef CONFIG_STACKPROTECTOR
2161 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2162 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2163 #endif
2164
2165 #endif /* CONFIG_X86_64 */
2166
2167 /*
2168 * Clear all 6 debug registers:
2169 */
clear_all_debug_regs(void)2170 static void clear_all_debug_regs(void)
2171 {
2172 int i;
2173
2174 for (i = 0; i < 8; i++) {
2175 /* Ignore db4, db5 */
2176 if ((i == 4) || (i == 5))
2177 continue;
2178
2179 set_debugreg(0, i);
2180 }
2181 }
2182
2183 #ifdef CONFIG_KGDB
2184 /*
2185 * Restore debug regs if using kgdbwait and you have a kernel debugger
2186 * connection established.
2187 */
dbg_restore_debug_regs(void)2188 static void dbg_restore_debug_regs(void)
2189 {
2190 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2191 arch_kgdb_ops.correct_hw_break();
2192 }
2193 #else /* ! CONFIG_KGDB */
2194 #define dbg_restore_debug_regs()
2195 #endif /* ! CONFIG_KGDB */
2196
setup_getcpu(int cpu)2197 static inline void setup_getcpu(int cpu)
2198 {
2199 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2200 struct desc_struct d = { };
2201
2202 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2203 wrmsr(MSR_TSC_AUX, cpudata, 0);
2204
2205 /* Store CPU and node number in limit. */
2206 d.limit0 = cpudata;
2207 d.limit1 = cpudata >> 16;
2208
2209 d.type = 5; /* RO data, expand down, accessed */
2210 d.dpl = 3; /* Visible to user code */
2211 d.s = 1; /* Not a system segment */
2212 d.p = 1; /* Present */
2213 d.d = 1; /* 32-bit */
2214
2215 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2216 }
2217
2218 #ifdef CONFIG_X86_64
ucode_cpu_init(int cpu)2219 static inline void ucode_cpu_init(int cpu) { }
2220
tss_setup_ist(struct tss_struct * tss)2221 static inline void tss_setup_ist(struct tss_struct *tss)
2222 {
2223 /* Set up the per-CPU TSS IST stacks */
2224 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2225 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2226 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2227 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2228 /* Only mapped when SEV-ES is active */
2229 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2230 }
2231
2232 #else /* CONFIG_X86_64 */
2233
ucode_cpu_init(int cpu)2234 static inline void ucode_cpu_init(int cpu)
2235 {
2236 show_ucode_info_early();
2237 }
2238
tss_setup_ist(struct tss_struct * tss)2239 static inline void tss_setup_ist(struct tss_struct *tss) { }
2240
2241 #endif /* !CONFIG_X86_64 */
2242
tss_setup_io_bitmap(struct tss_struct * tss)2243 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2244 {
2245 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2246
2247 #ifdef CONFIG_X86_IOPL_IOPERM
2248 tss->io_bitmap.prev_max = 0;
2249 tss->io_bitmap.prev_sequence = 0;
2250 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2251 /*
2252 * Invalidate the extra array entry past the end of the all
2253 * permission bitmap as required by the hardware.
2254 */
2255 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2256 #endif
2257 }
2258
2259 /*
2260 * Setup everything needed to handle exceptions from the IDT, including the IST
2261 * exceptions which use paranoid_entry().
2262 */
cpu_init_exception_handling(void)2263 void cpu_init_exception_handling(void)
2264 {
2265 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2266 int cpu = raw_smp_processor_id();
2267
2268 /* paranoid_entry() gets the CPU number from the GDT */
2269 setup_getcpu(cpu);
2270
2271 /* IST vectors need TSS to be set up. */
2272 tss_setup_ist(tss);
2273 tss_setup_io_bitmap(tss);
2274 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2275
2276 load_TR_desc();
2277
2278 /* GHCB needs to be setup to handle #VC. */
2279 setup_ghcb();
2280
2281 /* Finally load the IDT */
2282 load_current_idt();
2283 }
2284
2285 /*
2286 * cpu_init() initializes state that is per-CPU. Some data is already
2287 * initialized (naturally) in the bootstrap process, such as the GDT. We
2288 * reload it nevertheless, this function acts as a 'CPU state barrier',
2289 * nothing should get across.
2290 */
cpu_init(void)2291 void cpu_init(void)
2292 {
2293 struct task_struct *cur = current;
2294 int cpu = raw_smp_processor_id();
2295
2296 ucode_cpu_init(cpu);
2297
2298 #ifdef CONFIG_NUMA
2299 if (this_cpu_read(numa_node) == 0 &&
2300 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2301 set_numa_node(early_cpu_to_node(cpu));
2302 #endif
2303 pr_debug("Initializing CPU#%d\n", cpu);
2304
2305 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2306 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2307 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2308
2309 if (IS_ENABLED(CONFIG_X86_64)) {
2310 loadsegment(fs, 0);
2311 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2312 syscall_init();
2313
2314 wrmsrl(MSR_FS_BASE, 0);
2315 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2316 barrier();
2317
2318 x2apic_setup();
2319 }
2320
2321 mmgrab(&init_mm);
2322 cur->active_mm = &init_mm;
2323 BUG_ON(cur->mm);
2324 initialize_tlbstate_and_flush();
2325 enter_lazy_tlb(&init_mm, cur);
2326
2327 /*
2328 * sp0 points to the entry trampoline stack regardless of what task
2329 * is running.
2330 */
2331 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2332
2333 load_mm_ldt(&init_mm);
2334
2335 clear_all_debug_regs();
2336 dbg_restore_debug_regs();
2337
2338 doublefault_init_cpu_tss();
2339
2340 if (is_uv_system())
2341 uv_cpu_init();
2342
2343 load_fixmap_gdt(cpu);
2344 }
2345
2346 #ifdef CONFIG_MICROCODE_LATE_LOADING
2347 /**
2348 * store_cpu_caps() - Store a snapshot of CPU capabilities
2349 * @curr_info: Pointer where to store it
2350 *
2351 * Returns: None
2352 */
store_cpu_caps(struct cpuinfo_x86 * curr_info)2353 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2354 {
2355 /* Reload CPUID max function as it might've changed. */
2356 curr_info->cpuid_level = cpuid_eax(0);
2357
2358 /* Copy all capability leafs and pick up the synthetic ones. */
2359 memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2360 sizeof(curr_info->x86_capability));
2361
2362 /* Get the hardware CPUID leafs */
2363 get_cpu_cap(curr_info);
2364 }
2365
2366 /**
2367 * microcode_check() - Check if any CPU capabilities changed after an update.
2368 * @prev_info: CPU capabilities stored before an update.
2369 *
2370 * The microcode loader calls this upon late microcode load to recheck features,
2371 * only when microcode has been updated. Caller holds and CPU hotplug lock.
2372 *
2373 * Return: None
2374 */
microcode_check(struct cpuinfo_x86 * prev_info)2375 void microcode_check(struct cpuinfo_x86 *prev_info)
2376 {
2377 struct cpuinfo_x86 curr_info;
2378
2379 perf_check_microcode();
2380
2381 amd_check_microcode();
2382
2383 store_cpu_caps(&curr_info);
2384
2385 if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2386 sizeof(prev_info->x86_capability)))
2387 return;
2388
2389 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2390 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2391 }
2392 #endif
2393
2394 /*
2395 * Invoked from core CPU hotplug code after hotplug operations
2396 */
arch_smt_update(void)2397 void arch_smt_update(void)
2398 {
2399 /* Handle the speculative execution misfeatures */
2400 cpu_bugs_smt_update();
2401 /* Check whether IPI broadcasting can be enabled */
2402 apic_smt_update();
2403 }
2404
arch_cpu_finalize_init(void)2405 void __init arch_cpu_finalize_init(void)
2406 {
2407 identify_boot_cpu();
2408
2409 /*
2410 * identify_boot_cpu() initialized SMT support information, let the
2411 * core code know.
2412 */
2413 cpu_smt_set_num_threads(smp_num_siblings, smp_num_siblings);
2414
2415 if (!IS_ENABLED(CONFIG_SMP)) {
2416 pr_info("CPU: ");
2417 print_cpu_info(&boot_cpu_data);
2418 }
2419
2420 cpu_select_mitigations();
2421
2422 arch_smt_update();
2423
2424 if (IS_ENABLED(CONFIG_X86_32)) {
2425 /*
2426 * Check whether this is a real i386 which is not longer
2427 * supported and fixup the utsname.
2428 */
2429 if (boot_cpu_data.x86 < 4)
2430 panic("Kernel requires i486+ for 'invlpg' and other features");
2431
2432 init_utsname()->machine[1] =
2433 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2434 }
2435
2436 /*
2437 * Must be before alternatives because it might set or clear
2438 * feature bits.
2439 */
2440 fpu__init_system();
2441 fpu__init_cpu();
2442
2443 alternative_instructions();
2444
2445 if (IS_ENABLED(CONFIG_X86_64)) {
2446 /*
2447 * Make sure the first 2MB area is not mapped by huge pages
2448 * There are typically fixed size MTRRs in there and overlapping
2449 * MTRRs into large pages causes slow downs.
2450 *
2451 * Right now we don't do that with gbpages because there seems
2452 * very little benefit for that case.
2453 */
2454 if (!direct_gbpages)
2455 set_memory_4k((unsigned long)__va(0), 1);
2456 } else {
2457 fpu__init_check_bugs();
2458 }
2459
2460 /*
2461 * This needs to be called before any devices perform DMA
2462 * operations that might use the SWIOTLB bounce buffers. It will
2463 * mark the bounce buffers as decrypted so that their usage will
2464 * not cause "plain-text" data to be decrypted when accessed. It
2465 * must be called after late_time_init() so that Hyper-V x86/x64
2466 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2467 */
2468 mem_encrypt_init();
2469 }
2470