xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision 71bce0e1fb1a866dde4a4b6016fc18b09f317338)
1  /*
2   *  emulator main execution loop
3   *
4   *  Copyright (c) 2003-2005 Fabrice Bellard
5   *
6   * This library is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU Lesser General Public
8   * License as published by the Free Software Foundation; either
9   * version 2.1 of the License, or (at your option) any later version.
10   *
11   * This library is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14   * Lesser General Public License for more details.
15   *
16   * You should have received a copy of the GNU Lesser General Public
17   * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18   */
19  
20  #include "qemu/osdep.h"
21  #include "qemu/qemu-print.h"
22  #include "qapi/error.h"
23  #include "qapi/type-helpers.h"
24  #include "hw/core/tcg-cpu-ops.h"
25  #include "trace.h"
26  #include "disas/disas.h"
27  #include "exec/exec-all.h"
28  #include "tcg/tcg.h"
29  #include "qemu/atomic.h"
30  #include "qemu/rcu.h"
31  #include "exec/log.h"
32  #include "qemu/main-loop.h"
33  #include "sysemu/cpus.h"
34  #include "exec/cpu-all.h"
35  #include "sysemu/cpu-timers.h"
36  #include "exec/replay-core.h"
37  #include "sysemu/tcg.h"
38  #include "exec/helper-proto-common.h"
39  #include "tb-jmp-cache.h"
40  #include "tb-hash.h"
41  #include "tb-context.h"
42  #include "internal-common.h"
43  #include "internal-target.h"
44  
45  /* -icount align implementation. */
46  
47  typedef struct SyncClocks {
48      int64_t diff_clk;
49      int64_t last_cpu_icount;
50      int64_t realtime_clock;
51  } SyncClocks;
52  
53  #if !defined(CONFIG_USER_ONLY)
54  /* Allow the guest to have a max 3ms advance.
55   * The difference between the 2 clocks could therefore
56   * oscillate around 0.
57   */
58  #define VM_CLOCK_ADVANCE 3000000
59  #define THRESHOLD_REDUCE 1.5
60  #define MAX_DELAY_PRINT_RATE 2000000000LL
61  #define MAX_NB_PRINTS 100
62  
63  int64_t max_delay;
64  int64_t max_advance;
65  
align_clocks(SyncClocks * sc,CPUState * cpu)66  static void align_clocks(SyncClocks *sc, CPUState *cpu)
67  {
68      int64_t cpu_icount;
69  
70      if (!icount_align_option) {
71          return;
72      }
73  
74      cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
75      sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
76      sc->last_cpu_icount = cpu_icount;
77  
78      if (sc->diff_clk > VM_CLOCK_ADVANCE) {
79  #ifndef _WIN32
80          struct timespec sleep_delay, rem_delay;
81          sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
82          sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
83          if (nanosleep(&sleep_delay, &rem_delay) < 0) {
84              sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
85          } else {
86              sc->diff_clk = 0;
87          }
88  #else
89          Sleep(sc->diff_clk / SCALE_MS);
90          sc->diff_clk = 0;
91  #endif
92      }
93  }
94  
print_delay(const SyncClocks * sc)95  static void print_delay(const SyncClocks *sc)
96  {
97      static float threshold_delay;
98      static int64_t last_realtime_clock;
99      static int nb_prints;
100  
101      if (icount_align_option &&
102          sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
103          nb_prints < MAX_NB_PRINTS) {
104          if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
105              (-sc->diff_clk / (float)1000000000LL <
106               (threshold_delay - THRESHOLD_REDUCE))) {
107              threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
108              qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
109                          threshold_delay - 1,
110                          threshold_delay);
111              nb_prints++;
112              last_realtime_clock = sc->realtime_clock;
113          }
114      }
115  }
116  
init_delay_params(SyncClocks * sc,CPUState * cpu)117  static void init_delay_params(SyncClocks *sc, CPUState *cpu)
118  {
119      if (!icount_align_option) {
120          return;
121      }
122      sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
123      sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
124      sc->last_cpu_icount
125          = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
126      if (sc->diff_clk < max_delay) {
127          max_delay = sc->diff_clk;
128      }
129      if (sc->diff_clk > max_advance) {
130          max_advance = sc->diff_clk;
131      }
132  
133      /* Print every 2s max if the guest is late. We limit the number
134         of printed messages to NB_PRINT_MAX(currently 100) */
135      print_delay(sc);
136  }
137  #else
align_clocks(SyncClocks * sc,const CPUState * cpu)138  static void align_clocks(SyncClocks *sc, const CPUState *cpu)
139  {
140  }
141  
init_delay_params(SyncClocks * sc,const CPUState * cpu)142  static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
143  {
144  }
145  #endif /* CONFIG USER ONLY */
146  
tcg_cflags_has(CPUState * cpu,uint32_t flags)147  bool tcg_cflags_has(CPUState *cpu, uint32_t flags)
148  {
149      return cpu->tcg_cflags & flags;
150  }
151  
tcg_cflags_set(CPUState * cpu,uint32_t flags)152  void tcg_cflags_set(CPUState *cpu, uint32_t flags)
153  {
154      cpu->tcg_cflags |= flags;
155  }
156  
curr_cflags(CPUState * cpu)157  uint32_t curr_cflags(CPUState *cpu)
158  {
159      uint32_t cflags = cpu->tcg_cflags;
160  
161      /*
162       * Record gdb single-step.  We should be exiting the TB by raising
163       * EXCP_DEBUG, but to simplify other tests, disable chaining too.
164       *
165       * For singlestep and -d nochain, suppress goto_tb so that
166       * we can log -d cpu,exec after every TB.
167       */
168      if (unlikely(cpu->singlestep_enabled)) {
169          cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
170      } else if (qatomic_read(&one_insn_per_tb)) {
171          cflags |= CF_NO_GOTO_TB | 1;
172      } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
173          cflags |= CF_NO_GOTO_TB;
174      }
175  
176      return cflags;
177  }
178  
179  struct tb_desc {
180      vaddr pc;
181      uint64_t cs_base;
182      CPUArchState *env;
183      tb_page_addr_t page_addr0;
184      uint32_t flags;
185      uint32_t cflags;
186  };
187  
tb_lookup_cmp(const void * p,const void * d)188  static bool tb_lookup_cmp(const void *p, const void *d)
189  {
190      const TranslationBlock *tb = p;
191      const struct tb_desc *desc = d;
192  
193      if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) &&
194          tb_page_addr0(tb) == desc->page_addr0 &&
195          tb->cs_base == desc->cs_base &&
196          tb->flags == desc->flags &&
197          tb_cflags(tb) == desc->cflags) {
198          /* check next page if needed */
199          tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
200          if (tb_phys_page1 == -1) {
201              return true;
202          } else {
203              tb_page_addr_t phys_page1;
204              vaddr virt_page1;
205  
206              /*
207               * We know that the first page matched, and an otherwise valid TB
208               * encountered an incomplete instruction at the end of that page,
209               * therefore we know that generating a new TB from the current PC
210               * must also require reading from the next page -- even if the
211               * second pages do not match, and therefore the resulting insn
212               * is different for the new TB.  Therefore any exception raised
213               * here by the faulting lookup is not premature.
214               */
215              virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
216              phys_page1 = get_page_addr_code(desc->env, virt_page1);
217              if (tb_phys_page1 == phys_page1) {
218                  return true;
219              }
220          }
221      }
222      return false;
223  }
224  
tb_htable_lookup(CPUState * cpu,vaddr pc,uint64_t cs_base,uint32_t flags,uint32_t cflags)225  static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc,
226                                            uint64_t cs_base, uint32_t flags,
227                                            uint32_t cflags)
228  {
229      tb_page_addr_t phys_pc;
230      struct tb_desc desc;
231      uint32_t h;
232  
233      desc.env = cpu_env(cpu);
234      desc.cs_base = cs_base;
235      desc.flags = flags;
236      desc.cflags = cflags;
237      desc.pc = pc;
238      phys_pc = get_page_addr_code(desc.env, pc);
239      if (phys_pc == -1) {
240          return NULL;
241      }
242      desc.page_addr0 = phys_pc;
243      h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc),
244                       flags, cs_base, cflags);
245      return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
246  }
247  
248  /* Might cause an exception, so have a longjmp destination ready */
tb_lookup(CPUState * cpu,vaddr pc,uint64_t cs_base,uint32_t flags,uint32_t cflags)249  static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc,
250                                            uint64_t cs_base, uint32_t flags,
251                                            uint32_t cflags)
252  {
253      TranslationBlock *tb;
254      CPUJumpCache *jc;
255      uint32_t hash;
256  
257      /* we should never be trying to look up an INVALID tb */
258      tcg_debug_assert(!(cflags & CF_INVALID));
259  
260      hash = tb_jmp_cache_hash_func(pc);
261      jc = cpu->tb_jmp_cache;
262  
263      tb = qatomic_read(&jc->array[hash].tb);
264      if (likely(tb &&
265                 jc->array[hash].pc == pc &&
266                 tb->cs_base == cs_base &&
267                 tb->flags == flags &&
268                 tb_cflags(tb) == cflags)) {
269          goto hit;
270      }
271  
272      tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
273      if (tb == NULL) {
274          return NULL;
275      }
276  
277      jc->array[hash].pc = pc;
278      qatomic_set(&jc->array[hash].tb, tb);
279  
280  hit:
281      /*
282       * As long as tb is not NULL, the contents are consistent.  Therefore,
283       * the virtual PC has to match for non-CF_PCREL translations.
284       */
285      assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc);
286      return tb;
287  }
288  
log_cpu_exec(vaddr pc,CPUState * cpu,const TranslationBlock * tb)289  static void log_cpu_exec(vaddr pc, CPUState *cpu,
290                           const TranslationBlock *tb)
291  {
292      if (qemu_log_in_addr_range(pc)) {
293          qemu_log_mask(CPU_LOG_EXEC,
294                        "Trace %d: %p [%08" PRIx64
295                        "/%016" VADDR_PRIx "/%08x/%08x] %s\n",
296                        cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
297                        tb->flags, tb->cflags, lookup_symbol(pc));
298  
299          if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
300              FILE *logfile = qemu_log_trylock();
301              if (logfile) {
302                  int flags = 0;
303  
304                  if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
305                      flags |= CPU_DUMP_FPU;
306                  }
307  #if defined(TARGET_I386)
308                  flags |= CPU_DUMP_CCOP;
309  #endif
310                  if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) {
311                      flags |= CPU_DUMP_VPU;
312                  }
313                  cpu_dump_state(cpu, logfile, flags);
314                  qemu_log_unlock(logfile);
315              }
316          }
317      }
318  }
319  
check_for_breakpoints_slow(CPUState * cpu,vaddr pc,uint32_t * cflags)320  static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc,
321                                         uint32_t *cflags)
322  {
323      CPUBreakpoint *bp;
324      bool match_page = false;
325  
326      /*
327       * Singlestep overrides breakpoints.
328       * This requirement is visible in the record-replay tests, where
329       * we would fail to make forward progress in reverse-continue.
330       *
331       * TODO: gdb singlestep should only override gdb breakpoints,
332       * so that one could (gdb) singlestep into the guest kernel's
333       * architectural breakpoint handler.
334       */
335      if (cpu->singlestep_enabled) {
336          return false;
337      }
338  
339      QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
340          /*
341           * If we have an exact pc match, trigger the breakpoint.
342           * Otherwise, note matches within the page.
343           */
344          if (pc == bp->pc) {
345              bool match_bp = false;
346  
347              if (bp->flags & BP_GDB) {
348                  match_bp = true;
349              } else if (bp->flags & BP_CPU) {
350  #ifdef CONFIG_USER_ONLY
351                  g_assert_not_reached();
352  #else
353                  const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
354                  assert(tcg_ops->debug_check_breakpoint);
355                  match_bp = tcg_ops->debug_check_breakpoint(cpu);
356  #endif
357              }
358  
359              if (match_bp) {
360                  cpu->exception_index = EXCP_DEBUG;
361                  return true;
362              }
363          } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
364              match_page = true;
365          }
366      }
367  
368      /*
369       * Within the same page as a breakpoint, single-step,
370       * returning to helper_lookup_tb_ptr after each insn looking
371       * for the actual breakpoint.
372       *
373       * TODO: Perhaps better to record all of the TBs associated
374       * with a given virtual page that contains a breakpoint, and
375       * then invalidate them when a new overlapping breakpoint is
376       * set on the page.  Non-overlapping TBs would not be
377       * invalidated, nor would any TB need to be invalidated as
378       * breakpoints are removed.
379       */
380      if (match_page) {
381          *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1;
382      }
383      return false;
384  }
385  
check_for_breakpoints(CPUState * cpu,vaddr pc,uint32_t * cflags)386  static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc,
387                                           uint32_t *cflags)
388  {
389      return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
390          check_for_breakpoints_slow(cpu, pc, cflags);
391  }
392  
393  /**
394   * helper_lookup_tb_ptr: quick check for next tb
395   * @env: current cpu state
396   *
397   * Look for an existing TB matching the current cpu state.
398   * If found, return the code pointer.  If not found, return
399   * the tcg epilogue so that we return into cpu_tb_exec.
400   */
HELPER(lookup_tb_ptr)401  const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
402  {
403      CPUState *cpu = env_cpu(env);
404      TranslationBlock *tb;
405      vaddr pc;
406      uint64_t cs_base;
407      uint32_t flags, cflags;
408  
409      /*
410       * By definition we've just finished a TB, so I/O is OK.
411       * Avoid the possibility of calling cpu_io_recompile() if
412       * a page table walk triggered by tb_lookup() calling
413       * probe_access_internal() happens to touch an MMIO device.
414       * The next TB, if we chain to it, will clear the flag again.
415       */
416      cpu->neg.can_do_io = true;
417      cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
418  
419      cflags = curr_cflags(cpu);
420      if (check_for_breakpoints(cpu, pc, &cflags)) {
421          cpu_loop_exit(cpu);
422      }
423  
424      tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
425      if (tb == NULL) {
426          return tcg_code_gen_epilogue;
427      }
428  
429      if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
430          log_cpu_exec(pc, cpu, tb);
431      }
432  
433      return tb->tc.ptr;
434  }
435  
436  /* Execute a TB, and fix up the CPU state afterwards if necessary */
437  /*
438   * Disable CFI checks.
439   * TCG creates binary blobs at runtime, with the transformed code.
440   * A TB is a blob of binary code, created at runtime and called with an
441   * indirect function call. Since such function did not exist at compile time,
442   * the CFI runtime has no way to verify its signature and would fail.
443   * TCG is not considered a security-sensitive part of QEMU so this does not
444   * affect the impact of CFI in environment with high security requirements
445   */
446  static inline TranslationBlock * QEMU_DISABLE_CFI
cpu_tb_exec(CPUState * cpu,TranslationBlock * itb,int * tb_exit)447  cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
448  {
449      uintptr_t ret;
450      TranslationBlock *last_tb;
451      const void *tb_ptr = itb->tc.ptr;
452  
453      if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
454          log_cpu_exec(log_pc(cpu, itb), cpu, itb);
455      }
456  
457      qemu_thread_jit_execute();
458      ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr);
459      cpu->neg.can_do_io = true;
460      qemu_plugin_disable_mem_helpers(cpu);
461      /*
462       * TODO: Delay swapping back to the read-write region of the TB
463       * until we actually need to modify the TB.  The read-only copy,
464       * coming from the rx region, shares the same host TLB entry as
465       * the code that executed the exit_tb opcode that arrived here.
466       * If we insist on touching both the RX and the RW pages, we
467       * double the host TLB pressure.
468       */
469      last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
470      *tb_exit = ret & TB_EXIT_MASK;
471  
472      trace_exec_tb_exit(last_tb, *tb_exit);
473  
474      if (*tb_exit > TB_EXIT_IDX1) {
475          /* We didn't start executing this TB (eg because the instruction
476           * counter hit zero); we must restore the guest PC to the address
477           * of the start of the TB.
478           */
479          CPUClass *cc = cpu->cc;
480          const TCGCPUOps *tcg_ops = cc->tcg_ops;
481  
482          if (tcg_ops->synchronize_from_tb) {
483              tcg_ops->synchronize_from_tb(cpu, last_tb);
484          } else {
485              tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
486              assert(cc->set_pc);
487              cc->set_pc(cpu, last_tb->pc);
488          }
489          if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
490              vaddr pc = log_pc(cpu, last_tb);
491              if (qemu_log_in_addr_range(pc)) {
492                  qemu_log("Stopped execution of TB chain before %p [%016"
493                           VADDR_PRIx "] %s\n",
494                           last_tb->tc.ptr, pc, lookup_symbol(pc));
495              }
496          }
497      }
498  
499      /*
500       * If gdb single-step, and we haven't raised another exception,
501       * raise a debug exception.  Single-step with another exception
502       * is handled in cpu_handle_exception.
503       */
504      if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
505          cpu->exception_index = EXCP_DEBUG;
506          cpu_loop_exit(cpu);
507      }
508  
509      return last_tb;
510  }
511  
512  
cpu_exec_enter(CPUState * cpu)513  static void cpu_exec_enter(CPUState *cpu)
514  {
515      const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
516  
517      if (tcg_ops->cpu_exec_enter) {
518          tcg_ops->cpu_exec_enter(cpu);
519      }
520  }
521  
cpu_exec_exit(CPUState * cpu)522  static void cpu_exec_exit(CPUState *cpu)
523  {
524      const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
525  
526      if (tcg_ops->cpu_exec_exit) {
527          tcg_ops->cpu_exec_exit(cpu);
528      }
529  }
530  
cpu_exec_longjmp_cleanup(CPUState * cpu)531  static void cpu_exec_longjmp_cleanup(CPUState *cpu)
532  {
533      /* Non-buggy compilers preserve this; assert the correct value. */
534      g_assert(cpu == current_cpu);
535  
536  #ifdef CONFIG_USER_ONLY
537      clear_helper_retaddr();
538      if (have_mmap_lock()) {
539          mmap_unlock();
540      }
541  #else
542      /*
543       * For softmmu, a tlb_fill fault during translation will land here,
544       * and we need to release any page locks held.  In system mode we
545       * have one tcg_ctx per thread, so we know it was this cpu doing
546       * the translation.
547       *
548       * Alternative 1: Install a cleanup to be called via an exception
549       * handling safe longjmp.  It seems plausible that all our hosts
550       * support such a thing.  We'd have to properly register unwind info
551       * for the JIT for EH, rather that just for GDB.
552       *
553       * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to
554       * capture the cpu_loop_exit longjmp, perform the cleanup, and
555       * jump again to arrive here.
556       */
557      if (tcg_ctx->gen_tb) {
558          tb_unlock_pages(tcg_ctx->gen_tb);
559          tcg_ctx->gen_tb = NULL;
560      }
561  #endif
562      if (bql_locked()) {
563          bql_unlock();
564      }
565      assert_no_pages_locked();
566  }
567  
cpu_exec_step_atomic(CPUState * cpu)568  void cpu_exec_step_atomic(CPUState *cpu)
569  {
570      CPUArchState *env = cpu_env(cpu);
571      TranslationBlock *tb;
572      vaddr pc;
573      uint64_t cs_base;
574      uint32_t flags, cflags;
575      int tb_exit;
576  
577      if (sigsetjmp(cpu->jmp_env, 0) == 0) {
578          start_exclusive();
579          g_assert(cpu == current_cpu);
580          g_assert(!cpu->running);
581          cpu->running = true;
582  
583          cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
584  
585          cflags = curr_cflags(cpu);
586          /* Execute in a serial context. */
587          cflags &= ~CF_PARALLEL;
588          /* After 1 insn, return and release the exclusive lock. */
589          cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
590          /*
591           * No need to check_for_breakpoints here.
592           * We only arrive in cpu_exec_step_atomic after beginning execution
593           * of an insn that includes an atomic operation we can't handle.
594           * Any breakpoint for this insn will have been recognized earlier.
595           */
596  
597          tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
598          if (tb == NULL) {
599              mmap_lock();
600              tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
601              mmap_unlock();
602          }
603  
604          cpu_exec_enter(cpu);
605          /* execute the generated code */
606          trace_exec_tb(tb, pc);
607          cpu_tb_exec(cpu, tb, &tb_exit);
608          cpu_exec_exit(cpu);
609      } else {
610          cpu_exec_longjmp_cleanup(cpu);
611      }
612  
613      /*
614       * As we start the exclusive region before codegen we must still
615       * be in the region if we longjump out of either the codegen or
616       * the execution.
617       */
618      g_assert(cpu_in_exclusive_context(cpu));
619      cpu->running = false;
620      end_exclusive();
621  }
622  
tb_set_jmp_target(TranslationBlock * tb,int n,uintptr_t addr)623  void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
624  {
625      /*
626       * Get the rx view of the structure, from which we find the
627       * executable code address, and tb_target_set_jmp_target can
628       * produce a pc-relative displacement to jmp_target_addr[n].
629       */
630      const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
631      uintptr_t offset = tb->jmp_insn_offset[n];
632      uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
633      uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
634  
635      tb->jmp_target_addr[n] = addr;
636      tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
637  }
638  
tb_add_jump(TranslationBlock * tb,int n,TranslationBlock * tb_next)639  static inline void tb_add_jump(TranslationBlock *tb, int n,
640                                 TranslationBlock *tb_next)
641  {
642      uintptr_t old;
643  
644      qemu_thread_jit_write();
645      assert(n < ARRAY_SIZE(tb->jmp_list_next));
646      qemu_spin_lock(&tb_next->jmp_lock);
647  
648      /* make sure the destination TB is valid */
649      if (tb_next->cflags & CF_INVALID) {
650          goto out_unlock_next;
651      }
652      /* Atomically claim the jump destination slot only if it was NULL */
653      old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
654                            (uintptr_t)tb_next);
655      if (old) {
656          goto out_unlock_next;
657      }
658  
659      /* patch the native jump address */
660      tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
661  
662      /* add in TB jmp list */
663      tb->jmp_list_next[n] = tb_next->jmp_list_head;
664      tb_next->jmp_list_head = (uintptr_t)tb | n;
665  
666      qemu_spin_unlock(&tb_next->jmp_lock);
667  
668      qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
669                    tb->tc.ptr, n, tb_next->tc.ptr);
670      return;
671  
672   out_unlock_next:
673      qemu_spin_unlock(&tb_next->jmp_lock);
674      return;
675  }
676  
cpu_handle_halt(CPUState * cpu)677  static inline bool cpu_handle_halt(CPUState *cpu)
678  {
679  #ifndef CONFIG_USER_ONLY
680      if (cpu->halted) {
681          const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
682          bool leave_halt = tcg_ops->cpu_exec_halt(cpu);
683  
684          if (!leave_halt) {
685              return true;
686          }
687  
688          cpu->halted = 0;
689      }
690  #endif /* !CONFIG_USER_ONLY */
691  
692      return false;
693  }
694  
cpu_handle_debug_exception(CPUState * cpu)695  static inline void cpu_handle_debug_exception(CPUState *cpu)
696  {
697      const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
698      CPUWatchpoint *wp;
699  
700      if (!cpu->watchpoint_hit) {
701          QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
702              wp->flags &= ~BP_WATCHPOINT_HIT;
703          }
704      }
705  
706      if (tcg_ops->debug_excp_handler) {
707          tcg_ops->debug_excp_handler(cpu);
708      }
709  }
710  
cpu_handle_exception(CPUState * cpu,int * ret)711  static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
712  {
713      if (cpu->exception_index < 0) {
714  #ifndef CONFIG_USER_ONLY
715          if (replay_has_exception()
716              && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) {
717              /* Execute just one insn to trigger exception pending in the log */
718              cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
719                  | CF_NOIRQ | 1;
720          }
721  #endif
722          return false;
723      }
724  
725      if (cpu->exception_index >= EXCP_INTERRUPT) {
726          /* exit request from the cpu execution loop */
727          *ret = cpu->exception_index;
728          if (*ret == EXCP_DEBUG) {
729              cpu_handle_debug_exception(cpu);
730          }
731          cpu->exception_index = -1;
732          return true;
733      }
734  
735  #if defined(CONFIG_USER_ONLY)
736      /*
737       * If user mode only, we simulate a fake exception which will be
738       * handled outside the cpu execution loop.
739       */
740  #if defined(TARGET_I386)
741      const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
742      tcg_ops->fake_user_interrupt(cpu);
743  #endif /* TARGET_I386 */
744      *ret = cpu->exception_index;
745      cpu->exception_index = -1;
746      return true;
747  #else
748      if (replay_exception()) {
749          const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
750  
751          bql_lock();
752          tcg_ops->do_interrupt(cpu);
753          bql_unlock();
754          cpu->exception_index = -1;
755  
756          if (unlikely(cpu->singlestep_enabled)) {
757              /*
758               * After processing the exception, ensure an EXCP_DEBUG is
759               * raised when single-stepping so that GDB doesn't miss the
760               * next instruction.
761               */
762              *ret = EXCP_DEBUG;
763              cpu_handle_debug_exception(cpu);
764              return true;
765          }
766      } else if (!replay_has_interrupt()) {
767          /* give a chance to iothread in replay mode */
768          *ret = EXCP_INTERRUPT;
769          return true;
770      }
771  #endif
772  
773      return false;
774  }
775  
icount_exit_request(CPUState * cpu)776  static inline bool icount_exit_request(CPUState *cpu)
777  {
778      if (!icount_enabled()) {
779          return false;
780      }
781      if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) {
782          return false;
783      }
784      return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0;
785  }
786  
cpu_handle_interrupt(CPUState * cpu,TranslationBlock ** last_tb)787  static inline bool cpu_handle_interrupt(CPUState *cpu,
788                                          TranslationBlock **last_tb)
789  {
790      /*
791       * If we have requested custom cflags with CF_NOIRQ we should
792       * skip checking here. Any pending interrupts will get picked up
793       * by the next TB we execute under normal cflags.
794       */
795      if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
796          return false;
797      }
798  
799      /* Clear the interrupt flag now since we're processing
800       * cpu->interrupt_request and cpu->exit_request.
801       * Ensure zeroing happens before reading cpu->exit_request or
802       * cpu->interrupt_request (see also smp_wmb in cpu_exit())
803       */
804      qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0);
805  
806      if (unlikely(qatomic_read(&cpu->interrupt_request))) {
807          int interrupt_request;
808          bql_lock();
809          interrupt_request = cpu->interrupt_request;
810          if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
811              /* Mask out external interrupts for this step. */
812              interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
813          }
814          if (interrupt_request & CPU_INTERRUPT_DEBUG) {
815              cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
816              cpu->exception_index = EXCP_DEBUG;
817              bql_unlock();
818              return true;
819          }
820  #if !defined(CONFIG_USER_ONLY)
821          if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
822              /* Do nothing */
823          } else if (interrupt_request & CPU_INTERRUPT_HALT) {
824              replay_interrupt();
825              cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
826              cpu->halted = 1;
827              cpu->exception_index = EXCP_HLT;
828              bql_unlock();
829              return true;
830          }
831  #if defined(TARGET_I386)
832          else if (interrupt_request & CPU_INTERRUPT_INIT) {
833              X86CPU *x86_cpu = X86_CPU(cpu);
834              CPUArchState *env = &x86_cpu->env;
835              replay_interrupt();
836              cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
837              do_cpu_init(x86_cpu);
838              cpu->exception_index = EXCP_HALTED;
839              bql_unlock();
840              return true;
841          }
842  #else
843          else if (interrupt_request & CPU_INTERRUPT_RESET) {
844              replay_interrupt();
845              cpu_reset(cpu);
846              bql_unlock();
847              return true;
848          }
849  #endif /* !TARGET_I386 */
850          /* The target hook has 3 exit conditions:
851             False when the interrupt isn't processed,
852             True when it is, and we should restart on a new TB,
853             and via longjmp via cpu_loop_exit.  */
854          else {
855              const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
856  
857              if (tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
858                  if (!tcg_ops->need_replay_interrupt ||
859                      tcg_ops->need_replay_interrupt(interrupt_request)) {
860                      replay_interrupt();
861                  }
862                  /*
863                   * After processing the interrupt, ensure an EXCP_DEBUG is
864                   * raised when single-stepping so that GDB doesn't miss the
865                   * next instruction.
866                   */
867                  if (unlikely(cpu->singlestep_enabled)) {
868                      cpu->exception_index = EXCP_DEBUG;
869                      bql_unlock();
870                      return true;
871                  }
872                  cpu->exception_index = -1;
873                  *last_tb = NULL;
874              }
875              /* The target hook may have updated the 'cpu->interrupt_request';
876               * reload the 'interrupt_request' value */
877              interrupt_request = cpu->interrupt_request;
878          }
879  #endif /* !CONFIG_USER_ONLY */
880          if (interrupt_request & CPU_INTERRUPT_EXITTB) {
881              cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
882              /* ensure that no TB jump will be modified as
883                 the program flow was changed */
884              *last_tb = NULL;
885          }
886  
887          /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
888          bql_unlock();
889      }
890  
891      /* Finally, check if we need to exit to the main loop.  */
892      if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) {
893          qatomic_set(&cpu->exit_request, 0);
894          if (cpu->exception_index == -1) {
895              cpu->exception_index = EXCP_INTERRUPT;
896          }
897          return true;
898      }
899  
900      return false;
901  }
902  
cpu_loop_exec_tb(CPUState * cpu,TranslationBlock * tb,vaddr pc,TranslationBlock ** last_tb,int * tb_exit)903  static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
904                                      vaddr pc, TranslationBlock **last_tb,
905                                      int *tb_exit)
906  {
907      trace_exec_tb(tb, pc);
908      tb = cpu_tb_exec(cpu, tb, tb_exit);
909      if (*tb_exit != TB_EXIT_REQUESTED) {
910          *last_tb = tb;
911          return;
912      }
913  
914      *last_tb = NULL;
915      if (cpu_loop_exit_requested(cpu)) {
916          /* Something asked us to stop executing chained TBs; just
917           * continue round the main loop. Whatever requested the exit
918           * will also have set something else (eg exit_request or
919           * interrupt_request) which will be handled by
920           * cpu_handle_interrupt.  cpu_handle_interrupt will also
921           * clear cpu->icount_decr.u16.high.
922           */
923          return;
924      }
925  
926      /* Instruction counter expired.  */
927      assert(icount_enabled());
928  #ifndef CONFIG_USER_ONLY
929      /* Ensure global icount has gone forward */
930      icount_update(cpu);
931      /* Refill decrementer and continue execution.  */
932      int32_t insns_left = MIN(0xffff, cpu->icount_budget);
933      cpu->neg.icount_decr.u16.low = insns_left;
934      cpu->icount_extra = cpu->icount_budget - insns_left;
935  
936      /*
937       * If the next tb has more instructions than we have left to
938       * execute we need to ensure we find/generate a TB with exactly
939       * insns_left instructions in it.
940       */
941      if (insns_left > 0 && insns_left < tb->icount)  {
942          assert(insns_left <= CF_COUNT_MASK);
943          assert(cpu->icount_extra == 0);
944          cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
945      }
946  #endif
947  }
948  
949  /* main execution loop */
950  
951  static int __attribute__((noinline))
cpu_exec_loop(CPUState * cpu,SyncClocks * sc)952  cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
953  {
954      int ret;
955  
956      /* if an exception is pending, we execute it here */
957      while (!cpu_handle_exception(cpu, &ret)) {
958          TranslationBlock *last_tb = NULL;
959          int tb_exit = 0;
960  
961          while (!cpu_handle_interrupt(cpu, &last_tb)) {
962              TranslationBlock *tb;
963              vaddr pc;
964              uint64_t cs_base;
965              uint32_t flags, cflags;
966  
967              cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags);
968  
969              /*
970               * When requested, use an exact setting for cflags for the next
971               * execution.  This is used for icount, precise smc, and stop-
972               * after-access watchpoints.  Since this request should never
973               * have CF_INVALID set, -1 is a convenient invalid value that
974               * does not require tcg headers for cpu_common_reset.
975               */
976              cflags = cpu->cflags_next_tb;
977              if (cflags == -1) {
978                  cflags = curr_cflags(cpu);
979              } else {
980                  cpu->cflags_next_tb = -1;
981              }
982  
983              if (check_for_breakpoints(cpu, pc, &cflags)) {
984                  break;
985              }
986  
987              tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
988              if (tb == NULL) {
989                  CPUJumpCache *jc;
990                  uint32_t h;
991  
992                  mmap_lock();
993                  tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
994                  mmap_unlock();
995  
996                  /*
997                   * We add the TB in the virtual pc hash table
998                   * for the fast lookup
999                   */
1000                  h = tb_jmp_cache_hash_func(pc);
1001                  jc = cpu->tb_jmp_cache;
1002                  jc->array[h].pc = pc;
1003                  qatomic_set(&jc->array[h].tb, tb);
1004              }
1005  
1006  #ifndef CONFIG_USER_ONLY
1007              /*
1008               * We don't take care of direct jumps when address mapping
1009               * changes in system emulation.  So it's not safe to make a
1010               * direct jump to a TB spanning two pages because the mapping
1011               * for the second page can change.
1012               */
1013              if (tb_page_addr1(tb) != -1) {
1014                  last_tb = NULL;
1015              }
1016  #endif
1017              /* See if we can patch the calling TB. */
1018              if (last_tb) {
1019                  tb_add_jump(last_tb, tb_exit, tb);
1020              }
1021  
1022              cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
1023  
1024              /* Try to align the host and virtual clocks
1025                 if the guest is in advance */
1026              align_clocks(sc, cpu);
1027          }
1028      }
1029      return ret;
1030  }
1031  
cpu_exec_setjmp(CPUState * cpu,SyncClocks * sc)1032  static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
1033  {
1034      /* Prepare setjmp context for exception handling. */
1035      if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
1036          cpu_exec_longjmp_cleanup(cpu);
1037      }
1038  
1039      return cpu_exec_loop(cpu, sc);
1040  }
1041  
cpu_exec(CPUState * cpu)1042  int cpu_exec(CPUState *cpu)
1043  {
1044      int ret;
1045      SyncClocks sc = { 0 };
1046  
1047      /* replay_interrupt may need current_cpu */
1048      current_cpu = cpu;
1049  
1050      if (cpu_handle_halt(cpu)) {
1051          return EXCP_HALTED;
1052      }
1053  
1054      RCU_READ_LOCK_GUARD();
1055      cpu_exec_enter(cpu);
1056  
1057      /*
1058       * Calculate difference between guest clock and host clock.
1059       * This delay includes the delay of the last cycle, so
1060       * what we have to do is sleep until it is 0. As for the
1061       * advance/delay we gain here, we try to fix it next time.
1062       */
1063      init_delay_params(&sc, cpu);
1064  
1065      ret = cpu_exec_setjmp(cpu, &sc);
1066  
1067      cpu_exec_exit(cpu);
1068      return ret;
1069  }
1070  
tcg_exec_realizefn(CPUState * cpu,Error ** errp)1071  bool tcg_exec_realizefn(CPUState *cpu, Error **errp)
1072  {
1073      static bool tcg_target_initialized;
1074  
1075      if (!tcg_target_initialized) {
1076          /* Check mandatory TCGCPUOps handlers */
1077  #ifndef CONFIG_USER_ONLY
1078          assert(cpu->cc->tcg_ops->cpu_exec_halt);
1079          assert(cpu->cc->tcg_ops->cpu_exec_interrupt);
1080  #endif /* !CONFIG_USER_ONLY */
1081          cpu->cc->tcg_ops->initialize();
1082          tcg_target_initialized = true;
1083      }
1084  
1085      cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1086      tlb_init(cpu);
1087  #ifndef CONFIG_USER_ONLY
1088      tcg_iommu_init_notifier_list(cpu);
1089  #endif /* !CONFIG_USER_ONLY */
1090      /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1091  
1092      return true;
1093  }
1094  
1095  /* undo the initializations in reverse order */
tcg_exec_unrealizefn(CPUState * cpu)1096  void tcg_exec_unrealizefn(CPUState *cpu)
1097  {
1098  #ifndef CONFIG_USER_ONLY
1099      tcg_iommu_free_notifier_list(cpu);
1100  #endif /* !CONFIG_USER_ONLY */
1101  
1102      tlb_destroy(cpu);
1103      g_free_rcu(cpu->tb_jmp_cache, rcu);
1104  }
1105