1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 *
6 * Authors:
7 * Paul Mackerras <paulus@au1.ibm.com>
8 * Alexander Graf <agraf@suse.de>
9 * Kevin Wolf <mail@kevin-wolf.de>
10 *
11 * Description: KVM functions specific to running on Book 3S
12 * processors in hypervisor mode (specifically POWER7 and later).
13 *
14 * This file is derived from arch/powerpc/kvm/book3s.c,
15 * by Alexander Graf <agraf@suse.de>.
16 */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 #include <linux/irqdomain.h>
46 #include <linux/smp.h>
47
48 #include <asm/ftrace.h>
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/archrandom.h>
53 #include <asm/debug.h>
54 #include <asm/disassemble.h>
55 #include <asm/cputable.h>
56 #include <asm/cacheflush.h>
57 #include <linux/uaccess.h>
58 #include <asm/interrupt.h>
59 #include <asm/io.h>
60 #include <asm/kvm_ppc.h>
61 #include <asm/kvm_book3s.h>
62 #include <asm/mmu_context.h>
63 #include <asm/lppaca.h>
64 #include <asm/pmc.h>
65 #include <asm/processor.h>
66 #include <asm/cputhreads.h>
67 #include <asm/page.h>
68 #include <asm/hvcall.h>
69 #include <asm/switch_to.h>
70 #include <asm/smp.h>
71 #include <asm/dbell.h>
72 #include <asm/hmi.h>
73 #include <asm/pnv-pci.h>
74 #include <asm/mmu.h>
75 #include <asm/opal.h>
76 #include <asm/xics.h>
77 #include <asm/xive.h>
78 #include <asm/hw_breakpoint.h>
79 #include <asm/kvm_book3s_uvmem.h>
80 #include <asm/ultravisor.h>
81 #include <asm/dtl.h>
82 #include <asm/plpar_wrappers.h>
83
84 #include <trace/events/ipi.h>
85
86 #include "book3s.h"
87 #include "book3s_hv.h"
88
89 #define CREATE_TRACE_POINTS
90 #include "trace_hv.h"
91
92 /* #define EXIT_DEBUG */
93 /* #define EXIT_DEBUG_SIMPLE */
94 /* #define EXIT_DEBUG_INT */
95
96 /* Used to indicate that a guest page fault needs to be handled */
97 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
98 /* Used to indicate that a guest passthrough interrupt needs to be handled */
99 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
100
101 /* Used as a "null" value for timebase values */
102 #define TB_NIL (~(u64)0)
103
104 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
105
106 static int dynamic_mt_modes = 6;
107 module_param(dynamic_mt_modes, int, 0644);
108 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
109 static int target_smt_mode;
110 module_param(target_smt_mode, int, 0644);
111 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
112
113 static bool one_vm_per_core;
114 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
115 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
116
117 #ifdef CONFIG_KVM_XICS
118 static const struct kernel_param_ops module_param_ops = {
119 .set = param_set_int,
120 .get = param_get_int,
121 };
122
123 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
124 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
125
126 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
127 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
128 #endif
129
130 /* If set, guests are allowed to create and control nested guests */
131 static bool nested = true;
132 module_param(nested, bool, S_IRUGO | S_IWUSR);
133 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
134
135 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
136
137 /*
138 * RWMR values for POWER8. These control the rate at which PURR
139 * and SPURR count and should be set according to the number of
140 * online threads in the vcore being run.
141 */
142 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
143 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
144 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
145 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
146 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
147 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
148 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
149 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
150
151 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
152 RWMR_RPA_P8_1THREAD,
153 RWMR_RPA_P8_1THREAD,
154 RWMR_RPA_P8_2THREAD,
155 RWMR_RPA_P8_3THREAD,
156 RWMR_RPA_P8_4THREAD,
157 RWMR_RPA_P8_5THREAD,
158 RWMR_RPA_P8_6THREAD,
159 RWMR_RPA_P8_7THREAD,
160 RWMR_RPA_P8_8THREAD,
161 };
162
next_runnable_thread(struct kvmppc_vcore * vc,int * ip)163 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
164 int *ip)
165 {
166 int i = *ip;
167 struct kvm_vcpu *vcpu;
168
169 while (++i < MAX_SMT_THREADS) {
170 vcpu = READ_ONCE(vc->runnable_threads[i]);
171 if (vcpu) {
172 *ip = i;
173 return vcpu;
174 }
175 }
176 return NULL;
177 }
178
179 /* Used to traverse the list of runnable threads for a given vcore */
180 #define for_each_runnable_thread(i, vcpu, vc) \
181 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
182
kvmppc_ipi_thread(int cpu)183 static bool kvmppc_ipi_thread(int cpu)
184 {
185 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
186
187 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
188 if (kvmhv_on_pseries())
189 return false;
190
191 /* On POWER9 we can use msgsnd to IPI any cpu */
192 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
193 msg |= get_hard_smp_processor_id(cpu);
194 smp_mb();
195 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
196 return true;
197 }
198
199 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
200 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
201 preempt_disable();
202 if (cpu_first_thread_sibling(cpu) ==
203 cpu_first_thread_sibling(smp_processor_id())) {
204 msg |= cpu_thread_in_core(cpu);
205 smp_mb();
206 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
207 preempt_enable();
208 return true;
209 }
210 preempt_enable();
211 }
212
213 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
214 if (cpu >= 0 && cpu < nr_cpu_ids) {
215 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
216 xics_wake_cpu(cpu);
217 return true;
218 }
219 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
220 return true;
221 }
222 #endif
223
224 return false;
225 }
226
kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu * vcpu)227 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
228 {
229 int cpu;
230 struct rcuwait *waitp;
231
232 /*
233 * rcuwait_wake_up contains smp_mb() which orders prior stores that
234 * create pending work vs below loads of cpu fields. The other side
235 * is the barrier in vcpu run that orders setting the cpu fields vs
236 * testing for pending work.
237 */
238
239 waitp = kvm_arch_vcpu_get_wait(vcpu);
240 if (rcuwait_wake_up(waitp))
241 ++vcpu->stat.generic.halt_wakeup;
242
243 cpu = READ_ONCE(vcpu->arch.thread_cpu);
244 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
245 return;
246
247 /* CPU points to the first thread of the core */
248 cpu = vcpu->cpu;
249 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
250 smp_send_reschedule(cpu);
251 }
252
253 /*
254 * We use the vcpu_load/put functions to measure stolen time.
255 *
256 * Stolen time is counted as time when either the vcpu is able to
257 * run as part of a virtual core, but the task running the vcore
258 * is preempted or sleeping, or when the vcpu needs something done
259 * in the kernel by the task running the vcpu, but that task is
260 * preempted or sleeping. Those two things have to be counted
261 * separately, since one of the vcpu tasks will take on the job
262 * of running the core, and the other vcpu tasks in the vcore will
263 * sleep waiting for it to do that, but that sleep shouldn't count
264 * as stolen time.
265 *
266 * Hence we accumulate stolen time when the vcpu can run as part of
267 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
268 * needs its task to do other things in the kernel (for example,
269 * service a page fault) in busy_stolen. We don't accumulate
270 * stolen time for a vcore when it is inactive, or for a vcpu
271 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
272 * a misnomer; it means that the vcpu task is not executing in
273 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
274 * the kernel. We don't have any way of dividing up that time
275 * between time that the vcpu is genuinely stopped, time that
276 * the task is actively working on behalf of the vcpu, and time
277 * that the task is preempted, so we don't count any of it as
278 * stolen.
279 *
280 * Updates to busy_stolen are protected by arch.tbacct_lock;
281 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
282 * lock. The stolen times are measured in units of timebase ticks.
283 * (Note that the != TB_NIL checks below are purely defensive;
284 * they should never fail.)
285 *
286 * The POWER9 path is simpler, one vcpu per virtual core so the
287 * former case does not exist. If a vcpu is preempted when it is
288 * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate
289 * the stolen cycles in busy_stolen. RUNNING is not a preemptible
290 * state in the P9 path.
291 */
292
kvmppc_core_start_stolen(struct kvmppc_vcore * vc,u64 tb)293 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
294 {
295 unsigned long flags;
296
297 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
298
299 spin_lock_irqsave(&vc->stoltb_lock, flags);
300 vc->preempt_tb = tb;
301 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
302 }
303
kvmppc_core_end_stolen(struct kvmppc_vcore * vc,u64 tb)304 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
305 {
306 unsigned long flags;
307
308 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
309
310 spin_lock_irqsave(&vc->stoltb_lock, flags);
311 if (vc->preempt_tb != TB_NIL) {
312 vc->stolen_tb += tb - vc->preempt_tb;
313 vc->preempt_tb = TB_NIL;
314 }
315 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
316 }
317
kvmppc_core_vcpu_load_hv(struct kvm_vcpu * vcpu,int cpu)318 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
319 {
320 struct kvmppc_vcore *vc = vcpu->arch.vcore;
321 unsigned long flags;
322 u64 now;
323
324 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
325 if (vcpu->arch.busy_preempt != TB_NIL) {
326 WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST);
327 vc->stolen_tb += mftb() - vcpu->arch.busy_preempt;
328 vcpu->arch.busy_preempt = TB_NIL;
329 }
330 return;
331 }
332
333 now = mftb();
334
335 /*
336 * We can test vc->runner without taking the vcore lock,
337 * because only this task ever sets vc->runner to this
338 * vcpu, and once it is set to this vcpu, only this task
339 * ever sets it to NULL.
340 */
341 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
342 kvmppc_core_end_stolen(vc, now);
343
344 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
345 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
346 vcpu->arch.busy_preempt != TB_NIL) {
347 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
348 vcpu->arch.busy_preempt = TB_NIL;
349 }
350 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
351 }
352
kvmppc_core_vcpu_put_hv(struct kvm_vcpu * vcpu)353 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
354 {
355 struct kvmppc_vcore *vc = vcpu->arch.vcore;
356 unsigned long flags;
357 u64 now;
358
359 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
360 /*
361 * In the P9 path, RUNNABLE is not preemptible
362 * (nor takes host interrupts)
363 */
364 WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE);
365 /*
366 * Account stolen time when preempted while the vcpu task is
367 * running in the kernel (but not in qemu, which is INACTIVE).
368 */
369 if (task_is_running(current) &&
370 vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
371 vcpu->arch.busy_preempt = mftb();
372 return;
373 }
374
375 now = mftb();
376
377 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
378 kvmppc_core_start_stolen(vc, now);
379
380 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
381 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
382 vcpu->arch.busy_preempt = now;
383 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
384 }
385
kvmppc_set_pvr_hv(struct kvm_vcpu * vcpu,u32 pvr)386 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
387 {
388 vcpu->arch.pvr = pvr;
389 }
390
391 /* Dummy value used in computing PCR value below */
392 #define PCR_ARCH_31 (PCR_ARCH_300 << 1)
393
kvmppc_set_arch_compat(struct kvm_vcpu * vcpu,u32 arch_compat)394 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
395 {
396 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
397 struct kvmppc_vcore *vc = vcpu->arch.vcore;
398
399 /* We can (emulate) our own architecture version and anything older */
400 if (cpu_has_feature(CPU_FTR_ARCH_31))
401 host_pcr_bit = PCR_ARCH_31;
402 else if (cpu_has_feature(CPU_FTR_ARCH_300))
403 host_pcr_bit = PCR_ARCH_300;
404 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
405 host_pcr_bit = PCR_ARCH_207;
406 else if (cpu_has_feature(CPU_FTR_ARCH_206))
407 host_pcr_bit = PCR_ARCH_206;
408 else
409 host_pcr_bit = PCR_ARCH_205;
410
411 /* Determine lowest PCR bit needed to run guest in given PVR level */
412 guest_pcr_bit = host_pcr_bit;
413 if (arch_compat) {
414 switch (arch_compat) {
415 case PVR_ARCH_205:
416 guest_pcr_bit = PCR_ARCH_205;
417 break;
418 case PVR_ARCH_206:
419 case PVR_ARCH_206p:
420 guest_pcr_bit = PCR_ARCH_206;
421 break;
422 case PVR_ARCH_207:
423 guest_pcr_bit = PCR_ARCH_207;
424 break;
425 case PVR_ARCH_300:
426 guest_pcr_bit = PCR_ARCH_300;
427 break;
428 case PVR_ARCH_31:
429 guest_pcr_bit = PCR_ARCH_31;
430 break;
431 default:
432 return -EINVAL;
433 }
434 }
435
436 /* Check requested PCR bits don't exceed our capabilities */
437 if (guest_pcr_bit > host_pcr_bit)
438 return -EINVAL;
439
440 spin_lock(&vc->lock);
441 vc->arch_compat = arch_compat;
442 /*
443 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
444 * Also set all reserved PCR bits
445 */
446 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
447 spin_unlock(&vc->lock);
448
449 return 0;
450 }
451
kvmppc_dump_regs(struct kvm_vcpu * vcpu)452 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
453 {
454 int r;
455
456 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
457 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
458 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
459 for (r = 0; r < 16; ++r)
460 pr_err("r%2d = %.16lx r%d = %.16lx\n",
461 r, kvmppc_get_gpr(vcpu, r),
462 r+16, kvmppc_get_gpr(vcpu, r+16));
463 pr_err("ctr = %.16lx lr = %.16lx\n",
464 vcpu->arch.regs.ctr, vcpu->arch.regs.link);
465 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
466 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
467 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
468 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
469 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
470 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
471 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
472 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
473 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
474 pr_err("fault dar = %.16lx dsisr = %.8x\n",
475 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
476 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
477 for (r = 0; r < vcpu->arch.slb_max; ++r)
478 pr_err(" ESID = %.16llx VSID = %.16llx\n",
479 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
480 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n",
481 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
482 vcpu->arch.last_inst);
483 }
484
kvmppc_find_vcpu(struct kvm * kvm,int id)485 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
486 {
487 return kvm_get_vcpu_by_id(kvm, id);
488 }
489
init_vpa(struct kvm_vcpu * vcpu,struct lppaca * vpa)490 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
491 {
492 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
493 vpa->yield_count = cpu_to_be32(1);
494 }
495
set_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * v,unsigned long addr,unsigned long len)496 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
497 unsigned long addr, unsigned long len)
498 {
499 /* check address is cacheline aligned */
500 if (addr & (L1_CACHE_BYTES - 1))
501 return -EINVAL;
502 spin_lock(&vcpu->arch.vpa_update_lock);
503 if (v->next_gpa != addr || v->len != len) {
504 v->next_gpa = addr;
505 v->len = addr ? len : 0;
506 v->update_pending = 1;
507 }
508 spin_unlock(&vcpu->arch.vpa_update_lock);
509 return 0;
510 }
511
512 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
513 struct reg_vpa {
514 u32 dummy;
515 union {
516 __be16 hword;
517 __be32 word;
518 } length;
519 };
520
vpa_is_registered(struct kvmppc_vpa * vpap)521 static int vpa_is_registered(struct kvmppc_vpa *vpap)
522 {
523 if (vpap->update_pending)
524 return vpap->next_gpa != 0;
525 return vpap->pinned_addr != NULL;
526 }
527
do_h_register_vpa(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long vcpuid,unsigned long vpa)528 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
529 unsigned long flags,
530 unsigned long vcpuid, unsigned long vpa)
531 {
532 struct kvm *kvm = vcpu->kvm;
533 unsigned long len, nb;
534 void *va;
535 struct kvm_vcpu *tvcpu;
536 int err;
537 int subfunc;
538 struct kvmppc_vpa *vpap;
539
540 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
541 if (!tvcpu)
542 return H_PARAMETER;
543
544 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
545 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
546 subfunc == H_VPA_REG_SLB) {
547 /* Registering new area - address must be cache-line aligned */
548 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
549 return H_PARAMETER;
550
551 /* convert logical addr to kernel addr and read length */
552 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
553 if (va == NULL)
554 return H_PARAMETER;
555 if (subfunc == H_VPA_REG_VPA)
556 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
557 else
558 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
559 kvmppc_unpin_guest_page(kvm, va, vpa, false);
560
561 /* Check length */
562 if (len > nb || len < sizeof(struct reg_vpa))
563 return H_PARAMETER;
564 } else {
565 vpa = 0;
566 len = 0;
567 }
568
569 err = H_PARAMETER;
570 vpap = NULL;
571 spin_lock(&tvcpu->arch.vpa_update_lock);
572
573 switch (subfunc) {
574 case H_VPA_REG_VPA: /* register VPA */
575 /*
576 * The size of our lppaca is 1kB because of the way we align
577 * it for the guest to avoid crossing a 4kB boundary. We only
578 * use 640 bytes of the structure though, so we should accept
579 * clients that set a size of 640.
580 */
581 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
582 if (len < sizeof(struct lppaca))
583 break;
584 vpap = &tvcpu->arch.vpa;
585 err = 0;
586 break;
587
588 case H_VPA_REG_DTL: /* register DTL */
589 if (len < sizeof(struct dtl_entry))
590 break;
591 len -= len % sizeof(struct dtl_entry);
592
593 /* Check that they have previously registered a VPA */
594 err = H_RESOURCE;
595 if (!vpa_is_registered(&tvcpu->arch.vpa))
596 break;
597
598 vpap = &tvcpu->arch.dtl;
599 err = 0;
600 break;
601
602 case H_VPA_REG_SLB: /* register SLB shadow buffer */
603 /* Check that they have previously registered a VPA */
604 err = H_RESOURCE;
605 if (!vpa_is_registered(&tvcpu->arch.vpa))
606 break;
607
608 vpap = &tvcpu->arch.slb_shadow;
609 err = 0;
610 break;
611
612 case H_VPA_DEREG_VPA: /* deregister VPA */
613 /* Check they don't still have a DTL or SLB buf registered */
614 err = H_RESOURCE;
615 if (vpa_is_registered(&tvcpu->arch.dtl) ||
616 vpa_is_registered(&tvcpu->arch.slb_shadow))
617 break;
618
619 vpap = &tvcpu->arch.vpa;
620 err = 0;
621 break;
622
623 case H_VPA_DEREG_DTL: /* deregister DTL */
624 vpap = &tvcpu->arch.dtl;
625 err = 0;
626 break;
627
628 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
629 vpap = &tvcpu->arch.slb_shadow;
630 err = 0;
631 break;
632 }
633
634 if (vpap) {
635 vpap->next_gpa = vpa;
636 vpap->len = len;
637 vpap->update_pending = 1;
638 }
639
640 spin_unlock(&tvcpu->arch.vpa_update_lock);
641
642 return err;
643 }
644
kvmppc_update_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * vpap)645 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
646 {
647 struct kvm *kvm = vcpu->kvm;
648 void *va;
649 unsigned long nb;
650 unsigned long gpa;
651
652 /*
653 * We need to pin the page pointed to by vpap->next_gpa,
654 * but we can't call kvmppc_pin_guest_page under the lock
655 * as it does get_user_pages() and down_read(). So we
656 * have to drop the lock, pin the page, then get the lock
657 * again and check that a new area didn't get registered
658 * in the meantime.
659 */
660 for (;;) {
661 gpa = vpap->next_gpa;
662 spin_unlock(&vcpu->arch.vpa_update_lock);
663 va = NULL;
664 nb = 0;
665 if (gpa)
666 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
667 spin_lock(&vcpu->arch.vpa_update_lock);
668 if (gpa == vpap->next_gpa)
669 break;
670 /* sigh... unpin that one and try again */
671 if (va)
672 kvmppc_unpin_guest_page(kvm, va, gpa, false);
673 }
674
675 vpap->update_pending = 0;
676 if (va && nb < vpap->len) {
677 /*
678 * If it's now too short, it must be that userspace
679 * has changed the mappings underlying guest memory,
680 * so unregister the region.
681 */
682 kvmppc_unpin_guest_page(kvm, va, gpa, false);
683 va = NULL;
684 }
685 if (vpap->pinned_addr)
686 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
687 vpap->dirty);
688 vpap->gpa = gpa;
689 vpap->pinned_addr = va;
690 vpap->dirty = false;
691 if (va)
692 vpap->pinned_end = va + vpap->len;
693 }
694
kvmppc_update_vpas(struct kvm_vcpu * vcpu)695 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
696 {
697 if (!(vcpu->arch.vpa.update_pending ||
698 vcpu->arch.slb_shadow.update_pending ||
699 vcpu->arch.dtl.update_pending))
700 return;
701
702 spin_lock(&vcpu->arch.vpa_update_lock);
703 if (vcpu->arch.vpa.update_pending) {
704 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
705 if (vcpu->arch.vpa.pinned_addr)
706 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
707 }
708 if (vcpu->arch.dtl.update_pending) {
709 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
710 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
711 vcpu->arch.dtl_index = 0;
712 }
713 if (vcpu->arch.slb_shadow.update_pending)
714 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
715 spin_unlock(&vcpu->arch.vpa_update_lock);
716 }
717
718 /*
719 * Return the accumulated stolen time for the vcore up until `now'.
720 * The caller should hold the vcore lock.
721 */
vcore_stolen_time(struct kvmppc_vcore * vc,u64 now)722 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
723 {
724 u64 p;
725 unsigned long flags;
726
727 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
728
729 spin_lock_irqsave(&vc->stoltb_lock, flags);
730 p = vc->stolen_tb;
731 if (vc->vcore_state != VCORE_INACTIVE &&
732 vc->preempt_tb != TB_NIL)
733 p += now - vc->preempt_tb;
734 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
735 return p;
736 }
737
__kvmppc_create_dtl_entry(struct kvm_vcpu * vcpu,struct lppaca * vpa,unsigned int pcpu,u64 now,unsigned long stolen)738 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
739 struct lppaca *vpa,
740 unsigned int pcpu, u64 now,
741 unsigned long stolen)
742 {
743 struct dtl_entry *dt;
744
745 dt = vcpu->arch.dtl_ptr;
746
747 if (!dt)
748 return;
749
750 dt->dispatch_reason = 7;
751 dt->preempt_reason = 0;
752 dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
753 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
754 dt->ready_to_enqueue_time = 0;
755 dt->waiting_to_ready_time = 0;
756 dt->timebase = cpu_to_be64(now);
757 dt->fault_addr = 0;
758 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
759 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
760
761 ++dt;
762 if (dt == vcpu->arch.dtl.pinned_end)
763 dt = vcpu->arch.dtl.pinned_addr;
764 vcpu->arch.dtl_ptr = dt;
765 /* order writing *dt vs. writing vpa->dtl_idx */
766 smp_wmb();
767 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
768
769 /* vcpu->arch.dtl.dirty is set by the caller */
770 }
771
kvmppc_update_vpa_dispatch(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)772 static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu,
773 struct kvmppc_vcore *vc)
774 {
775 struct lppaca *vpa;
776 unsigned long stolen;
777 unsigned long core_stolen;
778 u64 now;
779 unsigned long flags;
780
781 vpa = vcpu->arch.vpa.pinned_addr;
782 if (!vpa)
783 return;
784
785 now = mftb();
786
787 core_stolen = vcore_stolen_time(vc, now);
788 stolen = core_stolen - vcpu->arch.stolen_logged;
789 vcpu->arch.stolen_logged = core_stolen;
790 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
791 stolen += vcpu->arch.busy_stolen;
792 vcpu->arch.busy_stolen = 0;
793 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
794
795 vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen);
796
797 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + vc->tb_offset, stolen);
798
799 vcpu->arch.vpa.dirty = true;
800 }
801
kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc,u64 now)802 static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu,
803 struct kvmppc_vcore *vc,
804 u64 now)
805 {
806 struct lppaca *vpa;
807 unsigned long stolen;
808 unsigned long stolen_delta;
809
810 vpa = vcpu->arch.vpa.pinned_addr;
811 if (!vpa)
812 return;
813
814 stolen = vc->stolen_tb;
815 stolen_delta = stolen - vcpu->arch.stolen_logged;
816 vcpu->arch.stolen_logged = stolen;
817
818 vpa->enqueue_dispatch_tb = cpu_to_be64(stolen);
819
820 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta);
821
822 vcpu->arch.vpa.dirty = true;
823 }
824
825 /* See if there is a doorbell interrupt pending for a vcpu */
kvmppc_doorbell_pending(struct kvm_vcpu * vcpu)826 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
827 {
828 int thr;
829 struct kvmppc_vcore *vc;
830
831 if (vcpu->arch.doorbell_request)
832 return true;
833 if (cpu_has_feature(CPU_FTR_ARCH_300))
834 return false;
835 /*
836 * Ensure that the read of vcore->dpdes comes after the read
837 * of vcpu->doorbell_request. This barrier matches the
838 * smp_wmb() in kvmppc_guest_entry_inject().
839 */
840 smp_rmb();
841 vc = vcpu->arch.vcore;
842 thr = vcpu->vcpu_id - vc->first_vcpuid;
843 return !!(vc->dpdes & (1 << thr));
844 }
845
kvmppc_power8_compatible(struct kvm_vcpu * vcpu)846 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
847 {
848 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
849 return true;
850 if ((!vcpu->arch.vcore->arch_compat) &&
851 cpu_has_feature(CPU_FTR_ARCH_207S))
852 return true;
853 return false;
854 }
855
kvmppc_h_set_mode(struct kvm_vcpu * vcpu,unsigned long mflags,unsigned long resource,unsigned long value1,unsigned long value2)856 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
857 unsigned long resource, unsigned long value1,
858 unsigned long value2)
859 {
860 switch (resource) {
861 case H_SET_MODE_RESOURCE_SET_CIABR:
862 if (!kvmppc_power8_compatible(vcpu))
863 return H_P2;
864 if (value2)
865 return H_P4;
866 if (mflags)
867 return H_UNSUPPORTED_FLAG_START;
868 /* Guests can't breakpoint the hypervisor */
869 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
870 return H_P3;
871 kvmppc_set_ciabr_hv(vcpu, value1);
872 return H_SUCCESS;
873 case H_SET_MODE_RESOURCE_SET_DAWR0:
874 if (!kvmppc_power8_compatible(vcpu))
875 return H_P2;
876 if (!ppc_breakpoint_available())
877 return H_P2;
878 if (mflags)
879 return H_UNSUPPORTED_FLAG_START;
880 if (value2 & DABRX_HYP)
881 return H_P4;
882 kvmppc_set_dawr0_hv(vcpu, value1);
883 kvmppc_set_dawrx0_hv(vcpu, value2);
884 return H_SUCCESS;
885 case H_SET_MODE_RESOURCE_SET_DAWR1:
886 if (!kvmppc_power8_compatible(vcpu))
887 return H_P2;
888 if (!ppc_breakpoint_available())
889 return H_P2;
890 if (!cpu_has_feature(CPU_FTR_DAWR1))
891 return H_P2;
892 if (!vcpu->kvm->arch.dawr1_enabled)
893 return H_FUNCTION;
894 if (mflags)
895 return H_UNSUPPORTED_FLAG_START;
896 if (value2 & DABRX_HYP)
897 return H_P4;
898 kvmppc_set_dawr1_hv(vcpu, value1);
899 kvmppc_set_dawrx1_hv(vcpu, value2);
900 return H_SUCCESS;
901 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
902 /*
903 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
904 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
905 */
906 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
907 kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
908 return H_UNSUPPORTED_FLAG_START;
909 return H_TOO_HARD;
910 default:
911 return H_TOO_HARD;
912 }
913 }
914
915 /* Copy guest memory in place - must reside within a single memslot */
kvmppc_copy_guest(struct kvm * kvm,gpa_t to,gpa_t from,unsigned long len)916 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
917 unsigned long len)
918 {
919 struct kvm_memory_slot *to_memslot = NULL;
920 struct kvm_memory_slot *from_memslot = NULL;
921 unsigned long to_addr, from_addr;
922 int r;
923
924 /* Get HPA for from address */
925 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
926 if (!from_memslot)
927 return -EFAULT;
928 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
929 << PAGE_SHIFT))
930 return -EINVAL;
931 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
932 if (kvm_is_error_hva(from_addr))
933 return -EFAULT;
934 from_addr |= (from & (PAGE_SIZE - 1));
935
936 /* Get HPA for to address */
937 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
938 if (!to_memslot)
939 return -EFAULT;
940 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
941 << PAGE_SHIFT))
942 return -EINVAL;
943 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
944 if (kvm_is_error_hva(to_addr))
945 return -EFAULT;
946 to_addr |= (to & (PAGE_SIZE - 1));
947
948 /* Perform copy */
949 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
950 len);
951 if (r)
952 return -EFAULT;
953 mark_page_dirty(kvm, to >> PAGE_SHIFT);
954 return 0;
955 }
956
kvmppc_h_page_init(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long dest,unsigned long src)957 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
958 unsigned long dest, unsigned long src)
959 {
960 u64 pg_sz = SZ_4K; /* 4K page size */
961 u64 pg_mask = SZ_4K - 1;
962 int ret;
963
964 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
965 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
966 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
967 return H_PARAMETER;
968
969 /* dest (and src if copy_page flag set) must be page aligned */
970 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
971 return H_PARAMETER;
972
973 /* zero and/or copy the page as determined by the flags */
974 if (flags & H_COPY_PAGE) {
975 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
976 if (ret < 0)
977 return H_PARAMETER;
978 } else if (flags & H_ZERO_PAGE) {
979 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
980 if (ret < 0)
981 return H_PARAMETER;
982 }
983
984 /* We can ignore the remaining flags */
985
986 return H_SUCCESS;
987 }
988
kvm_arch_vcpu_yield_to(struct kvm_vcpu * target)989 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
990 {
991 struct kvmppc_vcore *vcore = target->arch.vcore;
992
993 /*
994 * We expect to have been called by the real mode handler
995 * (kvmppc_rm_h_confer()) which would have directly returned
996 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
997 * have useful work to do and should not confer) so we don't
998 * recheck that here.
999 *
1000 * In the case of the P9 single vcpu per vcore case, the real
1001 * mode handler is not called but no other threads are in the
1002 * source vcore.
1003 */
1004 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1005 spin_lock(&vcore->lock);
1006 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
1007 vcore->vcore_state != VCORE_INACTIVE &&
1008 vcore->runner)
1009 target = vcore->runner;
1010 spin_unlock(&vcore->lock);
1011 }
1012
1013 return kvm_vcpu_yield_to(target);
1014 }
1015
kvmppc_get_yield_count(struct kvm_vcpu * vcpu)1016 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
1017 {
1018 int yield_count = 0;
1019 struct lppaca *lppaca;
1020
1021 spin_lock(&vcpu->arch.vpa_update_lock);
1022 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
1023 if (lppaca)
1024 yield_count = be32_to_cpu(lppaca->yield_count);
1025 spin_unlock(&vcpu->arch.vpa_update_lock);
1026 return yield_count;
1027 }
1028
1029 /*
1030 * H_RPT_INVALIDATE hcall handler for nested guests.
1031 *
1032 * Handles only nested process-scoped invalidation requests in L0.
1033 */
kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu * vcpu)1034 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
1035 {
1036 unsigned long type = kvmppc_get_gpr(vcpu, 6);
1037 unsigned long pid, pg_sizes, start, end;
1038
1039 /*
1040 * The partition-scoped invalidations aren't handled here in L0.
1041 */
1042 if (type & H_RPTI_TYPE_NESTED)
1043 return RESUME_HOST;
1044
1045 pid = kvmppc_get_gpr(vcpu, 4);
1046 pg_sizes = kvmppc_get_gpr(vcpu, 7);
1047 start = kvmppc_get_gpr(vcpu, 8);
1048 end = kvmppc_get_gpr(vcpu, 9);
1049
1050 do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
1051 type, pg_sizes, start, end);
1052
1053 kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
1054 return RESUME_GUEST;
1055 }
1056
kvmppc_h_rpt_invalidate(struct kvm_vcpu * vcpu,unsigned long id,unsigned long target,unsigned long type,unsigned long pg_sizes,unsigned long start,unsigned long end)1057 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
1058 unsigned long id, unsigned long target,
1059 unsigned long type, unsigned long pg_sizes,
1060 unsigned long start, unsigned long end)
1061 {
1062 if (!kvm_is_radix(vcpu->kvm))
1063 return H_UNSUPPORTED;
1064
1065 if (end < start)
1066 return H_P5;
1067
1068 /*
1069 * Partition-scoped invalidation for nested guests.
1070 */
1071 if (type & H_RPTI_TYPE_NESTED) {
1072 if (!nesting_enabled(vcpu->kvm))
1073 return H_FUNCTION;
1074
1075 /* Support only cores as target */
1076 if (target != H_RPTI_TARGET_CMMU)
1077 return H_P2;
1078
1079 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1080 start, end);
1081 }
1082
1083 /*
1084 * Process-scoped invalidation for L1 guests.
1085 */
1086 do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1087 type, pg_sizes, start, end);
1088 return H_SUCCESS;
1089 }
1090
kvmppc_pseries_do_hcall(struct kvm_vcpu * vcpu)1091 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1092 {
1093 struct kvm *kvm = vcpu->kvm;
1094 unsigned long req = kvmppc_get_gpr(vcpu, 3);
1095 unsigned long target, ret = H_SUCCESS;
1096 int yield_count;
1097 struct kvm_vcpu *tvcpu;
1098 int idx, rc;
1099
1100 if (req <= MAX_HCALL_OPCODE &&
1101 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1102 return RESUME_HOST;
1103
1104 switch (req) {
1105 case H_REMOVE:
1106 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1107 kvmppc_get_gpr(vcpu, 5),
1108 kvmppc_get_gpr(vcpu, 6));
1109 if (ret == H_TOO_HARD)
1110 return RESUME_HOST;
1111 break;
1112 case H_ENTER:
1113 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1114 kvmppc_get_gpr(vcpu, 5),
1115 kvmppc_get_gpr(vcpu, 6),
1116 kvmppc_get_gpr(vcpu, 7));
1117 if (ret == H_TOO_HARD)
1118 return RESUME_HOST;
1119 break;
1120 case H_READ:
1121 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1122 kvmppc_get_gpr(vcpu, 5));
1123 if (ret == H_TOO_HARD)
1124 return RESUME_HOST;
1125 break;
1126 case H_CLEAR_MOD:
1127 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1128 kvmppc_get_gpr(vcpu, 5));
1129 if (ret == H_TOO_HARD)
1130 return RESUME_HOST;
1131 break;
1132 case H_CLEAR_REF:
1133 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1134 kvmppc_get_gpr(vcpu, 5));
1135 if (ret == H_TOO_HARD)
1136 return RESUME_HOST;
1137 break;
1138 case H_PROTECT:
1139 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1140 kvmppc_get_gpr(vcpu, 5),
1141 kvmppc_get_gpr(vcpu, 6));
1142 if (ret == H_TOO_HARD)
1143 return RESUME_HOST;
1144 break;
1145 case H_BULK_REMOVE:
1146 ret = kvmppc_h_bulk_remove(vcpu);
1147 if (ret == H_TOO_HARD)
1148 return RESUME_HOST;
1149 break;
1150
1151 case H_CEDE:
1152 break;
1153 case H_PROD:
1154 target = kvmppc_get_gpr(vcpu, 4);
1155 tvcpu = kvmppc_find_vcpu(kvm, target);
1156 if (!tvcpu) {
1157 ret = H_PARAMETER;
1158 break;
1159 }
1160 tvcpu->arch.prodded = 1;
1161 smp_mb(); /* This orders prodded store vs ceded load */
1162 if (tvcpu->arch.ceded)
1163 kvmppc_fast_vcpu_kick_hv(tvcpu);
1164 break;
1165 case H_CONFER:
1166 target = kvmppc_get_gpr(vcpu, 4);
1167 if (target == -1)
1168 break;
1169 tvcpu = kvmppc_find_vcpu(kvm, target);
1170 if (!tvcpu) {
1171 ret = H_PARAMETER;
1172 break;
1173 }
1174 yield_count = kvmppc_get_gpr(vcpu, 5);
1175 if (kvmppc_get_yield_count(tvcpu) != yield_count)
1176 break;
1177 kvm_arch_vcpu_yield_to(tvcpu);
1178 break;
1179 case H_REGISTER_VPA:
1180 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1181 kvmppc_get_gpr(vcpu, 5),
1182 kvmppc_get_gpr(vcpu, 6));
1183 break;
1184 case H_RTAS:
1185 if (list_empty(&kvm->arch.rtas_tokens))
1186 return RESUME_HOST;
1187
1188 idx = srcu_read_lock(&kvm->srcu);
1189 rc = kvmppc_rtas_hcall(vcpu);
1190 srcu_read_unlock(&kvm->srcu, idx);
1191
1192 if (rc == -ENOENT)
1193 return RESUME_HOST;
1194 else if (rc == 0)
1195 break;
1196
1197 /* Send the error out to userspace via KVM_RUN */
1198 return rc;
1199 case H_LOGICAL_CI_LOAD:
1200 ret = kvmppc_h_logical_ci_load(vcpu);
1201 if (ret == H_TOO_HARD)
1202 return RESUME_HOST;
1203 break;
1204 case H_LOGICAL_CI_STORE:
1205 ret = kvmppc_h_logical_ci_store(vcpu);
1206 if (ret == H_TOO_HARD)
1207 return RESUME_HOST;
1208 break;
1209 case H_SET_MODE:
1210 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1211 kvmppc_get_gpr(vcpu, 5),
1212 kvmppc_get_gpr(vcpu, 6),
1213 kvmppc_get_gpr(vcpu, 7));
1214 if (ret == H_TOO_HARD)
1215 return RESUME_HOST;
1216 break;
1217 case H_XIRR:
1218 case H_CPPR:
1219 case H_EOI:
1220 case H_IPI:
1221 case H_IPOLL:
1222 case H_XIRR_X:
1223 if (kvmppc_xics_enabled(vcpu)) {
1224 if (xics_on_xive()) {
1225 ret = H_NOT_AVAILABLE;
1226 return RESUME_GUEST;
1227 }
1228 ret = kvmppc_xics_hcall(vcpu, req);
1229 break;
1230 }
1231 return RESUME_HOST;
1232 case H_SET_DABR:
1233 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1234 break;
1235 case H_SET_XDABR:
1236 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1237 kvmppc_get_gpr(vcpu, 5));
1238 break;
1239 #ifdef CONFIG_SPAPR_TCE_IOMMU
1240 case H_GET_TCE:
1241 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1242 kvmppc_get_gpr(vcpu, 5));
1243 if (ret == H_TOO_HARD)
1244 return RESUME_HOST;
1245 break;
1246 case H_PUT_TCE:
1247 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1248 kvmppc_get_gpr(vcpu, 5),
1249 kvmppc_get_gpr(vcpu, 6));
1250 if (ret == H_TOO_HARD)
1251 return RESUME_HOST;
1252 break;
1253 case H_PUT_TCE_INDIRECT:
1254 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1255 kvmppc_get_gpr(vcpu, 5),
1256 kvmppc_get_gpr(vcpu, 6),
1257 kvmppc_get_gpr(vcpu, 7));
1258 if (ret == H_TOO_HARD)
1259 return RESUME_HOST;
1260 break;
1261 case H_STUFF_TCE:
1262 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1263 kvmppc_get_gpr(vcpu, 5),
1264 kvmppc_get_gpr(vcpu, 6),
1265 kvmppc_get_gpr(vcpu, 7));
1266 if (ret == H_TOO_HARD)
1267 return RESUME_HOST;
1268 break;
1269 #endif
1270 case H_RANDOM:
1271 if (!arch_get_random_seed_longs(&vcpu->arch.regs.gpr[4], 1))
1272 ret = H_HARDWARE;
1273 break;
1274 case H_RPT_INVALIDATE:
1275 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1276 kvmppc_get_gpr(vcpu, 5),
1277 kvmppc_get_gpr(vcpu, 6),
1278 kvmppc_get_gpr(vcpu, 7),
1279 kvmppc_get_gpr(vcpu, 8),
1280 kvmppc_get_gpr(vcpu, 9));
1281 break;
1282
1283 case H_SET_PARTITION_TABLE:
1284 ret = H_FUNCTION;
1285 if (nesting_enabled(kvm))
1286 ret = kvmhv_set_partition_table(vcpu);
1287 break;
1288 case H_ENTER_NESTED:
1289 ret = H_FUNCTION;
1290 if (!nesting_enabled(kvm))
1291 break;
1292 ret = kvmhv_enter_nested_guest(vcpu);
1293 if (ret == H_INTERRUPT) {
1294 kvmppc_set_gpr(vcpu, 3, 0);
1295 vcpu->arch.hcall_needed = 0;
1296 return -EINTR;
1297 } else if (ret == H_TOO_HARD) {
1298 kvmppc_set_gpr(vcpu, 3, 0);
1299 vcpu->arch.hcall_needed = 0;
1300 return RESUME_HOST;
1301 }
1302 break;
1303 case H_TLB_INVALIDATE:
1304 ret = H_FUNCTION;
1305 if (nesting_enabled(kvm))
1306 ret = kvmhv_do_nested_tlbie(vcpu);
1307 break;
1308 case H_COPY_TOFROM_GUEST:
1309 ret = H_FUNCTION;
1310 if (nesting_enabled(kvm))
1311 ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1312 break;
1313 case H_PAGE_INIT:
1314 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1315 kvmppc_get_gpr(vcpu, 5),
1316 kvmppc_get_gpr(vcpu, 6));
1317 break;
1318 case H_SVM_PAGE_IN:
1319 ret = H_UNSUPPORTED;
1320 if (kvmppc_get_srr1(vcpu) & MSR_S)
1321 ret = kvmppc_h_svm_page_in(kvm,
1322 kvmppc_get_gpr(vcpu, 4),
1323 kvmppc_get_gpr(vcpu, 5),
1324 kvmppc_get_gpr(vcpu, 6));
1325 break;
1326 case H_SVM_PAGE_OUT:
1327 ret = H_UNSUPPORTED;
1328 if (kvmppc_get_srr1(vcpu) & MSR_S)
1329 ret = kvmppc_h_svm_page_out(kvm,
1330 kvmppc_get_gpr(vcpu, 4),
1331 kvmppc_get_gpr(vcpu, 5),
1332 kvmppc_get_gpr(vcpu, 6));
1333 break;
1334 case H_SVM_INIT_START:
1335 ret = H_UNSUPPORTED;
1336 if (kvmppc_get_srr1(vcpu) & MSR_S)
1337 ret = kvmppc_h_svm_init_start(kvm);
1338 break;
1339 case H_SVM_INIT_DONE:
1340 ret = H_UNSUPPORTED;
1341 if (kvmppc_get_srr1(vcpu) & MSR_S)
1342 ret = kvmppc_h_svm_init_done(kvm);
1343 break;
1344 case H_SVM_INIT_ABORT:
1345 /*
1346 * Even if that call is made by the Ultravisor, the SSR1 value
1347 * is the guest context one, with the secure bit clear as it has
1348 * not yet been secured. So we can't check it here.
1349 * Instead the kvm->arch.secure_guest flag is checked inside
1350 * kvmppc_h_svm_init_abort().
1351 */
1352 ret = kvmppc_h_svm_init_abort(kvm);
1353 break;
1354
1355 default:
1356 return RESUME_HOST;
1357 }
1358 WARN_ON_ONCE(ret == H_TOO_HARD);
1359 kvmppc_set_gpr(vcpu, 3, ret);
1360 vcpu->arch.hcall_needed = 0;
1361 return RESUME_GUEST;
1362 }
1363
1364 /*
1365 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1366 * handlers in book3s_hv_rmhandlers.S.
1367 *
1368 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1369 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1370 */
kvmppc_cede(struct kvm_vcpu * vcpu)1371 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1372 {
1373 __kvmppc_set_msr_hv(vcpu, __kvmppc_get_msr_hv(vcpu) | MSR_EE);
1374 vcpu->arch.ceded = 1;
1375 smp_mb();
1376 if (vcpu->arch.prodded) {
1377 vcpu->arch.prodded = 0;
1378 smp_mb();
1379 vcpu->arch.ceded = 0;
1380 }
1381 }
1382
kvmppc_hcall_impl_hv(unsigned long cmd)1383 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1384 {
1385 switch (cmd) {
1386 case H_CEDE:
1387 case H_PROD:
1388 case H_CONFER:
1389 case H_REGISTER_VPA:
1390 case H_SET_MODE:
1391 #ifdef CONFIG_SPAPR_TCE_IOMMU
1392 case H_GET_TCE:
1393 case H_PUT_TCE:
1394 case H_PUT_TCE_INDIRECT:
1395 case H_STUFF_TCE:
1396 #endif
1397 case H_LOGICAL_CI_LOAD:
1398 case H_LOGICAL_CI_STORE:
1399 #ifdef CONFIG_KVM_XICS
1400 case H_XIRR:
1401 case H_CPPR:
1402 case H_EOI:
1403 case H_IPI:
1404 case H_IPOLL:
1405 case H_XIRR_X:
1406 #endif
1407 case H_PAGE_INIT:
1408 case H_RPT_INVALIDATE:
1409 return 1;
1410 }
1411
1412 /* See if it's in the real-mode table */
1413 return kvmppc_hcall_impl_hv_realmode(cmd);
1414 }
1415
kvmppc_emulate_debug_inst(struct kvm_vcpu * vcpu)1416 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1417 {
1418 ppc_inst_t last_inst;
1419
1420 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1421 EMULATE_DONE) {
1422 /*
1423 * Fetch failed, so return to guest and
1424 * try executing it again.
1425 */
1426 return RESUME_GUEST;
1427 }
1428
1429 if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) {
1430 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1431 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1432 return RESUME_HOST;
1433 } else {
1434 kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1435 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1436 return RESUME_GUEST;
1437 }
1438 }
1439
do_nothing(void * x)1440 static void do_nothing(void *x)
1441 {
1442 }
1443
kvmppc_read_dpdes(struct kvm_vcpu * vcpu)1444 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1445 {
1446 int thr, cpu, pcpu, nthreads;
1447 struct kvm_vcpu *v;
1448 unsigned long dpdes;
1449
1450 nthreads = vcpu->kvm->arch.emul_smt_mode;
1451 dpdes = 0;
1452 cpu = vcpu->vcpu_id & ~(nthreads - 1);
1453 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1454 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1455 if (!v)
1456 continue;
1457 /*
1458 * If the vcpu is currently running on a physical cpu thread,
1459 * interrupt it in order to pull it out of the guest briefly,
1460 * which will update its vcore->dpdes value.
1461 */
1462 pcpu = READ_ONCE(v->cpu);
1463 if (pcpu >= 0)
1464 smp_call_function_single(pcpu, do_nothing, NULL, 1);
1465 if (kvmppc_doorbell_pending(v))
1466 dpdes |= 1 << thr;
1467 }
1468 return dpdes;
1469 }
1470
1471 /*
1472 * On POWER9, emulate doorbell-related instructions in order to
1473 * give the guest the illusion of running on a multi-threaded core.
1474 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1475 * and mfspr DPDES.
1476 */
kvmppc_emulate_doorbell_instr(struct kvm_vcpu * vcpu)1477 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1478 {
1479 u32 inst, rb, thr;
1480 unsigned long arg;
1481 struct kvm *kvm = vcpu->kvm;
1482 struct kvm_vcpu *tvcpu;
1483 ppc_inst_t pinst;
1484
1485 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE)
1486 return RESUME_GUEST;
1487 inst = ppc_inst_val(pinst);
1488 if (get_op(inst) != 31)
1489 return EMULATE_FAIL;
1490 rb = get_rb(inst);
1491 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1492 switch (get_xop(inst)) {
1493 case OP_31_XOP_MSGSNDP:
1494 arg = kvmppc_get_gpr(vcpu, rb);
1495 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1496 break;
1497 arg &= 0x7f;
1498 if (arg >= kvm->arch.emul_smt_mode)
1499 break;
1500 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1501 if (!tvcpu)
1502 break;
1503 if (!tvcpu->arch.doorbell_request) {
1504 tvcpu->arch.doorbell_request = 1;
1505 kvmppc_fast_vcpu_kick_hv(tvcpu);
1506 }
1507 break;
1508 case OP_31_XOP_MSGCLRP:
1509 arg = kvmppc_get_gpr(vcpu, rb);
1510 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1511 break;
1512 vcpu->arch.vcore->dpdes = 0;
1513 vcpu->arch.doorbell_request = 0;
1514 break;
1515 case OP_31_XOP_MFSPR:
1516 switch (get_sprn(inst)) {
1517 case SPRN_TIR:
1518 arg = thr;
1519 break;
1520 case SPRN_DPDES:
1521 arg = kvmppc_read_dpdes(vcpu);
1522 break;
1523 default:
1524 return EMULATE_FAIL;
1525 }
1526 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1527 break;
1528 default:
1529 return EMULATE_FAIL;
1530 }
1531 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1532 return RESUME_GUEST;
1533 }
1534
1535 /*
1536 * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1537 * HFSCR_PM is cleared for next entry. If the guest then tries to access
1538 * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1539 * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1540 * allow the guest access to continue.
1541 */
kvmppc_pmu_unavailable(struct kvm_vcpu * vcpu)1542 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1543 {
1544 if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1545 return EMULATE_FAIL;
1546
1547 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PM);
1548
1549 return RESUME_GUEST;
1550 }
1551
kvmppc_ebb_unavailable(struct kvm_vcpu * vcpu)1552 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1553 {
1554 if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1555 return EMULATE_FAIL;
1556
1557 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_EBB);
1558
1559 return RESUME_GUEST;
1560 }
1561
kvmppc_tm_unavailable(struct kvm_vcpu * vcpu)1562 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1563 {
1564 if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1565 return EMULATE_FAIL;
1566
1567 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
1568
1569 return RESUME_GUEST;
1570 }
1571
kvmppc_handle_exit_hv(struct kvm_vcpu * vcpu,struct task_struct * tsk)1572 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1573 struct task_struct *tsk)
1574 {
1575 struct kvm_run *run = vcpu->run;
1576 int r = RESUME_HOST;
1577
1578 vcpu->stat.sum_exits++;
1579
1580 /*
1581 * This can happen if an interrupt occurs in the last stages
1582 * of guest entry or the first stages of guest exit (i.e. after
1583 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1584 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1585 * That can happen due to a bug, or due to a machine check
1586 * occurring at just the wrong time.
1587 */
1588 if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) {
1589 printk(KERN_EMERG "KVM trap in HV mode!\n");
1590 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1591 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1592 vcpu->arch.shregs.msr);
1593 kvmppc_dump_regs(vcpu);
1594 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1595 run->hw.hardware_exit_reason = vcpu->arch.trap;
1596 return RESUME_HOST;
1597 }
1598 run->exit_reason = KVM_EXIT_UNKNOWN;
1599 run->ready_for_interrupt_injection = 1;
1600 switch (vcpu->arch.trap) {
1601 /* We're good on these - the host merely wanted to get our attention */
1602 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1603 WARN_ON_ONCE(1); /* Should never happen */
1604 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1605 fallthrough;
1606 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1607 vcpu->stat.dec_exits++;
1608 r = RESUME_GUEST;
1609 break;
1610 case BOOK3S_INTERRUPT_EXTERNAL:
1611 case BOOK3S_INTERRUPT_H_DOORBELL:
1612 case BOOK3S_INTERRUPT_H_VIRT:
1613 vcpu->stat.ext_intr_exits++;
1614 r = RESUME_GUEST;
1615 break;
1616 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1617 case BOOK3S_INTERRUPT_HMI:
1618 case BOOK3S_INTERRUPT_PERFMON:
1619 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1620 r = RESUME_GUEST;
1621 break;
1622 case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1623 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1624 DEFAULT_RATELIMIT_BURST);
1625 /*
1626 * Print the MCE event to host console. Ratelimit so the guest
1627 * can't flood the host log.
1628 */
1629 if (__ratelimit(&rs))
1630 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1631
1632 /*
1633 * If the guest can do FWNMI, exit to userspace so it can
1634 * deliver a FWNMI to the guest.
1635 * Otherwise we synthesize a machine check for the guest
1636 * so that it knows that the machine check occurred.
1637 */
1638 if (!vcpu->kvm->arch.fwnmi_enabled) {
1639 ulong flags = (__kvmppc_get_msr_hv(vcpu) & 0x083c0000) |
1640 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1641 kvmppc_core_queue_machine_check(vcpu, flags);
1642 r = RESUME_GUEST;
1643 break;
1644 }
1645
1646 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1647 run->exit_reason = KVM_EXIT_NMI;
1648 run->hw.hardware_exit_reason = vcpu->arch.trap;
1649 /* Clear out the old NMI status from run->flags */
1650 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1651 /* Now set the NMI status */
1652 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1653 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1654 else
1655 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1656
1657 r = RESUME_HOST;
1658 break;
1659 }
1660 case BOOK3S_INTERRUPT_PROGRAM:
1661 {
1662 ulong flags;
1663 /*
1664 * Normally program interrupts are delivered directly
1665 * to the guest by the hardware, but we can get here
1666 * as a result of a hypervisor emulation interrupt
1667 * (e40) getting turned into a 700 by BML RTAS.
1668 */
1669 flags = (__kvmppc_get_msr_hv(vcpu) & 0x1f0000ull) |
1670 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1671 kvmppc_core_queue_program(vcpu, flags);
1672 r = RESUME_GUEST;
1673 break;
1674 }
1675 case BOOK3S_INTERRUPT_SYSCALL:
1676 {
1677 int i;
1678
1679 if (unlikely(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
1680 /*
1681 * Guest userspace executed sc 1. This can only be
1682 * reached by the P9 path because the old path
1683 * handles this case in realmode hcall handlers.
1684 */
1685 if (!kvmhv_vcpu_is_radix(vcpu)) {
1686 /*
1687 * A guest could be running PR KVM, so this
1688 * may be a PR KVM hcall. It must be reflected
1689 * to the guest kernel as a sc interrupt.
1690 */
1691 kvmppc_core_queue_syscall(vcpu);
1692 } else {
1693 /*
1694 * Radix guests can not run PR KVM or nested HV
1695 * hash guests which might run PR KVM, so this
1696 * is always a privilege fault. Send a program
1697 * check to guest kernel.
1698 */
1699 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1700 }
1701 r = RESUME_GUEST;
1702 break;
1703 }
1704
1705 /*
1706 * hcall - gather args and set exit_reason. This will next be
1707 * handled by kvmppc_pseries_do_hcall which may be able to deal
1708 * with it and resume guest, or may punt to userspace.
1709 */
1710 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1711 for (i = 0; i < 9; ++i)
1712 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1713 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1714 vcpu->arch.hcall_needed = 1;
1715 r = RESUME_HOST;
1716 break;
1717 }
1718 /*
1719 * We get these next two if the guest accesses a page which it thinks
1720 * it has mapped but which is not actually present, either because
1721 * it is for an emulated I/O device or because the corresonding
1722 * host page has been paged out.
1723 *
1724 * Any other HDSI/HISI interrupts have been handled already for P7/8
1725 * guests. For POWER9 hash guests not using rmhandlers, basic hash
1726 * fault handling is done here.
1727 */
1728 case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1729 unsigned long vsid;
1730 long err;
1731
1732 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1733 unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1734 r = RESUME_GUEST; /* Just retry if it's the canary */
1735 break;
1736 }
1737
1738 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1739 /*
1740 * Radix doesn't require anything, and pre-ISAv3.0 hash
1741 * already attempted to handle this in rmhandlers. The
1742 * hash fault handling below is v3 only (it uses ASDR
1743 * via fault_gpa).
1744 */
1745 r = RESUME_PAGE_FAULT;
1746 break;
1747 }
1748
1749 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1750 kvmppc_core_queue_data_storage(vcpu,
1751 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1752 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1753 r = RESUME_GUEST;
1754 break;
1755 }
1756
1757 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_DR))
1758 vsid = vcpu->kvm->arch.vrma_slb_v;
1759 else
1760 vsid = vcpu->arch.fault_gpa;
1761
1762 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1763 vsid, vcpu->arch.fault_dsisr, true);
1764 if (err == 0) {
1765 r = RESUME_GUEST;
1766 } else if (err == -1 || err == -2) {
1767 r = RESUME_PAGE_FAULT;
1768 } else {
1769 kvmppc_core_queue_data_storage(vcpu,
1770 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1771 vcpu->arch.fault_dar, err);
1772 r = RESUME_GUEST;
1773 }
1774 break;
1775 }
1776 case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1777 unsigned long vsid;
1778 long err;
1779
1780 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1781 vcpu->arch.fault_dsisr = __kvmppc_get_msr_hv(vcpu) &
1782 DSISR_SRR1_MATCH_64S;
1783 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1784 /*
1785 * Radix doesn't require anything, and pre-ISAv3.0 hash
1786 * already attempted to handle this in rmhandlers. The
1787 * hash fault handling below is v3 only (it uses ASDR
1788 * via fault_gpa).
1789 */
1790 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
1791 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1792 r = RESUME_PAGE_FAULT;
1793 break;
1794 }
1795
1796 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1797 kvmppc_core_queue_inst_storage(vcpu,
1798 vcpu->arch.fault_dsisr |
1799 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1800 r = RESUME_GUEST;
1801 break;
1802 }
1803
1804 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_IR))
1805 vsid = vcpu->kvm->arch.vrma_slb_v;
1806 else
1807 vsid = vcpu->arch.fault_gpa;
1808
1809 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1810 vsid, vcpu->arch.fault_dsisr, false);
1811 if (err == 0) {
1812 r = RESUME_GUEST;
1813 } else if (err == -1) {
1814 r = RESUME_PAGE_FAULT;
1815 } else {
1816 kvmppc_core_queue_inst_storage(vcpu,
1817 err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1818 r = RESUME_GUEST;
1819 }
1820 break;
1821 }
1822
1823 /*
1824 * This occurs if the guest executes an illegal instruction.
1825 * If the guest debug is disabled, generate a program interrupt
1826 * to the guest. If guest debug is enabled, we need to check
1827 * whether the instruction is a software breakpoint instruction.
1828 * Accordingly return to Guest or Host.
1829 */
1830 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1831 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1832 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1833 swab32(vcpu->arch.emul_inst) :
1834 vcpu->arch.emul_inst;
1835 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1836 r = kvmppc_emulate_debug_inst(vcpu);
1837 } else {
1838 kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1839 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1840 r = RESUME_GUEST;
1841 }
1842 break;
1843
1844 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1845 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1846 /*
1847 * This occurs for various TM-related instructions that
1848 * we need to emulate on POWER9 DD2.2. We have already
1849 * handled the cases where the guest was in real-suspend
1850 * mode and was transitioning to transactional state.
1851 */
1852 r = kvmhv_p9_tm_emulation(vcpu);
1853 if (r != -1)
1854 break;
1855 fallthrough; /* go to facility unavailable handler */
1856 #endif
1857
1858 /*
1859 * This occurs if the guest (kernel or userspace), does something that
1860 * is prohibited by HFSCR.
1861 * On POWER9, this could be a doorbell instruction that we need
1862 * to emulate.
1863 * Otherwise, we just generate a program interrupt to the guest.
1864 */
1865 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1866 u64 cause = kvmppc_get_hfscr_hv(vcpu) >> 56;
1867
1868 r = EMULATE_FAIL;
1869 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1870 if (cause == FSCR_MSGP_LG)
1871 r = kvmppc_emulate_doorbell_instr(vcpu);
1872 if (cause == FSCR_PM_LG)
1873 r = kvmppc_pmu_unavailable(vcpu);
1874 if (cause == FSCR_EBB_LG)
1875 r = kvmppc_ebb_unavailable(vcpu);
1876 if (cause == FSCR_TM_LG)
1877 r = kvmppc_tm_unavailable(vcpu);
1878 }
1879 if (r == EMULATE_FAIL) {
1880 kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1881 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1882 r = RESUME_GUEST;
1883 }
1884 break;
1885 }
1886
1887 case BOOK3S_INTERRUPT_HV_RM_HARD:
1888 r = RESUME_PASSTHROUGH;
1889 break;
1890 default:
1891 kvmppc_dump_regs(vcpu);
1892 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1893 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1894 __kvmppc_get_msr_hv(vcpu));
1895 run->hw.hardware_exit_reason = vcpu->arch.trap;
1896 r = RESUME_HOST;
1897 break;
1898 }
1899
1900 return r;
1901 }
1902
kvmppc_handle_nested_exit(struct kvm_vcpu * vcpu)1903 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1904 {
1905 int r;
1906 int srcu_idx;
1907
1908 vcpu->stat.sum_exits++;
1909
1910 /*
1911 * This can happen if an interrupt occurs in the last stages
1912 * of guest entry or the first stages of guest exit (i.e. after
1913 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1914 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1915 * That can happen due to a bug, or due to a machine check
1916 * occurring at just the wrong time.
1917 */
1918 if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) {
1919 pr_emerg("KVM trap in HV mode while nested!\n");
1920 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1921 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1922 __kvmppc_get_msr_hv(vcpu));
1923 kvmppc_dump_regs(vcpu);
1924 return RESUME_HOST;
1925 }
1926 switch (vcpu->arch.trap) {
1927 /* We're good on these - the host merely wanted to get our attention */
1928 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1929 vcpu->stat.dec_exits++;
1930 r = RESUME_GUEST;
1931 break;
1932 case BOOK3S_INTERRUPT_EXTERNAL:
1933 vcpu->stat.ext_intr_exits++;
1934 r = RESUME_HOST;
1935 break;
1936 case BOOK3S_INTERRUPT_H_DOORBELL:
1937 case BOOK3S_INTERRUPT_H_VIRT:
1938 vcpu->stat.ext_intr_exits++;
1939 r = RESUME_GUEST;
1940 break;
1941 /* These need to go to the nested HV */
1942 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1943 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1944 vcpu->stat.dec_exits++;
1945 r = RESUME_HOST;
1946 break;
1947 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1948 case BOOK3S_INTERRUPT_HMI:
1949 case BOOK3S_INTERRUPT_PERFMON:
1950 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1951 r = RESUME_GUEST;
1952 break;
1953 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1954 {
1955 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1956 DEFAULT_RATELIMIT_BURST);
1957 /* Pass the machine check to the L1 guest */
1958 r = RESUME_HOST;
1959 /* Print the MCE event to host console. */
1960 if (__ratelimit(&rs))
1961 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1962 break;
1963 }
1964 /*
1965 * We get these next two if the guest accesses a page which it thinks
1966 * it has mapped but which is not actually present, either because
1967 * it is for an emulated I/O device or because the corresonding
1968 * host page has been paged out.
1969 */
1970 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1971 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1972 r = kvmhv_nested_page_fault(vcpu);
1973 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1974 break;
1975 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1976 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1977 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1978 DSISR_SRR1_MATCH_64S;
1979 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
1980 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1981 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1982 r = kvmhv_nested_page_fault(vcpu);
1983 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1984 break;
1985
1986 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1987 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1988 /*
1989 * This occurs for various TM-related instructions that
1990 * we need to emulate on POWER9 DD2.2. We have already
1991 * handled the cases where the guest was in real-suspend
1992 * mode and was transitioning to transactional state.
1993 */
1994 r = kvmhv_p9_tm_emulation(vcpu);
1995 if (r != -1)
1996 break;
1997 fallthrough; /* go to facility unavailable handler */
1998 #endif
1999
2000 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
2001 u64 cause = vcpu->arch.hfscr >> 56;
2002
2003 /*
2004 * Only pass HFU interrupts to the L1 if the facility is
2005 * permitted but disabled by the L1's HFSCR, otherwise
2006 * the interrupt does not make sense to the L1 so turn
2007 * it into a HEAI.
2008 */
2009 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
2010 (vcpu->arch.nested_hfscr & (1UL << cause))) {
2011 ppc_inst_t pinst;
2012 vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
2013
2014 /*
2015 * If the fetch failed, return to guest and
2016 * try executing it again.
2017 */
2018 r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst);
2019 vcpu->arch.emul_inst = ppc_inst_val(pinst);
2020 if (r != EMULATE_DONE)
2021 r = RESUME_GUEST;
2022 else
2023 r = RESUME_HOST;
2024 } else {
2025 r = RESUME_HOST;
2026 }
2027
2028 break;
2029 }
2030
2031 case BOOK3S_INTERRUPT_HV_RM_HARD:
2032 vcpu->arch.trap = 0;
2033 r = RESUME_GUEST;
2034 if (!xics_on_xive())
2035 kvmppc_xics_rm_complete(vcpu, 0);
2036 break;
2037 case BOOK3S_INTERRUPT_SYSCALL:
2038 {
2039 unsigned long req = kvmppc_get_gpr(vcpu, 3);
2040
2041 /*
2042 * The H_RPT_INVALIDATE hcalls issued by nested
2043 * guests for process-scoped invalidations when
2044 * GTSE=0, are handled here in L0.
2045 */
2046 if (req == H_RPT_INVALIDATE) {
2047 r = kvmppc_nested_h_rpt_invalidate(vcpu);
2048 break;
2049 }
2050
2051 r = RESUME_HOST;
2052 break;
2053 }
2054 default:
2055 r = RESUME_HOST;
2056 break;
2057 }
2058
2059 return r;
2060 }
2061
kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)2062 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
2063 struct kvm_sregs *sregs)
2064 {
2065 int i;
2066
2067 memset(sregs, 0, sizeof(struct kvm_sregs));
2068 sregs->pvr = vcpu->arch.pvr;
2069 for (i = 0; i < vcpu->arch.slb_max; i++) {
2070 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
2071 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
2072 }
2073
2074 return 0;
2075 }
2076
kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)2077 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
2078 struct kvm_sregs *sregs)
2079 {
2080 int i, j;
2081
2082 /* Only accept the same PVR as the host's, since we can't spoof it */
2083 if (sregs->pvr != vcpu->arch.pvr)
2084 return -EINVAL;
2085
2086 j = 0;
2087 for (i = 0; i < vcpu->arch.slb_nr; i++) {
2088 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2089 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2090 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2091 ++j;
2092 }
2093 }
2094 vcpu->arch.slb_max = j;
2095
2096 return 0;
2097 }
2098
2099 /*
2100 * Enforce limits on guest LPCR values based on hardware availability,
2101 * guest configuration, and possibly hypervisor support and security
2102 * concerns.
2103 */
kvmppc_filter_lpcr_hv(struct kvm * kvm,unsigned long lpcr)2104 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2105 {
2106 /* LPCR_TC only applies to HPT guests */
2107 if (kvm_is_radix(kvm))
2108 lpcr &= ~LPCR_TC;
2109
2110 /* On POWER8 and above, userspace can modify AIL */
2111 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2112 lpcr &= ~LPCR_AIL;
2113 if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2114 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2115 /*
2116 * On some POWER9s we force AIL off for radix guests to prevent
2117 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2118 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2119 * be cached, which the host TLB management does not expect.
2120 */
2121 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2122 lpcr &= ~LPCR_AIL;
2123
2124 /*
2125 * On POWER9, allow userspace to enable large decrementer for the
2126 * guest, whether or not the host has it enabled.
2127 */
2128 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2129 lpcr &= ~LPCR_LD;
2130
2131 return lpcr;
2132 }
2133
verify_lpcr(struct kvm * kvm,unsigned long lpcr)2134 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2135 {
2136 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2137 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2138 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2139 }
2140 }
2141
kvmppc_set_lpcr(struct kvm_vcpu * vcpu,u64 new_lpcr,bool preserve_top32)2142 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2143 bool preserve_top32)
2144 {
2145 struct kvm *kvm = vcpu->kvm;
2146 struct kvmppc_vcore *vc = vcpu->arch.vcore;
2147 u64 mask;
2148
2149 spin_lock(&vc->lock);
2150
2151 /*
2152 * Userspace can only modify
2153 * DPFD (default prefetch depth), ILE (interrupt little-endian),
2154 * TC (translation control), AIL (alternate interrupt location),
2155 * LD (large decrementer).
2156 * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2157 */
2158 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2159
2160 /* Broken 32-bit version of LPCR must not clear top bits */
2161 if (preserve_top32)
2162 mask &= 0xFFFFFFFF;
2163
2164 new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2165 (vc->lpcr & ~mask) | (new_lpcr & mask));
2166
2167 /*
2168 * If ILE (interrupt little-endian) has changed, update the
2169 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2170 */
2171 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2172 struct kvm_vcpu *vcpu;
2173 unsigned long i;
2174
2175 kvm_for_each_vcpu(i, vcpu, kvm) {
2176 if (vcpu->arch.vcore != vc)
2177 continue;
2178 if (new_lpcr & LPCR_ILE)
2179 vcpu->arch.intr_msr |= MSR_LE;
2180 else
2181 vcpu->arch.intr_msr &= ~MSR_LE;
2182 }
2183 }
2184
2185 vc->lpcr = new_lpcr;
2186
2187 spin_unlock(&vc->lock);
2188 }
2189
kvmppc_get_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)2190 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2191 union kvmppc_one_reg *val)
2192 {
2193 int r = 0;
2194 long int i;
2195
2196 switch (id) {
2197 case KVM_REG_PPC_DEBUG_INST:
2198 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2199 break;
2200 case KVM_REG_PPC_HIOR:
2201 *val = get_reg_val(id, 0);
2202 break;
2203 case KVM_REG_PPC_DABR:
2204 *val = get_reg_val(id, vcpu->arch.dabr);
2205 break;
2206 case KVM_REG_PPC_DABRX:
2207 *val = get_reg_val(id, vcpu->arch.dabrx);
2208 break;
2209 case KVM_REG_PPC_DSCR:
2210 *val = get_reg_val(id, kvmppc_get_dscr_hv(vcpu));
2211 break;
2212 case KVM_REG_PPC_PURR:
2213 *val = get_reg_val(id, kvmppc_get_purr_hv(vcpu));
2214 break;
2215 case KVM_REG_PPC_SPURR:
2216 *val = get_reg_val(id, kvmppc_get_spurr_hv(vcpu));
2217 break;
2218 case KVM_REG_PPC_AMR:
2219 *val = get_reg_val(id, kvmppc_get_amr_hv(vcpu));
2220 break;
2221 case KVM_REG_PPC_UAMOR:
2222 *val = get_reg_val(id, kvmppc_get_uamor_hv(vcpu));
2223 break;
2224 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2225 i = id - KVM_REG_PPC_MMCR0;
2226 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i));
2227 break;
2228 case KVM_REG_PPC_MMCR2:
2229 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 2));
2230 break;
2231 case KVM_REG_PPC_MMCRA:
2232 *val = get_reg_val(id, kvmppc_get_mmcra_hv(vcpu));
2233 break;
2234 case KVM_REG_PPC_MMCRS:
2235 *val = get_reg_val(id, vcpu->arch.mmcrs);
2236 break;
2237 case KVM_REG_PPC_MMCR3:
2238 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 3));
2239 break;
2240 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2241 i = id - KVM_REG_PPC_PMC1;
2242 *val = get_reg_val(id, kvmppc_get_pmc_hv(vcpu, i));
2243 break;
2244 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2245 i = id - KVM_REG_PPC_SPMC1;
2246 *val = get_reg_val(id, vcpu->arch.spmc[i]);
2247 break;
2248 case KVM_REG_PPC_SIAR:
2249 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
2250 break;
2251 case KVM_REG_PPC_SDAR:
2252 *val = get_reg_val(id, kvmppc_get_sdar_hv(vcpu));
2253 break;
2254 case KVM_REG_PPC_SIER:
2255 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 0));
2256 break;
2257 case KVM_REG_PPC_SIER2:
2258 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 1));
2259 break;
2260 case KVM_REG_PPC_SIER3:
2261 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 2));
2262 break;
2263 case KVM_REG_PPC_IAMR:
2264 *val = get_reg_val(id, kvmppc_get_iamr_hv(vcpu));
2265 break;
2266 case KVM_REG_PPC_PSPB:
2267 *val = get_reg_val(id, kvmppc_get_pspb_hv(vcpu));
2268 break;
2269 case KVM_REG_PPC_DPDES:
2270 /*
2271 * On POWER9, where we are emulating msgsndp etc.,
2272 * we return 1 bit for each vcpu, which can come from
2273 * either vcore->dpdes or doorbell_request.
2274 * On POWER8, doorbell_request is 0.
2275 */
2276 if (cpu_has_feature(CPU_FTR_ARCH_300))
2277 *val = get_reg_val(id, vcpu->arch.doorbell_request);
2278 else
2279 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2280 break;
2281 case KVM_REG_PPC_VTB:
2282 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
2283 break;
2284 case KVM_REG_PPC_DAWR:
2285 *val = get_reg_val(id, kvmppc_get_dawr0_hv(vcpu));
2286 break;
2287 case KVM_REG_PPC_DAWRX:
2288 *val = get_reg_val(id, kvmppc_get_dawrx0_hv(vcpu));
2289 break;
2290 case KVM_REG_PPC_DAWR1:
2291 *val = get_reg_val(id, kvmppc_get_dawr1_hv(vcpu));
2292 break;
2293 case KVM_REG_PPC_DAWRX1:
2294 *val = get_reg_val(id, kvmppc_get_dawrx1_hv(vcpu));
2295 break;
2296 case KVM_REG_PPC_CIABR:
2297 *val = get_reg_val(id, kvmppc_get_ciabr_hv(vcpu));
2298 break;
2299 case KVM_REG_PPC_CSIGR:
2300 *val = get_reg_val(id, vcpu->arch.csigr);
2301 break;
2302 case KVM_REG_PPC_TACR:
2303 *val = get_reg_val(id, vcpu->arch.tacr);
2304 break;
2305 case KVM_REG_PPC_TCSCR:
2306 *val = get_reg_val(id, vcpu->arch.tcscr);
2307 break;
2308 case KVM_REG_PPC_PID:
2309 *val = get_reg_val(id, vcpu->arch.pid);
2310 break;
2311 case KVM_REG_PPC_ACOP:
2312 *val = get_reg_val(id, vcpu->arch.acop);
2313 break;
2314 case KVM_REG_PPC_WORT:
2315 *val = get_reg_val(id, kvmppc_get_wort_hv(vcpu));
2316 break;
2317 case KVM_REG_PPC_TIDR:
2318 *val = get_reg_val(id, vcpu->arch.tid);
2319 break;
2320 case KVM_REG_PPC_PSSCR:
2321 *val = get_reg_val(id, vcpu->arch.psscr);
2322 break;
2323 case KVM_REG_PPC_VPA_ADDR:
2324 spin_lock(&vcpu->arch.vpa_update_lock);
2325 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2326 spin_unlock(&vcpu->arch.vpa_update_lock);
2327 break;
2328 case KVM_REG_PPC_VPA_SLB:
2329 spin_lock(&vcpu->arch.vpa_update_lock);
2330 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2331 val->vpaval.length = vcpu->arch.slb_shadow.len;
2332 spin_unlock(&vcpu->arch.vpa_update_lock);
2333 break;
2334 case KVM_REG_PPC_VPA_DTL:
2335 spin_lock(&vcpu->arch.vpa_update_lock);
2336 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2337 val->vpaval.length = vcpu->arch.dtl.len;
2338 spin_unlock(&vcpu->arch.vpa_update_lock);
2339 break;
2340 case KVM_REG_PPC_TB_OFFSET:
2341 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2342 break;
2343 case KVM_REG_PPC_LPCR:
2344 case KVM_REG_PPC_LPCR_64:
2345 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2346 break;
2347 case KVM_REG_PPC_PPR:
2348 *val = get_reg_val(id, kvmppc_get_ppr_hv(vcpu));
2349 break;
2350 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2351 case KVM_REG_PPC_TFHAR:
2352 *val = get_reg_val(id, vcpu->arch.tfhar);
2353 break;
2354 case KVM_REG_PPC_TFIAR:
2355 *val = get_reg_val(id, vcpu->arch.tfiar);
2356 break;
2357 case KVM_REG_PPC_TEXASR:
2358 *val = get_reg_val(id, vcpu->arch.texasr);
2359 break;
2360 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2361 i = id - KVM_REG_PPC_TM_GPR0;
2362 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2363 break;
2364 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2365 {
2366 int j;
2367 i = id - KVM_REG_PPC_TM_VSR0;
2368 if (i < 32)
2369 for (j = 0; j < TS_FPRWIDTH; j++)
2370 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2371 else {
2372 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2373 val->vval = vcpu->arch.vr_tm.vr[i-32];
2374 else
2375 r = -ENXIO;
2376 }
2377 break;
2378 }
2379 case KVM_REG_PPC_TM_CR:
2380 *val = get_reg_val(id, vcpu->arch.cr_tm);
2381 break;
2382 case KVM_REG_PPC_TM_XER:
2383 *val = get_reg_val(id, vcpu->arch.xer_tm);
2384 break;
2385 case KVM_REG_PPC_TM_LR:
2386 *val = get_reg_val(id, vcpu->arch.lr_tm);
2387 break;
2388 case KVM_REG_PPC_TM_CTR:
2389 *val = get_reg_val(id, vcpu->arch.ctr_tm);
2390 break;
2391 case KVM_REG_PPC_TM_FPSCR:
2392 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2393 break;
2394 case KVM_REG_PPC_TM_AMR:
2395 *val = get_reg_val(id, vcpu->arch.amr_tm);
2396 break;
2397 case KVM_REG_PPC_TM_PPR:
2398 *val = get_reg_val(id, vcpu->arch.ppr_tm);
2399 break;
2400 case KVM_REG_PPC_TM_VRSAVE:
2401 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2402 break;
2403 case KVM_REG_PPC_TM_VSCR:
2404 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2405 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2406 else
2407 r = -ENXIO;
2408 break;
2409 case KVM_REG_PPC_TM_DSCR:
2410 *val = get_reg_val(id, vcpu->arch.dscr_tm);
2411 break;
2412 case KVM_REG_PPC_TM_TAR:
2413 *val = get_reg_val(id, vcpu->arch.tar_tm);
2414 break;
2415 #endif
2416 case KVM_REG_PPC_ARCH_COMPAT:
2417 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2418 break;
2419 case KVM_REG_PPC_DEC_EXPIRY:
2420 *val = get_reg_val(id, vcpu->arch.dec_expires);
2421 break;
2422 case KVM_REG_PPC_ONLINE:
2423 *val = get_reg_val(id, vcpu->arch.online);
2424 break;
2425 case KVM_REG_PPC_PTCR:
2426 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2427 break;
2428 case KVM_REG_PPC_FSCR:
2429 *val = get_reg_val(id, kvmppc_get_fscr_hv(vcpu));
2430 break;
2431 default:
2432 r = -EINVAL;
2433 break;
2434 }
2435
2436 return r;
2437 }
2438
kvmppc_set_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)2439 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2440 union kvmppc_one_reg *val)
2441 {
2442 int r = 0;
2443 long int i;
2444 unsigned long addr, len;
2445
2446 switch (id) {
2447 case KVM_REG_PPC_HIOR:
2448 /* Only allow this to be set to zero */
2449 if (set_reg_val(id, *val))
2450 r = -EINVAL;
2451 break;
2452 case KVM_REG_PPC_DABR:
2453 vcpu->arch.dabr = set_reg_val(id, *val);
2454 break;
2455 case KVM_REG_PPC_DABRX:
2456 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2457 break;
2458 case KVM_REG_PPC_DSCR:
2459 kvmppc_set_dscr_hv(vcpu, set_reg_val(id, *val));
2460 break;
2461 case KVM_REG_PPC_PURR:
2462 kvmppc_set_purr_hv(vcpu, set_reg_val(id, *val));
2463 break;
2464 case KVM_REG_PPC_SPURR:
2465 kvmppc_set_spurr_hv(vcpu, set_reg_val(id, *val));
2466 break;
2467 case KVM_REG_PPC_AMR:
2468 kvmppc_set_amr_hv(vcpu, set_reg_val(id, *val));
2469 break;
2470 case KVM_REG_PPC_UAMOR:
2471 kvmppc_set_uamor_hv(vcpu, set_reg_val(id, *val));
2472 break;
2473 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2474 i = id - KVM_REG_PPC_MMCR0;
2475 kvmppc_set_mmcr_hv(vcpu, i, set_reg_val(id, *val));
2476 break;
2477 case KVM_REG_PPC_MMCR2:
2478 kvmppc_set_mmcr_hv(vcpu, 2, set_reg_val(id, *val));
2479 break;
2480 case KVM_REG_PPC_MMCRA:
2481 kvmppc_set_mmcra_hv(vcpu, set_reg_val(id, *val));
2482 break;
2483 case KVM_REG_PPC_MMCRS:
2484 vcpu->arch.mmcrs = set_reg_val(id, *val);
2485 break;
2486 case KVM_REG_PPC_MMCR3:
2487 kvmppc_set_mmcr_hv(vcpu, 3, set_reg_val(id, *val));
2488 break;
2489 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2490 i = id - KVM_REG_PPC_PMC1;
2491 kvmppc_set_pmc_hv(vcpu, i, set_reg_val(id, *val));
2492 break;
2493 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2494 i = id - KVM_REG_PPC_SPMC1;
2495 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2496 break;
2497 case KVM_REG_PPC_SIAR:
2498 kvmppc_set_siar_hv(vcpu, set_reg_val(id, *val));
2499 break;
2500 case KVM_REG_PPC_SDAR:
2501 kvmppc_set_sdar_hv(vcpu, set_reg_val(id, *val));
2502 break;
2503 case KVM_REG_PPC_SIER:
2504 kvmppc_set_sier_hv(vcpu, 0, set_reg_val(id, *val));
2505 break;
2506 case KVM_REG_PPC_SIER2:
2507 kvmppc_set_sier_hv(vcpu, 1, set_reg_val(id, *val));
2508 break;
2509 case KVM_REG_PPC_SIER3:
2510 kvmppc_set_sier_hv(vcpu, 2, set_reg_val(id, *val));
2511 break;
2512 case KVM_REG_PPC_IAMR:
2513 kvmppc_set_iamr_hv(vcpu, set_reg_val(id, *val));
2514 break;
2515 case KVM_REG_PPC_PSPB:
2516 kvmppc_set_pspb_hv(vcpu, set_reg_val(id, *val));
2517 break;
2518 case KVM_REG_PPC_DPDES:
2519 if (cpu_has_feature(CPU_FTR_ARCH_300))
2520 vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2521 else
2522 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2523 break;
2524 case KVM_REG_PPC_VTB:
2525 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2526 break;
2527 case KVM_REG_PPC_DAWR:
2528 kvmppc_set_dawr0_hv(vcpu, set_reg_val(id, *val));
2529 break;
2530 case KVM_REG_PPC_DAWRX:
2531 kvmppc_set_dawrx0_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2532 break;
2533 case KVM_REG_PPC_DAWR1:
2534 kvmppc_set_dawr1_hv(vcpu, set_reg_val(id, *val));
2535 break;
2536 case KVM_REG_PPC_DAWRX1:
2537 kvmppc_set_dawrx1_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2538 break;
2539 case KVM_REG_PPC_CIABR:
2540 kvmppc_set_ciabr_hv(vcpu, set_reg_val(id, *val));
2541 /* Don't allow setting breakpoints in hypervisor code */
2542 if ((kvmppc_get_ciabr_hv(vcpu) & CIABR_PRIV) == CIABR_PRIV_HYPER)
2543 kvmppc_set_ciabr_hv(vcpu, kvmppc_get_ciabr_hv(vcpu) & ~CIABR_PRIV);
2544 break;
2545 case KVM_REG_PPC_CSIGR:
2546 vcpu->arch.csigr = set_reg_val(id, *val);
2547 break;
2548 case KVM_REG_PPC_TACR:
2549 vcpu->arch.tacr = set_reg_val(id, *val);
2550 break;
2551 case KVM_REG_PPC_TCSCR:
2552 vcpu->arch.tcscr = set_reg_val(id, *val);
2553 break;
2554 case KVM_REG_PPC_PID:
2555 vcpu->arch.pid = set_reg_val(id, *val);
2556 break;
2557 case KVM_REG_PPC_ACOP:
2558 vcpu->arch.acop = set_reg_val(id, *val);
2559 break;
2560 case KVM_REG_PPC_WORT:
2561 kvmppc_set_wort_hv(vcpu, set_reg_val(id, *val));
2562 break;
2563 case KVM_REG_PPC_TIDR:
2564 vcpu->arch.tid = set_reg_val(id, *val);
2565 break;
2566 case KVM_REG_PPC_PSSCR:
2567 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2568 break;
2569 case KVM_REG_PPC_VPA_ADDR:
2570 addr = set_reg_val(id, *val);
2571 r = -EINVAL;
2572 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2573 vcpu->arch.dtl.next_gpa))
2574 break;
2575 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2576 break;
2577 case KVM_REG_PPC_VPA_SLB:
2578 addr = val->vpaval.addr;
2579 len = val->vpaval.length;
2580 r = -EINVAL;
2581 if (addr && !vcpu->arch.vpa.next_gpa)
2582 break;
2583 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2584 break;
2585 case KVM_REG_PPC_VPA_DTL:
2586 addr = val->vpaval.addr;
2587 len = val->vpaval.length;
2588 r = -EINVAL;
2589 if (addr && (len < sizeof(struct dtl_entry) ||
2590 !vcpu->arch.vpa.next_gpa))
2591 break;
2592 len -= len % sizeof(struct dtl_entry);
2593 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2594 break;
2595 case KVM_REG_PPC_TB_OFFSET:
2596 {
2597 /* round up to multiple of 2^24 */
2598 u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24);
2599
2600 /*
2601 * Now that we know the timebase offset, update the
2602 * decrementer expiry with a guest timebase value. If
2603 * the userspace does not set DEC_EXPIRY, this ensures
2604 * a migrated vcpu at least starts with an expired
2605 * decrementer, which is better than a large one that
2606 * causes a hang.
2607 */
2608 if (!vcpu->arch.dec_expires && tb_offset)
2609 vcpu->arch.dec_expires = get_tb() + tb_offset;
2610
2611 vcpu->arch.vcore->tb_offset = tb_offset;
2612 break;
2613 }
2614 case KVM_REG_PPC_LPCR:
2615 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2616 break;
2617 case KVM_REG_PPC_LPCR_64:
2618 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2619 break;
2620 case KVM_REG_PPC_PPR:
2621 kvmppc_set_ppr_hv(vcpu, set_reg_val(id, *val));
2622 break;
2623 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2624 case KVM_REG_PPC_TFHAR:
2625 vcpu->arch.tfhar = set_reg_val(id, *val);
2626 break;
2627 case KVM_REG_PPC_TFIAR:
2628 vcpu->arch.tfiar = set_reg_val(id, *val);
2629 break;
2630 case KVM_REG_PPC_TEXASR:
2631 vcpu->arch.texasr = set_reg_val(id, *val);
2632 break;
2633 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2634 i = id - KVM_REG_PPC_TM_GPR0;
2635 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2636 break;
2637 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2638 {
2639 int j;
2640 i = id - KVM_REG_PPC_TM_VSR0;
2641 if (i < 32)
2642 for (j = 0; j < TS_FPRWIDTH; j++)
2643 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2644 else
2645 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2646 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2647 else
2648 r = -ENXIO;
2649 break;
2650 }
2651 case KVM_REG_PPC_TM_CR:
2652 vcpu->arch.cr_tm = set_reg_val(id, *val);
2653 break;
2654 case KVM_REG_PPC_TM_XER:
2655 vcpu->arch.xer_tm = set_reg_val(id, *val);
2656 break;
2657 case KVM_REG_PPC_TM_LR:
2658 vcpu->arch.lr_tm = set_reg_val(id, *val);
2659 break;
2660 case KVM_REG_PPC_TM_CTR:
2661 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2662 break;
2663 case KVM_REG_PPC_TM_FPSCR:
2664 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2665 break;
2666 case KVM_REG_PPC_TM_AMR:
2667 vcpu->arch.amr_tm = set_reg_val(id, *val);
2668 break;
2669 case KVM_REG_PPC_TM_PPR:
2670 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2671 break;
2672 case KVM_REG_PPC_TM_VRSAVE:
2673 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2674 break;
2675 case KVM_REG_PPC_TM_VSCR:
2676 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2677 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2678 else
2679 r = - ENXIO;
2680 break;
2681 case KVM_REG_PPC_TM_DSCR:
2682 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2683 break;
2684 case KVM_REG_PPC_TM_TAR:
2685 vcpu->arch.tar_tm = set_reg_val(id, *val);
2686 break;
2687 #endif
2688 case KVM_REG_PPC_ARCH_COMPAT:
2689 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2690 break;
2691 case KVM_REG_PPC_DEC_EXPIRY:
2692 vcpu->arch.dec_expires = set_reg_val(id, *val);
2693 break;
2694 case KVM_REG_PPC_ONLINE:
2695 i = set_reg_val(id, *val);
2696 if (i && !vcpu->arch.online)
2697 atomic_inc(&vcpu->arch.vcore->online_count);
2698 else if (!i && vcpu->arch.online)
2699 atomic_dec(&vcpu->arch.vcore->online_count);
2700 vcpu->arch.online = i;
2701 break;
2702 case KVM_REG_PPC_PTCR:
2703 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2704 break;
2705 case KVM_REG_PPC_FSCR:
2706 kvmppc_set_fscr_hv(vcpu, set_reg_val(id, *val));
2707 break;
2708 default:
2709 r = -EINVAL;
2710 break;
2711 }
2712
2713 return r;
2714 }
2715
2716 /*
2717 * On POWER9, threads are independent and can be in different partitions.
2718 * Therefore we consider each thread to be a subcore.
2719 * There is a restriction that all threads have to be in the same
2720 * MMU mode (radix or HPT), unfortunately, but since we only support
2721 * HPT guests on a HPT host so far, that isn't an impediment yet.
2722 */
threads_per_vcore(struct kvm * kvm)2723 static int threads_per_vcore(struct kvm *kvm)
2724 {
2725 if (cpu_has_feature(CPU_FTR_ARCH_300))
2726 return 1;
2727 return threads_per_subcore;
2728 }
2729
kvmppc_vcore_create(struct kvm * kvm,int id)2730 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2731 {
2732 struct kvmppc_vcore *vcore;
2733
2734 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2735
2736 if (vcore == NULL)
2737 return NULL;
2738
2739 spin_lock_init(&vcore->lock);
2740 spin_lock_init(&vcore->stoltb_lock);
2741 rcuwait_init(&vcore->wait);
2742 vcore->preempt_tb = TB_NIL;
2743 vcore->lpcr = kvm->arch.lpcr;
2744 vcore->first_vcpuid = id;
2745 vcore->kvm = kvm;
2746 INIT_LIST_HEAD(&vcore->preempt_list);
2747
2748 return vcore;
2749 }
2750
2751 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2752 static struct debugfs_timings_element {
2753 const char *name;
2754 size_t offset;
2755 } timings[] = {
2756 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
2757 {"vcpu_entry", offsetof(struct kvm_vcpu, arch.vcpu_entry)},
2758 {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)},
2759 {"in_guest", offsetof(struct kvm_vcpu, arch.in_guest)},
2760 {"guest_exit", offsetof(struct kvm_vcpu, arch.guest_exit)},
2761 {"vcpu_exit", offsetof(struct kvm_vcpu, arch.vcpu_exit)},
2762 {"hypercall", offsetof(struct kvm_vcpu, arch.hcall)},
2763 {"page_fault", offsetof(struct kvm_vcpu, arch.pg_fault)},
2764 #else
2765 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
2766 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
2767 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
2768 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
2769 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
2770 #endif
2771 };
2772
2773 #define N_TIMINGS (ARRAY_SIZE(timings))
2774
2775 struct debugfs_timings_state {
2776 struct kvm_vcpu *vcpu;
2777 unsigned int buflen;
2778 char buf[N_TIMINGS * 100];
2779 };
2780
debugfs_timings_open(struct inode * inode,struct file * file)2781 static int debugfs_timings_open(struct inode *inode, struct file *file)
2782 {
2783 struct kvm_vcpu *vcpu = inode->i_private;
2784 struct debugfs_timings_state *p;
2785
2786 p = kzalloc(sizeof(*p), GFP_KERNEL);
2787 if (!p)
2788 return -ENOMEM;
2789
2790 kvm_get_kvm(vcpu->kvm);
2791 p->vcpu = vcpu;
2792 file->private_data = p;
2793
2794 return nonseekable_open(inode, file);
2795 }
2796
debugfs_timings_release(struct inode * inode,struct file * file)2797 static int debugfs_timings_release(struct inode *inode, struct file *file)
2798 {
2799 struct debugfs_timings_state *p = file->private_data;
2800
2801 kvm_put_kvm(p->vcpu->kvm);
2802 kfree(p);
2803 return 0;
2804 }
2805
debugfs_timings_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)2806 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2807 size_t len, loff_t *ppos)
2808 {
2809 struct debugfs_timings_state *p = file->private_data;
2810 struct kvm_vcpu *vcpu = p->vcpu;
2811 char *s, *buf_end;
2812 struct kvmhv_tb_accumulator tb;
2813 u64 count;
2814 loff_t pos;
2815 ssize_t n;
2816 int i, loops;
2817 bool ok;
2818
2819 if (!p->buflen) {
2820 s = p->buf;
2821 buf_end = s + sizeof(p->buf);
2822 for (i = 0; i < N_TIMINGS; ++i) {
2823 struct kvmhv_tb_accumulator *acc;
2824
2825 acc = (struct kvmhv_tb_accumulator *)
2826 ((unsigned long)vcpu + timings[i].offset);
2827 ok = false;
2828 for (loops = 0; loops < 1000; ++loops) {
2829 count = acc->seqcount;
2830 if (!(count & 1)) {
2831 smp_rmb();
2832 tb = *acc;
2833 smp_rmb();
2834 if (count == acc->seqcount) {
2835 ok = true;
2836 break;
2837 }
2838 }
2839 udelay(1);
2840 }
2841 if (!ok)
2842 snprintf(s, buf_end - s, "%s: stuck\n",
2843 timings[i].name);
2844 else
2845 snprintf(s, buf_end - s,
2846 "%s: %llu %llu %llu %llu\n",
2847 timings[i].name, count / 2,
2848 tb_to_ns(tb.tb_total),
2849 tb_to_ns(tb.tb_min),
2850 tb_to_ns(tb.tb_max));
2851 s += strlen(s);
2852 }
2853 p->buflen = s - p->buf;
2854 }
2855
2856 pos = *ppos;
2857 if (pos >= p->buflen)
2858 return 0;
2859 if (len > p->buflen - pos)
2860 len = p->buflen - pos;
2861 n = copy_to_user(buf, p->buf + pos, len);
2862 if (n) {
2863 if (n == len)
2864 return -EFAULT;
2865 len -= n;
2866 }
2867 *ppos = pos + len;
2868 return len;
2869 }
2870
debugfs_timings_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)2871 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2872 size_t len, loff_t *ppos)
2873 {
2874 return -EACCES;
2875 }
2876
2877 static const struct file_operations debugfs_timings_ops = {
2878 .owner = THIS_MODULE,
2879 .open = debugfs_timings_open,
2880 .release = debugfs_timings_release,
2881 .read = debugfs_timings_read,
2882 .write = debugfs_timings_write,
2883 .llseek = generic_file_llseek,
2884 };
2885
2886 /* Create a debugfs directory for the vcpu */
kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu * vcpu,struct dentry * debugfs_dentry)2887 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2888 {
2889 if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
2890 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
2891 &debugfs_timings_ops);
2892 return 0;
2893 }
2894
2895 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu * vcpu,struct dentry * debugfs_dentry)2896 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2897 {
2898 return 0;
2899 }
2900 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2901
kvmppc_core_vcpu_create_hv(struct kvm_vcpu * vcpu)2902 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2903 {
2904 int err;
2905 int core;
2906 struct kvmppc_vcore *vcore;
2907 struct kvm *kvm;
2908 unsigned int id;
2909
2910 kvm = vcpu->kvm;
2911 id = vcpu->vcpu_id;
2912
2913 vcpu->arch.shared = &vcpu->arch.shregs;
2914 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2915 /*
2916 * The shared struct is never shared on HV,
2917 * so we can always use host endianness
2918 */
2919 #ifdef __BIG_ENDIAN__
2920 vcpu->arch.shared_big_endian = true;
2921 #else
2922 vcpu->arch.shared_big_endian = false;
2923 #endif
2924 #endif
2925 kvmppc_set_mmcr_hv(vcpu, 0, MMCR0_FC);
2926
2927 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2928 kvmppc_set_mmcr_hv(vcpu, 0, kvmppc_get_mmcr_hv(vcpu, 0) | MMCR0_PMCCEXT);
2929 kvmppc_set_mmcra_hv(vcpu, MMCRA_BHRB_DISABLE);
2930 }
2931
2932 kvmppc_set_ctrl_hv(vcpu, CTRL_RUNLATCH);
2933 /* default to host PVR, since we can't spoof it */
2934 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2935 spin_lock_init(&vcpu->arch.vpa_update_lock);
2936 spin_lock_init(&vcpu->arch.tbacct_lock);
2937 vcpu->arch.busy_preempt = TB_NIL;
2938 __kvmppc_set_msr_hv(vcpu, MSR_ME);
2939 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2940
2941 /*
2942 * Set the default HFSCR for the guest from the host value.
2943 * This value is only used on POWER9 and later.
2944 * On >= POWER9, we want to virtualize the doorbell facility, so we
2945 * don't set the HFSCR_MSGP bit, and that causes those instructions
2946 * to trap and then we emulate them.
2947 */
2948 kvmppc_set_hfscr_hv(vcpu, HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2949 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP);
2950
2951 /* On POWER10 and later, allow prefixed instructions */
2952 if (cpu_has_feature(CPU_FTR_ARCH_31))
2953 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PREFIX);
2954
2955 if (cpu_has_feature(CPU_FTR_HVMODE)) {
2956 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & mfspr(SPRN_HFSCR));
2957
2958 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2959 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2960 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
2961 #endif
2962 }
2963 if (cpu_has_feature(CPU_FTR_TM_COMP))
2964 vcpu->arch.hfscr |= HFSCR_TM;
2965
2966 vcpu->arch.hfscr_permitted = kvmppc_get_hfscr_hv(vcpu);
2967
2968 /*
2969 * PM, EBB, TM are demand-faulted so start with it clear.
2970 */
2971 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM));
2972
2973 kvmppc_mmu_book3s_hv_init(vcpu);
2974
2975 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2976
2977 init_waitqueue_head(&vcpu->arch.cpu_run);
2978
2979 mutex_lock(&kvm->lock);
2980 vcore = NULL;
2981 err = -EINVAL;
2982 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2983 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2984 pr_devel("KVM: VCPU ID too high\n");
2985 core = KVM_MAX_VCORES;
2986 } else {
2987 BUG_ON(kvm->arch.smt_mode != 1);
2988 core = kvmppc_pack_vcpu_id(kvm, id);
2989 }
2990 } else {
2991 core = id / kvm->arch.smt_mode;
2992 }
2993 if (core < KVM_MAX_VCORES) {
2994 vcore = kvm->arch.vcores[core];
2995 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2996 pr_devel("KVM: collision on id %u", id);
2997 vcore = NULL;
2998 } else if (!vcore) {
2999 /*
3000 * Take mmu_setup_lock for mutual exclusion
3001 * with kvmppc_update_lpcr().
3002 */
3003 err = -ENOMEM;
3004 vcore = kvmppc_vcore_create(kvm,
3005 id & ~(kvm->arch.smt_mode - 1));
3006 mutex_lock(&kvm->arch.mmu_setup_lock);
3007 kvm->arch.vcores[core] = vcore;
3008 kvm->arch.online_vcores++;
3009 mutex_unlock(&kvm->arch.mmu_setup_lock);
3010 }
3011 }
3012 mutex_unlock(&kvm->lock);
3013
3014 if (!vcore)
3015 return err;
3016
3017 spin_lock(&vcore->lock);
3018 ++vcore->num_threads;
3019 spin_unlock(&vcore->lock);
3020 vcpu->arch.vcore = vcore;
3021 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
3022 vcpu->arch.thread_cpu = -1;
3023 vcpu->arch.prev_cpu = -1;
3024
3025 vcpu->arch.cpu_type = KVM_CPU_3S_64;
3026 kvmppc_sanity_check(vcpu);
3027
3028 return 0;
3029 }
3030
kvmhv_set_smt_mode(struct kvm * kvm,unsigned long smt_mode,unsigned long flags)3031 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
3032 unsigned long flags)
3033 {
3034 int err;
3035 int esmt = 0;
3036
3037 if (flags)
3038 return -EINVAL;
3039 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
3040 return -EINVAL;
3041 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3042 /*
3043 * On POWER8 (or POWER7), the threading mode is "strict",
3044 * so we pack smt_mode vcpus per vcore.
3045 */
3046 if (smt_mode > threads_per_subcore)
3047 return -EINVAL;
3048 } else {
3049 /*
3050 * On POWER9, the threading mode is "loose",
3051 * so each vcpu gets its own vcore.
3052 */
3053 esmt = smt_mode;
3054 smt_mode = 1;
3055 }
3056 mutex_lock(&kvm->lock);
3057 err = -EBUSY;
3058 if (!kvm->arch.online_vcores) {
3059 kvm->arch.smt_mode = smt_mode;
3060 kvm->arch.emul_smt_mode = esmt;
3061 err = 0;
3062 }
3063 mutex_unlock(&kvm->lock);
3064
3065 return err;
3066 }
3067
unpin_vpa(struct kvm * kvm,struct kvmppc_vpa * vpa)3068 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
3069 {
3070 if (vpa->pinned_addr)
3071 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
3072 vpa->dirty);
3073 }
3074
kvmppc_core_vcpu_free_hv(struct kvm_vcpu * vcpu)3075 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
3076 {
3077 spin_lock(&vcpu->arch.vpa_update_lock);
3078 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
3079 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
3080 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
3081 spin_unlock(&vcpu->arch.vpa_update_lock);
3082 }
3083
kvmppc_core_check_requests_hv(struct kvm_vcpu * vcpu)3084 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
3085 {
3086 /* Indicate we want to get back into the guest */
3087 return 1;
3088 }
3089
kvmppc_set_timer(struct kvm_vcpu * vcpu)3090 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
3091 {
3092 unsigned long dec_nsec, now;
3093
3094 now = get_tb();
3095 if (now > kvmppc_dec_expires_host_tb(vcpu)) {
3096 /* decrementer has already gone negative */
3097 kvmppc_core_queue_dec(vcpu);
3098 kvmppc_core_prepare_to_enter(vcpu);
3099 return;
3100 }
3101 dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
3102 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
3103 vcpu->arch.timer_running = 1;
3104 }
3105
3106 extern int __kvmppc_vcore_entry(void);
3107
kvmppc_remove_runnable(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu,u64 tb)3108 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
3109 struct kvm_vcpu *vcpu, u64 tb)
3110 {
3111 u64 now;
3112
3113 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3114 return;
3115 spin_lock_irq(&vcpu->arch.tbacct_lock);
3116 now = tb;
3117 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
3118 vcpu->arch.stolen_logged;
3119 vcpu->arch.busy_preempt = now;
3120 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3121 spin_unlock_irq(&vcpu->arch.tbacct_lock);
3122 --vc->n_runnable;
3123 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3124 }
3125
kvmppc_grab_hwthread(int cpu)3126 static int kvmppc_grab_hwthread(int cpu)
3127 {
3128 struct paca_struct *tpaca;
3129 long timeout = 10000;
3130
3131 tpaca = paca_ptrs[cpu];
3132
3133 /* Ensure the thread won't go into the kernel if it wakes */
3134 tpaca->kvm_hstate.kvm_vcpu = NULL;
3135 tpaca->kvm_hstate.kvm_vcore = NULL;
3136 tpaca->kvm_hstate.napping = 0;
3137 smp_wmb();
3138 tpaca->kvm_hstate.hwthread_req = 1;
3139
3140 /*
3141 * If the thread is already executing in the kernel (e.g. handling
3142 * a stray interrupt), wait for it to get back to nap mode.
3143 * The smp_mb() is to ensure that our setting of hwthread_req
3144 * is visible before we look at hwthread_state, so if this
3145 * races with the code at system_reset_pSeries and the thread
3146 * misses our setting of hwthread_req, we are sure to see its
3147 * setting of hwthread_state, and vice versa.
3148 */
3149 smp_mb();
3150 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3151 if (--timeout <= 0) {
3152 pr_err("KVM: couldn't grab cpu %d\n", cpu);
3153 return -EBUSY;
3154 }
3155 udelay(1);
3156 }
3157 return 0;
3158 }
3159
kvmppc_release_hwthread(int cpu)3160 static void kvmppc_release_hwthread(int cpu)
3161 {
3162 struct paca_struct *tpaca;
3163
3164 tpaca = paca_ptrs[cpu];
3165 tpaca->kvm_hstate.hwthread_req = 0;
3166 tpaca->kvm_hstate.kvm_vcpu = NULL;
3167 tpaca->kvm_hstate.kvm_vcore = NULL;
3168 tpaca->kvm_hstate.kvm_split_mode = NULL;
3169 }
3170
3171 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3172
radix_flush_cpu(struct kvm * kvm,int cpu,struct kvm_vcpu * vcpu)3173 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3174 {
3175 struct kvm_nested_guest *nested = vcpu->arch.nested;
3176 cpumask_t *need_tlb_flush;
3177 int i;
3178
3179 if (nested)
3180 need_tlb_flush = &nested->need_tlb_flush;
3181 else
3182 need_tlb_flush = &kvm->arch.need_tlb_flush;
3183
3184 cpu = cpu_first_tlb_thread_sibling(cpu);
3185 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3186 i += cpu_tlb_thread_sibling_step())
3187 cpumask_set_cpu(i, need_tlb_flush);
3188
3189 /*
3190 * Make sure setting of bit in need_tlb_flush precedes testing of
3191 * cpu_in_guest. The matching barrier on the other side is hwsync
3192 * when switching to guest MMU mode, which happens between
3193 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3194 * being tested.
3195 */
3196 smp_mb();
3197
3198 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3199 i += cpu_tlb_thread_sibling_step()) {
3200 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3201
3202 if (running == kvm)
3203 smp_call_function_single(i, do_nothing, NULL, 1);
3204 }
3205 }
3206
do_migrate_away_vcpu(void * arg)3207 static void do_migrate_away_vcpu(void *arg)
3208 {
3209 struct kvm_vcpu *vcpu = arg;
3210 struct kvm *kvm = vcpu->kvm;
3211
3212 /*
3213 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3214 * ptesync sequence on the old CPU before migrating to a new one, in
3215 * case we interrupted the guest between a tlbie ; eieio ;
3216 * tlbsync; ptesync sequence.
3217 *
3218 * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3219 */
3220 if (kvm->arch.lpcr & LPCR_GTSE)
3221 asm volatile("eieio; tlbsync; ptesync");
3222 else
3223 asm volatile("ptesync");
3224 }
3225
kvmppc_prepare_radix_vcpu(struct kvm_vcpu * vcpu,int pcpu)3226 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3227 {
3228 struct kvm_nested_guest *nested = vcpu->arch.nested;
3229 struct kvm *kvm = vcpu->kvm;
3230 int prev_cpu;
3231
3232 if (!cpu_has_feature(CPU_FTR_HVMODE))
3233 return;
3234
3235 if (nested)
3236 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3237 else
3238 prev_cpu = vcpu->arch.prev_cpu;
3239
3240 /*
3241 * With radix, the guest can do TLB invalidations itself,
3242 * and it could choose to use the local form (tlbiel) if
3243 * it is invalidating a translation that has only ever been
3244 * used on one vcpu. However, that doesn't mean it has
3245 * only ever been used on one physical cpu, since vcpus
3246 * can move around between pcpus. To cope with this, when
3247 * a vcpu moves from one pcpu to another, we need to tell
3248 * any vcpus running on the same core as this vcpu previously
3249 * ran to flush the TLB.
3250 */
3251 if (prev_cpu != pcpu) {
3252 if (prev_cpu >= 0) {
3253 if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3254 cpu_first_tlb_thread_sibling(pcpu))
3255 radix_flush_cpu(kvm, prev_cpu, vcpu);
3256
3257 smp_call_function_single(prev_cpu,
3258 do_migrate_away_vcpu, vcpu, 1);
3259 }
3260 if (nested)
3261 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3262 else
3263 vcpu->arch.prev_cpu = pcpu;
3264 }
3265 }
3266
kvmppc_start_thread(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)3267 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3268 {
3269 int cpu;
3270 struct paca_struct *tpaca;
3271
3272 cpu = vc->pcpu;
3273 if (vcpu) {
3274 if (vcpu->arch.timer_running) {
3275 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3276 vcpu->arch.timer_running = 0;
3277 }
3278 cpu += vcpu->arch.ptid;
3279 vcpu->cpu = vc->pcpu;
3280 vcpu->arch.thread_cpu = cpu;
3281 }
3282 tpaca = paca_ptrs[cpu];
3283 tpaca->kvm_hstate.kvm_vcpu = vcpu;
3284 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3285 tpaca->kvm_hstate.fake_suspend = 0;
3286 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3287 smp_wmb();
3288 tpaca->kvm_hstate.kvm_vcore = vc;
3289 if (cpu != smp_processor_id())
3290 kvmppc_ipi_thread(cpu);
3291 }
3292
kvmppc_wait_for_nap(int n_threads)3293 static void kvmppc_wait_for_nap(int n_threads)
3294 {
3295 int cpu = smp_processor_id();
3296 int i, loops;
3297
3298 if (n_threads <= 1)
3299 return;
3300 for (loops = 0; loops < 1000000; ++loops) {
3301 /*
3302 * Check if all threads are finished.
3303 * We set the vcore pointer when starting a thread
3304 * and the thread clears it when finished, so we look
3305 * for any threads that still have a non-NULL vcore ptr.
3306 */
3307 for (i = 1; i < n_threads; ++i)
3308 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3309 break;
3310 if (i == n_threads) {
3311 HMT_medium();
3312 return;
3313 }
3314 HMT_low();
3315 }
3316 HMT_medium();
3317 for (i = 1; i < n_threads; ++i)
3318 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3319 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3320 }
3321
3322 /*
3323 * Check that we are on thread 0 and that any other threads in
3324 * this core are off-line. Then grab the threads so they can't
3325 * enter the kernel.
3326 */
on_primary_thread(void)3327 static int on_primary_thread(void)
3328 {
3329 int cpu = smp_processor_id();
3330 int thr;
3331
3332 /* Are we on a primary subcore? */
3333 if (cpu_thread_in_subcore(cpu))
3334 return 0;
3335
3336 thr = 0;
3337 while (++thr < threads_per_subcore)
3338 if (cpu_online(cpu + thr))
3339 return 0;
3340
3341 /* Grab all hw threads so they can't go into the kernel */
3342 for (thr = 1; thr < threads_per_subcore; ++thr) {
3343 if (kvmppc_grab_hwthread(cpu + thr)) {
3344 /* Couldn't grab one; let the others go */
3345 do {
3346 kvmppc_release_hwthread(cpu + thr);
3347 } while (--thr > 0);
3348 return 0;
3349 }
3350 }
3351 return 1;
3352 }
3353
3354 /*
3355 * A list of virtual cores for each physical CPU.
3356 * These are vcores that could run but their runner VCPU tasks are
3357 * (or may be) preempted.
3358 */
3359 struct preempted_vcore_list {
3360 struct list_head list;
3361 spinlock_t lock;
3362 };
3363
3364 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3365
init_vcore_lists(void)3366 static void init_vcore_lists(void)
3367 {
3368 int cpu;
3369
3370 for_each_possible_cpu(cpu) {
3371 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3372 spin_lock_init(&lp->lock);
3373 INIT_LIST_HEAD(&lp->list);
3374 }
3375 }
3376
kvmppc_vcore_preempt(struct kvmppc_vcore * vc)3377 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3378 {
3379 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3380
3381 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3382
3383 vc->vcore_state = VCORE_PREEMPT;
3384 vc->pcpu = smp_processor_id();
3385 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3386 spin_lock(&lp->lock);
3387 list_add_tail(&vc->preempt_list, &lp->list);
3388 spin_unlock(&lp->lock);
3389 }
3390
3391 /* Start accumulating stolen time */
3392 kvmppc_core_start_stolen(vc, mftb());
3393 }
3394
kvmppc_vcore_end_preempt(struct kvmppc_vcore * vc)3395 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3396 {
3397 struct preempted_vcore_list *lp;
3398
3399 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3400
3401 kvmppc_core_end_stolen(vc, mftb());
3402 if (!list_empty(&vc->preempt_list)) {
3403 lp = &per_cpu(preempted_vcores, vc->pcpu);
3404 spin_lock(&lp->lock);
3405 list_del_init(&vc->preempt_list);
3406 spin_unlock(&lp->lock);
3407 }
3408 vc->vcore_state = VCORE_INACTIVE;
3409 }
3410
3411 /*
3412 * This stores information about the virtual cores currently
3413 * assigned to a physical core.
3414 */
3415 struct core_info {
3416 int n_subcores;
3417 int max_subcore_threads;
3418 int total_threads;
3419 int subcore_threads[MAX_SUBCORES];
3420 struct kvmppc_vcore *vc[MAX_SUBCORES];
3421 };
3422
3423 /*
3424 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3425 * respectively in 2-way micro-threading (split-core) mode on POWER8.
3426 */
3427 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3428
init_core_info(struct core_info * cip,struct kvmppc_vcore * vc)3429 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3430 {
3431 memset(cip, 0, sizeof(*cip));
3432 cip->n_subcores = 1;
3433 cip->max_subcore_threads = vc->num_threads;
3434 cip->total_threads = vc->num_threads;
3435 cip->subcore_threads[0] = vc->num_threads;
3436 cip->vc[0] = vc;
3437 }
3438
subcore_config_ok(int n_subcores,int n_threads)3439 static bool subcore_config_ok(int n_subcores, int n_threads)
3440 {
3441 /*
3442 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3443 * split-core mode, with one thread per subcore.
3444 */
3445 if (cpu_has_feature(CPU_FTR_ARCH_300))
3446 return n_subcores <= 4 && n_threads == 1;
3447
3448 /* On POWER8, can only dynamically split if unsplit to begin with */
3449 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3450 return false;
3451 if (n_subcores > MAX_SUBCORES)
3452 return false;
3453 if (n_subcores > 1) {
3454 if (!(dynamic_mt_modes & 2))
3455 n_subcores = 4;
3456 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3457 return false;
3458 }
3459
3460 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3461 }
3462
init_vcore_to_run(struct kvmppc_vcore * vc)3463 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3464 {
3465 vc->entry_exit_map = 0;
3466 vc->in_guest = 0;
3467 vc->napping_threads = 0;
3468 vc->conferring_threads = 0;
3469 vc->tb_offset_applied = 0;
3470 }
3471
can_dynamic_split(struct kvmppc_vcore * vc,struct core_info * cip)3472 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3473 {
3474 int n_threads = vc->num_threads;
3475 int sub;
3476
3477 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3478 return false;
3479
3480 /* In one_vm_per_core mode, require all vcores to be from the same vm */
3481 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3482 return false;
3483
3484 if (n_threads < cip->max_subcore_threads)
3485 n_threads = cip->max_subcore_threads;
3486 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3487 return false;
3488 cip->max_subcore_threads = n_threads;
3489
3490 sub = cip->n_subcores;
3491 ++cip->n_subcores;
3492 cip->total_threads += vc->num_threads;
3493 cip->subcore_threads[sub] = vc->num_threads;
3494 cip->vc[sub] = vc;
3495 init_vcore_to_run(vc);
3496 list_del_init(&vc->preempt_list);
3497
3498 return true;
3499 }
3500
3501 /*
3502 * Work out whether it is possible to piggyback the execution of
3503 * vcore *pvc onto the execution of the other vcores described in *cip.
3504 */
can_piggyback(struct kvmppc_vcore * pvc,struct core_info * cip,int target_threads)3505 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3506 int target_threads)
3507 {
3508 if (cip->total_threads + pvc->num_threads > target_threads)
3509 return false;
3510
3511 return can_dynamic_split(pvc, cip);
3512 }
3513
prepare_threads(struct kvmppc_vcore * vc)3514 static void prepare_threads(struct kvmppc_vcore *vc)
3515 {
3516 int i;
3517 struct kvm_vcpu *vcpu;
3518
3519 for_each_runnable_thread(i, vcpu, vc) {
3520 if (signal_pending(vcpu->arch.run_task))
3521 vcpu->arch.ret = -EINTR;
3522 else if (vcpu->arch.vpa.update_pending ||
3523 vcpu->arch.slb_shadow.update_pending ||
3524 vcpu->arch.dtl.update_pending)
3525 vcpu->arch.ret = RESUME_GUEST;
3526 else
3527 continue;
3528 kvmppc_remove_runnable(vc, vcpu, mftb());
3529 wake_up(&vcpu->arch.cpu_run);
3530 }
3531 }
3532
collect_piggybacks(struct core_info * cip,int target_threads)3533 static void collect_piggybacks(struct core_info *cip, int target_threads)
3534 {
3535 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3536 struct kvmppc_vcore *pvc, *vcnext;
3537
3538 spin_lock(&lp->lock);
3539 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3540 if (!spin_trylock(&pvc->lock))
3541 continue;
3542 prepare_threads(pvc);
3543 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3544 list_del_init(&pvc->preempt_list);
3545 if (pvc->runner == NULL) {
3546 pvc->vcore_state = VCORE_INACTIVE;
3547 kvmppc_core_end_stolen(pvc, mftb());
3548 }
3549 spin_unlock(&pvc->lock);
3550 continue;
3551 }
3552 if (!can_piggyback(pvc, cip, target_threads)) {
3553 spin_unlock(&pvc->lock);
3554 continue;
3555 }
3556 kvmppc_core_end_stolen(pvc, mftb());
3557 pvc->vcore_state = VCORE_PIGGYBACK;
3558 if (cip->total_threads >= target_threads)
3559 break;
3560 }
3561 spin_unlock(&lp->lock);
3562 }
3563
recheck_signals_and_mmu(struct core_info * cip)3564 static bool recheck_signals_and_mmu(struct core_info *cip)
3565 {
3566 int sub, i;
3567 struct kvm_vcpu *vcpu;
3568 struct kvmppc_vcore *vc;
3569
3570 for (sub = 0; sub < cip->n_subcores; ++sub) {
3571 vc = cip->vc[sub];
3572 if (!vc->kvm->arch.mmu_ready)
3573 return true;
3574 for_each_runnable_thread(i, vcpu, vc)
3575 if (signal_pending(vcpu->arch.run_task))
3576 return true;
3577 }
3578 return false;
3579 }
3580
post_guest_process(struct kvmppc_vcore * vc,bool is_master)3581 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3582 {
3583 int still_running = 0, i;
3584 u64 now;
3585 long ret;
3586 struct kvm_vcpu *vcpu;
3587
3588 spin_lock(&vc->lock);
3589 now = get_tb();
3590 for_each_runnable_thread(i, vcpu, vc) {
3591 /*
3592 * It's safe to unlock the vcore in the loop here, because
3593 * for_each_runnable_thread() is safe against removal of
3594 * the vcpu, and the vcore state is VCORE_EXITING here,
3595 * so any vcpus becoming runnable will have their arch.trap
3596 * set to zero and can't actually run in the guest.
3597 */
3598 spin_unlock(&vc->lock);
3599 /* cancel pending dec exception if dec is positive */
3600 if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3601 kvmppc_core_pending_dec(vcpu))
3602 kvmppc_core_dequeue_dec(vcpu);
3603
3604 trace_kvm_guest_exit(vcpu);
3605
3606 ret = RESUME_GUEST;
3607 if (vcpu->arch.trap)
3608 ret = kvmppc_handle_exit_hv(vcpu,
3609 vcpu->arch.run_task);
3610
3611 vcpu->arch.ret = ret;
3612 vcpu->arch.trap = 0;
3613
3614 spin_lock(&vc->lock);
3615 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3616 if (vcpu->arch.pending_exceptions)
3617 kvmppc_core_prepare_to_enter(vcpu);
3618 if (vcpu->arch.ceded)
3619 kvmppc_set_timer(vcpu);
3620 else
3621 ++still_running;
3622 } else {
3623 kvmppc_remove_runnable(vc, vcpu, mftb());
3624 wake_up(&vcpu->arch.cpu_run);
3625 }
3626 }
3627 if (!is_master) {
3628 if (still_running > 0) {
3629 kvmppc_vcore_preempt(vc);
3630 } else if (vc->runner) {
3631 vc->vcore_state = VCORE_PREEMPT;
3632 kvmppc_core_start_stolen(vc, mftb());
3633 } else {
3634 vc->vcore_state = VCORE_INACTIVE;
3635 }
3636 if (vc->n_runnable > 0 && vc->runner == NULL) {
3637 /* make sure there's a candidate runner awake */
3638 i = -1;
3639 vcpu = next_runnable_thread(vc, &i);
3640 wake_up(&vcpu->arch.cpu_run);
3641 }
3642 }
3643 spin_unlock(&vc->lock);
3644 }
3645
3646 /*
3647 * Clear core from the list of active host cores as we are about to
3648 * enter the guest. Only do this if it is the primary thread of the
3649 * core (not if a subcore) that is entering the guest.
3650 */
kvmppc_clear_host_core(unsigned int cpu)3651 static inline int kvmppc_clear_host_core(unsigned int cpu)
3652 {
3653 int core;
3654
3655 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3656 return 0;
3657 /*
3658 * Memory barrier can be omitted here as we will do a smp_wmb()
3659 * later in kvmppc_start_thread and we need ensure that state is
3660 * visible to other CPUs only after we enter guest.
3661 */
3662 core = cpu >> threads_shift;
3663 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3664 return 0;
3665 }
3666
3667 /*
3668 * Advertise this core as an active host core since we exited the guest
3669 * Only need to do this if it is the primary thread of the core that is
3670 * exiting.
3671 */
kvmppc_set_host_core(unsigned int cpu)3672 static inline int kvmppc_set_host_core(unsigned int cpu)
3673 {
3674 int core;
3675
3676 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3677 return 0;
3678
3679 /*
3680 * Memory barrier can be omitted here because we do a spin_unlock
3681 * immediately after this which provides the memory barrier.
3682 */
3683 core = cpu >> threads_shift;
3684 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3685 return 0;
3686 }
3687
set_irq_happened(int trap)3688 static void set_irq_happened(int trap)
3689 {
3690 switch (trap) {
3691 case BOOK3S_INTERRUPT_EXTERNAL:
3692 local_paca->irq_happened |= PACA_IRQ_EE;
3693 break;
3694 case BOOK3S_INTERRUPT_H_DOORBELL:
3695 local_paca->irq_happened |= PACA_IRQ_DBELL;
3696 break;
3697 case BOOK3S_INTERRUPT_HMI:
3698 local_paca->irq_happened |= PACA_IRQ_HMI;
3699 break;
3700 case BOOK3S_INTERRUPT_SYSTEM_RESET:
3701 replay_system_reset();
3702 break;
3703 }
3704 }
3705
3706 /*
3707 * Run a set of guest threads on a physical core.
3708 * Called with vc->lock held.
3709 */
kvmppc_run_core(struct kvmppc_vcore * vc)3710 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3711 {
3712 struct kvm_vcpu *vcpu;
3713 int i;
3714 int srcu_idx;
3715 struct core_info core_info;
3716 struct kvmppc_vcore *pvc;
3717 struct kvm_split_mode split_info, *sip;
3718 int split, subcore_size, active;
3719 int sub;
3720 bool thr0_done;
3721 unsigned long cmd_bit, stat_bit;
3722 int pcpu, thr;
3723 int target_threads;
3724 int controlled_threads;
3725 int trap;
3726 bool is_power8;
3727
3728 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3729 return;
3730
3731 /*
3732 * Remove from the list any threads that have a signal pending
3733 * or need a VPA update done
3734 */
3735 prepare_threads(vc);
3736
3737 /* if the runner is no longer runnable, let the caller pick a new one */
3738 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3739 return;
3740
3741 /*
3742 * Initialize *vc.
3743 */
3744 init_vcore_to_run(vc);
3745 vc->preempt_tb = TB_NIL;
3746
3747 /*
3748 * Number of threads that we will be controlling: the same as
3749 * the number of threads per subcore, except on POWER9,
3750 * where it's 1 because the threads are (mostly) independent.
3751 */
3752 controlled_threads = threads_per_vcore(vc->kvm);
3753
3754 /*
3755 * Make sure we are running on primary threads, and that secondary
3756 * threads are offline. Also check if the number of threads in this
3757 * guest are greater than the current system threads per guest.
3758 */
3759 if ((controlled_threads > 1) &&
3760 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3761 for_each_runnable_thread(i, vcpu, vc) {
3762 vcpu->arch.ret = -EBUSY;
3763 kvmppc_remove_runnable(vc, vcpu, mftb());
3764 wake_up(&vcpu->arch.cpu_run);
3765 }
3766 goto out;
3767 }
3768
3769 /*
3770 * See if we could run any other vcores on the physical core
3771 * along with this one.
3772 */
3773 init_core_info(&core_info, vc);
3774 pcpu = smp_processor_id();
3775 target_threads = controlled_threads;
3776 if (target_smt_mode && target_smt_mode < target_threads)
3777 target_threads = target_smt_mode;
3778 if (vc->num_threads < target_threads)
3779 collect_piggybacks(&core_info, target_threads);
3780
3781 /*
3782 * Hard-disable interrupts, and check resched flag and signals.
3783 * If we need to reschedule or deliver a signal, clean up
3784 * and return without going into the guest(s).
3785 * If the mmu_ready flag has been cleared, don't go into the
3786 * guest because that means a HPT resize operation is in progress.
3787 */
3788 local_irq_disable();
3789 hard_irq_disable();
3790 if (lazy_irq_pending() || need_resched() ||
3791 recheck_signals_and_mmu(&core_info)) {
3792 local_irq_enable();
3793 vc->vcore_state = VCORE_INACTIVE;
3794 /* Unlock all except the primary vcore */
3795 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3796 pvc = core_info.vc[sub];
3797 /* Put back on to the preempted vcores list */
3798 kvmppc_vcore_preempt(pvc);
3799 spin_unlock(&pvc->lock);
3800 }
3801 for (i = 0; i < controlled_threads; ++i)
3802 kvmppc_release_hwthread(pcpu + i);
3803 return;
3804 }
3805
3806 kvmppc_clear_host_core(pcpu);
3807
3808 /* Decide on micro-threading (split-core) mode */
3809 subcore_size = threads_per_subcore;
3810 cmd_bit = stat_bit = 0;
3811 split = core_info.n_subcores;
3812 sip = NULL;
3813 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3814
3815 if (split > 1) {
3816 sip = &split_info;
3817 memset(&split_info, 0, sizeof(split_info));
3818 for (sub = 0; sub < core_info.n_subcores; ++sub)
3819 split_info.vc[sub] = core_info.vc[sub];
3820
3821 if (is_power8) {
3822 if (split == 2 && (dynamic_mt_modes & 2)) {
3823 cmd_bit = HID0_POWER8_1TO2LPAR;
3824 stat_bit = HID0_POWER8_2LPARMODE;
3825 } else {
3826 split = 4;
3827 cmd_bit = HID0_POWER8_1TO4LPAR;
3828 stat_bit = HID0_POWER8_4LPARMODE;
3829 }
3830 subcore_size = MAX_SMT_THREADS / split;
3831 split_info.rpr = mfspr(SPRN_RPR);
3832 split_info.pmmar = mfspr(SPRN_PMMAR);
3833 split_info.ldbar = mfspr(SPRN_LDBAR);
3834 split_info.subcore_size = subcore_size;
3835 } else {
3836 split_info.subcore_size = 1;
3837 }
3838
3839 /* order writes to split_info before kvm_split_mode pointer */
3840 smp_wmb();
3841 }
3842
3843 for (thr = 0; thr < controlled_threads; ++thr) {
3844 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3845
3846 paca->kvm_hstate.napping = 0;
3847 paca->kvm_hstate.kvm_split_mode = sip;
3848 }
3849
3850 /* Initiate micro-threading (split-core) on POWER8 if required */
3851 if (cmd_bit) {
3852 unsigned long hid0 = mfspr(SPRN_HID0);
3853
3854 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3855 mb();
3856 mtspr(SPRN_HID0, hid0);
3857 isync();
3858 for (;;) {
3859 hid0 = mfspr(SPRN_HID0);
3860 if (hid0 & stat_bit)
3861 break;
3862 cpu_relax();
3863 }
3864 }
3865
3866 /*
3867 * On POWER8, set RWMR register.
3868 * Since it only affects PURR and SPURR, it doesn't affect
3869 * the host, so we don't save/restore the host value.
3870 */
3871 if (is_power8) {
3872 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3873 int n_online = atomic_read(&vc->online_count);
3874
3875 /*
3876 * Use the 8-thread value if we're doing split-core
3877 * or if the vcore's online count looks bogus.
3878 */
3879 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3880 n_online >= 1 && n_online <= MAX_SMT_THREADS)
3881 rwmr_val = p8_rwmr_values[n_online];
3882 mtspr(SPRN_RWMR, rwmr_val);
3883 }
3884
3885 /* Start all the threads */
3886 active = 0;
3887 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3888 thr = is_power8 ? subcore_thread_map[sub] : sub;
3889 thr0_done = false;
3890 active |= 1 << thr;
3891 pvc = core_info.vc[sub];
3892 pvc->pcpu = pcpu + thr;
3893 for_each_runnable_thread(i, vcpu, pvc) {
3894 /*
3895 * XXX: is kvmppc_start_thread called too late here?
3896 * It updates vcpu->cpu and vcpu->arch.thread_cpu
3897 * which are used by kvmppc_fast_vcpu_kick_hv(), but
3898 * kick is called after new exceptions become available
3899 * and exceptions are checked earlier than here, by
3900 * kvmppc_core_prepare_to_enter.
3901 */
3902 kvmppc_start_thread(vcpu, pvc);
3903 kvmppc_update_vpa_dispatch(vcpu, pvc);
3904 trace_kvm_guest_enter(vcpu);
3905 if (!vcpu->arch.ptid)
3906 thr0_done = true;
3907 active |= 1 << (thr + vcpu->arch.ptid);
3908 }
3909 /*
3910 * We need to start the first thread of each subcore
3911 * even if it doesn't have a vcpu.
3912 */
3913 if (!thr0_done)
3914 kvmppc_start_thread(NULL, pvc);
3915 }
3916
3917 /*
3918 * Ensure that split_info.do_nap is set after setting
3919 * the vcore pointer in the PACA of the secondaries.
3920 */
3921 smp_mb();
3922
3923 /*
3924 * When doing micro-threading, poke the inactive threads as well.
3925 * This gets them to the nap instruction after kvm_do_nap,
3926 * which reduces the time taken to unsplit later.
3927 */
3928 if (cmd_bit) {
3929 split_info.do_nap = 1; /* ask secondaries to nap when done */
3930 for (thr = 1; thr < threads_per_subcore; ++thr)
3931 if (!(active & (1 << thr)))
3932 kvmppc_ipi_thread(pcpu + thr);
3933 }
3934
3935 vc->vcore_state = VCORE_RUNNING;
3936 preempt_disable();
3937
3938 trace_kvmppc_run_core(vc, 0);
3939
3940 for (sub = 0; sub < core_info.n_subcores; ++sub)
3941 spin_unlock(&core_info.vc[sub]->lock);
3942
3943 guest_timing_enter_irqoff();
3944
3945 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3946
3947 guest_state_enter_irqoff();
3948 this_cpu_disable_ftrace();
3949
3950 trap = __kvmppc_vcore_entry();
3951
3952 this_cpu_enable_ftrace();
3953 guest_state_exit_irqoff();
3954
3955 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3956
3957 set_irq_happened(trap);
3958
3959 spin_lock(&vc->lock);
3960 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3961 vc->vcore_state = VCORE_EXITING;
3962
3963 /* wait for secondary threads to finish writing their state to memory */
3964 kvmppc_wait_for_nap(controlled_threads);
3965
3966 /* Return to whole-core mode if we split the core earlier */
3967 if (cmd_bit) {
3968 unsigned long hid0 = mfspr(SPRN_HID0);
3969 unsigned long loops = 0;
3970
3971 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3972 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3973 mb();
3974 mtspr(SPRN_HID0, hid0);
3975 isync();
3976 for (;;) {
3977 hid0 = mfspr(SPRN_HID0);
3978 if (!(hid0 & stat_bit))
3979 break;
3980 cpu_relax();
3981 ++loops;
3982 }
3983 split_info.do_nap = 0;
3984 }
3985
3986 kvmppc_set_host_core(pcpu);
3987
3988 if (!vtime_accounting_enabled_this_cpu()) {
3989 local_irq_enable();
3990 /*
3991 * Service IRQs here before guest_timing_exit_irqoff() so any
3992 * ticks that occurred while running the guest are accounted to
3993 * the guest. If vtime accounting is enabled, accounting uses
3994 * TB rather than ticks, so it can be done without enabling
3995 * interrupts here, which has the problem that it accounts
3996 * interrupt processing overhead to the host.
3997 */
3998 local_irq_disable();
3999 }
4000 guest_timing_exit_irqoff();
4001
4002 local_irq_enable();
4003
4004 /* Let secondaries go back to the offline loop */
4005 for (i = 0; i < controlled_threads; ++i) {
4006 kvmppc_release_hwthread(pcpu + i);
4007 if (sip && sip->napped[i])
4008 kvmppc_ipi_thread(pcpu + i);
4009 }
4010
4011 spin_unlock(&vc->lock);
4012
4013 /* make sure updates to secondary vcpu structs are visible now */
4014 smp_mb();
4015
4016 preempt_enable();
4017
4018 for (sub = 0; sub < core_info.n_subcores; ++sub) {
4019 pvc = core_info.vc[sub];
4020 post_guest_process(pvc, pvc == vc);
4021 }
4022
4023 spin_lock(&vc->lock);
4024
4025 out:
4026 vc->vcore_state = VCORE_INACTIVE;
4027 trace_kvmppc_run_core(vc, 1);
4028 }
4029
hcall_is_xics(unsigned long req)4030 static inline bool hcall_is_xics(unsigned long req)
4031 {
4032 return req == H_EOI || req == H_CPPR || req == H_IPI ||
4033 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
4034 }
4035
vcpu_vpa_increment_dispatch(struct kvm_vcpu * vcpu)4036 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
4037 {
4038 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
4039 if (lp) {
4040 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
4041 lp->yield_count = cpu_to_be32(yield_count);
4042 vcpu->arch.vpa.dirty = 1;
4043 }
4044 }
4045
4046 /* call our hypervisor to load up HV regs and go */
kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr,u64 * tb)4047 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
4048 {
4049 struct kvmppc_vcore *vc = vcpu->arch.vcore;
4050 unsigned long host_psscr;
4051 unsigned long msr;
4052 struct hv_guest_state hvregs;
4053 struct p9_host_os_sprs host_os_sprs;
4054 s64 dec;
4055 int trap;
4056
4057 msr = mfmsr();
4058
4059 save_p9_host_os_sprs(&host_os_sprs);
4060
4061 /*
4062 * We need to save and restore the guest visible part of the
4063 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
4064 * doesn't do this for us. Note only required if pseries since
4065 * this is done in kvmhv_vcpu_entry_p9() below otherwise.
4066 */
4067 host_psscr = mfspr(SPRN_PSSCR_PR);
4068
4069 kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4070 if (lazy_irq_pending())
4071 return 0;
4072
4073 if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
4074 msr = mfmsr(); /* TM restore can update msr */
4075
4076 if (vcpu->arch.psscr != host_psscr)
4077 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
4078
4079 kvmhv_save_hv_regs(vcpu, &hvregs);
4080 hvregs.lpcr = lpcr;
4081 hvregs.amor = ~0;
4082 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
4083 hvregs.version = HV_GUEST_STATE_VERSION;
4084 if (vcpu->arch.nested) {
4085 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
4086 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
4087 } else {
4088 hvregs.lpid = vcpu->kvm->arch.lpid;
4089 hvregs.vcpu_token = vcpu->vcpu_id;
4090 }
4091 hvregs.hdec_expiry = time_limit;
4092
4093 /*
4094 * hvregs has the doorbell status, so zero it here which
4095 * enables us to receive doorbells when H_ENTER_NESTED is
4096 * in progress for this vCPU
4097 */
4098
4099 if (vcpu->arch.doorbell_request)
4100 vcpu->arch.doorbell_request = 0;
4101
4102 /*
4103 * When setting DEC, we must always deal with irq_work_raise
4104 * via NMI vs setting DEC. The problem occurs right as we
4105 * switch into guest mode if a NMI hits and sets pending work
4106 * and sets DEC, then that will apply to the guest and not
4107 * bring us back to the host.
4108 *
4109 * irq_work_raise could check a flag (or possibly LPCR[HDICE]
4110 * for example) and set HDEC to 1? That wouldn't solve the
4111 * nested hv case which needs to abort the hcall or zero the
4112 * time limit.
4113 *
4114 * XXX: Another day's problem.
4115 */
4116 mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
4117
4118 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
4119 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
4120 switch_pmu_to_guest(vcpu, &host_os_sprs);
4121 accumulate_time(vcpu, &vcpu->arch.in_guest);
4122 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
4123 __pa(&vcpu->arch.regs));
4124 accumulate_time(vcpu, &vcpu->arch.guest_exit);
4125 kvmhv_restore_hv_return_state(vcpu, &hvregs);
4126 switch_pmu_to_host(vcpu, &host_os_sprs);
4127 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
4128 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
4129 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
4130 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
4131
4132 store_vcpu_state(vcpu);
4133
4134 dec = mfspr(SPRN_DEC);
4135 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4136 dec = (s32) dec;
4137 *tb = mftb();
4138 vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset);
4139
4140 timer_rearm_host_dec(*tb);
4141
4142 restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4143 if (vcpu->arch.psscr != host_psscr)
4144 mtspr(SPRN_PSSCR_PR, host_psscr);
4145
4146 return trap;
4147 }
4148
4149 /*
4150 * Guest entry for POWER9 and later CPUs.
4151 */
kvmhv_p9_guest_entry(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr,u64 * tb)4152 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4153 unsigned long lpcr, u64 *tb)
4154 {
4155 struct kvm *kvm = vcpu->kvm;
4156 struct kvm_nested_guest *nested = vcpu->arch.nested;
4157 u64 next_timer;
4158 int trap;
4159
4160 next_timer = timer_get_next_tb();
4161 if (*tb >= next_timer)
4162 return BOOK3S_INTERRUPT_HV_DECREMENTER;
4163 if (next_timer < time_limit)
4164 time_limit = next_timer;
4165 else if (*tb >= time_limit) /* nested time limit */
4166 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4167
4168 vcpu->arch.ceded = 0;
4169
4170 vcpu_vpa_increment_dispatch(vcpu);
4171
4172 if (kvmhv_on_pseries()) {
4173 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4174
4175 /* H_CEDE has to be handled now, not later */
4176 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
4177 kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4178 kvmppc_cede(vcpu);
4179 kvmppc_set_gpr(vcpu, 3, 0);
4180 trap = 0;
4181 }
4182
4183 } else if (nested) {
4184 __this_cpu_write(cpu_in_guest, kvm);
4185 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4186 __this_cpu_write(cpu_in_guest, NULL);
4187
4188 } else {
4189 kvmppc_xive_push_vcpu(vcpu);
4190
4191 __this_cpu_write(cpu_in_guest, kvm);
4192 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4193 __this_cpu_write(cpu_in_guest, NULL);
4194
4195 if (trap == BOOK3S_INTERRUPT_SYSCALL &&
4196 !(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
4197 unsigned long req = kvmppc_get_gpr(vcpu, 3);
4198
4199 /*
4200 * XIVE rearm and XICS hcalls must be handled
4201 * before xive context is pulled (is this
4202 * true?)
4203 */
4204 if (req == H_CEDE) {
4205 /* H_CEDE has to be handled now */
4206 kvmppc_cede(vcpu);
4207 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4208 /*
4209 * Pending escalation so abort
4210 * the cede.
4211 */
4212 vcpu->arch.ceded = 0;
4213 }
4214 kvmppc_set_gpr(vcpu, 3, 0);
4215 trap = 0;
4216
4217 } else if (req == H_ENTER_NESTED) {
4218 /*
4219 * L2 should not run with the L1
4220 * context so rearm and pull it.
4221 */
4222 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4223 /*
4224 * Pending escalation so abort
4225 * H_ENTER_NESTED.
4226 */
4227 kvmppc_set_gpr(vcpu, 3, 0);
4228 trap = 0;
4229 }
4230
4231 } else if (hcall_is_xics(req)) {
4232 int ret;
4233
4234 ret = kvmppc_xive_xics_hcall(vcpu, req);
4235 if (ret != H_TOO_HARD) {
4236 kvmppc_set_gpr(vcpu, 3, ret);
4237 trap = 0;
4238 }
4239 }
4240 }
4241 kvmppc_xive_pull_vcpu(vcpu);
4242
4243 if (kvm_is_radix(kvm))
4244 vcpu->arch.slb_max = 0;
4245 }
4246
4247 vcpu_vpa_increment_dispatch(vcpu);
4248
4249 return trap;
4250 }
4251
4252 /*
4253 * Wait for some other vcpu thread to execute us, and
4254 * wake us up when we need to handle something in the host.
4255 */
kvmppc_wait_for_exec(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu,int wait_state)4256 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4257 struct kvm_vcpu *vcpu, int wait_state)
4258 {
4259 DEFINE_WAIT(wait);
4260
4261 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4262 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4263 spin_unlock(&vc->lock);
4264 schedule();
4265 spin_lock(&vc->lock);
4266 }
4267 finish_wait(&vcpu->arch.cpu_run, &wait);
4268 }
4269
grow_halt_poll_ns(struct kvmppc_vcore * vc)4270 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4271 {
4272 if (!halt_poll_ns_grow)
4273 return;
4274
4275 vc->halt_poll_ns *= halt_poll_ns_grow;
4276 if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4277 vc->halt_poll_ns = halt_poll_ns_grow_start;
4278 }
4279
shrink_halt_poll_ns(struct kvmppc_vcore * vc)4280 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4281 {
4282 if (halt_poll_ns_shrink == 0)
4283 vc->halt_poll_ns = 0;
4284 else
4285 vc->halt_poll_ns /= halt_poll_ns_shrink;
4286 }
4287
4288 #ifdef CONFIG_KVM_XICS
xive_interrupt_pending(struct kvm_vcpu * vcpu)4289 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4290 {
4291 if (!xics_on_xive())
4292 return false;
4293 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4294 vcpu->arch.xive_saved_state.cppr;
4295 }
4296 #else
xive_interrupt_pending(struct kvm_vcpu * vcpu)4297 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4298 {
4299 return false;
4300 }
4301 #endif /* CONFIG_KVM_XICS */
4302
kvmppc_vcpu_woken(struct kvm_vcpu * vcpu)4303 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4304 {
4305 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4306 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4307 return true;
4308
4309 return false;
4310 }
4311
kvmppc_vcpu_check_block(struct kvm_vcpu * vcpu)4312 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4313 {
4314 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4315 return true;
4316 return false;
4317 }
4318
4319 /*
4320 * Check to see if any of the runnable vcpus on the vcore have pending
4321 * exceptions or are no longer ceded
4322 */
kvmppc_vcore_check_block(struct kvmppc_vcore * vc)4323 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4324 {
4325 struct kvm_vcpu *vcpu;
4326 int i;
4327
4328 for_each_runnable_thread(i, vcpu, vc) {
4329 if (kvmppc_vcpu_check_block(vcpu))
4330 return 1;
4331 }
4332
4333 return 0;
4334 }
4335
4336 /*
4337 * All the vcpus in this vcore are idle, so wait for a decrementer
4338 * or external interrupt to one of the vcpus. vc->lock is held.
4339 */
kvmppc_vcore_blocked(struct kvmppc_vcore * vc)4340 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4341 {
4342 ktime_t cur, start_poll, start_wait;
4343 int do_sleep = 1;
4344 u64 block_ns;
4345
4346 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4347
4348 /* Poll for pending exceptions and ceded state */
4349 cur = start_poll = ktime_get();
4350 if (vc->halt_poll_ns) {
4351 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4352 ++vc->runner->stat.generic.halt_attempted_poll;
4353
4354 vc->vcore_state = VCORE_POLLING;
4355 spin_unlock(&vc->lock);
4356
4357 do {
4358 if (kvmppc_vcore_check_block(vc)) {
4359 do_sleep = 0;
4360 break;
4361 }
4362 cur = ktime_get();
4363 } while (kvm_vcpu_can_poll(cur, stop));
4364
4365 spin_lock(&vc->lock);
4366 vc->vcore_state = VCORE_INACTIVE;
4367
4368 if (!do_sleep) {
4369 ++vc->runner->stat.generic.halt_successful_poll;
4370 goto out;
4371 }
4372 }
4373
4374 prepare_to_rcuwait(&vc->wait);
4375 set_current_state(TASK_INTERRUPTIBLE);
4376 if (kvmppc_vcore_check_block(vc)) {
4377 finish_rcuwait(&vc->wait);
4378 do_sleep = 0;
4379 /* If we polled, count this as a successful poll */
4380 if (vc->halt_poll_ns)
4381 ++vc->runner->stat.generic.halt_successful_poll;
4382 goto out;
4383 }
4384
4385 start_wait = ktime_get();
4386
4387 vc->vcore_state = VCORE_SLEEPING;
4388 trace_kvmppc_vcore_blocked(vc->runner, 0);
4389 spin_unlock(&vc->lock);
4390 schedule();
4391 finish_rcuwait(&vc->wait);
4392 spin_lock(&vc->lock);
4393 vc->vcore_state = VCORE_INACTIVE;
4394 trace_kvmppc_vcore_blocked(vc->runner, 1);
4395 ++vc->runner->stat.halt_successful_wait;
4396
4397 cur = ktime_get();
4398
4399 out:
4400 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4401
4402 /* Attribute wait time */
4403 if (do_sleep) {
4404 vc->runner->stat.generic.halt_wait_ns +=
4405 ktime_to_ns(cur) - ktime_to_ns(start_wait);
4406 KVM_STATS_LOG_HIST_UPDATE(
4407 vc->runner->stat.generic.halt_wait_hist,
4408 ktime_to_ns(cur) - ktime_to_ns(start_wait));
4409 /* Attribute failed poll time */
4410 if (vc->halt_poll_ns) {
4411 vc->runner->stat.generic.halt_poll_fail_ns +=
4412 ktime_to_ns(start_wait) -
4413 ktime_to_ns(start_poll);
4414 KVM_STATS_LOG_HIST_UPDATE(
4415 vc->runner->stat.generic.halt_poll_fail_hist,
4416 ktime_to_ns(start_wait) -
4417 ktime_to_ns(start_poll));
4418 }
4419 } else {
4420 /* Attribute successful poll time */
4421 if (vc->halt_poll_ns) {
4422 vc->runner->stat.generic.halt_poll_success_ns +=
4423 ktime_to_ns(cur) -
4424 ktime_to_ns(start_poll);
4425 KVM_STATS_LOG_HIST_UPDATE(
4426 vc->runner->stat.generic.halt_poll_success_hist,
4427 ktime_to_ns(cur) - ktime_to_ns(start_poll));
4428 }
4429 }
4430
4431 /* Adjust poll time */
4432 if (halt_poll_ns) {
4433 if (block_ns <= vc->halt_poll_ns)
4434 ;
4435 /* We slept and blocked for longer than the max halt time */
4436 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4437 shrink_halt_poll_ns(vc);
4438 /* We slept and our poll time is too small */
4439 else if (vc->halt_poll_ns < halt_poll_ns &&
4440 block_ns < halt_poll_ns)
4441 grow_halt_poll_ns(vc);
4442 if (vc->halt_poll_ns > halt_poll_ns)
4443 vc->halt_poll_ns = halt_poll_ns;
4444 } else
4445 vc->halt_poll_ns = 0;
4446
4447 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4448 }
4449
4450 /*
4451 * This never fails for a radix guest, as none of the operations it does
4452 * for a radix guest can fail or have a way to report failure.
4453 */
kvmhv_setup_mmu(struct kvm_vcpu * vcpu)4454 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4455 {
4456 int r = 0;
4457 struct kvm *kvm = vcpu->kvm;
4458
4459 mutex_lock(&kvm->arch.mmu_setup_lock);
4460 if (!kvm->arch.mmu_ready) {
4461 if (!kvm_is_radix(kvm))
4462 r = kvmppc_hv_setup_htab_rma(vcpu);
4463 if (!r) {
4464 if (cpu_has_feature(CPU_FTR_ARCH_300))
4465 kvmppc_setup_partition_table(kvm);
4466 kvm->arch.mmu_ready = 1;
4467 }
4468 }
4469 mutex_unlock(&kvm->arch.mmu_setup_lock);
4470 return r;
4471 }
4472
kvmppc_run_vcpu(struct kvm_vcpu * vcpu)4473 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4474 {
4475 struct kvm_run *run = vcpu->run;
4476 int n_ceded, i, r;
4477 struct kvmppc_vcore *vc;
4478 struct kvm_vcpu *v;
4479
4480 trace_kvmppc_run_vcpu_enter(vcpu);
4481
4482 run->exit_reason = 0;
4483 vcpu->arch.ret = RESUME_GUEST;
4484 vcpu->arch.trap = 0;
4485 kvmppc_update_vpas(vcpu);
4486
4487 /*
4488 * Synchronize with other threads in this virtual core
4489 */
4490 vc = vcpu->arch.vcore;
4491 spin_lock(&vc->lock);
4492 vcpu->arch.ceded = 0;
4493 vcpu->arch.run_task = current;
4494 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4495 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4496 vcpu->arch.busy_preempt = TB_NIL;
4497 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4498 ++vc->n_runnable;
4499
4500 /*
4501 * This happens the first time this is called for a vcpu.
4502 * If the vcore is already running, we may be able to start
4503 * this thread straight away and have it join in.
4504 */
4505 if (!signal_pending(current)) {
4506 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4507 vc->vcore_state == VCORE_RUNNING) &&
4508 !VCORE_IS_EXITING(vc)) {
4509 kvmppc_update_vpa_dispatch(vcpu, vc);
4510 kvmppc_start_thread(vcpu, vc);
4511 trace_kvm_guest_enter(vcpu);
4512 } else if (vc->vcore_state == VCORE_SLEEPING) {
4513 rcuwait_wake_up(&vc->wait);
4514 }
4515
4516 }
4517
4518 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4519 !signal_pending(current)) {
4520 /* See if the MMU is ready to go */
4521 if (!vcpu->kvm->arch.mmu_ready) {
4522 spin_unlock(&vc->lock);
4523 r = kvmhv_setup_mmu(vcpu);
4524 spin_lock(&vc->lock);
4525 if (r) {
4526 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4527 run->fail_entry.
4528 hardware_entry_failure_reason = 0;
4529 vcpu->arch.ret = r;
4530 break;
4531 }
4532 }
4533
4534 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4535 kvmppc_vcore_end_preempt(vc);
4536
4537 if (vc->vcore_state != VCORE_INACTIVE) {
4538 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4539 continue;
4540 }
4541 for_each_runnable_thread(i, v, vc) {
4542 kvmppc_core_prepare_to_enter(v);
4543 if (signal_pending(v->arch.run_task)) {
4544 kvmppc_remove_runnable(vc, v, mftb());
4545 v->stat.signal_exits++;
4546 v->run->exit_reason = KVM_EXIT_INTR;
4547 v->arch.ret = -EINTR;
4548 wake_up(&v->arch.cpu_run);
4549 }
4550 }
4551 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4552 break;
4553 n_ceded = 0;
4554 for_each_runnable_thread(i, v, vc) {
4555 if (!kvmppc_vcpu_woken(v))
4556 n_ceded += v->arch.ceded;
4557 else
4558 v->arch.ceded = 0;
4559 }
4560 vc->runner = vcpu;
4561 if (n_ceded == vc->n_runnable) {
4562 kvmppc_vcore_blocked(vc);
4563 } else if (need_resched()) {
4564 kvmppc_vcore_preempt(vc);
4565 /* Let something else run */
4566 cond_resched_lock(&vc->lock);
4567 if (vc->vcore_state == VCORE_PREEMPT)
4568 kvmppc_vcore_end_preempt(vc);
4569 } else {
4570 kvmppc_run_core(vc);
4571 }
4572 vc->runner = NULL;
4573 }
4574
4575 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4576 (vc->vcore_state == VCORE_RUNNING ||
4577 vc->vcore_state == VCORE_EXITING ||
4578 vc->vcore_state == VCORE_PIGGYBACK))
4579 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4580
4581 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4582 kvmppc_vcore_end_preempt(vc);
4583
4584 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4585 kvmppc_remove_runnable(vc, vcpu, mftb());
4586 vcpu->stat.signal_exits++;
4587 run->exit_reason = KVM_EXIT_INTR;
4588 vcpu->arch.ret = -EINTR;
4589 }
4590
4591 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4592 /* Wake up some vcpu to run the core */
4593 i = -1;
4594 v = next_runnable_thread(vc, &i);
4595 wake_up(&v->arch.cpu_run);
4596 }
4597
4598 trace_kvmppc_run_vcpu_exit(vcpu);
4599 spin_unlock(&vc->lock);
4600 return vcpu->arch.ret;
4601 }
4602
kvmhv_run_single_vcpu(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr)4603 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4604 unsigned long lpcr)
4605 {
4606 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4607 struct kvm_run *run = vcpu->run;
4608 int trap, r, pcpu;
4609 int srcu_idx;
4610 struct kvmppc_vcore *vc;
4611 struct kvm *kvm = vcpu->kvm;
4612 struct kvm_nested_guest *nested = vcpu->arch.nested;
4613 unsigned long flags;
4614 u64 tb;
4615
4616 trace_kvmppc_run_vcpu_enter(vcpu);
4617
4618 run->exit_reason = 0;
4619 vcpu->arch.ret = RESUME_GUEST;
4620 vcpu->arch.trap = 0;
4621
4622 vc = vcpu->arch.vcore;
4623 vcpu->arch.ceded = 0;
4624 vcpu->arch.run_task = current;
4625 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4626
4627 /* See if the MMU is ready to go */
4628 if (unlikely(!kvm->arch.mmu_ready)) {
4629 r = kvmhv_setup_mmu(vcpu);
4630 if (r) {
4631 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4632 run->fail_entry.hardware_entry_failure_reason = 0;
4633 vcpu->arch.ret = r;
4634 return r;
4635 }
4636 }
4637
4638 if (need_resched())
4639 cond_resched();
4640
4641 kvmppc_update_vpas(vcpu);
4642
4643 preempt_disable();
4644 pcpu = smp_processor_id();
4645 if (kvm_is_radix(kvm))
4646 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4647
4648 /* flags save not required, but irq_pmu has no disable/enable API */
4649 powerpc_local_irq_pmu_save(flags);
4650
4651 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4652
4653 if (signal_pending(current))
4654 goto sigpend;
4655 if (need_resched() || !kvm->arch.mmu_ready)
4656 goto out;
4657
4658 vcpu->cpu = pcpu;
4659 vcpu->arch.thread_cpu = pcpu;
4660 vc->pcpu = pcpu;
4661 local_paca->kvm_hstate.kvm_vcpu = vcpu;
4662 local_paca->kvm_hstate.ptid = 0;
4663 local_paca->kvm_hstate.fake_suspend = 0;
4664
4665 /*
4666 * Orders set cpu/thread_cpu vs testing for pending interrupts and
4667 * doorbells below. The other side is when these fields are set vs
4668 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
4669 * kick a vCPU to notice the pending interrupt.
4670 */
4671 smp_mb();
4672
4673 if (!nested) {
4674 kvmppc_core_prepare_to_enter(vcpu);
4675 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4676 &vcpu->arch.pending_exceptions) ||
4677 xive_interrupt_pending(vcpu)) {
4678 /*
4679 * For nested HV, don't synthesize but always pass MER,
4680 * the L0 will be able to optimise that more
4681 * effectively than manipulating registers directly.
4682 */
4683 if (!kvmhv_on_pseries() && (__kvmppc_get_msr_hv(vcpu) & MSR_EE))
4684 kvmppc_inject_interrupt_hv(vcpu,
4685 BOOK3S_INTERRUPT_EXTERNAL, 0);
4686 else
4687 lpcr |= LPCR_MER;
4688 }
4689 } else if (vcpu->arch.pending_exceptions ||
4690 xive_interrupt_pending(vcpu)) {
4691 vcpu->arch.ret = RESUME_HOST;
4692 goto out;
4693 }
4694
4695 if (vcpu->arch.timer_running) {
4696 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4697 vcpu->arch.timer_running = 0;
4698 }
4699
4700 tb = mftb();
4701
4702 kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + vc->tb_offset);
4703
4704 trace_kvm_guest_enter(vcpu);
4705
4706 guest_timing_enter_irqoff();
4707
4708 srcu_idx = srcu_read_lock(&kvm->srcu);
4709
4710 guest_state_enter_irqoff();
4711 this_cpu_disable_ftrace();
4712
4713 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4714 vcpu->arch.trap = trap;
4715
4716 this_cpu_enable_ftrace();
4717 guest_state_exit_irqoff();
4718
4719 srcu_read_unlock(&kvm->srcu, srcu_idx);
4720
4721 set_irq_happened(trap);
4722
4723 vcpu->cpu = -1;
4724 vcpu->arch.thread_cpu = -1;
4725 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4726
4727 if (!vtime_accounting_enabled_this_cpu()) {
4728 powerpc_local_irq_pmu_restore(flags);
4729 /*
4730 * Service IRQs here before guest_timing_exit_irqoff() so any
4731 * ticks that occurred while running the guest are accounted to
4732 * the guest. If vtime accounting is enabled, accounting uses
4733 * TB rather than ticks, so it can be done without enabling
4734 * interrupts here, which has the problem that it accounts
4735 * interrupt processing overhead to the host.
4736 */
4737 powerpc_local_irq_pmu_save(flags);
4738 }
4739 guest_timing_exit_irqoff();
4740
4741 powerpc_local_irq_pmu_restore(flags);
4742
4743 preempt_enable();
4744
4745 /*
4746 * cancel pending decrementer exception if DEC is now positive, or if
4747 * entering a nested guest in which case the decrementer is now owned
4748 * by L2 and the L1 decrementer is provided in hdec_expires
4749 */
4750 if (kvmppc_core_pending_dec(vcpu) &&
4751 ((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4752 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4753 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4754 kvmppc_core_dequeue_dec(vcpu);
4755
4756 trace_kvm_guest_exit(vcpu);
4757 r = RESUME_GUEST;
4758 if (trap) {
4759 if (!nested)
4760 r = kvmppc_handle_exit_hv(vcpu, current);
4761 else
4762 r = kvmppc_handle_nested_exit(vcpu);
4763 }
4764 vcpu->arch.ret = r;
4765
4766 if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4767 kvmppc_set_timer(vcpu);
4768
4769 prepare_to_rcuwait(wait);
4770 for (;;) {
4771 set_current_state(TASK_INTERRUPTIBLE);
4772 if (signal_pending(current)) {
4773 vcpu->stat.signal_exits++;
4774 run->exit_reason = KVM_EXIT_INTR;
4775 vcpu->arch.ret = -EINTR;
4776 break;
4777 }
4778
4779 if (kvmppc_vcpu_check_block(vcpu))
4780 break;
4781
4782 trace_kvmppc_vcore_blocked(vcpu, 0);
4783 schedule();
4784 trace_kvmppc_vcore_blocked(vcpu, 1);
4785 }
4786 finish_rcuwait(wait);
4787 }
4788 vcpu->arch.ceded = 0;
4789
4790 done:
4791 trace_kvmppc_run_vcpu_exit(vcpu);
4792
4793 return vcpu->arch.ret;
4794
4795 sigpend:
4796 vcpu->stat.signal_exits++;
4797 run->exit_reason = KVM_EXIT_INTR;
4798 vcpu->arch.ret = -EINTR;
4799 out:
4800 vcpu->cpu = -1;
4801 vcpu->arch.thread_cpu = -1;
4802 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4803 powerpc_local_irq_pmu_restore(flags);
4804 preempt_enable();
4805 goto done;
4806 }
4807
kvmppc_vcpu_run_hv(struct kvm_vcpu * vcpu)4808 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4809 {
4810 struct kvm_run *run = vcpu->run;
4811 int r;
4812 int srcu_idx;
4813 struct kvm *kvm;
4814 unsigned long msr;
4815
4816 start_timing(vcpu, &vcpu->arch.vcpu_entry);
4817
4818 if (!vcpu->arch.sane) {
4819 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4820 return -EINVAL;
4821 }
4822
4823 /* No need to go into the guest when all we'll do is come back out */
4824 if (signal_pending(current)) {
4825 run->exit_reason = KVM_EXIT_INTR;
4826 return -EINTR;
4827 }
4828
4829 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4830 /*
4831 * Don't allow entry with a suspended transaction, because
4832 * the guest entry/exit code will lose it.
4833 */
4834 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4835 (current->thread.regs->msr & MSR_TM)) {
4836 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4837 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4838 run->fail_entry.hardware_entry_failure_reason = 0;
4839 return -EINVAL;
4840 }
4841 }
4842 #endif
4843
4844 /*
4845 * Force online to 1 for the sake of old userspace which doesn't
4846 * set it.
4847 */
4848 if (!vcpu->arch.online) {
4849 atomic_inc(&vcpu->arch.vcore->online_count);
4850 vcpu->arch.online = 1;
4851 }
4852
4853 kvmppc_core_prepare_to_enter(vcpu);
4854
4855 kvm = vcpu->kvm;
4856 atomic_inc(&kvm->arch.vcpus_running);
4857 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4858 smp_mb();
4859
4860 msr = 0;
4861 if (IS_ENABLED(CONFIG_PPC_FPU))
4862 msr |= MSR_FP;
4863 if (cpu_has_feature(CPU_FTR_ALTIVEC))
4864 msr |= MSR_VEC;
4865 if (cpu_has_feature(CPU_FTR_VSX))
4866 msr |= MSR_VSX;
4867 if ((cpu_has_feature(CPU_FTR_TM) ||
4868 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4869 (kvmppc_get_hfscr_hv(vcpu) & HFSCR_TM))
4870 msr |= MSR_TM;
4871 msr = msr_check_and_set(msr);
4872
4873 kvmppc_save_user_regs();
4874
4875 kvmppc_save_current_sprs();
4876
4877 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4878 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4879 vcpu->arch.pgdir = kvm->mm->pgd;
4880 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4881
4882 do {
4883 accumulate_time(vcpu, &vcpu->arch.guest_entry);
4884 if (cpu_has_feature(CPU_FTR_ARCH_300))
4885 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4886 vcpu->arch.vcore->lpcr);
4887 else
4888 r = kvmppc_run_vcpu(vcpu);
4889
4890 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4891 accumulate_time(vcpu, &vcpu->arch.hcall);
4892
4893 if (WARN_ON_ONCE(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
4894 /*
4895 * These should have been caught reflected
4896 * into the guest by now. Final sanity check:
4897 * don't allow userspace to execute hcalls in
4898 * the hypervisor.
4899 */
4900 r = RESUME_GUEST;
4901 continue;
4902 }
4903 trace_kvm_hcall_enter(vcpu);
4904 r = kvmppc_pseries_do_hcall(vcpu);
4905 trace_kvm_hcall_exit(vcpu, r);
4906 kvmppc_core_prepare_to_enter(vcpu);
4907 } else if (r == RESUME_PAGE_FAULT) {
4908 accumulate_time(vcpu, &vcpu->arch.pg_fault);
4909 srcu_idx = srcu_read_lock(&kvm->srcu);
4910 r = kvmppc_book3s_hv_page_fault(vcpu,
4911 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4912 srcu_read_unlock(&kvm->srcu, srcu_idx);
4913 } else if (r == RESUME_PASSTHROUGH) {
4914 if (WARN_ON(xics_on_xive()))
4915 r = H_SUCCESS;
4916 else
4917 r = kvmppc_xics_rm_complete(vcpu, 0);
4918 }
4919 } while (is_kvmppc_resume_guest(r));
4920 accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
4921
4922 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4923 atomic_dec(&kvm->arch.vcpus_running);
4924
4925 srr_regs_clobbered();
4926
4927 end_timing(vcpu);
4928
4929 return r;
4930 }
4931
kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size ** sps,int shift,int sllp)4932 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4933 int shift, int sllp)
4934 {
4935 (*sps)->page_shift = shift;
4936 (*sps)->slb_enc = sllp;
4937 (*sps)->enc[0].page_shift = shift;
4938 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4939 /*
4940 * Add 16MB MPSS support (may get filtered out by userspace)
4941 */
4942 if (shift != 24) {
4943 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4944 if (penc != -1) {
4945 (*sps)->enc[1].page_shift = 24;
4946 (*sps)->enc[1].pte_enc = penc;
4947 }
4948 }
4949 (*sps)++;
4950 }
4951
kvm_vm_ioctl_get_smmu_info_hv(struct kvm * kvm,struct kvm_ppc_smmu_info * info)4952 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4953 struct kvm_ppc_smmu_info *info)
4954 {
4955 struct kvm_ppc_one_seg_page_size *sps;
4956
4957 /*
4958 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4959 * POWER7 doesn't support keys for instruction accesses,
4960 * POWER8 and POWER9 do.
4961 */
4962 info->data_keys = 32;
4963 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4964
4965 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4966 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4967 info->slb_size = 32;
4968
4969 /* We only support these sizes for now, and no muti-size segments */
4970 sps = &info->sps[0];
4971 kvmppc_add_seg_page_size(&sps, 12, 0);
4972 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4973 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4974
4975 /* If running as a nested hypervisor, we don't support HPT guests */
4976 if (kvmhv_on_pseries())
4977 info->flags |= KVM_PPC_NO_HASH;
4978
4979 return 0;
4980 }
4981
4982 /*
4983 * Get (and clear) the dirty memory log for a memory slot.
4984 */
kvm_vm_ioctl_get_dirty_log_hv(struct kvm * kvm,struct kvm_dirty_log * log)4985 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4986 struct kvm_dirty_log *log)
4987 {
4988 struct kvm_memslots *slots;
4989 struct kvm_memory_slot *memslot;
4990 int r;
4991 unsigned long n, i;
4992 unsigned long *buf, *p;
4993 struct kvm_vcpu *vcpu;
4994
4995 mutex_lock(&kvm->slots_lock);
4996
4997 r = -EINVAL;
4998 if (log->slot >= KVM_USER_MEM_SLOTS)
4999 goto out;
5000
5001 slots = kvm_memslots(kvm);
5002 memslot = id_to_memslot(slots, log->slot);
5003 r = -ENOENT;
5004 if (!memslot || !memslot->dirty_bitmap)
5005 goto out;
5006
5007 /*
5008 * Use second half of bitmap area because both HPT and radix
5009 * accumulate bits in the first half.
5010 */
5011 n = kvm_dirty_bitmap_bytes(memslot);
5012 buf = memslot->dirty_bitmap + n / sizeof(long);
5013 memset(buf, 0, n);
5014
5015 if (kvm_is_radix(kvm))
5016 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
5017 else
5018 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
5019 if (r)
5020 goto out;
5021
5022 /*
5023 * We accumulate dirty bits in the first half of the
5024 * memslot's dirty_bitmap area, for when pages are paged
5025 * out or modified by the host directly. Pick up these
5026 * bits and add them to the map.
5027 */
5028 p = memslot->dirty_bitmap;
5029 for (i = 0; i < n / sizeof(long); ++i)
5030 buf[i] |= xchg(&p[i], 0);
5031
5032 /* Harvest dirty bits from VPA and DTL updates */
5033 /* Note: we never modify the SLB shadow buffer areas */
5034 kvm_for_each_vcpu(i, vcpu, kvm) {
5035 spin_lock(&vcpu->arch.vpa_update_lock);
5036 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
5037 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
5038 spin_unlock(&vcpu->arch.vpa_update_lock);
5039 }
5040
5041 r = -EFAULT;
5042 if (copy_to_user(log->dirty_bitmap, buf, n))
5043 goto out;
5044
5045 r = 0;
5046 out:
5047 mutex_unlock(&kvm->slots_lock);
5048 return r;
5049 }
5050
kvmppc_core_free_memslot_hv(struct kvm_memory_slot * slot)5051 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
5052 {
5053 vfree(slot->arch.rmap);
5054 slot->arch.rmap = NULL;
5055 }
5056
kvmppc_core_prepare_memory_region_hv(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)5057 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
5058 const struct kvm_memory_slot *old,
5059 struct kvm_memory_slot *new,
5060 enum kvm_mr_change change)
5061 {
5062 if (change == KVM_MR_CREATE) {
5063 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
5064
5065 if ((size >> PAGE_SHIFT) > totalram_pages())
5066 return -ENOMEM;
5067
5068 new->arch.rmap = vzalloc(size);
5069 if (!new->arch.rmap)
5070 return -ENOMEM;
5071 } else if (change != KVM_MR_DELETE) {
5072 new->arch.rmap = old->arch.rmap;
5073 }
5074
5075 return 0;
5076 }
5077
kvmppc_core_commit_memory_region_hv(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)5078 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
5079 struct kvm_memory_slot *old,
5080 const struct kvm_memory_slot *new,
5081 enum kvm_mr_change change)
5082 {
5083 /*
5084 * If we are creating or modifying a memslot, it might make
5085 * some address that was previously cached as emulated
5086 * MMIO be no longer emulated MMIO, so invalidate
5087 * all the caches of emulated MMIO translations.
5088 */
5089 if (change != KVM_MR_DELETE)
5090 atomic64_inc(&kvm->arch.mmio_update);
5091
5092 /*
5093 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
5094 * have already called kvm_arch_flush_shadow_memslot() to
5095 * flush shadow mappings. For KVM_MR_CREATE we have no
5096 * previous mappings. So the only case to handle is
5097 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
5098 * has been changed.
5099 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
5100 * to get rid of any THP PTEs in the partition-scoped page tables
5101 * so we can track dirtiness at the page level; we flush when
5102 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
5103 * using THP PTEs.
5104 */
5105 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
5106 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
5107 kvmppc_radix_flush_memslot(kvm, old);
5108 /*
5109 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
5110 */
5111 if (!kvm->arch.secure_guest)
5112 return;
5113
5114 switch (change) {
5115 case KVM_MR_CREATE:
5116 /*
5117 * @TODO kvmppc_uvmem_memslot_create() can fail and
5118 * return error. Fix this.
5119 */
5120 kvmppc_uvmem_memslot_create(kvm, new);
5121 break;
5122 case KVM_MR_DELETE:
5123 kvmppc_uvmem_memslot_delete(kvm, old);
5124 break;
5125 default:
5126 /* TODO: Handle KVM_MR_MOVE */
5127 break;
5128 }
5129 }
5130
5131 /*
5132 * Update LPCR values in kvm->arch and in vcores.
5133 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
5134 * of kvm->arch.lpcr update).
5135 */
kvmppc_update_lpcr(struct kvm * kvm,unsigned long lpcr,unsigned long mask)5136 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
5137 {
5138 long int i;
5139 u32 cores_done = 0;
5140
5141 if ((kvm->arch.lpcr & mask) == lpcr)
5142 return;
5143
5144 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
5145
5146 for (i = 0; i < KVM_MAX_VCORES; ++i) {
5147 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
5148 if (!vc)
5149 continue;
5150
5151 spin_lock(&vc->lock);
5152 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
5153 verify_lpcr(kvm, vc->lpcr);
5154 spin_unlock(&vc->lock);
5155 if (++cores_done >= kvm->arch.online_vcores)
5156 break;
5157 }
5158 }
5159
kvmppc_setup_partition_table(struct kvm * kvm)5160 void kvmppc_setup_partition_table(struct kvm *kvm)
5161 {
5162 unsigned long dw0, dw1;
5163
5164 if (!kvm_is_radix(kvm)) {
5165 /* PS field - page size for VRMA */
5166 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
5167 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
5168 /* HTABSIZE and HTABORG fields */
5169 dw0 |= kvm->arch.sdr1;
5170
5171 /* Second dword as set by userspace */
5172 dw1 = kvm->arch.process_table;
5173 } else {
5174 dw0 = PATB_HR | radix__get_tree_size() |
5175 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
5176 dw1 = PATB_GR | kvm->arch.process_table;
5177 }
5178 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
5179 }
5180
5181 /*
5182 * Set up HPT (hashed page table) and RMA (real-mode area).
5183 * Must be called with kvm->arch.mmu_setup_lock held.
5184 */
kvmppc_hv_setup_htab_rma(struct kvm_vcpu * vcpu)5185 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
5186 {
5187 int err = 0;
5188 struct kvm *kvm = vcpu->kvm;
5189 unsigned long hva;
5190 struct kvm_memory_slot *memslot;
5191 struct vm_area_struct *vma;
5192 unsigned long lpcr = 0, senc;
5193 unsigned long psize, porder;
5194 int srcu_idx;
5195
5196 /* Allocate hashed page table (if not done already) and reset it */
5197 if (!kvm->arch.hpt.virt) {
5198 int order = KVM_DEFAULT_HPT_ORDER;
5199 struct kvm_hpt_info info;
5200
5201 err = kvmppc_allocate_hpt(&info, order);
5202 /* If we get here, it means userspace didn't specify a
5203 * size explicitly. So, try successively smaller
5204 * sizes if the default failed. */
5205 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5206 err = kvmppc_allocate_hpt(&info, order);
5207
5208 if (err < 0) {
5209 pr_err("KVM: Couldn't alloc HPT\n");
5210 goto out;
5211 }
5212
5213 kvmppc_set_hpt(kvm, &info);
5214 }
5215
5216 /* Look up the memslot for guest physical address 0 */
5217 srcu_idx = srcu_read_lock(&kvm->srcu);
5218 memslot = gfn_to_memslot(kvm, 0);
5219
5220 /* We must have some memory at 0 by now */
5221 err = -EINVAL;
5222 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5223 goto out_srcu;
5224
5225 /* Look up the VMA for the start of this memory slot */
5226 hva = memslot->userspace_addr;
5227 mmap_read_lock(kvm->mm);
5228 vma = vma_lookup(kvm->mm, hva);
5229 if (!vma || (vma->vm_flags & VM_IO))
5230 goto up_out;
5231
5232 psize = vma_kernel_pagesize(vma);
5233
5234 mmap_read_unlock(kvm->mm);
5235
5236 /* We can handle 4k, 64k or 16M pages in the VRMA */
5237 if (psize >= 0x1000000)
5238 psize = 0x1000000;
5239 else if (psize >= 0x10000)
5240 psize = 0x10000;
5241 else
5242 psize = 0x1000;
5243 porder = __ilog2(psize);
5244
5245 senc = slb_pgsize_encoding(psize);
5246 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5247 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5248 /* Create HPTEs in the hash page table for the VRMA */
5249 kvmppc_map_vrma(vcpu, memslot, porder);
5250
5251 /* Update VRMASD field in the LPCR */
5252 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5253 /* the -4 is to account for senc values starting at 0x10 */
5254 lpcr = senc << (LPCR_VRMASD_SH - 4);
5255 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5256 }
5257
5258 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5259 smp_wmb();
5260 err = 0;
5261 out_srcu:
5262 srcu_read_unlock(&kvm->srcu, srcu_idx);
5263 out:
5264 return err;
5265
5266 up_out:
5267 mmap_read_unlock(kvm->mm);
5268 goto out_srcu;
5269 }
5270
5271 /*
5272 * Must be called with kvm->arch.mmu_setup_lock held and
5273 * mmu_ready = 0 and no vcpus running.
5274 */
kvmppc_switch_mmu_to_hpt(struct kvm * kvm)5275 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5276 {
5277 unsigned long lpcr, lpcr_mask;
5278
5279 if (nesting_enabled(kvm))
5280 kvmhv_release_all_nested(kvm);
5281 kvmppc_rmap_reset(kvm);
5282 kvm->arch.process_table = 0;
5283 /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5284 spin_lock(&kvm->mmu_lock);
5285 kvm->arch.radix = 0;
5286 spin_unlock(&kvm->mmu_lock);
5287 kvmppc_free_radix(kvm);
5288
5289 lpcr = LPCR_VPM1;
5290 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5291 if (cpu_has_feature(CPU_FTR_ARCH_31))
5292 lpcr_mask |= LPCR_HAIL;
5293 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5294
5295 return 0;
5296 }
5297
5298 /*
5299 * Must be called with kvm->arch.mmu_setup_lock held and
5300 * mmu_ready = 0 and no vcpus running.
5301 */
kvmppc_switch_mmu_to_radix(struct kvm * kvm)5302 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5303 {
5304 unsigned long lpcr, lpcr_mask;
5305 int err;
5306
5307 err = kvmppc_init_vm_radix(kvm);
5308 if (err)
5309 return err;
5310 kvmppc_rmap_reset(kvm);
5311 /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5312 spin_lock(&kvm->mmu_lock);
5313 kvm->arch.radix = 1;
5314 spin_unlock(&kvm->mmu_lock);
5315 kvmppc_free_hpt(&kvm->arch.hpt);
5316
5317 lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5318 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5319 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5320 lpcr_mask |= LPCR_HAIL;
5321 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5322 (kvm->arch.host_lpcr & LPCR_HAIL))
5323 lpcr |= LPCR_HAIL;
5324 }
5325 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5326
5327 return 0;
5328 }
5329
5330 #ifdef CONFIG_KVM_XICS
5331 /*
5332 * Allocate a per-core structure for managing state about which cores are
5333 * running in the host versus the guest and for exchanging data between
5334 * real mode KVM and CPU running in the host.
5335 * This is only done for the first VM.
5336 * The allocated structure stays even if all VMs have stopped.
5337 * It is only freed when the kvm-hv module is unloaded.
5338 * It's OK for this routine to fail, we just don't support host
5339 * core operations like redirecting H_IPI wakeups.
5340 */
kvmppc_alloc_host_rm_ops(void)5341 void kvmppc_alloc_host_rm_ops(void)
5342 {
5343 struct kvmppc_host_rm_ops *ops;
5344 unsigned long l_ops;
5345 int cpu, core;
5346 int size;
5347
5348 if (cpu_has_feature(CPU_FTR_ARCH_300))
5349 return;
5350
5351 /* Not the first time here ? */
5352 if (kvmppc_host_rm_ops_hv != NULL)
5353 return;
5354
5355 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5356 if (!ops)
5357 return;
5358
5359 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5360 ops->rm_core = kzalloc(size, GFP_KERNEL);
5361
5362 if (!ops->rm_core) {
5363 kfree(ops);
5364 return;
5365 }
5366
5367 cpus_read_lock();
5368
5369 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5370 if (!cpu_online(cpu))
5371 continue;
5372
5373 core = cpu >> threads_shift;
5374 ops->rm_core[core].rm_state.in_host = 1;
5375 }
5376
5377 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5378
5379 /*
5380 * Make the contents of the kvmppc_host_rm_ops structure visible
5381 * to other CPUs before we assign it to the global variable.
5382 * Do an atomic assignment (no locks used here), but if someone
5383 * beats us to it, just free our copy and return.
5384 */
5385 smp_wmb();
5386 l_ops = (unsigned long) ops;
5387
5388 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5389 cpus_read_unlock();
5390 kfree(ops->rm_core);
5391 kfree(ops);
5392 return;
5393 }
5394
5395 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5396 "ppc/kvm_book3s:prepare",
5397 kvmppc_set_host_core,
5398 kvmppc_clear_host_core);
5399 cpus_read_unlock();
5400 }
5401
kvmppc_free_host_rm_ops(void)5402 void kvmppc_free_host_rm_ops(void)
5403 {
5404 if (kvmppc_host_rm_ops_hv) {
5405 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5406 kfree(kvmppc_host_rm_ops_hv->rm_core);
5407 kfree(kvmppc_host_rm_ops_hv);
5408 kvmppc_host_rm_ops_hv = NULL;
5409 }
5410 }
5411 #endif
5412
kvmppc_core_init_vm_hv(struct kvm * kvm)5413 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5414 {
5415 unsigned long lpcr, lpid;
5416 int ret;
5417
5418 mutex_init(&kvm->arch.uvmem_lock);
5419 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5420 mutex_init(&kvm->arch.mmu_setup_lock);
5421
5422 /* Allocate the guest's logical partition ID */
5423
5424 lpid = kvmppc_alloc_lpid();
5425 if ((long)lpid < 0)
5426 return -ENOMEM;
5427 kvm->arch.lpid = lpid;
5428
5429 kvmppc_alloc_host_rm_ops();
5430
5431 kvmhv_vm_nested_init(kvm);
5432
5433 /*
5434 * Since we don't flush the TLB when tearing down a VM,
5435 * and this lpid might have previously been used,
5436 * make sure we flush on each core before running the new VM.
5437 * On POWER9, the tlbie in mmu_partition_table_set_entry()
5438 * does this flush for us.
5439 */
5440 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5441 cpumask_setall(&kvm->arch.need_tlb_flush);
5442
5443 /* Start out with the default set of hcalls enabled */
5444 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5445 sizeof(kvm->arch.enabled_hcalls));
5446
5447 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5448 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5449
5450 /* Init LPCR for virtual RMA mode */
5451 if (cpu_has_feature(CPU_FTR_HVMODE)) {
5452 kvm->arch.host_lpid = mfspr(SPRN_LPID);
5453 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5454 lpcr &= LPCR_PECE | LPCR_LPES;
5455 } else {
5456 /*
5457 * The L2 LPES mode will be set by the L0 according to whether
5458 * or not it needs to take external interrupts in HV mode.
5459 */
5460 lpcr = 0;
5461 }
5462 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5463 LPCR_VPM0 | LPCR_VPM1;
5464 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5465 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5466 /* On POWER8 turn on online bit to enable PURR/SPURR */
5467 if (cpu_has_feature(CPU_FTR_ARCH_207S))
5468 lpcr |= LPCR_ONL;
5469 /*
5470 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5471 * Set HVICE bit to enable hypervisor virtualization interrupts.
5472 * Set HEIC to prevent OS interrupts to go to hypervisor (should
5473 * be unnecessary but better safe than sorry in case we re-enable
5474 * EE in HV mode with this LPCR still set)
5475 */
5476 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5477 lpcr &= ~LPCR_VPM0;
5478 lpcr |= LPCR_HVICE | LPCR_HEIC;
5479
5480 /*
5481 * If xive is enabled, we route 0x500 interrupts directly
5482 * to the guest.
5483 */
5484 if (xics_on_xive())
5485 lpcr |= LPCR_LPES;
5486 }
5487
5488 /*
5489 * If the host uses radix, the guest starts out as radix.
5490 */
5491 if (radix_enabled()) {
5492 kvm->arch.radix = 1;
5493 kvm->arch.mmu_ready = 1;
5494 lpcr &= ~LPCR_VPM1;
5495 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5496 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5497 cpu_has_feature(CPU_FTR_ARCH_31) &&
5498 (kvm->arch.host_lpcr & LPCR_HAIL))
5499 lpcr |= LPCR_HAIL;
5500 ret = kvmppc_init_vm_radix(kvm);
5501 if (ret) {
5502 kvmppc_free_lpid(kvm->arch.lpid);
5503 return ret;
5504 }
5505 kvmppc_setup_partition_table(kvm);
5506 }
5507
5508 verify_lpcr(kvm, lpcr);
5509 kvm->arch.lpcr = lpcr;
5510
5511 /* Initialization for future HPT resizes */
5512 kvm->arch.resize_hpt = NULL;
5513
5514 /*
5515 * Work out how many sets the TLB has, for the use of
5516 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5517 */
5518 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5519 /*
5520 * P10 will flush all the congruence class with a single tlbiel
5521 */
5522 kvm->arch.tlb_sets = 1;
5523 } else if (radix_enabled())
5524 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
5525 else if (cpu_has_feature(CPU_FTR_ARCH_300))
5526 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
5527 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5528 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
5529 else
5530 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
5531
5532 /*
5533 * Track that we now have a HV mode VM active. This blocks secondary
5534 * CPU threads from coming online.
5535 */
5536 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5537 kvm_hv_vm_activated();
5538
5539 /*
5540 * Initialize smt_mode depending on processor.
5541 * POWER8 and earlier have to use "strict" threading, where
5542 * all vCPUs in a vcore have to run on the same (sub)core,
5543 * whereas on POWER9 the threads can each run a different
5544 * guest.
5545 */
5546 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5547 kvm->arch.smt_mode = threads_per_subcore;
5548 else
5549 kvm->arch.smt_mode = 1;
5550 kvm->arch.emul_smt_mode = 1;
5551
5552 return 0;
5553 }
5554
kvmppc_arch_create_vm_debugfs_hv(struct kvm * kvm)5555 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
5556 {
5557 kvmppc_mmu_debugfs_init(kvm);
5558 if (radix_enabled())
5559 kvmhv_radix_debugfs_init(kvm);
5560 return 0;
5561 }
5562
kvmppc_free_vcores(struct kvm * kvm)5563 static void kvmppc_free_vcores(struct kvm *kvm)
5564 {
5565 long int i;
5566
5567 for (i = 0; i < KVM_MAX_VCORES; ++i)
5568 kfree(kvm->arch.vcores[i]);
5569 kvm->arch.online_vcores = 0;
5570 }
5571
kvmppc_core_destroy_vm_hv(struct kvm * kvm)5572 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5573 {
5574 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5575 kvm_hv_vm_deactivated();
5576
5577 kvmppc_free_vcores(kvm);
5578
5579
5580 if (kvm_is_radix(kvm))
5581 kvmppc_free_radix(kvm);
5582 else
5583 kvmppc_free_hpt(&kvm->arch.hpt);
5584
5585 /* Perform global invalidation and return lpid to the pool */
5586 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5587 if (nesting_enabled(kvm))
5588 kvmhv_release_all_nested(kvm);
5589 kvm->arch.process_table = 0;
5590 if (kvm->arch.secure_guest)
5591 uv_svm_terminate(kvm->arch.lpid);
5592 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5593 }
5594
5595 kvmppc_free_lpid(kvm->arch.lpid);
5596
5597 kvmppc_free_pimap(kvm);
5598 }
5599
5600 /* We don't need to emulate any privileged instructions or dcbz */
kvmppc_core_emulate_op_hv(struct kvm_vcpu * vcpu,unsigned int inst,int * advance)5601 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5602 unsigned int inst, int *advance)
5603 {
5604 return EMULATE_FAIL;
5605 }
5606
kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong spr_val)5607 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5608 ulong spr_val)
5609 {
5610 return EMULATE_FAIL;
5611 }
5612
kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong * spr_val)5613 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5614 ulong *spr_val)
5615 {
5616 return EMULATE_FAIL;
5617 }
5618
kvmppc_core_check_processor_compat_hv(void)5619 static int kvmppc_core_check_processor_compat_hv(void)
5620 {
5621 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5622 cpu_has_feature(CPU_FTR_ARCH_206))
5623 return 0;
5624
5625 /* POWER9 in radix mode is capable of being a nested hypervisor. */
5626 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5627 return 0;
5628
5629 return -EIO;
5630 }
5631
5632 #ifdef CONFIG_KVM_XICS
5633
kvmppc_free_pimap(struct kvm * kvm)5634 void kvmppc_free_pimap(struct kvm *kvm)
5635 {
5636 kfree(kvm->arch.pimap);
5637 }
5638
kvmppc_alloc_pimap(void)5639 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5640 {
5641 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5642 }
5643
kvmppc_set_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)5644 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5645 {
5646 struct irq_desc *desc;
5647 struct kvmppc_irq_map *irq_map;
5648 struct kvmppc_passthru_irqmap *pimap;
5649 struct irq_chip *chip;
5650 int i, rc = 0;
5651 struct irq_data *host_data;
5652
5653 if (!kvm_irq_bypass)
5654 return 1;
5655
5656 desc = irq_to_desc(host_irq);
5657 if (!desc)
5658 return -EIO;
5659
5660 mutex_lock(&kvm->lock);
5661
5662 pimap = kvm->arch.pimap;
5663 if (pimap == NULL) {
5664 /* First call, allocate structure to hold IRQ map */
5665 pimap = kvmppc_alloc_pimap();
5666 if (pimap == NULL) {
5667 mutex_unlock(&kvm->lock);
5668 return -ENOMEM;
5669 }
5670 kvm->arch.pimap = pimap;
5671 }
5672
5673 /*
5674 * For now, we only support interrupts for which the EOI operation
5675 * is an OPAL call followed by a write to XIRR, since that's
5676 * what our real-mode EOI code does, or a XIVE interrupt
5677 */
5678 chip = irq_data_get_irq_chip(&desc->irq_data);
5679 if (!chip || !is_pnv_opal_msi(chip)) {
5680 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5681 host_irq, guest_gsi);
5682 mutex_unlock(&kvm->lock);
5683 return -ENOENT;
5684 }
5685
5686 /*
5687 * See if we already have an entry for this guest IRQ number.
5688 * If it's mapped to a hardware IRQ number, that's an error,
5689 * otherwise re-use this entry.
5690 */
5691 for (i = 0; i < pimap->n_mapped; i++) {
5692 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5693 if (pimap->mapped[i].r_hwirq) {
5694 mutex_unlock(&kvm->lock);
5695 return -EINVAL;
5696 }
5697 break;
5698 }
5699 }
5700
5701 if (i == KVMPPC_PIRQ_MAPPED) {
5702 mutex_unlock(&kvm->lock);
5703 return -EAGAIN; /* table is full */
5704 }
5705
5706 irq_map = &pimap->mapped[i];
5707
5708 irq_map->v_hwirq = guest_gsi;
5709 irq_map->desc = desc;
5710
5711 /*
5712 * Order the above two stores before the next to serialize with
5713 * the KVM real mode handler.
5714 */
5715 smp_wmb();
5716
5717 /*
5718 * The 'host_irq' number is mapped in the PCI-MSI domain but
5719 * the underlying calls, which will EOI the interrupt in real
5720 * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5721 */
5722 host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5723 irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5724
5725 if (i == pimap->n_mapped)
5726 pimap->n_mapped++;
5727
5728 if (xics_on_xive())
5729 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5730 else
5731 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5732 if (rc)
5733 irq_map->r_hwirq = 0;
5734
5735 mutex_unlock(&kvm->lock);
5736
5737 return 0;
5738 }
5739
kvmppc_clr_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)5740 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5741 {
5742 struct irq_desc *desc;
5743 struct kvmppc_passthru_irqmap *pimap;
5744 int i, rc = 0;
5745
5746 if (!kvm_irq_bypass)
5747 return 0;
5748
5749 desc = irq_to_desc(host_irq);
5750 if (!desc)
5751 return -EIO;
5752
5753 mutex_lock(&kvm->lock);
5754 if (!kvm->arch.pimap)
5755 goto unlock;
5756
5757 pimap = kvm->arch.pimap;
5758
5759 for (i = 0; i < pimap->n_mapped; i++) {
5760 if (guest_gsi == pimap->mapped[i].v_hwirq)
5761 break;
5762 }
5763
5764 if (i == pimap->n_mapped) {
5765 mutex_unlock(&kvm->lock);
5766 return -ENODEV;
5767 }
5768
5769 if (xics_on_xive())
5770 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5771 else
5772 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5773
5774 /* invalidate the entry (what to do on error from the above ?) */
5775 pimap->mapped[i].r_hwirq = 0;
5776
5777 /*
5778 * We don't free this structure even when the count goes to
5779 * zero. The structure is freed when we destroy the VM.
5780 */
5781 unlock:
5782 mutex_unlock(&kvm->lock);
5783 return rc;
5784 }
5785
kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)5786 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5787 struct irq_bypass_producer *prod)
5788 {
5789 int ret = 0;
5790 struct kvm_kernel_irqfd *irqfd =
5791 container_of(cons, struct kvm_kernel_irqfd, consumer);
5792
5793 irqfd->producer = prod;
5794
5795 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5796 if (ret)
5797 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5798 prod->irq, irqfd->gsi, ret);
5799
5800 return ret;
5801 }
5802
kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)5803 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5804 struct irq_bypass_producer *prod)
5805 {
5806 int ret;
5807 struct kvm_kernel_irqfd *irqfd =
5808 container_of(cons, struct kvm_kernel_irqfd, consumer);
5809
5810 irqfd->producer = NULL;
5811
5812 /*
5813 * When producer of consumer is unregistered, we change back to
5814 * default external interrupt handling mode - KVM real mode
5815 * will switch back to host.
5816 */
5817 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5818 if (ret)
5819 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5820 prod->irq, irqfd->gsi, ret);
5821 }
5822 #endif
5823
kvm_arch_vm_ioctl_hv(struct file * filp,unsigned int ioctl,unsigned long arg)5824 static int kvm_arch_vm_ioctl_hv(struct file *filp,
5825 unsigned int ioctl, unsigned long arg)
5826 {
5827 struct kvm *kvm __maybe_unused = filp->private_data;
5828 void __user *argp = (void __user *)arg;
5829 int r;
5830
5831 switch (ioctl) {
5832
5833 case KVM_PPC_ALLOCATE_HTAB: {
5834 u32 htab_order;
5835
5836 /* If we're a nested hypervisor, we currently only support radix */
5837 if (kvmhv_on_pseries()) {
5838 r = -EOPNOTSUPP;
5839 break;
5840 }
5841
5842 r = -EFAULT;
5843 if (get_user(htab_order, (u32 __user *)argp))
5844 break;
5845 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5846 if (r)
5847 break;
5848 r = 0;
5849 break;
5850 }
5851
5852 case KVM_PPC_GET_HTAB_FD: {
5853 struct kvm_get_htab_fd ghf;
5854
5855 r = -EFAULT;
5856 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5857 break;
5858 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5859 break;
5860 }
5861
5862 case KVM_PPC_RESIZE_HPT_PREPARE: {
5863 struct kvm_ppc_resize_hpt rhpt;
5864
5865 r = -EFAULT;
5866 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5867 break;
5868
5869 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5870 break;
5871 }
5872
5873 case KVM_PPC_RESIZE_HPT_COMMIT: {
5874 struct kvm_ppc_resize_hpt rhpt;
5875
5876 r = -EFAULT;
5877 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5878 break;
5879
5880 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5881 break;
5882 }
5883
5884 default:
5885 r = -ENOTTY;
5886 }
5887
5888 return r;
5889 }
5890
5891 /*
5892 * List of hcall numbers to enable by default.
5893 * For compatibility with old userspace, we enable by default
5894 * all hcalls that were implemented before the hcall-enabling
5895 * facility was added. Note this list should not include H_RTAS.
5896 */
5897 static unsigned int default_hcall_list[] = {
5898 H_REMOVE,
5899 H_ENTER,
5900 H_READ,
5901 H_PROTECT,
5902 H_BULK_REMOVE,
5903 #ifdef CONFIG_SPAPR_TCE_IOMMU
5904 H_GET_TCE,
5905 H_PUT_TCE,
5906 #endif
5907 H_SET_DABR,
5908 H_SET_XDABR,
5909 H_CEDE,
5910 H_PROD,
5911 H_CONFER,
5912 H_REGISTER_VPA,
5913 #ifdef CONFIG_KVM_XICS
5914 H_EOI,
5915 H_CPPR,
5916 H_IPI,
5917 H_IPOLL,
5918 H_XIRR,
5919 H_XIRR_X,
5920 #endif
5921 0
5922 };
5923
init_default_hcalls(void)5924 static void init_default_hcalls(void)
5925 {
5926 int i;
5927 unsigned int hcall;
5928
5929 for (i = 0; default_hcall_list[i]; ++i) {
5930 hcall = default_hcall_list[i];
5931 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5932 __set_bit(hcall / 4, default_enabled_hcalls);
5933 }
5934 }
5935
kvmhv_configure_mmu(struct kvm * kvm,struct kvm_ppc_mmuv3_cfg * cfg)5936 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5937 {
5938 unsigned long lpcr;
5939 int radix;
5940 int err;
5941
5942 /* If not on a POWER9, reject it */
5943 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5944 return -ENODEV;
5945
5946 /* If any unknown flags set, reject it */
5947 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5948 return -EINVAL;
5949
5950 /* GR (guest radix) bit in process_table field must match */
5951 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5952 if (!!(cfg->process_table & PATB_GR) != radix)
5953 return -EINVAL;
5954
5955 /* Process table size field must be reasonable, i.e. <= 24 */
5956 if ((cfg->process_table & PRTS_MASK) > 24)
5957 return -EINVAL;
5958
5959 /* We can change a guest to/from radix now, if the host is radix */
5960 if (radix && !radix_enabled())
5961 return -EINVAL;
5962
5963 /* If we're a nested hypervisor, we currently only support radix */
5964 if (kvmhv_on_pseries() && !radix)
5965 return -EINVAL;
5966
5967 mutex_lock(&kvm->arch.mmu_setup_lock);
5968 if (radix != kvm_is_radix(kvm)) {
5969 if (kvm->arch.mmu_ready) {
5970 kvm->arch.mmu_ready = 0;
5971 /* order mmu_ready vs. vcpus_running */
5972 smp_mb();
5973 if (atomic_read(&kvm->arch.vcpus_running)) {
5974 kvm->arch.mmu_ready = 1;
5975 err = -EBUSY;
5976 goto out_unlock;
5977 }
5978 }
5979 if (radix)
5980 err = kvmppc_switch_mmu_to_radix(kvm);
5981 else
5982 err = kvmppc_switch_mmu_to_hpt(kvm);
5983 if (err)
5984 goto out_unlock;
5985 }
5986
5987 kvm->arch.process_table = cfg->process_table;
5988 kvmppc_setup_partition_table(kvm);
5989
5990 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5991 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5992 err = 0;
5993
5994 out_unlock:
5995 mutex_unlock(&kvm->arch.mmu_setup_lock);
5996 return err;
5997 }
5998
kvmhv_enable_nested(struct kvm * kvm)5999 static int kvmhv_enable_nested(struct kvm *kvm)
6000 {
6001 if (!nested)
6002 return -EPERM;
6003 if (!cpu_has_feature(CPU_FTR_ARCH_300))
6004 return -ENODEV;
6005 if (!radix_enabled())
6006 return -ENODEV;
6007
6008 /* kvm == NULL means the caller is testing if the capability exists */
6009 if (kvm)
6010 kvm->arch.nested_enable = true;
6011 return 0;
6012 }
6013
kvmhv_load_from_eaddr(struct kvm_vcpu * vcpu,ulong * eaddr,void * ptr,int size)6014 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6015 int size)
6016 {
6017 int rc = -EINVAL;
6018
6019 if (kvmhv_vcpu_is_radix(vcpu)) {
6020 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
6021
6022 if (rc > 0)
6023 rc = -EINVAL;
6024 }
6025
6026 /* For now quadrants are the only way to access nested guest memory */
6027 if (rc && vcpu->arch.nested)
6028 rc = -EAGAIN;
6029
6030 return rc;
6031 }
6032
kvmhv_store_to_eaddr(struct kvm_vcpu * vcpu,ulong * eaddr,void * ptr,int size)6033 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6034 int size)
6035 {
6036 int rc = -EINVAL;
6037
6038 if (kvmhv_vcpu_is_radix(vcpu)) {
6039 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
6040
6041 if (rc > 0)
6042 rc = -EINVAL;
6043 }
6044
6045 /* For now quadrants are the only way to access nested guest memory */
6046 if (rc && vcpu->arch.nested)
6047 rc = -EAGAIN;
6048
6049 return rc;
6050 }
6051
unpin_vpa_reset(struct kvm * kvm,struct kvmppc_vpa * vpa)6052 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
6053 {
6054 unpin_vpa(kvm, vpa);
6055 vpa->gpa = 0;
6056 vpa->pinned_addr = NULL;
6057 vpa->dirty = false;
6058 vpa->update_pending = 0;
6059 }
6060
6061 /*
6062 * Enable a guest to become a secure VM, or test whether
6063 * that could be enabled.
6064 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
6065 * tested (kvm == NULL) or enabled (kvm != NULL).
6066 */
kvmhv_enable_svm(struct kvm * kvm)6067 static int kvmhv_enable_svm(struct kvm *kvm)
6068 {
6069 if (!kvmppc_uvmem_available())
6070 return -EINVAL;
6071 if (kvm)
6072 kvm->arch.svm_enabled = 1;
6073 return 0;
6074 }
6075
6076 /*
6077 * IOCTL handler to turn off secure mode of guest
6078 *
6079 * - Release all device pages
6080 * - Issue ucall to terminate the guest on the UV side
6081 * - Unpin the VPA pages.
6082 * - Reinit the partition scoped page tables
6083 */
kvmhv_svm_off(struct kvm * kvm)6084 static int kvmhv_svm_off(struct kvm *kvm)
6085 {
6086 struct kvm_vcpu *vcpu;
6087 int mmu_was_ready;
6088 int srcu_idx;
6089 int ret = 0;
6090 unsigned long i;
6091
6092 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
6093 return ret;
6094
6095 mutex_lock(&kvm->arch.mmu_setup_lock);
6096 mmu_was_ready = kvm->arch.mmu_ready;
6097 if (kvm->arch.mmu_ready) {
6098 kvm->arch.mmu_ready = 0;
6099 /* order mmu_ready vs. vcpus_running */
6100 smp_mb();
6101 if (atomic_read(&kvm->arch.vcpus_running)) {
6102 kvm->arch.mmu_ready = 1;
6103 ret = -EBUSY;
6104 goto out;
6105 }
6106 }
6107
6108 srcu_idx = srcu_read_lock(&kvm->srcu);
6109 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6110 struct kvm_memory_slot *memslot;
6111 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
6112 int bkt;
6113
6114 if (!slots)
6115 continue;
6116
6117 kvm_for_each_memslot(memslot, bkt, slots) {
6118 kvmppc_uvmem_drop_pages(memslot, kvm, true);
6119 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
6120 }
6121 }
6122 srcu_read_unlock(&kvm->srcu, srcu_idx);
6123
6124 ret = uv_svm_terminate(kvm->arch.lpid);
6125 if (ret != U_SUCCESS) {
6126 ret = -EINVAL;
6127 goto out;
6128 }
6129
6130 /*
6131 * When secure guest is reset, all the guest pages are sent
6132 * to UV via UV_PAGE_IN before the non-boot vcpus get a
6133 * chance to run and unpin their VPA pages. Unpinning of all
6134 * VPA pages is done here explicitly so that VPA pages
6135 * can be migrated to the secure side.
6136 *
6137 * This is required to for the secure SMP guest to reboot
6138 * correctly.
6139 */
6140 kvm_for_each_vcpu(i, vcpu, kvm) {
6141 spin_lock(&vcpu->arch.vpa_update_lock);
6142 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
6143 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
6144 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
6145 spin_unlock(&vcpu->arch.vpa_update_lock);
6146 }
6147
6148 kvmppc_setup_partition_table(kvm);
6149 kvm->arch.secure_guest = 0;
6150 kvm->arch.mmu_ready = mmu_was_ready;
6151 out:
6152 mutex_unlock(&kvm->arch.mmu_setup_lock);
6153 return ret;
6154 }
6155
kvmhv_enable_dawr1(struct kvm * kvm)6156 static int kvmhv_enable_dawr1(struct kvm *kvm)
6157 {
6158 if (!cpu_has_feature(CPU_FTR_DAWR1))
6159 return -ENODEV;
6160
6161 /* kvm == NULL means the caller is testing if the capability exists */
6162 if (kvm)
6163 kvm->arch.dawr1_enabled = true;
6164 return 0;
6165 }
6166
kvmppc_hash_v3_possible(void)6167 static bool kvmppc_hash_v3_possible(void)
6168 {
6169 if (!cpu_has_feature(CPU_FTR_ARCH_300))
6170 return false;
6171
6172 if (!cpu_has_feature(CPU_FTR_HVMODE))
6173 return false;
6174
6175 /*
6176 * POWER9 chips before version 2.02 can't have some threads in
6177 * HPT mode and some in radix mode on the same core.
6178 */
6179 if (radix_enabled()) {
6180 unsigned int pvr = mfspr(SPRN_PVR);
6181 if ((pvr >> 16) == PVR_POWER9 &&
6182 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
6183 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
6184 return false;
6185 }
6186
6187 return true;
6188 }
6189
6190 static struct kvmppc_ops kvm_ops_hv = {
6191 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6192 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6193 .get_one_reg = kvmppc_get_one_reg_hv,
6194 .set_one_reg = kvmppc_set_one_reg_hv,
6195 .vcpu_load = kvmppc_core_vcpu_load_hv,
6196 .vcpu_put = kvmppc_core_vcpu_put_hv,
6197 .inject_interrupt = kvmppc_inject_interrupt_hv,
6198 .set_msr = kvmppc_set_msr_hv,
6199 .vcpu_run = kvmppc_vcpu_run_hv,
6200 .vcpu_create = kvmppc_core_vcpu_create_hv,
6201 .vcpu_free = kvmppc_core_vcpu_free_hv,
6202 .check_requests = kvmppc_core_check_requests_hv,
6203 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
6204 .flush_memslot = kvmppc_core_flush_memslot_hv,
6205 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6206 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
6207 .unmap_gfn_range = kvm_unmap_gfn_range_hv,
6208 .age_gfn = kvm_age_gfn_hv,
6209 .test_age_gfn = kvm_test_age_gfn_hv,
6210 .set_spte_gfn = kvm_set_spte_gfn_hv,
6211 .free_memslot = kvmppc_core_free_memslot_hv,
6212 .init_vm = kvmppc_core_init_vm_hv,
6213 .destroy_vm = kvmppc_core_destroy_vm_hv,
6214 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6215 .emulate_op = kvmppc_core_emulate_op_hv,
6216 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6217 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6218 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6219 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
6220 .hcall_implemented = kvmppc_hcall_impl_hv,
6221 #ifdef CONFIG_KVM_XICS
6222 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6223 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6224 #endif
6225 .configure_mmu = kvmhv_configure_mmu,
6226 .get_rmmu_info = kvmhv_get_rmmu_info,
6227 .set_smt_mode = kvmhv_set_smt_mode,
6228 .enable_nested = kvmhv_enable_nested,
6229 .load_from_eaddr = kvmhv_load_from_eaddr,
6230 .store_to_eaddr = kvmhv_store_to_eaddr,
6231 .enable_svm = kvmhv_enable_svm,
6232 .svm_off = kvmhv_svm_off,
6233 .enable_dawr1 = kvmhv_enable_dawr1,
6234 .hash_v3_possible = kvmppc_hash_v3_possible,
6235 .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
6236 .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
6237 };
6238
kvm_init_subcore_bitmap(void)6239 static int kvm_init_subcore_bitmap(void)
6240 {
6241 int i, j;
6242 int nr_cores = cpu_nr_cores();
6243 struct sibling_subcore_state *sibling_subcore_state;
6244
6245 for (i = 0; i < nr_cores; i++) {
6246 int first_cpu = i * threads_per_core;
6247 int node = cpu_to_node(first_cpu);
6248
6249 /* Ignore if it is already allocated. */
6250 if (paca_ptrs[first_cpu]->sibling_subcore_state)
6251 continue;
6252
6253 sibling_subcore_state =
6254 kzalloc_node(sizeof(struct sibling_subcore_state),
6255 GFP_KERNEL, node);
6256 if (!sibling_subcore_state)
6257 return -ENOMEM;
6258
6259
6260 for (j = 0; j < threads_per_core; j++) {
6261 int cpu = first_cpu + j;
6262
6263 paca_ptrs[cpu]->sibling_subcore_state =
6264 sibling_subcore_state;
6265 }
6266 }
6267 return 0;
6268 }
6269
kvmppc_radix_possible(void)6270 static int kvmppc_radix_possible(void)
6271 {
6272 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6273 }
6274
kvmppc_book3s_init_hv(void)6275 static int kvmppc_book3s_init_hv(void)
6276 {
6277 int r;
6278
6279 if (!tlbie_capable) {
6280 pr_err("KVM-HV: Host does not support TLBIE\n");
6281 return -ENODEV;
6282 }
6283
6284 /*
6285 * FIXME!! Do we need to check on all cpus ?
6286 */
6287 r = kvmppc_core_check_processor_compat_hv();
6288 if (r < 0)
6289 return -ENODEV;
6290
6291 r = kvmhv_nested_init();
6292 if (r)
6293 return r;
6294
6295 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6296 r = kvm_init_subcore_bitmap();
6297 if (r)
6298 goto err;
6299 }
6300
6301 /*
6302 * We need a way of accessing the XICS interrupt controller,
6303 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6304 * indirectly, via OPAL.
6305 */
6306 #ifdef CONFIG_SMP
6307 if (!xics_on_xive() && !kvmhv_on_pseries() &&
6308 !local_paca->kvm_hstate.xics_phys) {
6309 struct device_node *np;
6310
6311 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6312 if (!np) {
6313 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6314 r = -ENODEV;
6315 goto err;
6316 }
6317 /* presence of intc confirmed - node can be dropped again */
6318 of_node_put(np);
6319 }
6320 #endif
6321
6322 init_default_hcalls();
6323
6324 init_vcore_lists();
6325
6326 r = kvmppc_mmu_hv_init();
6327 if (r)
6328 goto err;
6329
6330 if (kvmppc_radix_possible()) {
6331 r = kvmppc_radix_init();
6332 if (r)
6333 goto err;
6334 }
6335
6336 r = kvmppc_uvmem_init();
6337 if (r < 0) {
6338 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6339 return r;
6340 }
6341
6342 kvm_ops_hv.owner = THIS_MODULE;
6343 kvmppc_hv_ops = &kvm_ops_hv;
6344
6345 return 0;
6346
6347 err:
6348 kvmhv_nested_exit();
6349 kvmppc_radix_exit();
6350
6351 return r;
6352 }
6353
kvmppc_book3s_exit_hv(void)6354 static void kvmppc_book3s_exit_hv(void)
6355 {
6356 kvmppc_uvmem_free();
6357 kvmppc_free_host_rm_ops();
6358 if (kvmppc_radix_possible())
6359 kvmppc_radix_exit();
6360 kvmppc_hv_ops = NULL;
6361 kvmhv_nested_exit();
6362 }
6363
6364 module_init(kvmppc_book3s_init_hv);
6365 module_exit(kvmppc_book3s_exit_hv);
6366 MODULE_LICENSE("GPL");
6367 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6368 MODULE_ALIAS("devname:kvm");
6369