xref: /openbmc/linux/fs/inode.c (revision b9bda5f6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25 
26 /*
27  * Inode locking rules:
28  *
29  * inode->i_lock protects:
30  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
31  * Inode LRU list locks protect:
32  *   inode->i_sb->s_inode_lru, inode->i_lru
33  * inode->i_sb->s_inode_list_lock protects:
34  *   inode->i_sb->s_inodes, inode->i_sb_list
35  * bdi->wb.list_lock protects:
36  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37  * inode_hash_lock protects:
38  *   inode_hashtable, inode->i_hash
39  *
40  * Lock ordering:
41  *
42  * inode->i_sb->s_inode_list_lock
43  *   inode->i_lock
44  *     Inode LRU list locks
45  *
46  * bdi->wb.list_lock
47  *   inode->i_lock
48  *
49  * inode_hash_lock
50  *   inode->i_sb->s_inode_list_lock
51  *   inode->i_lock
52  *
53  * iunique_lock
54  *   inode_hash_lock
55  */
56 
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 static DEFINE_PER_CPU(unsigned long, nr_inodes);
71 static DEFINE_PER_CPU(unsigned long, nr_unused);
72 
73 static struct kmem_cache *inode_cachep __read_mostly;
74 
get_nr_inodes(void)75 static long get_nr_inodes(void)
76 {
77 	int i;
78 	long sum = 0;
79 	for_each_possible_cpu(i)
80 		sum += per_cpu(nr_inodes, i);
81 	return sum < 0 ? 0 : sum;
82 }
83 
get_nr_inodes_unused(void)84 static inline long get_nr_inodes_unused(void)
85 {
86 	int i;
87 	long sum = 0;
88 	for_each_possible_cpu(i)
89 		sum += per_cpu(nr_unused, i);
90 	return sum < 0 ? 0 : sum;
91 }
92 
get_nr_dirty_inodes(void)93 long get_nr_dirty_inodes(void)
94 {
95 	/* not actually dirty inodes, but a wild approximation */
96 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
97 	return nr_dirty > 0 ? nr_dirty : 0;
98 }
99 
100 /*
101  * Handle nr_inode sysctl
102  */
103 #ifdef CONFIG_SYSCTL
104 /*
105  * Statistics gathering..
106  */
107 static struct inodes_stat_t inodes_stat;
108 
proc_nr_inodes(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
110 			  size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 
117 static struct ctl_table inodes_sysctls[] = {
118 	{
119 		.procname	= "inode-nr",
120 		.data		= &inodes_stat,
121 		.maxlen		= 2*sizeof(long),
122 		.mode		= 0444,
123 		.proc_handler	= proc_nr_inodes,
124 	},
125 	{
126 		.procname	= "inode-state",
127 		.data		= &inodes_stat,
128 		.maxlen		= 7*sizeof(long),
129 		.mode		= 0444,
130 		.proc_handler	= proc_nr_inodes,
131 	},
132 	{ }
133 };
134 
init_fs_inode_sysctls(void)135 static int __init init_fs_inode_sysctls(void)
136 {
137 	register_sysctl_init("fs", inodes_sysctls);
138 	return 0;
139 }
140 early_initcall(init_fs_inode_sysctls);
141 #endif
142 
no_open(struct inode * inode,struct file * file)143 static int no_open(struct inode *inode, struct file *file)
144 {
145 	return -ENXIO;
146 }
147 
148 /**
149  * inode_init_always - perform inode structure initialisation
150  * @sb: superblock inode belongs to
151  * @inode: inode to initialise
152  *
153  * These are initializations that need to be done on every inode
154  * allocation as the fields are not initialised by slab allocation.
155  */
inode_init_always(struct super_block * sb,struct inode * inode)156 int inode_init_always(struct super_block *sb, struct inode *inode)
157 {
158 	static const struct inode_operations empty_iops;
159 	static const struct file_operations no_open_fops = {.open = no_open};
160 	struct address_space *const mapping = &inode->i_data;
161 
162 	inode->i_sb = sb;
163 	inode->i_blkbits = sb->s_blocksize_bits;
164 	inode->i_flags = 0;
165 	atomic64_set(&inode->i_sequence, 0);
166 	atomic_set(&inode->i_count, 1);
167 	inode->i_op = &empty_iops;
168 	inode->i_fop = &no_open_fops;
169 	inode->i_ino = 0;
170 	inode->__i_nlink = 1;
171 	inode->i_opflags = 0;
172 	if (sb->s_xattr)
173 		inode->i_opflags |= IOP_XATTR;
174 	i_uid_write(inode, 0);
175 	i_gid_write(inode, 0);
176 	atomic_set(&inode->i_writecount, 0);
177 	inode->i_size = 0;
178 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
179 	inode->i_blocks = 0;
180 	inode->i_bytes = 0;
181 	inode->i_generation = 0;
182 	inode->i_pipe = NULL;
183 	inode->i_cdev = NULL;
184 	inode->i_link = NULL;
185 	inode->i_dir_seq = 0;
186 	inode->i_rdev = 0;
187 	inode->dirtied_when = 0;
188 
189 #ifdef CONFIG_CGROUP_WRITEBACK
190 	inode->i_wb_frn_winner = 0;
191 	inode->i_wb_frn_avg_time = 0;
192 	inode->i_wb_frn_history = 0;
193 #endif
194 
195 	spin_lock_init(&inode->i_lock);
196 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
197 
198 	init_rwsem(&inode->i_rwsem);
199 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
200 
201 	atomic_set(&inode->i_dio_count, 0);
202 
203 	mapping->a_ops = &empty_aops;
204 	mapping->host = inode;
205 	mapping->flags = 0;
206 	mapping->wb_err = 0;
207 	atomic_set(&mapping->i_mmap_writable, 0);
208 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
209 	atomic_set(&mapping->nr_thps, 0);
210 #endif
211 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
212 	mapping->private_data = NULL;
213 	mapping->writeback_index = 0;
214 	init_rwsem(&mapping->invalidate_lock);
215 	lockdep_set_class_and_name(&mapping->invalidate_lock,
216 				   &sb->s_type->invalidate_lock_key,
217 				   "mapping.invalidate_lock");
218 	if (sb->s_iflags & SB_I_STABLE_WRITES)
219 		mapping_set_stable_writes(mapping);
220 	inode->i_private = NULL;
221 	inode->i_mapping = mapping;
222 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
223 #ifdef CONFIG_FS_POSIX_ACL
224 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
225 #endif
226 
227 #ifdef CONFIG_FSNOTIFY
228 	inode->i_fsnotify_mask = 0;
229 #endif
230 	inode->i_flctx = NULL;
231 
232 	if (unlikely(security_inode_alloc(inode)))
233 		return -ENOMEM;
234 	this_cpu_inc(nr_inodes);
235 
236 	return 0;
237 }
238 EXPORT_SYMBOL(inode_init_always);
239 
free_inode_nonrcu(struct inode * inode)240 void free_inode_nonrcu(struct inode *inode)
241 {
242 	kmem_cache_free(inode_cachep, inode);
243 }
244 EXPORT_SYMBOL(free_inode_nonrcu);
245 
i_callback(struct rcu_head * head)246 static void i_callback(struct rcu_head *head)
247 {
248 	struct inode *inode = container_of(head, struct inode, i_rcu);
249 	if (inode->free_inode)
250 		inode->free_inode(inode);
251 	else
252 		free_inode_nonrcu(inode);
253 }
254 
alloc_inode(struct super_block * sb)255 static struct inode *alloc_inode(struct super_block *sb)
256 {
257 	const struct super_operations *ops = sb->s_op;
258 	struct inode *inode;
259 
260 	if (ops->alloc_inode)
261 		inode = ops->alloc_inode(sb);
262 	else
263 		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
264 
265 	if (!inode)
266 		return NULL;
267 
268 	if (unlikely(inode_init_always(sb, inode))) {
269 		if (ops->destroy_inode) {
270 			ops->destroy_inode(inode);
271 			if (!ops->free_inode)
272 				return NULL;
273 		}
274 		inode->free_inode = ops->free_inode;
275 		i_callback(&inode->i_rcu);
276 		return NULL;
277 	}
278 
279 	return inode;
280 }
281 
__destroy_inode(struct inode * inode)282 void __destroy_inode(struct inode *inode)
283 {
284 	BUG_ON(inode_has_buffers(inode));
285 	inode_detach_wb(inode);
286 	security_inode_free(inode);
287 	fsnotify_inode_delete(inode);
288 	locks_free_lock_context(inode);
289 	if (!inode->i_nlink) {
290 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
291 		atomic_long_dec(&inode->i_sb->s_remove_count);
292 	}
293 
294 #ifdef CONFIG_FS_POSIX_ACL
295 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
296 		posix_acl_release(inode->i_acl);
297 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
298 		posix_acl_release(inode->i_default_acl);
299 #endif
300 	this_cpu_dec(nr_inodes);
301 }
302 EXPORT_SYMBOL(__destroy_inode);
303 
destroy_inode(struct inode * inode)304 static void destroy_inode(struct inode *inode)
305 {
306 	const struct super_operations *ops = inode->i_sb->s_op;
307 
308 	BUG_ON(!list_empty(&inode->i_lru));
309 	__destroy_inode(inode);
310 	if (ops->destroy_inode) {
311 		ops->destroy_inode(inode);
312 		if (!ops->free_inode)
313 			return;
314 	}
315 	inode->free_inode = ops->free_inode;
316 	call_rcu(&inode->i_rcu, i_callback);
317 }
318 
319 /**
320  * drop_nlink - directly drop an inode's link count
321  * @inode: inode
322  *
323  * This is a low-level filesystem helper to replace any
324  * direct filesystem manipulation of i_nlink.  In cases
325  * where we are attempting to track writes to the
326  * filesystem, a decrement to zero means an imminent
327  * write when the file is truncated and actually unlinked
328  * on the filesystem.
329  */
drop_nlink(struct inode * inode)330 void drop_nlink(struct inode *inode)
331 {
332 	WARN_ON(inode->i_nlink == 0);
333 	inode->__i_nlink--;
334 	if (!inode->i_nlink)
335 		atomic_long_inc(&inode->i_sb->s_remove_count);
336 }
337 EXPORT_SYMBOL(drop_nlink);
338 
339 /**
340  * clear_nlink - directly zero an inode's link count
341  * @inode: inode
342  *
343  * This is a low-level filesystem helper to replace any
344  * direct filesystem manipulation of i_nlink.  See
345  * drop_nlink() for why we care about i_nlink hitting zero.
346  */
clear_nlink(struct inode * inode)347 void clear_nlink(struct inode *inode)
348 {
349 	if (inode->i_nlink) {
350 		inode->__i_nlink = 0;
351 		atomic_long_inc(&inode->i_sb->s_remove_count);
352 	}
353 }
354 EXPORT_SYMBOL(clear_nlink);
355 
356 /**
357  * set_nlink - directly set an inode's link count
358  * @inode: inode
359  * @nlink: new nlink (should be non-zero)
360  *
361  * This is a low-level filesystem helper to replace any
362  * direct filesystem manipulation of i_nlink.
363  */
set_nlink(struct inode * inode,unsigned int nlink)364 void set_nlink(struct inode *inode, unsigned int nlink)
365 {
366 	if (!nlink) {
367 		clear_nlink(inode);
368 	} else {
369 		/* Yes, some filesystems do change nlink from zero to one */
370 		if (inode->i_nlink == 0)
371 			atomic_long_dec(&inode->i_sb->s_remove_count);
372 
373 		inode->__i_nlink = nlink;
374 	}
375 }
376 EXPORT_SYMBOL(set_nlink);
377 
378 /**
379  * inc_nlink - directly increment an inode's link count
380  * @inode: inode
381  *
382  * This is a low-level filesystem helper to replace any
383  * direct filesystem manipulation of i_nlink.  Currently,
384  * it is only here for parity with dec_nlink().
385  */
inc_nlink(struct inode * inode)386 void inc_nlink(struct inode *inode)
387 {
388 	if (unlikely(inode->i_nlink == 0)) {
389 		WARN_ON(!(inode->i_state & I_LINKABLE));
390 		atomic_long_dec(&inode->i_sb->s_remove_count);
391 	}
392 
393 	inode->__i_nlink++;
394 }
395 EXPORT_SYMBOL(inc_nlink);
396 
__address_space_init_once(struct address_space * mapping)397 static void __address_space_init_once(struct address_space *mapping)
398 {
399 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
400 	init_rwsem(&mapping->i_mmap_rwsem);
401 	INIT_LIST_HEAD(&mapping->private_list);
402 	spin_lock_init(&mapping->private_lock);
403 	mapping->i_mmap = RB_ROOT_CACHED;
404 }
405 
address_space_init_once(struct address_space * mapping)406 void address_space_init_once(struct address_space *mapping)
407 {
408 	memset(mapping, 0, sizeof(*mapping));
409 	__address_space_init_once(mapping);
410 }
411 EXPORT_SYMBOL(address_space_init_once);
412 
413 /*
414  * These are initializations that only need to be done
415  * once, because the fields are idempotent across use
416  * of the inode, so let the slab aware of that.
417  */
inode_init_once(struct inode * inode)418 void inode_init_once(struct inode *inode)
419 {
420 	memset(inode, 0, sizeof(*inode));
421 	INIT_HLIST_NODE(&inode->i_hash);
422 	INIT_LIST_HEAD(&inode->i_devices);
423 	INIT_LIST_HEAD(&inode->i_io_list);
424 	INIT_LIST_HEAD(&inode->i_wb_list);
425 	INIT_LIST_HEAD(&inode->i_lru);
426 	INIT_LIST_HEAD(&inode->i_sb_list);
427 	__address_space_init_once(&inode->i_data);
428 	i_size_ordered_init(inode);
429 }
430 EXPORT_SYMBOL(inode_init_once);
431 
init_once(void * foo)432 static void init_once(void *foo)
433 {
434 	struct inode *inode = (struct inode *) foo;
435 
436 	inode_init_once(inode);
437 }
438 
439 /*
440  * inode->i_lock must be held
441  */
__iget(struct inode * inode)442 void __iget(struct inode *inode)
443 {
444 	atomic_inc(&inode->i_count);
445 }
446 
447 /*
448  * get additional reference to inode; caller must already hold one.
449  */
ihold(struct inode * inode)450 void ihold(struct inode *inode)
451 {
452 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
453 }
454 EXPORT_SYMBOL(ihold);
455 
__inode_add_lru(struct inode * inode,bool rotate)456 static void __inode_add_lru(struct inode *inode, bool rotate)
457 {
458 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
459 		return;
460 	if (atomic_read(&inode->i_count))
461 		return;
462 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
463 		return;
464 	if (!mapping_shrinkable(&inode->i_data))
465 		return;
466 
467 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
468 		this_cpu_inc(nr_unused);
469 	else if (rotate)
470 		inode->i_state |= I_REFERENCED;
471 }
472 
473 /*
474  * Add inode to LRU if needed (inode is unused and clean).
475  *
476  * Needs inode->i_lock held.
477  */
inode_add_lru(struct inode * inode)478 void inode_add_lru(struct inode *inode)
479 {
480 	__inode_add_lru(inode, false);
481 }
482 
inode_lru_list_del(struct inode * inode)483 static void inode_lru_list_del(struct inode *inode)
484 {
485 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
486 		this_cpu_dec(nr_unused);
487 }
488 
inode_pin_lru_isolating(struct inode * inode)489 static void inode_pin_lru_isolating(struct inode *inode)
490 {
491 	lockdep_assert_held(&inode->i_lock);
492 	WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
493 	inode->i_state |= I_LRU_ISOLATING;
494 }
495 
inode_unpin_lru_isolating(struct inode * inode)496 static void inode_unpin_lru_isolating(struct inode *inode)
497 {
498 	spin_lock(&inode->i_lock);
499 	WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
500 	inode->i_state &= ~I_LRU_ISOLATING;
501 	smp_mb();
502 	wake_up_bit(&inode->i_state, __I_LRU_ISOLATING);
503 	spin_unlock(&inode->i_lock);
504 }
505 
inode_wait_for_lru_isolating(struct inode * inode)506 static void inode_wait_for_lru_isolating(struct inode *inode)
507 {
508 	spin_lock(&inode->i_lock);
509 	if (inode->i_state & I_LRU_ISOLATING) {
510 		DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LRU_ISOLATING);
511 		wait_queue_head_t *wqh;
512 
513 		wqh = bit_waitqueue(&inode->i_state, __I_LRU_ISOLATING);
514 		spin_unlock(&inode->i_lock);
515 		__wait_on_bit(wqh, &wq, bit_wait, TASK_UNINTERRUPTIBLE);
516 		spin_lock(&inode->i_lock);
517 		WARN_ON(inode->i_state & I_LRU_ISOLATING);
518 	}
519 	spin_unlock(&inode->i_lock);
520 }
521 
522 /**
523  * inode_sb_list_add - add inode to the superblock list of inodes
524  * @inode: inode to add
525  */
inode_sb_list_add(struct inode * inode)526 void inode_sb_list_add(struct inode *inode)
527 {
528 	spin_lock(&inode->i_sb->s_inode_list_lock);
529 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
530 	spin_unlock(&inode->i_sb->s_inode_list_lock);
531 }
532 EXPORT_SYMBOL_GPL(inode_sb_list_add);
533 
inode_sb_list_del(struct inode * inode)534 static inline void inode_sb_list_del(struct inode *inode)
535 {
536 	if (!list_empty(&inode->i_sb_list)) {
537 		spin_lock(&inode->i_sb->s_inode_list_lock);
538 		list_del_init(&inode->i_sb_list);
539 		spin_unlock(&inode->i_sb->s_inode_list_lock);
540 	}
541 }
542 
hash(struct super_block * sb,unsigned long hashval)543 static unsigned long hash(struct super_block *sb, unsigned long hashval)
544 {
545 	unsigned long tmp;
546 
547 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
548 			L1_CACHE_BYTES;
549 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
550 	return tmp & i_hash_mask;
551 }
552 
553 /**
554  *	__insert_inode_hash - hash an inode
555  *	@inode: unhashed inode
556  *	@hashval: unsigned long value used to locate this object in the
557  *		inode_hashtable.
558  *
559  *	Add an inode to the inode hash for this superblock.
560  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)561 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
562 {
563 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
564 
565 	spin_lock(&inode_hash_lock);
566 	spin_lock(&inode->i_lock);
567 	hlist_add_head_rcu(&inode->i_hash, b);
568 	spin_unlock(&inode->i_lock);
569 	spin_unlock(&inode_hash_lock);
570 }
571 EXPORT_SYMBOL(__insert_inode_hash);
572 
573 /**
574  *	__remove_inode_hash - remove an inode from the hash
575  *	@inode: inode to unhash
576  *
577  *	Remove an inode from the superblock.
578  */
__remove_inode_hash(struct inode * inode)579 void __remove_inode_hash(struct inode *inode)
580 {
581 	spin_lock(&inode_hash_lock);
582 	spin_lock(&inode->i_lock);
583 	hlist_del_init_rcu(&inode->i_hash);
584 	spin_unlock(&inode->i_lock);
585 	spin_unlock(&inode_hash_lock);
586 }
587 EXPORT_SYMBOL(__remove_inode_hash);
588 
dump_mapping(const struct address_space * mapping)589 void dump_mapping(const struct address_space *mapping)
590 {
591 	struct inode *host;
592 	const struct address_space_operations *a_ops;
593 	struct hlist_node *dentry_first;
594 	struct dentry *dentry_ptr;
595 	struct dentry dentry;
596 	unsigned long ino;
597 
598 	/*
599 	 * If mapping is an invalid pointer, we don't want to crash
600 	 * accessing it, so probe everything depending on it carefully.
601 	 */
602 	if (get_kernel_nofault(host, &mapping->host) ||
603 	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
604 		pr_warn("invalid mapping:%px\n", mapping);
605 		return;
606 	}
607 
608 	if (!host) {
609 		pr_warn("aops:%ps\n", a_ops);
610 		return;
611 	}
612 
613 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
614 	    get_kernel_nofault(ino, &host->i_ino)) {
615 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
616 		return;
617 	}
618 
619 	if (!dentry_first) {
620 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
621 		return;
622 	}
623 
624 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
625 	if (get_kernel_nofault(dentry, dentry_ptr)) {
626 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
627 				a_ops, ino, dentry_ptr);
628 		return;
629 	}
630 
631 	/*
632 	 * if dentry is corrupted, the %pd handler may still crash,
633 	 * but it's unlikely that we reach here with a corrupt mapping
634 	 */
635 	pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
636 }
637 
clear_inode(struct inode * inode)638 void clear_inode(struct inode *inode)
639 {
640 	/*
641 	 * We have to cycle the i_pages lock here because reclaim can be in the
642 	 * process of removing the last page (in __filemap_remove_folio())
643 	 * and we must not free the mapping under it.
644 	 */
645 	xa_lock_irq(&inode->i_data.i_pages);
646 	BUG_ON(inode->i_data.nrpages);
647 	/*
648 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
649 	 * two known and long-standing ways in which nodes may get left behind
650 	 * (when deep radix-tree node allocation failed partway; or when THP
651 	 * collapse_file() failed). Until those two known cases are cleaned up,
652 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
653 	 * nor even WARN_ON(!mapping_empty).
654 	 */
655 	xa_unlock_irq(&inode->i_data.i_pages);
656 	BUG_ON(!list_empty(&inode->i_data.private_list));
657 	BUG_ON(!(inode->i_state & I_FREEING));
658 	BUG_ON(inode->i_state & I_CLEAR);
659 	BUG_ON(!list_empty(&inode->i_wb_list));
660 	/* don't need i_lock here, no concurrent mods to i_state */
661 	inode->i_state = I_FREEING | I_CLEAR;
662 }
663 EXPORT_SYMBOL(clear_inode);
664 
665 /*
666  * Free the inode passed in, removing it from the lists it is still connected
667  * to. We remove any pages still attached to the inode and wait for any IO that
668  * is still in progress before finally destroying the inode.
669  *
670  * An inode must already be marked I_FREEING so that we avoid the inode being
671  * moved back onto lists if we race with other code that manipulates the lists
672  * (e.g. writeback_single_inode). The caller is responsible for setting this.
673  *
674  * An inode must already be removed from the LRU list before being evicted from
675  * the cache. This should occur atomically with setting the I_FREEING state
676  * flag, so no inodes here should ever be on the LRU when being evicted.
677  */
evict(struct inode * inode)678 static void evict(struct inode *inode)
679 {
680 	const struct super_operations *op = inode->i_sb->s_op;
681 
682 	BUG_ON(!(inode->i_state & I_FREEING));
683 	BUG_ON(!list_empty(&inode->i_lru));
684 
685 	if (!list_empty(&inode->i_io_list))
686 		inode_io_list_del(inode);
687 
688 	inode_sb_list_del(inode);
689 
690 	inode_wait_for_lru_isolating(inode);
691 
692 	/*
693 	 * Wait for flusher thread to be done with the inode so that filesystem
694 	 * does not start destroying it while writeback is still running. Since
695 	 * the inode has I_FREEING set, flusher thread won't start new work on
696 	 * the inode.  We just have to wait for running writeback to finish.
697 	 */
698 	inode_wait_for_writeback(inode);
699 
700 	if (op->evict_inode) {
701 		op->evict_inode(inode);
702 	} else {
703 		truncate_inode_pages_final(&inode->i_data);
704 		clear_inode(inode);
705 	}
706 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
707 		cd_forget(inode);
708 
709 	remove_inode_hash(inode);
710 
711 	spin_lock(&inode->i_lock);
712 	wake_up_bit(&inode->i_state, __I_NEW);
713 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
714 	spin_unlock(&inode->i_lock);
715 
716 	destroy_inode(inode);
717 }
718 
719 /*
720  * dispose_list - dispose of the contents of a local list
721  * @head: the head of the list to free
722  *
723  * Dispose-list gets a local list with local inodes in it, so it doesn't
724  * need to worry about list corruption and SMP locks.
725  */
dispose_list(struct list_head * head)726 static void dispose_list(struct list_head *head)
727 {
728 	while (!list_empty(head)) {
729 		struct inode *inode;
730 
731 		inode = list_first_entry(head, struct inode, i_lru);
732 		list_del_init(&inode->i_lru);
733 
734 		evict(inode);
735 		cond_resched();
736 	}
737 }
738 
739 /**
740  * evict_inodes	- evict all evictable inodes for a superblock
741  * @sb:		superblock to operate on
742  *
743  * Make sure that no inodes with zero refcount are retained.  This is
744  * called by superblock shutdown after having SB_ACTIVE flag removed,
745  * so any inode reaching zero refcount during or after that call will
746  * be immediately evicted.
747  */
evict_inodes(struct super_block * sb)748 void evict_inodes(struct super_block *sb)
749 {
750 	struct inode *inode, *next;
751 	LIST_HEAD(dispose);
752 
753 again:
754 	spin_lock(&sb->s_inode_list_lock);
755 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
756 		if (atomic_read(&inode->i_count))
757 			continue;
758 
759 		spin_lock(&inode->i_lock);
760 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
761 			spin_unlock(&inode->i_lock);
762 			continue;
763 		}
764 
765 		inode->i_state |= I_FREEING;
766 		inode_lru_list_del(inode);
767 		spin_unlock(&inode->i_lock);
768 		list_add(&inode->i_lru, &dispose);
769 
770 		/*
771 		 * We can have a ton of inodes to evict at unmount time given
772 		 * enough memory, check to see if we need to go to sleep for a
773 		 * bit so we don't livelock.
774 		 */
775 		if (need_resched()) {
776 			spin_unlock(&sb->s_inode_list_lock);
777 			cond_resched();
778 			dispose_list(&dispose);
779 			goto again;
780 		}
781 	}
782 	spin_unlock(&sb->s_inode_list_lock);
783 
784 	dispose_list(&dispose);
785 }
786 EXPORT_SYMBOL_GPL(evict_inodes);
787 
788 /**
789  * invalidate_inodes	- attempt to free all inodes on a superblock
790  * @sb:		superblock to operate on
791  *
792  * Attempts to free all inodes (including dirty inodes) for a given superblock.
793  */
invalidate_inodes(struct super_block * sb)794 void invalidate_inodes(struct super_block *sb)
795 {
796 	struct inode *inode, *next;
797 	LIST_HEAD(dispose);
798 
799 again:
800 	spin_lock(&sb->s_inode_list_lock);
801 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
802 		spin_lock(&inode->i_lock);
803 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
804 			spin_unlock(&inode->i_lock);
805 			continue;
806 		}
807 		if (atomic_read(&inode->i_count)) {
808 			spin_unlock(&inode->i_lock);
809 			continue;
810 		}
811 
812 		inode->i_state |= I_FREEING;
813 		inode_lru_list_del(inode);
814 		spin_unlock(&inode->i_lock);
815 		list_add(&inode->i_lru, &dispose);
816 		if (need_resched()) {
817 			spin_unlock(&sb->s_inode_list_lock);
818 			cond_resched();
819 			dispose_list(&dispose);
820 			goto again;
821 		}
822 	}
823 	spin_unlock(&sb->s_inode_list_lock);
824 
825 	dispose_list(&dispose);
826 }
827 
828 /*
829  * Isolate the inode from the LRU in preparation for freeing it.
830  *
831  * If the inode has the I_REFERENCED flag set, then it means that it has been
832  * used recently - the flag is set in iput_final(). When we encounter such an
833  * inode, clear the flag and move it to the back of the LRU so it gets another
834  * pass through the LRU before it gets reclaimed. This is necessary because of
835  * the fact we are doing lazy LRU updates to minimise lock contention so the
836  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
837  * with this flag set because they are the inodes that are out of order.
838  */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)839 static enum lru_status inode_lru_isolate(struct list_head *item,
840 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
841 {
842 	struct list_head *freeable = arg;
843 	struct inode	*inode = container_of(item, struct inode, i_lru);
844 
845 	/*
846 	 * We are inverting the lru lock/inode->i_lock here, so use a
847 	 * trylock. If we fail to get the lock, just skip it.
848 	 */
849 	if (!spin_trylock(&inode->i_lock))
850 		return LRU_SKIP;
851 
852 	/*
853 	 * Inodes can get referenced, redirtied, or repopulated while
854 	 * they're already on the LRU, and this can make them
855 	 * unreclaimable for a while. Remove them lazily here; iput,
856 	 * sync, or the last page cache deletion will requeue them.
857 	 */
858 	if (atomic_read(&inode->i_count) ||
859 	    (inode->i_state & ~I_REFERENCED) ||
860 	    !mapping_shrinkable(&inode->i_data)) {
861 		list_lru_isolate(lru, &inode->i_lru);
862 		spin_unlock(&inode->i_lock);
863 		this_cpu_dec(nr_unused);
864 		return LRU_REMOVED;
865 	}
866 
867 	/* Recently referenced inodes get one more pass */
868 	if (inode->i_state & I_REFERENCED) {
869 		inode->i_state &= ~I_REFERENCED;
870 		spin_unlock(&inode->i_lock);
871 		return LRU_ROTATE;
872 	}
873 
874 	/*
875 	 * On highmem systems, mapping_shrinkable() permits dropping
876 	 * page cache in order to free up struct inodes: lowmem might
877 	 * be under pressure before the cache inside the highmem zone.
878 	 */
879 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
880 		inode_pin_lru_isolating(inode);
881 		spin_unlock(&inode->i_lock);
882 		spin_unlock(lru_lock);
883 		if (remove_inode_buffers(inode)) {
884 			unsigned long reap;
885 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
886 			if (current_is_kswapd())
887 				__count_vm_events(KSWAPD_INODESTEAL, reap);
888 			else
889 				__count_vm_events(PGINODESTEAL, reap);
890 			mm_account_reclaimed_pages(reap);
891 		}
892 		inode_unpin_lru_isolating(inode);
893 		spin_lock(lru_lock);
894 		return LRU_RETRY;
895 	}
896 
897 	WARN_ON(inode->i_state & I_NEW);
898 	inode->i_state |= I_FREEING;
899 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
900 	spin_unlock(&inode->i_lock);
901 
902 	this_cpu_dec(nr_unused);
903 	return LRU_REMOVED;
904 }
905 
906 /*
907  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
908  * This is called from the superblock shrinker function with a number of inodes
909  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
910  * then are freed outside inode_lock by dispose_list().
911  */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)912 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
913 {
914 	LIST_HEAD(freeable);
915 	long freed;
916 
917 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
918 				     inode_lru_isolate, &freeable);
919 	dispose_list(&freeable);
920 	return freed;
921 }
922 
923 static void __wait_on_freeing_inode(struct inode *inode);
924 /*
925  * Called with the inode lock held.
926  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)927 static struct inode *find_inode(struct super_block *sb,
928 				struct hlist_head *head,
929 				int (*test)(struct inode *, void *),
930 				void *data)
931 {
932 	struct inode *inode = NULL;
933 
934 repeat:
935 	hlist_for_each_entry(inode, head, i_hash) {
936 		if (inode->i_sb != sb)
937 			continue;
938 		if (!test(inode, data))
939 			continue;
940 		spin_lock(&inode->i_lock);
941 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
942 			__wait_on_freeing_inode(inode);
943 			goto repeat;
944 		}
945 		if (unlikely(inode->i_state & I_CREATING)) {
946 			spin_unlock(&inode->i_lock);
947 			return ERR_PTR(-ESTALE);
948 		}
949 		__iget(inode);
950 		spin_unlock(&inode->i_lock);
951 		return inode;
952 	}
953 	return NULL;
954 }
955 
956 /*
957  * find_inode_fast is the fast path version of find_inode, see the comment at
958  * iget_locked for details.
959  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)960 static struct inode *find_inode_fast(struct super_block *sb,
961 				struct hlist_head *head, unsigned long ino)
962 {
963 	struct inode *inode = NULL;
964 
965 repeat:
966 	hlist_for_each_entry(inode, head, i_hash) {
967 		if (inode->i_ino != ino)
968 			continue;
969 		if (inode->i_sb != sb)
970 			continue;
971 		spin_lock(&inode->i_lock);
972 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
973 			__wait_on_freeing_inode(inode);
974 			goto repeat;
975 		}
976 		if (unlikely(inode->i_state & I_CREATING)) {
977 			spin_unlock(&inode->i_lock);
978 			return ERR_PTR(-ESTALE);
979 		}
980 		__iget(inode);
981 		spin_unlock(&inode->i_lock);
982 		return inode;
983 	}
984 	return NULL;
985 }
986 
987 /*
988  * Each cpu owns a range of LAST_INO_BATCH numbers.
989  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
990  * to renew the exhausted range.
991  *
992  * This does not significantly increase overflow rate because every CPU can
993  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
994  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
995  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
996  * overflow rate by 2x, which does not seem too significant.
997  *
998  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
999  * error if st_ino won't fit in target struct field. Use 32bit counter
1000  * here to attempt to avoid that.
1001  */
1002 #define LAST_INO_BATCH 1024
1003 static DEFINE_PER_CPU(unsigned int, last_ino);
1004 
get_next_ino(void)1005 unsigned int get_next_ino(void)
1006 {
1007 	unsigned int *p = &get_cpu_var(last_ino);
1008 	unsigned int res = *p;
1009 
1010 #ifdef CONFIG_SMP
1011 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1012 		static atomic_t shared_last_ino;
1013 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1014 
1015 		res = next - LAST_INO_BATCH;
1016 	}
1017 #endif
1018 
1019 	res++;
1020 	/* get_next_ino should not provide a 0 inode number */
1021 	if (unlikely(!res))
1022 		res++;
1023 	*p = res;
1024 	put_cpu_var(last_ino);
1025 	return res;
1026 }
1027 EXPORT_SYMBOL(get_next_ino);
1028 
1029 /**
1030  *	new_inode_pseudo 	- obtain an inode
1031  *	@sb: superblock
1032  *
1033  *	Allocates a new inode for given superblock.
1034  *	Inode wont be chained in superblock s_inodes list
1035  *	This means :
1036  *	- fs can't be unmount
1037  *	- quotas, fsnotify, writeback can't work
1038  */
new_inode_pseudo(struct super_block * sb)1039 struct inode *new_inode_pseudo(struct super_block *sb)
1040 {
1041 	struct inode *inode = alloc_inode(sb);
1042 
1043 	if (inode) {
1044 		spin_lock(&inode->i_lock);
1045 		inode->i_state = 0;
1046 		spin_unlock(&inode->i_lock);
1047 	}
1048 	return inode;
1049 }
1050 
1051 /**
1052  *	new_inode 	- obtain an inode
1053  *	@sb: superblock
1054  *
1055  *	Allocates a new inode for given superblock. The default gfp_mask
1056  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1057  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1058  *	for the page cache are not reclaimable or migratable,
1059  *	mapping_set_gfp_mask() must be called with suitable flags on the
1060  *	newly created inode's mapping
1061  *
1062  */
new_inode(struct super_block * sb)1063 struct inode *new_inode(struct super_block *sb)
1064 {
1065 	struct inode *inode;
1066 
1067 	inode = new_inode_pseudo(sb);
1068 	if (inode)
1069 		inode_sb_list_add(inode);
1070 	return inode;
1071 }
1072 EXPORT_SYMBOL(new_inode);
1073 
1074 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)1075 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1076 {
1077 	if (S_ISDIR(inode->i_mode)) {
1078 		struct file_system_type *type = inode->i_sb->s_type;
1079 
1080 		/* Set new key only if filesystem hasn't already changed it */
1081 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1082 			/*
1083 			 * ensure nobody is actually holding i_mutex
1084 			 */
1085 			// mutex_destroy(&inode->i_mutex);
1086 			init_rwsem(&inode->i_rwsem);
1087 			lockdep_set_class(&inode->i_rwsem,
1088 					  &type->i_mutex_dir_key);
1089 		}
1090 	}
1091 }
1092 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1093 #endif
1094 
1095 /**
1096  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1097  * @inode:	new inode to unlock
1098  *
1099  * Called when the inode is fully initialised to clear the new state of the
1100  * inode and wake up anyone waiting for the inode to finish initialisation.
1101  */
unlock_new_inode(struct inode * inode)1102 void unlock_new_inode(struct inode *inode)
1103 {
1104 	lockdep_annotate_inode_mutex_key(inode);
1105 	spin_lock(&inode->i_lock);
1106 	WARN_ON(!(inode->i_state & I_NEW));
1107 	inode->i_state &= ~I_NEW & ~I_CREATING;
1108 	smp_mb();
1109 	wake_up_bit(&inode->i_state, __I_NEW);
1110 	spin_unlock(&inode->i_lock);
1111 }
1112 EXPORT_SYMBOL(unlock_new_inode);
1113 
discard_new_inode(struct inode * inode)1114 void discard_new_inode(struct inode *inode)
1115 {
1116 	lockdep_annotate_inode_mutex_key(inode);
1117 	spin_lock(&inode->i_lock);
1118 	WARN_ON(!(inode->i_state & I_NEW));
1119 	inode->i_state &= ~I_NEW;
1120 	smp_mb();
1121 	wake_up_bit(&inode->i_state, __I_NEW);
1122 	spin_unlock(&inode->i_lock);
1123 	iput(inode);
1124 }
1125 EXPORT_SYMBOL(discard_new_inode);
1126 
1127 /**
1128  * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1129  *
1130  * Lock any non-NULL argument. The caller must make sure that if he is passing
1131  * in two directories, one is not ancestor of the other.  Zero, one or two
1132  * objects may be locked by this function.
1133  *
1134  * @inode1: first inode to lock
1135  * @inode2: second inode to lock
1136  * @subclass1: inode lock subclass for the first lock obtained
1137  * @subclass2: inode lock subclass for the second lock obtained
1138  */
lock_two_inodes(struct inode * inode1,struct inode * inode2,unsigned subclass1,unsigned subclass2)1139 void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1140 		     unsigned subclass1, unsigned subclass2)
1141 {
1142 	if (!inode1 || !inode2) {
1143 		/*
1144 		 * Make sure @subclass1 will be used for the acquired lock.
1145 		 * This is not strictly necessary (no current caller cares) but
1146 		 * let's keep things consistent.
1147 		 */
1148 		if (!inode1)
1149 			swap(inode1, inode2);
1150 		goto lock;
1151 	}
1152 
1153 	/*
1154 	 * If one object is directory and the other is not, we must make sure
1155 	 * to lock directory first as the other object may be its child.
1156 	 */
1157 	if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1158 		if (inode1 > inode2)
1159 			swap(inode1, inode2);
1160 	} else if (!S_ISDIR(inode1->i_mode))
1161 		swap(inode1, inode2);
1162 lock:
1163 	if (inode1)
1164 		inode_lock_nested(inode1, subclass1);
1165 	if (inode2 && inode2 != inode1)
1166 		inode_lock_nested(inode2, subclass2);
1167 }
1168 
1169 /**
1170  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1171  *
1172  * Lock any non-NULL argument. Passed objects must not be directories.
1173  * Zero, one or two objects may be locked by this function.
1174  *
1175  * @inode1: first inode to lock
1176  * @inode2: second inode to lock
1177  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1178 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1179 {
1180 	if (inode1)
1181 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1182 	if (inode2)
1183 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1184 	lock_two_inodes(inode1, inode2, I_MUTEX_NORMAL, I_MUTEX_NONDIR2);
1185 }
1186 EXPORT_SYMBOL(lock_two_nondirectories);
1187 
1188 /**
1189  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1190  * @inode1: first inode to unlock
1191  * @inode2: second inode to unlock
1192  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1193 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1194 {
1195 	if (inode1) {
1196 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1197 		inode_unlock(inode1);
1198 	}
1199 	if (inode2 && inode2 != inode1) {
1200 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1201 		inode_unlock(inode2);
1202 	}
1203 }
1204 EXPORT_SYMBOL(unlock_two_nondirectories);
1205 
1206 /**
1207  * inode_insert5 - obtain an inode from a mounted file system
1208  * @inode:	pre-allocated inode to use for insert to cache
1209  * @hashval:	hash value (usually inode number) to get
1210  * @test:	callback used for comparisons between inodes
1211  * @set:	callback used to initialize a new struct inode
1212  * @data:	opaque data pointer to pass to @test and @set
1213  *
1214  * Search for the inode specified by @hashval and @data in the inode cache,
1215  * and if present it is return it with an increased reference count. This is
1216  * a variant of iget5_locked() for callers that don't want to fail on memory
1217  * allocation of inode.
1218  *
1219  * If the inode is not in cache, insert the pre-allocated inode to cache and
1220  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1221  * to fill it in before unlocking it via unlock_new_inode().
1222  *
1223  * Note both @test and @set are called with the inode_hash_lock held, so can't
1224  * sleep.
1225  */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1226 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1227 			    int (*test)(struct inode *, void *),
1228 			    int (*set)(struct inode *, void *), void *data)
1229 {
1230 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1231 	struct inode *old;
1232 
1233 again:
1234 	spin_lock(&inode_hash_lock);
1235 	old = find_inode(inode->i_sb, head, test, data);
1236 	if (unlikely(old)) {
1237 		/*
1238 		 * Uhhuh, somebody else created the same inode under us.
1239 		 * Use the old inode instead of the preallocated one.
1240 		 */
1241 		spin_unlock(&inode_hash_lock);
1242 		if (IS_ERR(old))
1243 			return NULL;
1244 		wait_on_inode(old);
1245 		if (unlikely(inode_unhashed(old))) {
1246 			iput(old);
1247 			goto again;
1248 		}
1249 		return old;
1250 	}
1251 
1252 	if (set && unlikely(set(inode, data))) {
1253 		inode = NULL;
1254 		goto unlock;
1255 	}
1256 
1257 	/*
1258 	 * Return the locked inode with I_NEW set, the
1259 	 * caller is responsible for filling in the contents
1260 	 */
1261 	spin_lock(&inode->i_lock);
1262 	inode->i_state |= I_NEW;
1263 	hlist_add_head_rcu(&inode->i_hash, head);
1264 	spin_unlock(&inode->i_lock);
1265 
1266 	/*
1267 	 * Add inode to the sb list if it's not already. It has I_NEW at this
1268 	 * point, so it should be safe to test i_sb_list locklessly.
1269 	 */
1270 	if (list_empty(&inode->i_sb_list))
1271 		inode_sb_list_add(inode);
1272 unlock:
1273 	spin_unlock(&inode_hash_lock);
1274 
1275 	return inode;
1276 }
1277 EXPORT_SYMBOL(inode_insert5);
1278 
1279 /**
1280  * iget5_locked - obtain an inode from a mounted file system
1281  * @sb:		super block of file system
1282  * @hashval:	hash value (usually inode number) to get
1283  * @test:	callback used for comparisons between inodes
1284  * @set:	callback used to initialize a new struct inode
1285  * @data:	opaque data pointer to pass to @test and @set
1286  *
1287  * Search for the inode specified by @hashval and @data in the inode cache,
1288  * and if present it is return it with an increased reference count. This is
1289  * a generalized version of iget_locked() for file systems where the inode
1290  * number is not sufficient for unique identification of an inode.
1291  *
1292  * If the inode is not in cache, allocate a new inode and return it locked,
1293  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1294  * before unlocking it via unlock_new_inode().
1295  *
1296  * Note both @test and @set are called with the inode_hash_lock held, so can't
1297  * sleep.
1298  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1299 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1300 		int (*test)(struct inode *, void *),
1301 		int (*set)(struct inode *, void *), void *data)
1302 {
1303 	struct inode *inode = ilookup5(sb, hashval, test, data);
1304 
1305 	if (!inode) {
1306 		struct inode *new = alloc_inode(sb);
1307 
1308 		if (new) {
1309 			new->i_state = 0;
1310 			inode = inode_insert5(new, hashval, test, set, data);
1311 			if (unlikely(inode != new))
1312 				destroy_inode(new);
1313 		}
1314 	}
1315 	return inode;
1316 }
1317 EXPORT_SYMBOL(iget5_locked);
1318 
1319 /**
1320  * iget_locked - obtain an inode from a mounted file system
1321  * @sb:		super block of file system
1322  * @ino:	inode number to get
1323  *
1324  * Search for the inode specified by @ino in the inode cache and if present
1325  * return it with an increased reference count. This is for file systems
1326  * where the inode number is sufficient for unique identification of an inode.
1327  *
1328  * If the inode is not in cache, allocate a new inode and return it locked,
1329  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1330  * before unlocking it via unlock_new_inode().
1331  */
iget_locked(struct super_block * sb,unsigned long ino)1332 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1333 {
1334 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1335 	struct inode *inode;
1336 again:
1337 	spin_lock(&inode_hash_lock);
1338 	inode = find_inode_fast(sb, head, ino);
1339 	spin_unlock(&inode_hash_lock);
1340 	if (inode) {
1341 		if (IS_ERR(inode))
1342 			return NULL;
1343 		wait_on_inode(inode);
1344 		if (unlikely(inode_unhashed(inode))) {
1345 			iput(inode);
1346 			goto again;
1347 		}
1348 		return inode;
1349 	}
1350 
1351 	inode = alloc_inode(sb);
1352 	if (inode) {
1353 		struct inode *old;
1354 
1355 		spin_lock(&inode_hash_lock);
1356 		/* We released the lock, so.. */
1357 		old = find_inode_fast(sb, head, ino);
1358 		if (!old) {
1359 			inode->i_ino = ino;
1360 			spin_lock(&inode->i_lock);
1361 			inode->i_state = I_NEW;
1362 			hlist_add_head_rcu(&inode->i_hash, head);
1363 			spin_unlock(&inode->i_lock);
1364 			inode_sb_list_add(inode);
1365 			spin_unlock(&inode_hash_lock);
1366 
1367 			/* Return the locked inode with I_NEW set, the
1368 			 * caller is responsible for filling in the contents
1369 			 */
1370 			return inode;
1371 		}
1372 
1373 		/*
1374 		 * Uhhuh, somebody else created the same inode under
1375 		 * us. Use the old inode instead of the one we just
1376 		 * allocated.
1377 		 */
1378 		spin_unlock(&inode_hash_lock);
1379 		destroy_inode(inode);
1380 		if (IS_ERR(old))
1381 			return NULL;
1382 		inode = old;
1383 		wait_on_inode(inode);
1384 		if (unlikely(inode_unhashed(inode))) {
1385 			iput(inode);
1386 			goto again;
1387 		}
1388 	}
1389 	return inode;
1390 }
1391 EXPORT_SYMBOL(iget_locked);
1392 
1393 /*
1394  * search the inode cache for a matching inode number.
1395  * If we find one, then the inode number we are trying to
1396  * allocate is not unique and so we should not use it.
1397  *
1398  * Returns 1 if the inode number is unique, 0 if it is not.
1399  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1400 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1401 {
1402 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1403 	struct inode *inode;
1404 
1405 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1406 		if (inode->i_ino == ino && inode->i_sb == sb)
1407 			return 0;
1408 	}
1409 	return 1;
1410 }
1411 
1412 /**
1413  *	iunique - get a unique inode number
1414  *	@sb: superblock
1415  *	@max_reserved: highest reserved inode number
1416  *
1417  *	Obtain an inode number that is unique on the system for a given
1418  *	superblock. This is used by file systems that have no natural
1419  *	permanent inode numbering system. An inode number is returned that
1420  *	is higher than the reserved limit but unique.
1421  *
1422  *	BUGS:
1423  *	With a large number of inodes live on the file system this function
1424  *	currently becomes quite slow.
1425  */
iunique(struct super_block * sb,ino_t max_reserved)1426 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1427 {
1428 	/*
1429 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1430 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1431 	 * here to attempt to avoid that.
1432 	 */
1433 	static DEFINE_SPINLOCK(iunique_lock);
1434 	static unsigned int counter;
1435 	ino_t res;
1436 
1437 	rcu_read_lock();
1438 	spin_lock(&iunique_lock);
1439 	do {
1440 		if (counter <= max_reserved)
1441 			counter = max_reserved + 1;
1442 		res = counter++;
1443 	} while (!test_inode_iunique(sb, res));
1444 	spin_unlock(&iunique_lock);
1445 	rcu_read_unlock();
1446 
1447 	return res;
1448 }
1449 EXPORT_SYMBOL(iunique);
1450 
igrab(struct inode * inode)1451 struct inode *igrab(struct inode *inode)
1452 {
1453 	spin_lock(&inode->i_lock);
1454 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1455 		__iget(inode);
1456 		spin_unlock(&inode->i_lock);
1457 	} else {
1458 		spin_unlock(&inode->i_lock);
1459 		/*
1460 		 * Handle the case where s_op->clear_inode is not been
1461 		 * called yet, and somebody is calling igrab
1462 		 * while the inode is getting freed.
1463 		 */
1464 		inode = NULL;
1465 	}
1466 	return inode;
1467 }
1468 EXPORT_SYMBOL(igrab);
1469 
1470 /**
1471  * ilookup5_nowait - search for an inode in the inode cache
1472  * @sb:		super block of file system to search
1473  * @hashval:	hash value (usually inode number) to search for
1474  * @test:	callback used for comparisons between inodes
1475  * @data:	opaque data pointer to pass to @test
1476  *
1477  * Search for the inode specified by @hashval and @data in the inode cache.
1478  * If the inode is in the cache, the inode is returned with an incremented
1479  * reference count.
1480  *
1481  * Note: I_NEW is not waited upon so you have to be very careful what you do
1482  * with the returned inode.  You probably should be using ilookup5() instead.
1483  *
1484  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1485  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1486 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1487 		int (*test)(struct inode *, void *), void *data)
1488 {
1489 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1490 	struct inode *inode;
1491 
1492 	spin_lock(&inode_hash_lock);
1493 	inode = find_inode(sb, head, test, data);
1494 	spin_unlock(&inode_hash_lock);
1495 
1496 	return IS_ERR(inode) ? NULL : inode;
1497 }
1498 EXPORT_SYMBOL(ilookup5_nowait);
1499 
1500 /**
1501  * ilookup5 - search for an inode in the inode cache
1502  * @sb:		super block of file system to search
1503  * @hashval:	hash value (usually inode number) to search for
1504  * @test:	callback used for comparisons between inodes
1505  * @data:	opaque data pointer to pass to @test
1506  *
1507  * Search for the inode specified by @hashval and @data in the inode cache,
1508  * and if the inode is in the cache, return the inode with an incremented
1509  * reference count.  Waits on I_NEW before returning the inode.
1510  * returned with an incremented reference count.
1511  *
1512  * This is a generalized version of ilookup() for file systems where the
1513  * inode number is not sufficient for unique identification of an inode.
1514  *
1515  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1516  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1517 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1518 		int (*test)(struct inode *, void *), void *data)
1519 {
1520 	struct inode *inode;
1521 again:
1522 	inode = ilookup5_nowait(sb, hashval, test, data);
1523 	if (inode) {
1524 		wait_on_inode(inode);
1525 		if (unlikely(inode_unhashed(inode))) {
1526 			iput(inode);
1527 			goto again;
1528 		}
1529 	}
1530 	return inode;
1531 }
1532 EXPORT_SYMBOL(ilookup5);
1533 
1534 /**
1535  * ilookup - search for an inode in the inode cache
1536  * @sb:		super block of file system to search
1537  * @ino:	inode number to search for
1538  *
1539  * Search for the inode @ino in the inode cache, and if the inode is in the
1540  * cache, the inode is returned with an incremented reference count.
1541  */
ilookup(struct super_block * sb,unsigned long ino)1542 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1543 {
1544 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1545 	struct inode *inode;
1546 again:
1547 	spin_lock(&inode_hash_lock);
1548 	inode = find_inode_fast(sb, head, ino);
1549 	spin_unlock(&inode_hash_lock);
1550 
1551 	if (inode) {
1552 		if (IS_ERR(inode))
1553 			return NULL;
1554 		wait_on_inode(inode);
1555 		if (unlikely(inode_unhashed(inode))) {
1556 			iput(inode);
1557 			goto again;
1558 		}
1559 	}
1560 	return inode;
1561 }
1562 EXPORT_SYMBOL(ilookup);
1563 
1564 /**
1565  * find_inode_nowait - find an inode in the inode cache
1566  * @sb:		super block of file system to search
1567  * @hashval:	hash value (usually inode number) to search for
1568  * @match:	callback used for comparisons between inodes
1569  * @data:	opaque data pointer to pass to @match
1570  *
1571  * Search for the inode specified by @hashval and @data in the inode
1572  * cache, where the helper function @match will return 0 if the inode
1573  * does not match, 1 if the inode does match, and -1 if the search
1574  * should be stopped.  The @match function must be responsible for
1575  * taking the i_lock spin_lock and checking i_state for an inode being
1576  * freed or being initialized, and incrementing the reference count
1577  * before returning 1.  It also must not sleep, since it is called with
1578  * the inode_hash_lock spinlock held.
1579  *
1580  * This is a even more generalized version of ilookup5() when the
1581  * function must never block --- find_inode() can block in
1582  * __wait_on_freeing_inode() --- or when the caller can not increment
1583  * the reference count because the resulting iput() might cause an
1584  * inode eviction.  The tradeoff is that the @match funtion must be
1585  * very carefully implemented.
1586  */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1587 struct inode *find_inode_nowait(struct super_block *sb,
1588 				unsigned long hashval,
1589 				int (*match)(struct inode *, unsigned long,
1590 					     void *),
1591 				void *data)
1592 {
1593 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1594 	struct inode *inode, *ret_inode = NULL;
1595 	int mval;
1596 
1597 	spin_lock(&inode_hash_lock);
1598 	hlist_for_each_entry(inode, head, i_hash) {
1599 		if (inode->i_sb != sb)
1600 			continue;
1601 		mval = match(inode, hashval, data);
1602 		if (mval == 0)
1603 			continue;
1604 		if (mval == 1)
1605 			ret_inode = inode;
1606 		goto out;
1607 	}
1608 out:
1609 	spin_unlock(&inode_hash_lock);
1610 	return ret_inode;
1611 }
1612 EXPORT_SYMBOL(find_inode_nowait);
1613 
1614 /**
1615  * find_inode_rcu - find an inode in the inode cache
1616  * @sb:		Super block of file system to search
1617  * @hashval:	Key to hash
1618  * @test:	Function to test match on an inode
1619  * @data:	Data for test function
1620  *
1621  * Search for the inode specified by @hashval and @data in the inode cache,
1622  * where the helper function @test will return 0 if the inode does not match
1623  * and 1 if it does.  The @test function must be responsible for taking the
1624  * i_lock spin_lock and checking i_state for an inode being freed or being
1625  * initialized.
1626  *
1627  * If successful, this will return the inode for which the @test function
1628  * returned 1 and NULL otherwise.
1629  *
1630  * The @test function is not permitted to take a ref on any inode presented.
1631  * It is also not permitted to sleep.
1632  *
1633  * The caller must hold the RCU read lock.
1634  */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1635 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1636 			     int (*test)(struct inode *, void *), void *data)
1637 {
1638 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1639 	struct inode *inode;
1640 
1641 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1642 			 "suspicious find_inode_rcu() usage");
1643 
1644 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1645 		if (inode->i_sb == sb &&
1646 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1647 		    test(inode, data))
1648 			return inode;
1649 	}
1650 	return NULL;
1651 }
1652 EXPORT_SYMBOL(find_inode_rcu);
1653 
1654 /**
1655  * find_inode_by_ino_rcu - Find an inode in the inode cache
1656  * @sb:		Super block of file system to search
1657  * @ino:	The inode number to match
1658  *
1659  * Search for the inode specified by @hashval and @data in the inode cache,
1660  * where the helper function @test will return 0 if the inode does not match
1661  * and 1 if it does.  The @test function must be responsible for taking the
1662  * i_lock spin_lock and checking i_state for an inode being freed or being
1663  * initialized.
1664  *
1665  * If successful, this will return the inode for which the @test function
1666  * returned 1 and NULL otherwise.
1667  *
1668  * The @test function is not permitted to take a ref on any inode presented.
1669  * It is also not permitted to sleep.
1670  *
1671  * The caller must hold the RCU read lock.
1672  */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1673 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1674 				    unsigned long ino)
1675 {
1676 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1677 	struct inode *inode;
1678 
1679 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1680 			 "suspicious find_inode_by_ino_rcu() usage");
1681 
1682 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1683 		if (inode->i_ino == ino &&
1684 		    inode->i_sb == sb &&
1685 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1686 		    return inode;
1687 	}
1688 	return NULL;
1689 }
1690 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1691 
insert_inode_locked(struct inode * inode)1692 int insert_inode_locked(struct inode *inode)
1693 {
1694 	struct super_block *sb = inode->i_sb;
1695 	ino_t ino = inode->i_ino;
1696 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1697 
1698 	while (1) {
1699 		struct inode *old = NULL;
1700 		spin_lock(&inode_hash_lock);
1701 		hlist_for_each_entry(old, head, i_hash) {
1702 			if (old->i_ino != ino)
1703 				continue;
1704 			if (old->i_sb != sb)
1705 				continue;
1706 			spin_lock(&old->i_lock);
1707 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1708 				spin_unlock(&old->i_lock);
1709 				continue;
1710 			}
1711 			break;
1712 		}
1713 		if (likely(!old)) {
1714 			spin_lock(&inode->i_lock);
1715 			inode->i_state |= I_NEW | I_CREATING;
1716 			hlist_add_head_rcu(&inode->i_hash, head);
1717 			spin_unlock(&inode->i_lock);
1718 			spin_unlock(&inode_hash_lock);
1719 			return 0;
1720 		}
1721 		if (unlikely(old->i_state & I_CREATING)) {
1722 			spin_unlock(&old->i_lock);
1723 			spin_unlock(&inode_hash_lock);
1724 			return -EBUSY;
1725 		}
1726 		__iget(old);
1727 		spin_unlock(&old->i_lock);
1728 		spin_unlock(&inode_hash_lock);
1729 		wait_on_inode(old);
1730 		if (unlikely(!inode_unhashed(old))) {
1731 			iput(old);
1732 			return -EBUSY;
1733 		}
1734 		iput(old);
1735 	}
1736 }
1737 EXPORT_SYMBOL(insert_inode_locked);
1738 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1739 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1740 		int (*test)(struct inode *, void *), void *data)
1741 {
1742 	struct inode *old;
1743 
1744 	inode->i_state |= I_CREATING;
1745 	old = inode_insert5(inode, hashval, test, NULL, data);
1746 
1747 	if (old != inode) {
1748 		iput(old);
1749 		return -EBUSY;
1750 	}
1751 	return 0;
1752 }
1753 EXPORT_SYMBOL(insert_inode_locked4);
1754 
1755 
generic_delete_inode(struct inode * inode)1756 int generic_delete_inode(struct inode *inode)
1757 {
1758 	return 1;
1759 }
1760 EXPORT_SYMBOL(generic_delete_inode);
1761 
1762 /*
1763  * Called when we're dropping the last reference
1764  * to an inode.
1765  *
1766  * Call the FS "drop_inode()" function, defaulting to
1767  * the legacy UNIX filesystem behaviour.  If it tells
1768  * us to evict inode, do so.  Otherwise, retain inode
1769  * in cache if fs is alive, sync and evict if fs is
1770  * shutting down.
1771  */
iput_final(struct inode * inode)1772 static void iput_final(struct inode *inode)
1773 {
1774 	struct super_block *sb = inode->i_sb;
1775 	const struct super_operations *op = inode->i_sb->s_op;
1776 	unsigned long state;
1777 	int drop;
1778 
1779 	WARN_ON(inode->i_state & I_NEW);
1780 
1781 	if (op->drop_inode)
1782 		drop = op->drop_inode(inode);
1783 	else
1784 		drop = generic_drop_inode(inode);
1785 
1786 	if (!drop &&
1787 	    !(inode->i_state & I_DONTCACHE) &&
1788 	    (sb->s_flags & SB_ACTIVE)) {
1789 		__inode_add_lru(inode, true);
1790 		spin_unlock(&inode->i_lock);
1791 		return;
1792 	}
1793 
1794 	state = inode->i_state;
1795 	if (!drop) {
1796 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1797 		spin_unlock(&inode->i_lock);
1798 
1799 		write_inode_now(inode, 1);
1800 
1801 		spin_lock(&inode->i_lock);
1802 		state = inode->i_state;
1803 		WARN_ON(state & I_NEW);
1804 		state &= ~I_WILL_FREE;
1805 	}
1806 
1807 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1808 	if (!list_empty(&inode->i_lru))
1809 		inode_lru_list_del(inode);
1810 	spin_unlock(&inode->i_lock);
1811 
1812 	evict(inode);
1813 }
1814 
1815 /**
1816  *	iput	- put an inode
1817  *	@inode: inode to put
1818  *
1819  *	Puts an inode, dropping its usage count. If the inode use count hits
1820  *	zero, the inode is then freed and may also be destroyed.
1821  *
1822  *	Consequently, iput() can sleep.
1823  */
iput(struct inode * inode)1824 void iput(struct inode *inode)
1825 {
1826 	if (!inode)
1827 		return;
1828 	BUG_ON(inode->i_state & I_CLEAR);
1829 retry:
1830 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1831 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1832 			atomic_inc(&inode->i_count);
1833 			spin_unlock(&inode->i_lock);
1834 			trace_writeback_lazytime_iput(inode);
1835 			mark_inode_dirty_sync(inode);
1836 			goto retry;
1837 		}
1838 		iput_final(inode);
1839 	}
1840 }
1841 EXPORT_SYMBOL(iput);
1842 
1843 #ifdef CONFIG_BLOCK
1844 /**
1845  *	bmap	- find a block number in a file
1846  *	@inode:  inode owning the block number being requested
1847  *	@block: pointer containing the block to find
1848  *
1849  *	Replaces the value in ``*block`` with the block number on the device holding
1850  *	corresponding to the requested block number in the file.
1851  *	That is, asked for block 4 of inode 1 the function will replace the
1852  *	4 in ``*block``, with disk block relative to the disk start that holds that
1853  *	block of the file.
1854  *
1855  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1856  *	hole, returns 0 and ``*block`` is also set to 0.
1857  */
bmap(struct inode * inode,sector_t * block)1858 int bmap(struct inode *inode, sector_t *block)
1859 {
1860 	if (!inode->i_mapping->a_ops->bmap)
1861 		return -EINVAL;
1862 
1863 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1864 	return 0;
1865 }
1866 EXPORT_SYMBOL(bmap);
1867 #endif
1868 
1869 /*
1870  * With relative atime, only update atime if the previous atime is
1871  * earlier than or equal to either the ctime or mtime,
1872  * or if at least a day has passed since the last atime update.
1873  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1874 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1875 			     struct timespec64 now)
1876 {
1877 	struct timespec64 ctime;
1878 
1879 	if (!(mnt->mnt_flags & MNT_RELATIME))
1880 		return 1;
1881 	/*
1882 	 * Is mtime younger than or equal to atime? If yes, update atime:
1883 	 */
1884 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1885 		return 1;
1886 	/*
1887 	 * Is ctime younger than or equal to atime? If yes, update atime:
1888 	 */
1889 	ctime = inode_get_ctime(inode);
1890 	if (timespec64_compare(&ctime, &inode->i_atime) >= 0)
1891 		return 1;
1892 
1893 	/*
1894 	 * Is the previous atime value older than a day? If yes,
1895 	 * update atime:
1896 	 */
1897 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1898 		return 1;
1899 	/*
1900 	 * Good, we can skip the atime update:
1901 	 */
1902 	return 0;
1903 }
1904 
1905 /**
1906  * inode_update_timestamps - update the timestamps on the inode
1907  * @inode: inode to be updated
1908  * @flags: S_* flags that needed to be updated
1909  *
1910  * The update_time function is called when an inode's timestamps need to be
1911  * updated for a read or write operation. This function handles updating the
1912  * actual timestamps. It's up to the caller to ensure that the inode is marked
1913  * dirty appropriately.
1914  *
1915  * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1916  * attempt to update all three of them. S_ATIME updates can be handled
1917  * independently of the rest.
1918  *
1919  * Returns a set of S_* flags indicating which values changed.
1920  */
inode_update_timestamps(struct inode * inode,int flags)1921 int inode_update_timestamps(struct inode *inode, int flags)
1922 {
1923 	int updated = 0;
1924 	struct timespec64 now;
1925 
1926 	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1927 		struct timespec64 ctime = inode_get_ctime(inode);
1928 
1929 		now = inode_set_ctime_current(inode);
1930 		if (!timespec64_equal(&now, &ctime))
1931 			updated |= S_CTIME;
1932 		if (!timespec64_equal(&now, &inode->i_mtime)) {
1933 			inode->i_mtime = now;
1934 			updated |= S_MTIME;
1935 		}
1936 		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
1937 			updated |= S_VERSION;
1938 	} else {
1939 		now = current_time(inode);
1940 	}
1941 
1942 	if (flags & S_ATIME) {
1943 		if (!timespec64_equal(&now, &inode->i_atime)) {
1944 			inode->i_atime = now;
1945 			updated |= S_ATIME;
1946 		}
1947 	}
1948 	return updated;
1949 }
1950 EXPORT_SYMBOL(inode_update_timestamps);
1951 
1952 /**
1953  * generic_update_time - update the timestamps on the inode
1954  * @inode: inode to be updated
1955  * @flags: S_* flags that needed to be updated
1956  *
1957  * The update_time function is called when an inode's timestamps need to be
1958  * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
1959  * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
1960  * updates can be handled done independently of the rest.
1961  *
1962  * Returns a S_* mask indicating which fields were updated.
1963  */
generic_update_time(struct inode * inode,int flags)1964 int generic_update_time(struct inode *inode, int flags)
1965 {
1966 	int updated = inode_update_timestamps(inode, flags);
1967 	int dirty_flags = 0;
1968 
1969 	if (updated & (S_ATIME|S_MTIME|S_CTIME))
1970 		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
1971 	if (updated & S_VERSION)
1972 		dirty_flags |= I_DIRTY_SYNC;
1973 	__mark_inode_dirty(inode, dirty_flags);
1974 	return updated;
1975 }
1976 EXPORT_SYMBOL(generic_update_time);
1977 
1978 /*
1979  * This does the actual work of updating an inodes time or version.  Must have
1980  * had called mnt_want_write() before calling this.
1981  */
inode_update_time(struct inode * inode,int flags)1982 int inode_update_time(struct inode *inode, int flags)
1983 {
1984 	if (inode->i_op->update_time)
1985 		return inode->i_op->update_time(inode, flags);
1986 	generic_update_time(inode, flags);
1987 	return 0;
1988 }
1989 EXPORT_SYMBOL(inode_update_time);
1990 
1991 /**
1992  *	atime_needs_update	-	update the access time
1993  *	@path: the &struct path to update
1994  *	@inode: inode to update
1995  *
1996  *	Update the accessed time on an inode and mark it for writeback.
1997  *	This function automatically handles read only file systems and media,
1998  *	as well as the "noatime" flag and inode specific "noatime" markers.
1999  */
atime_needs_update(const struct path * path,struct inode * inode)2000 bool atime_needs_update(const struct path *path, struct inode *inode)
2001 {
2002 	struct vfsmount *mnt = path->mnt;
2003 	struct timespec64 now;
2004 
2005 	if (inode->i_flags & S_NOATIME)
2006 		return false;
2007 
2008 	/* Atime updates will likely cause i_uid and i_gid to be written
2009 	 * back improprely if their true value is unknown to the vfs.
2010 	 */
2011 	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2012 		return false;
2013 
2014 	if (IS_NOATIME(inode))
2015 		return false;
2016 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2017 		return false;
2018 
2019 	if (mnt->mnt_flags & MNT_NOATIME)
2020 		return false;
2021 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2022 		return false;
2023 
2024 	now = current_time(inode);
2025 
2026 	if (!relatime_need_update(mnt, inode, now))
2027 		return false;
2028 
2029 	if (timespec64_equal(&inode->i_atime, &now))
2030 		return false;
2031 
2032 	return true;
2033 }
2034 
touch_atime(const struct path * path)2035 void touch_atime(const struct path *path)
2036 {
2037 	struct vfsmount *mnt = path->mnt;
2038 	struct inode *inode = d_inode(path->dentry);
2039 
2040 	if (!atime_needs_update(path, inode))
2041 		return;
2042 
2043 	if (!sb_start_write_trylock(inode->i_sb))
2044 		return;
2045 
2046 	if (__mnt_want_write(mnt) != 0)
2047 		goto skip_update;
2048 	/*
2049 	 * File systems can error out when updating inodes if they need to
2050 	 * allocate new space to modify an inode (such is the case for
2051 	 * Btrfs), but since we touch atime while walking down the path we
2052 	 * really don't care if we failed to update the atime of the file,
2053 	 * so just ignore the return value.
2054 	 * We may also fail on filesystems that have the ability to make parts
2055 	 * of the fs read only, e.g. subvolumes in Btrfs.
2056 	 */
2057 	inode_update_time(inode, S_ATIME);
2058 	__mnt_drop_write(mnt);
2059 skip_update:
2060 	sb_end_write(inode->i_sb);
2061 }
2062 EXPORT_SYMBOL(touch_atime);
2063 
2064 /*
2065  * Return mask of changes for notify_change() that need to be done as a
2066  * response to write or truncate. Return 0 if nothing has to be changed.
2067  * Negative value on error (change should be denied).
2068  */
dentry_needs_remove_privs(struct mnt_idmap * idmap,struct dentry * dentry)2069 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2070 			      struct dentry *dentry)
2071 {
2072 	struct inode *inode = d_inode(dentry);
2073 	int mask = 0;
2074 	int ret;
2075 
2076 	if (IS_NOSEC(inode))
2077 		return 0;
2078 
2079 	mask = setattr_should_drop_suidgid(idmap, inode);
2080 	ret = security_inode_need_killpriv(dentry);
2081 	if (ret < 0)
2082 		return ret;
2083 	if (ret)
2084 		mask |= ATTR_KILL_PRIV;
2085 	return mask;
2086 }
2087 
__remove_privs(struct mnt_idmap * idmap,struct dentry * dentry,int kill)2088 static int __remove_privs(struct mnt_idmap *idmap,
2089 			  struct dentry *dentry, int kill)
2090 {
2091 	struct iattr newattrs;
2092 
2093 	newattrs.ia_valid = ATTR_FORCE | kill;
2094 	/*
2095 	 * Note we call this on write, so notify_change will not
2096 	 * encounter any conflicting delegations:
2097 	 */
2098 	return notify_change(idmap, dentry, &newattrs, NULL);
2099 }
2100 
__file_remove_privs(struct file * file,unsigned int flags)2101 static int __file_remove_privs(struct file *file, unsigned int flags)
2102 {
2103 	struct dentry *dentry = file_dentry(file);
2104 	struct inode *inode = file_inode(file);
2105 	int error = 0;
2106 	int kill;
2107 
2108 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2109 		return 0;
2110 
2111 	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2112 	if (kill < 0)
2113 		return kill;
2114 
2115 	if (kill) {
2116 		if (flags & IOCB_NOWAIT)
2117 			return -EAGAIN;
2118 
2119 		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2120 	}
2121 
2122 	if (!error)
2123 		inode_has_no_xattr(inode);
2124 	return error;
2125 }
2126 
2127 /**
2128  * file_remove_privs - remove special file privileges (suid, capabilities)
2129  * @file: file to remove privileges from
2130  *
2131  * When file is modified by a write or truncation ensure that special
2132  * file privileges are removed.
2133  *
2134  * Return: 0 on success, negative errno on failure.
2135  */
file_remove_privs(struct file * file)2136 int file_remove_privs(struct file *file)
2137 {
2138 	return __file_remove_privs(file, 0);
2139 }
2140 EXPORT_SYMBOL(file_remove_privs);
2141 
inode_needs_update_time(struct inode * inode)2142 static int inode_needs_update_time(struct inode *inode)
2143 {
2144 	int sync_it = 0;
2145 	struct timespec64 now = current_time(inode);
2146 	struct timespec64 ctime;
2147 
2148 	/* First try to exhaust all avenues to not sync */
2149 	if (IS_NOCMTIME(inode))
2150 		return 0;
2151 
2152 	if (!timespec64_equal(&inode->i_mtime, &now))
2153 		sync_it = S_MTIME;
2154 
2155 	ctime = inode_get_ctime(inode);
2156 	if (!timespec64_equal(&ctime, &now))
2157 		sync_it |= S_CTIME;
2158 
2159 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2160 		sync_it |= S_VERSION;
2161 
2162 	return sync_it;
2163 }
2164 
__file_update_time(struct file * file,int sync_mode)2165 static int __file_update_time(struct file *file, int sync_mode)
2166 {
2167 	int ret = 0;
2168 	struct inode *inode = file_inode(file);
2169 
2170 	/* try to update time settings */
2171 	if (!__mnt_want_write_file(file)) {
2172 		ret = inode_update_time(inode, sync_mode);
2173 		__mnt_drop_write_file(file);
2174 	}
2175 
2176 	return ret;
2177 }
2178 
2179 /**
2180  * file_update_time - update mtime and ctime time
2181  * @file: file accessed
2182  *
2183  * Update the mtime and ctime members of an inode and mark the inode for
2184  * writeback. Note that this function is meant exclusively for usage in
2185  * the file write path of filesystems, and filesystems may choose to
2186  * explicitly ignore updates via this function with the _NOCMTIME inode
2187  * flag, e.g. for network filesystem where these imestamps are handled
2188  * by the server. This can return an error for file systems who need to
2189  * allocate space in order to update an inode.
2190  *
2191  * Return: 0 on success, negative errno on failure.
2192  */
file_update_time(struct file * file)2193 int file_update_time(struct file *file)
2194 {
2195 	int ret;
2196 	struct inode *inode = file_inode(file);
2197 
2198 	ret = inode_needs_update_time(inode);
2199 	if (ret <= 0)
2200 		return ret;
2201 
2202 	return __file_update_time(file, ret);
2203 }
2204 EXPORT_SYMBOL(file_update_time);
2205 
2206 /**
2207  * file_modified_flags - handle mandated vfs changes when modifying a file
2208  * @file: file that was modified
2209  * @flags: kiocb flags
2210  *
2211  * When file has been modified ensure that special
2212  * file privileges are removed and time settings are updated.
2213  *
2214  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2215  * time settings will not be updated. It will return -EAGAIN.
2216  *
2217  * Context: Caller must hold the file's inode lock.
2218  *
2219  * Return: 0 on success, negative errno on failure.
2220  */
file_modified_flags(struct file * file,int flags)2221 static int file_modified_flags(struct file *file, int flags)
2222 {
2223 	int ret;
2224 	struct inode *inode = file_inode(file);
2225 
2226 	/*
2227 	 * Clear the security bits if the process is not being run by root.
2228 	 * This keeps people from modifying setuid and setgid binaries.
2229 	 */
2230 	ret = __file_remove_privs(file, flags);
2231 	if (ret)
2232 		return ret;
2233 
2234 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2235 		return 0;
2236 
2237 	ret = inode_needs_update_time(inode);
2238 	if (ret <= 0)
2239 		return ret;
2240 	if (flags & IOCB_NOWAIT)
2241 		return -EAGAIN;
2242 
2243 	return __file_update_time(file, ret);
2244 }
2245 
2246 /**
2247  * file_modified - handle mandated vfs changes when modifying a file
2248  * @file: file that was modified
2249  *
2250  * When file has been modified ensure that special
2251  * file privileges are removed and time settings are updated.
2252  *
2253  * Context: Caller must hold the file's inode lock.
2254  *
2255  * Return: 0 on success, negative errno on failure.
2256  */
file_modified(struct file * file)2257 int file_modified(struct file *file)
2258 {
2259 	return file_modified_flags(file, 0);
2260 }
2261 EXPORT_SYMBOL(file_modified);
2262 
2263 /**
2264  * kiocb_modified - handle mandated vfs changes when modifying a file
2265  * @iocb: iocb that was modified
2266  *
2267  * When file has been modified ensure that special
2268  * file privileges are removed and time settings are updated.
2269  *
2270  * Context: Caller must hold the file's inode lock.
2271  *
2272  * Return: 0 on success, negative errno on failure.
2273  */
kiocb_modified(struct kiocb * iocb)2274 int kiocb_modified(struct kiocb *iocb)
2275 {
2276 	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2277 }
2278 EXPORT_SYMBOL_GPL(kiocb_modified);
2279 
inode_needs_sync(struct inode * inode)2280 int inode_needs_sync(struct inode *inode)
2281 {
2282 	if (IS_SYNC(inode))
2283 		return 1;
2284 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2285 		return 1;
2286 	return 0;
2287 }
2288 EXPORT_SYMBOL(inode_needs_sync);
2289 
2290 /*
2291  * If we try to find an inode in the inode hash while it is being
2292  * deleted, we have to wait until the filesystem completes its
2293  * deletion before reporting that it isn't found.  This function waits
2294  * until the deletion _might_ have completed.  Callers are responsible
2295  * to recheck inode state.
2296  *
2297  * It doesn't matter if I_NEW is not set initially, a call to
2298  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2299  * will DTRT.
2300  */
__wait_on_freeing_inode(struct inode * inode)2301 static void __wait_on_freeing_inode(struct inode *inode)
2302 {
2303 	wait_queue_head_t *wq;
2304 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2305 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2306 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2307 	spin_unlock(&inode->i_lock);
2308 	spin_unlock(&inode_hash_lock);
2309 	schedule();
2310 	finish_wait(wq, &wait.wq_entry);
2311 	spin_lock(&inode_hash_lock);
2312 }
2313 
2314 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2315 static int __init set_ihash_entries(char *str)
2316 {
2317 	if (!str)
2318 		return 0;
2319 	ihash_entries = simple_strtoul(str, &str, 0);
2320 	return 1;
2321 }
2322 __setup("ihash_entries=", set_ihash_entries);
2323 
2324 /*
2325  * Initialize the waitqueues and inode hash table.
2326  */
inode_init_early(void)2327 void __init inode_init_early(void)
2328 {
2329 	/* If hashes are distributed across NUMA nodes, defer
2330 	 * hash allocation until vmalloc space is available.
2331 	 */
2332 	if (hashdist)
2333 		return;
2334 
2335 	inode_hashtable =
2336 		alloc_large_system_hash("Inode-cache",
2337 					sizeof(struct hlist_head),
2338 					ihash_entries,
2339 					14,
2340 					HASH_EARLY | HASH_ZERO,
2341 					&i_hash_shift,
2342 					&i_hash_mask,
2343 					0,
2344 					0);
2345 }
2346 
inode_init(void)2347 void __init inode_init(void)
2348 {
2349 	/* inode slab cache */
2350 	inode_cachep = kmem_cache_create("inode_cache",
2351 					 sizeof(struct inode),
2352 					 0,
2353 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2354 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2355 					 init_once);
2356 
2357 	/* Hash may have been set up in inode_init_early */
2358 	if (!hashdist)
2359 		return;
2360 
2361 	inode_hashtable =
2362 		alloc_large_system_hash("Inode-cache",
2363 					sizeof(struct hlist_head),
2364 					ihash_entries,
2365 					14,
2366 					HASH_ZERO,
2367 					&i_hash_shift,
2368 					&i_hash_mask,
2369 					0,
2370 					0);
2371 }
2372 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2373 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2374 {
2375 	inode->i_mode = mode;
2376 	if (S_ISCHR(mode)) {
2377 		inode->i_fop = &def_chr_fops;
2378 		inode->i_rdev = rdev;
2379 	} else if (S_ISBLK(mode)) {
2380 		if (IS_ENABLED(CONFIG_BLOCK))
2381 			inode->i_fop = &def_blk_fops;
2382 		inode->i_rdev = rdev;
2383 	} else if (S_ISFIFO(mode))
2384 		inode->i_fop = &pipefifo_fops;
2385 	else if (S_ISSOCK(mode))
2386 		;	/* leave it no_open_fops */
2387 	else
2388 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2389 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2390 				  inode->i_ino);
2391 }
2392 EXPORT_SYMBOL(init_special_inode);
2393 
2394 /**
2395  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2396  * @idmap: idmap of the mount the inode was created from
2397  * @inode: New inode
2398  * @dir: Directory inode
2399  * @mode: mode of the new inode
2400  *
2401  * If the inode has been created through an idmapped mount the idmap of
2402  * the vfsmount must be passed through @idmap. This function will then take
2403  * care to map the inode according to @idmap before checking permissions
2404  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2405  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2406  */
inode_init_owner(struct mnt_idmap * idmap,struct inode * inode,const struct inode * dir,umode_t mode)2407 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2408 		      const struct inode *dir, umode_t mode)
2409 {
2410 	inode_fsuid_set(inode, idmap);
2411 	if (dir && dir->i_mode & S_ISGID) {
2412 		inode->i_gid = dir->i_gid;
2413 
2414 		/* Directories are special, and always inherit S_ISGID */
2415 		if (S_ISDIR(mode))
2416 			mode |= S_ISGID;
2417 	} else
2418 		inode_fsgid_set(inode, idmap);
2419 	inode->i_mode = mode;
2420 }
2421 EXPORT_SYMBOL(inode_init_owner);
2422 
2423 /**
2424  * inode_owner_or_capable - check current task permissions to inode
2425  * @idmap: idmap of the mount the inode was found from
2426  * @inode: inode being checked
2427  *
2428  * Return true if current either has CAP_FOWNER in a namespace with the
2429  * inode owner uid mapped, or owns the file.
2430  *
2431  * If the inode has been found through an idmapped mount the idmap of
2432  * the vfsmount must be passed through @idmap. This function will then take
2433  * care to map the inode according to @idmap before checking permissions.
2434  * On non-idmapped mounts or if permission checking is to be performed on the
2435  * raw inode simply passs @nop_mnt_idmap.
2436  */
inode_owner_or_capable(struct mnt_idmap * idmap,const struct inode * inode)2437 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2438 			    const struct inode *inode)
2439 {
2440 	vfsuid_t vfsuid;
2441 	struct user_namespace *ns;
2442 
2443 	vfsuid = i_uid_into_vfsuid(idmap, inode);
2444 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2445 		return true;
2446 
2447 	ns = current_user_ns();
2448 	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2449 		return true;
2450 	return false;
2451 }
2452 EXPORT_SYMBOL(inode_owner_or_capable);
2453 
2454 /*
2455  * Direct i/o helper functions
2456  */
__inode_dio_wait(struct inode * inode)2457 static void __inode_dio_wait(struct inode *inode)
2458 {
2459 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2460 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2461 
2462 	do {
2463 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2464 		if (atomic_read(&inode->i_dio_count))
2465 			schedule();
2466 	} while (atomic_read(&inode->i_dio_count));
2467 	finish_wait(wq, &q.wq_entry);
2468 }
2469 
2470 /**
2471  * inode_dio_wait - wait for outstanding DIO requests to finish
2472  * @inode: inode to wait for
2473  *
2474  * Waits for all pending direct I/O requests to finish so that we can
2475  * proceed with a truncate or equivalent operation.
2476  *
2477  * Must be called under a lock that serializes taking new references
2478  * to i_dio_count, usually by inode->i_mutex.
2479  */
inode_dio_wait(struct inode * inode)2480 void inode_dio_wait(struct inode *inode)
2481 {
2482 	if (atomic_read(&inode->i_dio_count))
2483 		__inode_dio_wait(inode);
2484 }
2485 EXPORT_SYMBOL(inode_dio_wait);
2486 
2487 /*
2488  * inode_set_flags - atomically set some inode flags
2489  *
2490  * Note: the caller should be holding i_mutex, or else be sure that
2491  * they have exclusive access to the inode structure (i.e., while the
2492  * inode is being instantiated).  The reason for the cmpxchg() loop
2493  * --- which wouldn't be necessary if all code paths which modify
2494  * i_flags actually followed this rule, is that there is at least one
2495  * code path which doesn't today so we use cmpxchg() out of an abundance
2496  * of caution.
2497  *
2498  * In the long run, i_mutex is overkill, and we should probably look
2499  * at using the i_lock spinlock to protect i_flags, and then make sure
2500  * it is so documented in include/linux/fs.h and that all code follows
2501  * the locking convention!!
2502  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2503 void inode_set_flags(struct inode *inode, unsigned int flags,
2504 		     unsigned int mask)
2505 {
2506 	WARN_ON_ONCE(flags & ~mask);
2507 	set_mask_bits(&inode->i_flags, mask, flags);
2508 }
2509 EXPORT_SYMBOL(inode_set_flags);
2510 
inode_nohighmem(struct inode * inode)2511 void inode_nohighmem(struct inode *inode)
2512 {
2513 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2514 }
2515 EXPORT_SYMBOL(inode_nohighmem);
2516 
2517 /**
2518  * timestamp_truncate - Truncate timespec to a granularity
2519  * @t: Timespec
2520  * @inode: inode being updated
2521  *
2522  * Truncate a timespec to the granularity supported by the fs
2523  * containing the inode. Always rounds down. gran must
2524  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2525  */
timestamp_truncate(struct timespec64 t,struct inode * inode)2526 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2527 {
2528 	struct super_block *sb = inode->i_sb;
2529 	unsigned int gran = sb->s_time_gran;
2530 
2531 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2532 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2533 		t.tv_nsec = 0;
2534 
2535 	/* Avoid division in the common cases 1 ns and 1 s. */
2536 	if (gran == 1)
2537 		; /* nothing */
2538 	else if (gran == NSEC_PER_SEC)
2539 		t.tv_nsec = 0;
2540 	else if (gran > 1 && gran < NSEC_PER_SEC)
2541 		t.tv_nsec -= t.tv_nsec % gran;
2542 	else
2543 		WARN(1, "invalid file time granularity: %u", gran);
2544 	return t;
2545 }
2546 EXPORT_SYMBOL(timestamp_truncate);
2547 
2548 /**
2549  * current_time - Return FS time
2550  * @inode: inode.
2551  *
2552  * Return the current time truncated to the time granularity supported by
2553  * the fs.
2554  *
2555  * Note that inode and inode->sb cannot be NULL.
2556  * Otherwise, the function warns and returns time without truncation.
2557  */
current_time(struct inode * inode)2558 struct timespec64 current_time(struct inode *inode)
2559 {
2560 	struct timespec64 now;
2561 
2562 	ktime_get_coarse_real_ts64(&now);
2563 	return timestamp_truncate(now, inode);
2564 }
2565 EXPORT_SYMBOL(current_time);
2566 
2567 /**
2568  * inode_set_ctime_current - set the ctime to current_time
2569  * @inode: inode
2570  *
2571  * Set the inode->i_ctime to the current value for the inode. Returns
2572  * the current value that was assigned to i_ctime.
2573  */
inode_set_ctime_current(struct inode * inode)2574 struct timespec64 inode_set_ctime_current(struct inode *inode)
2575 {
2576 	struct timespec64 now = current_time(inode);
2577 
2578 	inode_set_ctime(inode, now.tv_sec, now.tv_nsec);
2579 	return now;
2580 }
2581 EXPORT_SYMBOL(inode_set_ctime_current);
2582 
2583 /**
2584  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2585  * @idmap:	idmap of the mount @inode was found from
2586  * @inode:	inode to check
2587  * @vfsgid:	the new/current vfsgid of @inode
2588  *
2589  * Check wether @vfsgid is in the caller's group list or if the caller is
2590  * privileged with CAP_FSETID over @inode. This can be used to determine
2591  * whether the setgid bit can be kept or must be dropped.
2592  *
2593  * Return: true if the caller is sufficiently privileged, false if not.
2594  */
in_group_or_capable(struct mnt_idmap * idmap,const struct inode * inode,vfsgid_t vfsgid)2595 bool in_group_or_capable(struct mnt_idmap *idmap,
2596 			 const struct inode *inode, vfsgid_t vfsgid)
2597 {
2598 	if (vfsgid_in_group_p(vfsgid))
2599 		return true;
2600 	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2601 		return true;
2602 	return false;
2603 }
2604 
2605 /**
2606  * mode_strip_sgid - handle the sgid bit for non-directories
2607  * @idmap: idmap of the mount the inode was created from
2608  * @dir: parent directory inode
2609  * @mode: mode of the file to be created in @dir
2610  *
2611  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2612  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2613  * either in the group of the parent directory or they have CAP_FSETID
2614  * in their user namespace and are privileged over the parent directory.
2615  * In all other cases, strip the S_ISGID bit from @mode.
2616  *
2617  * Return: the new mode to use for the file
2618  */
mode_strip_sgid(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode)2619 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2620 			const struct inode *dir, umode_t mode)
2621 {
2622 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2623 		return mode;
2624 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2625 		return mode;
2626 	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2627 		return mode;
2628 	return mode & ~S_ISGID;
2629 }
2630 EXPORT_SYMBOL(mode_strip_sgid);
2631