xref: /openbmc/linux/drivers/gpu/drm/msm/disp/mdp5/mdp5_ctl.c (revision 762f99f4f3cb41a775b5157dd761217beba65873)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved.
4   */
5  
6  #include "mdp5_kms.h"
7  #include "mdp5_ctl.h"
8  
9  /*
10   * CTL - MDP Control Pool Manager
11   *
12   * Controls are shared between all display interfaces.
13   *
14   * They are intended to be used for data path configuration.
15   * The top level register programming describes the complete data path for
16   * a specific data path ID - REG_MDP5_CTL_*(<id>, ...)
17   *
18   * Hardware capabilities determine the number of concurrent data paths
19   *
20   * In certain use cases (high-resolution dual pipe), one single CTL can be
21   * shared across multiple CRTCs.
22   */
23  
24  #define CTL_STAT_BUSY		0x1
25  #define CTL_STAT_BOOKED	0x2
26  
27  struct mdp5_ctl {
28  	struct mdp5_ctl_manager *ctlm;
29  
30  	u32 id;
31  
32  	/* CTL status bitmask */
33  	u32 status;
34  
35  	bool encoder_enabled;
36  
37  	/* pending flush_mask bits */
38  	u32 flush_mask;
39  
40  	/* REG_MDP5_CTL_*(<id>) registers access info + lock: */
41  	spinlock_t hw_lock;
42  	u32 reg_offset;
43  
44  	/* when do CTL registers need to be flushed? (mask of trigger bits) */
45  	u32 pending_ctl_trigger;
46  
47  	bool cursor_on;
48  
49  	/* True if the current CTL has FLUSH bits pending for single FLUSH. */
50  	bool flush_pending;
51  
52  	struct mdp5_ctl *pair; /* Paired CTL to be flushed together */
53  };
54  
55  struct mdp5_ctl_manager {
56  	struct drm_device *dev;
57  
58  	/* number of CTL / Layer Mixers in this hw config: */
59  	u32 nlm;
60  	u32 nctl;
61  
62  	/* to filter out non-present bits in the current hardware config */
63  	u32 flush_hw_mask;
64  
65  	/* status for single FLUSH */
66  	bool single_flush_supported;
67  	u32 single_flush_pending_mask;
68  
69  	/* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */
70  	spinlock_t pool_lock;
71  	struct mdp5_ctl ctls[MAX_CTL];
72  };
73  
74  static inline
get_kms(struct mdp5_ctl_manager * ctl_mgr)75  struct mdp5_kms *get_kms(struct mdp5_ctl_manager *ctl_mgr)
76  {
77  	struct msm_drm_private *priv = ctl_mgr->dev->dev_private;
78  
79  	return to_mdp5_kms(to_mdp_kms(priv->kms));
80  }
81  
82  static inline
ctl_write(struct mdp5_ctl * ctl,u32 reg,u32 data)83  void ctl_write(struct mdp5_ctl *ctl, u32 reg, u32 data)
84  {
85  	struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
86  
87  	(void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
88  	mdp5_write(mdp5_kms, reg, data);
89  }
90  
91  static inline
ctl_read(struct mdp5_ctl * ctl,u32 reg)92  u32 ctl_read(struct mdp5_ctl *ctl, u32 reg)
93  {
94  	struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
95  
96  	(void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
97  	return mdp5_read(mdp5_kms, reg);
98  }
99  
set_display_intf(struct mdp5_kms * mdp5_kms,struct mdp5_interface * intf)100  static void set_display_intf(struct mdp5_kms *mdp5_kms,
101  		struct mdp5_interface *intf)
102  {
103  	unsigned long flags;
104  	u32 intf_sel;
105  
106  	spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
107  	intf_sel = mdp5_read(mdp5_kms, REG_MDP5_DISP_INTF_SEL);
108  
109  	switch (intf->num) {
110  	case 0:
111  		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF0__MASK;
112  		intf_sel |= MDP5_DISP_INTF_SEL_INTF0(intf->type);
113  		break;
114  	case 1:
115  		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF1__MASK;
116  		intf_sel |= MDP5_DISP_INTF_SEL_INTF1(intf->type);
117  		break;
118  	case 2:
119  		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF2__MASK;
120  		intf_sel |= MDP5_DISP_INTF_SEL_INTF2(intf->type);
121  		break;
122  	case 3:
123  		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF3__MASK;
124  		intf_sel |= MDP5_DISP_INTF_SEL_INTF3(intf->type);
125  		break;
126  	default:
127  		BUG();
128  		break;
129  	}
130  
131  	mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, intf_sel);
132  	spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags);
133  }
134  
set_ctl_op(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline)135  static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
136  {
137  	unsigned long flags;
138  	struct mdp5_interface *intf = pipeline->intf;
139  	u32 ctl_op = 0;
140  
141  	if (!mdp5_cfg_intf_is_virtual(intf->type))
142  		ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num);
143  
144  	switch (intf->type) {
145  	case INTF_DSI:
146  		if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND)
147  			ctl_op |= MDP5_CTL_OP_CMD_MODE;
148  		break;
149  
150  	case INTF_WB:
151  		if (intf->mode == MDP5_INTF_WB_MODE_LINE)
152  			ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE);
153  		break;
154  
155  	default:
156  		break;
157  	}
158  
159  	if (pipeline->r_mixer)
160  		ctl_op |= MDP5_CTL_OP_PACK_3D_ENABLE |
161  			  MDP5_CTL_OP_PACK_3D(1);
162  
163  	spin_lock_irqsave(&ctl->hw_lock, flags);
164  	ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op);
165  	spin_unlock_irqrestore(&ctl->hw_lock, flags);
166  }
167  
mdp5_ctl_set_pipeline(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline)168  int mdp5_ctl_set_pipeline(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
169  {
170  	struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
171  	struct mdp5_interface *intf = pipeline->intf;
172  
173  	/* Virtual interfaces need not set a display intf (e.g.: Writeback) */
174  	if (!mdp5_cfg_intf_is_virtual(intf->type))
175  		set_display_intf(mdp5_kms, intf);
176  
177  	set_ctl_op(ctl, pipeline);
178  
179  	return 0;
180  }
181  
start_signal_needed(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline)182  static bool start_signal_needed(struct mdp5_ctl *ctl,
183  				struct mdp5_pipeline *pipeline)
184  {
185  	struct mdp5_interface *intf = pipeline->intf;
186  
187  	if (!ctl->encoder_enabled)
188  		return false;
189  
190  	switch (intf->type) {
191  	case INTF_WB:
192  		return true;
193  	case INTF_DSI:
194  		return intf->mode == MDP5_INTF_DSI_MODE_COMMAND;
195  	default:
196  		return false;
197  	}
198  }
199  
200  /*
201   * send_start_signal() - Overlay Processor Start Signal
202   *
203   * For a given control operation (display pipeline), a START signal needs to be
204   * executed in order to kick off operation and activate all layers.
205   * e.g.: DSI command mode, Writeback
206   */
send_start_signal(struct mdp5_ctl * ctl)207  static void send_start_signal(struct mdp5_ctl *ctl)
208  {
209  	unsigned long flags;
210  
211  	spin_lock_irqsave(&ctl->hw_lock, flags);
212  	ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1);
213  	spin_unlock_irqrestore(&ctl->hw_lock, flags);
214  }
215  
216  /**
217   * mdp5_ctl_set_encoder_state() - set the encoder state
218   *
219   * @ctl:      the CTL instance
220   * @pipeline: the encoder's INTF + MIXER configuration
221   * @enabled:  true, when encoder is ready for data streaming; false, otherwise.
222   *
223   * Note:
224   * This encoder state is needed to trigger START signal (data path kickoff).
225   */
mdp5_ctl_set_encoder_state(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,bool enabled)226  int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl,
227  			       struct mdp5_pipeline *pipeline,
228  			       bool enabled)
229  {
230  	struct mdp5_interface *intf = pipeline->intf;
231  
232  	if (WARN_ON(!ctl))
233  		return -EINVAL;
234  
235  	ctl->encoder_enabled = enabled;
236  	DBG("intf_%d: %s", intf->num, enabled ? "on" : "off");
237  
238  	if (start_signal_needed(ctl, pipeline)) {
239  		send_start_signal(ctl);
240  	}
241  
242  	return 0;
243  }
244  
245  /*
246   * Note:
247   * CTL registers need to be flushed after calling this function
248   * (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask)
249   */
mdp5_ctl_set_cursor(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,int cursor_id,bool enable)250  int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
251  			int cursor_id, bool enable)
252  {
253  	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
254  	unsigned long flags;
255  	u32 blend_cfg;
256  	struct mdp5_hw_mixer *mixer = pipeline->mixer;
257  
258  	if (WARN_ON(!mixer)) {
259  		DRM_DEV_ERROR(ctl_mgr->dev->dev, "CTL %d cannot find LM",
260  			ctl->id);
261  		return -EINVAL;
262  	}
263  
264  	if (pipeline->r_mixer) {
265  		DRM_DEV_ERROR(ctl_mgr->dev->dev, "unsupported configuration");
266  		return -EINVAL;
267  	}
268  
269  	spin_lock_irqsave(&ctl->hw_lock, flags);
270  
271  	blend_cfg = ctl_read(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm));
272  
273  	if (enable)
274  		blend_cfg |=  MDP5_CTL_LAYER_REG_CURSOR_OUT;
275  	else
276  		blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT;
277  
278  	ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
279  	ctl->cursor_on = enable;
280  
281  	spin_unlock_irqrestore(&ctl->hw_lock, flags);
282  
283  	ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id);
284  
285  	return 0;
286  }
287  
mdp_ctl_blend_mask(enum mdp5_pipe pipe,enum mdp_mixer_stage_id stage)288  static u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe,
289  		enum mdp_mixer_stage_id stage)
290  {
291  	switch (pipe) {
292  	case SSPP_VIG0: return MDP5_CTL_LAYER_REG_VIG0(stage);
293  	case SSPP_VIG1: return MDP5_CTL_LAYER_REG_VIG1(stage);
294  	case SSPP_VIG2: return MDP5_CTL_LAYER_REG_VIG2(stage);
295  	case SSPP_RGB0: return MDP5_CTL_LAYER_REG_RGB0(stage);
296  	case SSPP_RGB1: return MDP5_CTL_LAYER_REG_RGB1(stage);
297  	case SSPP_RGB2: return MDP5_CTL_LAYER_REG_RGB2(stage);
298  	case SSPP_DMA0: return MDP5_CTL_LAYER_REG_DMA0(stage);
299  	case SSPP_DMA1: return MDP5_CTL_LAYER_REG_DMA1(stage);
300  	case SSPP_VIG3: return MDP5_CTL_LAYER_REG_VIG3(stage);
301  	case SSPP_RGB3: return MDP5_CTL_LAYER_REG_RGB3(stage);
302  	case SSPP_CURSOR0:
303  	case SSPP_CURSOR1:
304  	default:	return 0;
305  	}
306  }
307  
mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,enum mdp_mixer_stage_id stage)308  static u32 mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,
309  		enum mdp_mixer_stage_id stage)
310  {
311  	if (stage < STAGE6 && (pipe != SSPP_CURSOR0 && pipe != SSPP_CURSOR1))
312  		return 0;
313  
314  	switch (pipe) {
315  	case SSPP_VIG0: return MDP5_CTL_LAYER_EXT_REG_VIG0_BIT3;
316  	case SSPP_VIG1: return MDP5_CTL_LAYER_EXT_REG_VIG1_BIT3;
317  	case SSPP_VIG2: return MDP5_CTL_LAYER_EXT_REG_VIG2_BIT3;
318  	case SSPP_RGB0: return MDP5_CTL_LAYER_EXT_REG_RGB0_BIT3;
319  	case SSPP_RGB1: return MDP5_CTL_LAYER_EXT_REG_RGB1_BIT3;
320  	case SSPP_RGB2: return MDP5_CTL_LAYER_EXT_REG_RGB2_BIT3;
321  	case SSPP_DMA0: return MDP5_CTL_LAYER_EXT_REG_DMA0_BIT3;
322  	case SSPP_DMA1: return MDP5_CTL_LAYER_EXT_REG_DMA1_BIT3;
323  	case SSPP_VIG3: return MDP5_CTL_LAYER_EXT_REG_VIG3_BIT3;
324  	case SSPP_RGB3: return MDP5_CTL_LAYER_EXT_REG_RGB3_BIT3;
325  	case SSPP_CURSOR0: return MDP5_CTL_LAYER_EXT_REG_CURSOR0(stage);
326  	case SSPP_CURSOR1: return MDP5_CTL_LAYER_EXT_REG_CURSOR1(stage);
327  	default:	return 0;
328  	}
329  }
330  
mdp5_ctl_reset_blend_regs(struct mdp5_ctl * ctl)331  static void mdp5_ctl_reset_blend_regs(struct mdp5_ctl *ctl)
332  {
333  	unsigned long flags;
334  	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
335  	int i;
336  
337  	spin_lock_irqsave(&ctl->hw_lock, flags);
338  
339  	for (i = 0; i < ctl_mgr->nlm; i++) {
340  		ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, i), 0x0);
341  		ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, i), 0x0);
342  	}
343  
344  	spin_unlock_irqrestore(&ctl->hw_lock, flags);
345  }
346  
347  #define PIPE_LEFT	0
348  #define PIPE_RIGHT	1
mdp5_ctl_blend(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,enum mdp5_pipe stage[][MAX_PIPE_STAGE],enum mdp5_pipe r_stage[][MAX_PIPE_STAGE],u32 stage_cnt,u32 ctl_blend_op_flags)349  int mdp5_ctl_blend(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
350  		   enum mdp5_pipe stage[][MAX_PIPE_STAGE],
351  		   enum mdp5_pipe r_stage[][MAX_PIPE_STAGE],
352  		   u32 stage_cnt, u32 ctl_blend_op_flags)
353  {
354  	struct mdp5_hw_mixer *mixer = pipeline->mixer;
355  	struct mdp5_hw_mixer *r_mixer = pipeline->r_mixer;
356  	unsigned long flags;
357  	u32 blend_cfg = 0, blend_ext_cfg = 0;
358  	u32 r_blend_cfg = 0, r_blend_ext_cfg = 0;
359  	int i, start_stage;
360  
361  	mdp5_ctl_reset_blend_regs(ctl);
362  
363  	if (ctl_blend_op_flags & MDP5_CTL_BLEND_OP_FLAG_BORDER_OUT) {
364  		start_stage = STAGE0;
365  		blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
366  		if (r_mixer)
367  			r_blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
368  	} else {
369  		start_stage = STAGE_BASE;
370  	}
371  
372  	for (i = start_stage; stage_cnt && i <= STAGE_MAX; i++) {
373  		blend_cfg |=
374  			mdp_ctl_blend_mask(stage[i][PIPE_LEFT], i) |
375  			mdp_ctl_blend_mask(stage[i][PIPE_RIGHT], i);
376  		blend_ext_cfg |=
377  			mdp_ctl_blend_ext_mask(stage[i][PIPE_LEFT], i) |
378  			mdp_ctl_blend_ext_mask(stage[i][PIPE_RIGHT], i);
379  		if (r_mixer) {
380  			r_blend_cfg |=
381  				mdp_ctl_blend_mask(r_stage[i][PIPE_LEFT], i) |
382  				mdp_ctl_blend_mask(r_stage[i][PIPE_RIGHT], i);
383  			r_blend_ext_cfg |=
384  			     mdp_ctl_blend_ext_mask(r_stage[i][PIPE_LEFT], i) |
385  			     mdp_ctl_blend_ext_mask(r_stage[i][PIPE_RIGHT], i);
386  		}
387  	}
388  
389  	spin_lock_irqsave(&ctl->hw_lock, flags);
390  	if (ctl->cursor_on)
391  		blend_cfg |=  MDP5_CTL_LAYER_REG_CURSOR_OUT;
392  
393  	ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
394  	ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, mixer->lm),
395  		  blend_ext_cfg);
396  	if (r_mixer) {
397  		ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, r_mixer->lm),
398  			  r_blend_cfg);
399  		ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, r_mixer->lm),
400  			  r_blend_ext_cfg);
401  	}
402  	spin_unlock_irqrestore(&ctl->hw_lock, flags);
403  
404  	ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(mixer->lm);
405  	if (r_mixer)
406  		ctl->pending_ctl_trigger |= mdp_ctl_flush_mask_lm(r_mixer->lm);
407  
408  	DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", mixer->lm,
409  		blend_cfg, blend_ext_cfg);
410  	if (r_mixer)
411  		DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x",
412  		    r_mixer->lm, r_blend_cfg, r_blend_ext_cfg);
413  
414  	return 0;
415  }
416  
mdp_ctl_flush_mask_encoder(struct mdp5_interface * intf)417  u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf)
418  {
419  	if (intf->type == INTF_WB)
420  		return MDP5_CTL_FLUSH_WB;
421  
422  	switch (intf->num) {
423  	case 0: return MDP5_CTL_FLUSH_TIMING_0;
424  	case 1: return MDP5_CTL_FLUSH_TIMING_1;
425  	case 2: return MDP5_CTL_FLUSH_TIMING_2;
426  	case 3: return MDP5_CTL_FLUSH_TIMING_3;
427  	default: return 0;
428  	}
429  }
430  
mdp_ctl_flush_mask_cursor(int cursor_id)431  u32 mdp_ctl_flush_mask_cursor(int cursor_id)
432  {
433  	switch (cursor_id) {
434  	case 0: return MDP5_CTL_FLUSH_CURSOR_0;
435  	case 1: return MDP5_CTL_FLUSH_CURSOR_1;
436  	default: return 0;
437  	}
438  }
439  
mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)440  u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)
441  {
442  	switch (pipe) {
443  	case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0;
444  	case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1;
445  	case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2;
446  	case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0;
447  	case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1;
448  	case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2;
449  	case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0;
450  	case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1;
451  	case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3;
452  	case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3;
453  	case SSPP_CURSOR0: return MDP5_CTL_FLUSH_CURSOR_0;
454  	case SSPP_CURSOR1: return MDP5_CTL_FLUSH_CURSOR_1;
455  	default:        return 0;
456  	}
457  }
458  
mdp_ctl_flush_mask_lm(int lm)459  u32 mdp_ctl_flush_mask_lm(int lm)
460  {
461  	switch (lm) {
462  	case 0:  return MDP5_CTL_FLUSH_LM0;
463  	case 1:  return MDP5_CTL_FLUSH_LM1;
464  	case 2:  return MDP5_CTL_FLUSH_LM2;
465  	case 3:  return MDP5_CTL_FLUSH_LM3;
466  	case 4:  return MDP5_CTL_FLUSH_LM4;
467  	case 5:  return MDP5_CTL_FLUSH_LM5;
468  	default: return 0;
469  	}
470  }
471  
fix_sw_flush(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,u32 flush_mask)472  static u32 fix_sw_flush(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
473  			u32 flush_mask)
474  {
475  	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
476  	u32 sw_mask = 0;
477  #define BIT_NEEDS_SW_FIX(bit) \
478  	(!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit))
479  
480  	/* for some targets, cursor bit is the same as LM bit */
481  	if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0))
482  		sw_mask |= mdp_ctl_flush_mask_lm(pipeline->mixer->lm);
483  
484  	return sw_mask;
485  }
486  
fix_for_single_flush(struct mdp5_ctl * ctl,u32 * flush_mask,u32 * flush_id)487  static void fix_for_single_flush(struct mdp5_ctl *ctl, u32 *flush_mask,
488  		u32 *flush_id)
489  {
490  	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
491  
492  	if (ctl->pair) {
493  		DBG("CTL %d FLUSH pending mask %x", ctl->id, *flush_mask);
494  		ctl->flush_pending = true;
495  		ctl_mgr->single_flush_pending_mask |= (*flush_mask);
496  		*flush_mask = 0;
497  
498  		if (ctl->pair->flush_pending) {
499  			*flush_id = min_t(u32, ctl->id, ctl->pair->id);
500  			*flush_mask = ctl_mgr->single_flush_pending_mask;
501  
502  			ctl->flush_pending = false;
503  			ctl->pair->flush_pending = false;
504  			ctl_mgr->single_flush_pending_mask = 0;
505  
506  			DBG("Single FLUSH mask %x,ID %d", *flush_mask,
507  				*flush_id);
508  		}
509  	}
510  }
511  
512  /**
513   * mdp5_ctl_commit() - Register Flush
514   *
515   * @ctl:        the CTL instance
516   * @pipeline:   the encoder's INTF + MIXER configuration
517   * @flush_mask: bitmask of display controller hw blocks to flush
518   * @start:      if true, immediately update flush registers and set START
519   *              bit, otherwise accumulate flush_mask bits until we are
520   *              ready to START
521   *
522   * The flush register is used to indicate several registers are all
523   * programmed, and are safe to update to the back copy of the double
524   * buffered registers.
525   *
526   * Some registers FLUSH bits are shared when the hardware does not have
527   * dedicated bits for them; handling these is the job of fix_sw_flush().
528   *
529   * CTL registers need to be flushed in some circumstances; if that is the
530   * case, some trigger bits will be present in both flush mask and
531   * ctl->pending_ctl_trigger.
532   *
533   * Return H/W flushed bit mask.
534   */
mdp5_ctl_commit(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,u32 flush_mask,bool start)535  u32 mdp5_ctl_commit(struct mdp5_ctl *ctl,
536  		    struct mdp5_pipeline *pipeline,
537  		    u32 flush_mask, bool start)
538  {
539  	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
540  	unsigned long flags;
541  	u32 flush_id = ctl->id;
542  	u32 curr_ctl_flush_mask;
543  
544  	VERB("flush_mask=%x, trigger=%x", flush_mask, ctl->pending_ctl_trigger);
545  
546  	if (ctl->pending_ctl_trigger & flush_mask) {
547  		flush_mask |= MDP5_CTL_FLUSH_CTL;
548  		ctl->pending_ctl_trigger = 0;
549  	}
550  
551  	flush_mask |= fix_sw_flush(ctl, pipeline, flush_mask);
552  
553  	flush_mask &= ctl_mgr->flush_hw_mask;
554  
555  	curr_ctl_flush_mask = flush_mask;
556  
557  	fix_for_single_flush(ctl, &flush_mask, &flush_id);
558  
559  	if (!start) {
560  		ctl->flush_mask |= flush_mask;
561  		return curr_ctl_flush_mask;
562  	} else {
563  		flush_mask |= ctl->flush_mask;
564  		ctl->flush_mask = 0;
565  	}
566  
567  	if (flush_mask) {
568  		spin_lock_irqsave(&ctl->hw_lock, flags);
569  		ctl_write(ctl, REG_MDP5_CTL_FLUSH(flush_id), flush_mask);
570  		spin_unlock_irqrestore(&ctl->hw_lock, flags);
571  	}
572  
573  	if (start_signal_needed(ctl, pipeline)) {
574  		send_start_signal(ctl);
575  	}
576  
577  	return curr_ctl_flush_mask;
578  }
579  
mdp5_ctl_get_commit_status(struct mdp5_ctl * ctl)580  u32 mdp5_ctl_get_commit_status(struct mdp5_ctl *ctl)
581  {
582  	return ctl_read(ctl, REG_MDP5_CTL_FLUSH(ctl->id));
583  }
584  
mdp5_ctl_get_ctl_id(struct mdp5_ctl * ctl)585  int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl)
586  {
587  	return WARN_ON(!ctl) ? -EINVAL : ctl->id;
588  }
589  
590  /*
591   * mdp5_ctl_pair() - Associate 2 booked CTLs for single FLUSH
592   */
mdp5_ctl_pair(struct mdp5_ctl * ctlx,struct mdp5_ctl * ctly,bool enable)593  int mdp5_ctl_pair(struct mdp5_ctl *ctlx, struct mdp5_ctl *ctly, bool enable)
594  {
595  	struct mdp5_ctl_manager *ctl_mgr = ctlx->ctlm;
596  	struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
597  
598  	/* do nothing silently if hw doesn't support */
599  	if (!ctl_mgr->single_flush_supported)
600  		return 0;
601  
602  	if (!enable) {
603  		ctlx->pair = NULL;
604  		ctly->pair = NULL;
605  		mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 0);
606  		return 0;
607  	} else if ((ctlx->pair != NULL) || (ctly->pair != NULL)) {
608  		DRM_DEV_ERROR(ctl_mgr->dev->dev, "CTLs already paired\n");
609  		return -EINVAL;
610  	} else if (!(ctlx->status & ctly->status & CTL_STAT_BOOKED)) {
611  		DRM_DEV_ERROR(ctl_mgr->dev->dev, "Only pair booked CTLs\n");
612  		return -EINVAL;
613  	}
614  
615  	ctlx->pair = ctly;
616  	ctly->pair = ctlx;
617  
618  	mdp5_write(mdp5_kms, REG_MDP5_SPARE_0,
619  		   MDP5_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN);
620  
621  	return 0;
622  }
623  
624  /*
625   * mdp5_ctl_request() - CTL allocation
626   *
627   * Try to return booked CTL for @intf_num is 1 or 2, unbooked for other INTFs.
628   * If no CTL is available in preferred category, allocate from the other one.
629   *
630   * @return fail if no CTL is available.
631   */
mdp5_ctlm_request(struct mdp5_ctl_manager * ctl_mgr,int intf_num)632  struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr,
633  		int intf_num)
634  {
635  	struct mdp5_ctl *ctl = NULL;
636  	const u32 checkm = CTL_STAT_BUSY | CTL_STAT_BOOKED;
637  	u32 match = ((intf_num == 1) || (intf_num == 2)) ? CTL_STAT_BOOKED : 0;
638  	unsigned long flags;
639  	int c;
640  
641  	spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
642  
643  	/* search the preferred */
644  	for (c = 0; c < ctl_mgr->nctl; c++)
645  		if ((ctl_mgr->ctls[c].status & checkm) == match)
646  			goto found;
647  
648  	dev_warn(ctl_mgr->dev->dev,
649  		"fall back to the other CTL category for INTF %d!\n", intf_num);
650  
651  	match ^= CTL_STAT_BOOKED;
652  	for (c = 0; c < ctl_mgr->nctl; c++)
653  		if ((ctl_mgr->ctls[c].status & checkm) == match)
654  			goto found;
655  
656  	DRM_DEV_ERROR(ctl_mgr->dev->dev, "No more CTL available!");
657  	goto unlock;
658  
659  found:
660  	ctl = &ctl_mgr->ctls[c];
661  	ctl->status |= CTL_STAT_BUSY;
662  	ctl->pending_ctl_trigger = 0;
663  	DBG("CTL %d allocated", ctl->id);
664  
665  unlock:
666  	spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
667  	return ctl;
668  }
669  
mdp5_ctlm_hw_reset(struct mdp5_ctl_manager * ctl_mgr)670  void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager *ctl_mgr)
671  {
672  	unsigned long flags;
673  	int c;
674  
675  	for (c = 0; c < ctl_mgr->nctl; c++) {
676  		struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
677  
678  		spin_lock_irqsave(&ctl->hw_lock, flags);
679  		ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), 0);
680  		spin_unlock_irqrestore(&ctl->hw_lock, flags);
681  	}
682  }
683  
mdp5_ctlm_destroy(struct mdp5_ctl_manager * ctl_mgr)684  void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctl_mgr)
685  {
686  	kfree(ctl_mgr);
687  }
688  
mdp5_ctlm_init(struct drm_device * dev,void __iomem * mmio_base,struct mdp5_cfg_handler * cfg_hnd)689  struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev,
690  		void __iomem *mmio_base, struct mdp5_cfg_handler *cfg_hnd)
691  {
692  	struct mdp5_ctl_manager *ctl_mgr;
693  	const struct mdp5_cfg_hw *hw_cfg = mdp5_cfg_get_hw_config(cfg_hnd);
694  	int rev = mdp5_cfg_get_hw_rev(cfg_hnd);
695  	unsigned dsi_cnt = 0;
696  	const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl;
697  	unsigned long flags;
698  	int c, ret;
699  
700  	ctl_mgr = kzalloc(sizeof(*ctl_mgr), GFP_KERNEL);
701  	if (!ctl_mgr) {
702  		DRM_DEV_ERROR(dev->dev, "failed to allocate CTL manager\n");
703  		ret = -ENOMEM;
704  		goto fail;
705  	}
706  
707  	if (WARN_ON(ctl_cfg->count > MAX_CTL)) {
708  		DRM_DEV_ERROR(dev->dev, "Increase static pool size to at least %d\n",
709  				ctl_cfg->count);
710  		ret = -ENOSPC;
711  		goto fail;
712  	}
713  
714  	/* initialize the CTL manager: */
715  	ctl_mgr->dev = dev;
716  	ctl_mgr->nlm = hw_cfg->lm.count;
717  	ctl_mgr->nctl = ctl_cfg->count;
718  	ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask;
719  	spin_lock_init(&ctl_mgr->pool_lock);
720  
721  	/* initialize each CTL of the pool: */
722  	spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
723  	for (c = 0; c < ctl_mgr->nctl; c++) {
724  		struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
725  
726  		if (WARN_ON(!ctl_cfg->base[c])) {
727  			DRM_DEV_ERROR(dev->dev, "CTL_%d: base is null!\n", c);
728  			ret = -EINVAL;
729  			spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
730  			goto fail;
731  		}
732  		ctl->ctlm = ctl_mgr;
733  		ctl->id = c;
734  		ctl->reg_offset = ctl_cfg->base[c];
735  		ctl->status = 0;
736  		spin_lock_init(&ctl->hw_lock);
737  	}
738  
739  	/*
740  	 * In bonded DSI case, CTL0 and CTL1 are always assigned to two DSI
741  	 * interfaces to support single FLUSH feature (Flush CTL0 and CTL1 when
742  	 * only write into CTL0's FLUSH register) to keep two DSI pipes in sync.
743  	 * Single FLUSH is supported from hw rev v3.0.
744  	 */
745  	for (c = 0; c < ARRAY_SIZE(hw_cfg->intf.connect); c++)
746  		if (hw_cfg->intf.connect[c] == INTF_DSI)
747  			dsi_cnt++;
748  	if ((rev >= 3) && (dsi_cnt > 1)) {
749  		ctl_mgr->single_flush_supported = true;
750  		/* Reserve CTL0/1 for INTF1/2 */
751  		ctl_mgr->ctls[0].status |= CTL_STAT_BOOKED;
752  		ctl_mgr->ctls[1].status |= CTL_STAT_BOOKED;
753  	}
754  	spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
755  	DBG("Pool of %d CTLs created.", ctl_mgr->nctl);
756  
757  	return ctl_mgr;
758  
759  fail:
760  	if (ctl_mgr)
761  		mdp5_ctlm_destroy(ctl_mgr);
762  
763  	return ERR_PTR(ret);
764  }
765