xref: /openbmc/linux/drivers/net/can/rcar/rcar_canfd.c (revision 840d9a813c8eaa5c55d86525e374a97ca5023b53)
1  // SPDX-License-Identifier: GPL-2.0+
2  /* Renesas R-Car CAN FD device driver
3   *
4   * Copyright (C) 2015 Renesas Electronics Corp.
5   */
6  
7  /* The R-Car CAN FD controller can operate in either one of the below two modes
8   *  - CAN FD only mode
9   *  - Classical CAN (CAN 2.0) only mode
10   *
11   * This driver puts the controller in CAN FD only mode by default. In this
12   * mode, the controller acts as a CAN FD node that can also interoperate with
13   * CAN 2.0 nodes.
14   *
15   * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16   * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17   * also required to switch modes.
18   *
19   * Note: The h/w manual register naming convention is clumsy and not acceptable
20   * to use as it is in the driver. However, those names are added as comments
21   * wherever it is modified to a readable name.
22   */
23  
24  #include <linux/bitmap.h>
25  #include <linux/bitops.h>
26  #include <linux/can/dev.h>
27  #include <linux/clk.h>
28  #include <linux/errno.h>
29  #include <linux/ethtool.h>
30  #include <linux/interrupt.h>
31  #include <linux/iopoll.h>
32  #include <linux/kernel.h>
33  #include <linux/module.h>
34  #include <linux/moduleparam.h>
35  #include <linux/netdevice.h>
36  #include <linux/of.h>
37  #include <linux/phy/phy.h>
38  #include <linux/platform_device.h>
39  #include <linux/reset.h>
40  #include <linux/types.h>
41  
42  #define RCANFD_DRV_NAME			"rcar_canfd"
43  
44  /* Global register bits */
45  
46  /* RSCFDnCFDGRMCFG */
47  #define RCANFD_GRMCFG_RCMC		BIT(0)
48  
49  /* RSCFDnCFDGCFG / RSCFDnGCFG */
50  #define RCANFD_GCFG_EEFE		BIT(6)
51  #define RCANFD_GCFG_CMPOC		BIT(5)	/* CAN FD only */
52  #define RCANFD_GCFG_DCS			BIT(4)
53  #define RCANFD_GCFG_DCE			BIT(1)
54  #define RCANFD_GCFG_TPRI		BIT(0)
55  
56  /* RSCFDnCFDGCTR / RSCFDnGCTR */
57  #define RCANFD_GCTR_TSRST		BIT(16)
58  #define RCANFD_GCTR_CFMPOFIE		BIT(11)	/* CAN FD only */
59  #define RCANFD_GCTR_THLEIE		BIT(10)
60  #define RCANFD_GCTR_MEIE		BIT(9)
61  #define RCANFD_GCTR_DEIE		BIT(8)
62  #define RCANFD_GCTR_GSLPR		BIT(2)
63  #define RCANFD_GCTR_GMDC_MASK		(0x3)
64  #define RCANFD_GCTR_GMDC_GOPM		(0x0)
65  #define RCANFD_GCTR_GMDC_GRESET		(0x1)
66  #define RCANFD_GCTR_GMDC_GTEST		(0x2)
67  
68  /* RSCFDnCFDGSTS / RSCFDnGSTS */
69  #define RCANFD_GSTS_GRAMINIT		BIT(3)
70  #define RCANFD_GSTS_GSLPSTS		BIT(2)
71  #define RCANFD_GSTS_GHLTSTS		BIT(1)
72  #define RCANFD_GSTS_GRSTSTS		BIT(0)
73  /* Non-operational status */
74  #define RCANFD_GSTS_GNOPM		(BIT(0) | BIT(1) | BIT(2) | BIT(3))
75  
76  /* RSCFDnCFDGERFL / RSCFDnGERFL */
77  #define RCANFD_GERFL_EEF0_7		GENMASK(23, 16)
78  #define RCANFD_GERFL_EEF(ch)		BIT(16 + (ch))
79  #define RCANFD_GERFL_CMPOF		BIT(3)	/* CAN FD only */
80  #define RCANFD_GERFL_THLES		BIT(2)
81  #define RCANFD_GERFL_MES		BIT(1)
82  #define RCANFD_GERFL_DEF		BIT(0)
83  
84  #define RCANFD_GERFL_ERR(gpriv, x) \
85  	((x) & (reg_gen4(gpriv, RCANFD_GERFL_EEF0_7, \
86  			 RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \
87  		RCANFD_GERFL_MES | \
88  		((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
89  
90  /* AFL Rx rules registers */
91  
92  /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
93  #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
94  	(((x) & reg_gen4(gpriv, 0x1ff, 0xff)) << \
95  	 (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8)))
96  
97  #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
98  	(((x) >> (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) & \
99  	 reg_gen4(gpriv, 0x1ff, 0xff))
100  
101  /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
102  #define RCANFD_GAFLECTR_AFLDAE		BIT(8)
103  #define RCANFD_GAFLECTR_AFLPN(gpriv, x)	((x) & reg_gen4(gpriv, 0x7f, 0x1f))
104  
105  /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
106  #define RCANFD_GAFLID_GAFLLB		BIT(29)
107  
108  /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
109  #define RCANFD_GAFLP1_GAFLFDP(x)	(1 << (x))
110  
111  /* Channel register bits */
112  
113  /* RSCFDnCmCFG - Classical CAN only */
114  #define RCANFD_CFG_SJW(x)		(((x) & 0x3) << 24)
115  #define RCANFD_CFG_TSEG2(x)		(((x) & 0x7) << 20)
116  #define RCANFD_CFG_TSEG1(x)		(((x) & 0xf) << 16)
117  #define RCANFD_CFG_BRP(x)		(((x) & 0x3ff) << 0)
118  
119  /* RSCFDnCFDCmNCFG - CAN FD only */
120  #define RCANFD_NCFG_NTSEG2(gpriv, x) \
121  	(((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 25, 24))
122  
123  #define RCANFD_NCFG_NTSEG1(gpriv, x) \
124  	(((x) & reg_gen4(gpriv, 0xff, 0x7f)) << reg_gen4(gpriv, 17, 16))
125  
126  #define RCANFD_NCFG_NSJW(gpriv, x) \
127  	(((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 10, 11))
128  
129  #define RCANFD_NCFG_NBRP(x)		(((x) & 0x3ff) << 0)
130  
131  /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
132  #define RCANFD_CCTR_CTME		BIT(24)
133  #define RCANFD_CCTR_ERRD		BIT(23)
134  #define RCANFD_CCTR_BOM_MASK		(0x3 << 21)
135  #define RCANFD_CCTR_BOM_ISO		(0x0 << 21)
136  #define RCANFD_CCTR_BOM_BENTRY		(0x1 << 21)
137  #define RCANFD_CCTR_BOM_BEND		(0x2 << 21)
138  #define RCANFD_CCTR_TDCVFIE		BIT(19)
139  #define RCANFD_CCTR_SOCOIE		BIT(18)
140  #define RCANFD_CCTR_EOCOIE		BIT(17)
141  #define RCANFD_CCTR_TAIE		BIT(16)
142  #define RCANFD_CCTR_ALIE		BIT(15)
143  #define RCANFD_CCTR_BLIE		BIT(14)
144  #define RCANFD_CCTR_OLIE		BIT(13)
145  #define RCANFD_CCTR_BORIE		BIT(12)
146  #define RCANFD_CCTR_BOEIE		BIT(11)
147  #define RCANFD_CCTR_EPIE		BIT(10)
148  #define RCANFD_CCTR_EWIE		BIT(9)
149  #define RCANFD_CCTR_BEIE		BIT(8)
150  #define RCANFD_CCTR_CSLPR		BIT(2)
151  #define RCANFD_CCTR_CHMDC_MASK		(0x3)
152  #define RCANFD_CCTR_CHDMC_COPM		(0x0)
153  #define RCANFD_CCTR_CHDMC_CRESET	(0x1)
154  #define RCANFD_CCTR_CHDMC_CHLT		(0x2)
155  
156  /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
157  #define RCANFD_CSTS_COMSTS		BIT(7)
158  #define RCANFD_CSTS_RECSTS		BIT(6)
159  #define RCANFD_CSTS_TRMSTS		BIT(5)
160  #define RCANFD_CSTS_BOSTS		BIT(4)
161  #define RCANFD_CSTS_EPSTS		BIT(3)
162  #define RCANFD_CSTS_SLPSTS		BIT(2)
163  #define RCANFD_CSTS_HLTSTS		BIT(1)
164  #define RCANFD_CSTS_CRSTSTS		BIT(0)
165  
166  #define RCANFD_CSTS_TECCNT(x)		(((x) >> 24) & 0xff)
167  #define RCANFD_CSTS_RECCNT(x)		(((x) >> 16) & 0xff)
168  
169  /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
170  #define RCANFD_CERFL_ADERR		BIT(14)
171  #define RCANFD_CERFL_B0ERR		BIT(13)
172  #define RCANFD_CERFL_B1ERR		BIT(12)
173  #define RCANFD_CERFL_CERR		BIT(11)
174  #define RCANFD_CERFL_AERR		BIT(10)
175  #define RCANFD_CERFL_FERR		BIT(9)
176  #define RCANFD_CERFL_SERR		BIT(8)
177  #define RCANFD_CERFL_ALF		BIT(7)
178  #define RCANFD_CERFL_BLF		BIT(6)
179  #define RCANFD_CERFL_OVLF		BIT(5)
180  #define RCANFD_CERFL_BORF		BIT(4)
181  #define RCANFD_CERFL_BOEF		BIT(3)
182  #define RCANFD_CERFL_EPF		BIT(2)
183  #define RCANFD_CERFL_EWF		BIT(1)
184  #define RCANFD_CERFL_BEF		BIT(0)
185  
186  #define RCANFD_CERFL_ERR(x)		((x) & (0x7fff)) /* above bits 14:0 */
187  
188  /* RSCFDnCFDCmDCFG */
189  #define RCANFD_DCFG_DSJW(gpriv, x)	(((x) & reg_gen4(gpriv, 0xf, 0x7)) << 24)
190  
191  #define RCANFD_DCFG_DTSEG2(gpriv, x) \
192  	(((x) & reg_gen4(gpriv, 0x0f, 0x7)) << reg_gen4(gpriv, 16, 20))
193  
194  #define RCANFD_DCFG_DTSEG1(gpriv, x) \
195  	(((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 8, 16))
196  
197  #define RCANFD_DCFG_DBRP(x)		(((x) & 0xff) << 0)
198  
199  /* RSCFDnCFDCmFDCFG */
200  #define RCANFD_GEN4_FDCFG_CLOE		BIT(30)
201  #define RCANFD_GEN4_FDCFG_FDOE		BIT(28)
202  #define RCANFD_FDCFG_TDCE		BIT(9)
203  #define RCANFD_FDCFG_TDCOC		BIT(8)
204  #define RCANFD_FDCFG_TDCO(x)		(((x) & 0x7f) >> 16)
205  
206  /* RSCFDnCFDRFCCx */
207  #define RCANFD_RFCC_RFIM		BIT(12)
208  #define RCANFD_RFCC_RFDC(x)		(((x) & 0x7) << 8)
209  #define RCANFD_RFCC_RFPLS(x)		(((x) & 0x7) << 4)
210  #define RCANFD_RFCC_RFIE		BIT(1)
211  #define RCANFD_RFCC_RFE			BIT(0)
212  
213  /* RSCFDnCFDRFSTSx */
214  #define RCANFD_RFSTS_RFIF		BIT(3)
215  #define RCANFD_RFSTS_RFMLT		BIT(2)
216  #define RCANFD_RFSTS_RFFLL		BIT(1)
217  #define RCANFD_RFSTS_RFEMP		BIT(0)
218  
219  /* RSCFDnCFDRFIDx */
220  #define RCANFD_RFID_RFIDE		BIT(31)
221  #define RCANFD_RFID_RFRTR		BIT(30)
222  
223  /* RSCFDnCFDRFPTRx */
224  #define RCANFD_RFPTR_RFDLC(x)		(((x) >> 28) & 0xf)
225  #define RCANFD_RFPTR_RFPTR(x)		(((x) >> 16) & 0xfff)
226  #define RCANFD_RFPTR_RFTS(x)		(((x) >> 0) & 0xffff)
227  
228  /* RSCFDnCFDRFFDSTSx */
229  #define RCANFD_RFFDSTS_RFFDF		BIT(2)
230  #define RCANFD_RFFDSTS_RFBRS		BIT(1)
231  #define RCANFD_RFFDSTS_RFESI		BIT(0)
232  
233  /* Common FIFO bits */
234  
235  /* RSCFDnCFDCFCCk */
236  #define RCANFD_CFCC_CFTML(gpriv, x)	\
237  	(((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 16, 20))
238  #define RCANFD_CFCC_CFM(gpriv, x)	(((x) & 0x3) << reg_gen4(gpriv,  8, 16))
239  #define RCANFD_CFCC_CFIM		BIT(12)
240  #define RCANFD_CFCC_CFDC(gpriv, x)	(((x) & 0x7) << reg_gen4(gpriv, 21,  8))
241  #define RCANFD_CFCC_CFPLS(x)		(((x) & 0x7) << 4)
242  #define RCANFD_CFCC_CFTXIE		BIT(2)
243  #define RCANFD_CFCC_CFE			BIT(0)
244  
245  /* RSCFDnCFDCFSTSk */
246  #define RCANFD_CFSTS_CFMC(x)		(((x) >> 8) & 0xff)
247  #define RCANFD_CFSTS_CFTXIF		BIT(4)
248  #define RCANFD_CFSTS_CFMLT		BIT(2)
249  #define RCANFD_CFSTS_CFFLL		BIT(1)
250  #define RCANFD_CFSTS_CFEMP		BIT(0)
251  
252  /* RSCFDnCFDCFIDk */
253  #define RCANFD_CFID_CFIDE		BIT(31)
254  #define RCANFD_CFID_CFRTR		BIT(30)
255  #define RCANFD_CFID_CFID_MASK(x)	((x) & 0x1fffffff)
256  
257  /* RSCFDnCFDCFPTRk */
258  #define RCANFD_CFPTR_CFDLC(x)		(((x) & 0xf) << 28)
259  #define RCANFD_CFPTR_CFPTR(x)		(((x) & 0xfff) << 16)
260  #define RCANFD_CFPTR_CFTS(x)		(((x) & 0xff) << 0)
261  
262  /* RSCFDnCFDCFFDCSTSk */
263  #define RCANFD_CFFDCSTS_CFFDF		BIT(2)
264  #define RCANFD_CFFDCSTS_CFBRS		BIT(1)
265  #define RCANFD_CFFDCSTS_CFESI		BIT(0)
266  
267  /* This controller supports either Classical CAN only mode or CAN FD only mode.
268   * These modes are supported in two separate set of register maps & names.
269   * However, some of the register offsets are common for both modes. Those
270   * offsets are listed below as Common registers.
271   *
272   * The CAN FD only mode specific registers & Classical CAN only mode specific
273   * registers are listed separately. Their register names starts with
274   * RCANFD_F_xxx & RCANFD_C_xxx respectively.
275   */
276  
277  /* Common registers */
278  
279  /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
280  #define RCANFD_CCFG(m)			(0x0000 + (0x10 * (m)))
281  /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
282  #define RCANFD_CCTR(m)			(0x0004 + (0x10 * (m)))
283  /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
284  #define RCANFD_CSTS(m)			(0x0008 + (0x10 * (m)))
285  /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
286  #define RCANFD_CERFL(m)			(0x000C + (0x10 * (m)))
287  
288  /* RSCFDnCFDGCFG / RSCFDnGCFG */
289  #define RCANFD_GCFG			(0x0084)
290  /* RSCFDnCFDGCTR / RSCFDnGCTR */
291  #define RCANFD_GCTR			(0x0088)
292  /* RSCFDnCFDGCTS / RSCFDnGCTS */
293  #define RCANFD_GSTS			(0x008c)
294  /* RSCFDnCFDGERFL / RSCFDnGERFL */
295  #define RCANFD_GERFL			(0x0090)
296  /* RSCFDnCFDGTSC / RSCFDnGTSC */
297  #define RCANFD_GTSC			(0x0094)
298  /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
299  #define RCANFD_GAFLECTR			(0x0098)
300  /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
301  #define RCANFD_GAFLCFG(ch)		(0x009c + (0x04 * ((ch) / 2)))
302  /* RSCFDnCFDRMNB / RSCFDnRMNB */
303  #define RCANFD_RMNB			(0x00a4)
304  /* RSCFDnCFDRMND / RSCFDnRMND */
305  #define RCANFD_RMND(y)			(0x00a8 + (0x04 * (y)))
306  
307  /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
308  #define RCANFD_RFCC(gpriv, x)		(reg_gen4(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
309  /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
310  #define RCANFD_RFSTS(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x20)
311  /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
312  #define RCANFD_RFPCTR(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x40)
313  
314  /* Common FIFO Control registers */
315  
316  /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
317  #define RCANFD_CFCC(gpriv, ch, idx) \
318  	(reg_gen4(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
319  /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
320  #define RCANFD_CFSTS(gpriv, ch, idx) \
321  	(reg_gen4(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
322  /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
323  #define RCANFD_CFPCTR(gpriv, ch, idx) \
324  	(reg_gen4(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
325  
326  /* RSCFDnCFDFESTS / RSCFDnFESTS */
327  #define RCANFD_FESTS			(0x0238)
328  /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
329  #define RCANFD_FFSTS			(0x023c)
330  /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
331  #define RCANFD_FMSTS			(0x0240)
332  /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
333  #define RCANFD_RFISTS			(0x0244)
334  /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
335  #define RCANFD_CFRISTS			(0x0248)
336  /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
337  #define RCANFD_CFTISTS			(0x024c)
338  
339  /* RSCFDnCFDTMCp / RSCFDnTMCp */
340  #define RCANFD_TMC(p)			(0x0250 + (0x01 * (p)))
341  /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
342  #define RCANFD_TMSTS(p)			(0x02d0 + (0x01 * (p)))
343  
344  /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
345  #define RCANFD_TMTRSTS(y)		(0x0350 + (0x04 * (y)))
346  /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
347  #define RCANFD_TMTARSTS(y)		(0x0360 + (0x04 * (y)))
348  /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
349  #define RCANFD_TMTCSTS(y)		(0x0370 + (0x04 * (y)))
350  /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
351  #define RCANFD_TMTASTS(y)		(0x0380 + (0x04 * (y)))
352  /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
353  #define RCANFD_TMIEC(y)			(0x0390 + (0x04 * (y)))
354  
355  /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
356  #define RCANFD_TXQCC(m)			(0x03a0 + (0x04 * (m)))
357  /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
358  #define RCANFD_TXQSTS(m)		(0x03c0 + (0x04 * (m)))
359  /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
360  #define RCANFD_TXQPCTR(m)		(0x03e0 + (0x04 * (m)))
361  
362  /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
363  #define RCANFD_THLCC(m)			(0x0400 + (0x04 * (m)))
364  /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
365  #define RCANFD_THLSTS(m)		(0x0420 + (0x04 * (m)))
366  /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
367  #define RCANFD_THLPCTR(m)		(0x0440 + (0x04 * (m)))
368  
369  /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
370  #define RCANFD_GTINTSTS0		(0x0460)
371  /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
372  #define RCANFD_GTINTSTS1		(0x0464)
373  /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
374  #define RCANFD_GTSTCFG			(0x0468)
375  /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
376  #define RCANFD_GTSTCTR			(0x046c)
377  /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
378  #define RCANFD_GLOCKK			(0x047c)
379  /* RSCFDnCFDGRMCFG */
380  #define RCANFD_GRMCFG			(0x04fc)
381  
382  /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
383  #define RCANFD_GAFLID(offset, j)	((offset) + (0x10 * (j)))
384  /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
385  #define RCANFD_GAFLM(offset, j)		((offset) + 0x04 + (0x10 * (j)))
386  /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
387  #define RCANFD_GAFLP0(offset, j)	((offset) + 0x08 + (0x10 * (j)))
388  /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
389  #define RCANFD_GAFLP1(offset, j)	((offset) + 0x0c + (0x10 * (j)))
390  
391  /* Classical CAN only mode register map */
392  
393  /* RSCFDnGAFLXXXj offset */
394  #define RCANFD_C_GAFL_OFFSET		(0x0500)
395  
396  /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
397  #define RCANFD_C_RMID(q)		(0x0600 + (0x10 * (q)))
398  #define RCANFD_C_RMPTR(q)		(0x0604 + (0x10 * (q)))
399  #define RCANFD_C_RMDF0(q)		(0x0608 + (0x10 * (q)))
400  #define RCANFD_C_RMDF1(q)		(0x060c + (0x10 * (q)))
401  
402  /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
403  #define RCANFD_C_RFOFFSET	(0x0e00)
404  #define RCANFD_C_RFID(x)	(RCANFD_C_RFOFFSET + (0x10 * (x)))
405  #define RCANFD_C_RFPTR(x)	(RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
406  #define RCANFD_C_RFDF(x, df) \
407  		(RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
408  
409  /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
410  #define RCANFD_C_CFOFFSET		(0x0e80)
411  
412  #define RCANFD_C_CFID(ch, idx) \
413  	(RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
414  
415  #define RCANFD_C_CFPTR(ch, idx)	\
416  	(RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
417  
418  #define RCANFD_C_CFDF(ch, idx, df) \
419  	(RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
420  
421  /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
422  #define RCANFD_C_TMID(p)		(0x1000 + (0x10 * (p)))
423  #define RCANFD_C_TMPTR(p)		(0x1004 + (0x10 * (p)))
424  #define RCANFD_C_TMDF0(p)		(0x1008 + (0x10 * (p)))
425  #define RCANFD_C_TMDF1(p)		(0x100c + (0x10 * (p)))
426  
427  /* RSCFDnTHLACCm */
428  #define RCANFD_C_THLACC(m)		(0x1800 + (0x04 * (m)))
429  /* RSCFDnRPGACCr */
430  #define RCANFD_C_RPGACC(r)		(0x1900 + (0x04 * (r)))
431  
432  /* R-Car Gen4 Classical and CAN FD mode specific register map */
433  #define RCANFD_GEN4_FDCFG(m)		(0x1404 + (0x20 * (m)))
434  
435  #define RCANFD_GEN4_GAFL_OFFSET		(0x1800)
436  
437  /* CAN FD mode specific register map */
438  
439  /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
440  #define RCANFD_F_DCFG(gpriv, m)		(reg_gen4(gpriv, 0x1400, 0x0500) + (0x20 * (m)))
441  #define RCANFD_F_CFDCFG(m)		(0x0504 + (0x20 * (m)))
442  #define RCANFD_F_CFDCTR(m)		(0x0508 + (0x20 * (m)))
443  #define RCANFD_F_CFDSTS(m)		(0x050c + (0x20 * (m)))
444  #define RCANFD_F_CFDCRC(m)		(0x0510 + (0x20 * (m)))
445  
446  /* RSCFDnCFDGAFLXXXj offset */
447  #define RCANFD_F_GAFL_OFFSET		(0x1000)
448  
449  /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
450  #define RCANFD_F_RMID(q)		(0x2000 + (0x20 * (q)))
451  #define RCANFD_F_RMPTR(q)		(0x2004 + (0x20 * (q)))
452  #define RCANFD_F_RMFDSTS(q)		(0x2008 + (0x20 * (q)))
453  #define RCANFD_F_RMDF(q, b)		(0x200c + (0x04 * (b)) + (0x20 * (q)))
454  
455  /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
456  #define RCANFD_F_RFOFFSET(gpriv)	reg_gen4(gpriv, 0x6000, 0x3000)
457  #define RCANFD_F_RFID(gpriv, x)		(RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
458  #define RCANFD_F_RFPTR(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
459  #define RCANFD_F_RFFDSTS(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
460  #define RCANFD_F_RFDF(gpriv, x, df) \
461  	(RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
462  
463  /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
464  #define RCANFD_F_CFOFFSET(gpriv)	reg_gen4(gpriv, 0x6400, 0x3400)
465  
466  #define RCANFD_F_CFID(gpriv, ch, idx) \
467  	(RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
468  
469  #define RCANFD_F_CFPTR(gpriv, ch, idx) \
470  	(RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
471  
472  #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
473  	(RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
474  
475  #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
476  	(RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
477  	 (0x04 * (df)))
478  
479  /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
480  #define RCANFD_F_TMID(p)		(0x4000 + (0x20 * (p)))
481  #define RCANFD_F_TMPTR(p)		(0x4004 + (0x20 * (p)))
482  #define RCANFD_F_TMFDCTR(p)		(0x4008 + (0x20 * (p)))
483  #define RCANFD_F_TMDF(p, b)		(0x400c + (0x20 * (p)) + (0x04 * (b)))
484  
485  /* RSCFDnCFDTHLACCm */
486  #define RCANFD_F_THLACC(m)		(0x6000 + (0x04 * (m)))
487  /* RSCFDnCFDRPGACCr */
488  #define RCANFD_F_RPGACC(r)		(0x6400 + (0x04 * (r)))
489  
490  /* Constants */
491  #define RCANFD_FIFO_DEPTH		8	/* Tx FIFO depth */
492  #define RCANFD_NAPI_WEIGHT		8	/* Rx poll quota */
493  
494  #define RCANFD_NUM_CHANNELS		8	/* Eight channels max */
495  #define RCANFD_CHANNELS_MASK		BIT((RCANFD_NUM_CHANNELS) - 1)
496  
497  #define RCANFD_GAFL_PAGENUM(entry)	((entry) / 16)
498  #define RCANFD_CHANNEL_NUMRULES		1	/* only one rule per channel */
499  
500  /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
501   * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
502   * number is added to RFFIFO index.
503   */
504  #define RCANFD_RFFIFO_IDX		0
505  
506  /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
507   * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
508   */
509  #define RCANFD_CFFIFO_IDX		0
510  
511  /* fCAN clock select register settings */
512  enum rcar_canfd_fcanclk {
513  	RCANFD_CANFDCLK = 0,		/* CANFD clock */
514  	RCANFD_EXTCLK,			/* Externally input clock */
515  };
516  
517  struct rcar_canfd_global;
518  
519  struct rcar_canfd_hw_info {
520  	u8 max_channels;
521  	u8 postdiv;
522  	/* hardware features */
523  	unsigned shared_global_irqs:1;	/* Has shared global irqs */
524  	unsigned multi_channel_irqs:1;	/* Has multiple channel irqs */
525  };
526  
527  /* Channel priv data */
528  struct rcar_canfd_channel {
529  	struct can_priv can;			/* Must be the first member */
530  	struct net_device *ndev;
531  	struct rcar_canfd_global *gpriv;	/* Controller reference */
532  	void __iomem *base;			/* Register base address */
533  	struct phy *transceiver;		/* Optional transceiver */
534  	struct napi_struct napi;
535  	u32 tx_head;				/* Incremented on xmit */
536  	u32 tx_tail;				/* Incremented on xmit done */
537  	u32 channel;				/* Channel number */
538  	spinlock_t tx_lock;			/* To protect tx path */
539  };
540  
541  /* Global priv data */
542  struct rcar_canfd_global {
543  	struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
544  	void __iomem *base;		/* Register base address */
545  	struct platform_device *pdev;	/* Respective platform device */
546  	struct clk *clkp;		/* Peripheral clock */
547  	struct clk *can_clk;		/* fCAN clock */
548  	enum rcar_canfd_fcanclk fcan;	/* CANFD or Ext clock */
549  	unsigned long channels_mask;	/* Enabled channels mask */
550  	bool fdmode;			/* CAN FD or Classical CAN only mode */
551  	struct reset_control *rstc1;
552  	struct reset_control *rstc2;
553  	const struct rcar_canfd_hw_info *info;
554  };
555  
556  /* CAN FD mode nominal rate constants */
557  static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
558  	.name = RCANFD_DRV_NAME,
559  	.tseg1_min = 2,
560  	.tseg1_max = 128,
561  	.tseg2_min = 2,
562  	.tseg2_max = 32,
563  	.sjw_max = 32,
564  	.brp_min = 1,
565  	.brp_max = 1024,
566  	.brp_inc = 1,
567  };
568  
569  /* CAN FD mode data rate constants */
570  static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
571  	.name = RCANFD_DRV_NAME,
572  	.tseg1_min = 2,
573  	.tseg1_max = 16,
574  	.tseg2_min = 2,
575  	.tseg2_max = 8,
576  	.sjw_max = 8,
577  	.brp_min = 1,
578  	.brp_max = 256,
579  	.brp_inc = 1,
580  };
581  
582  /* Classical CAN mode bitrate constants */
583  static const struct can_bittiming_const rcar_canfd_bittiming_const = {
584  	.name = RCANFD_DRV_NAME,
585  	.tseg1_min = 4,
586  	.tseg1_max = 16,
587  	.tseg2_min = 2,
588  	.tseg2_max = 8,
589  	.sjw_max = 4,
590  	.brp_min = 1,
591  	.brp_max = 1024,
592  	.brp_inc = 1,
593  };
594  
595  static const struct rcar_canfd_hw_info rcar_gen3_hw_info = {
596  	.max_channels = 2,
597  	.postdiv = 2,
598  	.shared_global_irqs = 1,
599  };
600  
601  static const struct rcar_canfd_hw_info rcar_gen4_hw_info = {
602  	.max_channels = 8,
603  	.postdiv = 2,
604  	.shared_global_irqs = 1,
605  };
606  
607  static const struct rcar_canfd_hw_info rzg2l_hw_info = {
608  	.max_channels = 2,
609  	.postdiv = 1,
610  	.multi_channel_irqs = 1,
611  };
612  
613  /* Helper functions */
is_gen4(struct rcar_canfd_global * gpriv)614  static inline bool is_gen4(struct rcar_canfd_global *gpriv)
615  {
616  	return gpriv->info == &rcar_gen4_hw_info;
617  }
618  
reg_gen4(struct rcar_canfd_global * gpriv,u32 gen4,u32 not_gen4)619  static inline u32 reg_gen4(struct rcar_canfd_global *gpriv,
620  			   u32 gen4, u32 not_gen4)
621  {
622  	return is_gen4(gpriv) ? gen4 : not_gen4;
623  }
624  
rcar_canfd_update(u32 mask,u32 val,u32 __iomem * reg)625  static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
626  {
627  	u32 data = readl(reg);
628  
629  	data &= ~mask;
630  	data |= (val & mask);
631  	writel(data, reg);
632  }
633  
rcar_canfd_read(void __iomem * base,u32 offset)634  static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
635  {
636  	return readl(base + (offset));
637  }
638  
rcar_canfd_write(void __iomem * base,u32 offset,u32 val)639  static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
640  {
641  	writel(val, base + (offset));
642  }
643  
rcar_canfd_set_bit(void __iomem * base,u32 reg,u32 val)644  static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
645  {
646  	rcar_canfd_update(val, val, base + (reg));
647  }
648  
rcar_canfd_clear_bit(void __iomem * base,u32 reg,u32 val)649  static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
650  {
651  	rcar_canfd_update(val, 0, base + (reg));
652  }
653  
rcar_canfd_update_bit(void __iomem * base,u32 reg,u32 mask,u32 val)654  static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
655  				  u32 mask, u32 val)
656  {
657  	rcar_canfd_update(mask, val, base + (reg));
658  }
659  
rcar_canfd_get_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)660  static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
661  				struct canfd_frame *cf, u32 off)
662  {
663  	u32 i, lwords;
664  
665  	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
666  	for (i = 0; i < lwords; i++)
667  		*((u32 *)cf->data + i) =
668  			rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
669  }
670  
rcar_canfd_put_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)671  static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
672  				struct canfd_frame *cf, u32 off)
673  {
674  	u32 i, lwords;
675  
676  	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
677  	for (i = 0; i < lwords; i++)
678  		rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
679  				 *((u32 *)cf->data + i));
680  }
681  
rcar_canfd_tx_failure_cleanup(struct net_device * ndev)682  static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
683  {
684  	u32 i;
685  
686  	for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
687  		can_free_echo_skb(ndev, i, NULL);
688  }
689  
rcar_canfd_set_mode(struct rcar_canfd_global * gpriv)690  static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
691  {
692  	if (is_gen4(gpriv)) {
693  		u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE
694  					    : RCANFD_GEN4_FDCFG_CLOE;
695  
696  		for_each_set_bit(ch, &gpriv->channels_mask,
697  				 gpriv->info->max_channels)
698  			rcar_canfd_set_bit(gpriv->base, RCANFD_GEN4_FDCFG(ch),
699  					   val);
700  	} else {
701  		if (gpriv->fdmode)
702  			rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
703  					   RCANFD_GRMCFG_RCMC);
704  		else
705  			rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
706  					     RCANFD_GRMCFG_RCMC);
707  	}
708  }
709  
rcar_canfd_reset_controller(struct rcar_canfd_global * gpriv)710  static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
711  {
712  	u32 sts, ch;
713  	int err;
714  
715  	/* Check RAMINIT flag as CAN RAM initialization takes place
716  	 * after the MCU reset
717  	 */
718  	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
719  				 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
720  	if (err) {
721  		dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
722  		return err;
723  	}
724  
725  	/* Transition to Global Reset mode */
726  	rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
727  	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
728  			      RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
729  
730  	/* Ensure Global reset mode */
731  	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
732  				 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
733  	if (err) {
734  		dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
735  		return err;
736  	}
737  
738  	/* Reset Global error flags */
739  	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
740  
741  	/* Set the controller into appropriate mode */
742  	rcar_canfd_set_mode(gpriv);
743  
744  	/* Transition all Channels to reset mode */
745  	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
746  		rcar_canfd_clear_bit(gpriv->base,
747  				     RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
748  
749  		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
750  				      RCANFD_CCTR_CHMDC_MASK,
751  				      RCANFD_CCTR_CHDMC_CRESET);
752  
753  		/* Ensure Channel reset mode */
754  		err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
755  					 (sts & RCANFD_CSTS_CRSTSTS),
756  					 2, 500000);
757  		if (err) {
758  			dev_dbg(&gpriv->pdev->dev,
759  				"channel %u reset failed\n", ch);
760  			return err;
761  		}
762  	}
763  	return 0;
764  }
765  
rcar_canfd_configure_controller(struct rcar_canfd_global * gpriv)766  static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
767  {
768  	u32 cfg, ch;
769  
770  	/* Global configuration settings */
771  
772  	/* ECC Error flag Enable */
773  	cfg = RCANFD_GCFG_EEFE;
774  
775  	if (gpriv->fdmode)
776  		/* Truncate payload to configured message size RFPLS */
777  		cfg |= RCANFD_GCFG_CMPOC;
778  
779  	/* Set External Clock if selected */
780  	if (gpriv->fcan != RCANFD_CANFDCLK)
781  		cfg |= RCANFD_GCFG_DCS;
782  
783  	rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
784  
785  	/* Channel configuration settings */
786  	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
787  		rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
788  				   RCANFD_CCTR_ERRD);
789  		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
790  				      RCANFD_CCTR_BOM_MASK,
791  				      RCANFD_CCTR_BOM_BENTRY);
792  	}
793  }
794  
rcar_canfd_configure_afl_rules(struct rcar_canfd_global * gpriv,u32 ch,u32 rule_entry)795  static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
796  					   u32 ch, u32 rule_entry)
797  {
798  	int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES;
799  	u32 rule_entry_index = rule_entry % 16;
800  	u32 ridx = ch + RCANFD_RFFIFO_IDX;
801  
802  	/* Enable write access to entry */
803  	page = RCANFD_GAFL_PAGENUM(rule_entry);
804  	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
805  			   (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
806  			    RCANFD_GAFLECTR_AFLDAE));
807  
808  	/* Write number of rules for channel */
809  	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch),
810  			   RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules));
811  	if (is_gen4(gpriv))
812  		offset = RCANFD_GEN4_GAFL_OFFSET;
813  	else if (gpriv->fdmode)
814  		offset = RCANFD_F_GAFL_OFFSET;
815  	else
816  		offset = RCANFD_C_GAFL_OFFSET;
817  
818  	/* Accept all IDs */
819  	rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0);
820  	/* IDE or RTR is not considered for matching */
821  	rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0);
822  	/* Any data length accepted */
823  	rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0);
824  	/* Place the msg in corresponding Rx FIFO entry */
825  	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index),
826  			   RCANFD_GAFLP1_GAFLFDP(ridx));
827  
828  	/* Disable write access to page */
829  	rcar_canfd_clear_bit(gpriv->base,
830  			     RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
831  }
832  
rcar_canfd_configure_rx(struct rcar_canfd_global * gpriv,u32 ch)833  static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
834  {
835  	/* Rx FIFO is used for reception */
836  	u32 cfg;
837  	u16 rfdc, rfpls;
838  
839  	/* Select Rx FIFO based on channel */
840  	u32 ridx = ch + RCANFD_RFFIFO_IDX;
841  
842  	rfdc = 2;		/* b010 - 8 messages Rx FIFO depth */
843  	if (gpriv->fdmode)
844  		rfpls = 7;	/* b111 - Max 64 bytes payload */
845  	else
846  		rfpls = 0;	/* b000 - Max 8 bytes payload */
847  
848  	cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
849  		RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
850  	rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
851  }
852  
rcar_canfd_configure_tx(struct rcar_canfd_global * gpriv,u32 ch)853  static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
854  {
855  	/* Tx/Rx(Common) FIFO configured in Tx mode is
856  	 * used for transmission
857  	 *
858  	 * Each channel has 3 Common FIFO dedicated to them.
859  	 * Use the 1st (index 0) out of 3
860  	 */
861  	u32 cfg;
862  	u16 cftml, cfm, cfdc, cfpls;
863  
864  	cftml = 0;		/* 0th buffer */
865  	cfm = 1;		/* b01 - Transmit mode */
866  	cfdc = 2;		/* b010 - 8 messages Tx FIFO depth */
867  	if (gpriv->fdmode)
868  		cfpls = 7;	/* b111 - Max 64 bytes payload */
869  	else
870  		cfpls = 0;	/* b000 - Max 8 bytes payload */
871  
872  	cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
873  		RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
874  		RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
875  	rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
876  
877  	if (gpriv->fdmode)
878  		/* Clear FD mode specific control/status register */
879  		rcar_canfd_write(gpriv->base,
880  				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
881  }
882  
rcar_canfd_enable_global_interrupts(struct rcar_canfd_global * gpriv)883  static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
884  {
885  	u32 ctr;
886  
887  	/* Clear any stray error interrupt flags */
888  	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
889  
890  	/* Global interrupts setup */
891  	ctr = RCANFD_GCTR_MEIE;
892  	if (gpriv->fdmode)
893  		ctr |= RCANFD_GCTR_CFMPOFIE;
894  
895  	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
896  }
897  
rcar_canfd_disable_global_interrupts(struct rcar_canfd_global * gpriv)898  static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
899  						 *gpriv)
900  {
901  	/* Disable all interrupts */
902  	rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
903  
904  	/* Clear any stray error interrupt flags */
905  	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
906  }
907  
rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel * priv)908  static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
909  						 *priv)
910  {
911  	u32 ctr, ch = priv->channel;
912  
913  	/* Clear any stray error flags */
914  	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
915  
916  	/* Channel interrupts setup */
917  	ctr = (RCANFD_CCTR_TAIE |
918  	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
919  	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
920  	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
921  	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
922  	rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
923  }
924  
rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel * priv)925  static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
926  						  *priv)
927  {
928  	u32 ctr, ch = priv->channel;
929  
930  	ctr = (RCANFD_CCTR_TAIE |
931  	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
932  	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
933  	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
934  	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
935  	rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
936  
937  	/* Clear any stray error flags */
938  	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
939  }
940  
rcar_canfd_global_error(struct net_device * ndev)941  static void rcar_canfd_global_error(struct net_device *ndev)
942  {
943  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
944  	struct rcar_canfd_global *gpriv = priv->gpriv;
945  	struct net_device_stats *stats = &ndev->stats;
946  	u32 ch = priv->channel;
947  	u32 gerfl, sts;
948  	u32 ridx = ch + RCANFD_RFFIFO_IDX;
949  
950  	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
951  	if (gerfl & RCANFD_GERFL_EEF(ch)) {
952  		netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
953  		stats->tx_dropped++;
954  	}
955  	if (gerfl & RCANFD_GERFL_MES) {
956  		sts = rcar_canfd_read(priv->base,
957  				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
958  		if (sts & RCANFD_CFSTS_CFMLT) {
959  			netdev_dbg(ndev, "Tx Message Lost flag\n");
960  			stats->tx_dropped++;
961  			rcar_canfd_write(priv->base,
962  					 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
963  					 sts & ~RCANFD_CFSTS_CFMLT);
964  		}
965  
966  		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
967  		if (sts & RCANFD_RFSTS_RFMLT) {
968  			netdev_dbg(ndev, "Rx Message Lost flag\n");
969  			stats->rx_dropped++;
970  			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
971  					 sts & ~RCANFD_RFSTS_RFMLT);
972  		}
973  	}
974  	if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
975  		/* Message Lost flag will be set for respective channel
976  		 * when this condition happens with counters and flags
977  		 * already updated.
978  		 */
979  		netdev_dbg(ndev, "global payload overflow interrupt\n");
980  	}
981  
982  	/* Clear all global error interrupts. Only affected channels bits
983  	 * get cleared
984  	 */
985  	rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
986  }
987  
rcar_canfd_error(struct net_device * ndev,u32 cerfl,u16 txerr,u16 rxerr)988  static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
989  			     u16 txerr, u16 rxerr)
990  {
991  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
992  	struct net_device_stats *stats = &ndev->stats;
993  	struct can_frame *cf;
994  	struct sk_buff *skb;
995  	u32 ch = priv->channel;
996  
997  	netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
998  
999  	/* Propagate the error condition to the CAN stack */
1000  	skb = alloc_can_err_skb(ndev, &cf);
1001  	if (!skb) {
1002  		stats->rx_dropped++;
1003  		return;
1004  	}
1005  
1006  	/* Channel error interrupts */
1007  	if (cerfl & RCANFD_CERFL_BEF) {
1008  		netdev_dbg(ndev, "Bus error\n");
1009  		cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1010  		cf->data[2] = CAN_ERR_PROT_UNSPEC;
1011  		priv->can.can_stats.bus_error++;
1012  	}
1013  	if (cerfl & RCANFD_CERFL_ADERR) {
1014  		netdev_dbg(ndev, "ACK Delimiter Error\n");
1015  		stats->tx_errors++;
1016  		cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1017  	}
1018  	if (cerfl & RCANFD_CERFL_B0ERR) {
1019  		netdev_dbg(ndev, "Bit Error (dominant)\n");
1020  		stats->tx_errors++;
1021  		cf->data[2] |= CAN_ERR_PROT_BIT0;
1022  	}
1023  	if (cerfl & RCANFD_CERFL_B1ERR) {
1024  		netdev_dbg(ndev, "Bit Error (recessive)\n");
1025  		stats->tx_errors++;
1026  		cf->data[2] |= CAN_ERR_PROT_BIT1;
1027  	}
1028  	if (cerfl & RCANFD_CERFL_CERR) {
1029  		netdev_dbg(ndev, "CRC Error\n");
1030  		stats->rx_errors++;
1031  		cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1032  	}
1033  	if (cerfl & RCANFD_CERFL_AERR) {
1034  		netdev_dbg(ndev, "ACK Error\n");
1035  		stats->tx_errors++;
1036  		cf->can_id |= CAN_ERR_ACK;
1037  		cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1038  	}
1039  	if (cerfl & RCANFD_CERFL_FERR) {
1040  		netdev_dbg(ndev, "Form Error\n");
1041  		stats->rx_errors++;
1042  		cf->data[2] |= CAN_ERR_PROT_FORM;
1043  	}
1044  	if (cerfl & RCANFD_CERFL_SERR) {
1045  		netdev_dbg(ndev, "Stuff Error\n");
1046  		stats->rx_errors++;
1047  		cf->data[2] |= CAN_ERR_PROT_STUFF;
1048  	}
1049  	if (cerfl & RCANFD_CERFL_ALF) {
1050  		netdev_dbg(ndev, "Arbitration lost Error\n");
1051  		priv->can.can_stats.arbitration_lost++;
1052  		cf->can_id |= CAN_ERR_LOSTARB;
1053  		cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1054  	}
1055  	if (cerfl & RCANFD_CERFL_BLF) {
1056  		netdev_dbg(ndev, "Bus Lock Error\n");
1057  		stats->rx_errors++;
1058  		cf->can_id |= CAN_ERR_BUSERROR;
1059  	}
1060  	if (cerfl & RCANFD_CERFL_EWF) {
1061  		netdev_dbg(ndev, "Error warning interrupt\n");
1062  		priv->can.state = CAN_STATE_ERROR_WARNING;
1063  		priv->can.can_stats.error_warning++;
1064  		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1065  		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1066  			CAN_ERR_CRTL_RX_WARNING;
1067  		cf->data[6] = txerr;
1068  		cf->data[7] = rxerr;
1069  	}
1070  	if (cerfl & RCANFD_CERFL_EPF) {
1071  		netdev_dbg(ndev, "Error passive interrupt\n");
1072  		priv->can.state = CAN_STATE_ERROR_PASSIVE;
1073  		priv->can.can_stats.error_passive++;
1074  		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1075  		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1076  			CAN_ERR_CRTL_RX_PASSIVE;
1077  		cf->data[6] = txerr;
1078  		cf->data[7] = rxerr;
1079  	}
1080  	if (cerfl & RCANFD_CERFL_BOEF) {
1081  		netdev_dbg(ndev, "Bus-off entry interrupt\n");
1082  		rcar_canfd_tx_failure_cleanup(ndev);
1083  		priv->can.state = CAN_STATE_BUS_OFF;
1084  		priv->can.can_stats.bus_off++;
1085  		can_bus_off(ndev);
1086  		cf->can_id |= CAN_ERR_BUSOFF;
1087  	}
1088  	if (cerfl & RCANFD_CERFL_OVLF) {
1089  		netdev_dbg(ndev,
1090  			   "Overload Frame Transmission error interrupt\n");
1091  		stats->tx_errors++;
1092  		cf->can_id |= CAN_ERR_PROT;
1093  		cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1094  	}
1095  
1096  	/* Clear channel error interrupts that are handled */
1097  	rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1098  			 RCANFD_CERFL_ERR(~cerfl));
1099  	netif_rx(skb);
1100  }
1101  
rcar_canfd_tx_done(struct net_device * ndev)1102  static void rcar_canfd_tx_done(struct net_device *ndev)
1103  {
1104  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1105  	struct rcar_canfd_global *gpriv = priv->gpriv;
1106  	struct net_device_stats *stats = &ndev->stats;
1107  	u32 sts;
1108  	unsigned long flags;
1109  	u32 ch = priv->channel;
1110  
1111  	do {
1112  		u8 unsent, sent;
1113  
1114  		sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1115  		stats->tx_packets++;
1116  		stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1117  
1118  		spin_lock_irqsave(&priv->tx_lock, flags);
1119  		priv->tx_tail++;
1120  		sts = rcar_canfd_read(priv->base,
1121  				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1122  		unsent = RCANFD_CFSTS_CFMC(sts);
1123  
1124  		/* Wake producer only when there is room */
1125  		if (unsent != RCANFD_FIFO_DEPTH)
1126  			netif_wake_queue(ndev);
1127  
1128  		if (priv->tx_head - priv->tx_tail <= unsent) {
1129  			spin_unlock_irqrestore(&priv->tx_lock, flags);
1130  			break;
1131  		}
1132  		spin_unlock_irqrestore(&priv->tx_lock, flags);
1133  
1134  	} while (1);
1135  
1136  	/* Clear interrupt */
1137  	rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1138  			 sts & ~RCANFD_CFSTS_CFTXIF);
1139  }
1140  
rcar_canfd_handle_global_err(struct rcar_canfd_global * gpriv,u32 ch)1141  static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1142  {
1143  	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1144  	struct net_device *ndev = priv->ndev;
1145  	u32 gerfl;
1146  
1147  	/* Handle global error interrupts */
1148  	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1149  	if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1150  		rcar_canfd_global_error(ndev);
1151  }
1152  
rcar_canfd_global_err_interrupt(int irq,void * dev_id)1153  static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1154  {
1155  	struct rcar_canfd_global *gpriv = dev_id;
1156  	u32 ch;
1157  
1158  	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1159  		rcar_canfd_handle_global_err(gpriv, ch);
1160  
1161  	return IRQ_HANDLED;
1162  }
1163  
rcar_canfd_handle_global_receive(struct rcar_canfd_global * gpriv,u32 ch)1164  static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1165  {
1166  	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1167  	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1168  	u32 sts, cc;
1169  
1170  	/* Handle Rx interrupts */
1171  	sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1172  	cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
1173  	if (likely(sts & RCANFD_RFSTS_RFIF &&
1174  		   cc & RCANFD_RFCC_RFIE)) {
1175  		if (napi_schedule_prep(&priv->napi)) {
1176  			/* Disable Rx FIFO interrupts */
1177  			rcar_canfd_clear_bit(priv->base,
1178  					     RCANFD_RFCC(gpriv, ridx),
1179  					     RCANFD_RFCC_RFIE);
1180  			__napi_schedule(&priv->napi);
1181  		}
1182  	}
1183  }
1184  
rcar_canfd_global_receive_fifo_interrupt(int irq,void * dev_id)1185  static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1186  {
1187  	struct rcar_canfd_global *gpriv = dev_id;
1188  	u32 ch;
1189  
1190  	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1191  		rcar_canfd_handle_global_receive(gpriv, ch);
1192  
1193  	return IRQ_HANDLED;
1194  }
1195  
rcar_canfd_global_interrupt(int irq,void * dev_id)1196  static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1197  {
1198  	struct rcar_canfd_global *gpriv = dev_id;
1199  	u32 ch;
1200  
1201  	/* Global error interrupts still indicate a condition specific
1202  	 * to a channel. RxFIFO interrupt is a global interrupt.
1203  	 */
1204  	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1205  		rcar_canfd_handle_global_err(gpriv, ch);
1206  		rcar_canfd_handle_global_receive(gpriv, ch);
1207  	}
1208  	return IRQ_HANDLED;
1209  }
1210  
rcar_canfd_state_change(struct net_device * ndev,u16 txerr,u16 rxerr)1211  static void rcar_canfd_state_change(struct net_device *ndev,
1212  				    u16 txerr, u16 rxerr)
1213  {
1214  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1215  	struct net_device_stats *stats = &ndev->stats;
1216  	enum can_state rx_state, tx_state, state = priv->can.state;
1217  	struct can_frame *cf;
1218  	struct sk_buff *skb;
1219  
1220  	/* Handle transition from error to normal states */
1221  	if (txerr < 96 && rxerr < 96)
1222  		state = CAN_STATE_ERROR_ACTIVE;
1223  	else if (txerr < 128 && rxerr < 128)
1224  		state = CAN_STATE_ERROR_WARNING;
1225  
1226  	if (state != priv->can.state) {
1227  		netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1228  			   state, priv->can.state, txerr, rxerr);
1229  		skb = alloc_can_err_skb(ndev, &cf);
1230  		if (!skb) {
1231  			stats->rx_dropped++;
1232  			return;
1233  		}
1234  		tx_state = txerr >= rxerr ? state : 0;
1235  		rx_state = txerr <= rxerr ? state : 0;
1236  
1237  		can_change_state(ndev, cf, tx_state, rx_state);
1238  		netif_rx(skb);
1239  	}
1240  }
1241  
rcar_canfd_handle_channel_tx(struct rcar_canfd_global * gpriv,u32 ch)1242  static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1243  {
1244  	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1245  	struct net_device *ndev = priv->ndev;
1246  	u32 sts;
1247  
1248  	/* Handle Tx interrupts */
1249  	sts = rcar_canfd_read(priv->base,
1250  			      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1251  	if (likely(sts & RCANFD_CFSTS_CFTXIF))
1252  		rcar_canfd_tx_done(ndev);
1253  }
1254  
rcar_canfd_channel_tx_interrupt(int irq,void * dev_id)1255  static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1256  {
1257  	struct rcar_canfd_channel *priv = dev_id;
1258  
1259  	rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
1260  
1261  	return IRQ_HANDLED;
1262  }
1263  
rcar_canfd_handle_channel_err(struct rcar_canfd_global * gpriv,u32 ch)1264  static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1265  {
1266  	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1267  	struct net_device *ndev = priv->ndev;
1268  	u16 txerr, rxerr;
1269  	u32 sts, cerfl;
1270  
1271  	/* Handle channel error interrupts */
1272  	cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1273  	sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1274  	txerr = RCANFD_CSTS_TECCNT(sts);
1275  	rxerr = RCANFD_CSTS_RECCNT(sts);
1276  	if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1277  		rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1278  
1279  	/* Handle state change to lower states */
1280  	if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1281  		     priv->can.state != CAN_STATE_BUS_OFF))
1282  		rcar_canfd_state_change(ndev, txerr, rxerr);
1283  }
1284  
rcar_canfd_channel_err_interrupt(int irq,void * dev_id)1285  static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1286  {
1287  	struct rcar_canfd_channel *priv = dev_id;
1288  
1289  	rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
1290  
1291  	return IRQ_HANDLED;
1292  }
1293  
rcar_canfd_channel_interrupt(int irq,void * dev_id)1294  static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1295  {
1296  	struct rcar_canfd_global *gpriv = dev_id;
1297  	u32 ch;
1298  
1299  	/* Common FIFO is a per channel resource */
1300  	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1301  		rcar_canfd_handle_channel_err(gpriv, ch);
1302  		rcar_canfd_handle_channel_tx(gpriv, ch);
1303  	}
1304  
1305  	return IRQ_HANDLED;
1306  }
1307  
rcar_canfd_set_bittiming(struct net_device * dev)1308  static void rcar_canfd_set_bittiming(struct net_device *dev)
1309  {
1310  	struct rcar_canfd_channel *priv = netdev_priv(dev);
1311  	struct rcar_canfd_global *gpriv = priv->gpriv;
1312  	const struct can_bittiming *bt = &priv->can.bittiming;
1313  	const struct can_bittiming *dbt = &priv->can.data_bittiming;
1314  	u16 brp, sjw, tseg1, tseg2;
1315  	u32 cfg;
1316  	u32 ch = priv->channel;
1317  
1318  	/* Nominal bit timing settings */
1319  	brp = bt->brp - 1;
1320  	sjw = bt->sjw - 1;
1321  	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1322  	tseg2 = bt->phase_seg2 - 1;
1323  
1324  	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1325  		/* CAN FD only mode */
1326  		cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1327  		       RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1328  
1329  		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1330  		netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1331  			   brp, sjw, tseg1, tseg2);
1332  
1333  		/* Data bit timing settings */
1334  		brp = dbt->brp - 1;
1335  		sjw = dbt->sjw - 1;
1336  		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1337  		tseg2 = dbt->phase_seg2 - 1;
1338  
1339  		cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1340  		       RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1341  
1342  		rcar_canfd_write(priv->base, RCANFD_F_DCFG(gpriv, ch), cfg);
1343  		netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1344  			   brp, sjw, tseg1, tseg2);
1345  	} else {
1346  		/* Classical CAN only mode */
1347  		if (is_gen4(gpriv)) {
1348  			cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
1349  			       RCANFD_NCFG_NBRP(brp) |
1350  			       RCANFD_NCFG_NSJW(gpriv, sjw) |
1351  			       RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1352  		} else {
1353  			cfg = (RCANFD_CFG_TSEG1(tseg1) |
1354  			       RCANFD_CFG_BRP(brp) |
1355  			       RCANFD_CFG_SJW(sjw) |
1356  			       RCANFD_CFG_TSEG2(tseg2));
1357  		}
1358  
1359  		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1360  		netdev_dbg(priv->ndev,
1361  			   "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1362  			   brp, sjw, tseg1, tseg2);
1363  	}
1364  }
1365  
rcar_canfd_start(struct net_device * ndev)1366  static int rcar_canfd_start(struct net_device *ndev)
1367  {
1368  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1369  	struct rcar_canfd_global *gpriv = priv->gpriv;
1370  	int err = -EOPNOTSUPP;
1371  	u32 sts, ch = priv->channel;
1372  	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1373  
1374  	rcar_canfd_set_bittiming(ndev);
1375  
1376  	rcar_canfd_enable_channel_interrupts(priv);
1377  
1378  	/* Set channel to Operational mode */
1379  	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1380  			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1381  
1382  	/* Verify channel mode change */
1383  	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1384  				 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1385  	if (err) {
1386  		netdev_err(ndev, "channel %u communication state failed\n", ch);
1387  		goto fail_mode_change;
1388  	}
1389  
1390  	/* Enable Common & Rx FIFO */
1391  	rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1392  			   RCANFD_CFCC_CFE);
1393  	rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1394  
1395  	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1396  	return 0;
1397  
1398  fail_mode_change:
1399  	rcar_canfd_disable_channel_interrupts(priv);
1400  	return err;
1401  }
1402  
rcar_canfd_open(struct net_device * ndev)1403  static int rcar_canfd_open(struct net_device *ndev)
1404  {
1405  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1406  	struct rcar_canfd_global *gpriv = priv->gpriv;
1407  	int err;
1408  
1409  	err = phy_power_on(priv->transceiver);
1410  	if (err) {
1411  		netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err));
1412  		return err;
1413  	}
1414  
1415  	/* Peripheral clock is already enabled in probe */
1416  	err = clk_prepare_enable(gpriv->can_clk);
1417  	if (err) {
1418  		netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err));
1419  		goto out_phy;
1420  	}
1421  
1422  	err = open_candev(ndev);
1423  	if (err) {
1424  		netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err));
1425  		goto out_can_clock;
1426  	}
1427  
1428  	napi_enable(&priv->napi);
1429  	err = rcar_canfd_start(ndev);
1430  	if (err)
1431  		goto out_close;
1432  	netif_start_queue(ndev);
1433  	return 0;
1434  out_close:
1435  	napi_disable(&priv->napi);
1436  	close_candev(ndev);
1437  out_can_clock:
1438  	clk_disable_unprepare(gpriv->can_clk);
1439  out_phy:
1440  	phy_power_off(priv->transceiver);
1441  	return err;
1442  }
1443  
rcar_canfd_stop(struct net_device * ndev)1444  static void rcar_canfd_stop(struct net_device *ndev)
1445  {
1446  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1447  	struct rcar_canfd_global *gpriv = priv->gpriv;
1448  	int err;
1449  	u32 sts, ch = priv->channel;
1450  	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1451  
1452  	/* Transition to channel reset mode  */
1453  	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1454  			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1455  
1456  	/* Check Channel reset mode */
1457  	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1458  				 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1459  	if (err)
1460  		netdev_err(ndev, "channel %u reset failed\n", ch);
1461  
1462  	rcar_canfd_disable_channel_interrupts(priv);
1463  
1464  	/* Disable Common & Rx FIFO */
1465  	rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1466  			     RCANFD_CFCC_CFE);
1467  	rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1468  
1469  	/* Set the state as STOPPED */
1470  	priv->can.state = CAN_STATE_STOPPED;
1471  }
1472  
rcar_canfd_close(struct net_device * ndev)1473  static int rcar_canfd_close(struct net_device *ndev)
1474  {
1475  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1476  	struct rcar_canfd_global *gpriv = priv->gpriv;
1477  
1478  	netif_stop_queue(ndev);
1479  	rcar_canfd_stop(ndev);
1480  	napi_disable(&priv->napi);
1481  	clk_disable_unprepare(gpriv->can_clk);
1482  	close_candev(ndev);
1483  	phy_power_off(priv->transceiver);
1484  	return 0;
1485  }
1486  
rcar_canfd_start_xmit(struct sk_buff * skb,struct net_device * ndev)1487  static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1488  					 struct net_device *ndev)
1489  {
1490  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1491  	struct rcar_canfd_global *gpriv = priv->gpriv;
1492  	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1493  	u32 sts = 0, id, dlc;
1494  	unsigned long flags;
1495  	u32 ch = priv->channel;
1496  
1497  	if (can_dev_dropped_skb(ndev, skb))
1498  		return NETDEV_TX_OK;
1499  
1500  	if (cf->can_id & CAN_EFF_FLAG) {
1501  		id = cf->can_id & CAN_EFF_MASK;
1502  		id |= RCANFD_CFID_CFIDE;
1503  	} else {
1504  		id = cf->can_id & CAN_SFF_MASK;
1505  	}
1506  
1507  	if (cf->can_id & CAN_RTR_FLAG)
1508  		id |= RCANFD_CFID_CFRTR;
1509  
1510  	dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1511  
1512  	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) {
1513  		rcar_canfd_write(priv->base,
1514  				 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1515  		rcar_canfd_write(priv->base,
1516  				 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1517  
1518  		if (can_is_canfd_skb(skb)) {
1519  			/* CAN FD frame format */
1520  			sts |= RCANFD_CFFDCSTS_CFFDF;
1521  			if (cf->flags & CANFD_BRS)
1522  				sts |= RCANFD_CFFDCSTS_CFBRS;
1523  
1524  			if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1525  				sts |= RCANFD_CFFDCSTS_CFESI;
1526  		}
1527  
1528  		rcar_canfd_write(priv->base,
1529  				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1530  
1531  		rcar_canfd_put_data(priv, cf,
1532  				    RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1533  	} else {
1534  		rcar_canfd_write(priv->base,
1535  				 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1536  		rcar_canfd_write(priv->base,
1537  				 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1538  		rcar_canfd_put_data(priv, cf,
1539  				    RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1540  	}
1541  
1542  	can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1543  
1544  	spin_lock_irqsave(&priv->tx_lock, flags);
1545  	priv->tx_head++;
1546  
1547  	/* Stop the queue if we've filled all FIFO entries */
1548  	if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1549  		netif_stop_queue(ndev);
1550  
1551  	/* Start Tx: Write 0xff to CFPC to increment the CPU-side
1552  	 * pointer for the Common FIFO
1553  	 */
1554  	rcar_canfd_write(priv->base,
1555  			 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1556  
1557  	spin_unlock_irqrestore(&priv->tx_lock, flags);
1558  	return NETDEV_TX_OK;
1559  }
1560  
rcar_canfd_rx_pkt(struct rcar_canfd_channel * priv)1561  static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1562  {
1563  	struct net_device_stats *stats = &priv->ndev->stats;
1564  	struct rcar_canfd_global *gpriv = priv->gpriv;
1565  	struct canfd_frame *cf;
1566  	struct sk_buff *skb;
1567  	u32 sts = 0, id, dlc;
1568  	u32 ch = priv->channel;
1569  	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1570  
1571  	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) {
1572  		id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1573  		dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1574  
1575  		sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1576  
1577  		if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1578  		    sts & RCANFD_RFFDSTS_RFFDF)
1579  			skb = alloc_canfd_skb(priv->ndev, &cf);
1580  		else
1581  			skb = alloc_can_skb(priv->ndev,
1582  					    (struct can_frame **)&cf);
1583  	} else {
1584  		id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1585  		dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1586  		skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1587  	}
1588  
1589  	if (!skb) {
1590  		stats->rx_dropped++;
1591  		return;
1592  	}
1593  
1594  	if (id & RCANFD_RFID_RFIDE)
1595  		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1596  	else
1597  		cf->can_id = id & CAN_SFF_MASK;
1598  
1599  	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1600  		if (sts & RCANFD_RFFDSTS_RFFDF)
1601  			cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1602  		else
1603  			cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1604  
1605  		if (sts & RCANFD_RFFDSTS_RFESI) {
1606  			cf->flags |= CANFD_ESI;
1607  			netdev_dbg(priv->ndev, "ESI Error\n");
1608  		}
1609  
1610  		if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1611  			cf->can_id |= CAN_RTR_FLAG;
1612  		} else {
1613  			if (sts & RCANFD_RFFDSTS_RFBRS)
1614  				cf->flags |= CANFD_BRS;
1615  
1616  			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1617  		}
1618  	} else {
1619  		cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1620  		if (id & RCANFD_RFID_RFRTR)
1621  			cf->can_id |= CAN_RTR_FLAG;
1622  		else if (is_gen4(gpriv))
1623  			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1624  		else
1625  			rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1626  	}
1627  
1628  	/* Write 0xff to RFPC to increment the CPU-side
1629  	 * pointer of the Rx FIFO
1630  	 */
1631  	rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1632  
1633  	if (!(cf->can_id & CAN_RTR_FLAG))
1634  		stats->rx_bytes += cf->len;
1635  	stats->rx_packets++;
1636  	netif_receive_skb(skb);
1637  }
1638  
rcar_canfd_rx_poll(struct napi_struct * napi,int quota)1639  static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1640  {
1641  	struct rcar_canfd_channel *priv =
1642  		container_of(napi, struct rcar_canfd_channel, napi);
1643  	struct rcar_canfd_global *gpriv = priv->gpriv;
1644  	int num_pkts;
1645  	u32 sts;
1646  	u32 ch = priv->channel;
1647  	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1648  
1649  	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1650  		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1651  		/* Check FIFO empty condition */
1652  		if (sts & RCANFD_RFSTS_RFEMP)
1653  			break;
1654  
1655  		rcar_canfd_rx_pkt(priv);
1656  
1657  		/* Clear interrupt bit */
1658  		if (sts & RCANFD_RFSTS_RFIF)
1659  			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1660  					 sts & ~RCANFD_RFSTS_RFIF);
1661  	}
1662  
1663  	/* All packets processed */
1664  	if (num_pkts < quota) {
1665  		if (napi_complete_done(napi, num_pkts)) {
1666  			/* Enable Rx FIFO interrupts */
1667  			rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1668  					   RCANFD_RFCC_RFIE);
1669  		}
1670  	}
1671  	return num_pkts;
1672  }
1673  
rcar_canfd_do_set_mode(struct net_device * ndev,enum can_mode mode)1674  static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1675  {
1676  	int err;
1677  
1678  	switch (mode) {
1679  	case CAN_MODE_START:
1680  		err = rcar_canfd_start(ndev);
1681  		if (err)
1682  			return err;
1683  		netif_wake_queue(ndev);
1684  		return 0;
1685  	default:
1686  		return -EOPNOTSUPP;
1687  	}
1688  }
1689  
rcar_canfd_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)1690  static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1691  				       struct can_berr_counter *bec)
1692  {
1693  	struct rcar_canfd_channel *priv = netdev_priv(dev);
1694  	u32 val, ch = priv->channel;
1695  
1696  	/* Peripheral clock is already enabled in probe */
1697  	val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1698  	bec->txerr = RCANFD_CSTS_TECCNT(val);
1699  	bec->rxerr = RCANFD_CSTS_RECCNT(val);
1700  	return 0;
1701  }
1702  
1703  static const struct net_device_ops rcar_canfd_netdev_ops = {
1704  	.ndo_open = rcar_canfd_open,
1705  	.ndo_stop = rcar_canfd_close,
1706  	.ndo_start_xmit = rcar_canfd_start_xmit,
1707  	.ndo_change_mtu = can_change_mtu,
1708  };
1709  
1710  static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1711  	.get_ts_info = ethtool_op_get_ts_info,
1712  };
1713  
rcar_canfd_channel_probe(struct rcar_canfd_global * gpriv,u32 ch,u32 fcan_freq,struct phy * transceiver)1714  static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1715  				    u32 fcan_freq, struct phy *transceiver)
1716  {
1717  	const struct rcar_canfd_hw_info *info = gpriv->info;
1718  	struct platform_device *pdev = gpriv->pdev;
1719  	struct device *dev = &pdev->dev;
1720  	struct rcar_canfd_channel *priv;
1721  	struct net_device *ndev;
1722  	int err = -ENODEV;
1723  
1724  	ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1725  	if (!ndev)
1726  		return -ENOMEM;
1727  
1728  	priv = netdev_priv(ndev);
1729  
1730  	ndev->netdev_ops = &rcar_canfd_netdev_ops;
1731  	ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1732  	ndev->flags |= IFF_ECHO;
1733  	priv->ndev = ndev;
1734  	priv->base = gpriv->base;
1735  	priv->transceiver = transceiver;
1736  	priv->channel = ch;
1737  	priv->gpriv = gpriv;
1738  	if (transceiver)
1739  		priv->can.bitrate_max = transceiver->attrs.max_link_rate;
1740  	priv->can.clock.freq = fcan_freq;
1741  	dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq);
1742  
1743  	if (info->multi_channel_irqs) {
1744  		char *irq_name;
1745  		int err_irq;
1746  		int tx_irq;
1747  
1748  		err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
1749  		if (err_irq < 0) {
1750  			err = err_irq;
1751  			goto fail;
1752  		}
1753  
1754  		tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
1755  		if (tx_irq < 0) {
1756  			err = tx_irq;
1757  			goto fail;
1758  		}
1759  
1760  		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err",
1761  					  ch);
1762  		if (!irq_name) {
1763  			err = -ENOMEM;
1764  			goto fail;
1765  		}
1766  		err = devm_request_irq(dev, err_irq,
1767  				       rcar_canfd_channel_err_interrupt, 0,
1768  				       irq_name, priv);
1769  		if (err) {
1770  			dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n",
1771  				err_irq, ERR_PTR(err));
1772  			goto fail;
1773  		}
1774  		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx",
1775  					  ch);
1776  		if (!irq_name) {
1777  			err = -ENOMEM;
1778  			goto fail;
1779  		}
1780  		err = devm_request_irq(dev, tx_irq,
1781  				       rcar_canfd_channel_tx_interrupt, 0,
1782  				       irq_name, priv);
1783  		if (err) {
1784  			dev_err(dev, "devm_request_irq Tx %d failed: %pe\n",
1785  				tx_irq, ERR_PTR(err));
1786  			goto fail;
1787  		}
1788  	}
1789  
1790  	if (gpriv->fdmode) {
1791  		priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1792  		priv->can.data_bittiming_const =
1793  			&rcar_canfd_data_bittiming_const;
1794  
1795  		/* Controller starts in CAN FD only mode */
1796  		err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1797  		if (err)
1798  			goto fail;
1799  		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1800  	} else {
1801  		/* Controller starts in Classical CAN only mode */
1802  		priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1803  		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1804  	}
1805  
1806  	priv->can.do_set_mode = rcar_canfd_do_set_mode;
1807  	priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1808  	SET_NETDEV_DEV(ndev, dev);
1809  
1810  	netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1811  			      RCANFD_NAPI_WEIGHT);
1812  	spin_lock_init(&priv->tx_lock);
1813  	gpriv->ch[priv->channel] = priv;
1814  	err = register_candev(ndev);
1815  	if (err) {
1816  		dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err));
1817  		goto fail_candev;
1818  	}
1819  	dev_info(dev, "device registered (channel %u)\n", priv->channel);
1820  	return 0;
1821  
1822  fail_candev:
1823  	netif_napi_del(&priv->napi);
1824  fail:
1825  	free_candev(ndev);
1826  	return err;
1827  }
1828  
rcar_canfd_channel_remove(struct rcar_canfd_global * gpriv,u32 ch)1829  static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1830  {
1831  	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1832  
1833  	if (priv) {
1834  		unregister_candev(priv->ndev);
1835  		netif_napi_del(&priv->napi);
1836  		free_candev(priv->ndev);
1837  	}
1838  }
1839  
rcar_canfd_probe(struct platform_device * pdev)1840  static int rcar_canfd_probe(struct platform_device *pdev)
1841  {
1842  	struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, };
1843  	const struct rcar_canfd_hw_info *info;
1844  	struct device *dev = &pdev->dev;
1845  	void __iomem *addr;
1846  	u32 sts, ch, fcan_freq;
1847  	struct rcar_canfd_global *gpriv;
1848  	struct device_node *of_child;
1849  	unsigned long channels_mask = 0;
1850  	int err, ch_irq, g_irq;
1851  	int g_err_irq, g_recc_irq;
1852  	u32 rule_entry = 0;
1853  	bool fdmode = true;			/* CAN FD only mode - default */
1854  	char name[9] = "channelX";
1855  	int i;
1856  
1857  	info = of_device_get_match_data(dev);
1858  
1859  	if (of_property_read_bool(dev->of_node, "renesas,no-can-fd"))
1860  		fdmode = false;			/* Classical CAN only mode */
1861  
1862  	for (i = 0; i < info->max_channels; ++i) {
1863  		name[7] = '0' + i;
1864  		of_child = of_get_child_by_name(dev->of_node, name);
1865  		if (of_child && of_device_is_available(of_child)) {
1866  			channels_mask |= BIT(i);
1867  			transceivers[i] = devm_of_phy_optional_get(dev,
1868  							of_child, NULL);
1869  		}
1870  		of_node_put(of_child);
1871  		if (IS_ERR(transceivers[i]))
1872  			return PTR_ERR(transceivers[i]);
1873  	}
1874  
1875  	if (info->shared_global_irqs) {
1876  		ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
1877  		if (ch_irq < 0) {
1878  			/* For backward compatibility get irq by index */
1879  			ch_irq = platform_get_irq(pdev, 0);
1880  			if (ch_irq < 0)
1881  				return ch_irq;
1882  		}
1883  
1884  		g_irq = platform_get_irq_byname_optional(pdev, "g_int");
1885  		if (g_irq < 0) {
1886  			/* For backward compatibility get irq by index */
1887  			g_irq = platform_get_irq(pdev, 1);
1888  			if (g_irq < 0)
1889  				return g_irq;
1890  		}
1891  	} else {
1892  		g_err_irq = platform_get_irq_byname(pdev, "g_err");
1893  		if (g_err_irq < 0)
1894  			return g_err_irq;
1895  
1896  		g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
1897  		if (g_recc_irq < 0)
1898  			return g_recc_irq;
1899  	}
1900  
1901  	/* Global controller context */
1902  	gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL);
1903  	if (!gpriv)
1904  		return -ENOMEM;
1905  
1906  	gpriv->pdev = pdev;
1907  	gpriv->channels_mask = channels_mask;
1908  	gpriv->fdmode = fdmode;
1909  	gpriv->info = info;
1910  
1911  	gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n");
1912  	if (IS_ERR(gpriv->rstc1))
1913  		return dev_err_probe(dev, PTR_ERR(gpriv->rstc1),
1914  				     "failed to get rstp_n\n");
1915  
1916  	gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n");
1917  	if (IS_ERR(gpriv->rstc2))
1918  		return dev_err_probe(dev, PTR_ERR(gpriv->rstc2),
1919  				     "failed to get rstc_n\n");
1920  
1921  	/* Peripheral clock */
1922  	gpriv->clkp = devm_clk_get(dev, "fck");
1923  	if (IS_ERR(gpriv->clkp))
1924  		return dev_err_probe(dev, PTR_ERR(gpriv->clkp),
1925  				     "cannot get peripheral clock\n");
1926  
1927  	/* fCAN clock: Pick External clock. If not available fallback to
1928  	 * CANFD clock
1929  	 */
1930  	gpriv->can_clk = devm_clk_get(dev, "can_clk");
1931  	if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1932  		gpriv->can_clk = devm_clk_get(dev, "canfd");
1933  		if (IS_ERR(gpriv->can_clk))
1934  			return dev_err_probe(dev, PTR_ERR(gpriv->can_clk),
1935  					     "cannot get canfd clock\n");
1936  
1937  		gpriv->fcan = RCANFD_CANFDCLK;
1938  
1939  	} else {
1940  		gpriv->fcan = RCANFD_EXTCLK;
1941  	}
1942  	fcan_freq = clk_get_rate(gpriv->can_clk);
1943  
1944  	if (gpriv->fcan == RCANFD_CANFDCLK)
1945  		/* CANFD clock is further divided by (1/2) within the IP */
1946  		fcan_freq /= info->postdiv;
1947  
1948  	addr = devm_platform_ioremap_resource(pdev, 0);
1949  	if (IS_ERR(addr)) {
1950  		err = PTR_ERR(addr);
1951  		goto fail_dev;
1952  	}
1953  	gpriv->base = addr;
1954  
1955  	/* Request IRQ that's common for both channels */
1956  	if (info->shared_global_irqs) {
1957  		err = devm_request_irq(dev, ch_irq,
1958  				       rcar_canfd_channel_interrupt, 0,
1959  				       "canfd.ch_int", gpriv);
1960  		if (err) {
1961  			dev_err(dev, "devm_request_irq %d failed: %pe\n",
1962  				ch_irq, ERR_PTR(err));
1963  			goto fail_dev;
1964  		}
1965  
1966  		err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt,
1967  				       0, "canfd.g_int", gpriv);
1968  		if (err) {
1969  			dev_err(dev, "devm_request_irq %d failed: %pe\n",
1970  				g_irq, ERR_PTR(err));
1971  			goto fail_dev;
1972  		}
1973  	} else {
1974  		err = devm_request_irq(dev, g_recc_irq,
1975  				       rcar_canfd_global_receive_fifo_interrupt, 0,
1976  				       "canfd.g_recc", gpriv);
1977  
1978  		if (err) {
1979  			dev_err(dev, "devm_request_irq %d failed: %pe\n",
1980  				g_recc_irq, ERR_PTR(err));
1981  			goto fail_dev;
1982  		}
1983  
1984  		err = devm_request_irq(dev, g_err_irq,
1985  				       rcar_canfd_global_err_interrupt, 0,
1986  				       "canfd.g_err", gpriv);
1987  		if (err) {
1988  			dev_err(dev, "devm_request_irq %d failed: %pe\n",
1989  				g_err_irq, ERR_PTR(err));
1990  			goto fail_dev;
1991  		}
1992  	}
1993  
1994  	err = reset_control_reset(gpriv->rstc1);
1995  	if (err)
1996  		goto fail_dev;
1997  	err = reset_control_reset(gpriv->rstc2);
1998  	if (err) {
1999  		reset_control_assert(gpriv->rstc1);
2000  		goto fail_dev;
2001  	}
2002  
2003  	/* Enable peripheral clock for register access */
2004  	err = clk_prepare_enable(gpriv->clkp);
2005  	if (err) {
2006  		dev_err(dev, "failed to enable peripheral clock: %pe\n",
2007  			ERR_PTR(err));
2008  		goto fail_reset;
2009  	}
2010  
2011  	err = rcar_canfd_reset_controller(gpriv);
2012  	if (err) {
2013  		dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err));
2014  		goto fail_clk;
2015  	}
2016  
2017  	/* Controller in Global reset & Channel reset mode */
2018  	rcar_canfd_configure_controller(gpriv);
2019  
2020  	/* Configure per channel attributes */
2021  	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2022  		/* Configure Channel's Rx fifo */
2023  		rcar_canfd_configure_rx(gpriv, ch);
2024  
2025  		/* Configure Channel's Tx (Common) fifo */
2026  		rcar_canfd_configure_tx(gpriv, ch);
2027  
2028  		/* Configure receive rules */
2029  		rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry);
2030  		rule_entry += RCANFD_CHANNEL_NUMRULES;
2031  	}
2032  
2033  	/* Configure common interrupts */
2034  	rcar_canfd_enable_global_interrupts(gpriv);
2035  
2036  	/* Start Global operation mode */
2037  	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2038  			      RCANFD_GCTR_GMDC_GOPM);
2039  
2040  	/* Verify mode change */
2041  	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2042  				 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2043  	if (err) {
2044  		dev_err(dev, "global operational mode failed\n");
2045  		goto fail_mode;
2046  	}
2047  
2048  	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2049  		err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq,
2050  					       transceivers[ch]);
2051  		if (err)
2052  			goto fail_channel;
2053  	}
2054  
2055  	platform_set_drvdata(pdev, gpriv);
2056  	dev_info(dev, "global operational state (clk %d, fdmode %d)\n",
2057  		 gpriv->fcan, gpriv->fdmode);
2058  	return 0;
2059  
2060  fail_channel:
2061  	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels)
2062  		rcar_canfd_channel_remove(gpriv, ch);
2063  fail_mode:
2064  	rcar_canfd_disable_global_interrupts(gpriv);
2065  fail_clk:
2066  	clk_disable_unprepare(gpriv->clkp);
2067  fail_reset:
2068  	reset_control_assert(gpriv->rstc1);
2069  	reset_control_assert(gpriv->rstc2);
2070  fail_dev:
2071  	return err;
2072  }
2073  
rcar_canfd_remove(struct platform_device * pdev)2074  static void rcar_canfd_remove(struct platform_device *pdev)
2075  {
2076  	struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2077  	u32 ch;
2078  
2079  	rcar_canfd_reset_controller(gpriv);
2080  	rcar_canfd_disable_global_interrupts(gpriv);
2081  
2082  	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2083  		rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2084  		rcar_canfd_channel_remove(gpriv, ch);
2085  	}
2086  
2087  	/* Enter global sleep mode */
2088  	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2089  	clk_disable_unprepare(gpriv->clkp);
2090  	reset_control_assert(gpriv->rstc1);
2091  	reset_control_assert(gpriv->rstc2);
2092  }
2093  
rcar_canfd_suspend(struct device * dev)2094  static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2095  {
2096  	return 0;
2097  }
2098  
rcar_canfd_resume(struct device * dev)2099  static int __maybe_unused rcar_canfd_resume(struct device *dev)
2100  {
2101  	return 0;
2102  }
2103  
2104  static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2105  			 rcar_canfd_resume);
2106  
2107  static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2108  	{ .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info },
2109  	{ .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info },
2110  	{ .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info },
2111  	{ .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info },
2112  	{ }
2113  };
2114  
2115  MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2116  
2117  static struct platform_driver rcar_canfd_driver = {
2118  	.driver = {
2119  		.name = RCANFD_DRV_NAME,
2120  		.of_match_table = of_match_ptr(rcar_canfd_of_table),
2121  		.pm = &rcar_canfd_pm_ops,
2122  	},
2123  	.probe = rcar_canfd_probe,
2124  	.remove_new = rcar_canfd_remove,
2125  };
2126  
2127  module_platform_driver(rcar_canfd_driver);
2128  
2129  MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2130  MODULE_LICENSE("GPL");
2131  MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2132  MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
2133