xref: /openbmc/linux/drivers/net/ethernet/intel/e100.c (revision 7ae9fb1b7ecbb5d85d07857943f677fd1a559b18)
1  // SPDX-License-Identifier: GPL-2.0
2  /* Copyright(c) 1999 - 2006 Intel Corporation. */
3  
4  /*
5   *	e100.c: Intel(R) PRO/100 ethernet driver
6   *
7   *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
8   *	original e100 driver, but better described as a munging of
9   *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
10   *
11   *	References:
12   *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
13   *		Open Source Software Developers Manual,
14   *		http://sourceforge.net/projects/e1000
15   *
16   *
17   *	                      Theory of Operation
18   *
19   *	I.   General
20   *
21   *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
22   *	controller family, which includes the 82557, 82558, 82559, 82550,
23   *	82551, and 82562 devices.  82558 and greater controllers
24   *	integrate the Intel 82555 PHY.  The controllers are used in
25   *	server and client network interface cards, as well as in
26   *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
27   *	configurations.  8255x supports a 32-bit linear addressing
28   *	mode and operates at 33Mhz PCI clock rate.
29   *
30   *	II.  Driver Operation
31   *
32   *	Memory-mapped mode is used exclusively to access the device's
33   *	shared-memory structure, the Control/Status Registers (CSR). All
34   *	setup, configuration, and control of the device, including queuing
35   *	of Tx, Rx, and configuration commands is through the CSR.
36   *	cmd_lock serializes accesses to the CSR command register.  cb_lock
37   *	protects the shared Command Block List (CBL).
38   *
39   *	8255x is highly MII-compliant and all access to the PHY go
40   *	through the Management Data Interface (MDI).  Consequently, the
41   *	driver leverages the mii.c library shared with other MII-compliant
42   *	devices.
43   *
44   *	Big- and Little-Endian byte order as well as 32- and 64-bit
45   *	archs are supported.  Weak-ordered memory and non-cache-coherent
46   *	archs are supported.
47   *
48   *	III. Transmit
49   *
50   *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
51   *	together in a fixed-size ring (CBL) thus forming the flexible mode
52   *	memory structure.  A TCB marked with the suspend-bit indicates
53   *	the end of the ring.  The last TCB processed suspends the
54   *	controller, and the controller can be restarted by issue a CU
55   *	resume command to continue from the suspend point, or a CU start
56   *	command to start at a given position in the ring.
57   *
58   *	Non-Tx commands (config, multicast setup, etc) are linked
59   *	into the CBL ring along with Tx commands.  The common structure
60   *	used for both Tx and non-Tx commands is the Command Block (CB).
61   *
62   *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
63   *	is the next CB to check for completion; cb_to_send is the first
64   *	CB to start on in case of a previous failure to resume.  CB clean
65   *	up happens in interrupt context in response to a CU interrupt.
66   *	cbs_avail keeps track of number of free CB resources available.
67   *
68   * 	Hardware padding of short packets to minimum packet size is
69   * 	enabled.  82557 pads with 7Eh, while the later controllers pad
70   * 	with 00h.
71   *
72   *	IV.  Receive
73   *
74   *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
75   *	Descriptors (RFD) + data buffer, thus forming the simplified mode
76   *	memory structure.  Rx skbs are allocated to contain both the RFD
77   *	and the data buffer, but the RFD is pulled off before the skb is
78   *	indicated.  The data buffer is aligned such that encapsulated
79   *	protocol headers are u32-aligned.  Since the RFD is part of the
80   *	mapped shared memory, and completion status is contained within
81   *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
82   *	view from software and hardware.
83   *
84   *	In order to keep updates to the RFD link field from colliding with
85   *	hardware writes to mark packets complete, we use the feature that
86   *	hardware will not write to a size 0 descriptor and mark the previous
87   *	packet as end-of-list (EL).   After updating the link, we remove EL
88   *	and only then restore the size such that hardware may use the
89   *	previous-to-end RFD.
90   *
91   *	Under typical operation, the  receive unit (RU) is start once,
92   *	and the controller happily fills RFDs as frames arrive.  If
93   *	replacement RFDs cannot be allocated, or the RU goes non-active,
94   *	the RU must be restarted.  Frame arrival generates an interrupt,
95   *	and Rx indication and re-allocation happen in the same context,
96   *	therefore no locking is required.  A software-generated interrupt
97   *	is generated from the watchdog to recover from a failed allocation
98   *	scenario where all Rx resources have been indicated and none re-
99   *	placed.
100   *
101   *	V.   Miscellaneous
102   *
103   * 	VLAN offloading of tagging, stripping and filtering is not
104   * 	supported, but driver will accommodate the extra 4-byte VLAN tag
105   * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
106   * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
107   * 	not supported (hardware limitation).
108   *
109   * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
110   *
111   * 	Thanks to JC (jchapman@katalix.com) for helping with
112   * 	testing/troubleshooting the development driver.
113   *
114   * 	TODO:
115   * 	o several entry points race with dev->close
116   * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
117   *
118   *	FIXES:
119   * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
120   *	- Stratus87247: protect MDI control register manipulations
121   * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
122   *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
123   */
124  
125  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
126  
127  #include <linux/hardirq.h>
128  #include <linux/interrupt.h>
129  #include <linux/module.h>
130  #include <linux/moduleparam.h>
131  #include <linux/kernel.h>
132  #include <linux/types.h>
133  #include <linux/sched.h>
134  #include <linux/slab.h>
135  #include <linux/delay.h>
136  #include <linux/init.h>
137  #include <linux/pci.h>
138  #include <linux/dma-mapping.h>
139  #include <linux/dmapool.h>
140  #include <linux/netdevice.h>
141  #include <linux/etherdevice.h>
142  #include <linux/mii.h>
143  #include <linux/if_vlan.h>
144  #include <linux/skbuff.h>
145  #include <linux/ethtool.h>
146  #include <linux/string.h>
147  #include <linux/firmware.h>
148  #include <linux/rtnetlink.h>
149  #include <asm/unaligned.h>
150  
151  
152  #define DRV_NAME		"e100"
153  #define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
154  #define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
155  
156  #define E100_WATCHDOG_PERIOD	(2 * HZ)
157  #define E100_NAPI_WEIGHT	16
158  
159  #define FIRMWARE_D101M		"e100/d101m_ucode.bin"
160  #define FIRMWARE_D101S		"e100/d101s_ucode.bin"
161  #define FIRMWARE_D102E		"e100/d102e_ucode.bin"
162  
163  MODULE_DESCRIPTION(DRV_DESCRIPTION);
164  MODULE_AUTHOR(DRV_COPYRIGHT);
165  MODULE_LICENSE("GPL v2");
166  MODULE_FIRMWARE(FIRMWARE_D101M);
167  MODULE_FIRMWARE(FIRMWARE_D101S);
168  MODULE_FIRMWARE(FIRMWARE_D102E);
169  
170  static int debug = 3;
171  static int eeprom_bad_csum_allow = 0;
172  static int use_io = 0;
173  module_param(debug, int, 0);
174  module_param(eeprom_bad_csum_allow, int, 0);
175  module_param(use_io, int, 0);
176  MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
177  MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
178  MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
179  
180  #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
181  	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
182  	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
183  static const struct pci_device_id e100_id_table[] = {
184  	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
185  	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
186  	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
187  	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
188  	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
189  	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
190  	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
191  	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
192  	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
193  	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
194  	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
195  	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
196  	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
197  	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
198  	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
199  	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
200  	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
201  	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
202  	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
203  	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
204  	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
205  	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
206  	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
207  	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
208  	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
209  	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
210  	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
211  	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
212  	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
213  	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
214  	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
215  	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
216  	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
217  	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
218  	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
219  	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
220  	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
221  	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
222  	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
223  	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
224  	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
225  	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
226  	{ 0, }
227  };
228  MODULE_DEVICE_TABLE(pci, e100_id_table);
229  
230  enum mac {
231  	mac_82557_D100_A  = 0,
232  	mac_82557_D100_B  = 1,
233  	mac_82557_D100_C  = 2,
234  	mac_82558_D101_A4 = 4,
235  	mac_82558_D101_B0 = 5,
236  	mac_82559_D101M   = 8,
237  	mac_82559_D101S   = 9,
238  	mac_82550_D102    = 12,
239  	mac_82550_D102_C  = 13,
240  	mac_82551_E       = 14,
241  	mac_82551_F       = 15,
242  	mac_82551_10      = 16,
243  	mac_unknown       = 0xFF,
244  };
245  
246  enum phy {
247  	phy_100a     = 0x000003E0,
248  	phy_100c     = 0x035002A8,
249  	phy_82555_tx = 0x015002A8,
250  	phy_nsc_tx   = 0x5C002000,
251  	phy_82562_et = 0x033002A8,
252  	phy_82562_em = 0x032002A8,
253  	phy_82562_ek = 0x031002A8,
254  	phy_82562_eh = 0x017002A8,
255  	phy_82552_v  = 0xd061004d,
256  	phy_unknown  = 0xFFFFFFFF,
257  };
258  
259  /* CSR (Control/Status Registers) */
260  struct csr {
261  	struct {
262  		u8 status;
263  		u8 stat_ack;
264  		u8 cmd_lo;
265  		u8 cmd_hi;
266  		u32 gen_ptr;
267  	} scb;
268  	u32 port;
269  	u16 flash_ctrl;
270  	u8 eeprom_ctrl_lo;
271  	u8 eeprom_ctrl_hi;
272  	u32 mdi_ctrl;
273  	u32 rx_dma_count;
274  };
275  
276  enum scb_status {
277  	rus_no_res       = 0x08,
278  	rus_ready        = 0x10,
279  	rus_mask         = 0x3C,
280  };
281  
282  enum ru_state  {
283  	RU_SUSPENDED = 0,
284  	RU_RUNNING	 = 1,
285  	RU_UNINITIALIZED = -1,
286  };
287  
288  enum scb_stat_ack {
289  	stat_ack_not_ours    = 0x00,
290  	stat_ack_sw_gen      = 0x04,
291  	stat_ack_rnr         = 0x10,
292  	stat_ack_cu_idle     = 0x20,
293  	stat_ack_frame_rx    = 0x40,
294  	stat_ack_cu_cmd_done = 0x80,
295  	stat_ack_not_present = 0xFF,
296  	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
297  	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
298  };
299  
300  enum scb_cmd_hi {
301  	irq_mask_none = 0x00,
302  	irq_mask_all  = 0x01,
303  	irq_sw_gen    = 0x02,
304  };
305  
306  enum scb_cmd_lo {
307  	cuc_nop        = 0x00,
308  	ruc_start      = 0x01,
309  	ruc_load_base  = 0x06,
310  	cuc_start      = 0x10,
311  	cuc_resume     = 0x20,
312  	cuc_dump_addr  = 0x40,
313  	cuc_dump_stats = 0x50,
314  	cuc_load_base  = 0x60,
315  	cuc_dump_reset = 0x70,
316  };
317  
318  enum cuc_dump {
319  	cuc_dump_complete       = 0x0000A005,
320  	cuc_dump_reset_complete = 0x0000A007,
321  };
322  
323  enum port {
324  	software_reset  = 0x0000,
325  	selftest        = 0x0001,
326  	selective_reset = 0x0002,
327  };
328  
329  enum eeprom_ctrl_lo {
330  	eesk = 0x01,
331  	eecs = 0x02,
332  	eedi = 0x04,
333  	eedo = 0x08,
334  };
335  
336  enum mdi_ctrl {
337  	mdi_write = 0x04000000,
338  	mdi_read  = 0x08000000,
339  	mdi_ready = 0x10000000,
340  };
341  
342  enum eeprom_op {
343  	op_write = 0x05,
344  	op_read  = 0x06,
345  	op_ewds  = 0x10,
346  	op_ewen  = 0x13,
347  };
348  
349  enum eeprom_offsets {
350  	eeprom_cnfg_mdix  = 0x03,
351  	eeprom_phy_iface  = 0x06,
352  	eeprom_id         = 0x0A,
353  	eeprom_config_asf = 0x0D,
354  	eeprom_smbus_addr = 0x90,
355  };
356  
357  enum eeprom_cnfg_mdix {
358  	eeprom_mdix_enabled = 0x0080,
359  };
360  
361  enum eeprom_phy_iface {
362  	NoSuchPhy = 0,
363  	I82553AB,
364  	I82553C,
365  	I82503,
366  	DP83840,
367  	S80C240,
368  	S80C24,
369  	I82555,
370  	DP83840A = 10,
371  };
372  
373  enum eeprom_id {
374  	eeprom_id_wol = 0x0020,
375  };
376  
377  enum eeprom_config_asf {
378  	eeprom_asf = 0x8000,
379  	eeprom_gcl = 0x4000,
380  };
381  
382  enum cb_status {
383  	cb_complete = 0x8000,
384  	cb_ok       = 0x2000,
385  };
386  
387  /*
388   * cb_command - Command Block flags
389   * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
390   */
391  enum cb_command {
392  	cb_nop    = 0x0000,
393  	cb_iaaddr = 0x0001,
394  	cb_config = 0x0002,
395  	cb_multi  = 0x0003,
396  	cb_tx     = 0x0004,
397  	cb_ucode  = 0x0005,
398  	cb_dump   = 0x0006,
399  	cb_tx_sf  = 0x0008,
400  	cb_tx_nc  = 0x0010,
401  	cb_cid    = 0x1f00,
402  	cb_i      = 0x2000,
403  	cb_s      = 0x4000,
404  	cb_el     = 0x8000,
405  };
406  
407  struct rfd {
408  	__le16 status;
409  	__le16 command;
410  	__le32 link;
411  	__le32 rbd;
412  	__le16 actual_size;
413  	__le16 size;
414  };
415  
416  struct rx {
417  	struct rx *next, *prev;
418  	struct sk_buff *skb;
419  	dma_addr_t dma_addr;
420  };
421  
422  #if defined(__BIG_ENDIAN_BITFIELD)
423  #define X(a,b)	b,a
424  #else
425  #define X(a,b)	a,b
426  #endif
427  struct config {
428  /*0*/	u8 X(byte_count:6, pad0:2);
429  /*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
430  /*2*/	u8 adaptive_ifs;
431  /*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
432  	   term_write_cache_line:1), pad3:4);
433  /*4*/	u8 X(rx_dma_max_count:7, pad4:1);
434  /*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
435  /*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
436  	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
437  	   rx_save_overruns : 1), rx_save_bad_frames : 1);
438  /*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
439  	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
440  	   tx_dynamic_tbd:1);
441  /*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
442  /*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
443  	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
444  /*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
445  	   loopback:2);
446  /*11*/	u8 X(linear_priority:3, pad11:5);
447  /*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
448  /*13*/	u8 ip_addr_lo;
449  /*14*/	u8 ip_addr_hi;
450  /*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
451  	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
452  	   pad15_2:1), crs_or_cdt:1);
453  /*16*/	u8 fc_delay_lo;
454  /*17*/	u8 fc_delay_hi;
455  /*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
456  	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
457  /*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
458  	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
459  	   full_duplex_force:1), full_duplex_pin:1);
460  /*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
461  /*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
462  /*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
463  	u8 pad_d102[9];
464  };
465  
466  #define E100_MAX_MULTICAST_ADDRS	64
467  struct multi {
468  	__le16 count;
469  	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
470  };
471  
472  /* Important: keep total struct u32-aligned */
473  #define UCODE_SIZE			134
474  struct cb {
475  	__le16 status;
476  	__le16 command;
477  	__le32 link;
478  	union {
479  		u8 iaaddr[ETH_ALEN];
480  		__le32 ucode[UCODE_SIZE];
481  		struct config config;
482  		struct multi multi;
483  		struct {
484  			u32 tbd_array;
485  			u16 tcb_byte_count;
486  			u8 threshold;
487  			u8 tbd_count;
488  			struct {
489  				__le32 buf_addr;
490  				__le16 size;
491  				u16 eol;
492  			} tbd;
493  		} tcb;
494  		__le32 dump_buffer_addr;
495  	} u;
496  	struct cb *next, *prev;
497  	dma_addr_t dma_addr;
498  	struct sk_buff *skb;
499  };
500  
501  enum loopback {
502  	lb_none = 0, lb_mac = 1, lb_phy = 3,
503  };
504  
505  struct stats {
506  	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
507  		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
508  		tx_multiple_collisions, tx_total_collisions;
509  	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
510  		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
511  		rx_short_frame_errors;
512  	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
513  	__le16 xmt_tco_frames, rcv_tco_frames;
514  	__le32 complete;
515  };
516  
517  struct mem {
518  	struct {
519  		u32 signature;
520  		u32 result;
521  	} selftest;
522  	struct stats stats;
523  	u8 dump_buf[596];
524  };
525  
526  struct param_range {
527  	u32 min;
528  	u32 max;
529  	u32 count;
530  };
531  
532  struct params {
533  	struct param_range rfds;
534  	struct param_range cbs;
535  };
536  
537  struct nic {
538  	/* Begin: frequently used values: keep adjacent for cache effect */
539  	u32 msg_enable				____cacheline_aligned;
540  	struct net_device *netdev;
541  	struct pci_dev *pdev;
542  	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
543  
544  	struct rx *rxs				____cacheline_aligned;
545  	struct rx *rx_to_use;
546  	struct rx *rx_to_clean;
547  	struct rfd blank_rfd;
548  	enum ru_state ru_running;
549  
550  	spinlock_t cb_lock			____cacheline_aligned;
551  	spinlock_t cmd_lock;
552  	struct csr __iomem *csr;
553  	enum scb_cmd_lo cuc_cmd;
554  	unsigned int cbs_avail;
555  	struct napi_struct napi;
556  	struct cb *cbs;
557  	struct cb *cb_to_use;
558  	struct cb *cb_to_send;
559  	struct cb *cb_to_clean;
560  	__le16 tx_command;
561  	/* End: frequently used values: keep adjacent for cache effect */
562  
563  	enum {
564  		ich                = (1 << 0),
565  		promiscuous        = (1 << 1),
566  		multicast_all      = (1 << 2),
567  		wol_magic          = (1 << 3),
568  		ich_10h_workaround = (1 << 4),
569  	} flags					____cacheline_aligned;
570  
571  	enum mac mac;
572  	enum phy phy;
573  	struct params params;
574  	struct timer_list watchdog;
575  	struct mii_if_info mii;
576  	struct work_struct tx_timeout_task;
577  	enum loopback loopback;
578  
579  	struct mem *mem;
580  	dma_addr_t dma_addr;
581  
582  	struct dma_pool *cbs_pool;
583  	dma_addr_t cbs_dma_addr;
584  	u8 adaptive_ifs;
585  	u8 tx_threshold;
586  	u32 tx_frames;
587  	u32 tx_collisions;
588  	u32 tx_deferred;
589  	u32 tx_single_collisions;
590  	u32 tx_multiple_collisions;
591  	u32 tx_fc_pause;
592  	u32 tx_tco_frames;
593  
594  	u32 rx_fc_pause;
595  	u32 rx_fc_unsupported;
596  	u32 rx_tco_frames;
597  	u32 rx_short_frame_errors;
598  	u32 rx_over_length_errors;
599  
600  	u16 eeprom_wc;
601  	__le16 eeprom[256];
602  	spinlock_t mdio_lock;
603  	const struct firmware *fw;
604  };
605  
e100_write_flush(struct nic * nic)606  static inline void e100_write_flush(struct nic *nic)
607  {
608  	/* Flush previous PCI writes through intermediate bridges
609  	 * by doing a benign read */
610  	(void)ioread8(&nic->csr->scb.status);
611  }
612  
e100_enable_irq(struct nic * nic)613  static void e100_enable_irq(struct nic *nic)
614  {
615  	unsigned long flags;
616  
617  	spin_lock_irqsave(&nic->cmd_lock, flags);
618  	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
619  	e100_write_flush(nic);
620  	spin_unlock_irqrestore(&nic->cmd_lock, flags);
621  }
622  
e100_disable_irq(struct nic * nic)623  static void e100_disable_irq(struct nic *nic)
624  {
625  	unsigned long flags;
626  
627  	spin_lock_irqsave(&nic->cmd_lock, flags);
628  	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
629  	e100_write_flush(nic);
630  	spin_unlock_irqrestore(&nic->cmd_lock, flags);
631  }
632  
e100_hw_reset(struct nic * nic)633  static void e100_hw_reset(struct nic *nic)
634  {
635  	/* Put CU and RU into idle with a selective reset to get
636  	 * device off of PCI bus */
637  	iowrite32(selective_reset, &nic->csr->port);
638  	e100_write_flush(nic); udelay(20);
639  
640  	/* Now fully reset device */
641  	iowrite32(software_reset, &nic->csr->port);
642  	e100_write_flush(nic); udelay(20);
643  
644  	/* Mask off our interrupt line - it's unmasked after reset */
645  	e100_disable_irq(nic);
646  }
647  
e100_self_test(struct nic * nic)648  static int e100_self_test(struct nic *nic)
649  {
650  	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
651  
652  	/* Passing the self-test is a pretty good indication
653  	 * that the device can DMA to/from host memory */
654  
655  	nic->mem->selftest.signature = 0;
656  	nic->mem->selftest.result = 0xFFFFFFFF;
657  
658  	iowrite32(selftest | dma_addr, &nic->csr->port);
659  	e100_write_flush(nic);
660  	/* Wait 10 msec for self-test to complete */
661  	msleep(10);
662  
663  	/* Interrupts are enabled after self-test */
664  	e100_disable_irq(nic);
665  
666  	/* Check results of self-test */
667  	if (nic->mem->selftest.result != 0) {
668  		netif_err(nic, hw, nic->netdev,
669  			  "Self-test failed: result=0x%08X\n",
670  			  nic->mem->selftest.result);
671  		return -ETIMEDOUT;
672  	}
673  	if (nic->mem->selftest.signature == 0) {
674  		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
675  		return -ETIMEDOUT;
676  	}
677  
678  	return 0;
679  }
680  
e100_eeprom_write(struct nic * nic,u16 addr_len,u16 addr,__le16 data)681  static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
682  {
683  	u32 cmd_addr_data[3];
684  	u8 ctrl;
685  	int i, j;
686  
687  	/* Three cmds: write/erase enable, write data, write/erase disable */
688  	cmd_addr_data[0] = op_ewen << (addr_len - 2);
689  	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
690  		le16_to_cpu(data);
691  	cmd_addr_data[2] = op_ewds << (addr_len - 2);
692  
693  	/* Bit-bang cmds to write word to eeprom */
694  	for (j = 0; j < 3; j++) {
695  
696  		/* Chip select */
697  		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
698  		e100_write_flush(nic); udelay(4);
699  
700  		for (i = 31; i >= 0; i--) {
701  			ctrl = (cmd_addr_data[j] & (1 << i)) ?
702  				eecs | eedi : eecs;
703  			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
704  			e100_write_flush(nic); udelay(4);
705  
706  			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
707  			e100_write_flush(nic); udelay(4);
708  		}
709  		/* Wait 10 msec for cmd to complete */
710  		msleep(10);
711  
712  		/* Chip deselect */
713  		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
714  		e100_write_flush(nic); udelay(4);
715  	}
716  };
717  
718  /* General technique stolen from the eepro100 driver - very clever */
e100_eeprom_read(struct nic * nic,u16 * addr_len,u16 addr)719  static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
720  {
721  	u32 cmd_addr_data;
722  	u16 data = 0;
723  	u8 ctrl;
724  	int i;
725  
726  	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
727  
728  	/* Chip select */
729  	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
730  	e100_write_flush(nic); udelay(4);
731  
732  	/* Bit-bang to read word from eeprom */
733  	for (i = 31; i >= 0; i--) {
734  		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
735  		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
736  		e100_write_flush(nic); udelay(4);
737  
738  		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
739  		e100_write_flush(nic); udelay(4);
740  
741  		/* Eeprom drives a dummy zero to EEDO after receiving
742  		 * complete address.  Use this to adjust addr_len. */
743  		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
744  		if (!(ctrl & eedo) && i > 16) {
745  			*addr_len -= (i - 16);
746  			i = 17;
747  		}
748  
749  		data = (data << 1) | (ctrl & eedo ? 1 : 0);
750  	}
751  
752  	/* Chip deselect */
753  	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
754  	e100_write_flush(nic); udelay(4);
755  
756  	return cpu_to_le16(data);
757  };
758  
759  /* Load entire EEPROM image into driver cache and validate checksum */
e100_eeprom_load(struct nic * nic)760  static int e100_eeprom_load(struct nic *nic)
761  {
762  	u16 addr, addr_len = 8, checksum = 0;
763  
764  	/* Try reading with an 8-bit addr len to discover actual addr len */
765  	e100_eeprom_read(nic, &addr_len, 0);
766  	nic->eeprom_wc = 1 << addr_len;
767  
768  	for (addr = 0; addr < nic->eeprom_wc; addr++) {
769  		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
770  		if (addr < nic->eeprom_wc - 1)
771  			checksum += le16_to_cpu(nic->eeprom[addr]);
772  	}
773  
774  	/* The checksum, stored in the last word, is calculated such that
775  	 * the sum of words should be 0xBABA */
776  	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
777  		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
778  		if (!eeprom_bad_csum_allow)
779  			return -EAGAIN;
780  	}
781  
782  	return 0;
783  }
784  
785  /* Save (portion of) driver EEPROM cache to device and update checksum */
e100_eeprom_save(struct nic * nic,u16 start,u16 count)786  static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
787  {
788  	u16 addr, addr_len = 8, checksum = 0;
789  
790  	/* Try reading with an 8-bit addr len to discover actual addr len */
791  	e100_eeprom_read(nic, &addr_len, 0);
792  	nic->eeprom_wc = 1 << addr_len;
793  
794  	if (start + count >= nic->eeprom_wc)
795  		return -EINVAL;
796  
797  	for (addr = start; addr < start + count; addr++)
798  		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
799  
800  	/* The checksum, stored in the last word, is calculated such that
801  	 * the sum of words should be 0xBABA */
802  	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
803  		checksum += le16_to_cpu(nic->eeprom[addr]);
804  	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
805  	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
806  		nic->eeprom[nic->eeprom_wc - 1]);
807  
808  	return 0;
809  }
810  
811  #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
812  #define E100_WAIT_SCB_FAST 20       /* delay like the old code */
e100_exec_cmd(struct nic * nic,u8 cmd,dma_addr_t dma_addr)813  static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
814  {
815  	unsigned long flags;
816  	unsigned int i;
817  	int err = 0;
818  
819  	spin_lock_irqsave(&nic->cmd_lock, flags);
820  
821  	/* Previous command is accepted when SCB clears */
822  	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
823  		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
824  			break;
825  		cpu_relax();
826  		if (unlikely(i > E100_WAIT_SCB_FAST))
827  			udelay(5);
828  	}
829  	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
830  		err = -EAGAIN;
831  		goto err_unlock;
832  	}
833  
834  	if (unlikely(cmd != cuc_resume))
835  		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
836  	iowrite8(cmd, &nic->csr->scb.cmd_lo);
837  
838  err_unlock:
839  	spin_unlock_irqrestore(&nic->cmd_lock, flags);
840  
841  	return err;
842  }
843  
e100_exec_cb(struct nic * nic,struct sk_buff * skb,int (* cb_prepare)(struct nic *,struct cb *,struct sk_buff *))844  static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
845  	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
846  {
847  	struct cb *cb;
848  	unsigned long flags;
849  	int err;
850  
851  	spin_lock_irqsave(&nic->cb_lock, flags);
852  
853  	if (unlikely(!nic->cbs_avail)) {
854  		err = -ENOMEM;
855  		goto err_unlock;
856  	}
857  
858  	cb = nic->cb_to_use;
859  	nic->cb_to_use = cb->next;
860  	nic->cbs_avail--;
861  	cb->skb = skb;
862  
863  	err = cb_prepare(nic, cb, skb);
864  	if (err)
865  		goto err_unlock;
866  
867  	if (unlikely(!nic->cbs_avail))
868  		err = -ENOSPC;
869  
870  
871  	/* Order is important otherwise we'll be in a race with h/w:
872  	 * set S-bit in current first, then clear S-bit in previous. */
873  	cb->command |= cpu_to_le16(cb_s);
874  	dma_wmb();
875  	cb->prev->command &= cpu_to_le16(~cb_s);
876  
877  	while (nic->cb_to_send != nic->cb_to_use) {
878  		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
879  			nic->cb_to_send->dma_addr))) {
880  			/* Ok, here's where things get sticky.  It's
881  			 * possible that we can't schedule the command
882  			 * because the controller is too busy, so
883  			 * let's just queue the command and try again
884  			 * when another command is scheduled. */
885  			if (err == -ENOSPC) {
886  				//request a reset
887  				schedule_work(&nic->tx_timeout_task);
888  			}
889  			break;
890  		} else {
891  			nic->cuc_cmd = cuc_resume;
892  			nic->cb_to_send = nic->cb_to_send->next;
893  		}
894  	}
895  
896  err_unlock:
897  	spin_unlock_irqrestore(&nic->cb_lock, flags);
898  
899  	return err;
900  }
901  
mdio_read(struct net_device * netdev,int addr,int reg)902  static int mdio_read(struct net_device *netdev, int addr, int reg)
903  {
904  	struct nic *nic = netdev_priv(netdev);
905  	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
906  }
907  
mdio_write(struct net_device * netdev,int addr,int reg,int data)908  static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
909  {
910  	struct nic *nic = netdev_priv(netdev);
911  
912  	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
913  }
914  
915  /* the standard mdio_ctrl() function for usual MII-compliant hardware */
mdio_ctrl_hw(struct nic * nic,u32 addr,u32 dir,u32 reg,u16 data)916  static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
917  {
918  	u32 data_out = 0;
919  	unsigned int i;
920  	unsigned long flags;
921  
922  
923  	/*
924  	 * Stratus87247: we shouldn't be writing the MDI control
925  	 * register until the Ready bit shows True.  Also, since
926  	 * manipulation of the MDI control registers is a multi-step
927  	 * procedure it should be done under lock.
928  	 */
929  	spin_lock_irqsave(&nic->mdio_lock, flags);
930  	for (i = 100; i; --i) {
931  		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
932  			break;
933  		udelay(20);
934  	}
935  	if (unlikely(!i)) {
936  		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
937  		spin_unlock_irqrestore(&nic->mdio_lock, flags);
938  		return 0;		/* No way to indicate timeout error */
939  	}
940  	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
941  
942  	for (i = 0; i < 100; i++) {
943  		udelay(20);
944  		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
945  			break;
946  	}
947  	spin_unlock_irqrestore(&nic->mdio_lock, flags);
948  	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
949  		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
950  		     dir == mdi_read ? "READ" : "WRITE",
951  		     addr, reg, data, data_out);
952  	return (u16)data_out;
953  }
954  
955  /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
mdio_ctrl_phy_82552_v(struct nic * nic,u32 addr,u32 dir,u32 reg,u16 data)956  static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
957  				 u32 addr,
958  				 u32 dir,
959  				 u32 reg,
960  				 u16 data)
961  {
962  	if ((reg == MII_BMCR) && (dir == mdi_write)) {
963  		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
964  			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
965  							MII_ADVERTISE);
966  
967  			/*
968  			 * Workaround Si issue where sometimes the part will not
969  			 * autoneg to 100Mbps even when advertised.
970  			 */
971  			if (advert & ADVERTISE_100FULL)
972  				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
973  			else if (advert & ADVERTISE_100HALF)
974  				data |= BMCR_SPEED100;
975  		}
976  	}
977  	return mdio_ctrl_hw(nic, addr, dir, reg, data);
978  }
979  
980  /* Fully software-emulated mdio_ctrl() function for cards without
981   * MII-compliant PHYs.
982   * For now, this is mainly geared towards 80c24 support; in case of further
983   * requirements for other types (i82503, ...?) either extend this mechanism
984   * or split it, whichever is cleaner.
985   */
mdio_ctrl_phy_mii_emulated(struct nic * nic,u32 addr,u32 dir,u32 reg,u16 data)986  static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
987  				      u32 addr,
988  				      u32 dir,
989  				      u32 reg,
990  				      u16 data)
991  {
992  	/* might need to allocate a netdev_priv'ed register array eventually
993  	 * to be able to record state changes, but for now
994  	 * some fully hardcoded register handling ought to be ok I guess. */
995  
996  	if (dir == mdi_read) {
997  		switch (reg) {
998  		case MII_BMCR:
999  			/* Auto-negotiation, right? */
1000  			return  BMCR_ANENABLE |
1001  				BMCR_FULLDPLX;
1002  		case MII_BMSR:
1003  			return	BMSR_LSTATUS /* for mii_link_ok() */ |
1004  				BMSR_ANEGCAPABLE |
1005  				BMSR_10FULL;
1006  		case MII_ADVERTISE:
1007  			/* 80c24 is a "combo card" PHY, right? */
1008  			return	ADVERTISE_10HALF |
1009  				ADVERTISE_10FULL;
1010  		default:
1011  			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1012  				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1013  				     dir == mdi_read ? "READ" : "WRITE",
1014  				     addr, reg, data);
1015  			return 0xFFFF;
1016  		}
1017  	} else {
1018  		switch (reg) {
1019  		default:
1020  			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1021  				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1022  				     dir == mdi_read ? "READ" : "WRITE",
1023  				     addr, reg, data);
1024  			return 0xFFFF;
1025  		}
1026  	}
1027  }
e100_phy_supports_mii(struct nic * nic)1028  static inline int e100_phy_supports_mii(struct nic *nic)
1029  {
1030  	/* for now, just check it by comparing whether we
1031  	   are using MII software emulation.
1032  	*/
1033  	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1034  }
1035  
e100_get_defaults(struct nic * nic)1036  static void e100_get_defaults(struct nic *nic)
1037  {
1038  	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1039  	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1040  
1041  	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1042  	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1043  	if (nic->mac == mac_unknown)
1044  		nic->mac = mac_82557_D100_A;
1045  
1046  	nic->params.rfds = rfds;
1047  	nic->params.cbs = cbs;
1048  
1049  	/* Quadwords to DMA into FIFO before starting frame transmit */
1050  	nic->tx_threshold = 0xE0;
1051  
1052  	/* no interrupt for every tx completion, delay = 256us if not 557 */
1053  	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1054  		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1055  
1056  	/* Template for a freshly allocated RFD */
1057  	nic->blank_rfd.command = 0;
1058  	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1059  	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1060  
1061  	/* MII setup */
1062  	nic->mii.phy_id_mask = 0x1F;
1063  	nic->mii.reg_num_mask = 0x1F;
1064  	nic->mii.dev = nic->netdev;
1065  	nic->mii.mdio_read = mdio_read;
1066  	nic->mii.mdio_write = mdio_write;
1067  }
1068  
e100_configure(struct nic * nic,struct cb * cb,struct sk_buff * skb)1069  static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1070  {
1071  	struct config *config = &cb->u.config;
1072  	u8 *c = (u8 *)config;
1073  	struct net_device *netdev = nic->netdev;
1074  
1075  	cb->command = cpu_to_le16(cb_config);
1076  
1077  	memset(config, 0, sizeof(struct config));
1078  
1079  	config->byte_count = 0x16;		/* bytes in this struct */
1080  	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
1081  	config->direct_rx_dma = 0x1;		/* reserved */
1082  	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
1083  	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
1084  	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
1085  	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
1086  	if (e100_phy_supports_mii(nic))
1087  		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1088  	config->pad10 = 0x6;
1089  	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1090  	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1091  	config->ifs = 0x6;			/* x16 = inter frame spacing */
1092  	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1093  	config->pad15_1 = 0x1;
1094  	config->pad15_2 = 0x1;
1095  	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1096  	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1097  	config->tx_padding = 0x1;		/* 1=pad short frames */
1098  	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1099  	config->pad18 = 0x1;
1100  	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1101  	config->pad20_1 = 0x1F;
1102  	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1103  	config->pad21_1 = 0x5;
1104  
1105  	config->adaptive_ifs = nic->adaptive_ifs;
1106  	config->loopback = nic->loopback;
1107  
1108  	if (nic->mii.force_media && nic->mii.full_duplex)
1109  		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1110  
1111  	if (nic->flags & promiscuous || nic->loopback) {
1112  		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1113  		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1114  		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1115  	}
1116  
1117  	if (unlikely(netdev->features & NETIF_F_RXFCS))
1118  		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
1119  
1120  	if (nic->flags & multicast_all)
1121  		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1122  
1123  	/* disable WoL when up */
1124  	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1125  		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1126  
1127  	if (nic->mac >= mac_82558_D101_A4) {
1128  		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1129  		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1130  		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1131  		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1132  		if (nic->mac >= mac_82559_D101M) {
1133  			config->tno_intr = 0x1;		/* TCO stats enable */
1134  			/* Enable TCO in extended config */
1135  			if (nic->mac >= mac_82551_10) {
1136  				config->byte_count = 0x20; /* extended bytes */
1137  				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1138  			}
1139  		} else {
1140  			config->standard_stat_counter = 0x0;
1141  		}
1142  	}
1143  
1144  	if (netdev->features & NETIF_F_RXALL) {
1145  		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1146  		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1147  		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1148  	}
1149  
1150  	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1151  		     c + 0);
1152  	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1153  		     c + 8);
1154  	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1155  		     c + 16);
1156  	return 0;
1157  }
1158  
1159  /*************************************************************************
1160  *  CPUSaver parameters
1161  *
1162  *  All CPUSaver parameters are 16-bit literals that are part of a
1163  *  "move immediate value" instruction.  By changing the value of
1164  *  the literal in the instruction before the code is loaded, the
1165  *  driver can change the algorithm.
1166  *
1167  *  INTDELAY - This loads the dead-man timer with its initial value.
1168  *    When this timer expires the interrupt is asserted, and the
1169  *    timer is reset each time a new packet is received.  (see
1170  *    BUNDLEMAX below to set the limit on number of chained packets)
1171  *    The current default is 0x600 or 1536.  Experiments show that
1172  *    the value should probably stay within the 0x200 - 0x1000.
1173  *
1174  *  BUNDLEMAX -
1175  *    This sets the maximum number of frames that will be bundled.  In
1176  *    some situations, such as the TCP windowing algorithm, it may be
1177  *    better to limit the growth of the bundle size than let it go as
1178  *    high as it can, because that could cause too much added latency.
1179  *    The default is six, because this is the number of packets in the
1180  *    default TCP window size.  A value of 1 would make CPUSaver indicate
1181  *    an interrupt for every frame received.  If you do not want to put
1182  *    a limit on the bundle size, set this value to xFFFF.
1183  *
1184  *  BUNDLESMALL -
1185  *    This contains a bit-mask describing the minimum size frame that
1186  *    will be bundled.  The default masks the lower 7 bits, which means
1187  *    that any frame less than 128 bytes in length will not be bundled,
1188  *    but will instead immediately generate an interrupt.  This does
1189  *    not affect the current bundle in any way.  Any frame that is 128
1190  *    bytes or large will be bundled normally.  This feature is meant
1191  *    to provide immediate indication of ACK frames in a TCP environment.
1192  *    Customers were seeing poor performance when a machine with CPUSaver
1193  *    enabled was sending but not receiving.  The delay introduced when
1194  *    the ACKs were received was enough to reduce total throughput, because
1195  *    the sender would sit idle until the ACK was finally seen.
1196  *
1197  *    The current default is 0xFF80, which masks out the lower 7 bits.
1198  *    This means that any frame which is x7F (127) bytes or smaller
1199  *    will cause an immediate interrupt.  Because this value must be a
1200  *    bit mask, there are only a few valid values that can be used.  To
1201  *    turn this feature off, the driver can write the value xFFFF to the
1202  *    lower word of this instruction (in the same way that the other
1203  *    parameters are used).  Likewise, a value of 0xF800 (2047) would
1204  *    cause an interrupt to be generated for every frame, because all
1205  *    standard Ethernet frames are <= 2047 bytes in length.
1206  *************************************************************************/
1207  
1208  /* if you wish to disable the ucode functionality, while maintaining the
1209   * workarounds it provides, set the following defines to:
1210   * BUNDLESMALL 0
1211   * BUNDLEMAX 1
1212   * INTDELAY 1
1213   */
1214  #define BUNDLESMALL 1
1215  #define BUNDLEMAX (u16)6
1216  #define INTDELAY (u16)1536 /* 0x600 */
1217  
1218  /* Initialize firmware */
e100_request_firmware(struct nic * nic)1219  static const struct firmware *e100_request_firmware(struct nic *nic)
1220  {
1221  	const char *fw_name;
1222  	const struct firmware *fw = nic->fw;
1223  	u8 timer, bundle, min_size;
1224  	int err = 0;
1225  	bool required = false;
1226  
1227  	/* do not load u-code for ICH devices */
1228  	if (nic->flags & ich)
1229  		return NULL;
1230  
1231  	/* Search for ucode match against h/w revision
1232  	 *
1233  	 * Based on comments in the source code for the FreeBSD fxp
1234  	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1235  	 *
1236  	 *    "fixes for bugs in the B-step hardware (specifically, bugs
1237  	 *     with Inline Receive)."
1238  	 *
1239  	 * So we must fail if it cannot be loaded.
1240  	 *
1241  	 * The other microcode files are only required for the optional
1242  	 * CPUSaver feature.  Nice to have, but no reason to fail.
1243  	 */
1244  	if (nic->mac == mac_82559_D101M) {
1245  		fw_name = FIRMWARE_D101M;
1246  	} else if (nic->mac == mac_82559_D101S) {
1247  		fw_name = FIRMWARE_D101S;
1248  	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1249  		fw_name = FIRMWARE_D102E;
1250  		required = true;
1251  	} else { /* No ucode on other devices */
1252  		return NULL;
1253  	}
1254  
1255  	/* If the firmware has not previously been loaded, request a pointer
1256  	 * to it. If it was previously loaded, we are reinitializing the
1257  	 * adapter, possibly in a resume from hibernate, in which case
1258  	 * request_firmware() cannot be used.
1259  	 */
1260  	if (!fw)
1261  		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1262  
1263  	if (err) {
1264  		if (required) {
1265  			netif_err(nic, probe, nic->netdev,
1266  				  "Failed to load firmware \"%s\": %d\n",
1267  				  fw_name, err);
1268  			return ERR_PTR(err);
1269  		} else {
1270  			netif_info(nic, probe, nic->netdev,
1271  				   "CPUSaver disabled. Needs \"%s\": %d\n",
1272  				   fw_name, err);
1273  			return NULL;
1274  		}
1275  	}
1276  
1277  	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1278  	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1279  	if (fw->size != UCODE_SIZE * 4 + 3) {
1280  		netif_err(nic, probe, nic->netdev,
1281  			  "Firmware \"%s\" has wrong size %zu\n",
1282  			  fw_name, fw->size);
1283  		release_firmware(fw);
1284  		return ERR_PTR(-EINVAL);
1285  	}
1286  
1287  	/* Read timer, bundle and min_size from end of firmware blob */
1288  	timer = fw->data[UCODE_SIZE * 4];
1289  	bundle = fw->data[UCODE_SIZE * 4 + 1];
1290  	min_size = fw->data[UCODE_SIZE * 4 + 2];
1291  
1292  	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1293  	    min_size >= UCODE_SIZE) {
1294  		netif_err(nic, probe, nic->netdev,
1295  			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1296  			  fw_name, timer, bundle, min_size);
1297  		release_firmware(fw);
1298  		return ERR_PTR(-EINVAL);
1299  	}
1300  
1301  	/* OK, firmware is validated and ready to use. Save a pointer
1302  	 * to it in the nic */
1303  	nic->fw = fw;
1304  	return fw;
1305  }
1306  
e100_setup_ucode(struct nic * nic,struct cb * cb,struct sk_buff * skb)1307  static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1308  			     struct sk_buff *skb)
1309  {
1310  	const struct firmware *fw = (void *)skb;
1311  	u8 timer, bundle, min_size;
1312  
1313  	/* It's not a real skb; we just abused the fact that e100_exec_cb
1314  	   will pass it through to here... */
1315  	cb->skb = NULL;
1316  
1317  	/* firmware is stored as little endian already */
1318  	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1319  
1320  	/* Read timer, bundle and min_size from end of firmware blob */
1321  	timer = fw->data[UCODE_SIZE * 4];
1322  	bundle = fw->data[UCODE_SIZE * 4 + 1];
1323  	min_size = fw->data[UCODE_SIZE * 4 + 2];
1324  
1325  	/* Insert user-tunable settings in cb->u.ucode */
1326  	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1327  	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1328  	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1329  	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1330  	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1331  	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1332  
1333  	cb->command = cpu_to_le16(cb_ucode | cb_el);
1334  	return 0;
1335  }
1336  
e100_load_ucode_wait(struct nic * nic)1337  static inline int e100_load_ucode_wait(struct nic *nic)
1338  {
1339  	const struct firmware *fw;
1340  	int err = 0, counter = 50;
1341  	struct cb *cb = nic->cb_to_clean;
1342  
1343  	fw = e100_request_firmware(nic);
1344  	/* If it's NULL, then no ucode is required */
1345  	if (IS_ERR_OR_NULL(fw))
1346  		return PTR_ERR_OR_ZERO(fw);
1347  
1348  	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1349  		netif_err(nic, probe, nic->netdev,
1350  			  "ucode cmd failed with error %d\n", err);
1351  
1352  	/* must restart cuc */
1353  	nic->cuc_cmd = cuc_start;
1354  
1355  	/* wait for completion */
1356  	e100_write_flush(nic);
1357  	udelay(10);
1358  
1359  	/* wait for possibly (ouch) 500ms */
1360  	while (!(cb->status & cpu_to_le16(cb_complete))) {
1361  		msleep(10);
1362  		if (!--counter) break;
1363  	}
1364  
1365  	/* ack any interrupts, something could have been set */
1366  	iowrite8(~0, &nic->csr->scb.stat_ack);
1367  
1368  	/* if the command failed, or is not OK, notify and return */
1369  	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1370  		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1371  		err = -EPERM;
1372  	}
1373  
1374  	return err;
1375  }
1376  
e100_setup_iaaddr(struct nic * nic,struct cb * cb,struct sk_buff * skb)1377  static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1378  	struct sk_buff *skb)
1379  {
1380  	cb->command = cpu_to_le16(cb_iaaddr);
1381  	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1382  	return 0;
1383  }
1384  
e100_dump(struct nic * nic,struct cb * cb,struct sk_buff * skb)1385  static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1386  {
1387  	cb->command = cpu_to_le16(cb_dump);
1388  	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1389  		offsetof(struct mem, dump_buf));
1390  	return 0;
1391  }
1392  
e100_phy_check_without_mii(struct nic * nic)1393  static int e100_phy_check_without_mii(struct nic *nic)
1394  {
1395  	u8 phy_type;
1396  	int without_mii;
1397  
1398  	phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f;
1399  
1400  	switch (phy_type) {
1401  	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1402  	case I82503: /* Non-MII PHY; UNTESTED! */
1403  	case S80C24: /* Non-MII PHY; tested and working */
1404  		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1405  		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1406  		 * doesn't have a programming interface of any sort.  The
1407  		 * media is sensed automatically based on how the link partner
1408  		 * is configured.  This is, in essence, manual configuration.
1409  		 */
1410  		netif_info(nic, probe, nic->netdev,
1411  			   "found MII-less i82503 or 80c24 or other PHY\n");
1412  
1413  		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1414  		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1415  
1416  		/* these might be needed for certain MII-less cards...
1417  		 * nic->flags |= ich;
1418  		 * nic->flags |= ich_10h_workaround; */
1419  
1420  		without_mii = 1;
1421  		break;
1422  	default:
1423  		without_mii = 0;
1424  		break;
1425  	}
1426  	return without_mii;
1427  }
1428  
1429  #define NCONFIG_AUTO_SWITCH	0x0080
1430  #define MII_NSC_CONG		MII_RESV1
1431  #define NSC_CONG_ENABLE		0x0100
1432  #define NSC_CONG_TXREADY	0x0400
e100_phy_init(struct nic * nic)1433  static int e100_phy_init(struct nic *nic)
1434  {
1435  	struct net_device *netdev = nic->netdev;
1436  	u32 addr;
1437  	u16 bmcr, stat, id_lo, id_hi, cong;
1438  
1439  	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1440  	for (addr = 0; addr < 32; addr++) {
1441  		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1442  		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1443  		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1444  		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1445  		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1446  			break;
1447  	}
1448  	if (addr == 32) {
1449  		/* uhoh, no PHY detected: check whether we seem to be some
1450  		 * weird, rare variant which is *known* to not have any MII.
1451  		 * But do this AFTER MII checking only, since this does
1452  		 * lookup of EEPROM values which may easily be unreliable. */
1453  		if (e100_phy_check_without_mii(nic))
1454  			return 0; /* simply return and hope for the best */
1455  		else {
1456  			/* for unknown cases log a fatal error */
1457  			netif_err(nic, hw, nic->netdev,
1458  				  "Failed to locate any known PHY, aborting\n");
1459  			return -EAGAIN;
1460  		}
1461  	} else
1462  		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1463  			     "phy_addr = %d\n", nic->mii.phy_id);
1464  
1465  	/* Get phy ID */
1466  	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1467  	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1468  	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1469  	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1470  		     "phy ID = 0x%08X\n", nic->phy);
1471  
1472  	/* Select the phy and isolate the rest */
1473  	for (addr = 0; addr < 32; addr++) {
1474  		if (addr != nic->mii.phy_id) {
1475  			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1476  		} else if (nic->phy != phy_82552_v) {
1477  			bmcr = mdio_read(netdev, addr, MII_BMCR);
1478  			mdio_write(netdev, addr, MII_BMCR,
1479  				bmcr & ~BMCR_ISOLATE);
1480  		}
1481  	}
1482  	/*
1483  	 * Workaround for 82552:
1484  	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1485  	 * other phy_id's) using bmcr value from addr discovery loop above.
1486  	 */
1487  	if (nic->phy == phy_82552_v)
1488  		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1489  			bmcr & ~BMCR_ISOLATE);
1490  
1491  	/* Handle National tx phys */
1492  #define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1493  	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1494  		/* Disable congestion control */
1495  		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1496  		cong |= NSC_CONG_TXREADY;
1497  		cong &= ~NSC_CONG_ENABLE;
1498  		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1499  	}
1500  
1501  	if (nic->phy == phy_82552_v) {
1502  		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1503  
1504  		/* assign special tweaked mdio_ctrl() function */
1505  		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1506  
1507  		/* Workaround Si not advertising flow-control during autoneg */
1508  		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1509  		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1510  
1511  		/* Reset for the above changes to take effect */
1512  		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1513  		bmcr |= BMCR_RESET;
1514  		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1515  	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1516  	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1517  	   (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) {
1518  		/* enable/disable MDI/MDI-X auto-switching. */
1519  		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1520  				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1521  	}
1522  
1523  	return 0;
1524  }
1525  
e100_hw_init(struct nic * nic)1526  static int e100_hw_init(struct nic *nic)
1527  {
1528  	int err = 0;
1529  
1530  	e100_hw_reset(nic);
1531  
1532  	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1533  	if ((err = e100_self_test(nic)))
1534  		return err;
1535  
1536  	if ((err = e100_phy_init(nic)))
1537  		return err;
1538  	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1539  		return err;
1540  	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1541  		return err;
1542  	if ((err = e100_load_ucode_wait(nic)))
1543  		return err;
1544  	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1545  		return err;
1546  	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1547  		return err;
1548  	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1549  		nic->dma_addr + offsetof(struct mem, stats))))
1550  		return err;
1551  	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1552  		return err;
1553  
1554  	e100_disable_irq(nic);
1555  
1556  	return 0;
1557  }
1558  
e100_multi(struct nic * nic,struct cb * cb,struct sk_buff * skb)1559  static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1560  {
1561  	struct net_device *netdev = nic->netdev;
1562  	struct netdev_hw_addr *ha;
1563  	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1564  
1565  	cb->command = cpu_to_le16(cb_multi);
1566  	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1567  	i = 0;
1568  	netdev_for_each_mc_addr(ha, netdev) {
1569  		if (i == count)
1570  			break;
1571  		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1572  			ETH_ALEN);
1573  	}
1574  	return 0;
1575  }
1576  
e100_set_multicast_list(struct net_device * netdev)1577  static void e100_set_multicast_list(struct net_device *netdev)
1578  {
1579  	struct nic *nic = netdev_priv(netdev);
1580  
1581  	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1582  		     "mc_count=%d, flags=0x%04X\n",
1583  		     netdev_mc_count(netdev), netdev->flags);
1584  
1585  	if (netdev->flags & IFF_PROMISC)
1586  		nic->flags |= promiscuous;
1587  	else
1588  		nic->flags &= ~promiscuous;
1589  
1590  	if (netdev->flags & IFF_ALLMULTI ||
1591  		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1592  		nic->flags |= multicast_all;
1593  	else
1594  		nic->flags &= ~multicast_all;
1595  
1596  	e100_exec_cb(nic, NULL, e100_configure);
1597  	e100_exec_cb(nic, NULL, e100_multi);
1598  }
1599  
e100_update_stats(struct nic * nic)1600  static void e100_update_stats(struct nic *nic)
1601  {
1602  	struct net_device *dev = nic->netdev;
1603  	struct net_device_stats *ns = &dev->stats;
1604  	struct stats *s = &nic->mem->stats;
1605  	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1606  		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1607  		&s->complete;
1608  
1609  	/* Device's stats reporting may take several microseconds to
1610  	 * complete, so we're always waiting for results of the
1611  	 * previous command. */
1612  
1613  	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1614  		*complete = 0;
1615  		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1616  		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1617  		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1618  		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1619  		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1620  		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1621  		ns->collisions += nic->tx_collisions;
1622  		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1623  			le32_to_cpu(s->tx_lost_crs);
1624  		nic->rx_short_frame_errors +=
1625  			le32_to_cpu(s->rx_short_frame_errors);
1626  		ns->rx_length_errors = nic->rx_short_frame_errors +
1627  			nic->rx_over_length_errors;
1628  		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1629  		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1630  		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1631  		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1632  		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1633  		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1634  			le32_to_cpu(s->rx_alignment_errors) +
1635  			le32_to_cpu(s->rx_short_frame_errors) +
1636  			le32_to_cpu(s->rx_cdt_errors);
1637  		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1638  		nic->tx_single_collisions +=
1639  			le32_to_cpu(s->tx_single_collisions);
1640  		nic->tx_multiple_collisions +=
1641  			le32_to_cpu(s->tx_multiple_collisions);
1642  		if (nic->mac >= mac_82558_D101_A4) {
1643  			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1644  			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1645  			nic->rx_fc_unsupported +=
1646  				le32_to_cpu(s->fc_rcv_unsupported);
1647  			if (nic->mac >= mac_82559_D101M) {
1648  				nic->tx_tco_frames +=
1649  					le16_to_cpu(s->xmt_tco_frames);
1650  				nic->rx_tco_frames +=
1651  					le16_to_cpu(s->rcv_tco_frames);
1652  			}
1653  		}
1654  	}
1655  
1656  
1657  	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1658  		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1659  			     "exec cuc_dump_reset failed\n");
1660  }
1661  
e100_adjust_adaptive_ifs(struct nic * nic,int speed,int duplex)1662  static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1663  {
1664  	/* Adjust inter-frame-spacing (IFS) between two transmits if
1665  	 * we're getting collisions on a half-duplex connection. */
1666  
1667  	if (duplex == DUPLEX_HALF) {
1668  		u32 prev = nic->adaptive_ifs;
1669  		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1670  
1671  		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1672  		   (nic->tx_frames > min_frames)) {
1673  			if (nic->adaptive_ifs < 60)
1674  				nic->adaptive_ifs += 5;
1675  		} else if (nic->tx_frames < min_frames) {
1676  			if (nic->adaptive_ifs >= 5)
1677  				nic->adaptive_ifs -= 5;
1678  		}
1679  		if (nic->adaptive_ifs != prev)
1680  			e100_exec_cb(nic, NULL, e100_configure);
1681  	}
1682  }
1683  
e100_watchdog(struct timer_list * t)1684  static void e100_watchdog(struct timer_list *t)
1685  {
1686  	struct nic *nic = from_timer(nic, t, watchdog);
1687  	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1688  	u32 speed;
1689  
1690  	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1691  		     "right now = %ld\n", jiffies);
1692  
1693  	/* mii library handles link maintenance tasks */
1694  
1695  	mii_ethtool_gset(&nic->mii, &cmd);
1696  	speed = ethtool_cmd_speed(&cmd);
1697  
1698  	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1699  		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1700  			    speed == SPEED_100 ? 100 : 10,
1701  			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1702  	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1703  		netdev_info(nic->netdev, "NIC Link is Down\n");
1704  	}
1705  
1706  	mii_check_link(&nic->mii);
1707  
1708  	/* Software generated interrupt to recover from (rare) Rx
1709  	 * allocation failure.
1710  	 * Unfortunately have to use a spinlock to not re-enable interrupts
1711  	 * accidentally, due to hardware that shares a register between the
1712  	 * interrupt mask bit and the SW Interrupt generation bit */
1713  	spin_lock_irq(&nic->cmd_lock);
1714  	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1715  	e100_write_flush(nic);
1716  	spin_unlock_irq(&nic->cmd_lock);
1717  
1718  	e100_update_stats(nic);
1719  	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1720  
1721  	if (nic->mac <= mac_82557_D100_C)
1722  		/* Issue a multicast command to workaround a 557 lock up */
1723  		e100_set_multicast_list(nic->netdev);
1724  
1725  	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1726  		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1727  		nic->flags |= ich_10h_workaround;
1728  	else
1729  		nic->flags &= ~ich_10h_workaround;
1730  
1731  	mod_timer(&nic->watchdog,
1732  		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1733  }
1734  
e100_xmit_prepare(struct nic * nic,struct cb * cb,struct sk_buff * skb)1735  static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1736  	struct sk_buff *skb)
1737  {
1738  	dma_addr_t dma_addr;
1739  	cb->command = nic->tx_command;
1740  
1741  	dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len,
1742  				  DMA_TO_DEVICE);
1743  	/* If we can't map the skb, have the upper layer try later */
1744  	if (dma_mapping_error(&nic->pdev->dev, dma_addr))
1745  		return -ENOMEM;
1746  
1747  	/*
1748  	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1749  	 * testing, ie sending frames with bad CRC.
1750  	 */
1751  	if (unlikely(skb->no_fcs))
1752  		cb->command |= cpu_to_le16(cb_tx_nc);
1753  	else
1754  		cb->command &= ~cpu_to_le16(cb_tx_nc);
1755  
1756  	/* interrupt every 16 packets regardless of delay */
1757  	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1758  		cb->command |= cpu_to_le16(cb_i);
1759  	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1760  	cb->u.tcb.tcb_byte_count = 0;
1761  	cb->u.tcb.threshold = nic->tx_threshold;
1762  	cb->u.tcb.tbd_count = 1;
1763  	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1764  	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1765  	skb_tx_timestamp(skb);
1766  	return 0;
1767  }
1768  
e100_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1769  static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1770  				   struct net_device *netdev)
1771  {
1772  	struct nic *nic = netdev_priv(netdev);
1773  	int err;
1774  
1775  	if (nic->flags & ich_10h_workaround) {
1776  		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1777  		   Issue a NOP command followed by a 1us delay before
1778  		   issuing the Tx command. */
1779  		if (e100_exec_cmd(nic, cuc_nop, 0))
1780  			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1781  				     "exec cuc_nop failed\n");
1782  		udelay(1);
1783  	}
1784  
1785  	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1786  
1787  	switch (err) {
1788  	case -ENOSPC:
1789  		/* We queued the skb, but now we're out of space. */
1790  		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1791  			     "No space for CB\n");
1792  		netif_stop_queue(netdev);
1793  		break;
1794  	case -ENOMEM:
1795  		/* This is a hard error - log it. */
1796  		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1797  			     "Out of Tx resources, returning skb\n");
1798  		netif_stop_queue(netdev);
1799  		return NETDEV_TX_BUSY;
1800  	}
1801  
1802  	return NETDEV_TX_OK;
1803  }
1804  
e100_tx_clean(struct nic * nic)1805  static int e100_tx_clean(struct nic *nic)
1806  {
1807  	struct net_device *dev = nic->netdev;
1808  	struct cb *cb;
1809  	int tx_cleaned = 0;
1810  
1811  	spin_lock(&nic->cb_lock);
1812  
1813  	/* Clean CBs marked complete */
1814  	for (cb = nic->cb_to_clean;
1815  	    cb->status & cpu_to_le16(cb_complete);
1816  	    cb = nic->cb_to_clean = cb->next) {
1817  		dma_rmb(); /* read skb after status */
1818  		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1819  			     "cb[%d]->status = 0x%04X\n",
1820  			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1821  			     cb->status);
1822  
1823  		if (likely(cb->skb != NULL)) {
1824  			dev->stats.tx_packets++;
1825  			dev->stats.tx_bytes += cb->skb->len;
1826  
1827  			dma_unmap_single(&nic->pdev->dev,
1828  					 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1829  					 le16_to_cpu(cb->u.tcb.tbd.size),
1830  					 DMA_TO_DEVICE);
1831  			dev_kfree_skb_any(cb->skb);
1832  			cb->skb = NULL;
1833  			tx_cleaned = 1;
1834  		}
1835  		cb->status = 0;
1836  		nic->cbs_avail++;
1837  	}
1838  
1839  	spin_unlock(&nic->cb_lock);
1840  
1841  	/* Recover from running out of Tx resources in xmit_frame */
1842  	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1843  		netif_wake_queue(nic->netdev);
1844  
1845  	return tx_cleaned;
1846  }
1847  
e100_clean_cbs(struct nic * nic)1848  static void e100_clean_cbs(struct nic *nic)
1849  {
1850  	if (nic->cbs) {
1851  		while (nic->cbs_avail != nic->params.cbs.count) {
1852  			struct cb *cb = nic->cb_to_clean;
1853  			if (cb->skb) {
1854  				dma_unmap_single(&nic->pdev->dev,
1855  						 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1856  						 le16_to_cpu(cb->u.tcb.tbd.size),
1857  						 DMA_TO_DEVICE);
1858  				dev_kfree_skb(cb->skb);
1859  			}
1860  			nic->cb_to_clean = nic->cb_to_clean->next;
1861  			nic->cbs_avail++;
1862  		}
1863  		dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1864  		nic->cbs = NULL;
1865  		nic->cbs_avail = 0;
1866  	}
1867  	nic->cuc_cmd = cuc_start;
1868  	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1869  		nic->cbs;
1870  }
1871  
e100_alloc_cbs(struct nic * nic)1872  static int e100_alloc_cbs(struct nic *nic)
1873  {
1874  	struct cb *cb;
1875  	unsigned int i, count = nic->params.cbs.count;
1876  
1877  	nic->cuc_cmd = cuc_start;
1878  	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1879  	nic->cbs_avail = 0;
1880  
1881  	nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1882  				   &nic->cbs_dma_addr);
1883  	if (!nic->cbs)
1884  		return -ENOMEM;
1885  
1886  	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1887  		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1888  		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1889  
1890  		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1891  		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1892  			((i+1) % count) * sizeof(struct cb));
1893  	}
1894  
1895  	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1896  	nic->cbs_avail = count;
1897  
1898  	return 0;
1899  }
1900  
e100_start_receiver(struct nic * nic,struct rx * rx)1901  static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1902  {
1903  	if (!nic->rxs) return;
1904  	if (RU_SUSPENDED != nic->ru_running) return;
1905  
1906  	/* handle init time starts */
1907  	if (!rx) rx = nic->rxs;
1908  
1909  	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1910  	if (rx->skb) {
1911  		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1912  		nic->ru_running = RU_RUNNING;
1913  	}
1914  }
1915  
1916  #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
e100_rx_alloc_skb(struct nic * nic,struct rx * rx)1917  static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1918  {
1919  	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1920  		return -ENOMEM;
1921  
1922  	/* Init, and map the RFD. */
1923  	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1924  	rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data,
1925  				      RFD_BUF_LEN, DMA_BIDIRECTIONAL);
1926  
1927  	if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) {
1928  		dev_kfree_skb_any(rx->skb);
1929  		rx->skb = NULL;
1930  		rx->dma_addr = 0;
1931  		return -ENOMEM;
1932  	}
1933  
1934  	/* Link the RFD to end of RFA by linking previous RFD to
1935  	 * this one.  We are safe to touch the previous RFD because
1936  	 * it is protected by the before last buffer's el bit being set */
1937  	if (rx->prev->skb) {
1938  		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1939  		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1940  		dma_sync_single_for_device(&nic->pdev->dev,
1941  					   rx->prev->dma_addr,
1942  					   sizeof(struct rfd),
1943  					   DMA_BIDIRECTIONAL);
1944  	}
1945  
1946  	return 0;
1947  }
1948  
e100_rx_indicate(struct nic * nic,struct rx * rx,unsigned int * work_done,unsigned int work_to_do)1949  static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1950  	unsigned int *work_done, unsigned int work_to_do)
1951  {
1952  	struct net_device *dev = nic->netdev;
1953  	struct sk_buff *skb = rx->skb;
1954  	struct rfd *rfd = (struct rfd *)skb->data;
1955  	u16 rfd_status, actual_size;
1956  	u16 fcs_pad = 0;
1957  
1958  	if (unlikely(work_done && *work_done >= work_to_do))
1959  		return -EAGAIN;
1960  
1961  	/* Need to sync before taking a peek at cb_complete bit */
1962  	dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr,
1963  				sizeof(struct rfd), DMA_BIDIRECTIONAL);
1964  	rfd_status = le16_to_cpu(rfd->status);
1965  
1966  	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1967  		     "status=0x%04X\n", rfd_status);
1968  	dma_rmb(); /* read size after status bit */
1969  
1970  	/* If data isn't ready, nothing to indicate */
1971  	if (unlikely(!(rfd_status & cb_complete))) {
1972  		/* If the next buffer has the el bit, but we think the receiver
1973  		 * is still running, check to see if it really stopped while
1974  		 * we had interrupts off.
1975  		 * This allows for a fast restart without re-enabling
1976  		 * interrupts */
1977  		if ((le16_to_cpu(rfd->command) & cb_el) &&
1978  		    (RU_RUNNING == nic->ru_running))
1979  
1980  			if (ioread8(&nic->csr->scb.status) & rus_no_res)
1981  				nic->ru_running = RU_SUSPENDED;
1982  		dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
1983  					   sizeof(struct rfd),
1984  					   DMA_FROM_DEVICE);
1985  		return -ENODATA;
1986  	}
1987  
1988  	/* Get actual data size */
1989  	if (unlikely(dev->features & NETIF_F_RXFCS))
1990  		fcs_pad = 4;
1991  	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1992  	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1993  		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1994  
1995  	/* Get data */
1996  	dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN,
1997  			 DMA_BIDIRECTIONAL);
1998  
1999  	/* If this buffer has the el bit, but we think the receiver
2000  	 * is still running, check to see if it really stopped while
2001  	 * we had interrupts off.
2002  	 * This allows for a fast restart without re-enabling interrupts.
2003  	 * This can happen when the RU sees the size change but also sees
2004  	 * the el bit set. */
2005  	if ((le16_to_cpu(rfd->command) & cb_el) &&
2006  	    (RU_RUNNING == nic->ru_running)) {
2007  
2008  	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
2009  		nic->ru_running = RU_SUSPENDED;
2010  	}
2011  
2012  	/* Pull off the RFD and put the actual data (minus eth hdr) */
2013  	skb_reserve(skb, sizeof(struct rfd));
2014  	skb_put(skb, actual_size);
2015  	skb->protocol = eth_type_trans(skb, nic->netdev);
2016  
2017  	/* If we are receiving all frames, then don't bother
2018  	 * checking for errors.
2019  	 */
2020  	if (unlikely(dev->features & NETIF_F_RXALL)) {
2021  		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2022  			/* Received oversized frame, but keep it. */
2023  			nic->rx_over_length_errors++;
2024  		goto process_skb;
2025  	}
2026  
2027  	if (unlikely(!(rfd_status & cb_ok))) {
2028  		/* Don't indicate if hardware indicates errors */
2029  		dev_kfree_skb_any(skb);
2030  	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2031  		/* Don't indicate oversized frames */
2032  		nic->rx_over_length_errors++;
2033  		dev_kfree_skb_any(skb);
2034  	} else {
2035  process_skb:
2036  		dev->stats.rx_packets++;
2037  		dev->stats.rx_bytes += (actual_size - fcs_pad);
2038  		netif_receive_skb(skb);
2039  		if (work_done)
2040  			(*work_done)++;
2041  	}
2042  
2043  	rx->skb = NULL;
2044  
2045  	return 0;
2046  }
2047  
e100_rx_clean(struct nic * nic,unsigned int * work_done,unsigned int work_to_do)2048  static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2049  	unsigned int work_to_do)
2050  {
2051  	struct rx *rx;
2052  	int restart_required = 0, err = 0;
2053  	struct rx *old_before_last_rx, *new_before_last_rx;
2054  	struct rfd *old_before_last_rfd, *new_before_last_rfd;
2055  
2056  	/* Indicate newly arrived packets */
2057  	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2058  		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2059  		/* Hit quota or no more to clean */
2060  		if (-EAGAIN == err || -ENODATA == err)
2061  			break;
2062  	}
2063  
2064  
2065  	/* On EAGAIN, hit quota so have more work to do, restart once
2066  	 * cleanup is complete.
2067  	 * Else, are we already rnr? then pay attention!!! this ensures that
2068  	 * the state machine progression never allows a start with a
2069  	 * partially cleaned list, avoiding a race between hardware
2070  	 * and rx_to_clean when in NAPI mode */
2071  	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2072  		restart_required = 1;
2073  
2074  	old_before_last_rx = nic->rx_to_use->prev->prev;
2075  	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2076  
2077  	/* Alloc new skbs to refill list */
2078  	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2079  		if (unlikely(e100_rx_alloc_skb(nic, rx)))
2080  			break; /* Better luck next time (see watchdog) */
2081  	}
2082  
2083  	new_before_last_rx = nic->rx_to_use->prev->prev;
2084  	if (new_before_last_rx != old_before_last_rx) {
2085  		/* Set the el-bit on the buffer that is before the last buffer.
2086  		 * This lets us update the next pointer on the last buffer
2087  		 * without worrying about hardware touching it.
2088  		 * We set the size to 0 to prevent hardware from touching this
2089  		 * buffer.
2090  		 * When the hardware hits the before last buffer with el-bit
2091  		 * and size of 0, it will RNR interrupt, the RUS will go into
2092  		 * the No Resources state.  It will not complete nor write to
2093  		 * this buffer. */
2094  		new_before_last_rfd =
2095  			(struct rfd *)new_before_last_rx->skb->data;
2096  		new_before_last_rfd->size = 0;
2097  		new_before_last_rfd->command |= cpu_to_le16(cb_el);
2098  		dma_sync_single_for_device(&nic->pdev->dev,
2099  					   new_before_last_rx->dma_addr,
2100  					   sizeof(struct rfd),
2101  					   DMA_BIDIRECTIONAL);
2102  
2103  		/* Now that we have a new stopping point, we can clear the old
2104  		 * stopping point.  We must sync twice to get the proper
2105  		 * ordering on the hardware side of things. */
2106  		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2107  		dma_sync_single_for_device(&nic->pdev->dev,
2108  					   old_before_last_rx->dma_addr,
2109  					   sizeof(struct rfd),
2110  					   DMA_BIDIRECTIONAL);
2111  		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2112  							+ ETH_FCS_LEN);
2113  		dma_sync_single_for_device(&nic->pdev->dev,
2114  					   old_before_last_rx->dma_addr,
2115  					   sizeof(struct rfd),
2116  					   DMA_BIDIRECTIONAL);
2117  	}
2118  
2119  	if (restart_required) {
2120  		// ack the rnr?
2121  		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2122  		e100_start_receiver(nic, nic->rx_to_clean);
2123  		if (work_done)
2124  			(*work_done)++;
2125  	}
2126  }
2127  
e100_rx_clean_list(struct nic * nic)2128  static void e100_rx_clean_list(struct nic *nic)
2129  {
2130  	struct rx *rx;
2131  	unsigned int i, count = nic->params.rfds.count;
2132  
2133  	nic->ru_running = RU_UNINITIALIZED;
2134  
2135  	if (nic->rxs) {
2136  		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2137  			if (rx->skb) {
2138  				dma_unmap_single(&nic->pdev->dev,
2139  						 rx->dma_addr, RFD_BUF_LEN,
2140  						 DMA_BIDIRECTIONAL);
2141  				dev_kfree_skb(rx->skb);
2142  			}
2143  		}
2144  		kfree(nic->rxs);
2145  		nic->rxs = NULL;
2146  	}
2147  
2148  	nic->rx_to_use = nic->rx_to_clean = NULL;
2149  }
2150  
e100_rx_alloc_list(struct nic * nic)2151  static int e100_rx_alloc_list(struct nic *nic)
2152  {
2153  	struct rx *rx;
2154  	unsigned int i, count = nic->params.rfds.count;
2155  	struct rfd *before_last;
2156  
2157  	nic->rx_to_use = nic->rx_to_clean = NULL;
2158  	nic->ru_running = RU_UNINITIALIZED;
2159  
2160  	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL)))
2161  		return -ENOMEM;
2162  
2163  	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2164  		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2165  		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2166  		if (e100_rx_alloc_skb(nic, rx)) {
2167  			e100_rx_clean_list(nic);
2168  			return -ENOMEM;
2169  		}
2170  	}
2171  	/* Set the el-bit on the buffer that is before the last buffer.
2172  	 * This lets us update the next pointer on the last buffer without
2173  	 * worrying about hardware touching it.
2174  	 * We set the size to 0 to prevent hardware from touching this buffer.
2175  	 * When the hardware hits the before last buffer with el-bit and size
2176  	 * of 0, it will RNR interrupt, the RU will go into the No Resources
2177  	 * state.  It will not complete nor write to this buffer. */
2178  	rx = nic->rxs->prev->prev;
2179  	before_last = (struct rfd *)rx->skb->data;
2180  	before_last->command |= cpu_to_le16(cb_el);
2181  	before_last->size = 0;
2182  	dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
2183  				   sizeof(struct rfd), DMA_BIDIRECTIONAL);
2184  
2185  	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2186  	nic->ru_running = RU_SUSPENDED;
2187  
2188  	return 0;
2189  }
2190  
e100_intr(int irq,void * dev_id)2191  static irqreturn_t e100_intr(int irq, void *dev_id)
2192  {
2193  	struct net_device *netdev = dev_id;
2194  	struct nic *nic = netdev_priv(netdev);
2195  	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2196  
2197  	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2198  		     "stat_ack = 0x%02X\n", stat_ack);
2199  
2200  	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
2201  	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
2202  		return IRQ_NONE;
2203  
2204  	/* Ack interrupt(s) */
2205  	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2206  
2207  	/* We hit Receive No Resource (RNR); restart RU after cleaning */
2208  	if (stat_ack & stat_ack_rnr)
2209  		nic->ru_running = RU_SUSPENDED;
2210  
2211  	if (likely(napi_schedule_prep(&nic->napi))) {
2212  		e100_disable_irq(nic);
2213  		__napi_schedule(&nic->napi);
2214  	}
2215  
2216  	return IRQ_HANDLED;
2217  }
2218  
e100_poll(struct napi_struct * napi,int budget)2219  static int e100_poll(struct napi_struct *napi, int budget)
2220  {
2221  	struct nic *nic = container_of(napi, struct nic, napi);
2222  	unsigned int work_done = 0;
2223  
2224  	e100_rx_clean(nic, &work_done, budget);
2225  	e100_tx_clean(nic);
2226  
2227  	/* If budget fully consumed, continue polling */
2228  	if (work_done == budget)
2229  		return budget;
2230  
2231  	/* only re-enable interrupt if stack agrees polling is really done */
2232  	if (likely(napi_complete_done(napi, work_done)))
2233  		e100_enable_irq(nic);
2234  
2235  	return work_done;
2236  }
2237  
2238  #ifdef CONFIG_NET_POLL_CONTROLLER
e100_netpoll(struct net_device * netdev)2239  static void e100_netpoll(struct net_device *netdev)
2240  {
2241  	struct nic *nic = netdev_priv(netdev);
2242  
2243  	e100_disable_irq(nic);
2244  	e100_intr(nic->pdev->irq, netdev);
2245  	e100_tx_clean(nic);
2246  	e100_enable_irq(nic);
2247  }
2248  #endif
2249  
e100_set_mac_address(struct net_device * netdev,void * p)2250  static int e100_set_mac_address(struct net_device *netdev, void *p)
2251  {
2252  	struct nic *nic = netdev_priv(netdev);
2253  	struct sockaddr *addr = p;
2254  
2255  	if (!is_valid_ether_addr(addr->sa_data))
2256  		return -EADDRNOTAVAIL;
2257  
2258  	eth_hw_addr_set(netdev, addr->sa_data);
2259  	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2260  
2261  	return 0;
2262  }
2263  
e100_asf(struct nic * nic)2264  static int e100_asf(struct nic *nic)
2265  {
2266  	/* ASF can be enabled from eeprom */
2267  	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2268  	   (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) &&
2269  	   !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) &&
2270  	   ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE);
2271  }
2272  
e100_up(struct nic * nic)2273  static int e100_up(struct nic *nic)
2274  {
2275  	int err;
2276  
2277  	if ((err = e100_rx_alloc_list(nic)))
2278  		return err;
2279  	if ((err = e100_alloc_cbs(nic)))
2280  		goto err_rx_clean_list;
2281  	if ((err = e100_hw_init(nic)))
2282  		goto err_clean_cbs;
2283  	e100_set_multicast_list(nic->netdev);
2284  	e100_start_receiver(nic, NULL);
2285  	mod_timer(&nic->watchdog, jiffies);
2286  	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2287  		nic->netdev->name, nic->netdev)))
2288  		goto err_no_irq;
2289  	netif_wake_queue(nic->netdev);
2290  	napi_enable(&nic->napi);
2291  	/* enable ints _after_ enabling poll, preventing a race between
2292  	 * disable ints+schedule */
2293  	e100_enable_irq(nic);
2294  	return 0;
2295  
2296  err_no_irq:
2297  	del_timer_sync(&nic->watchdog);
2298  err_clean_cbs:
2299  	e100_clean_cbs(nic);
2300  err_rx_clean_list:
2301  	e100_rx_clean_list(nic);
2302  	return err;
2303  }
2304  
e100_down(struct nic * nic)2305  static void e100_down(struct nic *nic)
2306  {
2307  	/* wait here for poll to complete */
2308  	napi_disable(&nic->napi);
2309  	netif_stop_queue(nic->netdev);
2310  	e100_hw_reset(nic);
2311  	free_irq(nic->pdev->irq, nic->netdev);
2312  	del_timer_sync(&nic->watchdog);
2313  	netif_carrier_off(nic->netdev);
2314  	e100_clean_cbs(nic);
2315  	e100_rx_clean_list(nic);
2316  }
2317  
e100_tx_timeout(struct net_device * netdev,unsigned int txqueue)2318  static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2319  {
2320  	struct nic *nic = netdev_priv(netdev);
2321  
2322  	/* Reset outside of interrupt context, to avoid request_irq
2323  	 * in interrupt context */
2324  	schedule_work(&nic->tx_timeout_task);
2325  }
2326  
e100_tx_timeout_task(struct work_struct * work)2327  static void e100_tx_timeout_task(struct work_struct *work)
2328  {
2329  	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2330  	struct net_device *netdev = nic->netdev;
2331  
2332  	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2333  		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2334  
2335  	rtnl_lock();
2336  	if (netif_running(netdev)) {
2337  		e100_down(netdev_priv(netdev));
2338  		e100_up(netdev_priv(netdev));
2339  	}
2340  	rtnl_unlock();
2341  }
2342  
e100_loopback_test(struct nic * nic,enum loopback loopback_mode)2343  static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2344  {
2345  	int err;
2346  	struct sk_buff *skb;
2347  
2348  	/* Use driver resources to perform internal MAC or PHY
2349  	 * loopback test.  A single packet is prepared and transmitted
2350  	 * in loopback mode, and the test passes if the received
2351  	 * packet compares byte-for-byte to the transmitted packet. */
2352  
2353  	if ((err = e100_rx_alloc_list(nic)))
2354  		return err;
2355  	if ((err = e100_alloc_cbs(nic)))
2356  		goto err_clean_rx;
2357  
2358  	/* ICH PHY loopback is broken so do MAC loopback instead */
2359  	if (nic->flags & ich && loopback_mode == lb_phy)
2360  		loopback_mode = lb_mac;
2361  
2362  	nic->loopback = loopback_mode;
2363  	if ((err = e100_hw_init(nic)))
2364  		goto err_loopback_none;
2365  
2366  	if (loopback_mode == lb_phy)
2367  		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2368  			BMCR_LOOPBACK);
2369  
2370  	e100_start_receiver(nic, NULL);
2371  
2372  	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2373  		err = -ENOMEM;
2374  		goto err_loopback_none;
2375  	}
2376  	skb_put(skb, ETH_DATA_LEN);
2377  	memset(skb->data, 0xFF, ETH_DATA_LEN);
2378  	e100_xmit_frame(skb, nic->netdev);
2379  
2380  	msleep(10);
2381  
2382  	dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr,
2383  				RFD_BUF_LEN, DMA_BIDIRECTIONAL);
2384  
2385  	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2386  	   skb->data, ETH_DATA_LEN))
2387  		err = -EAGAIN;
2388  
2389  err_loopback_none:
2390  	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2391  	nic->loopback = lb_none;
2392  	e100_clean_cbs(nic);
2393  	e100_hw_reset(nic);
2394  err_clean_rx:
2395  	e100_rx_clean_list(nic);
2396  	return err;
2397  }
2398  
2399  #define MII_LED_CONTROL	0x1B
2400  #define E100_82552_LED_OVERRIDE 0x19
2401  #define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2402  #define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2403  
e100_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)2404  static int e100_get_link_ksettings(struct net_device *netdev,
2405  				   struct ethtool_link_ksettings *cmd)
2406  {
2407  	struct nic *nic = netdev_priv(netdev);
2408  
2409  	mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2410  
2411  	return 0;
2412  }
2413  
e100_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * cmd)2414  static int e100_set_link_ksettings(struct net_device *netdev,
2415  				   const struct ethtool_link_ksettings *cmd)
2416  {
2417  	struct nic *nic = netdev_priv(netdev);
2418  	int err;
2419  
2420  	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2421  	err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2422  	e100_exec_cb(nic, NULL, e100_configure);
2423  
2424  	return err;
2425  }
2426  
e100_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * info)2427  static void e100_get_drvinfo(struct net_device *netdev,
2428  	struct ethtool_drvinfo *info)
2429  {
2430  	struct nic *nic = netdev_priv(netdev);
2431  	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2432  	strscpy(info->bus_info, pci_name(nic->pdev),
2433  		sizeof(info->bus_info));
2434  }
2435  
2436  #define E100_PHY_REGS 0x1D
e100_get_regs_len(struct net_device * netdev)2437  static int e100_get_regs_len(struct net_device *netdev)
2438  {
2439  	struct nic *nic = netdev_priv(netdev);
2440  
2441  	/* We know the number of registers, and the size of the dump buffer.
2442  	 * Calculate the total size in bytes.
2443  	 */
2444  	return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf);
2445  }
2446  
e100_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)2447  static void e100_get_regs(struct net_device *netdev,
2448  	struct ethtool_regs *regs, void *p)
2449  {
2450  	struct nic *nic = netdev_priv(netdev);
2451  	u32 *buff = p;
2452  	int i;
2453  
2454  	regs->version = (1 << 24) | nic->pdev->revision;
2455  	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2456  		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2457  		ioread16(&nic->csr->scb.status);
2458  	for (i = 0; i < E100_PHY_REGS; i++)
2459  		/* Note that we read the registers in reverse order. This
2460  		 * ordering is the ABI apparently used by ethtool and other
2461  		 * applications.
2462  		 */
2463  		buff[1 + i] = mdio_read(netdev, nic->mii.phy_id,
2464  					E100_PHY_REGS - 1 - i);
2465  	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2466  	e100_exec_cb(nic, NULL, e100_dump);
2467  	msleep(10);
2468  	memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf,
2469  	       sizeof(nic->mem->dump_buf));
2470  }
2471  
e100_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2472  static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2473  {
2474  	struct nic *nic = netdev_priv(netdev);
2475  	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2476  	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2477  }
2478  
e100_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2479  static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2480  {
2481  	struct nic *nic = netdev_priv(netdev);
2482  
2483  	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2484  	    !device_can_wakeup(&nic->pdev->dev))
2485  		return -EOPNOTSUPP;
2486  
2487  	if (wol->wolopts)
2488  		nic->flags |= wol_magic;
2489  	else
2490  		nic->flags &= ~wol_magic;
2491  
2492  	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2493  
2494  	e100_exec_cb(nic, NULL, e100_configure);
2495  
2496  	return 0;
2497  }
2498  
e100_get_msglevel(struct net_device * netdev)2499  static u32 e100_get_msglevel(struct net_device *netdev)
2500  {
2501  	struct nic *nic = netdev_priv(netdev);
2502  	return nic->msg_enable;
2503  }
2504  
e100_set_msglevel(struct net_device * netdev,u32 value)2505  static void e100_set_msglevel(struct net_device *netdev, u32 value)
2506  {
2507  	struct nic *nic = netdev_priv(netdev);
2508  	nic->msg_enable = value;
2509  }
2510  
e100_nway_reset(struct net_device * netdev)2511  static int e100_nway_reset(struct net_device *netdev)
2512  {
2513  	struct nic *nic = netdev_priv(netdev);
2514  	return mii_nway_restart(&nic->mii);
2515  }
2516  
e100_get_link(struct net_device * netdev)2517  static u32 e100_get_link(struct net_device *netdev)
2518  {
2519  	struct nic *nic = netdev_priv(netdev);
2520  	return mii_link_ok(&nic->mii);
2521  }
2522  
e100_get_eeprom_len(struct net_device * netdev)2523  static int e100_get_eeprom_len(struct net_device *netdev)
2524  {
2525  	struct nic *nic = netdev_priv(netdev);
2526  	return nic->eeprom_wc << 1;
2527  }
2528  
2529  #define E100_EEPROM_MAGIC	0x1234
e100_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)2530  static int e100_get_eeprom(struct net_device *netdev,
2531  	struct ethtool_eeprom *eeprom, u8 *bytes)
2532  {
2533  	struct nic *nic = netdev_priv(netdev);
2534  
2535  	eeprom->magic = E100_EEPROM_MAGIC;
2536  	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2537  
2538  	return 0;
2539  }
2540  
e100_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)2541  static int e100_set_eeprom(struct net_device *netdev,
2542  	struct ethtool_eeprom *eeprom, u8 *bytes)
2543  {
2544  	struct nic *nic = netdev_priv(netdev);
2545  
2546  	if (eeprom->magic != E100_EEPROM_MAGIC)
2547  		return -EINVAL;
2548  
2549  	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2550  
2551  	return e100_eeprom_save(nic, eeprom->offset >> 1,
2552  		(eeprom->len >> 1) + 1);
2553  }
2554  
e100_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)2555  static void e100_get_ringparam(struct net_device *netdev,
2556  			       struct ethtool_ringparam *ring,
2557  			       struct kernel_ethtool_ringparam *kernel_ring,
2558  			       struct netlink_ext_ack *extack)
2559  {
2560  	struct nic *nic = netdev_priv(netdev);
2561  	struct param_range *rfds = &nic->params.rfds;
2562  	struct param_range *cbs = &nic->params.cbs;
2563  
2564  	ring->rx_max_pending = rfds->max;
2565  	ring->tx_max_pending = cbs->max;
2566  	ring->rx_pending = rfds->count;
2567  	ring->tx_pending = cbs->count;
2568  }
2569  
e100_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)2570  static int e100_set_ringparam(struct net_device *netdev,
2571  			      struct ethtool_ringparam *ring,
2572  			      struct kernel_ethtool_ringparam *kernel_ring,
2573  			      struct netlink_ext_ack *extack)
2574  {
2575  	struct nic *nic = netdev_priv(netdev);
2576  	struct param_range *rfds = &nic->params.rfds;
2577  	struct param_range *cbs = &nic->params.cbs;
2578  
2579  	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2580  		return -EINVAL;
2581  
2582  	if (netif_running(netdev))
2583  		e100_down(nic);
2584  	rfds->count = max(ring->rx_pending, rfds->min);
2585  	rfds->count = min(rfds->count, rfds->max);
2586  	cbs->count = max(ring->tx_pending, cbs->min);
2587  	cbs->count = min(cbs->count, cbs->max);
2588  	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2589  		   rfds->count, cbs->count);
2590  	if (netif_running(netdev))
2591  		e100_up(nic);
2592  
2593  	return 0;
2594  }
2595  
2596  static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2597  	"Link test     (on/offline)",
2598  	"Eeprom test   (on/offline)",
2599  	"Self test        (offline)",
2600  	"Mac loopback     (offline)",
2601  	"Phy loopback     (offline)",
2602  };
2603  #define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2604  
e100_diag_test(struct net_device * netdev,struct ethtool_test * test,u64 * data)2605  static void e100_diag_test(struct net_device *netdev,
2606  	struct ethtool_test *test, u64 *data)
2607  {
2608  	struct ethtool_cmd cmd;
2609  	struct nic *nic = netdev_priv(netdev);
2610  	int i;
2611  
2612  	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2613  	data[0] = !mii_link_ok(&nic->mii);
2614  	data[1] = e100_eeprom_load(nic);
2615  	if (test->flags & ETH_TEST_FL_OFFLINE) {
2616  
2617  		/* save speed, duplex & autoneg settings */
2618  		mii_ethtool_gset(&nic->mii, &cmd);
2619  
2620  		if (netif_running(netdev))
2621  			e100_down(nic);
2622  		data[2] = e100_self_test(nic);
2623  		data[3] = e100_loopback_test(nic, lb_mac);
2624  		data[4] = e100_loopback_test(nic, lb_phy);
2625  
2626  		/* restore speed, duplex & autoneg settings */
2627  		mii_ethtool_sset(&nic->mii, &cmd);
2628  
2629  		if (netif_running(netdev))
2630  			e100_up(nic);
2631  	}
2632  	for (i = 0; i < E100_TEST_LEN; i++)
2633  		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2634  
2635  	msleep_interruptible(4 * 1000);
2636  }
2637  
e100_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)2638  static int e100_set_phys_id(struct net_device *netdev,
2639  			    enum ethtool_phys_id_state state)
2640  {
2641  	struct nic *nic = netdev_priv(netdev);
2642  	enum led_state {
2643  		led_on     = 0x01,
2644  		led_off    = 0x04,
2645  		led_on_559 = 0x05,
2646  		led_on_557 = 0x07,
2647  	};
2648  	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2649  		MII_LED_CONTROL;
2650  	u16 leds = 0;
2651  
2652  	switch (state) {
2653  	case ETHTOOL_ID_ACTIVE:
2654  		return 2;
2655  
2656  	case ETHTOOL_ID_ON:
2657  		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2658  		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2659  		break;
2660  
2661  	case ETHTOOL_ID_OFF:
2662  		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2663  		break;
2664  
2665  	case ETHTOOL_ID_INACTIVE:
2666  		break;
2667  	}
2668  
2669  	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2670  	return 0;
2671  }
2672  
2673  static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2674  	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2675  	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2676  	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2677  	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2678  	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2679  	"tx_heartbeat_errors", "tx_window_errors",
2680  	/* device-specific stats */
2681  	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2682  	"tx_flow_control_pause", "rx_flow_control_pause",
2683  	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2684  	"rx_short_frame_errors", "rx_over_length_errors",
2685  };
2686  #define E100_NET_STATS_LEN	21
2687  #define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2688  
e100_get_sset_count(struct net_device * netdev,int sset)2689  static int e100_get_sset_count(struct net_device *netdev, int sset)
2690  {
2691  	switch (sset) {
2692  	case ETH_SS_TEST:
2693  		return E100_TEST_LEN;
2694  	case ETH_SS_STATS:
2695  		return E100_STATS_LEN;
2696  	default:
2697  		return -EOPNOTSUPP;
2698  	}
2699  }
2700  
e100_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)2701  static void e100_get_ethtool_stats(struct net_device *netdev,
2702  	struct ethtool_stats *stats, u64 *data)
2703  {
2704  	struct nic *nic = netdev_priv(netdev);
2705  	int i;
2706  
2707  	for (i = 0; i < E100_NET_STATS_LEN; i++)
2708  		data[i] = ((unsigned long *)&netdev->stats)[i];
2709  
2710  	data[i++] = nic->tx_deferred;
2711  	data[i++] = nic->tx_single_collisions;
2712  	data[i++] = nic->tx_multiple_collisions;
2713  	data[i++] = nic->tx_fc_pause;
2714  	data[i++] = nic->rx_fc_pause;
2715  	data[i++] = nic->rx_fc_unsupported;
2716  	data[i++] = nic->tx_tco_frames;
2717  	data[i++] = nic->rx_tco_frames;
2718  	data[i++] = nic->rx_short_frame_errors;
2719  	data[i++] = nic->rx_over_length_errors;
2720  }
2721  
e100_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2722  static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2723  {
2724  	switch (stringset) {
2725  	case ETH_SS_TEST:
2726  		memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test));
2727  		break;
2728  	case ETH_SS_STATS:
2729  		memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats));
2730  		break;
2731  	}
2732  }
2733  
2734  static const struct ethtool_ops e100_ethtool_ops = {
2735  	.get_drvinfo		= e100_get_drvinfo,
2736  	.get_regs_len		= e100_get_regs_len,
2737  	.get_regs		= e100_get_regs,
2738  	.get_wol		= e100_get_wol,
2739  	.set_wol		= e100_set_wol,
2740  	.get_msglevel		= e100_get_msglevel,
2741  	.set_msglevel		= e100_set_msglevel,
2742  	.nway_reset		= e100_nway_reset,
2743  	.get_link		= e100_get_link,
2744  	.get_eeprom_len		= e100_get_eeprom_len,
2745  	.get_eeprom		= e100_get_eeprom,
2746  	.set_eeprom		= e100_set_eeprom,
2747  	.get_ringparam		= e100_get_ringparam,
2748  	.set_ringparam		= e100_set_ringparam,
2749  	.self_test		= e100_diag_test,
2750  	.get_strings		= e100_get_strings,
2751  	.set_phys_id		= e100_set_phys_id,
2752  	.get_ethtool_stats	= e100_get_ethtool_stats,
2753  	.get_sset_count		= e100_get_sset_count,
2754  	.get_ts_info		= ethtool_op_get_ts_info,
2755  	.get_link_ksettings	= e100_get_link_ksettings,
2756  	.set_link_ksettings	= e100_set_link_ksettings,
2757  };
2758  
e100_do_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2759  static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2760  {
2761  	struct nic *nic = netdev_priv(netdev);
2762  
2763  	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2764  }
2765  
e100_alloc(struct nic * nic)2766  static int e100_alloc(struct nic *nic)
2767  {
2768  	nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem),
2769  				      &nic->dma_addr, GFP_KERNEL);
2770  	return nic->mem ? 0 : -ENOMEM;
2771  }
2772  
e100_free(struct nic * nic)2773  static void e100_free(struct nic *nic)
2774  {
2775  	if (nic->mem) {
2776  		dma_free_coherent(&nic->pdev->dev, sizeof(struct mem),
2777  				  nic->mem, nic->dma_addr);
2778  		nic->mem = NULL;
2779  	}
2780  }
2781  
e100_open(struct net_device * netdev)2782  static int e100_open(struct net_device *netdev)
2783  {
2784  	struct nic *nic = netdev_priv(netdev);
2785  	int err = 0;
2786  
2787  	netif_carrier_off(netdev);
2788  	if ((err = e100_up(nic)))
2789  		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2790  	return err;
2791  }
2792  
e100_close(struct net_device * netdev)2793  static int e100_close(struct net_device *netdev)
2794  {
2795  	e100_down(netdev_priv(netdev));
2796  	return 0;
2797  }
2798  
e100_set_features(struct net_device * netdev,netdev_features_t features)2799  static int e100_set_features(struct net_device *netdev,
2800  			     netdev_features_t features)
2801  {
2802  	struct nic *nic = netdev_priv(netdev);
2803  	netdev_features_t changed = features ^ netdev->features;
2804  
2805  	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2806  		return 0;
2807  
2808  	netdev->features = features;
2809  	e100_exec_cb(nic, NULL, e100_configure);
2810  	return 1;
2811  }
2812  
2813  static const struct net_device_ops e100_netdev_ops = {
2814  	.ndo_open		= e100_open,
2815  	.ndo_stop		= e100_close,
2816  	.ndo_start_xmit		= e100_xmit_frame,
2817  	.ndo_validate_addr	= eth_validate_addr,
2818  	.ndo_set_rx_mode	= e100_set_multicast_list,
2819  	.ndo_set_mac_address	= e100_set_mac_address,
2820  	.ndo_eth_ioctl		= e100_do_ioctl,
2821  	.ndo_tx_timeout		= e100_tx_timeout,
2822  #ifdef CONFIG_NET_POLL_CONTROLLER
2823  	.ndo_poll_controller	= e100_netpoll,
2824  #endif
2825  	.ndo_set_features	= e100_set_features,
2826  };
2827  
e100_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2828  static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2829  {
2830  	struct net_device *netdev;
2831  	struct nic *nic;
2832  	int err;
2833  
2834  	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2835  		return -ENOMEM;
2836  
2837  	netdev->hw_features |= NETIF_F_RXFCS;
2838  	netdev->priv_flags |= IFF_SUPP_NOFCS;
2839  	netdev->hw_features |= NETIF_F_RXALL;
2840  
2841  	netdev->netdev_ops = &e100_netdev_ops;
2842  	netdev->ethtool_ops = &e100_ethtool_ops;
2843  	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2844  	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2845  
2846  	nic = netdev_priv(netdev);
2847  	netif_napi_add_weight(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2848  	nic->netdev = netdev;
2849  	nic->pdev = pdev;
2850  	nic->msg_enable = (1 << debug) - 1;
2851  	nic->mdio_ctrl = mdio_ctrl_hw;
2852  	pci_set_drvdata(pdev, netdev);
2853  
2854  	if ((err = pci_enable_device(pdev))) {
2855  		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2856  		goto err_out_free_dev;
2857  	}
2858  
2859  	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2860  		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2861  		err = -ENODEV;
2862  		goto err_out_disable_pdev;
2863  	}
2864  
2865  	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2866  		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2867  		goto err_out_disable_pdev;
2868  	}
2869  
2870  	if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
2871  		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2872  		goto err_out_free_res;
2873  	}
2874  
2875  	SET_NETDEV_DEV(netdev, &pdev->dev);
2876  
2877  	if (use_io)
2878  		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2879  
2880  	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2881  	if (!nic->csr) {
2882  		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2883  		err = -ENOMEM;
2884  		goto err_out_free_res;
2885  	}
2886  
2887  	if (ent->driver_data)
2888  		nic->flags |= ich;
2889  	else
2890  		nic->flags &= ~ich;
2891  
2892  	e100_get_defaults(nic);
2893  
2894  	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2895  	if (nic->mac < mac_82558_D101_A4)
2896  		netdev->features |= NETIF_F_VLAN_CHALLENGED;
2897  
2898  	/* locks must be initialized before calling hw_reset */
2899  	spin_lock_init(&nic->cb_lock);
2900  	spin_lock_init(&nic->cmd_lock);
2901  	spin_lock_init(&nic->mdio_lock);
2902  
2903  	/* Reset the device before pci_set_master() in case device is in some
2904  	 * funky state and has an interrupt pending - hint: we don't have the
2905  	 * interrupt handler registered yet. */
2906  	e100_hw_reset(nic);
2907  
2908  	pci_set_master(pdev);
2909  
2910  	timer_setup(&nic->watchdog, e100_watchdog, 0);
2911  
2912  	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2913  
2914  	if ((err = e100_alloc(nic))) {
2915  		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2916  		goto err_out_iounmap;
2917  	}
2918  
2919  	if ((err = e100_eeprom_load(nic)))
2920  		goto err_out_free;
2921  
2922  	e100_phy_init(nic);
2923  
2924  	eth_hw_addr_set(netdev, (u8 *)nic->eeprom);
2925  	if (!is_valid_ether_addr(netdev->dev_addr)) {
2926  		if (!eeprom_bad_csum_allow) {
2927  			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2928  			err = -EAGAIN;
2929  			goto err_out_free;
2930  		} else {
2931  			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2932  		}
2933  	}
2934  
2935  	/* Wol magic packet can be enabled from eeprom */
2936  	if ((nic->mac >= mac_82558_D101_A4) &&
2937  	   (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) {
2938  		nic->flags |= wol_magic;
2939  		device_set_wakeup_enable(&pdev->dev, true);
2940  	}
2941  
2942  	/* ack any pending wake events, disable PME */
2943  	pci_pme_active(pdev, false);
2944  
2945  	strcpy(netdev->name, "eth%d");
2946  	if ((err = register_netdev(netdev))) {
2947  		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2948  		goto err_out_free;
2949  	}
2950  	nic->cbs_pool = dma_pool_create(netdev->name,
2951  			   &nic->pdev->dev,
2952  			   nic->params.cbs.max * sizeof(struct cb),
2953  			   sizeof(u32),
2954  			   0);
2955  	if (!nic->cbs_pool) {
2956  		netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2957  		err = -ENOMEM;
2958  		goto err_out_pool;
2959  	}
2960  	netif_info(nic, probe, nic->netdev,
2961  		   "addr 0x%llx, irq %d, MAC addr %pM\n",
2962  		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2963  		   pdev->irq, netdev->dev_addr);
2964  
2965  	return 0;
2966  
2967  err_out_pool:
2968  	unregister_netdev(netdev);
2969  err_out_free:
2970  	e100_free(nic);
2971  err_out_iounmap:
2972  	pci_iounmap(pdev, nic->csr);
2973  err_out_free_res:
2974  	pci_release_regions(pdev);
2975  err_out_disable_pdev:
2976  	pci_disable_device(pdev);
2977  err_out_free_dev:
2978  	free_netdev(netdev);
2979  	return err;
2980  }
2981  
e100_remove(struct pci_dev * pdev)2982  static void e100_remove(struct pci_dev *pdev)
2983  {
2984  	struct net_device *netdev = pci_get_drvdata(pdev);
2985  
2986  	if (netdev) {
2987  		struct nic *nic = netdev_priv(netdev);
2988  		unregister_netdev(netdev);
2989  		e100_free(nic);
2990  		pci_iounmap(pdev, nic->csr);
2991  		dma_pool_destroy(nic->cbs_pool);
2992  		free_netdev(netdev);
2993  		pci_release_regions(pdev);
2994  		pci_disable_device(pdev);
2995  	}
2996  }
2997  
2998  #define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
2999  #define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
3000  #define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
__e100_shutdown(struct pci_dev * pdev,bool * enable_wake)3001  static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3002  {
3003  	struct net_device *netdev = pci_get_drvdata(pdev);
3004  	struct nic *nic = netdev_priv(netdev);
3005  
3006  	netif_device_detach(netdev);
3007  
3008  	if (netif_running(netdev))
3009  		e100_down(nic);
3010  
3011  	if ((nic->flags & wol_magic) | e100_asf(nic)) {
3012  		/* enable reverse auto-negotiation */
3013  		if (nic->phy == phy_82552_v) {
3014  			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3015  			                           E100_82552_SMARTSPEED);
3016  
3017  			mdio_write(netdev, nic->mii.phy_id,
3018  			           E100_82552_SMARTSPEED, smartspeed |
3019  			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3020  		}
3021  		*enable_wake = true;
3022  	} else {
3023  		*enable_wake = false;
3024  	}
3025  
3026  	pci_disable_device(pdev);
3027  }
3028  
__e100_power_off(struct pci_dev * pdev,bool wake)3029  static int __e100_power_off(struct pci_dev *pdev, bool wake)
3030  {
3031  	if (wake)
3032  		return pci_prepare_to_sleep(pdev);
3033  
3034  	pci_wake_from_d3(pdev, false);
3035  	pci_set_power_state(pdev, PCI_D3hot);
3036  
3037  	return 0;
3038  }
3039  
e100_suspend(struct device * dev_d)3040  static int __maybe_unused e100_suspend(struct device *dev_d)
3041  {
3042  	bool wake;
3043  
3044  	__e100_shutdown(to_pci_dev(dev_d), &wake);
3045  
3046  	return 0;
3047  }
3048  
e100_resume(struct device * dev_d)3049  static int __maybe_unused e100_resume(struct device *dev_d)
3050  {
3051  	struct net_device *netdev = dev_get_drvdata(dev_d);
3052  	struct nic *nic = netdev_priv(netdev);
3053  	int err;
3054  
3055  	err = pci_enable_device(to_pci_dev(dev_d));
3056  	if (err) {
3057  		netdev_err(netdev, "Resume cannot enable PCI device, aborting\n");
3058  		return err;
3059  	}
3060  	pci_set_master(to_pci_dev(dev_d));
3061  
3062  	/* disable reverse auto-negotiation */
3063  	if (nic->phy == phy_82552_v) {
3064  		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3065  		                           E100_82552_SMARTSPEED);
3066  
3067  		mdio_write(netdev, nic->mii.phy_id,
3068  		           E100_82552_SMARTSPEED,
3069  		           smartspeed & ~(E100_82552_REV_ANEG));
3070  	}
3071  
3072  	if (netif_running(netdev))
3073  		e100_up(nic);
3074  
3075  	netif_device_attach(netdev);
3076  
3077  	return 0;
3078  }
3079  
e100_shutdown(struct pci_dev * pdev)3080  static void e100_shutdown(struct pci_dev *pdev)
3081  {
3082  	bool wake;
3083  	__e100_shutdown(pdev, &wake);
3084  	if (system_state == SYSTEM_POWER_OFF)
3085  		__e100_power_off(pdev, wake);
3086  }
3087  
3088  /* ------------------ PCI Error Recovery infrastructure  -------------- */
3089  /**
3090   * e100_io_error_detected - called when PCI error is detected.
3091   * @pdev: Pointer to PCI device
3092   * @state: The current pci connection state
3093   */
e100_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3094  static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3095  {
3096  	struct net_device *netdev = pci_get_drvdata(pdev);
3097  	struct nic *nic = netdev_priv(netdev);
3098  
3099  	netif_device_detach(netdev);
3100  
3101  	if (state == pci_channel_io_perm_failure)
3102  		return PCI_ERS_RESULT_DISCONNECT;
3103  
3104  	if (netif_running(netdev))
3105  		e100_down(nic);
3106  	pci_disable_device(pdev);
3107  
3108  	/* Request a slot reset. */
3109  	return PCI_ERS_RESULT_NEED_RESET;
3110  }
3111  
3112  /**
3113   * e100_io_slot_reset - called after the pci bus has been reset.
3114   * @pdev: Pointer to PCI device
3115   *
3116   * Restart the card from scratch.
3117   */
e100_io_slot_reset(struct pci_dev * pdev)3118  static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3119  {
3120  	struct net_device *netdev = pci_get_drvdata(pdev);
3121  	struct nic *nic = netdev_priv(netdev);
3122  
3123  	if (pci_enable_device(pdev)) {
3124  		pr_err("Cannot re-enable PCI device after reset\n");
3125  		return PCI_ERS_RESULT_DISCONNECT;
3126  	}
3127  	pci_set_master(pdev);
3128  
3129  	/* Only one device per card can do a reset */
3130  	if (0 != PCI_FUNC(pdev->devfn))
3131  		return PCI_ERS_RESULT_RECOVERED;
3132  	e100_hw_reset(nic);
3133  	e100_phy_init(nic);
3134  
3135  	return PCI_ERS_RESULT_RECOVERED;
3136  }
3137  
3138  /**
3139   * e100_io_resume - resume normal operations
3140   * @pdev: Pointer to PCI device
3141   *
3142   * Resume normal operations after an error recovery
3143   * sequence has been completed.
3144   */
e100_io_resume(struct pci_dev * pdev)3145  static void e100_io_resume(struct pci_dev *pdev)
3146  {
3147  	struct net_device *netdev = pci_get_drvdata(pdev);
3148  	struct nic *nic = netdev_priv(netdev);
3149  
3150  	/* ack any pending wake events, disable PME */
3151  	pci_enable_wake(pdev, PCI_D0, 0);
3152  
3153  	netif_device_attach(netdev);
3154  	if (netif_running(netdev)) {
3155  		e100_open(netdev);
3156  		mod_timer(&nic->watchdog, jiffies);
3157  	}
3158  }
3159  
3160  static const struct pci_error_handlers e100_err_handler = {
3161  	.error_detected = e100_io_error_detected,
3162  	.slot_reset = e100_io_slot_reset,
3163  	.resume = e100_io_resume,
3164  };
3165  
3166  static SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume);
3167  
3168  static struct pci_driver e100_driver = {
3169  	.name =         DRV_NAME,
3170  	.id_table =     e100_id_table,
3171  	.probe =        e100_probe,
3172  	.remove =       e100_remove,
3173  
3174  	/* Power Management hooks */
3175  	.driver.pm =	&e100_pm_ops,
3176  
3177  	.shutdown =     e100_shutdown,
3178  	.err_handler = &e100_err_handler,
3179  };
3180  
e100_init_module(void)3181  static int __init e100_init_module(void)
3182  {
3183  	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3184  		pr_info("%s\n", DRV_DESCRIPTION);
3185  		pr_info("%s\n", DRV_COPYRIGHT);
3186  	}
3187  	return pci_register_driver(&e100_driver);
3188  }
3189  
e100_cleanup_module(void)3190  static void __exit e100_cleanup_module(void)
3191  {
3192  	pci_unregister_driver(&e100_driver);
3193  }
3194  
3195  module_init(e100_init_module);
3196  module_exit(e100_cleanup_module);
3197