1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/clk/tegra/clk-emc.c
4  *
5  * Copyright (c) 2014, NVIDIA CORPORATION.  All rights reserved.
6  *
7  * Author:
8  *	Mikko Perttunen <mperttunen@nvidia.com>
9  */
10 
11 #include <linux/clk-provider.h>
12 #include <linux/clk.h>
13 #include <linux/clkdev.h>
14 #include <linux/clk/tegra.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/io.h>
18 #include <linux/module.h>
19 #include <linux/of_address.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/sort.h>
23 #include <linux/string.h>
24 
25 #include <soc/tegra/fuse.h>
26 
27 #include "clk.h"
28 
29 #define CLK_SOURCE_EMC 0x19c
30 
31 #define CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR_SHIFT 0
32 #define CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR_MASK 0xff
33 #define CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR(x) (((x) & CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR_MASK) << \
34 					      CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR_SHIFT)
35 
36 #define CLK_SOURCE_EMC_EMC_2X_CLK_SRC_SHIFT 29
37 #define CLK_SOURCE_EMC_EMC_2X_CLK_SRC_MASK 0x7
38 #define CLK_SOURCE_EMC_EMC_2X_CLK_SRC(x) (((x) & CLK_SOURCE_EMC_EMC_2X_CLK_SRC_MASK) << \
39 					  CLK_SOURCE_EMC_EMC_2X_CLK_SRC_SHIFT)
40 
41 static const char * const emc_parent_clk_names[] = {
42 	"pll_m", "pll_c", "pll_p", "clk_m", "pll_m_ud",
43 	"pll_c2", "pll_c3", "pll_c_ud"
44 };
45 
46 /*
47  * List of clock sources for various parents the EMC clock can have.
48  * When we change the timing to a timing with a parent that has the same
49  * clock source as the current parent, we must first change to a backup
50  * timing that has a different clock source.
51  */
52 
53 #define EMC_SRC_PLL_M 0
54 #define EMC_SRC_PLL_C 1
55 #define EMC_SRC_PLL_P 2
56 #define EMC_SRC_CLK_M 3
57 #define EMC_SRC_PLL_C2 4
58 #define EMC_SRC_PLL_C3 5
59 
60 static const char emc_parent_clk_sources[] = {
61 	EMC_SRC_PLL_M, EMC_SRC_PLL_C, EMC_SRC_PLL_P, EMC_SRC_CLK_M,
62 	EMC_SRC_PLL_M, EMC_SRC_PLL_C2, EMC_SRC_PLL_C3, EMC_SRC_PLL_C
63 };
64 
65 struct emc_timing {
66 	unsigned long rate, parent_rate;
67 	u8 parent_index;
68 	struct clk *parent;
69 	u32 ram_code;
70 };
71 
72 struct tegra_clk_emc {
73 	struct clk_hw hw;
74 	void __iomem *clk_regs;
75 	struct clk *prev_parent;
76 	bool changing_timing;
77 
78 	struct device_node *emc_node;
79 	struct tegra_emc *emc;
80 
81 	int num_timings;
82 	struct emc_timing *timings;
83 	spinlock_t *lock;
84 
85 	tegra124_emc_prepare_timing_change_cb *prepare_timing_change;
86 	tegra124_emc_complete_timing_change_cb *complete_timing_change;
87 };
88 
89 /* Common clock framework callback implementations */
90 
emc_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)91 static unsigned long emc_recalc_rate(struct clk_hw *hw,
92 				     unsigned long parent_rate)
93 {
94 	struct tegra_clk_emc *tegra;
95 	u32 val, div;
96 
97 	tegra = container_of(hw, struct tegra_clk_emc, hw);
98 
99 	/*
100 	 * CCF wrongly assumes that the parent won't change during set_rate,
101 	 * so get the parent rate explicitly.
102 	 */
103 	parent_rate = clk_hw_get_rate(clk_hw_get_parent(hw));
104 
105 	val = readl(tegra->clk_regs + CLK_SOURCE_EMC);
106 	div = val & CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR_MASK;
107 
108 	return parent_rate / (div + 2) * 2;
109 }
110 
111 /*
112  * Rounds up unless no higher rate exists, in which case down. This way is
113  * safer since things have EMC rate floors. Also don't touch parent_rate
114  * since we don't want the CCF to play with our parent clocks.
115  */
emc_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)116 static int emc_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
117 {
118 	struct tegra_clk_emc *tegra;
119 	u8 ram_code = tegra_read_ram_code();
120 	struct emc_timing *timing = NULL;
121 	int i, k, t;
122 
123 	tegra = container_of(hw, struct tegra_clk_emc, hw);
124 
125 	for (k = 0; k < tegra->num_timings; k++) {
126 		if (tegra->timings[k].ram_code == ram_code)
127 			break;
128 	}
129 
130 	for (t = k; t < tegra->num_timings; t++) {
131 		if (tegra->timings[t].ram_code != ram_code)
132 			break;
133 	}
134 
135 	for (i = k; i < t; i++) {
136 		timing = tegra->timings + i;
137 
138 		if (timing->rate < req->rate && i != t - 1)
139 			continue;
140 
141 		if (timing->rate > req->max_rate) {
142 			i = max(i, k + 1);
143 			req->rate = tegra->timings[i - 1].rate;
144 			return 0;
145 		}
146 
147 		if (timing->rate < req->min_rate)
148 			continue;
149 
150 		req->rate = timing->rate;
151 		return 0;
152 	}
153 
154 	if (timing) {
155 		req->rate = timing->rate;
156 		return 0;
157 	}
158 
159 	req->rate = clk_hw_get_rate(hw);
160 	return 0;
161 }
162 
emc_get_parent(struct clk_hw * hw)163 static u8 emc_get_parent(struct clk_hw *hw)
164 {
165 	struct tegra_clk_emc *tegra;
166 	u32 val;
167 
168 	tegra = container_of(hw, struct tegra_clk_emc, hw);
169 
170 	val = readl(tegra->clk_regs + CLK_SOURCE_EMC);
171 
172 	return (val >> CLK_SOURCE_EMC_EMC_2X_CLK_SRC_SHIFT)
173 		& CLK_SOURCE_EMC_EMC_2X_CLK_SRC_MASK;
174 }
175 
emc_ensure_emc_driver(struct tegra_clk_emc * tegra)176 static struct tegra_emc *emc_ensure_emc_driver(struct tegra_clk_emc *tegra)
177 {
178 	struct platform_device *pdev;
179 
180 	if (tegra->emc)
181 		return tegra->emc;
182 
183 	if (!tegra->prepare_timing_change || !tegra->complete_timing_change)
184 		return NULL;
185 
186 	if (!tegra->emc_node)
187 		return NULL;
188 
189 	pdev = of_find_device_by_node(tegra->emc_node);
190 	if (!pdev) {
191 		pr_err("%s: could not get external memory controller\n",
192 		       __func__);
193 		return NULL;
194 	}
195 
196 	of_node_put(tegra->emc_node);
197 	tegra->emc_node = NULL;
198 
199 	tegra->emc = platform_get_drvdata(pdev);
200 	if (!tegra->emc) {
201 		put_device(&pdev->dev);
202 		pr_err("%s: cannot find EMC driver\n", __func__);
203 		return NULL;
204 	}
205 
206 	return tegra->emc;
207 }
208 
emc_set_timing(struct tegra_clk_emc * tegra,struct emc_timing * timing)209 static int emc_set_timing(struct tegra_clk_emc *tegra,
210 			  struct emc_timing *timing)
211 {
212 	int err;
213 	u8 div;
214 	u32 car_value;
215 	unsigned long flags = 0;
216 	struct tegra_emc *emc = emc_ensure_emc_driver(tegra);
217 
218 	if (!emc)
219 		return -ENOENT;
220 
221 	pr_debug("going to rate %ld prate %ld p %s\n", timing->rate,
222 		 timing->parent_rate, __clk_get_name(timing->parent));
223 
224 	if (emc_get_parent(&tegra->hw) == timing->parent_index &&
225 	    clk_get_rate(timing->parent) != timing->parent_rate) {
226 		WARN_ONCE(1, "parent %s rate mismatch %lu %lu\n",
227 			  __clk_get_name(timing->parent),
228 			  clk_get_rate(timing->parent),
229 			  timing->parent_rate);
230 		return -EINVAL;
231 	}
232 
233 	tegra->changing_timing = true;
234 
235 	err = clk_set_rate(timing->parent, timing->parent_rate);
236 	if (err) {
237 		pr_err("cannot change parent %s rate to %ld: %d\n",
238 		       __clk_get_name(timing->parent), timing->parent_rate,
239 		       err);
240 
241 		return err;
242 	}
243 
244 	err = clk_prepare_enable(timing->parent);
245 	if (err) {
246 		pr_err("cannot enable parent clock: %d\n", err);
247 		return err;
248 	}
249 
250 	div = timing->parent_rate / (timing->rate / 2) - 2;
251 
252 	err = tegra->prepare_timing_change(emc, timing->rate);
253 	if (err) {
254 		clk_disable_unprepare(timing->parent);
255 		return err;
256 	}
257 
258 	spin_lock_irqsave(tegra->lock, flags);
259 
260 	car_value = readl(tegra->clk_regs + CLK_SOURCE_EMC);
261 
262 	car_value &= ~CLK_SOURCE_EMC_EMC_2X_CLK_SRC(~0);
263 	car_value |= CLK_SOURCE_EMC_EMC_2X_CLK_SRC(timing->parent_index);
264 
265 	car_value &= ~CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR(~0);
266 	car_value |= CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR(div);
267 
268 	writel(car_value, tegra->clk_regs + CLK_SOURCE_EMC);
269 
270 	spin_unlock_irqrestore(tegra->lock, flags);
271 
272 	tegra->complete_timing_change(emc, timing->rate);
273 
274 	clk_hw_reparent(&tegra->hw, __clk_get_hw(timing->parent));
275 	clk_disable_unprepare(tegra->prev_parent);
276 
277 	tegra->prev_parent = timing->parent;
278 	tegra->changing_timing = false;
279 
280 	return 0;
281 }
282 
283 /*
284  * Get backup timing to use as an intermediate step when a change between
285  * two timings with the same clock source has been requested. First try to
286  * find a timing with a higher clock rate to avoid a rate below any set rate
287  * floors. If that is not possible, find a lower rate.
288  */
get_backup_timing(struct tegra_clk_emc * tegra,int timing_index)289 static struct emc_timing *get_backup_timing(struct tegra_clk_emc *tegra,
290 					    int timing_index)
291 {
292 	int i;
293 	u32 ram_code = tegra_read_ram_code();
294 	struct emc_timing *timing;
295 
296 	for (i = timing_index+1; i < tegra->num_timings; i++) {
297 		timing = tegra->timings + i;
298 		if (timing->ram_code != ram_code)
299 			break;
300 
301 		if (emc_parent_clk_sources[timing->parent_index] !=
302 		    emc_parent_clk_sources[
303 		      tegra->timings[timing_index].parent_index])
304 			return timing;
305 	}
306 
307 	for (i = timing_index-1; i >= 0; --i) {
308 		timing = tegra->timings + i;
309 		if (timing->ram_code != ram_code)
310 			break;
311 
312 		if (emc_parent_clk_sources[timing->parent_index] !=
313 		    emc_parent_clk_sources[
314 		      tegra->timings[timing_index].parent_index])
315 			return timing;
316 	}
317 
318 	return NULL;
319 }
320 
emc_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)321 static int emc_set_rate(struct clk_hw *hw, unsigned long rate,
322 			unsigned long parent_rate)
323 {
324 	struct tegra_clk_emc *tegra;
325 	struct emc_timing *timing = NULL;
326 	int i, err;
327 	u32 ram_code = tegra_read_ram_code();
328 
329 	tegra = container_of(hw, struct tegra_clk_emc, hw);
330 
331 	if (clk_hw_get_rate(hw) == rate)
332 		return 0;
333 
334 	/*
335 	 * When emc_set_timing changes the parent rate, CCF will propagate
336 	 * that downward to us, so ignore any set_rate calls while a rate
337 	 * change is already going on.
338 	 */
339 	if (tegra->changing_timing)
340 		return 0;
341 
342 	for (i = 0; i < tegra->num_timings; i++) {
343 		if (tegra->timings[i].rate == rate &&
344 		    tegra->timings[i].ram_code == ram_code) {
345 			timing = tegra->timings + i;
346 			break;
347 		}
348 	}
349 
350 	if (!timing) {
351 		pr_err("cannot switch to rate %ld without emc table\n", rate);
352 		return -EINVAL;
353 	}
354 
355 	if (emc_parent_clk_sources[emc_get_parent(hw)] ==
356 	    emc_parent_clk_sources[timing->parent_index] &&
357 	    clk_get_rate(timing->parent) != timing->parent_rate) {
358 		/*
359 		 * Parent clock source not changed but parent rate has changed,
360 		 * need to temporarily switch to another parent
361 		 */
362 
363 		struct emc_timing *backup_timing;
364 
365 		backup_timing = get_backup_timing(tegra, i);
366 		if (!backup_timing) {
367 			pr_err("cannot find backup timing\n");
368 			return -EINVAL;
369 		}
370 
371 		pr_debug("using %ld as backup rate when going to %ld\n",
372 			 backup_timing->rate, rate);
373 
374 		err = emc_set_timing(tegra, backup_timing);
375 		if (err) {
376 			pr_err("cannot set backup timing: %d\n", err);
377 			return err;
378 		}
379 	}
380 
381 	return emc_set_timing(tegra, timing);
382 }
383 
384 /* Initialization and deinitialization */
385 
load_one_timing_from_dt(struct tegra_clk_emc * tegra,struct emc_timing * timing,struct device_node * node)386 static int load_one_timing_from_dt(struct tegra_clk_emc *tegra,
387 				   struct emc_timing *timing,
388 				   struct device_node *node)
389 {
390 	int err, i;
391 	u32 tmp;
392 
393 	err = of_property_read_u32(node, "clock-frequency", &tmp);
394 	if (err) {
395 		pr_err("timing %pOF: failed to read rate\n", node);
396 		return err;
397 	}
398 
399 	timing->rate = tmp;
400 
401 	err = of_property_read_u32(node, "nvidia,parent-clock-frequency", &tmp);
402 	if (err) {
403 		pr_err("timing %pOF: failed to read parent rate\n", node);
404 		return err;
405 	}
406 
407 	timing->parent_rate = tmp;
408 
409 	timing->parent = of_clk_get_by_name(node, "emc-parent");
410 	if (IS_ERR(timing->parent)) {
411 		pr_err("timing %pOF: failed to get parent clock\n", node);
412 		return PTR_ERR(timing->parent);
413 	}
414 
415 	timing->parent_index = 0xff;
416 	i = match_string(emc_parent_clk_names, ARRAY_SIZE(emc_parent_clk_names),
417 			 __clk_get_name(timing->parent));
418 	if (i < 0) {
419 		pr_err("timing %pOF: %s is not a valid parent\n",
420 		       node, __clk_get_name(timing->parent));
421 		clk_put(timing->parent);
422 		return -EINVAL;
423 	}
424 
425 	timing->parent_index = i;
426 	return 0;
427 }
428 
cmp_timings(const void * _a,const void * _b)429 static int cmp_timings(const void *_a, const void *_b)
430 {
431 	const struct emc_timing *a = _a;
432 	const struct emc_timing *b = _b;
433 
434 	if (a->rate < b->rate)
435 		return -1;
436 	else if (a->rate == b->rate)
437 		return 0;
438 	else
439 		return 1;
440 }
441 
load_timings_from_dt(struct tegra_clk_emc * tegra,struct device_node * node,u32 ram_code)442 static int load_timings_from_dt(struct tegra_clk_emc *tegra,
443 				struct device_node *node,
444 				u32 ram_code)
445 {
446 	struct emc_timing *timings_ptr;
447 	struct device_node *child;
448 	int child_count = of_get_child_count(node);
449 	int i = 0, err;
450 	size_t size;
451 
452 	size = (tegra->num_timings + child_count) * sizeof(struct emc_timing);
453 
454 	tegra->timings = krealloc(tegra->timings, size, GFP_KERNEL);
455 	if (!tegra->timings)
456 		return -ENOMEM;
457 
458 	timings_ptr = tegra->timings + tegra->num_timings;
459 	tegra->num_timings += child_count;
460 
461 	for_each_child_of_node(node, child) {
462 		struct emc_timing *timing = timings_ptr + (i++);
463 
464 		err = load_one_timing_from_dt(tegra, timing, child);
465 		if (err) {
466 			of_node_put(child);
467 			kfree(tegra->timings);
468 			return err;
469 		}
470 
471 		timing->ram_code = ram_code;
472 	}
473 
474 	sort(timings_ptr, child_count, sizeof(struct emc_timing),
475 	     cmp_timings, NULL);
476 
477 	return 0;
478 }
479 
480 static const struct clk_ops tegra_clk_emc_ops = {
481 	.recalc_rate = emc_recalc_rate,
482 	.determine_rate = emc_determine_rate,
483 	.set_rate = emc_set_rate,
484 	.get_parent = emc_get_parent,
485 };
486 
tegra124_clk_register_emc(void __iomem * base,struct device_node * np,spinlock_t * lock)487 struct clk *tegra124_clk_register_emc(void __iomem *base, struct device_node *np,
488 				      spinlock_t *lock)
489 {
490 	struct tegra_clk_emc *tegra;
491 	struct clk_init_data init;
492 	struct device_node *node;
493 	u32 node_ram_code;
494 	struct clk *clk;
495 	int err;
496 
497 	tegra = kcalloc(1, sizeof(*tegra), GFP_KERNEL);
498 	if (!tegra)
499 		return ERR_PTR(-ENOMEM);
500 
501 	tegra->clk_regs = base;
502 	tegra->lock = lock;
503 
504 	tegra->num_timings = 0;
505 
506 	for_each_child_of_node(np, node) {
507 		err = of_property_read_u32(node, "nvidia,ram-code",
508 					   &node_ram_code);
509 		if (err)
510 			continue;
511 
512 		/*
513 		 * Store timings for all ram codes as we cannot read the
514 		 * fuses until the apbmisc driver is loaded.
515 		 */
516 		err = load_timings_from_dt(tegra, node, node_ram_code);
517 		if (err) {
518 			of_node_put(node);
519 			kfree(tegra);
520 			return ERR_PTR(err);
521 		}
522 	}
523 
524 	if (tegra->num_timings == 0)
525 		pr_warn("%s: no memory timings registered\n", __func__);
526 
527 	tegra->emc_node = of_parse_phandle(np,
528 			"nvidia,external-memory-controller", 0);
529 	if (!tegra->emc_node)
530 		pr_warn("%s: couldn't find node for EMC driver\n", __func__);
531 
532 	init.name = "emc";
533 	init.ops = &tegra_clk_emc_ops;
534 	init.flags = CLK_IS_CRITICAL;
535 	init.parent_names = emc_parent_clk_names;
536 	init.num_parents = ARRAY_SIZE(emc_parent_clk_names);
537 
538 	tegra->hw.init = &init;
539 
540 	clk = clk_register(NULL, &tegra->hw);
541 	if (IS_ERR(clk))
542 		return clk;
543 
544 	tegra->prev_parent = clk_hw_get_parent_by_index(
545 		&tegra->hw, emc_get_parent(&tegra->hw))->clk;
546 	tegra->changing_timing = false;
547 
548 	/* Allow debugging tools to see the EMC clock */
549 	clk_register_clkdev(clk, "emc", "tegra-clk-debug");
550 
551 	return clk;
552 };
553 
tegra124_clk_set_emc_callbacks(tegra124_emc_prepare_timing_change_cb * prep_cb,tegra124_emc_complete_timing_change_cb * complete_cb)554 void tegra124_clk_set_emc_callbacks(tegra124_emc_prepare_timing_change_cb *prep_cb,
555 				    tegra124_emc_complete_timing_change_cb *complete_cb)
556 {
557 	struct clk *clk = __clk_lookup("emc");
558 	struct tegra_clk_emc *tegra;
559 	struct clk_hw *hw;
560 
561 	if (clk) {
562 		hw = __clk_get_hw(clk);
563 		tegra = container_of(hw, struct tegra_clk_emc, hw);
564 
565 		tegra->prepare_timing_change = prep_cb;
566 		tegra->complete_timing_change = complete_cb;
567 	}
568 }
569 EXPORT_SYMBOL_GPL(tegra124_clk_set_emc_callbacks);
570 
tegra124_clk_emc_driver_available(struct clk_hw * hw)571 bool tegra124_clk_emc_driver_available(struct clk_hw *hw)
572 {
573 	struct tegra_clk_emc *tegra = container_of(hw, struct tegra_clk_emc, hw);
574 
575 	return tegra->prepare_timing_change && tegra->complete_timing_change;
576 }
577