1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2013-2023, NVIDIA CORPORATION.  All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/device.h>
8 #include <linux/kobject.h>
9 #include <linux/init.h>
10 #include <linux/io.h>
11 #include <linux/nvmem-consumer.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/reset.h>
18 #include <linux/slab.h>
19 #include <linux/sys_soc.h>
20 
21 #include <soc/tegra/common.h>
22 #include <soc/tegra/fuse.h>
23 
24 #include "fuse.h"
25 
26 struct tegra_sku_info tegra_sku_info;
27 EXPORT_SYMBOL(tegra_sku_info);
28 
29 static const char *tegra_revision_name[TEGRA_REVISION_MAX] = {
30 	[TEGRA_REVISION_UNKNOWN] = "unknown",
31 	[TEGRA_REVISION_A01]     = "A01",
32 	[TEGRA_REVISION_A02]     = "A02",
33 	[TEGRA_REVISION_A03]     = "A03",
34 	[TEGRA_REVISION_A03p]    = "A03 prime",
35 	[TEGRA_REVISION_A04]     = "A04",
36 };
37 
38 static const char *tegra_platform_name[TEGRA_PLATFORM_MAX] = {
39 	[TEGRA_PLATFORM_SILICON]			= "Silicon",
40 	[TEGRA_PLATFORM_QT]				= "QT",
41 	[TEGRA_PLATFORM_SYSTEM_FPGA]			= "System FPGA",
42 	[TEGRA_PLATFORM_UNIT_FPGA]			= "Unit FPGA",
43 	[TEGRA_PLATFORM_ASIM_QT]			= "Asim QT",
44 	[TEGRA_PLATFORM_ASIM_LINSIM]			= "Asim Linsim",
45 	[TEGRA_PLATFORM_DSIM_ASIM_LINSIM]		= "Dsim Asim Linsim",
46 	[TEGRA_PLATFORM_VERIFICATION_SIMULATION]	= "Verification Simulation",
47 	[TEGRA_PLATFORM_VDK]				= "VDK",
48 	[TEGRA_PLATFORM_VSP]				= "VSP",
49 };
50 
51 static const struct of_device_id car_match[] __initconst = {
52 	{ .compatible = "nvidia,tegra20-car", },
53 	{ .compatible = "nvidia,tegra30-car", },
54 	{ .compatible = "nvidia,tegra114-car", },
55 	{ .compatible = "nvidia,tegra124-car", },
56 	{ .compatible = "nvidia,tegra132-car", },
57 	{ .compatible = "nvidia,tegra210-car", },
58 	{},
59 };
60 
61 static struct tegra_fuse *fuse = &(struct tegra_fuse) {
62 	.base = NULL,
63 	.soc = NULL,
64 };
65 
66 static const struct of_device_id tegra_fuse_match[] = {
67 #ifdef CONFIG_ARCH_TEGRA_234_SOC
68 	{ .compatible = "nvidia,tegra234-efuse", .data = &tegra234_fuse_soc },
69 #endif
70 #ifdef CONFIG_ARCH_TEGRA_194_SOC
71 	{ .compatible = "nvidia,tegra194-efuse", .data = &tegra194_fuse_soc },
72 #endif
73 #ifdef CONFIG_ARCH_TEGRA_186_SOC
74 	{ .compatible = "nvidia,tegra186-efuse", .data = &tegra186_fuse_soc },
75 #endif
76 #ifdef CONFIG_ARCH_TEGRA_210_SOC
77 	{ .compatible = "nvidia,tegra210-efuse", .data = &tegra210_fuse_soc },
78 #endif
79 #ifdef CONFIG_ARCH_TEGRA_132_SOC
80 	{ .compatible = "nvidia,tegra132-efuse", .data = &tegra124_fuse_soc },
81 #endif
82 #ifdef CONFIG_ARCH_TEGRA_124_SOC
83 	{ .compatible = "nvidia,tegra124-efuse", .data = &tegra124_fuse_soc },
84 #endif
85 #ifdef CONFIG_ARCH_TEGRA_114_SOC
86 	{ .compatible = "nvidia,tegra114-efuse", .data = &tegra114_fuse_soc },
87 #endif
88 #ifdef CONFIG_ARCH_TEGRA_3x_SOC
89 	{ .compatible = "nvidia,tegra30-efuse", .data = &tegra30_fuse_soc },
90 #endif
91 #ifdef CONFIG_ARCH_TEGRA_2x_SOC
92 	{ .compatible = "nvidia,tegra20-efuse", .data = &tegra20_fuse_soc },
93 #endif
94 	{ /* sentinel */ }
95 };
96 
tegra_fuse_read(void * priv,unsigned int offset,void * value,size_t bytes)97 static int tegra_fuse_read(void *priv, unsigned int offset, void *value,
98 			   size_t bytes)
99 {
100 	unsigned int count = bytes / 4, i;
101 	struct tegra_fuse *fuse = priv;
102 	u32 *buffer = value;
103 
104 	for (i = 0; i < count; i++)
105 		buffer[i] = fuse->read(fuse, offset + i * 4);
106 
107 	return 0;
108 }
109 
tegra_fuse_restore(void * base)110 static void tegra_fuse_restore(void *base)
111 {
112 	fuse->base = (void __iomem *)base;
113 	fuse->clk = NULL;
114 }
115 
tegra_fuse_probe(struct platform_device * pdev)116 static int tegra_fuse_probe(struct platform_device *pdev)
117 {
118 	void __iomem *base = fuse->base;
119 	struct nvmem_config nvmem;
120 	struct resource *res;
121 	int err;
122 
123 	err = devm_add_action(&pdev->dev, tegra_fuse_restore, (void __force *)base);
124 	if (err)
125 		return err;
126 
127 	/* take over the memory region from the early initialization */
128 	fuse->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
129 	if (IS_ERR(fuse->base))
130 		return PTR_ERR(fuse->base);
131 	fuse->phys = res->start;
132 
133 	fuse->clk = devm_clk_get(&pdev->dev, "fuse");
134 	if (IS_ERR(fuse->clk)) {
135 		if (PTR_ERR(fuse->clk) != -EPROBE_DEFER)
136 			dev_err(&pdev->dev, "failed to get FUSE clock: %ld",
137 				PTR_ERR(fuse->clk));
138 
139 		return PTR_ERR(fuse->clk);
140 	}
141 
142 	platform_set_drvdata(pdev, fuse);
143 	fuse->dev = &pdev->dev;
144 
145 	err = devm_pm_runtime_enable(&pdev->dev);
146 	if (err)
147 		return err;
148 
149 	if (fuse->soc->probe) {
150 		err = fuse->soc->probe(fuse);
151 		if (err < 0)
152 			return err;
153 	}
154 
155 	memset(&nvmem, 0, sizeof(nvmem));
156 	nvmem.dev = &pdev->dev;
157 	nvmem.name = "fuse";
158 	nvmem.id = -1;
159 	nvmem.owner = THIS_MODULE;
160 	nvmem.cells = fuse->soc->cells;
161 	nvmem.ncells = fuse->soc->num_cells;
162 	nvmem.keepout = fuse->soc->keepouts;
163 	nvmem.nkeepout = fuse->soc->num_keepouts;
164 	nvmem.type = NVMEM_TYPE_OTP;
165 	nvmem.read_only = true;
166 	nvmem.root_only = false;
167 	nvmem.reg_read = tegra_fuse_read;
168 	nvmem.size = fuse->soc->info->size;
169 	nvmem.word_size = 4;
170 	nvmem.stride = 4;
171 	nvmem.priv = fuse;
172 
173 	fuse->nvmem = devm_nvmem_register(&pdev->dev, &nvmem);
174 	if (IS_ERR(fuse->nvmem)) {
175 		err = PTR_ERR(fuse->nvmem);
176 		dev_err(&pdev->dev, "failed to register NVMEM device: %d\n",
177 			err);
178 		return err;
179 	}
180 
181 	fuse->rst = devm_reset_control_get_optional(&pdev->dev, "fuse");
182 	if (IS_ERR(fuse->rst)) {
183 		err = PTR_ERR(fuse->rst);
184 		dev_err(&pdev->dev, "failed to get FUSE reset: %pe\n",
185 			fuse->rst);
186 		return err;
187 	}
188 
189 	/*
190 	 * FUSE clock is enabled at a boot time, hence this resume/suspend
191 	 * disables the clock besides the h/w resetting.
192 	 */
193 	err = pm_runtime_resume_and_get(&pdev->dev);
194 	if (err)
195 		return err;
196 
197 	err = reset_control_reset(fuse->rst);
198 	pm_runtime_put(&pdev->dev);
199 
200 	if (err < 0) {
201 		dev_err(&pdev->dev, "failed to reset FUSE: %d\n", err);
202 		return err;
203 	}
204 
205 	/* release the early I/O memory mapping */
206 	iounmap(base);
207 
208 	return 0;
209 }
210 
tegra_fuse_runtime_resume(struct device * dev)211 static int __maybe_unused tegra_fuse_runtime_resume(struct device *dev)
212 {
213 	int err;
214 
215 	err = clk_prepare_enable(fuse->clk);
216 	if (err < 0) {
217 		dev_err(dev, "failed to enable FUSE clock: %d\n", err);
218 		return err;
219 	}
220 
221 	return 0;
222 }
223 
tegra_fuse_runtime_suspend(struct device * dev)224 static int __maybe_unused tegra_fuse_runtime_suspend(struct device *dev)
225 {
226 	clk_disable_unprepare(fuse->clk);
227 
228 	return 0;
229 }
230 
tegra_fuse_suspend(struct device * dev)231 static int __maybe_unused tegra_fuse_suspend(struct device *dev)
232 {
233 	int ret;
234 
235 	/*
236 	 * Critical for RAM re-repair operation, which must occur on resume
237 	 * from LP1 system suspend and as part of CCPLEX cluster switching.
238 	 */
239 	if (fuse->soc->clk_suspend_on)
240 		ret = pm_runtime_resume_and_get(dev);
241 	else
242 		ret = pm_runtime_force_suspend(dev);
243 
244 	return ret;
245 }
246 
tegra_fuse_resume(struct device * dev)247 static int __maybe_unused tegra_fuse_resume(struct device *dev)
248 {
249 	int ret = 0;
250 
251 	if (fuse->soc->clk_suspend_on)
252 		pm_runtime_put(dev);
253 	else
254 		ret = pm_runtime_force_resume(dev);
255 
256 	return ret;
257 }
258 
259 static const struct dev_pm_ops tegra_fuse_pm = {
260 	SET_RUNTIME_PM_OPS(tegra_fuse_runtime_suspend, tegra_fuse_runtime_resume,
261 			   NULL)
262 	SET_SYSTEM_SLEEP_PM_OPS(tegra_fuse_suspend, tegra_fuse_resume)
263 };
264 
265 static struct platform_driver tegra_fuse_driver = {
266 	.driver = {
267 		.name = "tegra-fuse",
268 		.of_match_table = tegra_fuse_match,
269 		.pm = &tegra_fuse_pm,
270 		.suppress_bind_attrs = true,
271 	},
272 	.probe = tegra_fuse_probe,
273 };
274 builtin_platform_driver(tegra_fuse_driver);
275 
tegra_fuse_read_spare(unsigned int spare)276 u32 __init tegra_fuse_read_spare(unsigned int spare)
277 {
278 	unsigned int offset = fuse->soc->info->spare + spare * 4;
279 
280 	return fuse->read_early(fuse, offset) & 1;
281 }
282 
tegra_fuse_read_early(unsigned int offset)283 u32 __init tegra_fuse_read_early(unsigned int offset)
284 {
285 	return fuse->read_early(fuse, offset);
286 }
287 
tegra_fuse_readl(unsigned long offset,u32 * value)288 int tegra_fuse_readl(unsigned long offset, u32 *value)
289 {
290 	if (!fuse->read || !fuse->clk)
291 		return -EPROBE_DEFER;
292 
293 	if (IS_ERR(fuse->clk))
294 		return PTR_ERR(fuse->clk);
295 
296 	*value = fuse->read(fuse, offset);
297 
298 	return 0;
299 }
300 EXPORT_SYMBOL(tegra_fuse_readl);
301 
tegra_enable_fuse_clk(void __iomem * base)302 static void tegra_enable_fuse_clk(void __iomem *base)
303 {
304 	u32 reg;
305 
306 	reg = readl_relaxed(base + 0x48);
307 	reg |= 1 << 28;
308 	writel(reg, base + 0x48);
309 
310 	/*
311 	 * Enable FUSE clock. This needs to be hardcoded because the clock
312 	 * subsystem is not active during early boot.
313 	 */
314 	reg = readl(base + 0x14);
315 	reg |= 1 << 7;
316 	writel(reg, base + 0x14);
317 }
318 
major_show(struct device * dev,struct device_attribute * attr,char * buf)319 static ssize_t major_show(struct device *dev, struct device_attribute *attr,
320 			     char *buf)
321 {
322 	return sprintf(buf, "%d\n", tegra_get_major_rev());
323 }
324 
325 static DEVICE_ATTR_RO(major);
326 
minor_show(struct device * dev,struct device_attribute * attr,char * buf)327 static ssize_t minor_show(struct device *dev, struct device_attribute *attr,
328 			     char *buf)
329 {
330 	return sprintf(buf, "%d\n", tegra_get_minor_rev());
331 }
332 
333 static DEVICE_ATTR_RO(minor);
334 
335 static struct attribute *tegra_soc_attr[] = {
336 	&dev_attr_major.attr,
337 	&dev_attr_minor.attr,
338 	NULL,
339 };
340 
341 const struct attribute_group tegra_soc_attr_group = {
342 	.attrs = tegra_soc_attr,
343 };
344 
345 #if IS_ENABLED(CONFIG_ARCH_TEGRA_194_SOC) || \
346     IS_ENABLED(CONFIG_ARCH_TEGRA_234_SOC)
platform_show(struct device * dev,struct device_attribute * attr,char * buf)347 static ssize_t platform_show(struct device *dev, struct device_attribute *attr,
348 			     char *buf)
349 {
350 	/*
351 	 * Displays the value in the 'pre_si_platform' field of the HIDREV
352 	 * register for Tegra194 devices. A value of 0 indicates that the
353 	 * platform type is silicon and all other non-zero values indicate
354 	 * the type of simulation platform is being used.
355 	 */
356 	return sprintf(buf, "%d\n", tegra_get_platform());
357 }
358 
359 static DEVICE_ATTR_RO(platform);
360 
361 static struct attribute *tegra194_soc_attr[] = {
362 	&dev_attr_major.attr,
363 	&dev_attr_minor.attr,
364 	&dev_attr_platform.attr,
365 	NULL,
366 };
367 
368 const struct attribute_group tegra194_soc_attr_group = {
369 	.attrs = tegra194_soc_attr,
370 };
371 #endif
372 
tegra_soc_device_register(void)373 struct device * __init tegra_soc_device_register(void)
374 {
375 	struct soc_device_attribute *attr;
376 	struct soc_device *dev;
377 
378 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
379 	if (!attr)
380 		return NULL;
381 
382 	attr->family = kasprintf(GFP_KERNEL, "Tegra");
383 	if (tegra_is_silicon())
384 		attr->revision = kasprintf(GFP_KERNEL, "%s %s",
385 					   tegra_platform_name[tegra_sku_info.platform],
386 					   tegra_revision_name[tegra_sku_info.revision]);
387 	else
388 		attr->revision = kasprintf(GFP_KERNEL, "%s",
389 					   tegra_platform_name[tegra_sku_info.platform]);
390 	attr->soc_id = kasprintf(GFP_KERNEL, "%u", tegra_get_chip_id());
391 	attr->custom_attr_group = fuse->soc->soc_attr_group;
392 
393 	dev = soc_device_register(attr);
394 	if (IS_ERR(dev)) {
395 		kfree(attr->soc_id);
396 		kfree(attr->revision);
397 		kfree(attr->family);
398 		kfree(attr);
399 		return ERR_CAST(dev);
400 	}
401 
402 	return soc_device_to_device(dev);
403 }
404 
tegra_init_fuse(void)405 static int __init tegra_init_fuse(void)
406 {
407 	const struct of_device_id *match;
408 	struct device_node *np;
409 	struct resource regs;
410 
411 	tegra_init_apbmisc();
412 
413 	np = of_find_matching_node_and_match(NULL, tegra_fuse_match, &match);
414 	if (!np) {
415 		/*
416 		 * Fall back to legacy initialization for 32-bit ARM only. All
417 		 * 64-bit ARM device tree files for Tegra are required to have
418 		 * a FUSE node.
419 		 *
420 		 * This is for backwards-compatibility with old device trees
421 		 * that didn't contain a FUSE node.
422 		 */
423 		if (IS_ENABLED(CONFIG_ARM) && soc_is_tegra()) {
424 			u8 chip = tegra_get_chip_id();
425 
426 			regs.start = 0x7000f800;
427 			regs.end = 0x7000fbff;
428 			regs.flags = IORESOURCE_MEM;
429 
430 			switch (chip) {
431 #ifdef CONFIG_ARCH_TEGRA_2x_SOC
432 			case TEGRA20:
433 				fuse->soc = &tegra20_fuse_soc;
434 				break;
435 #endif
436 
437 #ifdef CONFIG_ARCH_TEGRA_3x_SOC
438 			case TEGRA30:
439 				fuse->soc = &tegra30_fuse_soc;
440 				break;
441 #endif
442 
443 #ifdef CONFIG_ARCH_TEGRA_114_SOC
444 			case TEGRA114:
445 				fuse->soc = &tegra114_fuse_soc;
446 				break;
447 #endif
448 
449 #ifdef CONFIG_ARCH_TEGRA_124_SOC
450 			case TEGRA124:
451 				fuse->soc = &tegra124_fuse_soc;
452 				break;
453 #endif
454 
455 			default:
456 				pr_warn("Unsupported SoC: %02x\n", chip);
457 				break;
458 			}
459 		} else {
460 			/*
461 			 * At this point we're not running on Tegra, so play
462 			 * nice with multi-platform kernels.
463 			 */
464 			return 0;
465 		}
466 	} else {
467 		/*
468 		 * Extract information from the device tree if we've found a
469 		 * matching node.
470 		 */
471 		if (of_address_to_resource(np, 0, &regs) < 0) {
472 			pr_err("failed to get FUSE register\n");
473 			return -ENXIO;
474 		}
475 
476 		fuse->soc = match->data;
477 	}
478 
479 	np = of_find_matching_node(NULL, car_match);
480 	if (np) {
481 		void __iomem *base = of_iomap(np, 0);
482 		of_node_put(np);
483 		if (base) {
484 			tegra_enable_fuse_clk(base);
485 			iounmap(base);
486 		} else {
487 			pr_err("failed to map clock registers\n");
488 			return -ENXIO;
489 		}
490 	}
491 
492 	fuse->base = ioremap(regs.start, resource_size(&regs));
493 	if (!fuse->base) {
494 		pr_err("failed to map FUSE registers\n");
495 		return -ENXIO;
496 	}
497 
498 	fuse->soc->init(fuse);
499 
500 	pr_info("Tegra Revision: %s SKU: %d CPU Process: %d SoC Process: %d\n",
501 		tegra_revision_name[tegra_sku_info.revision],
502 		tegra_sku_info.sku_id, tegra_sku_info.cpu_process_id,
503 		tegra_sku_info.soc_process_id);
504 	pr_debug("Tegra CPU Speedo ID %d, SoC Speedo ID %d\n",
505 		 tegra_sku_info.cpu_speedo_id, tegra_sku_info.soc_speedo_id);
506 
507 	if (fuse->soc->lookups) {
508 		size_t size = sizeof(*fuse->lookups) * fuse->soc->num_lookups;
509 
510 		fuse->lookups = kmemdup(fuse->soc->lookups, size, GFP_KERNEL);
511 		if (fuse->lookups)
512 			nvmem_add_cell_lookups(fuse->lookups, fuse->soc->num_lookups);
513 	}
514 
515 	return 0;
516 }
517 early_initcall(tegra_init_fuse);
518 
519 #ifdef CONFIG_ARM64
tegra_init_soc(void)520 static int __init tegra_init_soc(void)
521 {
522 	struct device_node *np;
523 	struct device *soc;
524 
525 	/* make sure we're running on Tegra */
526 	np = of_find_matching_node(NULL, tegra_fuse_match);
527 	if (!np)
528 		return 0;
529 
530 	of_node_put(np);
531 
532 	soc = tegra_soc_device_register();
533 	if (IS_ERR(soc)) {
534 		pr_err("failed to register SoC device: %ld\n", PTR_ERR(soc));
535 		return PTR_ERR(soc);
536 	}
537 
538 	return 0;
539 }
540 device_initcall(tegra_init_soc);
541 #endif
542