xref: /openbmc/linux/drivers/net/ethernet/cavium/octeon/octeon_mgmt.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2009-2012 Cavium, Inc
7  */
8 
9 #include <linux/platform_device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/etherdevice.h>
12 #include <linux/capability.h>
13 #include <linux/net_tstamp.h>
14 #include <linux/interrupt.h>
15 #include <linux/netdevice.h>
16 #include <linux/spinlock.h>
17 #include <linux/if_vlan.h>
18 #include <linux/of_mdio.h>
19 #include <linux/module.h>
20 #include <linux/of_net.h>
21 #include <linux/init.h>
22 #include <linux/slab.h>
23 #include <linux/phy.h>
24 #include <linux/io.h>
25 
26 #include <asm/octeon/octeon.h>
27 #include <asm/octeon/cvmx-mixx-defs.h>
28 #include <asm/octeon/cvmx-agl-defs.h>
29 
30 #define DRV_NAME "octeon_mgmt"
31 #define DRV_DESCRIPTION \
32 	"Cavium Networks Octeon MII (management) port Network Driver"
33 
34 #define OCTEON_MGMT_NAPI_WEIGHT 16
35 
36 /* Ring sizes that are powers of two allow for more efficient modulo
37  * opertions.
38  */
39 #define OCTEON_MGMT_RX_RING_SIZE 512
40 #define OCTEON_MGMT_TX_RING_SIZE 128
41 
42 /* Allow 8 bytes for vlan and FCS. */
43 #define OCTEON_MGMT_RX_HEADROOM (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN)
44 
45 union mgmt_port_ring_entry {
46 	u64 d64;
47 	struct {
48 #define RING_ENTRY_CODE_DONE 0xf
49 #define RING_ENTRY_CODE_MORE 0x10
50 #ifdef __BIG_ENDIAN_BITFIELD
51 		u64 reserved_62_63:2;
52 		/* Length of the buffer/packet in bytes */
53 		u64 len:14;
54 		/* For TX, signals that the packet should be timestamped */
55 		u64 tstamp:1;
56 		/* The RX error code */
57 		u64 code:7;
58 		/* Physical address of the buffer */
59 		u64 addr:40;
60 #else
61 		u64 addr:40;
62 		u64 code:7;
63 		u64 tstamp:1;
64 		u64 len:14;
65 		u64 reserved_62_63:2;
66 #endif
67 	} s;
68 };
69 
70 #define MIX_ORING1	0x0
71 #define MIX_ORING2	0x8
72 #define MIX_IRING1	0x10
73 #define MIX_IRING2	0x18
74 #define MIX_CTL		0x20
75 #define MIX_IRHWM	0x28
76 #define MIX_IRCNT	0x30
77 #define MIX_ORHWM	0x38
78 #define MIX_ORCNT	0x40
79 #define MIX_ISR		0x48
80 #define MIX_INTENA	0x50
81 #define MIX_REMCNT	0x58
82 #define MIX_BIST	0x78
83 
84 #define AGL_GMX_PRT_CFG			0x10
85 #define AGL_GMX_RX_FRM_CTL		0x18
86 #define AGL_GMX_RX_FRM_MAX		0x30
87 #define AGL_GMX_RX_JABBER		0x38
88 #define AGL_GMX_RX_STATS_CTL		0x50
89 
90 #define AGL_GMX_RX_STATS_PKTS_DRP	0xb0
91 #define AGL_GMX_RX_STATS_OCTS_DRP	0xb8
92 #define AGL_GMX_RX_STATS_PKTS_BAD	0xc0
93 
94 #define AGL_GMX_RX_ADR_CTL		0x100
95 #define AGL_GMX_RX_ADR_CAM_EN		0x108
96 #define AGL_GMX_RX_ADR_CAM0		0x180
97 #define AGL_GMX_RX_ADR_CAM1		0x188
98 #define AGL_GMX_RX_ADR_CAM2		0x190
99 #define AGL_GMX_RX_ADR_CAM3		0x198
100 #define AGL_GMX_RX_ADR_CAM4		0x1a0
101 #define AGL_GMX_RX_ADR_CAM5		0x1a8
102 
103 #define AGL_GMX_TX_CLK			0x208
104 #define AGL_GMX_TX_STATS_CTL		0x268
105 #define AGL_GMX_TX_CTL			0x270
106 #define AGL_GMX_TX_STAT0		0x280
107 #define AGL_GMX_TX_STAT1		0x288
108 #define AGL_GMX_TX_STAT2		0x290
109 #define AGL_GMX_TX_STAT3		0x298
110 #define AGL_GMX_TX_STAT4		0x2a0
111 #define AGL_GMX_TX_STAT5		0x2a8
112 #define AGL_GMX_TX_STAT6		0x2b0
113 #define AGL_GMX_TX_STAT7		0x2b8
114 #define AGL_GMX_TX_STAT8		0x2c0
115 #define AGL_GMX_TX_STAT9		0x2c8
116 
117 struct octeon_mgmt {
118 	struct net_device *netdev;
119 	u64 mix;
120 	u64 agl;
121 	u64 agl_prt_ctl;
122 	int port;
123 	int irq;
124 	bool has_rx_tstamp;
125 	u64 *tx_ring;
126 	dma_addr_t tx_ring_handle;
127 	unsigned int tx_next;
128 	unsigned int tx_next_clean;
129 	unsigned int tx_current_fill;
130 	/* The tx_list lock also protects the ring related variables */
131 	struct sk_buff_head tx_list;
132 
133 	/* RX variables only touched in napi_poll.  No locking necessary. */
134 	u64 *rx_ring;
135 	dma_addr_t rx_ring_handle;
136 	unsigned int rx_next;
137 	unsigned int rx_next_fill;
138 	unsigned int rx_current_fill;
139 	struct sk_buff_head rx_list;
140 
141 	spinlock_t lock;
142 	unsigned int last_duplex;
143 	unsigned int last_link;
144 	unsigned int last_speed;
145 	struct device *dev;
146 	struct napi_struct napi;
147 	struct tasklet_struct tx_clean_tasklet;
148 	struct device_node *phy_np;
149 	resource_size_t mix_phys;
150 	resource_size_t mix_size;
151 	resource_size_t agl_phys;
152 	resource_size_t agl_size;
153 	resource_size_t agl_prt_ctl_phys;
154 	resource_size_t agl_prt_ctl_size;
155 };
156 
octeon_mgmt_set_rx_irq(struct octeon_mgmt * p,int enable)157 static void octeon_mgmt_set_rx_irq(struct octeon_mgmt *p, int enable)
158 {
159 	union cvmx_mixx_intena mix_intena;
160 	unsigned long flags;
161 
162 	spin_lock_irqsave(&p->lock, flags);
163 	mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA);
164 	mix_intena.s.ithena = enable ? 1 : 0;
165 	cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64);
166 	spin_unlock_irqrestore(&p->lock, flags);
167 }
168 
octeon_mgmt_set_tx_irq(struct octeon_mgmt * p,int enable)169 static void octeon_mgmt_set_tx_irq(struct octeon_mgmt *p, int enable)
170 {
171 	union cvmx_mixx_intena mix_intena;
172 	unsigned long flags;
173 
174 	spin_lock_irqsave(&p->lock, flags);
175 	mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA);
176 	mix_intena.s.othena = enable ? 1 : 0;
177 	cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64);
178 	spin_unlock_irqrestore(&p->lock, flags);
179 }
180 
octeon_mgmt_enable_rx_irq(struct octeon_mgmt * p)181 static void octeon_mgmt_enable_rx_irq(struct octeon_mgmt *p)
182 {
183 	octeon_mgmt_set_rx_irq(p, 1);
184 }
185 
octeon_mgmt_disable_rx_irq(struct octeon_mgmt * p)186 static void octeon_mgmt_disable_rx_irq(struct octeon_mgmt *p)
187 {
188 	octeon_mgmt_set_rx_irq(p, 0);
189 }
190 
octeon_mgmt_enable_tx_irq(struct octeon_mgmt * p)191 static void octeon_mgmt_enable_tx_irq(struct octeon_mgmt *p)
192 {
193 	octeon_mgmt_set_tx_irq(p, 1);
194 }
195 
octeon_mgmt_disable_tx_irq(struct octeon_mgmt * p)196 static void octeon_mgmt_disable_tx_irq(struct octeon_mgmt *p)
197 {
198 	octeon_mgmt_set_tx_irq(p, 0);
199 }
200 
ring_max_fill(unsigned int ring_size)201 static unsigned int ring_max_fill(unsigned int ring_size)
202 {
203 	return ring_size - 8;
204 }
205 
ring_size_to_bytes(unsigned int ring_size)206 static unsigned int ring_size_to_bytes(unsigned int ring_size)
207 {
208 	return ring_size * sizeof(union mgmt_port_ring_entry);
209 }
210 
octeon_mgmt_rx_fill_ring(struct net_device * netdev)211 static void octeon_mgmt_rx_fill_ring(struct net_device *netdev)
212 {
213 	struct octeon_mgmt *p = netdev_priv(netdev);
214 
215 	while (p->rx_current_fill < ring_max_fill(OCTEON_MGMT_RX_RING_SIZE)) {
216 		unsigned int size;
217 		union mgmt_port_ring_entry re;
218 		struct sk_buff *skb;
219 
220 		/* CN56XX pass 1 needs 8 bytes of padding.  */
221 		size = netdev->mtu + OCTEON_MGMT_RX_HEADROOM + 8 + NET_IP_ALIGN;
222 
223 		skb = netdev_alloc_skb(netdev, size);
224 		if (!skb)
225 			break;
226 		skb_reserve(skb, NET_IP_ALIGN);
227 		__skb_queue_tail(&p->rx_list, skb);
228 
229 		re.d64 = 0;
230 		re.s.len = size;
231 		re.s.addr = dma_map_single(p->dev, skb->data,
232 					   size,
233 					   DMA_FROM_DEVICE);
234 
235 		/* Put it in the ring.  */
236 		p->rx_ring[p->rx_next_fill] = re.d64;
237 		/* Make sure there is no reorder of filling the ring and ringing
238 		 * the bell
239 		 */
240 		wmb();
241 
242 		dma_sync_single_for_device(p->dev, p->rx_ring_handle,
243 					   ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
244 					   DMA_BIDIRECTIONAL);
245 		p->rx_next_fill =
246 			(p->rx_next_fill + 1) % OCTEON_MGMT_RX_RING_SIZE;
247 		p->rx_current_fill++;
248 		/* Ring the bell.  */
249 		cvmx_write_csr(p->mix + MIX_IRING2, 1);
250 	}
251 }
252 
octeon_mgmt_clean_tx_buffers(struct octeon_mgmt * p)253 static void octeon_mgmt_clean_tx_buffers(struct octeon_mgmt *p)
254 {
255 	union cvmx_mixx_orcnt mix_orcnt;
256 	union mgmt_port_ring_entry re;
257 	struct sk_buff *skb;
258 	int cleaned = 0;
259 	unsigned long flags;
260 
261 	mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT);
262 	while (mix_orcnt.s.orcnt) {
263 		spin_lock_irqsave(&p->tx_list.lock, flags);
264 
265 		mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT);
266 
267 		if (mix_orcnt.s.orcnt == 0) {
268 			spin_unlock_irqrestore(&p->tx_list.lock, flags);
269 			break;
270 		}
271 
272 		dma_sync_single_for_cpu(p->dev, p->tx_ring_handle,
273 					ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
274 					DMA_BIDIRECTIONAL);
275 
276 		re.d64 = p->tx_ring[p->tx_next_clean];
277 		p->tx_next_clean =
278 			(p->tx_next_clean + 1) % OCTEON_MGMT_TX_RING_SIZE;
279 		skb = __skb_dequeue(&p->tx_list);
280 
281 		mix_orcnt.u64 = 0;
282 		mix_orcnt.s.orcnt = 1;
283 
284 		/* Acknowledge to hardware that we have the buffer.  */
285 		cvmx_write_csr(p->mix + MIX_ORCNT, mix_orcnt.u64);
286 		p->tx_current_fill--;
287 
288 		spin_unlock_irqrestore(&p->tx_list.lock, flags);
289 
290 		dma_unmap_single(p->dev, re.s.addr, re.s.len,
291 				 DMA_TO_DEVICE);
292 
293 		/* Read the hardware TX timestamp if one was recorded */
294 		if (unlikely(re.s.tstamp)) {
295 			struct skb_shared_hwtstamps ts;
296 			u64 ns;
297 
298 			memset(&ts, 0, sizeof(ts));
299 			/* Read the timestamp */
300 			ns = cvmx_read_csr(CVMX_MIXX_TSTAMP(p->port));
301 			/* Remove the timestamp from the FIFO */
302 			cvmx_write_csr(CVMX_MIXX_TSCTL(p->port), 0);
303 			/* Tell the kernel about the timestamp */
304 			ts.hwtstamp = ns_to_ktime(ns);
305 			skb_tstamp_tx(skb, &ts);
306 		}
307 
308 		dev_kfree_skb_any(skb);
309 		cleaned++;
310 
311 		mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT);
312 	}
313 
314 	if (cleaned && netif_queue_stopped(p->netdev))
315 		netif_wake_queue(p->netdev);
316 }
317 
octeon_mgmt_clean_tx_tasklet(struct tasklet_struct * t)318 static void octeon_mgmt_clean_tx_tasklet(struct tasklet_struct *t)
319 {
320 	struct octeon_mgmt *p = from_tasklet(p, t, tx_clean_tasklet);
321 	octeon_mgmt_clean_tx_buffers(p);
322 	octeon_mgmt_enable_tx_irq(p);
323 }
324 
octeon_mgmt_update_rx_stats(struct net_device * netdev)325 static void octeon_mgmt_update_rx_stats(struct net_device *netdev)
326 {
327 	struct octeon_mgmt *p = netdev_priv(netdev);
328 	unsigned long flags;
329 	u64 drop, bad;
330 
331 	/* These reads also clear the count registers.  */
332 	drop = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP);
333 	bad = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD);
334 
335 	if (drop || bad) {
336 		/* Do an atomic update. */
337 		spin_lock_irqsave(&p->lock, flags);
338 		netdev->stats.rx_errors += bad;
339 		netdev->stats.rx_dropped += drop;
340 		spin_unlock_irqrestore(&p->lock, flags);
341 	}
342 }
343 
octeon_mgmt_update_tx_stats(struct net_device * netdev)344 static void octeon_mgmt_update_tx_stats(struct net_device *netdev)
345 {
346 	struct octeon_mgmt *p = netdev_priv(netdev);
347 	unsigned long flags;
348 
349 	union cvmx_agl_gmx_txx_stat0 s0;
350 	union cvmx_agl_gmx_txx_stat1 s1;
351 
352 	/* These reads also clear the count registers.  */
353 	s0.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT0);
354 	s1.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT1);
355 
356 	if (s0.s.xsdef || s0.s.xscol || s1.s.scol || s1.s.mcol) {
357 		/* Do an atomic update. */
358 		spin_lock_irqsave(&p->lock, flags);
359 		netdev->stats.tx_errors += s0.s.xsdef + s0.s.xscol;
360 		netdev->stats.collisions += s1.s.scol + s1.s.mcol;
361 		spin_unlock_irqrestore(&p->lock, flags);
362 	}
363 }
364 
365 /*
366  * Dequeue a receive skb and its corresponding ring entry.  The ring
367  * entry is returned, *pskb is updated to point to the skb.
368  */
octeon_mgmt_dequeue_rx_buffer(struct octeon_mgmt * p,struct sk_buff ** pskb)369 static u64 octeon_mgmt_dequeue_rx_buffer(struct octeon_mgmt *p,
370 					 struct sk_buff **pskb)
371 {
372 	union mgmt_port_ring_entry re;
373 
374 	dma_sync_single_for_cpu(p->dev, p->rx_ring_handle,
375 				ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
376 				DMA_BIDIRECTIONAL);
377 
378 	re.d64 = p->rx_ring[p->rx_next];
379 	p->rx_next = (p->rx_next + 1) % OCTEON_MGMT_RX_RING_SIZE;
380 	p->rx_current_fill--;
381 	*pskb = __skb_dequeue(&p->rx_list);
382 
383 	dma_unmap_single(p->dev, re.s.addr,
384 			 ETH_FRAME_LEN + OCTEON_MGMT_RX_HEADROOM,
385 			 DMA_FROM_DEVICE);
386 
387 	return re.d64;
388 }
389 
390 
octeon_mgmt_receive_one(struct octeon_mgmt * p)391 static int octeon_mgmt_receive_one(struct octeon_mgmt *p)
392 {
393 	struct net_device *netdev = p->netdev;
394 	union cvmx_mixx_ircnt mix_ircnt;
395 	union mgmt_port_ring_entry re;
396 	struct sk_buff *skb;
397 	struct sk_buff *skb2;
398 	struct sk_buff *skb_new;
399 	union mgmt_port_ring_entry re2;
400 	int rc = 1;
401 
402 
403 	re.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb);
404 	if (likely(re.s.code == RING_ENTRY_CODE_DONE)) {
405 		/* A good packet, send it up. */
406 		skb_put(skb, re.s.len);
407 good:
408 		/* Process the RX timestamp if it was recorded */
409 		if (p->has_rx_tstamp) {
410 			/* The first 8 bytes are the timestamp */
411 			u64 ns = *(u64 *)skb->data;
412 			struct skb_shared_hwtstamps *ts;
413 			ts = skb_hwtstamps(skb);
414 			ts->hwtstamp = ns_to_ktime(ns);
415 			__skb_pull(skb, 8);
416 		}
417 		skb->protocol = eth_type_trans(skb, netdev);
418 		netdev->stats.rx_packets++;
419 		netdev->stats.rx_bytes += skb->len;
420 		netif_receive_skb(skb);
421 		rc = 0;
422 	} else if (re.s.code == RING_ENTRY_CODE_MORE) {
423 		/* Packet split across skbs.  This can happen if we
424 		 * increase the MTU.  Buffers that are already in the
425 		 * rx ring can then end up being too small.  As the rx
426 		 * ring is refilled, buffers sized for the new MTU
427 		 * will be used and we should go back to the normal
428 		 * non-split case.
429 		 */
430 		skb_put(skb, re.s.len);
431 		do {
432 			re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2);
433 			if (re2.s.code != RING_ENTRY_CODE_MORE
434 				&& re2.s.code != RING_ENTRY_CODE_DONE)
435 				goto split_error;
436 			skb_put(skb2,  re2.s.len);
437 			skb_new = skb_copy_expand(skb, 0, skb2->len,
438 						  GFP_ATOMIC);
439 			if (!skb_new)
440 				goto split_error;
441 			if (skb_copy_bits(skb2, 0, skb_tail_pointer(skb_new),
442 					  skb2->len))
443 				goto split_error;
444 			skb_put(skb_new, skb2->len);
445 			dev_kfree_skb_any(skb);
446 			dev_kfree_skb_any(skb2);
447 			skb = skb_new;
448 		} while (re2.s.code == RING_ENTRY_CODE_MORE);
449 		goto good;
450 	} else {
451 		/* Some other error, discard it. */
452 		dev_kfree_skb_any(skb);
453 		/* Error statistics are accumulated in
454 		 * octeon_mgmt_update_rx_stats.
455 		 */
456 	}
457 	goto done;
458 split_error:
459 	/* Discard the whole mess. */
460 	dev_kfree_skb_any(skb);
461 	dev_kfree_skb_any(skb2);
462 	while (re2.s.code == RING_ENTRY_CODE_MORE) {
463 		re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2);
464 		dev_kfree_skb_any(skb2);
465 	}
466 	netdev->stats.rx_errors++;
467 
468 done:
469 	/* Tell the hardware we processed a packet.  */
470 	mix_ircnt.u64 = 0;
471 	mix_ircnt.s.ircnt = 1;
472 	cvmx_write_csr(p->mix + MIX_IRCNT, mix_ircnt.u64);
473 	return rc;
474 }
475 
octeon_mgmt_receive_packets(struct octeon_mgmt * p,int budget)476 static int octeon_mgmt_receive_packets(struct octeon_mgmt *p, int budget)
477 {
478 	unsigned int work_done = 0;
479 	union cvmx_mixx_ircnt mix_ircnt;
480 	int rc;
481 
482 	mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT);
483 	while (work_done < budget && mix_ircnt.s.ircnt) {
484 
485 		rc = octeon_mgmt_receive_one(p);
486 		if (!rc)
487 			work_done++;
488 
489 		/* Check for more packets. */
490 		mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT);
491 	}
492 
493 	octeon_mgmt_rx_fill_ring(p->netdev);
494 
495 	return work_done;
496 }
497 
octeon_mgmt_napi_poll(struct napi_struct * napi,int budget)498 static int octeon_mgmt_napi_poll(struct napi_struct *napi, int budget)
499 {
500 	struct octeon_mgmt *p = container_of(napi, struct octeon_mgmt, napi);
501 	struct net_device *netdev = p->netdev;
502 	unsigned int work_done = 0;
503 
504 	work_done = octeon_mgmt_receive_packets(p, budget);
505 
506 	if (work_done < budget) {
507 		/* We stopped because no more packets were available. */
508 		napi_complete_done(napi, work_done);
509 		octeon_mgmt_enable_rx_irq(p);
510 	}
511 	octeon_mgmt_update_rx_stats(netdev);
512 
513 	return work_done;
514 }
515 
516 /* Reset the hardware to clean state.  */
octeon_mgmt_reset_hw(struct octeon_mgmt * p)517 static void octeon_mgmt_reset_hw(struct octeon_mgmt *p)
518 {
519 	union cvmx_mixx_ctl mix_ctl;
520 	union cvmx_mixx_bist mix_bist;
521 	union cvmx_agl_gmx_bist agl_gmx_bist;
522 
523 	mix_ctl.u64 = 0;
524 	cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
525 	do {
526 		mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL);
527 	} while (mix_ctl.s.busy);
528 	mix_ctl.s.reset = 1;
529 	cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
530 	cvmx_read_csr(p->mix + MIX_CTL);
531 	octeon_io_clk_delay(64);
532 
533 	mix_bist.u64 = cvmx_read_csr(p->mix + MIX_BIST);
534 	if (mix_bist.u64)
535 		dev_warn(p->dev, "MIX failed BIST (0x%016llx)\n",
536 			(unsigned long long)mix_bist.u64);
537 
538 	agl_gmx_bist.u64 = cvmx_read_csr(CVMX_AGL_GMX_BIST);
539 	if (agl_gmx_bist.u64)
540 		dev_warn(p->dev, "AGL failed BIST (0x%016llx)\n",
541 			 (unsigned long long)agl_gmx_bist.u64);
542 }
543 
544 struct octeon_mgmt_cam_state {
545 	u64 cam[6];
546 	u64 cam_mask;
547 	int cam_index;
548 };
549 
octeon_mgmt_cam_state_add(struct octeon_mgmt_cam_state * cs,const unsigned char * addr)550 static void octeon_mgmt_cam_state_add(struct octeon_mgmt_cam_state *cs,
551 				      const unsigned char *addr)
552 {
553 	int i;
554 
555 	for (i = 0; i < 6; i++)
556 		cs->cam[i] |= (u64)addr[i] << (8 * (cs->cam_index));
557 	cs->cam_mask |= (1ULL << cs->cam_index);
558 	cs->cam_index++;
559 }
560 
octeon_mgmt_set_rx_filtering(struct net_device * netdev)561 static void octeon_mgmt_set_rx_filtering(struct net_device *netdev)
562 {
563 	struct octeon_mgmt *p = netdev_priv(netdev);
564 	union cvmx_agl_gmx_rxx_adr_ctl adr_ctl;
565 	union cvmx_agl_gmx_prtx_cfg agl_gmx_prtx;
566 	unsigned long flags;
567 	unsigned int prev_packet_enable;
568 	unsigned int cam_mode = 1; /* 1 - Accept on CAM match */
569 	unsigned int multicast_mode = 1; /* 1 - Reject all multicast.  */
570 	struct octeon_mgmt_cam_state cam_state;
571 	struct netdev_hw_addr *ha;
572 	int available_cam_entries;
573 
574 	memset(&cam_state, 0, sizeof(cam_state));
575 
576 	if ((netdev->flags & IFF_PROMISC) || netdev->uc.count > 7) {
577 		cam_mode = 0;
578 		available_cam_entries = 8;
579 	} else {
580 		/* One CAM entry for the primary address, leaves seven
581 		 * for the secondary addresses.
582 		 */
583 		available_cam_entries = 7 - netdev->uc.count;
584 	}
585 
586 	if (netdev->flags & IFF_MULTICAST) {
587 		if (cam_mode == 0 || (netdev->flags & IFF_ALLMULTI) ||
588 		    netdev_mc_count(netdev) > available_cam_entries)
589 			multicast_mode = 2; /* 2 - Accept all multicast.  */
590 		else
591 			multicast_mode = 0; /* 0 - Use CAM.  */
592 	}
593 
594 	if (cam_mode == 1) {
595 		/* Add primary address. */
596 		octeon_mgmt_cam_state_add(&cam_state, netdev->dev_addr);
597 		netdev_for_each_uc_addr(ha, netdev)
598 			octeon_mgmt_cam_state_add(&cam_state, ha->addr);
599 	}
600 	if (multicast_mode == 0) {
601 		netdev_for_each_mc_addr(ha, netdev)
602 			octeon_mgmt_cam_state_add(&cam_state, ha->addr);
603 	}
604 
605 	spin_lock_irqsave(&p->lock, flags);
606 
607 	/* Disable packet I/O. */
608 	agl_gmx_prtx.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
609 	prev_packet_enable = agl_gmx_prtx.s.en;
610 	agl_gmx_prtx.s.en = 0;
611 	cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64);
612 
613 	adr_ctl.u64 = 0;
614 	adr_ctl.s.cam_mode = cam_mode;
615 	adr_ctl.s.mcst = multicast_mode;
616 	adr_ctl.s.bcst = 1;     /* Allow broadcast */
617 
618 	cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CTL, adr_ctl.u64);
619 
620 	cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM0, cam_state.cam[0]);
621 	cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM1, cam_state.cam[1]);
622 	cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM2, cam_state.cam[2]);
623 	cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM3, cam_state.cam[3]);
624 	cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM4, cam_state.cam[4]);
625 	cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM5, cam_state.cam[5]);
626 	cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM_EN, cam_state.cam_mask);
627 
628 	/* Restore packet I/O. */
629 	agl_gmx_prtx.s.en = prev_packet_enable;
630 	cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64);
631 
632 	spin_unlock_irqrestore(&p->lock, flags);
633 }
634 
octeon_mgmt_set_mac_address(struct net_device * netdev,void * addr)635 static int octeon_mgmt_set_mac_address(struct net_device *netdev, void *addr)
636 {
637 	int r = eth_mac_addr(netdev, addr);
638 
639 	if (r)
640 		return r;
641 
642 	octeon_mgmt_set_rx_filtering(netdev);
643 
644 	return 0;
645 }
646 
octeon_mgmt_change_mtu(struct net_device * netdev,int new_mtu)647 static int octeon_mgmt_change_mtu(struct net_device *netdev, int new_mtu)
648 {
649 	struct octeon_mgmt *p = netdev_priv(netdev);
650 	int max_packet = new_mtu + ETH_HLEN + ETH_FCS_LEN;
651 
652 	netdev->mtu = new_mtu;
653 
654 	/* HW lifts the limit if the frame is VLAN tagged
655 	 * (+4 bytes per each tag, up to two tags)
656 	 */
657 	cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_MAX, max_packet);
658 	/* Set the hardware to truncate packets larger than the MTU. The jabber
659 	 * register must be set to a multiple of 8 bytes, so round up. JABBER is
660 	 * an unconditional limit, so we need to account for two possible VLAN
661 	 * tags.
662 	 */
663 	cvmx_write_csr(p->agl + AGL_GMX_RX_JABBER,
664 		       (max_packet + 7 + VLAN_HLEN * 2) & 0xfff8);
665 
666 	return 0;
667 }
668 
octeon_mgmt_interrupt(int cpl,void * dev_id)669 static irqreturn_t octeon_mgmt_interrupt(int cpl, void *dev_id)
670 {
671 	struct net_device *netdev = dev_id;
672 	struct octeon_mgmt *p = netdev_priv(netdev);
673 	union cvmx_mixx_isr mixx_isr;
674 
675 	mixx_isr.u64 = cvmx_read_csr(p->mix + MIX_ISR);
676 
677 	/* Clear any pending interrupts */
678 	cvmx_write_csr(p->mix + MIX_ISR, mixx_isr.u64);
679 	cvmx_read_csr(p->mix + MIX_ISR);
680 
681 	if (mixx_isr.s.irthresh) {
682 		octeon_mgmt_disable_rx_irq(p);
683 		napi_schedule(&p->napi);
684 	}
685 	if (mixx_isr.s.orthresh) {
686 		octeon_mgmt_disable_tx_irq(p);
687 		tasklet_schedule(&p->tx_clean_tasklet);
688 	}
689 
690 	return IRQ_HANDLED;
691 }
692 
octeon_mgmt_ioctl_hwtstamp(struct net_device * netdev,struct ifreq * rq,int cmd)693 static int octeon_mgmt_ioctl_hwtstamp(struct net_device *netdev,
694 				      struct ifreq *rq, int cmd)
695 {
696 	struct octeon_mgmt *p = netdev_priv(netdev);
697 	struct hwtstamp_config config;
698 	union cvmx_mio_ptp_clock_cfg ptp;
699 	union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl;
700 	bool have_hw_timestamps = false;
701 
702 	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
703 		return -EFAULT;
704 
705 	/* Check the status of hardware for tiemstamps */
706 	if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
707 		/* Get the current state of the PTP clock */
708 		ptp.u64 = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_CFG);
709 		if (!ptp.s.ext_clk_en) {
710 			/* The clock has not been configured to use an
711 			 * external source.  Program it to use the main clock
712 			 * reference.
713 			 */
714 			u64 clock_comp = (NSEC_PER_SEC << 32) /	octeon_get_io_clock_rate();
715 			if (!ptp.s.ptp_en)
716 				cvmx_write_csr(CVMX_MIO_PTP_CLOCK_COMP, clock_comp);
717 			netdev_info(netdev,
718 				    "PTP Clock using sclk reference @ %lldHz\n",
719 				    (NSEC_PER_SEC << 32) / clock_comp);
720 		} else {
721 			/* The clock is already programmed to use a GPIO */
722 			u64 clock_comp = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_COMP);
723 			netdev_info(netdev,
724 				    "PTP Clock using GPIO%d @ %lld Hz\n",
725 				    ptp.s.ext_clk_in, (NSEC_PER_SEC << 32) / clock_comp);
726 		}
727 
728 		/* Enable the clock if it wasn't done already */
729 		if (!ptp.s.ptp_en) {
730 			ptp.s.ptp_en = 1;
731 			cvmx_write_csr(CVMX_MIO_PTP_CLOCK_CFG, ptp.u64);
732 		}
733 		have_hw_timestamps = true;
734 	}
735 
736 	if (!have_hw_timestamps)
737 		return -EINVAL;
738 
739 	switch (config.tx_type) {
740 	case HWTSTAMP_TX_OFF:
741 	case HWTSTAMP_TX_ON:
742 		break;
743 	default:
744 		return -ERANGE;
745 	}
746 
747 	switch (config.rx_filter) {
748 	case HWTSTAMP_FILTER_NONE:
749 		p->has_rx_tstamp = false;
750 		rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL);
751 		rxx_frm_ctl.s.ptp_mode = 0;
752 		cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64);
753 		break;
754 	case HWTSTAMP_FILTER_ALL:
755 	case HWTSTAMP_FILTER_SOME:
756 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
757 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
758 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
759 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
760 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
761 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
762 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
763 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
764 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
765 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
766 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
767 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
768 	case HWTSTAMP_FILTER_NTP_ALL:
769 		p->has_rx_tstamp = have_hw_timestamps;
770 		config.rx_filter = HWTSTAMP_FILTER_ALL;
771 		if (p->has_rx_tstamp) {
772 			rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL);
773 			rxx_frm_ctl.s.ptp_mode = 1;
774 			cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64);
775 		}
776 		break;
777 	default:
778 		return -ERANGE;
779 	}
780 
781 	if (copy_to_user(rq->ifr_data, &config, sizeof(config)))
782 		return -EFAULT;
783 
784 	return 0;
785 }
786 
octeon_mgmt_ioctl(struct net_device * netdev,struct ifreq * rq,int cmd)787 static int octeon_mgmt_ioctl(struct net_device *netdev,
788 			     struct ifreq *rq, int cmd)
789 {
790 	switch (cmd) {
791 	case SIOCSHWTSTAMP:
792 		return octeon_mgmt_ioctl_hwtstamp(netdev, rq, cmd);
793 	default:
794 		return phy_do_ioctl(netdev, rq, cmd);
795 	}
796 }
797 
octeon_mgmt_disable_link(struct octeon_mgmt * p)798 static void octeon_mgmt_disable_link(struct octeon_mgmt *p)
799 {
800 	union cvmx_agl_gmx_prtx_cfg prtx_cfg;
801 
802 	/* Disable GMX before we make any changes. */
803 	prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
804 	prtx_cfg.s.en = 0;
805 	prtx_cfg.s.tx_en = 0;
806 	prtx_cfg.s.rx_en = 0;
807 	cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64);
808 
809 	if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
810 		int i;
811 		for (i = 0; i < 10; i++) {
812 			prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
813 			if (prtx_cfg.s.tx_idle == 1 || prtx_cfg.s.rx_idle == 1)
814 				break;
815 			mdelay(1);
816 			i++;
817 		}
818 	}
819 }
820 
octeon_mgmt_enable_link(struct octeon_mgmt * p)821 static void octeon_mgmt_enable_link(struct octeon_mgmt *p)
822 {
823 	union cvmx_agl_gmx_prtx_cfg prtx_cfg;
824 
825 	/* Restore the GMX enable state only if link is set */
826 	prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
827 	prtx_cfg.s.tx_en = 1;
828 	prtx_cfg.s.rx_en = 1;
829 	prtx_cfg.s.en = 1;
830 	cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64);
831 }
832 
octeon_mgmt_update_link(struct octeon_mgmt * p)833 static void octeon_mgmt_update_link(struct octeon_mgmt *p)
834 {
835 	struct net_device *ndev = p->netdev;
836 	struct phy_device *phydev = ndev->phydev;
837 	union cvmx_agl_gmx_prtx_cfg prtx_cfg;
838 
839 	prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
840 
841 	if (!phydev->link)
842 		prtx_cfg.s.duplex = 1;
843 	else
844 		prtx_cfg.s.duplex = phydev->duplex;
845 
846 	switch (phydev->speed) {
847 	case 10:
848 		prtx_cfg.s.speed = 0;
849 		prtx_cfg.s.slottime = 0;
850 
851 		if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
852 			prtx_cfg.s.burst = 1;
853 			prtx_cfg.s.speed_msb = 1;
854 		}
855 		break;
856 	case 100:
857 		prtx_cfg.s.speed = 0;
858 		prtx_cfg.s.slottime = 0;
859 
860 		if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
861 			prtx_cfg.s.burst = 1;
862 			prtx_cfg.s.speed_msb = 0;
863 		}
864 		break;
865 	case 1000:
866 		/* 1000 MBits is only supported on 6XXX chips */
867 		if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
868 			prtx_cfg.s.speed = 1;
869 			prtx_cfg.s.speed_msb = 0;
870 			/* Only matters for half-duplex */
871 			prtx_cfg.s.slottime = 1;
872 			prtx_cfg.s.burst = phydev->duplex;
873 		}
874 		break;
875 	case 0:  /* No link */
876 	default:
877 		break;
878 	}
879 
880 	/* Write the new GMX setting with the port still disabled. */
881 	cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64);
882 
883 	/* Read GMX CFG again to make sure the config is completed. */
884 	prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
885 
886 	if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
887 		union cvmx_agl_gmx_txx_clk agl_clk;
888 		union cvmx_agl_prtx_ctl prtx_ctl;
889 
890 		prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
891 		agl_clk.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_CLK);
892 		/* MII (both speeds) and RGMII 1000 speed. */
893 		agl_clk.s.clk_cnt = 1;
894 		if (prtx_ctl.s.mode == 0) { /* RGMII mode */
895 			if (phydev->speed == 10)
896 				agl_clk.s.clk_cnt = 50;
897 			else if (phydev->speed == 100)
898 				agl_clk.s.clk_cnt = 5;
899 		}
900 		cvmx_write_csr(p->agl + AGL_GMX_TX_CLK, agl_clk.u64);
901 	}
902 }
903 
octeon_mgmt_adjust_link(struct net_device * netdev)904 static void octeon_mgmt_adjust_link(struct net_device *netdev)
905 {
906 	struct octeon_mgmt *p = netdev_priv(netdev);
907 	struct phy_device *phydev = netdev->phydev;
908 	unsigned long flags;
909 	int link_changed = 0;
910 
911 	if (!phydev)
912 		return;
913 
914 	spin_lock_irqsave(&p->lock, flags);
915 
916 
917 	if (!phydev->link && p->last_link)
918 		link_changed = -1;
919 
920 	if (phydev->link &&
921 	    (p->last_duplex != phydev->duplex ||
922 	     p->last_link != phydev->link ||
923 	     p->last_speed != phydev->speed)) {
924 		octeon_mgmt_disable_link(p);
925 		link_changed = 1;
926 		octeon_mgmt_update_link(p);
927 		octeon_mgmt_enable_link(p);
928 	}
929 
930 	p->last_link = phydev->link;
931 	p->last_speed = phydev->speed;
932 	p->last_duplex = phydev->duplex;
933 
934 	spin_unlock_irqrestore(&p->lock, flags);
935 
936 	if (link_changed != 0) {
937 		if (link_changed > 0)
938 			netdev_info(netdev, "Link is up - %d/%s\n",
939 				    phydev->speed, phydev->duplex == DUPLEX_FULL ? "Full" : "Half");
940 		else
941 			netdev_info(netdev, "Link is down\n");
942 	}
943 }
944 
octeon_mgmt_init_phy(struct net_device * netdev)945 static int octeon_mgmt_init_phy(struct net_device *netdev)
946 {
947 	struct octeon_mgmt *p = netdev_priv(netdev);
948 	struct phy_device *phydev = NULL;
949 
950 	if (octeon_is_simulation() || p->phy_np == NULL) {
951 		/* No PHYs in the simulator. */
952 		netif_carrier_on(netdev);
953 		return 0;
954 	}
955 
956 	phydev = of_phy_connect(netdev, p->phy_np,
957 				octeon_mgmt_adjust_link, 0,
958 				PHY_INTERFACE_MODE_MII);
959 
960 	if (!phydev)
961 		return -EPROBE_DEFER;
962 
963 	return 0;
964 }
965 
octeon_mgmt_open(struct net_device * netdev)966 static int octeon_mgmt_open(struct net_device *netdev)
967 {
968 	struct octeon_mgmt *p = netdev_priv(netdev);
969 	union cvmx_mixx_ctl mix_ctl;
970 	union cvmx_agl_gmx_inf_mode agl_gmx_inf_mode;
971 	union cvmx_mixx_oring1 oring1;
972 	union cvmx_mixx_iring1 iring1;
973 	union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl;
974 	union cvmx_mixx_irhwm mix_irhwm;
975 	union cvmx_mixx_orhwm mix_orhwm;
976 	union cvmx_mixx_intena mix_intena;
977 	struct sockaddr sa;
978 
979 	/* Allocate ring buffers.  */
980 	p->tx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
981 			     GFP_KERNEL);
982 	if (!p->tx_ring)
983 		return -ENOMEM;
984 	p->tx_ring_handle =
985 		dma_map_single(p->dev, p->tx_ring,
986 			       ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
987 			       DMA_BIDIRECTIONAL);
988 	p->tx_next = 0;
989 	p->tx_next_clean = 0;
990 	p->tx_current_fill = 0;
991 
992 
993 	p->rx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
994 			     GFP_KERNEL);
995 	if (!p->rx_ring)
996 		goto err_nomem;
997 	p->rx_ring_handle =
998 		dma_map_single(p->dev, p->rx_ring,
999 			       ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
1000 			       DMA_BIDIRECTIONAL);
1001 
1002 	p->rx_next = 0;
1003 	p->rx_next_fill = 0;
1004 	p->rx_current_fill = 0;
1005 
1006 	octeon_mgmt_reset_hw(p);
1007 
1008 	mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL);
1009 
1010 	/* Bring it out of reset if needed. */
1011 	if (mix_ctl.s.reset) {
1012 		mix_ctl.s.reset = 0;
1013 		cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
1014 		do {
1015 			mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL);
1016 		} while (mix_ctl.s.reset);
1017 	}
1018 
1019 	if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
1020 		agl_gmx_inf_mode.u64 = 0;
1021 		agl_gmx_inf_mode.s.en = 1;
1022 		cvmx_write_csr(CVMX_AGL_GMX_INF_MODE, agl_gmx_inf_mode.u64);
1023 	}
1024 	if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X)
1025 		|| OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) {
1026 		/* Force compensation values, as they are not
1027 		 * determined properly by HW
1028 		 */
1029 		union cvmx_agl_gmx_drv_ctl drv_ctl;
1030 
1031 		drv_ctl.u64 = cvmx_read_csr(CVMX_AGL_GMX_DRV_CTL);
1032 		if (p->port) {
1033 			drv_ctl.s.byp_en1 = 1;
1034 			drv_ctl.s.nctl1 = 6;
1035 			drv_ctl.s.pctl1 = 6;
1036 		} else {
1037 			drv_ctl.s.byp_en = 1;
1038 			drv_ctl.s.nctl = 6;
1039 			drv_ctl.s.pctl = 6;
1040 		}
1041 		cvmx_write_csr(CVMX_AGL_GMX_DRV_CTL, drv_ctl.u64);
1042 	}
1043 
1044 	oring1.u64 = 0;
1045 	oring1.s.obase = p->tx_ring_handle >> 3;
1046 	oring1.s.osize = OCTEON_MGMT_TX_RING_SIZE;
1047 	cvmx_write_csr(p->mix + MIX_ORING1, oring1.u64);
1048 
1049 	iring1.u64 = 0;
1050 	iring1.s.ibase = p->rx_ring_handle >> 3;
1051 	iring1.s.isize = OCTEON_MGMT_RX_RING_SIZE;
1052 	cvmx_write_csr(p->mix + MIX_IRING1, iring1.u64);
1053 
1054 	memcpy(sa.sa_data, netdev->dev_addr, ETH_ALEN);
1055 	octeon_mgmt_set_mac_address(netdev, &sa);
1056 
1057 	octeon_mgmt_change_mtu(netdev, netdev->mtu);
1058 
1059 	/* Enable the port HW. Packets are not allowed until
1060 	 * cvmx_mgmt_port_enable() is called.
1061 	 */
1062 	mix_ctl.u64 = 0;
1063 	mix_ctl.s.crc_strip = 1;    /* Strip the ending CRC */
1064 	mix_ctl.s.en = 1;           /* Enable the port */
1065 	mix_ctl.s.nbtarb = 0;       /* Arbitration mode */
1066 	/* MII CB-request FIFO programmable high watermark */
1067 	mix_ctl.s.mrq_hwm = 1;
1068 #ifdef __LITTLE_ENDIAN
1069 	mix_ctl.s.lendian = 1;
1070 #endif
1071 	cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
1072 
1073 	/* Read the PHY to find the mode of the interface. */
1074 	if (octeon_mgmt_init_phy(netdev)) {
1075 		dev_err(p->dev, "Cannot initialize PHY on MIX%d.\n", p->port);
1076 		goto err_noirq;
1077 	}
1078 
1079 	/* Set the mode of the interface, RGMII/MII. */
1080 	if (OCTEON_IS_MODEL(OCTEON_CN6XXX) && netdev->phydev) {
1081 		union cvmx_agl_prtx_ctl agl_prtx_ctl;
1082 		int rgmii_mode =
1083 			(linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
1084 					   netdev->phydev->supported) |
1085 			 linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
1086 					   netdev->phydev->supported)) != 0;
1087 
1088 		agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
1089 		agl_prtx_ctl.s.mode = rgmii_mode ? 0 : 1;
1090 		cvmx_write_csr(p->agl_prt_ctl,	agl_prtx_ctl.u64);
1091 
1092 		/* MII clocks counts are based on the 125Mhz
1093 		 * reference, which has an 8nS period. So our delays
1094 		 * need to be multiplied by this factor.
1095 		 */
1096 #define NS_PER_PHY_CLK 8
1097 
1098 		/* Take the DLL and clock tree out of reset */
1099 		agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
1100 		agl_prtx_ctl.s.clkrst = 0;
1101 		if (rgmii_mode) {
1102 			agl_prtx_ctl.s.dllrst = 0;
1103 			agl_prtx_ctl.s.clktx_byp = 0;
1104 		}
1105 		cvmx_write_csr(p->agl_prt_ctl,	agl_prtx_ctl.u64);
1106 		cvmx_read_csr(p->agl_prt_ctl); /* Force write out before wait */
1107 
1108 		/* Wait for the DLL to lock. External 125 MHz
1109 		 * reference clock must be stable at this point.
1110 		 */
1111 		ndelay(256 * NS_PER_PHY_CLK);
1112 
1113 		/* Enable the interface */
1114 		agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
1115 		agl_prtx_ctl.s.enable = 1;
1116 		cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64);
1117 
1118 		/* Read the value back to force the previous write */
1119 		agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
1120 
1121 		/* Enable the compensation controller */
1122 		agl_prtx_ctl.s.comp = 1;
1123 		agl_prtx_ctl.s.drv_byp = 0;
1124 		cvmx_write_csr(p->agl_prt_ctl,	agl_prtx_ctl.u64);
1125 		/* Force write out before wait. */
1126 		cvmx_read_csr(p->agl_prt_ctl);
1127 
1128 		/* For compensation state to lock. */
1129 		ndelay(1040 * NS_PER_PHY_CLK);
1130 
1131 		/* Default Interframe Gaps are too small.  Recommended
1132 		 * workaround is.
1133 		 *
1134 		 * AGL_GMX_TX_IFG[IFG1]=14
1135 		 * AGL_GMX_TX_IFG[IFG2]=10
1136 		 */
1137 		cvmx_write_csr(CVMX_AGL_GMX_TX_IFG, 0xae);
1138 	}
1139 
1140 	octeon_mgmt_rx_fill_ring(netdev);
1141 
1142 	/* Clear statistics. */
1143 	/* Clear on read. */
1144 	cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_CTL, 1);
1145 	cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP, 0);
1146 	cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD, 0);
1147 
1148 	cvmx_write_csr(p->agl + AGL_GMX_TX_STATS_CTL, 1);
1149 	cvmx_write_csr(p->agl + AGL_GMX_TX_STAT0, 0);
1150 	cvmx_write_csr(p->agl + AGL_GMX_TX_STAT1, 0);
1151 
1152 	/* Clear any pending interrupts */
1153 	cvmx_write_csr(p->mix + MIX_ISR, cvmx_read_csr(p->mix + MIX_ISR));
1154 
1155 	if (request_irq(p->irq, octeon_mgmt_interrupt, 0, netdev->name,
1156 			netdev)) {
1157 		dev_err(p->dev, "request_irq(%d) failed.\n", p->irq);
1158 		goto err_noirq;
1159 	}
1160 
1161 	/* Interrupt every single RX packet */
1162 	mix_irhwm.u64 = 0;
1163 	mix_irhwm.s.irhwm = 0;
1164 	cvmx_write_csr(p->mix + MIX_IRHWM, mix_irhwm.u64);
1165 
1166 	/* Interrupt when we have 1 or more packets to clean.  */
1167 	mix_orhwm.u64 = 0;
1168 	mix_orhwm.s.orhwm = 0;
1169 	cvmx_write_csr(p->mix + MIX_ORHWM, mix_orhwm.u64);
1170 
1171 	/* Enable receive and transmit interrupts */
1172 	mix_intena.u64 = 0;
1173 	mix_intena.s.ithena = 1;
1174 	mix_intena.s.othena = 1;
1175 	cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64);
1176 
1177 	/* Enable packet I/O. */
1178 
1179 	rxx_frm_ctl.u64 = 0;
1180 	rxx_frm_ctl.s.ptp_mode = p->has_rx_tstamp ? 1 : 0;
1181 	rxx_frm_ctl.s.pre_align = 1;
1182 	/* When set, disables the length check for non-min sized pkts
1183 	 * with padding in the client data.
1184 	 */
1185 	rxx_frm_ctl.s.pad_len = 1;
1186 	/* When set, disables the length check for VLAN pkts */
1187 	rxx_frm_ctl.s.vlan_len = 1;
1188 	/* When set, PREAMBLE checking is  less strict */
1189 	rxx_frm_ctl.s.pre_free = 1;
1190 	/* Control Pause Frames can match station SMAC */
1191 	rxx_frm_ctl.s.ctl_smac = 0;
1192 	/* Control Pause Frames can match globally assign Multicast address */
1193 	rxx_frm_ctl.s.ctl_mcst = 1;
1194 	/* Forward pause information to TX block */
1195 	rxx_frm_ctl.s.ctl_bck = 1;
1196 	/* Drop Control Pause Frames */
1197 	rxx_frm_ctl.s.ctl_drp = 1;
1198 	/* Strip off the preamble */
1199 	rxx_frm_ctl.s.pre_strp = 1;
1200 	/* This port is configured to send PREAMBLE+SFD to begin every
1201 	 * frame.  GMX checks that the PREAMBLE is sent correctly.
1202 	 */
1203 	rxx_frm_ctl.s.pre_chk = 1;
1204 	cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64);
1205 
1206 	/* Configure the port duplex, speed and enables */
1207 	octeon_mgmt_disable_link(p);
1208 	if (netdev->phydev)
1209 		octeon_mgmt_update_link(p);
1210 	octeon_mgmt_enable_link(p);
1211 
1212 	p->last_link = 0;
1213 	p->last_speed = 0;
1214 	/* PHY is not present in simulator. The carrier is enabled
1215 	 * while initializing the phy for simulator, leave it enabled.
1216 	 */
1217 	if (netdev->phydev) {
1218 		netif_carrier_off(netdev);
1219 		phy_start(netdev->phydev);
1220 	}
1221 
1222 	netif_wake_queue(netdev);
1223 	napi_enable(&p->napi);
1224 
1225 	return 0;
1226 err_noirq:
1227 	octeon_mgmt_reset_hw(p);
1228 	dma_unmap_single(p->dev, p->rx_ring_handle,
1229 			 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
1230 			 DMA_BIDIRECTIONAL);
1231 	kfree(p->rx_ring);
1232 err_nomem:
1233 	dma_unmap_single(p->dev, p->tx_ring_handle,
1234 			 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
1235 			 DMA_BIDIRECTIONAL);
1236 	kfree(p->tx_ring);
1237 	return -ENOMEM;
1238 }
1239 
octeon_mgmt_stop(struct net_device * netdev)1240 static int octeon_mgmt_stop(struct net_device *netdev)
1241 {
1242 	struct octeon_mgmt *p = netdev_priv(netdev);
1243 
1244 	napi_disable(&p->napi);
1245 	netif_stop_queue(netdev);
1246 
1247 	if (netdev->phydev) {
1248 		phy_stop(netdev->phydev);
1249 		phy_disconnect(netdev->phydev);
1250 	}
1251 
1252 	netif_carrier_off(netdev);
1253 
1254 	octeon_mgmt_reset_hw(p);
1255 
1256 	free_irq(p->irq, netdev);
1257 
1258 	/* dma_unmap is a nop on Octeon, so just free everything.  */
1259 	skb_queue_purge(&p->tx_list);
1260 	skb_queue_purge(&p->rx_list);
1261 
1262 	dma_unmap_single(p->dev, p->rx_ring_handle,
1263 			 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
1264 			 DMA_BIDIRECTIONAL);
1265 	kfree(p->rx_ring);
1266 
1267 	dma_unmap_single(p->dev, p->tx_ring_handle,
1268 			 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
1269 			 DMA_BIDIRECTIONAL);
1270 	kfree(p->tx_ring);
1271 
1272 	return 0;
1273 }
1274 
1275 static netdev_tx_t
octeon_mgmt_xmit(struct sk_buff * skb,struct net_device * netdev)1276 octeon_mgmt_xmit(struct sk_buff *skb, struct net_device *netdev)
1277 {
1278 	struct octeon_mgmt *p = netdev_priv(netdev);
1279 	union mgmt_port_ring_entry re;
1280 	unsigned long flags;
1281 	netdev_tx_t rv = NETDEV_TX_BUSY;
1282 
1283 	re.d64 = 0;
1284 	re.s.tstamp = ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) != 0);
1285 	re.s.len = skb->len;
1286 	re.s.addr = dma_map_single(p->dev, skb->data,
1287 				   skb->len,
1288 				   DMA_TO_DEVICE);
1289 
1290 	spin_lock_irqsave(&p->tx_list.lock, flags);
1291 
1292 	if (unlikely(p->tx_current_fill >= ring_max_fill(OCTEON_MGMT_TX_RING_SIZE) - 1)) {
1293 		spin_unlock_irqrestore(&p->tx_list.lock, flags);
1294 		netif_stop_queue(netdev);
1295 		spin_lock_irqsave(&p->tx_list.lock, flags);
1296 	}
1297 
1298 	if (unlikely(p->tx_current_fill >=
1299 		     ring_max_fill(OCTEON_MGMT_TX_RING_SIZE))) {
1300 		spin_unlock_irqrestore(&p->tx_list.lock, flags);
1301 		dma_unmap_single(p->dev, re.s.addr, re.s.len,
1302 				 DMA_TO_DEVICE);
1303 		goto out;
1304 	}
1305 
1306 	__skb_queue_tail(&p->tx_list, skb);
1307 
1308 	/* Put it in the ring.  */
1309 	p->tx_ring[p->tx_next] = re.d64;
1310 	p->tx_next = (p->tx_next + 1) % OCTEON_MGMT_TX_RING_SIZE;
1311 	p->tx_current_fill++;
1312 
1313 	spin_unlock_irqrestore(&p->tx_list.lock, flags);
1314 
1315 	dma_sync_single_for_device(p->dev, p->tx_ring_handle,
1316 				   ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
1317 				   DMA_BIDIRECTIONAL);
1318 
1319 	netdev->stats.tx_packets++;
1320 	netdev->stats.tx_bytes += skb->len;
1321 
1322 	/* Ring the bell.  */
1323 	cvmx_write_csr(p->mix + MIX_ORING2, 1);
1324 
1325 	netif_trans_update(netdev);
1326 	rv = NETDEV_TX_OK;
1327 out:
1328 	octeon_mgmt_update_tx_stats(netdev);
1329 	return rv;
1330 }
1331 
1332 #ifdef CONFIG_NET_POLL_CONTROLLER
octeon_mgmt_poll_controller(struct net_device * netdev)1333 static void octeon_mgmt_poll_controller(struct net_device *netdev)
1334 {
1335 	struct octeon_mgmt *p = netdev_priv(netdev);
1336 
1337 	octeon_mgmt_receive_packets(p, 16);
1338 	octeon_mgmt_update_rx_stats(netdev);
1339 }
1340 #endif
1341 
octeon_mgmt_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * info)1342 static void octeon_mgmt_get_drvinfo(struct net_device *netdev,
1343 				    struct ethtool_drvinfo *info)
1344 {
1345 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1346 }
1347 
octeon_mgmt_nway_reset(struct net_device * dev)1348 static int octeon_mgmt_nway_reset(struct net_device *dev)
1349 {
1350 	if (!capable(CAP_NET_ADMIN))
1351 		return -EPERM;
1352 
1353 	if (dev->phydev)
1354 		return phy_start_aneg(dev->phydev);
1355 
1356 	return -EOPNOTSUPP;
1357 }
1358 
1359 static const struct ethtool_ops octeon_mgmt_ethtool_ops = {
1360 	.get_drvinfo = octeon_mgmt_get_drvinfo,
1361 	.nway_reset = octeon_mgmt_nway_reset,
1362 	.get_link = ethtool_op_get_link,
1363 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
1364 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
1365 };
1366 
1367 static const struct net_device_ops octeon_mgmt_ops = {
1368 	.ndo_open =			octeon_mgmt_open,
1369 	.ndo_stop =			octeon_mgmt_stop,
1370 	.ndo_start_xmit =		octeon_mgmt_xmit,
1371 	.ndo_set_rx_mode =		octeon_mgmt_set_rx_filtering,
1372 	.ndo_set_mac_address =		octeon_mgmt_set_mac_address,
1373 	.ndo_eth_ioctl =			octeon_mgmt_ioctl,
1374 	.ndo_change_mtu =		octeon_mgmt_change_mtu,
1375 #ifdef CONFIG_NET_POLL_CONTROLLER
1376 	.ndo_poll_controller =		octeon_mgmt_poll_controller,
1377 #endif
1378 };
1379 
octeon_mgmt_probe(struct platform_device * pdev)1380 static int octeon_mgmt_probe(struct platform_device *pdev)
1381 {
1382 	struct net_device *netdev;
1383 	struct octeon_mgmt *p;
1384 	const __be32 *data;
1385 	struct resource *res_mix;
1386 	struct resource *res_agl;
1387 	struct resource *res_agl_prt_ctl;
1388 	int len;
1389 	int result;
1390 
1391 	netdev = alloc_etherdev(sizeof(struct octeon_mgmt));
1392 	if (netdev == NULL)
1393 		return -ENOMEM;
1394 
1395 	SET_NETDEV_DEV(netdev, &pdev->dev);
1396 
1397 	platform_set_drvdata(pdev, netdev);
1398 	p = netdev_priv(netdev);
1399 	netif_napi_add_weight(netdev, &p->napi, octeon_mgmt_napi_poll,
1400 			      OCTEON_MGMT_NAPI_WEIGHT);
1401 
1402 	p->netdev = netdev;
1403 	p->dev = &pdev->dev;
1404 	p->has_rx_tstamp = false;
1405 
1406 	data = of_get_property(pdev->dev.of_node, "cell-index", &len);
1407 	if (data && len == sizeof(*data)) {
1408 		p->port = be32_to_cpup(data);
1409 	} else {
1410 		dev_err(&pdev->dev, "no 'cell-index' property\n");
1411 		result = -ENXIO;
1412 		goto err;
1413 	}
1414 
1415 	snprintf(netdev->name, IFNAMSIZ, "mgmt%d", p->port);
1416 
1417 	result = platform_get_irq(pdev, 0);
1418 	if (result < 0)
1419 		goto err;
1420 
1421 	p->irq = result;
1422 
1423 	res_mix = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1424 	if (res_mix == NULL) {
1425 		dev_err(&pdev->dev, "no 'reg' resource\n");
1426 		result = -ENXIO;
1427 		goto err;
1428 	}
1429 
1430 	res_agl = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1431 	if (res_agl == NULL) {
1432 		dev_err(&pdev->dev, "no 'reg' resource\n");
1433 		result = -ENXIO;
1434 		goto err;
1435 	}
1436 
1437 	res_agl_prt_ctl = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1438 	if (res_agl_prt_ctl == NULL) {
1439 		dev_err(&pdev->dev, "no 'reg' resource\n");
1440 		result = -ENXIO;
1441 		goto err;
1442 	}
1443 
1444 	p->mix_phys = res_mix->start;
1445 	p->mix_size = resource_size(res_mix);
1446 	p->agl_phys = res_agl->start;
1447 	p->agl_size = resource_size(res_agl);
1448 	p->agl_prt_ctl_phys = res_agl_prt_ctl->start;
1449 	p->agl_prt_ctl_size = resource_size(res_agl_prt_ctl);
1450 
1451 
1452 	if (!devm_request_mem_region(&pdev->dev, p->mix_phys, p->mix_size,
1453 				     res_mix->name)) {
1454 		dev_err(&pdev->dev, "request_mem_region (%s) failed\n",
1455 			res_mix->name);
1456 		result = -ENXIO;
1457 		goto err;
1458 	}
1459 
1460 	if (!devm_request_mem_region(&pdev->dev, p->agl_phys, p->agl_size,
1461 				     res_agl->name)) {
1462 		result = -ENXIO;
1463 		dev_err(&pdev->dev, "request_mem_region (%s) failed\n",
1464 			res_agl->name);
1465 		goto err;
1466 	}
1467 
1468 	if (!devm_request_mem_region(&pdev->dev, p->agl_prt_ctl_phys,
1469 				     p->agl_prt_ctl_size, res_agl_prt_ctl->name)) {
1470 		result = -ENXIO;
1471 		dev_err(&pdev->dev, "request_mem_region (%s) failed\n",
1472 			res_agl_prt_ctl->name);
1473 		goto err;
1474 	}
1475 
1476 	p->mix = (u64)devm_ioremap(&pdev->dev, p->mix_phys, p->mix_size);
1477 	p->agl = (u64)devm_ioremap(&pdev->dev, p->agl_phys, p->agl_size);
1478 	p->agl_prt_ctl = (u64)devm_ioremap(&pdev->dev, p->agl_prt_ctl_phys,
1479 					   p->agl_prt_ctl_size);
1480 	if (!p->mix || !p->agl || !p->agl_prt_ctl) {
1481 		dev_err(&pdev->dev, "failed to map I/O memory\n");
1482 		result = -ENOMEM;
1483 		goto err;
1484 	}
1485 
1486 	spin_lock_init(&p->lock);
1487 
1488 	skb_queue_head_init(&p->tx_list);
1489 	skb_queue_head_init(&p->rx_list);
1490 	tasklet_setup(&p->tx_clean_tasklet,
1491 		      octeon_mgmt_clean_tx_tasklet);
1492 
1493 	netdev->priv_flags |= IFF_UNICAST_FLT;
1494 
1495 	netdev->netdev_ops = &octeon_mgmt_ops;
1496 	netdev->ethtool_ops = &octeon_mgmt_ethtool_ops;
1497 
1498 	netdev->min_mtu = 64 - OCTEON_MGMT_RX_HEADROOM;
1499 	netdev->max_mtu = 16383 - OCTEON_MGMT_RX_HEADROOM - VLAN_HLEN;
1500 
1501 	result = of_get_ethdev_address(pdev->dev.of_node, netdev);
1502 	if (result)
1503 		eth_hw_addr_random(netdev);
1504 
1505 	p->phy_np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1506 
1507 	result = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1508 	if (result)
1509 		goto err;
1510 
1511 	netif_carrier_off(netdev);
1512 	result = register_netdev(netdev);
1513 	if (result)
1514 		goto err;
1515 
1516 	return 0;
1517 
1518 err:
1519 	of_node_put(p->phy_np);
1520 	free_netdev(netdev);
1521 	return result;
1522 }
1523 
octeon_mgmt_remove(struct platform_device * pdev)1524 static int octeon_mgmt_remove(struct platform_device *pdev)
1525 {
1526 	struct net_device *netdev = platform_get_drvdata(pdev);
1527 	struct octeon_mgmt *p = netdev_priv(netdev);
1528 
1529 	unregister_netdev(netdev);
1530 	of_node_put(p->phy_np);
1531 	free_netdev(netdev);
1532 	return 0;
1533 }
1534 
1535 static const struct of_device_id octeon_mgmt_match[] = {
1536 	{
1537 		.compatible = "cavium,octeon-5750-mix",
1538 	},
1539 	{},
1540 };
1541 MODULE_DEVICE_TABLE(of, octeon_mgmt_match);
1542 
1543 static struct platform_driver octeon_mgmt_driver = {
1544 	.driver = {
1545 		.name		= "octeon_mgmt",
1546 		.of_match_table = octeon_mgmt_match,
1547 	},
1548 	.probe		= octeon_mgmt_probe,
1549 	.remove		= octeon_mgmt_remove,
1550 };
1551 
1552 module_platform_driver(octeon_mgmt_driver);
1553 
1554 MODULE_SOFTDEP("pre: mdio-cavium");
1555 MODULE_DESCRIPTION(DRV_DESCRIPTION);
1556 MODULE_AUTHOR("David Daney");
1557 MODULE_LICENSE("GPL");
1558