xref: /openbmc/linux/fs/ocfs2/aops.c (revision fac59652993f075d57860769c99045b3ca18780d)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
4   */
5  
6  #include <linux/fs.h>
7  #include <linux/slab.h>
8  #include <linux/highmem.h>
9  #include <linux/pagemap.h>
10  #include <asm/byteorder.h>
11  #include <linux/swap.h>
12  #include <linux/mpage.h>
13  #include <linux/quotaops.h>
14  #include <linux/blkdev.h>
15  #include <linux/uio.h>
16  #include <linux/mm.h>
17  
18  #include <cluster/masklog.h>
19  
20  #include "ocfs2.h"
21  
22  #include "alloc.h"
23  #include "aops.h"
24  #include "dlmglue.h"
25  #include "extent_map.h"
26  #include "file.h"
27  #include "inode.h"
28  #include "journal.h"
29  #include "suballoc.h"
30  #include "super.h"
31  #include "symlink.h"
32  #include "refcounttree.h"
33  #include "ocfs2_trace.h"
34  
35  #include "buffer_head_io.h"
36  #include "dir.h"
37  #include "namei.h"
38  #include "sysfile.h"
39  
ocfs2_symlink_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)40  static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41  				   struct buffer_head *bh_result, int create)
42  {
43  	int err = -EIO;
44  	int status;
45  	struct ocfs2_dinode *fe = NULL;
46  	struct buffer_head *bh = NULL;
47  	struct buffer_head *buffer_cache_bh = NULL;
48  	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49  	void *kaddr;
50  
51  	trace_ocfs2_symlink_get_block(
52  			(unsigned long long)OCFS2_I(inode)->ip_blkno,
53  			(unsigned long long)iblock, bh_result, create);
54  
55  	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56  
57  	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58  		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59  		     (unsigned long long)iblock);
60  		goto bail;
61  	}
62  
63  	status = ocfs2_read_inode_block(inode, &bh);
64  	if (status < 0) {
65  		mlog_errno(status);
66  		goto bail;
67  	}
68  	fe = (struct ocfs2_dinode *) bh->b_data;
69  
70  	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71  						    le32_to_cpu(fe->i_clusters))) {
72  		err = -ENOMEM;
73  		mlog(ML_ERROR, "block offset is outside the allocated size: "
74  		     "%llu\n", (unsigned long long)iblock);
75  		goto bail;
76  	}
77  
78  	/* We don't use the page cache to create symlink data, so if
79  	 * need be, copy it over from the buffer cache. */
80  	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81  		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82  			    iblock;
83  		buffer_cache_bh = sb_getblk(osb->sb, blkno);
84  		if (!buffer_cache_bh) {
85  			err = -ENOMEM;
86  			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87  			goto bail;
88  		}
89  
90  		/* we haven't locked out transactions, so a commit
91  		 * could've happened. Since we've got a reference on
92  		 * the bh, even if it commits while we're doing the
93  		 * copy, the data is still good. */
94  		if (buffer_jbd(buffer_cache_bh)
95  		    && ocfs2_inode_is_new(inode)) {
96  			kaddr = kmap_atomic(bh_result->b_page);
97  			if (!kaddr) {
98  				mlog(ML_ERROR, "couldn't kmap!\n");
99  				goto bail;
100  			}
101  			memcpy(kaddr + (bh_result->b_size * iblock),
102  			       buffer_cache_bh->b_data,
103  			       bh_result->b_size);
104  			kunmap_atomic(kaddr);
105  			set_buffer_uptodate(bh_result);
106  		}
107  		brelse(buffer_cache_bh);
108  	}
109  
110  	map_bh(bh_result, inode->i_sb,
111  	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112  
113  	err = 0;
114  
115  bail:
116  	brelse(bh);
117  
118  	return err;
119  }
120  
ocfs2_lock_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)121  static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122  		    struct buffer_head *bh_result, int create)
123  {
124  	int ret = 0;
125  	struct ocfs2_inode_info *oi = OCFS2_I(inode);
126  
127  	down_read(&oi->ip_alloc_sem);
128  	ret = ocfs2_get_block(inode, iblock, bh_result, create);
129  	up_read(&oi->ip_alloc_sem);
130  
131  	return ret;
132  }
133  
ocfs2_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)134  int ocfs2_get_block(struct inode *inode, sector_t iblock,
135  		    struct buffer_head *bh_result, int create)
136  {
137  	int err = 0;
138  	unsigned int ext_flags;
139  	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140  	u64 p_blkno, count, past_eof;
141  	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
142  
143  	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144  			      (unsigned long long)iblock, bh_result, create);
145  
146  	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147  		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148  		     inode, inode->i_ino);
149  
150  	if (S_ISLNK(inode->i_mode)) {
151  		/* this always does I/O for some reason. */
152  		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153  		goto bail;
154  	}
155  
156  	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157  					  &ext_flags);
158  	if (err) {
159  		mlog(ML_ERROR, "get_blocks() failed, inode: 0x%p, "
160  		     "block: %llu\n", inode, (unsigned long long)iblock);
161  		goto bail;
162  	}
163  
164  	if (max_blocks < count)
165  		count = max_blocks;
166  
167  	/*
168  	 * ocfs2 never allocates in this function - the only time we
169  	 * need to use BH_New is when we're extending i_size on a file
170  	 * system which doesn't support holes, in which case BH_New
171  	 * allows __block_write_begin() to zero.
172  	 *
173  	 * If we see this on a sparse file system, then a truncate has
174  	 * raced us and removed the cluster. In this case, we clear
175  	 * the buffers dirty and uptodate bits and let the buffer code
176  	 * ignore it as a hole.
177  	 */
178  	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
179  		clear_buffer_dirty(bh_result);
180  		clear_buffer_uptodate(bh_result);
181  		goto bail;
182  	}
183  
184  	/* Treat the unwritten extent as a hole for zeroing purposes. */
185  	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
186  		map_bh(bh_result, inode->i_sb, p_blkno);
187  
188  	bh_result->b_size = count << inode->i_blkbits;
189  
190  	if (!ocfs2_sparse_alloc(osb)) {
191  		if (p_blkno == 0) {
192  			err = -EIO;
193  			mlog(ML_ERROR,
194  			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
195  			     (unsigned long long)iblock,
196  			     (unsigned long long)p_blkno,
197  			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
198  			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
199  			dump_stack();
200  			goto bail;
201  		}
202  	}
203  
204  	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
205  
206  	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
207  				  (unsigned long long)past_eof);
208  	if (create && (iblock >= past_eof))
209  		set_buffer_new(bh_result);
210  
211  bail:
212  	if (err < 0)
213  		err = -EIO;
214  
215  	return err;
216  }
217  
ocfs2_read_inline_data(struct inode * inode,struct page * page,struct buffer_head * di_bh)218  int ocfs2_read_inline_data(struct inode *inode, struct page *page,
219  			   struct buffer_head *di_bh)
220  {
221  	void *kaddr;
222  	loff_t size;
223  	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
224  
225  	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
226  		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
227  			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
228  		return -EROFS;
229  	}
230  
231  	size = i_size_read(inode);
232  
233  	if (size > PAGE_SIZE ||
234  	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
235  		ocfs2_error(inode->i_sb,
236  			    "Inode %llu has with inline data has bad size: %Lu\n",
237  			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
238  			    (unsigned long long)size);
239  		return -EROFS;
240  	}
241  
242  	kaddr = kmap_atomic(page);
243  	if (size)
244  		memcpy(kaddr, di->id2.i_data.id_data, size);
245  	/* Clear the remaining part of the page */
246  	memset(kaddr + size, 0, PAGE_SIZE - size);
247  	flush_dcache_page(page);
248  	kunmap_atomic(kaddr);
249  
250  	SetPageUptodate(page);
251  
252  	return 0;
253  }
254  
ocfs2_readpage_inline(struct inode * inode,struct page * page)255  static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
256  {
257  	int ret;
258  	struct buffer_head *di_bh = NULL;
259  
260  	BUG_ON(!PageLocked(page));
261  	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
262  
263  	ret = ocfs2_read_inode_block(inode, &di_bh);
264  	if (ret) {
265  		mlog_errno(ret);
266  		goto out;
267  	}
268  
269  	ret = ocfs2_read_inline_data(inode, page, di_bh);
270  out:
271  	unlock_page(page);
272  
273  	brelse(di_bh);
274  	return ret;
275  }
276  
ocfs2_read_folio(struct file * file,struct folio * folio)277  static int ocfs2_read_folio(struct file *file, struct folio *folio)
278  {
279  	struct inode *inode = folio->mapping->host;
280  	struct ocfs2_inode_info *oi = OCFS2_I(inode);
281  	loff_t start = folio_pos(folio);
282  	int ret, unlock = 1;
283  
284  	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
285  
286  	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page);
287  	if (ret != 0) {
288  		if (ret == AOP_TRUNCATED_PAGE)
289  			unlock = 0;
290  		mlog_errno(ret);
291  		goto out;
292  	}
293  
294  	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
295  		/*
296  		 * Unlock the folio and cycle ip_alloc_sem so that we don't
297  		 * busyloop waiting for ip_alloc_sem to unlock
298  		 */
299  		ret = AOP_TRUNCATED_PAGE;
300  		folio_unlock(folio);
301  		unlock = 0;
302  		down_read(&oi->ip_alloc_sem);
303  		up_read(&oi->ip_alloc_sem);
304  		goto out_inode_unlock;
305  	}
306  
307  	/*
308  	 * i_size might have just been updated as we grabed the meta lock.  We
309  	 * might now be discovering a truncate that hit on another node.
310  	 * block_read_full_folio->get_block freaks out if it is asked to read
311  	 * beyond the end of a file, so we check here.  Callers
312  	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
313  	 * and notice that the folio they just read isn't needed.
314  	 *
315  	 * XXX sys_readahead() seems to get that wrong?
316  	 */
317  	if (start >= i_size_read(inode)) {
318  		folio_zero_segment(folio, 0, folio_size(folio));
319  		folio_mark_uptodate(folio);
320  		ret = 0;
321  		goto out_alloc;
322  	}
323  
324  	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
325  		ret = ocfs2_readpage_inline(inode, &folio->page);
326  	else
327  		ret = block_read_full_folio(folio, ocfs2_get_block);
328  	unlock = 0;
329  
330  out_alloc:
331  	up_read(&oi->ip_alloc_sem);
332  out_inode_unlock:
333  	ocfs2_inode_unlock(inode, 0);
334  out:
335  	if (unlock)
336  		folio_unlock(folio);
337  	return ret;
338  }
339  
340  /*
341   * This is used only for read-ahead. Failures or difficult to handle
342   * situations are safe to ignore.
343   *
344   * Right now, we don't bother with BH_Boundary - in-inode extent lists
345   * are quite large (243 extents on 4k blocks), so most inodes don't
346   * grow out to a tree. If need be, detecting boundary extents could
347   * trivially be added in a future version of ocfs2_get_block().
348   */
ocfs2_readahead(struct readahead_control * rac)349  static void ocfs2_readahead(struct readahead_control *rac)
350  {
351  	int ret;
352  	struct inode *inode = rac->mapping->host;
353  	struct ocfs2_inode_info *oi = OCFS2_I(inode);
354  
355  	/*
356  	 * Use the nonblocking flag for the dlm code to avoid page
357  	 * lock inversion, but don't bother with retrying.
358  	 */
359  	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
360  	if (ret)
361  		return;
362  
363  	if (down_read_trylock(&oi->ip_alloc_sem) == 0)
364  		goto out_unlock;
365  
366  	/*
367  	 * Don't bother with inline-data. There isn't anything
368  	 * to read-ahead in that case anyway...
369  	 */
370  	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
371  		goto out_up;
372  
373  	/*
374  	 * Check whether a remote node truncated this file - we just
375  	 * drop out in that case as it's not worth handling here.
376  	 */
377  	if (readahead_pos(rac) >= i_size_read(inode))
378  		goto out_up;
379  
380  	mpage_readahead(rac, ocfs2_get_block);
381  
382  out_up:
383  	up_read(&oi->ip_alloc_sem);
384  out_unlock:
385  	ocfs2_inode_unlock(inode, 0);
386  }
387  
388  /* Note: Because we don't support holes, our allocation has
389   * already happened (allocation writes zeros to the file data)
390   * so we don't have to worry about ordered writes in
391   * ocfs2_writepage.
392   *
393   * ->writepage is called during the process of invalidating the page cache
394   * during blocked lock processing.  It can't block on any cluster locks
395   * to during block mapping.  It's relying on the fact that the block
396   * mapping can't have disappeared under the dirty pages that it is
397   * being asked to write back.
398   */
ocfs2_writepage(struct page * page,struct writeback_control * wbc)399  static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
400  {
401  	trace_ocfs2_writepage(
402  		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
403  		page->index);
404  
405  	return block_write_full_page(page, ocfs2_get_block, wbc);
406  }
407  
408  /* Taken from ext3. We don't necessarily need the full blown
409   * functionality yet, but IMHO it's better to cut and paste the whole
410   * thing so we can avoid introducing our own bugs (and easily pick up
411   * their fixes when they happen) --Mark */
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))412  int walk_page_buffers(	handle_t *handle,
413  			struct buffer_head *head,
414  			unsigned from,
415  			unsigned to,
416  			int *partial,
417  			int (*fn)(	handle_t *handle,
418  					struct buffer_head *bh))
419  {
420  	struct buffer_head *bh;
421  	unsigned block_start, block_end;
422  	unsigned blocksize = head->b_size;
423  	int err, ret = 0;
424  	struct buffer_head *next;
425  
426  	for (	bh = head, block_start = 0;
427  		ret == 0 && (bh != head || !block_start);
428  	    	block_start = block_end, bh = next)
429  	{
430  		next = bh->b_this_page;
431  		block_end = block_start + blocksize;
432  		if (block_end <= from || block_start >= to) {
433  			if (partial && !buffer_uptodate(bh))
434  				*partial = 1;
435  			continue;
436  		}
437  		err = (*fn)(handle, bh);
438  		if (!ret)
439  			ret = err;
440  	}
441  	return ret;
442  }
443  
ocfs2_bmap(struct address_space * mapping,sector_t block)444  static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
445  {
446  	sector_t status;
447  	u64 p_blkno = 0;
448  	int err = 0;
449  	struct inode *inode = mapping->host;
450  
451  	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
452  			 (unsigned long long)block);
453  
454  	/*
455  	 * The swap code (ab-)uses ->bmap to get a block mapping and then
456  	 * bypasseÑ• the file system for actual I/O.  We really can't allow
457  	 * that on refcounted inodes, so we have to skip out here.  And yes,
458  	 * 0 is the magic code for a bmap error..
459  	 */
460  	if (ocfs2_is_refcount_inode(inode))
461  		return 0;
462  
463  	/* We don't need to lock journal system files, since they aren't
464  	 * accessed concurrently from multiple nodes.
465  	 */
466  	if (!INODE_JOURNAL(inode)) {
467  		err = ocfs2_inode_lock(inode, NULL, 0);
468  		if (err) {
469  			if (err != -ENOENT)
470  				mlog_errno(err);
471  			goto bail;
472  		}
473  		down_read(&OCFS2_I(inode)->ip_alloc_sem);
474  	}
475  
476  	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
477  		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
478  						  NULL);
479  
480  	if (!INODE_JOURNAL(inode)) {
481  		up_read(&OCFS2_I(inode)->ip_alloc_sem);
482  		ocfs2_inode_unlock(inode, 0);
483  	}
484  
485  	if (err) {
486  		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
487  		     (unsigned long long)block);
488  		mlog_errno(err);
489  		goto bail;
490  	}
491  
492  bail:
493  	status = err ? 0 : p_blkno;
494  
495  	return status;
496  }
497  
ocfs2_release_folio(struct folio * folio,gfp_t wait)498  static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
499  {
500  	if (!folio_buffers(folio))
501  		return false;
502  	return try_to_free_buffers(folio);
503  }
504  
ocfs2_figure_cluster_boundaries(struct ocfs2_super * osb,u32 cpos,unsigned int * start,unsigned int * end)505  static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
506  					    u32 cpos,
507  					    unsigned int *start,
508  					    unsigned int *end)
509  {
510  	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
511  
512  	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
513  		unsigned int cpp;
514  
515  		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
516  
517  		cluster_start = cpos % cpp;
518  		cluster_start = cluster_start << osb->s_clustersize_bits;
519  
520  		cluster_end = cluster_start + osb->s_clustersize;
521  	}
522  
523  	BUG_ON(cluster_start > PAGE_SIZE);
524  	BUG_ON(cluster_end > PAGE_SIZE);
525  
526  	if (start)
527  		*start = cluster_start;
528  	if (end)
529  		*end = cluster_end;
530  }
531  
532  /*
533   * 'from' and 'to' are the region in the page to avoid zeroing.
534   *
535   * If pagesize > clustersize, this function will avoid zeroing outside
536   * of the cluster boundary.
537   *
538   * from == to == 0 is code for "zero the entire cluster region"
539   */
ocfs2_clear_page_regions(struct page * page,struct ocfs2_super * osb,u32 cpos,unsigned from,unsigned to)540  static void ocfs2_clear_page_regions(struct page *page,
541  				     struct ocfs2_super *osb, u32 cpos,
542  				     unsigned from, unsigned to)
543  {
544  	void *kaddr;
545  	unsigned int cluster_start, cluster_end;
546  
547  	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
548  
549  	kaddr = kmap_atomic(page);
550  
551  	if (from || to) {
552  		if (from > cluster_start)
553  			memset(kaddr + cluster_start, 0, from - cluster_start);
554  		if (to < cluster_end)
555  			memset(kaddr + to, 0, cluster_end - to);
556  	} else {
557  		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
558  	}
559  
560  	kunmap_atomic(kaddr);
561  }
562  
563  /*
564   * Nonsparse file systems fully allocate before we get to the write
565   * code. This prevents ocfs2_write() from tagging the write as an
566   * allocating one, which means ocfs2_map_page_blocks() might try to
567   * read-in the blocks at the tail of our file. Avoid reading them by
568   * testing i_size against each block offset.
569   */
ocfs2_should_read_blk(struct inode * inode,struct page * page,unsigned int block_start)570  static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
571  				 unsigned int block_start)
572  {
573  	u64 offset = page_offset(page) + block_start;
574  
575  	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
576  		return 1;
577  
578  	if (i_size_read(inode) > offset)
579  		return 1;
580  
581  	return 0;
582  }
583  
584  /*
585   * Some of this taken from __block_write_begin(). We already have our
586   * mapping by now though, and the entire write will be allocating or
587   * it won't, so not much need to use BH_New.
588   *
589   * This will also skip zeroing, which is handled externally.
590   */
ocfs2_map_page_blocks(struct page * page,u64 * p_blkno,struct inode * inode,unsigned int from,unsigned int to,int new)591  int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
592  			  struct inode *inode, unsigned int from,
593  			  unsigned int to, int new)
594  {
595  	int ret = 0;
596  	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
597  	unsigned int block_end, block_start;
598  	unsigned int bsize = i_blocksize(inode);
599  
600  	if (!page_has_buffers(page))
601  		create_empty_buffers(page, bsize, 0);
602  
603  	head = page_buffers(page);
604  	for (bh = head, block_start = 0; bh != head || !block_start;
605  	     bh = bh->b_this_page, block_start += bsize) {
606  		block_end = block_start + bsize;
607  
608  		clear_buffer_new(bh);
609  
610  		/*
611  		 * Ignore blocks outside of our i/o range -
612  		 * they may belong to unallocated clusters.
613  		 */
614  		if (block_start >= to || block_end <= from) {
615  			if (PageUptodate(page))
616  				set_buffer_uptodate(bh);
617  			continue;
618  		}
619  
620  		/*
621  		 * For an allocating write with cluster size >= page
622  		 * size, we always write the entire page.
623  		 */
624  		if (new)
625  			set_buffer_new(bh);
626  
627  		if (!buffer_mapped(bh)) {
628  			map_bh(bh, inode->i_sb, *p_blkno);
629  			clean_bdev_bh_alias(bh);
630  		}
631  
632  		if (PageUptodate(page)) {
633  			set_buffer_uptodate(bh);
634  		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
635  			   !buffer_new(bh) &&
636  			   ocfs2_should_read_blk(inode, page, block_start) &&
637  			   (block_start < from || block_end > to)) {
638  			bh_read_nowait(bh, 0);
639  			*wait_bh++=bh;
640  		}
641  
642  		*p_blkno = *p_blkno + 1;
643  	}
644  
645  	/*
646  	 * If we issued read requests - let them complete.
647  	 */
648  	while(wait_bh > wait) {
649  		wait_on_buffer(*--wait_bh);
650  		if (!buffer_uptodate(*wait_bh))
651  			ret = -EIO;
652  	}
653  
654  	if (ret == 0 || !new)
655  		return ret;
656  
657  	/*
658  	 * If we get -EIO above, zero out any newly allocated blocks
659  	 * to avoid exposing stale data.
660  	 */
661  	bh = head;
662  	block_start = 0;
663  	do {
664  		block_end = block_start + bsize;
665  		if (block_end <= from)
666  			goto next_bh;
667  		if (block_start >= to)
668  			break;
669  
670  		zero_user(page, block_start, bh->b_size);
671  		set_buffer_uptodate(bh);
672  		mark_buffer_dirty(bh);
673  
674  next_bh:
675  		block_start = block_end;
676  		bh = bh->b_this_page;
677  	} while (bh != head);
678  
679  	return ret;
680  }
681  
682  #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
683  #define OCFS2_MAX_CTXT_PAGES	1
684  #else
685  #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
686  #endif
687  
688  #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
689  
690  struct ocfs2_unwritten_extent {
691  	struct list_head	ue_node;
692  	struct list_head	ue_ip_node;
693  	u32			ue_cpos;
694  	u32			ue_phys;
695  };
696  
697  /*
698   * Describe the state of a single cluster to be written to.
699   */
700  struct ocfs2_write_cluster_desc {
701  	u32		c_cpos;
702  	u32		c_phys;
703  	/*
704  	 * Give this a unique field because c_phys eventually gets
705  	 * filled.
706  	 */
707  	unsigned	c_new;
708  	unsigned	c_clear_unwritten;
709  	unsigned	c_needs_zero;
710  };
711  
712  struct ocfs2_write_ctxt {
713  	/* Logical cluster position / len of write */
714  	u32				w_cpos;
715  	u32				w_clen;
716  
717  	/* First cluster allocated in a nonsparse extend */
718  	u32				w_first_new_cpos;
719  
720  	/* Type of caller. Must be one of buffer, mmap, direct.  */
721  	ocfs2_write_type_t		w_type;
722  
723  	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
724  
725  	/*
726  	 * This is true if page_size > cluster_size.
727  	 *
728  	 * It triggers a set of special cases during write which might
729  	 * have to deal with allocating writes to partial pages.
730  	 */
731  	unsigned int			w_large_pages;
732  
733  	/*
734  	 * Pages involved in this write.
735  	 *
736  	 * w_target_page is the page being written to by the user.
737  	 *
738  	 * w_pages is an array of pages which always contains
739  	 * w_target_page, and in the case of an allocating write with
740  	 * page_size < cluster size, it will contain zero'd and mapped
741  	 * pages adjacent to w_target_page which need to be written
742  	 * out in so that future reads from that region will get
743  	 * zero's.
744  	 */
745  	unsigned int			w_num_pages;
746  	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
747  	struct page			*w_target_page;
748  
749  	/*
750  	 * w_target_locked is used for page_mkwrite path indicating no unlocking
751  	 * against w_target_page in ocfs2_write_end_nolock.
752  	 */
753  	unsigned int			w_target_locked:1;
754  
755  	/*
756  	 * ocfs2_write_end() uses this to know what the real range to
757  	 * write in the target should be.
758  	 */
759  	unsigned int			w_target_from;
760  	unsigned int			w_target_to;
761  
762  	/*
763  	 * We could use journal_current_handle() but this is cleaner,
764  	 * IMHO -Mark
765  	 */
766  	handle_t			*w_handle;
767  
768  	struct buffer_head		*w_di_bh;
769  
770  	struct ocfs2_cached_dealloc_ctxt w_dealloc;
771  
772  	struct list_head		w_unwritten_list;
773  	unsigned int			w_unwritten_count;
774  };
775  
ocfs2_unlock_and_free_pages(struct page ** pages,int num_pages)776  void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
777  {
778  	int i;
779  
780  	for(i = 0; i < num_pages; i++) {
781  		if (pages[i]) {
782  			unlock_page(pages[i]);
783  			mark_page_accessed(pages[i]);
784  			put_page(pages[i]);
785  		}
786  	}
787  }
788  
ocfs2_unlock_pages(struct ocfs2_write_ctxt * wc)789  static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
790  {
791  	int i;
792  
793  	/*
794  	 * w_target_locked is only set to true in the page_mkwrite() case.
795  	 * The intent is to allow us to lock the target page from write_begin()
796  	 * to write_end(). The caller must hold a ref on w_target_page.
797  	 */
798  	if (wc->w_target_locked) {
799  		BUG_ON(!wc->w_target_page);
800  		for (i = 0; i < wc->w_num_pages; i++) {
801  			if (wc->w_target_page == wc->w_pages[i]) {
802  				wc->w_pages[i] = NULL;
803  				break;
804  			}
805  		}
806  		mark_page_accessed(wc->w_target_page);
807  		put_page(wc->w_target_page);
808  	}
809  	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
810  }
811  
ocfs2_free_unwritten_list(struct inode * inode,struct list_head * head)812  static void ocfs2_free_unwritten_list(struct inode *inode,
813  				 struct list_head *head)
814  {
815  	struct ocfs2_inode_info *oi = OCFS2_I(inode);
816  	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
817  
818  	list_for_each_entry_safe(ue, tmp, head, ue_node) {
819  		list_del(&ue->ue_node);
820  		spin_lock(&oi->ip_lock);
821  		list_del(&ue->ue_ip_node);
822  		spin_unlock(&oi->ip_lock);
823  		kfree(ue);
824  	}
825  }
826  
ocfs2_free_write_ctxt(struct inode * inode,struct ocfs2_write_ctxt * wc)827  static void ocfs2_free_write_ctxt(struct inode *inode,
828  				  struct ocfs2_write_ctxt *wc)
829  {
830  	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
831  	ocfs2_unlock_pages(wc);
832  	brelse(wc->w_di_bh);
833  	kfree(wc);
834  }
835  
ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt ** wcp,struct ocfs2_super * osb,loff_t pos,unsigned len,ocfs2_write_type_t type,struct buffer_head * di_bh)836  static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
837  				  struct ocfs2_super *osb, loff_t pos,
838  				  unsigned len, ocfs2_write_type_t type,
839  				  struct buffer_head *di_bh)
840  {
841  	u32 cend;
842  	struct ocfs2_write_ctxt *wc;
843  
844  	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
845  	if (!wc)
846  		return -ENOMEM;
847  
848  	wc->w_cpos = pos >> osb->s_clustersize_bits;
849  	wc->w_first_new_cpos = UINT_MAX;
850  	cend = (pos + len - 1) >> osb->s_clustersize_bits;
851  	wc->w_clen = cend - wc->w_cpos + 1;
852  	get_bh(di_bh);
853  	wc->w_di_bh = di_bh;
854  	wc->w_type = type;
855  
856  	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
857  		wc->w_large_pages = 1;
858  	else
859  		wc->w_large_pages = 0;
860  
861  	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
862  	INIT_LIST_HEAD(&wc->w_unwritten_list);
863  
864  	*wcp = wc;
865  
866  	return 0;
867  }
868  
869  /*
870   * If a page has any new buffers, zero them out here, and mark them uptodate
871   * and dirty so they'll be written out (in order to prevent uninitialised
872   * block data from leaking). And clear the new bit.
873   */
ocfs2_zero_new_buffers(struct page * page,unsigned from,unsigned to)874  static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
875  {
876  	unsigned int block_start, block_end;
877  	struct buffer_head *head, *bh;
878  
879  	BUG_ON(!PageLocked(page));
880  	if (!page_has_buffers(page))
881  		return;
882  
883  	bh = head = page_buffers(page);
884  	block_start = 0;
885  	do {
886  		block_end = block_start + bh->b_size;
887  
888  		if (buffer_new(bh)) {
889  			if (block_end > from && block_start < to) {
890  				if (!PageUptodate(page)) {
891  					unsigned start, end;
892  
893  					start = max(from, block_start);
894  					end = min(to, block_end);
895  
896  					zero_user_segment(page, start, end);
897  					set_buffer_uptodate(bh);
898  				}
899  
900  				clear_buffer_new(bh);
901  				mark_buffer_dirty(bh);
902  			}
903  		}
904  
905  		block_start = block_end;
906  		bh = bh->b_this_page;
907  	} while (bh != head);
908  }
909  
910  /*
911   * Only called when we have a failure during allocating write to write
912   * zero's to the newly allocated region.
913   */
ocfs2_write_failure(struct inode * inode,struct ocfs2_write_ctxt * wc,loff_t user_pos,unsigned user_len)914  static void ocfs2_write_failure(struct inode *inode,
915  				struct ocfs2_write_ctxt *wc,
916  				loff_t user_pos, unsigned user_len)
917  {
918  	int i;
919  	unsigned from = user_pos & (PAGE_SIZE - 1),
920  		to = user_pos + user_len;
921  	struct page *tmppage;
922  
923  	if (wc->w_target_page)
924  		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
925  
926  	for(i = 0; i < wc->w_num_pages; i++) {
927  		tmppage = wc->w_pages[i];
928  
929  		if (tmppage && page_has_buffers(tmppage)) {
930  			if (ocfs2_should_order_data(inode))
931  				ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
932  							   user_pos, user_len);
933  
934  			block_commit_write(tmppage, from, to);
935  		}
936  	}
937  }
938  
ocfs2_prepare_page_for_write(struct inode * inode,u64 * p_blkno,struct ocfs2_write_ctxt * wc,struct page * page,u32 cpos,loff_t user_pos,unsigned user_len,int new)939  static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
940  					struct ocfs2_write_ctxt *wc,
941  					struct page *page, u32 cpos,
942  					loff_t user_pos, unsigned user_len,
943  					int new)
944  {
945  	int ret;
946  	unsigned int map_from = 0, map_to = 0;
947  	unsigned int cluster_start, cluster_end;
948  	unsigned int user_data_from = 0, user_data_to = 0;
949  
950  	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
951  					&cluster_start, &cluster_end);
952  
953  	/* treat the write as new if the a hole/lseek spanned across
954  	 * the page boundary.
955  	 */
956  	new = new | ((i_size_read(inode) <= page_offset(page)) &&
957  			(page_offset(page) <= user_pos));
958  
959  	if (page == wc->w_target_page) {
960  		map_from = user_pos & (PAGE_SIZE - 1);
961  		map_to = map_from + user_len;
962  
963  		if (new)
964  			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
965  						    cluster_start, cluster_end,
966  						    new);
967  		else
968  			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
969  						    map_from, map_to, new);
970  		if (ret) {
971  			mlog_errno(ret);
972  			goto out;
973  		}
974  
975  		user_data_from = map_from;
976  		user_data_to = map_to;
977  		if (new) {
978  			map_from = cluster_start;
979  			map_to = cluster_end;
980  		}
981  	} else {
982  		/*
983  		 * If we haven't allocated the new page yet, we
984  		 * shouldn't be writing it out without copying user
985  		 * data. This is likely a math error from the caller.
986  		 */
987  		BUG_ON(!new);
988  
989  		map_from = cluster_start;
990  		map_to = cluster_end;
991  
992  		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
993  					    cluster_start, cluster_end, new);
994  		if (ret) {
995  			mlog_errno(ret);
996  			goto out;
997  		}
998  	}
999  
1000  	/*
1001  	 * Parts of newly allocated pages need to be zero'd.
1002  	 *
1003  	 * Above, we have also rewritten 'to' and 'from' - as far as
1004  	 * the rest of the function is concerned, the entire cluster
1005  	 * range inside of a page needs to be written.
1006  	 *
1007  	 * We can skip this if the page is up to date - it's already
1008  	 * been zero'd from being read in as a hole.
1009  	 */
1010  	if (new && !PageUptodate(page))
1011  		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1012  					 cpos, user_data_from, user_data_to);
1013  
1014  	flush_dcache_page(page);
1015  
1016  out:
1017  	return ret;
1018  }
1019  
1020  /*
1021   * This function will only grab one clusters worth of pages.
1022   */
ocfs2_grab_pages_for_write(struct address_space * mapping,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len,int new,struct page * mmap_page)1023  static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1024  				      struct ocfs2_write_ctxt *wc,
1025  				      u32 cpos, loff_t user_pos,
1026  				      unsigned user_len, int new,
1027  				      struct page *mmap_page)
1028  {
1029  	int ret = 0, i;
1030  	unsigned long start, target_index, end_index, index;
1031  	struct inode *inode = mapping->host;
1032  	loff_t last_byte;
1033  
1034  	target_index = user_pos >> PAGE_SHIFT;
1035  
1036  	/*
1037  	 * Figure out how many pages we'll be manipulating here. For
1038  	 * non allocating write, we just change the one
1039  	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1040  	 * writing past i_size, we only need enough pages to cover the
1041  	 * last page of the write.
1042  	 */
1043  	if (new) {
1044  		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1045  		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1046  		/*
1047  		 * We need the index *past* the last page we could possibly
1048  		 * touch.  This is the page past the end of the write or
1049  		 * i_size, whichever is greater.
1050  		 */
1051  		last_byte = max(user_pos + user_len, i_size_read(inode));
1052  		BUG_ON(last_byte < 1);
1053  		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1054  		if ((start + wc->w_num_pages) > end_index)
1055  			wc->w_num_pages = end_index - start;
1056  	} else {
1057  		wc->w_num_pages = 1;
1058  		start = target_index;
1059  	}
1060  	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1061  
1062  	for(i = 0; i < wc->w_num_pages; i++) {
1063  		index = start + i;
1064  
1065  		if (index >= target_index && index <= end_index &&
1066  		    wc->w_type == OCFS2_WRITE_MMAP) {
1067  			/*
1068  			 * ocfs2_pagemkwrite() is a little different
1069  			 * and wants us to directly use the page
1070  			 * passed in.
1071  			 */
1072  			lock_page(mmap_page);
1073  
1074  			/* Exit and let the caller retry */
1075  			if (mmap_page->mapping != mapping) {
1076  				WARN_ON(mmap_page->mapping);
1077  				unlock_page(mmap_page);
1078  				ret = -EAGAIN;
1079  				goto out;
1080  			}
1081  
1082  			get_page(mmap_page);
1083  			wc->w_pages[i] = mmap_page;
1084  			wc->w_target_locked = true;
1085  		} else if (index >= target_index && index <= end_index &&
1086  			   wc->w_type == OCFS2_WRITE_DIRECT) {
1087  			/* Direct write has no mapping page. */
1088  			wc->w_pages[i] = NULL;
1089  			continue;
1090  		} else {
1091  			wc->w_pages[i] = find_or_create_page(mapping, index,
1092  							     GFP_NOFS);
1093  			if (!wc->w_pages[i]) {
1094  				ret = -ENOMEM;
1095  				mlog_errno(ret);
1096  				goto out;
1097  			}
1098  		}
1099  		wait_for_stable_page(wc->w_pages[i]);
1100  
1101  		if (index == target_index)
1102  			wc->w_target_page = wc->w_pages[i];
1103  	}
1104  out:
1105  	if (ret)
1106  		wc->w_target_locked = false;
1107  	return ret;
1108  }
1109  
1110  /*
1111   * Prepare a single cluster for write one cluster into the file.
1112   */
ocfs2_write_cluster(struct address_space * mapping,u32 * phys,unsigned int new,unsigned int clear_unwritten,unsigned int should_zero,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len)1113  static int ocfs2_write_cluster(struct address_space *mapping,
1114  			       u32 *phys, unsigned int new,
1115  			       unsigned int clear_unwritten,
1116  			       unsigned int should_zero,
1117  			       struct ocfs2_alloc_context *data_ac,
1118  			       struct ocfs2_alloc_context *meta_ac,
1119  			       struct ocfs2_write_ctxt *wc, u32 cpos,
1120  			       loff_t user_pos, unsigned user_len)
1121  {
1122  	int ret, i;
1123  	u64 p_blkno;
1124  	struct inode *inode = mapping->host;
1125  	struct ocfs2_extent_tree et;
1126  	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1127  
1128  	if (new) {
1129  		u32 tmp_pos;
1130  
1131  		/*
1132  		 * This is safe to call with the page locks - it won't take
1133  		 * any additional semaphores or cluster locks.
1134  		 */
1135  		tmp_pos = cpos;
1136  		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1137  					   &tmp_pos, 1, !clear_unwritten,
1138  					   wc->w_di_bh, wc->w_handle,
1139  					   data_ac, meta_ac, NULL);
1140  		/*
1141  		 * This shouldn't happen because we must have already
1142  		 * calculated the correct meta data allocation required. The
1143  		 * internal tree allocation code should know how to increase
1144  		 * transaction credits itself.
1145  		 *
1146  		 * If need be, we could handle -EAGAIN for a
1147  		 * RESTART_TRANS here.
1148  		 */
1149  		mlog_bug_on_msg(ret == -EAGAIN,
1150  				"Inode %llu: EAGAIN return during allocation.\n",
1151  				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1152  		if (ret < 0) {
1153  			mlog_errno(ret);
1154  			goto out;
1155  		}
1156  	} else if (clear_unwritten) {
1157  		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1158  					      wc->w_di_bh);
1159  		ret = ocfs2_mark_extent_written(inode, &et,
1160  						wc->w_handle, cpos, 1, *phys,
1161  						meta_ac, &wc->w_dealloc);
1162  		if (ret < 0) {
1163  			mlog_errno(ret);
1164  			goto out;
1165  		}
1166  	}
1167  
1168  	/*
1169  	 * The only reason this should fail is due to an inability to
1170  	 * find the extent added.
1171  	 */
1172  	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1173  	if (ret < 0) {
1174  		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1175  			    "at logical cluster %u",
1176  			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1177  		goto out;
1178  	}
1179  
1180  	BUG_ON(*phys == 0);
1181  
1182  	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1183  	if (!should_zero)
1184  		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1185  
1186  	for(i = 0; i < wc->w_num_pages; i++) {
1187  		int tmpret;
1188  
1189  		/* This is the direct io target page. */
1190  		if (wc->w_pages[i] == NULL) {
1191  			p_blkno++;
1192  			continue;
1193  		}
1194  
1195  		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1196  						      wc->w_pages[i], cpos,
1197  						      user_pos, user_len,
1198  						      should_zero);
1199  		if (tmpret) {
1200  			mlog_errno(tmpret);
1201  			if (ret == 0)
1202  				ret = tmpret;
1203  		}
1204  	}
1205  
1206  	/*
1207  	 * We only have cleanup to do in case of allocating write.
1208  	 */
1209  	if (ret && new)
1210  		ocfs2_write_failure(inode, wc, user_pos, user_len);
1211  
1212  out:
1213  
1214  	return ret;
1215  }
1216  
ocfs2_write_cluster_by_desc(struct address_space * mapping,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len)1217  static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1218  				       struct ocfs2_alloc_context *data_ac,
1219  				       struct ocfs2_alloc_context *meta_ac,
1220  				       struct ocfs2_write_ctxt *wc,
1221  				       loff_t pos, unsigned len)
1222  {
1223  	int ret, i;
1224  	loff_t cluster_off;
1225  	unsigned int local_len = len;
1226  	struct ocfs2_write_cluster_desc *desc;
1227  	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1228  
1229  	for (i = 0; i < wc->w_clen; i++) {
1230  		desc = &wc->w_desc[i];
1231  
1232  		/*
1233  		 * We have to make sure that the total write passed in
1234  		 * doesn't extend past a single cluster.
1235  		 */
1236  		local_len = len;
1237  		cluster_off = pos & (osb->s_clustersize - 1);
1238  		if ((cluster_off + local_len) > osb->s_clustersize)
1239  			local_len = osb->s_clustersize - cluster_off;
1240  
1241  		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1242  					  desc->c_new,
1243  					  desc->c_clear_unwritten,
1244  					  desc->c_needs_zero,
1245  					  data_ac, meta_ac,
1246  					  wc, desc->c_cpos, pos, local_len);
1247  		if (ret) {
1248  			mlog_errno(ret);
1249  			goto out;
1250  		}
1251  
1252  		len -= local_len;
1253  		pos += local_len;
1254  	}
1255  
1256  	ret = 0;
1257  out:
1258  	return ret;
1259  }
1260  
1261  /*
1262   * ocfs2_write_end() wants to know which parts of the target page it
1263   * should complete the write on. It's easiest to compute them ahead of
1264   * time when a more complete view of the write is available.
1265   */
ocfs2_set_target_boundaries(struct ocfs2_super * osb,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len,int alloc)1266  static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1267  					struct ocfs2_write_ctxt *wc,
1268  					loff_t pos, unsigned len, int alloc)
1269  {
1270  	struct ocfs2_write_cluster_desc *desc;
1271  
1272  	wc->w_target_from = pos & (PAGE_SIZE - 1);
1273  	wc->w_target_to = wc->w_target_from + len;
1274  
1275  	if (alloc == 0)
1276  		return;
1277  
1278  	/*
1279  	 * Allocating write - we may have different boundaries based
1280  	 * on page size and cluster size.
1281  	 *
1282  	 * NOTE: We can no longer compute one value from the other as
1283  	 * the actual write length and user provided length may be
1284  	 * different.
1285  	 */
1286  
1287  	if (wc->w_large_pages) {
1288  		/*
1289  		 * We only care about the 1st and last cluster within
1290  		 * our range and whether they should be zero'd or not. Either
1291  		 * value may be extended out to the start/end of a
1292  		 * newly allocated cluster.
1293  		 */
1294  		desc = &wc->w_desc[0];
1295  		if (desc->c_needs_zero)
1296  			ocfs2_figure_cluster_boundaries(osb,
1297  							desc->c_cpos,
1298  							&wc->w_target_from,
1299  							NULL);
1300  
1301  		desc = &wc->w_desc[wc->w_clen - 1];
1302  		if (desc->c_needs_zero)
1303  			ocfs2_figure_cluster_boundaries(osb,
1304  							desc->c_cpos,
1305  							NULL,
1306  							&wc->w_target_to);
1307  	} else {
1308  		wc->w_target_from = 0;
1309  		wc->w_target_to = PAGE_SIZE;
1310  	}
1311  }
1312  
1313  /*
1314   * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1315   * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1316   * by the direct io procedure.
1317   * If this is a new extent that allocated by direct io, we should mark it in
1318   * the ip_unwritten_list.
1319   */
ocfs2_unwritten_check(struct inode * inode,struct ocfs2_write_ctxt * wc,struct ocfs2_write_cluster_desc * desc)1320  static int ocfs2_unwritten_check(struct inode *inode,
1321  				 struct ocfs2_write_ctxt *wc,
1322  				 struct ocfs2_write_cluster_desc *desc)
1323  {
1324  	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1325  	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1326  	int ret = 0;
1327  
1328  	if (!desc->c_needs_zero)
1329  		return 0;
1330  
1331  retry:
1332  	spin_lock(&oi->ip_lock);
1333  	/* Needs not to zero no metter buffer or direct. The one who is zero
1334  	 * the cluster is doing zero. And he will clear unwritten after all
1335  	 * cluster io finished. */
1336  	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1337  		if (desc->c_cpos == ue->ue_cpos) {
1338  			BUG_ON(desc->c_new);
1339  			desc->c_needs_zero = 0;
1340  			desc->c_clear_unwritten = 0;
1341  			goto unlock;
1342  		}
1343  	}
1344  
1345  	if (wc->w_type != OCFS2_WRITE_DIRECT)
1346  		goto unlock;
1347  
1348  	if (new == NULL) {
1349  		spin_unlock(&oi->ip_lock);
1350  		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1351  			     GFP_NOFS);
1352  		if (new == NULL) {
1353  			ret = -ENOMEM;
1354  			goto out;
1355  		}
1356  		goto retry;
1357  	}
1358  	/* This direct write will doing zero. */
1359  	new->ue_cpos = desc->c_cpos;
1360  	new->ue_phys = desc->c_phys;
1361  	desc->c_clear_unwritten = 0;
1362  	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1363  	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1364  	wc->w_unwritten_count++;
1365  	new = NULL;
1366  unlock:
1367  	spin_unlock(&oi->ip_lock);
1368  out:
1369  	kfree(new);
1370  	return ret;
1371  }
1372  
1373  /*
1374   * Populate each single-cluster write descriptor in the write context
1375   * with information about the i/o to be done.
1376   *
1377   * Returns the number of clusters that will have to be allocated, as
1378   * well as a worst case estimate of the number of extent records that
1379   * would have to be created during a write to an unwritten region.
1380   */
ocfs2_populate_write_desc(struct inode * inode,struct ocfs2_write_ctxt * wc,unsigned int * clusters_to_alloc,unsigned int * extents_to_split)1381  static int ocfs2_populate_write_desc(struct inode *inode,
1382  				     struct ocfs2_write_ctxt *wc,
1383  				     unsigned int *clusters_to_alloc,
1384  				     unsigned int *extents_to_split)
1385  {
1386  	int ret;
1387  	struct ocfs2_write_cluster_desc *desc;
1388  	unsigned int num_clusters = 0;
1389  	unsigned int ext_flags = 0;
1390  	u32 phys = 0;
1391  	int i;
1392  
1393  	*clusters_to_alloc = 0;
1394  	*extents_to_split = 0;
1395  
1396  	for (i = 0; i < wc->w_clen; i++) {
1397  		desc = &wc->w_desc[i];
1398  		desc->c_cpos = wc->w_cpos + i;
1399  
1400  		if (num_clusters == 0) {
1401  			/*
1402  			 * Need to look up the next extent record.
1403  			 */
1404  			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1405  						 &num_clusters, &ext_flags);
1406  			if (ret) {
1407  				mlog_errno(ret);
1408  				goto out;
1409  			}
1410  
1411  			/* We should already CoW the refcountd extent. */
1412  			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1413  
1414  			/*
1415  			 * Assume worst case - that we're writing in
1416  			 * the middle of the extent.
1417  			 *
1418  			 * We can assume that the write proceeds from
1419  			 * left to right, in which case the extent
1420  			 * insert code is smart enough to coalesce the
1421  			 * next splits into the previous records created.
1422  			 */
1423  			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1424  				*extents_to_split = *extents_to_split + 2;
1425  		} else if (phys) {
1426  			/*
1427  			 * Only increment phys if it doesn't describe
1428  			 * a hole.
1429  			 */
1430  			phys++;
1431  		}
1432  
1433  		/*
1434  		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1435  		 * file that got extended.  w_first_new_cpos tells us
1436  		 * where the newly allocated clusters are so we can
1437  		 * zero them.
1438  		 */
1439  		if (desc->c_cpos >= wc->w_first_new_cpos) {
1440  			BUG_ON(phys == 0);
1441  			desc->c_needs_zero = 1;
1442  		}
1443  
1444  		desc->c_phys = phys;
1445  		if (phys == 0) {
1446  			desc->c_new = 1;
1447  			desc->c_needs_zero = 1;
1448  			desc->c_clear_unwritten = 1;
1449  			*clusters_to_alloc = *clusters_to_alloc + 1;
1450  		}
1451  
1452  		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1453  			desc->c_clear_unwritten = 1;
1454  			desc->c_needs_zero = 1;
1455  		}
1456  
1457  		ret = ocfs2_unwritten_check(inode, wc, desc);
1458  		if (ret) {
1459  			mlog_errno(ret);
1460  			goto out;
1461  		}
1462  
1463  		num_clusters--;
1464  	}
1465  
1466  	ret = 0;
1467  out:
1468  	return ret;
1469  }
1470  
ocfs2_write_begin_inline(struct address_space * mapping,struct inode * inode,struct ocfs2_write_ctxt * wc)1471  static int ocfs2_write_begin_inline(struct address_space *mapping,
1472  				    struct inode *inode,
1473  				    struct ocfs2_write_ctxt *wc)
1474  {
1475  	int ret;
1476  	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1477  	struct page *page;
1478  	handle_t *handle;
1479  	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1480  
1481  	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1482  	if (IS_ERR(handle)) {
1483  		ret = PTR_ERR(handle);
1484  		mlog_errno(ret);
1485  		goto out;
1486  	}
1487  
1488  	page = find_or_create_page(mapping, 0, GFP_NOFS);
1489  	if (!page) {
1490  		ocfs2_commit_trans(osb, handle);
1491  		ret = -ENOMEM;
1492  		mlog_errno(ret);
1493  		goto out;
1494  	}
1495  	/*
1496  	 * If we don't set w_num_pages then this page won't get unlocked
1497  	 * and freed on cleanup of the write context.
1498  	 */
1499  	wc->w_pages[0] = wc->w_target_page = page;
1500  	wc->w_num_pages = 1;
1501  
1502  	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1503  				      OCFS2_JOURNAL_ACCESS_WRITE);
1504  	if (ret) {
1505  		ocfs2_commit_trans(osb, handle);
1506  
1507  		mlog_errno(ret);
1508  		goto out;
1509  	}
1510  
1511  	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1512  		ocfs2_set_inode_data_inline(inode, di);
1513  
1514  	if (!PageUptodate(page)) {
1515  		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1516  		if (ret) {
1517  			ocfs2_commit_trans(osb, handle);
1518  
1519  			goto out;
1520  		}
1521  	}
1522  
1523  	wc->w_handle = handle;
1524  out:
1525  	return ret;
1526  }
1527  
ocfs2_size_fits_inline_data(struct buffer_head * di_bh,u64 new_size)1528  int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1529  {
1530  	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1531  
1532  	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1533  		return 1;
1534  	return 0;
1535  }
1536  
ocfs2_try_to_write_inline_data(struct address_space * mapping,struct inode * inode,loff_t pos,unsigned len,struct page * mmap_page,struct ocfs2_write_ctxt * wc)1537  static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1538  					  struct inode *inode, loff_t pos,
1539  					  unsigned len, struct page *mmap_page,
1540  					  struct ocfs2_write_ctxt *wc)
1541  {
1542  	int ret, written = 0;
1543  	loff_t end = pos + len;
1544  	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1545  	struct ocfs2_dinode *di = NULL;
1546  
1547  	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1548  					     len, (unsigned long long)pos,
1549  					     oi->ip_dyn_features);
1550  
1551  	/*
1552  	 * Handle inodes which already have inline data 1st.
1553  	 */
1554  	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1555  		if (mmap_page == NULL &&
1556  		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1557  			goto do_inline_write;
1558  
1559  		/*
1560  		 * The write won't fit - we have to give this inode an
1561  		 * inline extent list now.
1562  		 */
1563  		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1564  		if (ret)
1565  			mlog_errno(ret);
1566  		goto out;
1567  	}
1568  
1569  	/*
1570  	 * Check whether the inode can accept inline data.
1571  	 */
1572  	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1573  		return 0;
1574  
1575  	/*
1576  	 * Check whether the write can fit.
1577  	 */
1578  	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1579  	if (mmap_page ||
1580  	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1581  		return 0;
1582  
1583  do_inline_write:
1584  	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1585  	if (ret) {
1586  		mlog_errno(ret);
1587  		goto out;
1588  	}
1589  
1590  	/*
1591  	 * This signals to the caller that the data can be written
1592  	 * inline.
1593  	 */
1594  	written = 1;
1595  out:
1596  	return written ? written : ret;
1597  }
1598  
1599  /*
1600   * This function only does anything for file systems which can't
1601   * handle sparse files.
1602   *
1603   * What we want to do here is fill in any hole between the current end
1604   * of allocation and the end of our write. That way the rest of the
1605   * write path can treat it as an non-allocating write, which has no
1606   * special case code for sparse/nonsparse files.
1607   */
ocfs2_expand_nonsparse_inode(struct inode * inode,struct buffer_head * di_bh,loff_t pos,unsigned len,struct ocfs2_write_ctxt * wc)1608  static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1609  					struct buffer_head *di_bh,
1610  					loff_t pos, unsigned len,
1611  					struct ocfs2_write_ctxt *wc)
1612  {
1613  	int ret;
1614  	loff_t newsize = pos + len;
1615  
1616  	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1617  
1618  	if (newsize <= i_size_read(inode))
1619  		return 0;
1620  
1621  	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1622  	if (ret)
1623  		mlog_errno(ret);
1624  
1625  	/* There is no wc if this is call from direct. */
1626  	if (wc)
1627  		wc->w_first_new_cpos =
1628  			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1629  
1630  	return ret;
1631  }
1632  
ocfs2_zero_tail(struct inode * inode,struct buffer_head * di_bh,loff_t pos)1633  static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1634  			   loff_t pos)
1635  {
1636  	int ret = 0;
1637  
1638  	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1639  	if (pos > i_size_read(inode))
1640  		ret = ocfs2_zero_extend(inode, di_bh, pos);
1641  
1642  	return ret;
1643  }
1644  
ocfs2_write_begin_nolock(struct address_space * mapping,loff_t pos,unsigned len,ocfs2_write_type_t type,struct page ** pagep,void ** fsdata,struct buffer_head * di_bh,struct page * mmap_page)1645  int ocfs2_write_begin_nolock(struct address_space *mapping,
1646  			     loff_t pos, unsigned len, ocfs2_write_type_t type,
1647  			     struct page **pagep, void **fsdata,
1648  			     struct buffer_head *di_bh, struct page *mmap_page)
1649  {
1650  	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1651  	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1652  	struct ocfs2_write_ctxt *wc;
1653  	struct inode *inode = mapping->host;
1654  	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1655  	struct ocfs2_dinode *di;
1656  	struct ocfs2_alloc_context *data_ac = NULL;
1657  	struct ocfs2_alloc_context *meta_ac = NULL;
1658  	handle_t *handle;
1659  	struct ocfs2_extent_tree et;
1660  	int try_free = 1, ret1;
1661  
1662  try_again:
1663  	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1664  	if (ret) {
1665  		mlog_errno(ret);
1666  		return ret;
1667  	}
1668  
1669  	if (ocfs2_supports_inline_data(osb)) {
1670  		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1671  						     mmap_page, wc);
1672  		if (ret == 1) {
1673  			ret = 0;
1674  			goto success;
1675  		}
1676  		if (ret < 0) {
1677  			mlog_errno(ret);
1678  			goto out;
1679  		}
1680  	}
1681  
1682  	/* Direct io change i_size late, should not zero tail here. */
1683  	if (type != OCFS2_WRITE_DIRECT) {
1684  		if (ocfs2_sparse_alloc(osb))
1685  			ret = ocfs2_zero_tail(inode, di_bh, pos);
1686  		else
1687  			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1688  							   len, wc);
1689  		if (ret) {
1690  			mlog_errno(ret);
1691  			goto out;
1692  		}
1693  	}
1694  
1695  	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1696  	if (ret < 0) {
1697  		mlog_errno(ret);
1698  		goto out;
1699  	} else if (ret == 1) {
1700  		clusters_need = wc->w_clen;
1701  		ret = ocfs2_refcount_cow(inode, di_bh,
1702  					 wc->w_cpos, wc->w_clen, UINT_MAX);
1703  		if (ret) {
1704  			mlog_errno(ret);
1705  			goto out;
1706  		}
1707  	}
1708  
1709  	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1710  					&extents_to_split);
1711  	if (ret) {
1712  		mlog_errno(ret);
1713  		goto out;
1714  	}
1715  	clusters_need += clusters_to_alloc;
1716  
1717  	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1718  
1719  	trace_ocfs2_write_begin_nolock(
1720  			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1721  			(long long)i_size_read(inode),
1722  			le32_to_cpu(di->i_clusters),
1723  			pos, len, type, mmap_page,
1724  			clusters_to_alloc, extents_to_split);
1725  
1726  	/*
1727  	 * We set w_target_from, w_target_to here so that
1728  	 * ocfs2_write_end() knows which range in the target page to
1729  	 * write out. An allocation requires that we write the entire
1730  	 * cluster range.
1731  	 */
1732  	if (clusters_to_alloc || extents_to_split) {
1733  		/*
1734  		 * XXX: We are stretching the limits of
1735  		 * ocfs2_lock_allocators(). It greatly over-estimates
1736  		 * the work to be done.
1737  		 */
1738  		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1739  					      wc->w_di_bh);
1740  		ret = ocfs2_lock_allocators(inode, &et,
1741  					    clusters_to_alloc, extents_to_split,
1742  					    &data_ac, &meta_ac);
1743  		if (ret) {
1744  			mlog_errno(ret);
1745  			goto out;
1746  		}
1747  
1748  		if (data_ac)
1749  			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1750  
1751  		credits = ocfs2_calc_extend_credits(inode->i_sb,
1752  						    &di->id2.i_list);
1753  	} else if (type == OCFS2_WRITE_DIRECT)
1754  		/* direct write needs not to start trans if no extents alloc. */
1755  		goto success;
1756  
1757  	/*
1758  	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1759  	 * and non-sparse clusters we just extended.  For non-sparse writes,
1760  	 * we know zeros will only be needed in the first and/or last cluster.
1761  	 */
1762  	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1763  			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
1764  		cluster_of_pages = 1;
1765  	else
1766  		cluster_of_pages = 0;
1767  
1768  	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1769  
1770  	handle = ocfs2_start_trans(osb, credits);
1771  	if (IS_ERR(handle)) {
1772  		ret = PTR_ERR(handle);
1773  		mlog_errno(ret);
1774  		goto out;
1775  	}
1776  
1777  	wc->w_handle = handle;
1778  
1779  	if (clusters_to_alloc) {
1780  		ret = dquot_alloc_space_nodirty(inode,
1781  			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1782  		if (ret)
1783  			goto out_commit;
1784  	}
1785  
1786  	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1787  				      OCFS2_JOURNAL_ACCESS_WRITE);
1788  	if (ret) {
1789  		mlog_errno(ret);
1790  		goto out_quota;
1791  	}
1792  
1793  	/*
1794  	 * Fill our page array first. That way we've grabbed enough so
1795  	 * that we can zero and flush if we error after adding the
1796  	 * extent.
1797  	 */
1798  	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1799  					 cluster_of_pages, mmap_page);
1800  	if (ret) {
1801  		/*
1802  		 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1803  		 * the target page. In this case, we exit with no error and no target
1804  		 * page. This will trigger the caller, page_mkwrite(), to re-try
1805  		 * the operation.
1806  		 */
1807  		if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1808  			BUG_ON(wc->w_target_page);
1809  			ret = 0;
1810  			goto out_quota;
1811  		}
1812  
1813  		mlog_errno(ret);
1814  		goto out_quota;
1815  	}
1816  
1817  	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1818  					  len);
1819  	if (ret) {
1820  		mlog_errno(ret);
1821  		goto out_quota;
1822  	}
1823  
1824  	if (data_ac)
1825  		ocfs2_free_alloc_context(data_ac);
1826  	if (meta_ac)
1827  		ocfs2_free_alloc_context(meta_ac);
1828  
1829  success:
1830  	if (pagep)
1831  		*pagep = wc->w_target_page;
1832  	*fsdata = wc;
1833  	return 0;
1834  out_quota:
1835  	if (clusters_to_alloc)
1836  		dquot_free_space(inode,
1837  			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1838  out_commit:
1839  	ocfs2_commit_trans(osb, handle);
1840  
1841  out:
1842  	/*
1843  	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1844  	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1845  	 * to unlock the target page manually to prevent deadlocks when
1846  	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1847  	 * to VM code.
1848  	 */
1849  	if (wc->w_target_locked)
1850  		unlock_page(mmap_page);
1851  
1852  	ocfs2_free_write_ctxt(inode, wc);
1853  
1854  	if (data_ac) {
1855  		ocfs2_free_alloc_context(data_ac);
1856  		data_ac = NULL;
1857  	}
1858  	if (meta_ac) {
1859  		ocfs2_free_alloc_context(meta_ac);
1860  		meta_ac = NULL;
1861  	}
1862  
1863  	if (ret == -ENOSPC && try_free) {
1864  		/*
1865  		 * Try to free some truncate log so that we can have enough
1866  		 * clusters to allocate.
1867  		 */
1868  		try_free = 0;
1869  
1870  		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1871  		if (ret1 == 1)
1872  			goto try_again;
1873  
1874  		if (ret1 < 0)
1875  			mlog_errno(ret1);
1876  	}
1877  
1878  	return ret;
1879  }
1880  
ocfs2_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)1881  static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1882  			     loff_t pos, unsigned len,
1883  			     struct page **pagep, void **fsdata)
1884  {
1885  	int ret;
1886  	struct buffer_head *di_bh = NULL;
1887  	struct inode *inode = mapping->host;
1888  
1889  	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1890  	if (ret) {
1891  		mlog_errno(ret);
1892  		return ret;
1893  	}
1894  
1895  	/*
1896  	 * Take alloc sem here to prevent concurrent lookups. That way
1897  	 * the mapping, zeroing and tree manipulation within
1898  	 * ocfs2_write() will be safe against ->read_folio(). This
1899  	 * should also serve to lock out allocation from a shared
1900  	 * writeable region.
1901  	 */
1902  	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1903  
1904  	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1905  				       pagep, fsdata, di_bh, NULL);
1906  	if (ret) {
1907  		mlog_errno(ret);
1908  		goto out_fail;
1909  	}
1910  
1911  	brelse(di_bh);
1912  
1913  	return 0;
1914  
1915  out_fail:
1916  	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1917  
1918  	brelse(di_bh);
1919  	ocfs2_inode_unlock(inode, 1);
1920  
1921  	return ret;
1922  }
1923  
ocfs2_write_end_inline(struct inode * inode,loff_t pos,unsigned len,unsigned * copied,struct ocfs2_dinode * di,struct ocfs2_write_ctxt * wc)1924  static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1925  				   unsigned len, unsigned *copied,
1926  				   struct ocfs2_dinode *di,
1927  				   struct ocfs2_write_ctxt *wc)
1928  {
1929  	void *kaddr;
1930  
1931  	if (unlikely(*copied < len)) {
1932  		if (!PageUptodate(wc->w_target_page)) {
1933  			*copied = 0;
1934  			return;
1935  		}
1936  	}
1937  
1938  	kaddr = kmap_atomic(wc->w_target_page);
1939  	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1940  	kunmap_atomic(kaddr);
1941  
1942  	trace_ocfs2_write_end_inline(
1943  	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1944  	     (unsigned long long)pos, *copied,
1945  	     le16_to_cpu(di->id2.i_data.id_count),
1946  	     le16_to_cpu(di->i_dyn_features));
1947  }
1948  
ocfs2_write_end_nolock(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,void * fsdata)1949  int ocfs2_write_end_nolock(struct address_space *mapping,
1950  			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
1951  {
1952  	int i, ret;
1953  	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1954  	struct inode *inode = mapping->host;
1955  	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1956  	struct ocfs2_write_ctxt *wc = fsdata;
1957  	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1958  	handle_t *handle = wc->w_handle;
1959  	struct page *tmppage;
1960  
1961  	BUG_ON(!list_empty(&wc->w_unwritten_list));
1962  
1963  	if (handle) {
1964  		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1965  				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1966  		if (ret) {
1967  			copied = ret;
1968  			mlog_errno(ret);
1969  			goto out;
1970  		}
1971  	}
1972  
1973  	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1974  		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1975  		goto out_write_size;
1976  	}
1977  
1978  	if (unlikely(copied < len) && wc->w_target_page) {
1979  		loff_t new_isize;
1980  
1981  		if (!PageUptodate(wc->w_target_page))
1982  			copied = 0;
1983  
1984  		new_isize = max_t(loff_t, i_size_read(inode), pos + copied);
1985  		if (new_isize > page_offset(wc->w_target_page))
1986  			ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1987  					       start+len);
1988  		else {
1989  			/*
1990  			 * When page is fully beyond new isize (data copy
1991  			 * failed), do not bother zeroing the page. Invalidate
1992  			 * it instead so that writeback does not get confused
1993  			 * put page & buffer dirty bits into inconsistent
1994  			 * state.
1995  			 */
1996  			block_invalidate_folio(page_folio(wc->w_target_page),
1997  						0, PAGE_SIZE);
1998  		}
1999  	}
2000  	if (wc->w_target_page)
2001  		flush_dcache_page(wc->w_target_page);
2002  
2003  	for(i = 0; i < wc->w_num_pages; i++) {
2004  		tmppage = wc->w_pages[i];
2005  
2006  		/* This is the direct io target page. */
2007  		if (tmppage == NULL)
2008  			continue;
2009  
2010  		if (tmppage == wc->w_target_page) {
2011  			from = wc->w_target_from;
2012  			to = wc->w_target_to;
2013  
2014  			BUG_ON(from > PAGE_SIZE ||
2015  			       to > PAGE_SIZE ||
2016  			       to < from);
2017  		} else {
2018  			/*
2019  			 * Pages adjacent to the target (if any) imply
2020  			 * a hole-filling write in which case we want
2021  			 * to flush their entire range.
2022  			 */
2023  			from = 0;
2024  			to = PAGE_SIZE;
2025  		}
2026  
2027  		if (page_has_buffers(tmppage)) {
2028  			if (handle && ocfs2_should_order_data(inode)) {
2029  				loff_t start_byte =
2030  					((loff_t)tmppage->index << PAGE_SHIFT) +
2031  					from;
2032  				loff_t length = to - from;
2033  				ocfs2_jbd2_inode_add_write(handle, inode,
2034  							   start_byte, length);
2035  			}
2036  			block_commit_write(tmppage, from, to);
2037  		}
2038  	}
2039  
2040  out_write_size:
2041  	/* Direct io do not update i_size here. */
2042  	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2043  		pos += copied;
2044  		if (pos > i_size_read(inode)) {
2045  			i_size_write(inode, pos);
2046  			mark_inode_dirty(inode);
2047  		}
2048  		inode->i_blocks = ocfs2_inode_sector_count(inode);
2049  		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2050  		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2051  		di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode));
2052  		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
2053  		if (handle)
2054  			ocfs2_update_inode_fsync_trans(handle, inode, 1);
2055  	}
2056  	if (handle)
2057  		ocfs2_journal_dirty(handle, wc->w_di_bh);
2058  
2059  out:
2060  	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2061  	 * lock, or it will cause a deadlock since journal commit threads holds
2062  	 * this lock and will ask for the page lock when flushing the data.
2063  	 * put it here to preserve the unlock order.
2064  	 */
2065  	ocfs2_unlock_pages(wc);
2066  
2067  	if (handle)
2068  		ocfs2_commit_trans(osb, handle);
2069  
2070  	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2071  
2072  	brelse(wc->w_di_bh);
2073  	kfree(wc);
2074  
2075  	return copied;
2076  }
2077  
ocfs2_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2078  static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2079  			   loff_t pos, unsigned len, unsigned copied,
2080  			   struct page *page, void *fsdata)
2081  {
2082  	int ret;
2083  	struct inode *inode = mapping->host;
2084  
2085  	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2086  
2087  	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2088  	ocfs2_inode_unlock(inode, 1);
2089  
2090  	return ret;
2091  }
2092  
2093  struct ocfs2_dio_write_ctxt {
2094  	struct list_head	dw_zero_list;
2095  	unsigned		dw_zero_count;
2096  	int			dw_orphaned;
2097  	pid_t			dw_writer_pid;
2098  };
2099  
2100  static struct ocfs2_dio_write_ctxt *
ocfs2_dio_alloc_write_ctx(struct buffer_head * bh,int * alloc)2101  ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2102  {
2103  	struct ocfs2_dio_write_ctxt *dwc = NULL;
2104  
2105  	if (bh->b_private)
2106  		return bh->b_private;
2107  
2108  	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2109  	if (dwc == NULL)
2110  		return NULL;
2111  	INIT_LIST_HEAD(&dwc->dw_zero_list);
2112  	dwc->dw_zero_count = 0;
2113  	dwc->dw_orphaned = 0;
2114  	dwc->dw_writer_pid = task_pid_nr(current);
2115  	bh->b_private = dwc;
2116  	*alloc = 1;
2117  
2118  	return dwc;
2119  }
2120  
ocfs2_dio_free_write_ctx(struct inode * inode,struct ocfs2_dio_write_ctxt * dwc)2121  static void ocfs2_dio_free_write_ctx(struct inode *inode,
2122  				     struct ocfs2_dio_write_ctxt *dwc)
2123  {
2124  	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2125  	kfree(dwc);
2126  }
2127  
2128  /*
2129   * TODO: Make this into a generic get_blocks function.
2130   *
2131   * From do_direct_io in direct-io.c:
2132   *  "So what we do is to permit the ->get_blocks function to populate
2133   *   bh.b_size with the size of IO which is permitted at this offset and
2134   *   this i_blkbits."
2135   *
2136   * This function is called directly from get_more_blocks in direct-io.c.
2137   *
2138   * called like this: dio->get_blocks(dio->inode, fs_startblk,
2139   * 					fs_count, map_bh, dio->rw == WRITE);
2140   */
ocfs2_dio_wr_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)2141  static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2142  			       struct buffer_head *bh_result, int create)
2143  {
2144  	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2145  	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2146  	struct ocfs2_write_ctxt *wc;
2147  	struct ocfs2_write_cluster_desc *desc = NULL;
2148  	struct ocfs2_dio_write_ctxt *dwc = NULL;
2149  	struct buffer_head *di_bh = NULL;
2150  	u64 p_blkno;
2151  	unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2152  	loff_t pos = iblock << i_blkbits;
2153  	sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2154  	unsigned len, total_len = bh_result->b_size;
2155  	int ret = 0, first_get_block = 0;
2156  
2157  	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2158  	len = min(total_len, len);
2159  
2160  	/*
2161  	 * bh_result->b_size is count in get_more_blocks according to write
2162  	 * "pos" and "end", we need map twice to return different buffer state:
2163  	 * 1. area in file size, not set NEW;
2164  	 * 2. area out file size, set  NEW.
2165  	 *
2166  	 *		   iblock    endblk
2167  	 * |--------|---------|---------|---------
2168  	 * |<-------area in file------->|
2169  	 */
2170  
2171  	if ((iblock <= endblk) &&
2172  	    ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2173  		len = (endblk - iblock + 1) << i_blkbits;
2174  
2175  	mlog(0, "get block of %lu at %llu:%u req %u\n",
2176  			inode->i_ino, pos, len, total_len);
2177  
2178  	/*
2179  	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2180  	 * we may need to add it to orphan dir. So can not fall to fast path
2181  	 * while file size will be changed.
2182  	 */
2183  	if (pos + total_len <= i_size_read(inode)) {
2184  
2185  		/* This is the fast path for re-write. */
2186  		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2187  		if (buffer_mapped(bh_result) &&
2188  		    !buffer_new(bh_result) &&
2189  		    ret == 0)
2190  			goto out;
2191  
2192  		/* Clear state set by ocfs2_get_block. */
2193  		bh_result->b_state = 0;
2194  	}
2195  
2196  	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2197  	if (unlikely(dwc == NULL)) {
2198  		ret = -ENOMEM;
2199  		mlog_errno(ret);
2200  		goto out;
2201  	}
2202  
2203  	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2204  	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2205  	    !dwc->dw_orphaned) {
2206  		/*
2207  		 * when we are going to alloc extents beyond file size, add the
2208  		 * inode to orphan dir, so we can recall those spaces when
2209  		 * system crashed during write.
2210  		 */
2211  		ret = ocfs2_add_inode_to_orphan(osb, inode);
2212  		if (ret < 0) {
2213  			mlog_errno(ret);
2214  			goto out;
2215  		}
2216  		dwc->dw_orphaned = 1;
2217  	}
2218  
2219  	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2220  	if (ret) {
2221  		mlog_errno(ret);
2222  		goto out;
2223  	}
2224  
2225  	down_write(&oi->ip_alloc_sem);
2226  
2227  	if (first_get_block) {
2228  		if (ocfs2_sparse_alloc(osb))
2229  			ret = ocfs2_zero_tail(inode, di_bh, pos);
2230  		else
2231  			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2232  							   total_len, NULL);
2233  		if (ret < 0) {
2234  			mlog_errno(ret);
2235  			goto unlock;
2236  		}
2237  	}
2238  
2239  	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2240  				       OCFS2_WRITE_DIRECT, NULL,
2241  				       (void **)&wc, di_bh, NULL);
2242  	if (ret) {
2243  		mlog_errno(ret);
2244  		goto unlock;
2245  	}
2246  
2247  	desc = &wc->w_desc[0];
2248  
2249  	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2250  	BUG_ON(p_blkno == 0);
2251  	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2252  
2253  	map_bh(bh_result, inode->i_sb, p_blkno);
2254  	bh_result->b_size = len;
2255  	if (desc->c_needs_zero)
2256  		set_buffer_new(bh_result);
2257  
2258  	if (iblock > endblk)
2259  		set_buffer_new(bh_result);
2260  
2261  	/* May sleep in end_io. It should not happen in a irq context. So defer
2262  	 * it to dio work queue. */
2263  	set_buffer_defer_completion(bh_result);
2264  
2265  	if (!list_empty(&wc->w_unwritten_list)) {
2266  		struct ocfs2_unwritten_extent *ue = NULL;
2267  
2268  		ue = list_first_entry(&wc->w_unwritten_list,
2269  				      struct ocfs2_unwritten_extent,
2270  				      ue_node);
2271  		BUG_ON(ue->ue_cpos != desc->c_cpos);
2272  		/* The physical address may be 0, fill it. */
2273  		ue->ue_phys = desc->c_phys;
2274  
2275  		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2276  		dwc->dw_zero_count += wc->w_unwritten_count;
2277  	}
2278  
2279  	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2280  	BUG_ON(ret != len);
2281  	ret = 0;
2282  unlock:
2283  	up_write(&oi->ip_alloc_sem);
2284  	ocfs2_inode_unlock(inode, 1);
2285  	brelse(di_bh);
2286  out:
2287  	if (ret < 0)
2288  		ret = -EIO;
2289  	return ret;
2290  }
2291  
ocfs2_dio_end_io_write(struct inode * inode,struct ocfs2_dio_write_ctxt * dwc,loff_t offset,ssize_t bytes)2292  static int ocfs2_dio_end_io_write(struct inode *inode,
2293  				  struct ocfs2_dio_write_ctxt *dwc,
2294  				  loff_t offset,
2295  				  ssize_t bytes)
2296  {
2297  	struct ocfs2_cached_dealloc_ctxt dealloc;
2298  	struct ocfs2_extent_tree et;
2299  	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2300  	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2301  	struct ocfs2_unwritten_extent *ue = NULL;
2302  	struct buffer_head *di_bh = NULL;
2303  	struct ocfs2_dinode *di;
2304  	struct ocfs2_alloc_context *data_ac = NULL;
2305  	struct ocfs2_alloc_context *meta_ac = NULL;
2306  	handle_t *handle = NULL;
2307  	loff_t end = offset + bytes;
2308  	int ret = 0, credits = 0;
2309  
2310  	ocfs2_init_dealloc_ctxt(&dealloc);
2311  
2312  	/* We do clear unwritten, delete orphan, change i_size here. If neither
2313  	 * of these happen, we can skip all this. */
2314  	if (list_empty(&dwc->dw_zero_list) &&
2315  	    end <= i_size_read(inode) &&
2316  	    !dwc->dw_orphaned)
2317  		goto out;
2318  
2319  	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2320  	if (ret < 0) {
2321  		mlog_errno(ret);
2322  		goto out;
2323  	}
2324  
2325  	down_write(&oi->ip_alloc_sem);
2326  
2327  	/* Delete orphan before acquire i_rwsem. */
2328  	if (dwc->dw_orphaned) {
2329  		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2330  
2331  		end = end > i_size_read(inode) ? end : 0;
2332  
2333  		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2334  				!!end, end);
2335  		if (ret < 0)
2336  			mlog_errno(ret);
2337  	}
2338  
2339  	di = (struct ocfs2_dinode *)di_bh->b_data;
2340  
2341  	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2342  
2343  	/* Attach dealloc with extent tree in case that we may reuse extents
2344  	 * which are already unlinked from current extent tree due to extent
2345  	 * rotation and merging.
2346  	 */
2347  	et.et_dealloc = &dealloc;
2348  
2349  	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2350  				    &data_ac, &meta_ac);
2351  	if (ret) {
2352  		mlog_errno(ret);
2353  		goto unlock;
2354  	}
2355  
2356  	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2357  
2358  	handle = ocfs2_start_trans(osb, credits);
2359  	if (IS_ERR(handle)) {
2360  		ret = PTR_ERR(handle);
2361  		mlog_errno(ret);
2362  		goto unlock;
2363  	}
2364  	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2365  				      OCFS2_JOURNAL_ACCESS_WRITE);
2366  	if (ret) {
2367  		mlog_errno(ret);
2368  		goto commit;
2369  	}
2370  
2371  	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2372  		ret = ocfs2_assure_trans_credits(handle, credits);
2373  		if (ret < 0) {
2374  			mlog_errno(ret);
2375  			break;
2376  		}
2377  		ret = ocfs2_mark_extent_written(inode, &et, handle,
2378  						ue->ue_cpos, 1,
2379  						ue->ue_phys,
2380  						meta_ac, &dealloc);
2381  		if (ret < 0) {
2382  			mlog_errno(ret);
2383  			break;
2384  		}
2385  	}
2386  
2387  	if (end > i_size_read(inode)) {
2388  		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2389  		if (ret < 0)
2390  			mlog_errno(ret);
2391  	}
2392  commit:
2393  	ocfs2_commit_trans(osb, handle);
2394  unlock:
2395  	up_write(&oi->ip_alloc_sem);
2396  	ocfs2_inode_unlock(inode, 1);
2397  	brelse(di_bh);
2398  out:
2399  	if (data_ac)
2400  		ocfs2_free_alloc_context(data_ac);
2401  	if (meta_ac)
2402  		ocfs2_free_alloc_context(meta_ac);
2403  	ocfs2_run_deallocs(osb, &dealloc);
2404  	ocfs2_dio_free_write_ctx(inode, dwc);
2405  
2406  	return ret;
2407  }
2408  
2409  /*
2410   * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2411   * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2412   * to protect io on one node from truncation on another.
2413   */
ocfs2_dio_end_io(struct kiocb * iocb,loff_t offset,ssize_t bytes,void * private)2414  static int ocfs2_dio_end_io(struct kiocb *iocb,
2415  			    loff_t offset,
2416  			    ssize_t bytes,
2417  			    void *private)
2418  {
2419  	struct inode *inode = file_inode(iocb->ki_filp);
2420  	int level;
2421  	int ret = 0;
2422  
2423  	/* this io's submitter should not have unlocked this before we could */
2424  	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2425  
2426  	if (bytes <= 0)
2427  		mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2428  				 (long long)bytes);
2429  	if (private) {
2430  		if (bytes > 0)
2431  			ret = ocfs2_dio_end_io_write(inode, private, offset,
2432  						     bytes);
2433  		else
2434  			ocfs2_dio_free_write_ctx(inode, private);
2435  	}
2436  
2437  	ocfs2_iocb_clear_rw_locked(iocb);
2438  
2439  	level = ocfs2_iocb_rw_locked_level(iocb);
2440  	ocfs2_rw_unlock(inode, level);
2441  	return ret;
2442  }
2443  
ocfs2_direct_IO(struct kiocb * iocb,struct iov_iter * iter)2444  static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2445  {
2446  	struct file *file = iocb->ki_filp;
2447  	struct inode *inode = file->f_mapping->host;
2448  	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2449  	get_block_t *get_block;
2450  
2451  	/*
2452  	 * Fallback to buffered I/O if we see an inode without
2453  	 * extents.
2454  	 */
2455  	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2456  		return 0;
2457  
2458  	/* Fallback to buffered I/O if we do not support append dio. */
2459  	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2460  	    !ocfs2_supports_append_dio(osb))
2461  		return 0;
2462  
2463  	if (iov_iter_rw(iter) == READ)
2464  		get_block = ocfs2_lock_get_block;
2465  	else
2466  		get_block = ocfs2_dio_wr_get_block;
2467  
2468  	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2469  				    iter, get_block,
2470  				    ocfs2_dio_end_io, 0);
2471  }
2472  
2473  const struct address_space_operations ocfs2_aops = {
2474  	.dirty_folio		= block_dirty_folio,
2475  	.read_folio		= ocfs2_read_folio,
2476  	.readahead		= ocfs2_readahead,
2477  	.writepage		= ocfs2_writepage,
2478  	.write_begin		= ocfs2_write_begin,
2479  	.write_end		= ocfs2_write_end,
2480  	.bmap			= ocfs2_bmap,
2481  	.direct_IO		= ocfs2_direct_IO,
2482  	.invalidate_folio	= block_invalidate_folio,
2483  	.release_folio		= ocfs2_release_folio,
2484  	.migrate_folio		= buffer_migrate_folio,
2485  	.is_partially_uptodate	= block_is_partially_uptodate,
2486  	.error_remove_page	= generic_error_remove_page,
2487  };
2488