1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 * Copyright 2019-2022 Xilinx Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published
9 * by the Free Software Foundation, incorporated herein by reference.
10 */
11
12 #include "ef100_nic.h"
13 #include "efx_common.h"
14 #include "efx_channels.h"
15 #include "io.h"
16 #include "selftest.h"
17 #include "ef100_regs.h"
18 #include "mcdi.h"
19 #include "mcdi_pcol.h"
20 #include "mcdi_port_common.h"
21 #include "mcdi_functions.h"
22 #include "mcdi_filters.h"
23 #include "ef100_rx.h"
24 #include "ef100_tx.h"
25 #include "ef100_sriov.h"
26 #include "ef100_netdev.h"
27 #include "tc.h"
28 #include "mae.h"
29 #include "rx_common.h"
30
31 #define EF100_MAX_VIS 4096
32 #define EF100_NUM_MCDI_BUFFERS 1
33 #define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX)
34
35 #define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT)
36
37 /* MCDI
38 */
ef100_mcdi_buf(struct efx_nic * efx,u8 bufid,dma_addr_t * dma_addr)39 static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr)
40 {
41 struct ef100_nic_data *nic_data = efx->nic_data;
42
43 if (dma_addr)
44 *dma_addr = nic_data->mcdi_buf.dma_addr +
45 bufid * ALIGN(MCDI_BUF_LEN, 256);
46 return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256);
47 }
48
ef100_get_warm_boot_count(struct efx_nic * efx)49 static int ef100_get_warm_boot_count(struct efx_nic *efx)
50 {
51 efx_dword_t reg;
52
53 efx_readd(efx, ®, efx_reg(efx, ER_GZ_MC_SFT_STATUS));
54
55 if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) {
56 netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n");
57 efx->state = STATE_DISABLED;
58 return -ENETDOWN;
59 } else {
60 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
61 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
62 }
63 }
64
ef100_mcdi_request(struct efx_nic * efx,const efx_dword_t * hdr,size_t hdr_len,const efx_dword_t * sdu,size_t sdu_len)65 static void ef100_mcdi_request(struct efx_nic *efx,
66 const efx_dword_t *hdr, size_t hdr_len,
67 const efx_dword_t *sdu, size_t sdu_len)
68 {
69 dma_addr_t dma_addr;
70 u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr);
71
72 memcpy(pdu, hdr, hdr_len);
73 memcpy(pdu + hdr_len, sdu, sdu_len);
74 wmb();
75
76 /* The hardware provides 'low' and 'high' (doorbell) registers
77 * for passing the 64-bit address of an MCDI request to
78 * firmware. However the dwords are swapped by firmware. The
79 * least significant bits of the doorbell are then 0 for all
80 * MCDI requests due to alignment.
81 */
82 _efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32), efx_reg(efx, ER_GZ_MC_DB_LWRD));
83 _efx_writed(efx, cpu_to_le32((u32)dma_addr), efx_reg(efx, ER_GZ_MC_DB_HWRD));
84 }
85
ef100_mcdi_poll_response(struct efx_nic * efx)86 static bool ef100_mcdi_poll_response(struct efx_nic *efx)
87 {
88 const efx_dword_t hdr =
89 *(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL));
90
91 rmb();
92 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
93 }
94
ef100_mcdi_read_response(struct efx_nic * efx,efx_dword_t * outbuf,size_t offset,size_t outlen)95 static void ef100_mcdi_read_response(struct efx_nic *efx,
96 efx_dword_t *outbuf, size_t offset,
97 size_t outlen)
98 {
99 const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL);
100
101 memcpy(outbuf, pdu + offset, outlen);
102 }
103
ef100_mcdi_poll_reboot(struct efx_nic * efx)104 static int ef100_mcdi_poll_reboot(struct efx_nic *efx)
105 {
106 struct ef100_nic_data *nic_data = efx->nic_data;
107 int rc;
108
109 rc = ef100_get_warm_boot_count(efx);
110 if (rc < 0) {
111 /* The firmware is presumably in the process of
112 * rebooting. However, we are supposed to report each
113 * reboot just once, so we must only do that once we
114 * can read and store the updated warm boot count.
115 */
116 return 0;
117 }
118
119 if (rc == nic_data->warm_boot_count)
120 return 0;
121
122 nic_data->warm_boot_count = rc;
123
124 return -EIO;
125 }
126
ef100_mcdi_reboot_detected(struct efx_nic * efx)127 static void ef100_mcdi_reboot_detected(struct efx_nic *efx)
128 {
129 }
130
131 /* MCDI calls
132 */
ef100_get_mac_address(struct efx_nic * efx,u8 * mac_address,int client_handle,bool empty_ok)133 int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address,
134 int client_handle, bool empty_ok)
135 {
136 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLIENT_MAC_ADDRESSES_OUT_LEN(1));
137 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_CLIENT_MAC_ADDRESSES_IN_LEN);
138 size_t outlen;
139 int rc;
140
141 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
142 MCDI_SET_DWORD(inbuf, GET_CLIENT_MAC_ADDRESSES_IN_CLIENT_HANDLE,
143 client_handle);
144
145 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLIENT_MAC_ADDRESSES, inbuf,
146 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
147 if (rc)
148 return rc;
149
150 if (outlen >= MC_CMD_GET_CLIENT_MAC_ADDRESSES_OUT_LEN(1)) {
151 ether_addr_copy(mac_address,
152 MCDI_PTR(outbuf, GET_CLIENT_MAC_ADDRESSES_OUT_MAC_ADDRS));
153 } else if (empty_ok) {
154 pci_warn(efx->pci_dev,
155 "No MAC address provisioned for client ID %#x.\n",
156 client_handle);
157 eth_zero_addr(mac_address);
158 } else {
159 return -ENOENT;
160 }
161 return 0;
162 }
163
efx_ef100_init_datapath_caps(struct efx_nic * efx)164 int efx_ef100_init_datapath_caps(struct efx_nic *efx)
165 {
166 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
167 struct ef100_nic_data *nic_data = efx->nic_data;
168 u8 vi_window_mode;
169 size_t outlen;
170 int rc;
171
172 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
173
174 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
175 outbuf, sizeof(outbuf), &outlen);
176 if (rc)
177 return rc;
178 if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
179 netif_err(efx, drv, efx->net_dev,
180 "unable to read datapath firmware capabilities\n");
181 return -EIO;
182 }
183
184 nic_data->datapath_caps = MCDI_DWORD(outbuf,
185 GET_CAPABILITIES_OUT_FLAGS1);
186 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
187 GET_CAPABILITIES_V2_OUT_FLAGS2);
188 if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN)
189 nic_data->datapath_caps3 = 0;
190 else
191 nic_data->datapath_caps3 = MCDI_DWORD(outbuf,
192 GET_CAPABILITIES_V7_OUT_FLAGS3);
193
194 vi_window_mode = MCDI_BYTE(outbuf,
195 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
196 rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
197 if (rc)
198 return rc;
199
200 if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) {
201 struct net_device *net_dev = efx->net_dev;
202 netdev_features_t tso = NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_PARTIAL |
203 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
204 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM;
205
206 net_dev->features |= tso;
207 net_dev->hw_features |= tso;
208 net_dev->hw_enc_features |= tso;
209 /* EF100 HW can only offload outer checksums if they are UDP,
210 * so for GRE_CSUM we have to use GSO_PARTIAL.
211 */
212 net_dev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
213 }
214 efx->num_mac_stats = MCDI_WORD(outbuf,
215 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
216 netif_dbg(efx, probe, efx->net_dev,
217 "firmware reports num_mac_stats = %u\n",
218 efx->num_mac_stats);
219 return 0;
220 }
221
222 /* Event handling
223 */
ef100_ev_probe(struct efx_channel * channel)224 static int ef100_ev_probe(struct efx_channel *channel)
225 {
226 /* Allocate an extra descriptor for the QMDA status completion entry */
227 return efx_nic_alloc_buffer(channel->efx, &channel->eventq,
228 (channel->eventq_mask + 2) *
229 sizeof(efx_qword_t),
230 GFP_KERNEL);
231 }
232
ef100_ev_init(struct efx_channel * channel)233 static int ef100_ev_init(struct efx_channel *channel)
234 {
235 struct ef100_nic_data *nic_data = channel->efx->nic_data;
236
237 /* initial phase is 0 */
238 clear_bit(channel->channel, nic_data->evq_phases);
239
240 return efx_mcdi_ev_init(channel, false, false);
241 }
242
ef100_ev_read_ack(struct efx_channel * channel)243 static void ef100_ev_read_ack(struct efx_channel *channel)
244 {
245 efx_dword_t evq_prime;
246
247 EFX_POPULATE_DWORD_2(evq_prime,
248 ERF_GZ_EVQ_ID, channel->channel,
249 ERF_GZ_IDX, channel->eventq_read_ptr &
250 channel->eventq_mask);
251
252 efx_writed(channel->efx, &evq_prime,
253 efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME));
254 }
255
256 #define EFX_NAPI_MAX_TX 512
257
ef100_ev_process(struct efx_channel * channel,int quota)258 static int ef100_ev_process(struct efx_channel *channel, int quota)
259 {
260 struct efx_nic *efx = channel->efx;
261 struct ef100_nic_data *nic_data;
262 bool evq_phase, old_evq_phase;
263 unsigned int read_ptr;
264 efx_qword_t *p_event;
265 int spent_tx = 0;
266 int spent = 0;
267 bool ev_phase;
268 int ev_type;
269
270 if (unlikely(!channel->enabled))
271 return 0;
272
273 nic_data = efx->nic_data;
274 evq_phase = test_bit(channel->channel, nic_data->evq_phases);
275 old_evq_phase = evq_phase;
276 read_ptr = channel->eventq_read_ptr;
277 BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN);
278
279 while (spent < quota) {
280 p_event = efx_event(channel, read_ptr);
281
282 ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE);
283 if (ev_phase != evq_phase)
284 break;
285
286 netif_vdbg(efx, drv, efx->net_dev,
287 "processing event on %d " EFX_QWORD_FMT "\n",
288 channel->channel, EFX_QWORD_VAL(*p_event));
289
290 ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE);
291
292 switch (ev_type) {
293 case ESE_GZ_EF100_EV_RX_PKTS:
294 efx_ef100_ev_rx(channel, p_event);
295 ++spent;
296 break;
297 case ESE_GZ_EF100_EV_MCDI:
298 efx_mcdi_process_event(channel, p_event);
299 break;
300 case ESE_GZ_EF100_EV_TX_COMPLETION:
301 spent_tx += ef100_ev_tx(channel, p_event);
302 if (spent_tx >= EFX_NAPI_MAX_TX)
303 spent = quota;
304 break;
305 case ESE_GZ_EF100_EV_DRIVER:
306 netif_info(efx, drv, efx->net_dev,
307 "Driver initiated event " EFX_QWORD_FMT "\n",
308 EFX_QWORD_VAL(*p_event));
309 break;
310 default:
311 netif_info(efx, drv, efx->net_dev,
312 "Unhandled event " EFX_QWORD_FMT "\n",
313 EFX_QWORD_VAL(*p_event));
314 }
315
316 ++read_ptr;
317 if ((read_ptr & channel->eventq_mask) == 0)
318 evq_phase = !evq_phase;
319 }
320
321 channel->eventq_read_ptr = read_ptr;
322 if (evq_phase != old_evq_phase)
323 change_bit(channel->channel, nic_data->evq_phases);
324
325 return spent;
326 }
327
ef100_msi_interrupt(int irq,void * dev_id)328 static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id)
329 {
330 struct efx_msi_context *context = dev_id;
331 struct efx_nic *efx = context->efx;
332
333 netif_vdbg(efx, intr, efx->net_dev,
334 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
335
336 if (likely(READ_ONCE(efx->irq_soft_enabled))) {
337 /* Note test interrupts */
338 if (context->index == efx->irq_level)
339 efx->last_irq_cpu = raw_smp_processor_id();
340
341 /* Schedule processing of the channel */
342 efx_schedule_channel_irq(efx->channel[context->index]);
343 }
344
345 return IRQ_HANDLED;
346 }
347
ef100_phy_probe(struct efx_nic * efx)348 int ef100_phy_probe(struct efx_nic *efx)
349 {
350 struct efx_mcdi_phy_data *phy_data;
351 int rc;
352
353 /* Probe for the PHY */
354 efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL);
355 if (!efx->phy_data)
356 return -ENOMEM;
357
358 rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data);
359 if (rc)
360 return rc;
361
362 /* Populate driver and ethtool settings */
363 phy_data = efx->phy_data;
364 mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap,
365 efx->link_advertising);
366 efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap,
367 false);
368
369 /* Default to Autonegotiated flow control if the PHY supports it */
370 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
371 if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
372 efx->wanted_fc |= EFX_FC_AUTO;
373 efx_link_set_wanted_fc(efx, efx->wanted_fc);
374
375 /* Push settings to the PHY. Failure is not fatal, the user can try to
376 * fix it using ethtool.
377 */
378 rc = efx_mcdi_port_reconfigure(efx);
379 if (rc && rc != -EPERM)
380 netif_warn(efx, drv, efx->net_dev,
381 "could not initialise PHY settings\n");
382
383 return 0;
384 }
385
ef100_filter_table_probe(struct efx_nic * efx)386 int ef100_filter_table_probe(struct efx_nic *efx)
387 {
388 return efx_mcdi_filter_table_probe(efx, true);
389 }
390
ef100_filter_table_up(struct efx_nic * efx)391 static int ef100_filter_table_up(struct efx_nic *efx)
392 {
393 int rc;
394
395 down_write(&efx->filter_sem);
396 rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
397 if (rc)
398 goto fail_unspec;
399
400 rc = efx_mcdi_filter_add_vlan(efx, 0);
401 if (rc)
402 goto fail_vlan0;
403 /* Drop the lock: we've finished altering table existence, and
404 * filter insertion will need to take the lock for read.
405 */
406 up_write(&efx->filter_sem);
407 if (IS_ENABLED(CONFIG_SFC_SRIOV))
408 rc = efx_tc_insert_rep_filters(efx);
409
410 /* Rep filter failure is nonfatal */
411 if (rc)
412 netif_warn(efx, drv, efx->net_dev,
413 "Failed to insert representor filters, rc %d\n",
414 rc);
415 return 0;
416
417 fail_vlan0:
418 efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
419 fail_unspec:
420 efx_mcdi_filter_table_down(efx);
421 up_write(&efx->filter_sem);
422 return rc;
423 }
424
ef100_filter_table_down(struct efx_nic * efx)425 static void ef100_filter_table_down(struct efx_nic *efx)
426 {
427 if (IS_ENABLED(CONFIG_SFC_SRIOV))
428 efx_tc_remove_rep_filters(efx);
429 down_write(&efx->filter_sem);
430 efx_mcdi_filter_del_vlan(efx, 0);
431 efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
432 efx_mcdi_filter_table_down(efx);
433 up_write(&efx->filter_sem);
434 }
435
436 /* Other
437 */
ef100_reconfigure_mac(struct efx_nic * efx,bool mtu_only)438 static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only)
439 {
440 WARN_ON(!mutex_is_locked(&efx->mac_lock));
441
442 efx_mcdi_filter_sync_rx_mode(efx);
443
444 if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
445 return efx_mcdi_set_mtu(efx);
446 return efx_mcdi_set_mac(efx);
447 }
448
ef100_map_reset_reason(enum reset_type reason)449 static enum reset_type ef100_map_reset_reason(enum reset_type reason)
450 {
451 if (reason == RESET_TYPE_TX_WATCHDOG)
452 return reason;
453 return RESET_TYPE_DISABLE;
454 }
455
ef100_map_reset_flags(u32 * flags)456 static int ef100_map_reset_flags(u32 *flags)
457 {
458 /* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */
459 if ((*flags & EF100_RESET_PORT)) {
460 *flags &= ~EF100_RESET_PORT;
461 return RESET_TYPE_ALL;
462 }
463 if (*flags & ETH_RESET_MGMT) {
464 *flags &= ~ETH_RESET_MGMT;
465 return RESET_TYPE_DISABLE;
466 }
467
468 return -EINVAL;
469 }
470
ef100_reset(struct efx_nic * efx,enum reset_type reset_type)471 static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type)
472 {
473 int rc;
474
475 dev_close(efx->net_dev);
476
477 if (reset_type == RESET_TYPE_TX_WATCHDOG) {
478 netif_device_attach(efx->net_dev);
479 __clear_bit(reset_type, &efx->reset_pending);
480 rc = dev_open(efx->net_dev, NULL);
481 } else if (reset_type == RESET_TYPE_ALL) {
482 rc = efx_mcdi_reset(efx, reset_type);
483 if (rc)
484 return rc;
485
486 netif_device_attach(efx->net_dev);
487
488 rc = dev_open(efx->net_dev, NULL);
489 } else {
490 rc = 1; /* Leave the device closed */
491 }
492 return rc;
493 }
494
ef100_common_stat_mask(unsigned long * mask)495 static void ef100_common_stat_mask(unsigned long *mask)
496 {
497 __set_bit(EF100_STAT_port_rx_packets, mask);
498 __set_bit(EF100_STAT_port_tx_packets, mask);
499 __set_bit(EF100_STAT_port_rx_bytes, mask);
500 __set_bit(EF100_STAT_port_tx_bytes, mask);
501 __set_bit(EF100_STAT_port_rx_multicast, mask);
502 __set_bit(EF100_STAT_port_rx_bad, mask);
503 __set_bit(EF100_STAT_port_rx_align_error, mask);
504 __set_bit(EF100_STAT_port_rx_overflow, mask);
505 }
506
ef100_ethtool_stat_mask(unsigned long * mask)507 static void ef100_ethtool_stat_mask(unsigned long *mask)
508 {
509 __set_bit(EF100_STAT_port_tx_pause, mask);
510 __set_bit(EF100_STAT_port_tx_unicast, mask);
511 __set_bit(EF100_STAT_port_tx_multicast, mask);
512 __set_bit(EF100_STAT_port_tx_broadcast, mask);
513 __set_bit(EF100_STAT_port_tx_lt64, mask);
514 __set_bit(EF100_STAT_port_tx_64, mask);
515 __set_bit(EF100_STAT_port_tx_65_to_127, mask);
516 __set_bit(EF100_STAT_port_tx_128_to_255, mask);
517 __set_bit(EF100_STAT_port_tx_256_to_511, mask);
518 __set_bit(EF100_STAT_port_tx_512_to_1023, mask);
519 __set_bit(EF100_STAT_port_tx_1024_to_15xx, mask);
520 __set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask);
521 __set_bit(EF100_STAT_port_rx_good, mask);
522 __set_bit(EF100_STAT_port_rx_pause, mask);
523 __set_bit(EF100_STAT_port_rx_unicast, mask);
524 __set_bit(EF100_STAT_port_rx_broadcast, mask);
525 __set_bit(EF100_STAT_port_rx_lt64, mask);
526 __set_bit(EF100_STAT_port_rx_64, mask);
527 __set_bit(EF100_STAT_port_rx_65_to_127, mask);
528 __set_bit(EF100_STAT_port_rx_128_to_255, mask);
529 __set_bit(EF100_STAT_port_rx_256_to_511, mask);
530 __set_bit(EF100_STAT_port_rx_512_to_1023, mask);
531 __set_bit(EF100_STAT_port_rx_1024_to_15xx, mask);
532 __set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask);
533 __set_bit(EF100_STAT_port_rx_gtjumbo, mask);
534 __set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask);
535 __set_bit(EF100_STAT_port_rx_length_error, mask);
536 __set_bit(EF100_STAT_port_rx_nodesc_drops, mask);
537 __set_bit(GENERIC_STAT_rx_nodesc_trunc, mask);
538 __set_bit(GENERIC_STAT_rx_noskb_drops, mask);
539 }
540
541 #define EF100_DMA_STAT(ext_name, mcdi_name) \
542 [EF100_STAT_ ## ext_name] = \
543 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
544
545 static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = {
546 EF100_DMA_STAT(port_tx_bytes, TX_BYTES),
547 EF100_DMA_STAT(port_tx_packets, TX_PKTS),
548 EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
549 EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
550 EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
551 EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
552 EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
553 EF100_DMA_STAT(port_tx_64, TX_64_PKTS),
554 EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
555 EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
556 EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
557 EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
558 EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
559 EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
560 EF100_DMA_STAT(port_rx_bytes, RX_BYTES),
561 EF100_DMA_STAT(port_rx_packets, RX_PKTS),
562 EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
563 EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
564 EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
565 EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
566 EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
567 EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
568 EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
569 EF100_DMA_STAT(port_rx_64, RX_64_PKTS),
570 EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
571 EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
572 EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
573 EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
574 EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
575 EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
576 EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
577 EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
578 EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
579 EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
580 EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
581 EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
582 EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
583 EFX_GENERIC_SW_STAT(rx_noskb_drops),
584 };
585
ef100_describe_stats(struct efx_nic * efx,u8 * names)586 static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names)
587 {
588 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
589
590 ef100_ethtool_stat_mask(mask);
591 return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT,
592 mask, names);
593 }
594
ef100_update_stats_common(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)595 static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats,
596 struct rtnl_link_stats64 *core_stats)
597 {
598 struct ef100_nic_data *nic_data = efx->nic_data;
599 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
600 size_t stats_count = 0, index;
601 u64 *stats = nic_data->stats;
602
603 ef100_ethtool_stat_mask(mask);
604
605 if (full_stats) {
606 for_each_set_bit(index, mask, EF100_STAT_COUNT) {
607 if (ef100_stat_desc[index].name) {
608 *full_stats++ = stats[index];
609 ++stats_count;
610 }
611 }
612 }
613
614 if (!core_stats)
615 return stats_count;
616
617 core_stats->rx_packets = stats[EF100_STAT_port_rx_packets];
618 core_stats->tx_packets = stats[EF100_STAT_port_tx_packets];
619 core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes];
620 core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes];
621 core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] +
622 stats[GENERIC_STAT_rx_nodesc_trunc] +
623 stats[GENERIC_STAT_rx_noskb_drops];
624 core_stats->multicast = stats[EF100_STAT_port_rx_multicast];
625 core_stats->rx_length_errors =
626 stats[EF100_STAT_port_rx_gtjumbo] +
627 stats[EF100_STAT_port_rx_length_error];
628 core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad];
629 core_stats->rx_frame_errors =
630 stats[EF100_STAT_port_rx_align_error];
631 core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow];
632 core_stats->rx_errors = (core_stats->rx_length_errors +
633 core_stats->rx_crc_errors +
634 core_stats->rx_frame_errors);
635
636 return stats_count;
637 }
638
ef100_update_stats(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)639 static size_t ef100_update_stats(struct efx_nic *efx,
640 u64 *full_stats,
641 struct rtnl_link_stats64 *core_stats)
642 {
643 __le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC);
644 struct ef100_nic_data *nic_data = efx->nic_data;
645 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
646 u64 *stats = nic_data->stats;
647
648 ef100_common_stat_mask(mask);
649 ef100_ethtool_stat_mask(mask);
650
651 if (!mc_stats)
652 return 0;
653
654 efx_nic_copy_stats(efx, mc_stats);
655 efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask,
656 stats, mc_stats, false);
657
658 kfree(mc_stats);
659
660 return ef100_update_stats_common(efx, full_stats, core_stats);
661 }
662
efx_ef100_get_phys_port_id(struct efx_nic * efx,struct netdev_phys_item_id * ppid)663 static int efx_ef100_get_phys_port_id(struct efx_nic *efx,
664 struct netdev_phys_item_id *ppid)
665 {
666 struct ef100_nic_data *nic_data = efx->nic_data;
667
668 if (!is_valid_ether_addr(nic_data->port_id))
669 return -EOPNOTSUPP;
670
671 ppid->id_len = ETH_ALEN;
672 memcpy(ppid->id, nic_data->port_id, ppid->id_len);
673
674 return 0;
675 }
676
efx_ef100_irq_test_generate(struct efx_nic * efx)677 static int efx_ef100_irq_test_generate(struct efx_nic *efx)
678 {
679 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
680
681 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
682
683 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
684 return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT,
685 inbuf, sizeof(inbuf), NULL, 0, NULL);
686 }
687
688 #define EFX_EF100_TEST 1
689
efx_ef100_ev_test_generate(struct efx_channel * channel)690 static void efx_ef100_ev_test_generate(struct efx_channel *channel)
691 {
692 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
693 struct efx_nic *efx = channel->efx;
694 efx_qword_t event;
695 int rc;
696
697 EFX_POPULATE_QWORD_2(event,
698 ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER,
699 ESF_GZ_DRIVER_DATA, EFX_EF100_TEST);
700
701 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
702
703 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
704 * already swapped the data to little-endian order.
705 */
706 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
707 sizeof(efx_qword_t));
708
709 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
710 NULL, 0, NULL);
711 if (rc && (rc != -ENETDOWN))
712 goto fail;
713
714 return;
715
716 fail:
717 WARN_ON(true);
718 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
719 }
720
ef100_check_caps(const struct efx_nic * efx,u8 flag,u32 offset)721 static unsigned int ef100_check_caps(const struct efx_nic *efx,
722 u8 flag, u32 offset)
723 {
724 const struct ef100_nic_data *nic_data = efx->nic_data;
725
726 switch (offset) {
727 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST:
728 return nic_data->datapath_caps & BIT_ULL(flag);
729 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST:
730 return nic_data->datapath_caps2 & BIT_ULL(flag);
731 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST:
732 return nic_data->datapath_caps3 & BIT_ULL(flag);
733 default:
734 return 0;
735 }
736 }
737
efx_ef100_recycle_ring_size(const struct efx_nic * efx)738 static unsigned int efx_ef100_recycle_ring_size(const struct efx_nic *efx)
739 {
740 /* Maximum link speed for Riverhead is 100G */
741 return 10 * EFX_RECYCLE_RING_SIZE_10G;
742 }
743
efx_ef100_get_base_mport(struct efx_nic * efx)744 static int efx_ef100_get_base_mport(struct efx_nic *efx)
745 {
746 struct ef100_nic_data *nic_data = efx->nic_data;
747 u32 selector, id;
748 int rc;
749
750 /* Construct mport selector for "physical network port" */
751 efx_mae_mport_wire(efx, &selector);
752 /* Look up actual mport ID */
753 rc = efx_mae_fw_lookup_mport(efx, selector, &id);
754 if (rc)
755 return rc;
756 /* The ID should always fit in 16 bits, because that's how wide the
757 * corresponding fields in the RX prefix & TX override descriptor are
758 */
759 if (id >> 16)
760 netif_warn(efx, probe, efx->net_dev, "Bad base m-port id %#x\n",
761 id);
762 nic_data->base_mport = id;
763 nic_data->have_mport = true;
764
765 /* Construct mport selector for "calling PF" */
766 efx_mae_mport_uplink(efx, &selector);
767 /* Look up actual mport ID */
768 rc = efx_mae_fw_lookup_mport(efx, selector, &id);
769 if (rc)
770 return rc;
771 if (id >> 16)
772 netif_warn(efx, probe, efx->net_dev, "Bad own m-port id %#x\n",
773 id);
774 nic_data->own_mport = id;
775 nic_data->have_own_mport = true;
776
777 return 0;
778 }
779
compare_versions(const char * a,const char * b)780 static int compare_versions(const char *a, const char *b)
781 {
782 int a_major, a_minor, a_point, a_patch;
783 int b_major, b_minor, b_point, b_patch;
784 int a_matched, b_matched;
785
786 a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch);
787 b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch);
788
789 if (a_matched == 4 && b_matched != 4)
790 return +1;
791
792 if (a_matched != 4 && b_matched == 4)
793 return -1;
794
795 if (a_matched != 4 && b_matched != 4)
796 return 0;
797
798 if (a_major != b_major)
799 return a_major - b_major;
800
801 if (a_minor != b_minor)
802 return a_minor - b_minor;
803
804 if (a_point != b_point)
805 return a_point - b_point;
806
807 return a_patch - b_patch;
808 }
809
810 enum ef100_tlv_state_machine {
811 EF100_TLV_TYPE,
812 EF100_TLV_TYPE_CONT,
813 EF100_TLV_LENGTH,
814 EF100_TLV_VALUE
815 };
816
817 struct ef100_tlv_state {
818 enum ef100_tlv_state_machine state;
819 u64 value;
820 u32 value_offset;
821 u16 type;
822 u8 len;
823 };
824
ef100_tlv_feed(struct ef100_tlv_state * state,u8 byte)825 static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte)
826 {
827 switch (state->state) {
828 case EF100_TLV_TYPE:
829 state->type = byte & 0x7f;
830 state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT
831 : EF100_TLV_LENGTH;
832 /* Clear ready to read in a new entry */
833 state->value = 0;
834 state->value_offset = 0;
835 return 0;
836 case EF100_TLV_TYPE_CONT:
837 state->type |= byte << 7;
838 state->state = EF100_TLV_LENGTH;
839 return 0;
840 case EF100_TLV_LENGTH:
841 state->len = byte;
842 /* We only handle TLVs that fit in a u64 */
843 if (state->len > sizeof(state->value))
844 return -EOPNOTSUPP;
845 /* len may be zero, implying a value of zero */
846 state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE;
847 return 0;
848 case EF100_TLV_VALUE:
849 state->value |= ((u64)byte) << (state->value_offset * 8);
850 state->value_offset++;
851 if (state->value_offset >= state->len)
852 state->state = EF100_TLV_TYPE;
853 return 0;
854 default: /* state machine error, can't happen */
855 WARN_ON_ONCE(1);
856 return -EIO;
857 }
858 }
859
ef100_process_design_param(struct efx_nic * efx,const struct ef100_tlv_state * reader)860 static int ef100_process_design_param(struct efx_nic *efx,
861 const struct ef100_tlv_state *reader)
862 {
863 struct ef100_nic_data *nic_data = efx->nic_data;
864
865 switch (reader->type) {
866 case ESE_EF100_DP_GZ_PAD: /* padding, skip it */
867 return 0;
868 case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS:
869 /* Driver doesn't support timestamping yet, so we don't care */
870 return 0;
871 case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS:
872 /* Driver doesn't support unsolicited-event credits yet, so
873 * we don't care
874 */
875 return 0;
876 case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE:
877 /* Driver doesn't manage the NMMU (so we don't care) */
878 return 0;
879 case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS:
880 /* Driver uses CHECKSUM_COMPLETE, so we don't care about
881 * protocol checksum validation
882 */
883 return 0;
884 case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN:
885 nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff);
886 return 0;
887 case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS:
888 /* We always put HDR_NUM_SEGS=1 in our TSO descriptors */
889 if (!reader->value) {
890 netif_err(efx, probe, efx->net_dev,
891 "TSO_MAX_HDR_NUM_SEGS < 1\n");
892 return -EOPNOTSUPP;
893 }
894 return 0;
895 case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY:
896 case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY:
897 /* Our TXQ and RXQ sizes are always power-of-two and thus divisible by
898 * EFX_MIN_DMAQ_SIZE, so we just need to check that
899 * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY.
900 * This is very unlikely to fail.
901 */
902 if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE ||
903 EFX_MIN_DMAQ_SIZE % (u32)reader->value) {
904 netif_err(efx, probe, efx->net_dev,
905 "%s size granularity is %llu, can't guarantee safety\n",
906 reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ",
907 reader->value);
908 return -EOPNOTSUPP;
909 }
910 return 0;
911 case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN:
912 nic_data->tso_max_payload_len = min_t(u64, reader->value,
913 GSO_LEGACY_MAX_SIZE);
914 netif_set_tso_max_size(efx->net_dev,
915 nic_data->tso_max_payload_len);
916 return 0;
917 case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS:
918 nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff);
919 netif_set_tso_max_segs(efx->net_dev,
920 nic_data->tso_max_payload_num_segs);
921 return 0;
922 case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES:
923 nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff);
924 return 0;
925 case ESE_EF100_DP_GZ_COMPAT:
926 if (reader->value) {
927 netif_err(efx, probe, efx->net_dev,
928 "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n",
929 reader->value);
930 return -EOPNOTSUPP;
931 }
932 return 0;
933 case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN:
934 /* Driver doesn't use mem2mem transfers */
935 return 0;
936 case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS:
937 /* Driver doesn't currently use EVQ_TIMER */
938 return 0;
939 case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES:
940 /* Driver doesn't manage the NMMU (so we don't care) */
941 return 0;
942 case ESE_EF100_DP_GZ_VI_STRIDES:
943 /* We never try to set the VI stride, and we don't rely on
944 * being able to find VIs past VI 0 until after we've learned
945 * the current stride from MC_CMD_GET_CAPABILITIES.
946 * So the value of this shouldn't matter.
947 */
948 if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT)
949 netif_dbg(efx, probe, efx->net_dev,
950 "NIC has other than default VI_STRIDES (mask "
951 "%#llx), early probing might use wrong one\n",
952 reader->value);
953 return 0;
954 case ESE_EF100_DP_GZ_RX_MAX_RUNT:
955 /* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't
956 * care whether it indicates runt or overlength for any given
957 * packet, so we don't care about this parameter.
958 */
959 return 0;
960 default:
961 /* Host interface says "Drivers should ignore design parameters
962 * that they do not recognise."
963 */
964 netif_dbg(efx, probe, efx->net_dev,
965 "Ignoring unrecognised design parameter %u\n",
966 reader->type);
967 return 0;
968 }
969 }
970
ef100_check_design_params(struct efx_nic * efx)971 static int ef100_check_design_params(struct efx_nic *efx)
972 {
973 struct ef100_tlv_state reader = {};
974 u32 total_len, offset = 0;
975 efx_dword_t reg;
976 int rc = 0, i;
977 u32 data;
978
979 efx_readd(efx, ®, ER_GZ_PARAMS_TLV_LEN);
980 total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
981 pci_dbg(efx->pci_dev, "%u bytes of design parameters\n", total_len);
982 while (offset < total_len) {
983 efx_readd(efx, ®, ER_GZ_PARAMS_TLV + offset);
984 data = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
985 for (i = 0; i < sizeof(data); i++) {
986 rc = ef100_tlv_feed(&reader, data);
987 /* Got a complete value? */
988 if (!rc && reader.state == EF100_TLV_TYPE)
989 rc = ef100_process_design_param(efx, &reader);
990 if (rc)
991 goto out;
992 data >>= 8;
993 offset++;
994 }
995 }
996 /* Check we didn't end halfway through a TLV entry, which could either
997 * mean that the TLV stream is truncated or just that it's corrupted
998 * and our state machine is out of sync.
999 */
1000 if (reader.state != EF100_TLV_TYPE) {
1001 if (reader.state == EF100_TLV_TYPE_CONT)
1002 netif_err(efx, probe, efx->net_dev,
1003 "truncated design parameter (incomplete type %u)\n",
1004 reader.type);
1005 else
1006 netif_err(efx, probe, efx->net_dev,
1007 "truncated design parameter %u\n",
1008 reader.type);
1009 rc = -EIO;
1010 }
1011 out:
1012 return rc;
1013 }
1014
1015 /* NIC probe and remove
1016 */
ef100_probe_main(struct efx_nic * efx)1017 static int ef100_probe_main(struct efx_nic *efx)
1018 {
1019 unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]);
1020 struct ef100_nic_data *nic_data;
1021 char fw_version[32];
1022 u32 priv_mask = 0;
1023 int i, rc;
1024
1025 if (WARN_ON(bar_size == 0))
1026 return -EIO;
1027
1028 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1029 if (!nic_data)
1030 return -ENOMEM;
1031 efx->nic_data = nic_data;
1032 nic_data->efx = efx;
1033 efx->max_vis = EF100_MAX_VIS;
1034
1035 /* Populate design-parameter defaults */
1036 nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT;
1037 nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT;
1038 nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT;
1039 nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT;
1040
1041 /* Read design parameters */
1042 rc = ef100_check_design_params(efx);
1043 if (rc) {
1044 pci_err(efx->pci_dev, "Unsupported design parameters\n");
1045 goto fail;
1046 }
1047
1048 /* we assume later that we can copy from this buffer in dwords */
1049 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
1050
1051 /* MCDI buffers must be 256 byte aligned. */
1052 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN,
1053 GFP_KERNEL);
1054 if (rc)
1055 goto fail;
1056
1057 /* Get the MC's warm boot count. In case it's rebooting right
1058 * now, be prepared to retry.
1059 */
1060 i = 0;
1061 for (;;) {
1062 rc = ef100_get_warm_boot_count(efx);
1063 if (rc >= 0)
1064 break;
1065 if (++i == 5)
1066 goto fail;
1067 ssleep(1);
1068 }
1069 nic_data->warm_boot_count = rc;
1070
1071 /* In case we're recovering from a crash (kexec), we want to
1072 * cancel any outstanding request by the previous user of this
1073 * function. We send a special message using the least
1074 * significant bits of the 'high' (doorbell) register.
1075 */
1076 _efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD));
1077
1078 /* Post-IO section. */
1079
1080 rc = efx_mcdi_init(efx);
1081 if (rc)
1082 goto fail;
1083 /* Reset (most) configuration for this function */
1084 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
1085 if (rc)
1086 goto fail;
1087 /* Enable event logging */
1088 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
1089 if (rc)
1090 goto fail;
1091
1092 rc = efx_get_pf_index(efx, &nic_data->pf_index);
1093 if (rc)
1094 goto fail;
1095
1096 rc = efx_mcdi_port_get_number(efx);
1097 if (rc < 0)
1098 goto fail;
1099 efx->port_num = rc;
1100
1101 efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version));
1102 pci_dbg(efx->pci_dev, "Firmware version %s\n", fw_version);
1103
1104 rc = efx_mcdi_get_privilege_mask(efx, &priv_mask);
1105 if (rc) /* non-fatal, and priv_mask will still be 0 */
1106 pci_info(efx->pci_dev,
1107 "Failed to get privilege mask from FW, rc %d\n", rc);
1108 nic_data->grp_mae = !!(priv_mask & MC_CMD_PRIVILEGE_MASK_IN_GRP_MAE);
1109
1110 if (compare_versions(fw_version, "1.1.0.1000") < 0) {
1111 pci_info(efx->pci_dev, "Firmware uses old event descriptors\n");
1112 rc = -EINVAL;
1113 goto fail;
1114 }
1115
1116 if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) {
1117 pci_info(efx->pci_dev, "Firmware uses unsolicited-event credits\n");
1118 rc = -EINVAL;
1119 goto fail;
1120 }
1121
1122 return 0;
1123 fail:
1124 return rc;
1125 }
1126
1127 /* MCDI commands are related to the same device issuing them. This function
1128 * allows to do an MCDI command on behalf of another device, mainly PFs setting
1129 * things for VFs.
1130 */
efx_ef100_lookup_client_id(struct efx_nic * efx,efx_qword_t pciefn,u32 * id)1131 int efx_ef100_lookup_client_id(struct efx_nic *efx, efx_qword_t pciefn, u32 *id)
1132 {
1133 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLIENT_HANDLE_OUT_LEN);
1134 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_CLIENT_HANDLE_IN_LEN);
1135 u64 pciefn_flat = le64_to_cpu(pciefn.u64[0]);
1136 size_t outlen;
1137 int rc;
1138
1139 MCDI_SET_DWORD(inbuf, GET_CLIENT_HANDLE_IN_TYPE,
1140 MC_CMD_GET_CLIENT_HANDLE_IN_TYPE_FUNC);
1141 MCDI_SET_QWORD(inbuf, GET_CLIENT_HANDLE_IN_FUNC,
1142 pciefn_flat);
1143
1144 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLIENT_HANDLE, inbuf, sizeof(inbuf),
1145 outbuf, sizeof(outbuf), &outlen);
1146 if (rc)
1147 return rc;
1148 if (outlen < sizeof(outbuf))
1149 return -EIO;
1150 *id = MCDI_DWORD(outbuf, GET_CLIENT_HANDLE_OUT_HANDLE);
1151 return 0;
1152 }
1153
ef100_probe_netdev_pf(struct efx_nic * efx)1154 int ef100_probe_netdev_pf(struct efx_nic *efx)
1155 {
1156 struct ef100_nic_data *nic_data = efx->nic_data;
1157 struct net_device *net_dev = efx->net_dev;
1158 int rc;
1159
1160 if (!IS_ENABLED(CONFIG_SFC_SRIOV) || !nic_data->grp_mae)
1161 return 0;
1162
1163 rc = efx_init_struct_tc(efx);
1164 if (rc)
1165 return rc;
1166
1167 rc = efx_ef100_get_base_mport(efx);
1168 if (rc) {
1169 netif_warn(efx, probe, net_dev,
1170 "Failed to probe base mport rc %d; representors will not function\n",
1171 rc);
1172 }
1173
1174 rc = efx_init_mae(efx);
1175 if (rc)
1176 netif_warn(efx, probe, net_dev,
1177 "Failed to init MAE rc %d; representors will not function\n",
1178 rc);
1179 else
1180 efx_ef100_init_reps(efx);
1181
1182 rc = efx_init_tc(efx);
1183 if (rc) {
1184 /* Either we don't have an MAE at all (i.e. legacy v-switching),
1185 * or we do but we failed to probe it. In the latter case, we
1186 * may not have set up default rules, in which case we won't be
1187 * able to pass any traffic. However, we don't fail the probe,
1188 * because the user might need to use the netdevice to apply
1189 * configuration changes to fix whatever's wrong with the MAE.
1190 */
1191 netif_warn(efx, probe, net_dev, "Failed to probe MAE rc %d\n",
1192 rc);
1193 } else {
1194 net_dev->features |= NETIF_F_HW_TC;
1195 efx->fixed_features |= NETIF_F_HW_TC;
1196 }
1197 return 0;
1198 }
1199
ef100_probe_vf(struct efx_nic * efx)1200 int ef100_probe_vf(struct efx_nic *efx)
1201 {
1202 return ef100_probe_main(efx);
1203 }
1204
ef100_remove(struct efx_nic * efx)1205 void ef100_remove(struct efx_nic *efx)
1206 {
1207 struct ef100_nic_data *nic_data = efx->nic_data;
1208
1209 if (IS_ENABLED(CONFIG_SFC_SRIOV) && efx->mae) {
1210 efx_ef100_fini_reps(efx);
1211 efx_fini_mae(efx);
1212 }
1213
1214 efx_mcdi_detach(efx);
1215 efx_mcdi_fini(efx);
1216 if (nic_data)
1217 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1218 kfree(nic_data);
1219 efx->nic_data = NULL;
1220 }
1221
1222 /* NIC level access functions
1223 */
1224 #define EF100_OFFLOAD_FEATURES (NETIF_F_HW_CSUM | NETIF_F_RXCSUM | \
1225 NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \
1226 NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \
1227 NETIF_F_HW_VLAN_CTAG_TX)
1228
1229 const struct efx_nic_type ef100_pf_nic_type = {
1230 .revision = EFX_REV_EF100,
1231 .is_vf = false,
1232 .probe = ef100_probe_main,
1233 .offload_features = EF100_OFFLOAD_FEATURES,
1234 .mcdi_max_ver = 2,
1235 .mcdi_request = ef100_mcdi_request,
1236 .mcdi_poll_response = ef100_mcdi_poll_response,
1237 .mcdi_read_response = ef100_mcdi_read_response,
1238 .mcdi_poll_reboot = ef100_mcdi_poll_reboot,
1239 .mcdi_reboot_detected = ef100_mcdi_reboot_detected,
1240 .irq_enable_master = efx_port_dummy_op_void,
1241 .irq_test_generate = efx_ef100_irq_test_generate,
1242 .irq_disable_non_ev = efx_port_dummy_op_void,
1243 .push_irq_moderation = efx_channel_dummy_op_void,
1244 .min_interrupt_mode = EFX_INT_MODE_MSIX,
1245 .map_reset_reason = ef100_map_reset_reason,
1246 .map_reset_flags = ef100_map_reset_flags,
1247 .reset = ef100_reset,
1248
1249 .check_caps = ef100_check_caps,
1250
1251 .ev_probe = ef100_ev_probe,
1252 .ev_init = ef100_ev_init,
1253 .ev_fini = efx_mcdi_ev_fini,
1254 .ev_remove = efx_mcdi_ev_remove,
1255 .irq_handle_msi = ef100_msi_interrupt,
1256 .ev_process = ef100_ev_process,
1257 .ev_read_ack = ef100_ev_read_ack,
1258 .ev_test_generate = efx_ef100_ev_test_generate,
1259 .tx_probe = ef100_tx_probe,
1260 .tx_init = ef100_tx_init,
1261 .tx_write = ef100_tx_write,
1262 .tx_enqueue = ef100_enqueue_skb,
1263 .rx_probe = efx_mcdi_rx_probe,
1264 .rx_init = efx_mcdi_rx_init,
1265 .rx_remove = efx_mcdi_rx_remove,
1266 .rx_write = ef100_rx_write,
1267 .rx_packet = __ef100_rx_packet,
1268 .rx_buf_hash_valid = ef100_rx_buf_hash_valid,
1269 .fini_dmaq = efx_fini_dmaq,
1270 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
1271 .filter_table_probe = ef100_filter_table_up,
1272 .filter_table_restore = efx_mcdi_filter_table_restore,
1273 .filter_table_remove = ef100_filter_table_down,
1274 .filter_insert = efx_mcdi_filter_insert,
1275 .filter_remove_safe = efx_mcdi_filter_remove_safe,
1276 .filter_get_safe = efx_mcdi_filter_get_safe,
1277 .filter_clear_rx = efx_mcdi_filter_clear_rx,
1278 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
1279 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
1280 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
1281 #ifdef CONFIG_RFS_ACCEL
1282 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
1283 #endif
1284
1285 .get_phys_port_id = efx_ef100_get_phys_port_id,
1286
1287 .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
1288 .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
1289 .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
1290 .rx_hash_key_size = 40,
1291 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
1292 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
1293 .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
1294 .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
1295 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
1296 .rx_recycle_ring_size = efx_ef100_recycle_ring_size,
1297
1298 .reconfigure_mac = ef100_reconfigure_mac,
1299 .reconfigure_port = efx_mcdi_port_reconfigure,
1300 .test_nvram = efx_new_mcdi_nvram_test_all,
1301 .describe_stats = ef100_describe_stats,
1302 .start_stats = efx_mcdi_mac_start_stats,
1303 .update_stats = ef100_update_stats,
1304 .pull_stats = efx_mcdi_mac_pull_stats,
1305 .stop_stats = efx_mcdi_mac_stop_stats,
1306 .sriov_configure = IS_ENABLED(CONFIG_SFC_SRIOV) ?
1307 efx_ef100_sriov_configure : NULL,
1308
1309 /* Per-type bar/size configuration not used on ef100. Location of
1310 * registers is defined by extended capabilities.
1311 */
1312 .mem_bar = NULL,
1313 .mem_map_size = NULL,
1314
1315 };
1316
1317 const struct efx_nic_type ef100_vf_nic_type = {
1318 .revision = EFX_REV_EF100,
1319 .is_vf = true,
1320 .probe = ef100_probe_vf,
1321 .offload_features = EF100_OFFLOAD_FEATURES,
1322 .mcdi_max_ver = 2,
1323 .mcdi_request = ef100_mcdi_request,
1324 .mcdi_poll_response = ef100_mcdi_poll_response,
1325 .mcdi_read_response = ef100_mcdi_read_response,
1326 .mcdi_poll_reboot = ef100_mcdi_poll_reboot,
1327 .mcdi_reboot_detected = ef100_mcdi_reboot_detected,
1328 .irq_enable_master = efx_port_dummy_op_void,
1329 .irq_test_generate = efx_ef100_irq_test_generate,
1330 .irq_disable_non_ev = efx_port_dummy_op_void,
1331 .push_irq_moderation = efx_channel_dummy_op_void,
1332 .min_interrupt_mode = EFX_INT_MODE_MSIX,
1333 .map_reset_reason = ef100_map_reset_reason,
1334 .map_reset_flags = ef100_map_reset_flags,
1335 .reset = ef100_reset,
1336 .check_caps = ef100_check_caps,
1337 .ev_probe = ef100_ev_probe,
1338 .ev_init = ef100_ev_init,
1339 .ev_fini = efx_mcdi_ev_fini,
1340 .ev_remove = efx_mcdi_ev_remove,
1341 .irq_handle_msi = ef100_msi_interrupt,
1342 .ev_process = ef100_ev_process,
1343 .ev_read_ack = ef100_ev_read_ack,
1344 .ev_test_generate = efx_ef100_ev_test_generate,
1345 .tx_probe = ef100_tx_probe,
1346 .tx_init = ef100_tx_init,
1347 .tx_write = ef100_tx_write,
1348 .tx_enqueue = ef100_enqueue_skb,
1349 .rx_probe = efx_mcdi_rx_probe,
1350 .rx_init = efx_mcdi_rx_init,
1351 .rx_remove = efx_mcdi_rx_remove,
1352 .rx_write = ef100_rx_write,
1353 .rx_packet = __ef100_rx_packet,
1354 .rx_buf_hash_valid = ef100_rx_buf_hash_valid,
1355 .fini_dmaq = efx_fini_dmaq,
1356 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
1357 .filter_table_probe = ef100_filter_table_up,
1358 .filter_table_restore = efx_mcdi_filter_table_restore,
1359 .filter_table_remove = ef100_filter_table_down,
1360 .filter_insert = efx_mcdi_filter_insert,
1361 .filter_remove_safe = efx_mcdi_filter_remove_safe,
1362 .filter_get_safe = efx_mcdi_filter_get_safe,
1363 .filter_clear_rx = efx_mcdi_filter_clear_rx,
1364 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
1365 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
1366 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
1367 #ifdef CONFIG_RFS_ACCEL
1368 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
1369 #endif
1370
1371 .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
1372 .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
1373 .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
1374 .rx_hash_key_size = 40,
1375 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
1376 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
1377 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
1378 .rx_recycle_ring_size = efx_ef100_recycle_ring_size,
1379
1380 .reconfigure_mac = ef100_reconfigure_mac,
1381 .test_nvram = efx_new_mcdi_nvram_test_all,
1382 .describe_stats = ef100_describe_stats,
1383 .start_stats = efx_mcdi_mac_start_stats,
1384 .update_stats = ef100_update_stats,
1385 .pull_stats = efx_mcdi_mac_pull_stats,
1386 .stop_stats = efx_mcdi_mac_stop_stats,
1387
1388 .mem_bar = NULL,
1389 .mem_map_size = NULL,
1390
1391 };
1392