1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24
25 #ifdef CONFIG_BTRFS_DEBUG
btrfs_should_fragment_free_space(struct btrfs_block_group * block_group)26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27 {
28 struct btrfs_fs_info *fs_info = block_group->fs_info;
29
30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36
37 /*
38 * Return target flags in extended format or 0 if restripe for this chunk_type
39 * is not in progress
40 *
41 * Should be called with balance_lock held
42 */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 u64 target = 0;
47
48 if (!bctl)
49 return 0;
50
51 if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 }
61
62 return target;
63 }
64
65 /*
66 * @flags: available profiles in extended format (see ctree.h)
67 *
68 * Return reduced profile in chunk format. If profile changing is in progress
69 * (either running or paused) picks the target profile (if it's already
70 * available), otherwise falls back to plain reducing.
71 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 u64 num_devices = fs_info->fs_devices->rw_devices;
75 u64 target;
76 u64 raid_type;
77 u64 allowed = 0;
78
79 /*
80 * See if restripe for this chunk_type is in progress, if so try to
81 * reduce to the target profile
82 */
83 spin_lock(&fs_info->balance_lock);
84 target = get_restripe_target(fs_info, flags);
85 if (target) {
86 spin_unlock(&fs_info->balance_lock);
87 return extended_to_chunk(target);
88 }
89 spin_unlock(&fs_info->balance_lock);
90
91 /* First, mask out the RAID levels which aren't possible */
92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 allowed |= btrfs_raid_array[raid_type].bg_flag;
95 }
96 allowed &= flags;
97
98 /* Select the highest-redundancy RAID level. */
99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100 allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
102 allowed = BTRFS_BLOCK_GROUP_RAID6;
103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104 allowed = BTRFS_BLOCK_GROUP_RAID1C3;
105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106 allowed = BTRFS_BLOCK_GROUP_RAID5;
107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108 allowed = BTRFS_BLOCK_GROUP_RAID10;
109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110 allowed = BTRFS_BLOCK_GROUP_RAID1;
111 else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112 allowed = BTRFS_BLOCK_GROUP_DUP;
113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114 allowed = BTRFS_BLOCK_GROUP_RAID0;
115
116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117
118 return extended_to_chunk(flags | allowed);
119 }
120
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
122 {
123 unsigned seq;
124 u64 flags;
125
126 do {
127 flags = orig_flags;
128 seq = read_seqbegin(&fs_info->profiles_lock);
129
130 if (flags & BTRFS_BLOCK_GROUP_DATA)
131 flags |= fs_info->avail_data_alloc_bits;
132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133 flags |= fs_info->avail_system_alloc_bits;
134 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135 flags |= fs_info->avail_metadata_alloc_bits;
136 } while (read_seqretry(&fs_info->profiles_lock, seq));
137
138 return btrfs_reduce_alloc_profile(fs_info, flags);
139 }
140
btrfs_get_block_group(struct btrfs_block_group * cache)141 void btrfs_get_block_group(struct btrfs_block_group *cache)
142 {
143 refcount_inc(&cache->refs);
144 }
145
btrfs_put_block_group(struct btrfs_block_group * cache)146 void btrfs_put_block_group(struct btrfs_block_group *cache)
147 {
148 if (refcount_dec_and_test(&cache->refs)) {
149 WARN_ON(cache->pinned > 0);
150 /*
151 * If there was a failure to cleanup a log tree, very likely due
152 * to an IO failure on a writeback attempt of one or more of its
153 * extent buffers, we could not do proper (and cheap) unaccounting
154 * of their reserved space, so don't warn on reserved > 0 in that
155 * case.
156 */
157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159 WARN_ON(cache->reserved > 0);
160
161 /*
162 * A block_group shouldn't be on the discard_list anymore.
163 * Remove the block_group from the discard_list to prevent us
164 * from causing a panic due to NULL pointer dereference.
165 */
166 if (WARN_ON(!list_empty(&cache->discard_list)))
167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168 cache);
169
170 kfree(cache->free_space_ctl);
171 kfree(cache->physical_map);
172 kfree(cache);
173 }
174 }
175
176 /*
177 * This adds the block group to the fs_info rb tree for the block group cache
178 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
180 struct btrfs_block_group *block_group)
181 {
182 struct rb_node **p;
183 struct rb_node *parent = NULL;
184 struct btrfs_block_group *cache;
185 bool leftmost = true;
186
187 ASSERT(block_group->length != 0);
188
189 write_lock(&info->block_group_cache_lock);
190 p = &info->block_group_cache_tree.rb_root.rb_node;
191
192 while (*p) {
193 parent = *p;
194 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
195 if (block_group->start < cache->start) {
196 p = &(*p)->rb_left;
197 } else if (block_group->start > cache->start) {
198 p = &(*p)->rb_right;
199 leftmost = false;
200 } else {
201 write_unlock(&info->block_group_cache_lock);
202 return -EEXIST;
203 }
204 }
205
206 rb_link_node(&block_group->cache_node, parent, p);
207 rb_insert_color_cached(&block_group->cache_node,
208 &info->block_group_cache_tree, leftmost);
209
210 write_unlock(&info->block_group_cache_lock);
211
212 return 0;
213 }
214
215 /*
216 * This will return the block group at or after bytenr if contains is 0, else
217 * it will return the block group that contains the bytenr
218 */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)219 static struct btrfs_block_group *block_group_cache_tree_search(
220 struct btrfs_fs_info *info, u64 bytenr, int contains)
221 {
222 struct btrfs_block_group *cache, *ret = NULL;
223 struct rb_node *n;
224 u64 end, start;
225
226 read_lock(&info->block_group_cache_lock);
227 n = info->block_group_cache_tree.rb_root.rb_node;
228
229 while (n) {
230 cache = rb_entry(n, struct btrfs_block_group, cache_node);
231 end = cache->start + cache->length - 1;
232 start = cache->start;
233
234 if (bytenr < start) {
235 if (!contains && (!ret || start < ret->start))
236 ret = cache;
237 n = n->rb_left;
238 } else if (bytenr > start) {
239 if (contains && bytenr <= end) {
240 ret = cache;
241 break;
242 }
243 n = n->rb_right;
244 } else {
245 ret = cache;
246 break;
247 }
248 }
249 if (ret)
250 btrfs_get_block_group(ret);
251 read_unlock(&info->block_group_cache_lock);
252
253 return ret;
254 }
255
256 /*
257 * Return the block group that starts at or after bytenr
258 */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)259 struct btrfs_block_group *btrfs_lookup_first_block_group(
260 struct btrfs_fs_info *info, u64 bytenr)
261 {
262 return block_group_cache_tree_search(info, bytenr, 0);
263 }
264
265 /*
266 * Return the block group that contains the given bytenr
267 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)268 struct btrfs_block_group *btrfs_lookup_block_group(
269 struct btrfs_fs_info *info, u64 bytenr)
270 {
271 return block_group_cache_tree_search(info, bytenr, 1);
272 }
273
btrfs_next_block_group(struct btrfs_block_group * cache)274 struct btrfs_block_group *btrfs_next_block_group(
275 struct btrfs_block_group *cache)
276 {
277 struct btrfs_fs_info *fs_info = cache->fs_info;
278 struct rb_node *node;
279
280 read_lock(&fs_info->block_group_cache_lock);
281
282 /* If our block group was removed, we need a full search. */
283 if (RB_EMPTY_NODE(&cache->cache_node)) {
284 const u64 next_bytenr = cache->start + cache->length;
285
286 read_unlock(&fs_info->block_group_cache_lock);
287 btrfs_put_block_group(cache);
288 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
289 }
290 node = rb_next(&cache->cache_node);
291 btrfs_put_block_group(cache);
292 if (node) {
293 cache = rb_entry(node, struct btrfs_block_group, cache_node);
294 btrfs_get_block_group(cache);
295 } else
296 cache = NULL;
297 read_unlock(&fs_info->block_group_cache_lock);
298 return cache;
299 }
300
301 /*
302 * Check if we can do a NOCOW write for a given extent.
303 *
304 * @fs_info: The filesystem information object.
305 * @bytenr: Logical start address of the extent.
306 *
307 * Check if we can do a NOCOW write for the given extent, and increments the
308 * number of NOCOW writers in the block group that contains the extent, as long
309 * as the block group exists and it's currently not in read-only mode.
310 *
311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
312 * is responsible for calling btrfs_dec_nocow_writers() later.
313 *
314 * Or NULL if we can not do a NOCOW write
315 */
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
317 u64 bytenr)
318 {
319 struct btrfs_block_group *bg;
320 bool can_nocow = true;
321
322 bg = btrfs_lookup_block_group(fs_info, bytenr);
323 if (!bg)
324 return NULL;
325
326 spin_lock(&bg->lock);
327 if (bg->ro)
328 can_nocow = false;
329 else
330 atomic_inc(&bg->nocow_writers);
331 spin_unlock(&bg->lock);
332
333 if (!can_nocow) {
334 btrfs_put_block_group(bg);
335 return NULL;
336 }
337
338 /* No put on block group, done by btrfs_dec_nocow_writers(). */
339 return bg;
340 }
341
342 /*
343 * Decrement the number of NOCOW writers in a block group.
344 *
345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346 * and on the block group returned by that call. Typically this is called after
347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
348 * relocation.
349 *
350 * After this call, the caller should not use the block group anymore. It it wants
351 * to use it, then it should get a reference on it before calling this function.
352 */
btrfs_dec_nocow_writers(struct btrfs_block_group * bg)353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
354 {
355 if (atomic_dec_and_test(&bg->nocow_writers))
356 wake_up_var(&bg->nocow_writers);
357
358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
359 btrfs_put_block_group(bg);
360 }
361
btrfs_wait_nocow_writers(struct btrfs_block_group * bg)362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
363 {
364 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
365 }
366
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
368 const u64 start)
369 {
370 struct btrfs_block_group *bg;
371
372 bg = btrfs_lookup_block_group(fs_info, start);
373 ASSERT(bg);
374 if (atomic_dec_and_test(&bg->reservations))
375 wake_up_var(&bg->reservations);
376 btrfs_put_block_group(bg);
377 }
378
btrfs_wait_block_group_reservations(struct btrfs_block_group * bg)379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
380 {
381 struct btrfs_space_info *space_info = bg->space_info;
382
383 ASSERT(bg->ro);
384
385 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
386 return;
387
388 /*
389 * Our block group is read only but before we set it to read only,
390 * some task might have had allocated an extent from it already, but it
391 * has not yet created a respective ordered extent (and added it to a
392 * root's list of ordered extents).
393 * Therefore wait for any task currently allocating extents, since the
394 * block group's reservations counter is incremented while a read lock
395 * on the groups' semaphore is held and decremented after releasing
396 * the read access on that semaphore and creating the ordered extent.
397 */
398 down_write(&space_info->groups_sem);
399 up_write(&space_info->groups_sem);
400
401 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
402 }
403
btrfs_get_caching_control(struct btrfs_block_group * cache)404 struct btrfs_caching_control *btrfs_get_caching_control(
405 struct btrfs_block_group *cache)
406 {
407 struct btrfs_caching_control *ctl;
408
409 spin_lock(&cache->lock);
410 if (!cache->caching_ctl) {
411 spin_unlock(&cache->lock);
412 return NULL;
413 }
414
415 ctl = cache->caching_ctl;
416 refcount_inc(&ctl->count);
417 spin_unlock(&cache->lock);
418 return ctl;
419 }
420
btrfs_put_caching_control(struct btrfs_caching_control * ctl)421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
422 {
423 if (refcount_dec_and_test(&ctl->count))
424 kfree(ctl);
425 }
426
427 /*
428 * When we wait for progress in the block group caching, its because our
429 * allocation attempt failed at least once. So, we must sleep and let some
430 * progress happen before we try again.
431 *
432 * This function will sleep at least once waiting for new free space to show
433 * up, and then it will check the block group free space numbers for our min
434 * num_bytes. Another option is to have it go ahead and look in the rbtree for
435 * a free extent of a given size, but this is a good start.
436 *
437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438 * any of the information in this block group.
439 */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group * cache,u64 num_bytes)440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
441 u64 num_bytes)
442 {
443 struct btrfs_caching_control *caching_ctl;
444 int progress;
445
446 caching_ctl = btrfs_get_caching_control(cache);
447 if (!caching_ctl)
448 return;
449
450 /*
451 * We've already failed to allocate from this block group, so even if
452 * there's enough space in the block group it isn't contiguous enough to
453 * allow for an allocation, so wait for at least the next wakeup tick,
454 * or for the thing to be done.
455 */
456 progress = atomic_read(&caching_ctl->progress);
457
458 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
459 (progress != atomic_read(&caching_ctl->progress) &&
460 (cache->free_space_ctl->free_space >= num_bytes)));
461
462 btrfs_put_caching_control(caching_ctl);
463 }
464
btrfs_caching_ctl_wait_done(struct btrfs_block_group * cache,struct btrfs_caching_control * caching_ctl)465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
466 struct btrfs_caching_control *caching_ctl)
467 {
468 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
469 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
470 }
471
btrfs_wait_block_group_cache_done(struct btrfs_block_group * cache)472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
473 {
474 struct btrfs_caching_control *caching_ctl;
475 int ret;
476
477 caching_ctl = btrfs_get_caching_control(cache);
478 if (!caching_ctl)
479 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
480 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
481 btrfs_put_caching_control(caching_ctl);
482 return ret;
483 }
484
485 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group * block_group)486 static void fragment_free_space(struct btrfs_block_group *block_group)
487 {
488 struct btrfs_fs_info *fs_info = block_group->fs_info;
489 u64 start = block_group->start;
490 u64 len = block_group->length;
491 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
492 fs_info->nodesize : fs_info->sectorsize;
493 u64 step = chunk << 1;
494
495 while (len > chunk) {
496 btrfs_remove_free_space(block_group, start, chunk);
497 start += step;
498 if (len < step)
499 len = 0;
500 else
501 len -= step;
502 }
503 }
504 #endif
505
506 /*
507 * Add a free space range to the in memory free space cache of a block group.
508 * This checks if the range contains super block locations and any such
509 * locations are not added to the free space cache.
510 *
511 * @block_group: The target block group.
512 * @start: Start offset of the range.
513 * @end: End offset of the range (exclusive).
514 * @total_added_ret: Optional pointer to return the total amount of space
515 * added to the block group's free space cache.
516 *
517 * Returns 0 on success or < 0 on error.
518 */
btrfs_add_new_free_space(struct btrfs_block_group * block_group,u64 start,u64 end,u64 * total_added_ret)519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
520 u64 end, u64 *total_added_ret)
521 {
522 struct btrfs_fs_info *info = block_group->fs_info;
523 u64 extent_start, extent_end, size;
524 int ret;
525
526 if (total_added_ret)
527 *total_added_ret = 0;
528
529 while (start < end) {
530 if (!find_first_extent_bit(&info->excluded_extents, start,
531 &extent_start, &extent_end,
532 EXTENT_DIRTY | EXTENT_UPTODATE,
533 NULL))
534 break;
535
536 if (extent_start <= start) {
537 start = extent_end + 1;
538 } else if (extent_start > start && extent_start < end) {
539 size = extent_start - start;
540 ret = btrfs_add_free_space_async_trimmed(block_group,
541 start, size);
542 if (ret)
543 return ret;
544 if (total_added_ret)
545 *total_added_ret += size;
546 start = extent_end + 1;
547 } else {
548 break;
549 }
550 }
551
552 if (start < end) {
553 size = end - start;
554 ret = btrfs_add_free_space_async_trimmed(block_group, start,
555 size);
556 if (ret)
557 return ret;
558 if (total_added_ret)
559 *total_added_ret += size;
560 }
561
562 return 0;
563 }
564
565 /*
566 * Get an arbitrary extent item index / max_index through the block group
567 *
568 * @block_group the block group to sample from
569 * @index: the integral step through the block group to grab from
570 * @max_index: the granularity of the sampling
571 * @key: return value parameter for the item we find
572 *
573 * Pre-conditions on indices:
574 * 0 <= index <= max_index
575 * 0 < max_index
576 *
577 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
578 * error code on error.
579 */
sample_block_group_extent_item(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group,int index,int max_index,struct btrfs_key * found_key)580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
581 struct btrfs_block_group *block_group,
582 int index, int max_index,
583 struct btrfs_key *found_key)
584 {
585 struct btrfs_fs_info *fs_info = block_group->fs_info;
586 struct btrfs_root *extent_root;
587 u64 search_offset;
588 u64 search_end = block_group->start + block_group->length;
589 struct btrfs_path *path;
590 struct btrfs_key search_key;
591 int ret = 0;
592
593 ASSERT(index >= 0);
594 ASSERT(index <= max_index);
595 ASSERT(max_index > 0);
596 lockdep_assert_held(&caching_ctl->mutex);
597 lockdep_assert_held_read(&fs_info->commit_root_sem);
598
599 path = btrfs_alloc_path();
600 if (!path)
601 return -ENOMEM;
602
603 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
604 BTRFS_SUPER_INFO_OFFSET));
605
606 path->skip_locking = 1;
607 path->search_commit_root = 1;
608 path->reada = READA_FORWARD;
609
610 search_offset = index * div_u64(block_group->length, max_index);
611 search_key.objectid = block_group->start + search_offset;
612 search_key.type = BTRFS_EXTENT_ITEM_KEY;
613 search_key.offset = 0;
614
615 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
616 /* Success; sampled an extent item in the block group */
617 if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
618 found_key->objectid >= block_group->start &&
619 found_key->objectid + found_key->offset <= search_end)
620 break;
621
622 /* We can't possibly find a valid extent item anymore */
623 if (found_key->objectid >= search_end) {
624 ret = 1;
625 break;
626 }
627 }
628
629 lockdep_assert_held(&caching_ctl->mutex);
630 lockdep_assert_held_read(&fs_info->commit_root_sem);
631 btrfs_free_path(path);
632 return ret;
633 }
634
635 /*
636 * Best effort attempt to compute a block group's size class while caching it.
637 *
638 * @block_group: the block group we are caching
639 *
640 * We cannot infer the size class while adding free space extents, because that
641 * logic doesn't care about contiguous file extents (it doesn't differentiate
642 * between a 100M extent and 100 contiguous 1M extents). So we need to read the
643 * file extent items. Reading all of them is quite wasteful, because usually
644 * only a handful are enough to give a good answer. Therefore, we just grab 5 of
645 * them at even steps through the block group and pick the smallest size class
646 * we see. Since size class is best effort, and not guaranteed in general,
647 * inaccuracy is acceptable.
648 *
649 * To be more explicit about why this algorithm makes sense:
650 *
651 * If we are caching in a block group from disk, then there are three major cases
652 * to consider:
653 * 1. the block group is well behaved and all extents in it are the same size
654 * class.
655 * 2. the block group is mostly one size class with rare exceptions for last
656 * ditch allocations
657 * 3. the block group was populated before size classes and can have a totally
658 * arbitrary mix of size classes.
659 *
660 * In case 1, looking at any extent in the block group will yield the correct
661 * result. For the mixed cases, taking the minimum size class seems like a good
662 * approximation, since gaps from frees will be usable to the size class. For
663 * 2., a small handful of file extents is likely to yield the right answer. For
664 * 3, we can either read every file extent, or admit that this is best effort
665 * anyway and try to stay fast.
666 *
667 * Returns: 0 on success, negative error code on error.
668 */
load_block_group_size_class(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group)669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
670 struct btrfs_block_group *block_group)
671 {
672 struct btrfs_fs_info *fs_info = block_group->fs_info;
673 struct btrfs_key key;
674 int i;
675 u64 min_size = block_group->length;
676 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
677 int ret;
678
679 if (!btrfs_block_group_should_use_size_class(block_group))
680 return 0;
681
682 lockdep_assert_held(&caching_ctl->mutex);
683 lockdep_assert_held_read(&fs_info->commit_root_sem);
684 for (i = 0; i < 5; ++i) {
685 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
686 if (ret < 0)
687 goto out;
688 if (ret > 0)
689 continue;
690 min_size = min_t(u64, min_size, key.offset);
691 size_class = btrfs_calc_block_group_size_class(min_size);
692 }
693 if (size_class != BTRFS_BG_SZ_NONE) {
694 spin_lock(&block_group->lock);
695 block_group->size_class = size_class;
696 spin_unlock(&block_group->lock);
697 }
698 out:
699 return ret;
700 }
701
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
703 {
704 struct btrfs_block_group *block_group = caching_ctl->block_group;
705 struct btrfs_fs_info *fs_info = block_group->fs_info;
706 struct btrfs_root *extent_root;
707 struct btrfs_path *path;
708 struct extent_buffer *leaf;
709 struct btrfs_key key;
710 u64 total_found = 0;
711 u64 last = 0;
712 u32 nritems;
713 int ret;
714 bool wakeup = true;
715
716 path = btrfs_alloc_path();
717 if (!path)
718 return -ENOMEM;
719
720 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
721 extent_root = btrfs_extent_root(fs_info, last);
722
723 #ifdef CONFIG_BTRFS_DEBUG
724 /*
725 * If we're fragmenting we don't want to make anybody think we can
726 * allocate from this block group until we've had a chance to fragment
727 * the free space.
728 */
729 if (btrfs_should_fragment_free_space(block_group))
730 wakeup = false;
731 #endif
732 /*
733 * We don't want to deadlock with somebody trying to allocate a new
734 * extent for the extent root while also trying to search the extent
735 * root to add free space. So we skip locking and search the commit
736 * root, since its read-only
737 */
738 path->skip_locking = 1;
739 path->search_commit_root = 1;
740 path->reada = READA_FORWARD;
741
742 key.objectid = last;
743 key.offset = 0;
744 key.type = BTRFS_EXTENT_ITEM_KEY;
745
746 next:
747 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
748 if (ret < 0)
749 goto out;
750
751 leaf = path->nodes[0];
752 nritems = btrfs_header_nritems(leaf);
753
754 while (1) {
755 if (btrfs_fs_closing(fs_info) > 1) {
756 last = (u64)-1;
757 break;
758 }
759
760 if (path->slots[0] < nritems) {
761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
762 } else {
763 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
764 if (ret)
765 break;
766
767 if (need_resched() ||
768 rwsem_is_contended(&fs_info->commit_root_sem)) {
769 btrfs_release_path(path);
770 up_read(&fs_info->commit_root_sem);
771 mutex_unlock(&caching_ctl->mutex);
772 cond_resched();
773 mutex_lock(&caching_ctl->mutex);
774 down_read(&fs_info->commit_root_sem);
775 goto next;
776 }
777
778 ret = btrfs_next_leaf(extent_root, path);
779 if (ret < 0)
780 goto out;
781 if (ret)
782 break;
783 leaf = path->nodes[0];
784 nritems = btrfs_header_nritems(leaf);
785 continue;
786 }
787
788 if (key.objectid < last) {
789 key.objectid = last;
790 key.offset = 0;
791 key.type = BTRFS_EXTENT_ITEM_KEY;
792 btrfs_release_path(path);
793 goto next;
794 }
795
796 if (key.objectid < block_group->start) {
797 path->slots[0]++;
798 continue;
799 }
800
801 if (key.objectid >= block_group->start + block_group->length)
802 break;
803
804 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
805 key.type == BTRFS_METADATA_ITEM_KEY) {
806 u64 space_added;
807
808 ret = btrfs_add_new_free_space(block_group, last,
809 key.objectid, &space_added);
810 if (ret)
811 goto out;
812 total_found += space_added;
813 if (key.type == BTRFS_METADATA_ITEM_KEY)
814 last = key.objectid +
815 fs_info->nodesize;
816 else
817 last = key.objectid + key.offset;
818
819 if (total_found > CACHING_CTL_WAKE_UP) {
820 total_found = 0;
821 if (wakeup) {
822 atomic_inc(&caching_ctl->progress);
823 wake_up(&caching_ctl->wait);
824 }
825 }
826 }
827 path->slots[0]++;
828 }
829
830 ret = btrfs_add_new_free_space(block_group, last,
831 block_group->start + block_group->length,
832 NULL);
833 out:
834 btrfs_free_path(path);
835 return ret;
836 }
837
btrfs_free_excluded_extents(const struct btrfs_block_group * bg)838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
839 {
840 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start,
841 bg->start + bg->length - 1, EXTENT_UPTODATE);
842 }
843
caching_thread(struct btrfs_work * work)844 static noinline void caching_thread(struct btrfs_work *work)
845 {
846 struct btrfs_block_group *block_group;
847 struct btrfs_fs_info *fs_info;
848 struct btrfs_caching_control *caching_ctl;
849 int ret;
850
851 caching_ctl = container_of(work, struct btrfs_caching_control, work);
852 block_group = caching_ctl->block_group;
853 fs_info = block_group->fs_info;
854
855 mutex_lock(&caching_ctl->mutex);
856 down_read(&fs_info->commit_root_sem);
857
858 load_block_group_size_class(caching_ctl, block_group);
859 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
860 ret = load_free_space_cache(block_group);
861 if (ret == 1) {
862 ret = 0;
863 goto done;
864 }
865
866 /*
867 * We failed to load the space cache, set ourselves to
868 * CACHE_STARTED and carry on.
869 */
870 spin_lock(&block_group->lock);
871 block_group->cached = BTRFS_CACHE_STARTED;
872 spin_unlock(&block_group->lock);
873 wake_up(&caching_ctl->wait);
874 }
875
876 /*
877 * If we are in the transaction that populated the free space tree we
878 * can't actually cache from the free space tree as our commit root and
879 * real root are the same, so we could change the contents of the blocks
880 * while caching. Instead do the slow caching in this case, and after
881 * the transaction has committed we will be safe.
882 */
883 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
884 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
885 ret = load_free_space_tree(caching_ctl);
886 else
887 ret = load_extent_tree_free(caching_ctl);
888 done:
889 spin_lock(&block_group->lock);
890 block_group->caching_ctl = NULL;
891 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
892 spin_unlock(&block_group->lock);
893
894 #ifdef CONFIG_BTRFS_DEBUG
895 if (btrfs_should_fragment_free_space(block_group)) {
896 u64 bytes_used;
897
898 spin_lock(&block_group->space_info->lock);
899 spin_lock(&block_group->lock);
900 bytes_used = block_group->length - block_group->used;
901 block_group->space_info->bytes_used += bytes_used >> 1;
902 spin_unlock(&block_group->lock);
903 spin_unlock(&block_group->space_info->lock);
904 fragment_free_space(block_group);
905 }
906 #endif
907
908 up_read(&fs_info->commit_root_sem);
909 btrfs_free_excluded_extents(block_group);
910 mutex_unlock(&caching_ctl->mutex);
911
912 wake_up(&caching_ctl->wait);
913
914 btrfs_put_caching_control(caching_ctl);
915 btrfs_put_block_group(block_group);
916 }
917
btrfs_cache_block_group(struct btrfs_block_group * cache,bool wait)918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
919 {
920 struct btrfs_fs_info *fs_info = cache->fs_info;
921 struct btrfs_caching_control *caching_ctl = NULL;
922 int ret = 0;
923
924 /* Allocator for zoned filesystems does not use the cache at all */
925 if (btrfs_is_zoned(fs_info))
926 return 0;
927
928 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
929 if (!caching_ctl)
930 return -ENOMEM;
931
932 INIT_LIST_HEAD(&caching_ctl->list);
933 mutex_init(&caching_ctl->mutex);
934 init_waitqueue_head(&caching_ctl->wait);
935 caching_ctl->block_group = cache;
936 refcount_set(&caching_ctl->count, 2);
937 atomic_set(&caching_ctl->progress, 0);
938 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
939
940 spin_lock(&cache->lock);
941 if (cache->cached != BTRFS_CACHE_NO) {
942 kfree(caching_ctl);
943
944 caching_ctl = cache->caching_ctl;
945 if (caching_ctl)
946 refcount_inc(&caching_ctl->count);
947 spin_unlock(&cache->lock);
948 goto out;
949 }
950 WARN_ON(cache->caching_ctl);
951 cache->caching_ctl = caching_ctl;
952 cache->cached = BTRFS_CACHE_STARTED;
953 spin_unlock(&cache->lock);
954
955 write_lock(&fs_info->block_group_cache_lock);
956 refcount_inc(&caching_ctl->count);
957 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
958 write_unlock(&fs_info->block_group_cache_lock);
959
960 btrfs_get_block_group(cache);
961
962 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
963 out:
964 if (wait && caching_ctl)
965 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
966 if (caching_ctl)
967 btrfs_put_caching_control(caching_ctl);
968
969 return ret;
970 }
971
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
973 {
974 u64 extra_flags = chunk_to_extended(flags) &
975 BTRFS_EXTENDED_PROFILE_MASK;
976
977 write_seqlock(&fs_info->profiles_lock);
978 if (flags & BTRFS_BLOCK_GROUP_DATA)
979 fs_info->avail_data_alloc_bits &= ~extra_flags;
980 if (flags & BTRFS_BLOCK_GROUP_METADATA)
981 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
982 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
983 fs_info->avail_system_alloc_bits &= ~extra_flags;
984 write_sequnlock(&fs_info->profiles_lock);
985 }
986
987 /*
988 * Clear incompat bits for the following feature(s):
989 *
990 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
991 * in the whole filesystem
992 *
993 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
994 */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
996 {
997 bool found_raid56 = false;
998 bool found_raid1c34 = false;
999
1000 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1001 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1002 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1003 struct list_head *head = &fs_info->space_info;
1004 struct btrfs_space_info *sinfo;
1005
1006 list_for_each_entry_rcu(sinfo, head, list) {
1007 down_read(&sinfo->groups_sem);
1008 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1009 found_raid56 = true;
1010 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1011 found_raid56 = true;
1012 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1013 found_raid1c34 = true;
1014 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1015 found_raid1c34 = true;
1016 up_read(&sinfo->groups_sem);
1017 }
1018 if (!found_raid56)
1019 btrfs_clear_fs_incompat(fs_info, RAID56);
1020 if (!found_raid1c34)
1021 btrfs_clear_fs_incompat(fs_info, RAID1C34);
1022 }
1023 }
1024
remove_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * block_group)1025 static int remove_block_group_item(struct btrfs_trans_handle *trans,
1026 struct btrfs_path *path,
1027 struct btrfs_block_group *block_group)
1028 {
1029 struct btrfs_fs_info *fs_info = trans->fs_info;
1030 struct btrfs_root *root;
1031 struct btrfs_key key;
1032 int ret;
1033
1034 root = btrfs_block_group_root(fs_info);
1035 key.objectid = block_group->start;
1036 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1037 key.offset = block_group->length;
1038
1039 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1040 if (ret > 0)
1041 ret = -ENOENT;
1042 if (ret < 0)
1043 return ret;
1044
1045 ret = btrfs_del_item(trans, root, path);
1046 return ret;
1047 }
1048
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)1049 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1050 u64 group_start, struct extent_map *em)
1051 {
1052 struct btrfs_fs_info *fs_info = trans->fs_info;
1053 struct btrfs_path *path;
1054 struct btrfs_block_group *block_group;
1055 struct btrfs_free_cluster *cluster;
1056 struct inode *inode;
1057 struct kobject *kobj = NULL;
1058 int ret;
1059 int index;
1060 int factor;
1061 struct btrfs_caching_control *caching_ctl = NULL;
1062 bool remove_em;
1063 bool remove_rsv = false;
1064
1065 block_group = btrfs_lookup_block_group(fs_info, group_start);
1066 BUG_ON(!block_group);
1067 BUG_ON(!block_group->ro);
1068
1069 trace_btrfs_remove_block_group(block_group);
1070 /*
1071 * Free the reserved super bytes from this block group before
1072 * remove it.
1073 */
1074 btrfs_free_excluded_extents(block_group);
1075 btrfs_free_ref_tree_range(fs_info, block_group->start,
1076 block_group->length);
1077
1078 index = btrfs_bg_flags_to_raid_index(block_group->flags);
1079 factor = btrfs_bg_type_to_factor(block_group->flags);
1080
1081 /* make sure this block group isn't part of an allocation cluster */
1082 cluster = &fs_info->data_alloc_cluster;
1083 spin_lock(&cluster->refill_lock);
1084 btrfs_return_cluster_to_free_space(block_group, cluster);
1085 spin_unlock(&cluster->refill_lock);
1086
1087 /*
1088 * make sure this block group isn't part of a metadata
1089 * allocation cluster
1090 */
1091 cluster = &fs_info->meta_alloc_cluster;
1092 spin_lock(&cluster->refill_lock);
1093 btrfs_return_cluster_to_free_space(block_group, cluster);
1094 spin_unlock(&cluster->refill_lock);
1095
1096 btrfs_clear_treelog_bg(block_group);
1097 btrfs_clear_data_reloc_bg(block_group);
1098
1099 path = btrfs_alloc_path();
1100 if (!path) {
1101 ret = -ENOMEM;
1102 goto out;
1103 }
1104
1105 /*
1106 * get the inode first so any iput calls done for the io_list
1107 * aren't the final iput (no unlinks allowed now)
1108 */
1109 inode = lookup_free_space_inode(block_group, path);
1110
1111 mutex_lock(&trans->transaction->cache_write_mutex);
1112 /*
1113 * Make sure our free space cache IO is done before removing the
1114 * free space inode
1115 */
1116 spin_lock(&trans->transaction->dirty_bgs_lock);
1117 if (!list_empty(&block_group->io_list)) {
1118 list_del_init(&block_group->io_list);
1119
1120 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1121
1122 spin_unlock(&trans->transaction->dirty_bgs_lock);
1123 btrfs_wait_cache_io(trans, block_group, path);
1124 btrfs_put_block_group(block_group);
1125 spin_lock(&trans->transaction->dirty_bgs_lock);
1126 }
1127
1128 if (!list_empty(&block_group->dirty_list)) {
1129 list_del_init(&block_group->dirty_list);
1130 remove_rsv = true;
1131 btrfs_put_block_group(block_group);
1132 }
1133 spin_unlock(&trans->transaction->dirty_bgs_lock);
1134 mutex_unlock(&trans->transaction->cache_write_mutex);
1135
1136 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1137 if (ret)
1138 goto out;
1139
1140 write_lock(&fs_info->block_group_cache_lock);
1141 rb_erase_cached(&block_group->cache_node,
1142 &fs_info->block_group_cache_tree);
1143 RB_CLEAR_NODE(&block_group->cache_node);
1144
1145 /* Once for the block groups rbtree */
1146 btrfs_put_block_group(block_group);
1147
1148 write_unlock(&fs_info->block_group_cache_lock);
1149
1150 down_write(&block_group->space_info->groups_sem);
1151 /*
1152 * we must use list_del_init so people can check to see if they
1153 * are still on the list after taking the semaphore
1154 */
1155 list_del_init(&block_group->list);
1156 if (list_empty(&block_group->space_info->block_groups[index])) {
1157 kobj = block_group->space_info->block_group_kobjs[index];
1158 block_group->space_info->block_group_kobjs[index] = NULL;
1159 clear_avail_alloc_bits(fs_info, block_group->flags);
1160 }
1161 up_write(&block_group->space_info->groups_sem);
1162 clear_incompat_bg_bits(fs_info, block_group->flags);
1163 if (kobj) {
1164 kobject_del(kobj);
1165 kobject_put(kobj);
1166 }
1167
1168 if (block_group->cached == BTRFS_CACHE_STARTED)
1169 btrfs_wait_block_group_cache_done(block_group);
1170
1171 write_lock(&fs_info->block_group_cache_lock);
1172 caching_ctl = btrfs_get_caching_control(block_group);
1173 if (!caching_ctl) {
1174 struct btrfs_caching_control *ctl;
1175
1176 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1177 if (ctl->block_group == block_group) {
1178 caching_ctl = ctl;
1179 refcount_inc(&caching_ctl->count);
1180 break;
1181 }
1182 }
1183 }
1184 if (caching_ctl)
1185 list_del_init(&caching_ctl->list);
1186 write_unlock(&fs_info->block_group_cache_lock);
1187
1188 if (caching_ctl) {
1189 /* Once for the caching bgs list and once for us. */
1190 btrfs_put_caching_control(caching_ctl);
1191 btrfs_put_caching_control(caching_ctl);
1192 }
1193
1194 spin_lock(&trans->transaction->dirty_bgs_lock);
1195 WARN_ON(!list_empty(&block_group->dirty_list));
1196 WARN_ON(!list_empty(&block_group->io_list));
1197 spin_unlock(&trans->transaction->dirty_bgs_lock);
1198
1199 btrfs_remove_free_space_cache(block_group);
1200
1201 spin_lock(&block_group->space_info->lock);
1202 list_del_init(&block_group->ro_list);
1203
1204 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1205 WARN_ON(block_group->space_info->total_bytes
1206 < block_group->length);
1207 WARN_ON(block_group->space_info->bytes_readonly
1208 < block_group->length - block_group->zone_unusable);
1209 WARN_ON(block_group->space_info->bytes_zone_unusable
1210 < block_group->zone_unusable);
1211 WARN_ON(block_group->space_info->disk_total
1212 < block_group->length * factor);
1213 }
1214 block_group->space_info->total_bytes -= block_group->length;
1215 block_group->space_info->bytes_readonly -=
1216 (block_group->length - block_group->zone_unusable);
1217 btrfs_space_info_update_bytes_zone_unusable(fs_info, block_group->space_info,
1218 -block_group->zone_unusable);
1219 block_group->space_info->disk_total -= block_group->length * factor;
1220
1221 spin_unlock(&block_group->space_info->lock);
1222
1223 /*
1224 * Remove the free space for the block group from the free space tree
1225 * and the block group's item from the extent tree before marking the
1226 * block group as removed. This is to prevent races with tasks that
1227 * freeze and unfreeze a block group, this task and another task
1228 * allocating a new block group - the unfreeze task ends up removing
1229 * the block group's extent map before the task calling this function
1230 * deletes the block group item from the extent tree, allowing for
1231 * another task to attempt to create another block group with the same
1232 * item key (and failing with -EEXIST and a transaction abort).
1233 */
1234 ret = remove_block_group_free_space(trans, block_group);
1235 if (ret)
1236 goto out;
1237
1238 ret = remove_block_group_item(trans, path, block_group);
1239 if (ret < 0)
1240 goto out;
1241
1242 spin_lock(&block_group->lock);
1243 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1244
1245 /*
1246 * At this point trimming or scrub can't start on this block group,
1247 * because we removed the block group from the rbtree
1248 * fs_info->block_group_cache_tree so no one can't find it anymore and
1249 * even if someone already got this block group before we removed it
1250 * from the rbtree, they have already incremented block_group->frozen -
1251 * if they didn't, for the trimming case they won't find any free space
1252 * entries because we already removed them all when we called
1253 * btrfs_remove_free_space_cache().
1254 *
1255 * And we must not remove the extent map from the fs_info->mapping_tree
1256 * to prevent the same logical address range and physical device space
1257 * ranges from being reused for a new block group. This is needed to
1258 * avoid races with trimming and scrub.
1259 *
1260 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1261 * completely transactionless, so while it is trimming a range the
1262 * currently running transaction might finish and a new one start,
1263 * allowing for new block groups to be created that can reuse the same
1264 * physical device locations unless we take this special care.
1265 *
1266 * There may also be an implicit trim operation if the file system
1267 * is mounted with -odiscard. The same protections must remain
1268 * in place until the extents have been discarded completely when
1269 * the transaction commit has completed.
1270 */
1271 remove_em = (atomic_read(&block_group->frozen) == 0);
1272 spin_unlock(&block_group->lock);
1273
1274 if (remove_em) {
1275 struct extent_map_tree *em_tree;
1276
1277 em_tree = &fs_info->mapping_tree;
1278 write_lock(&em_tree->lock);
1279 remove_extent_mapping(em_tree, em);
1280 write_unlock(&em_tree->lock);
1281 /* once for the tree */
1282 free_extent_map(em);
1283 }
1284
1285 out:
1286 /* Once for the lookup reference */
1287 btrfs_put_block_group(block_group);
1288 if (remove_rsv)
1289 btrfs_delayed_refs_rsv_release(fs_info, 1);
1290 btrfs_free_path(path);
1291 return ret;
1292 }
1293
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1294 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1295 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1296 {
1297 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1298 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1299 struct extent_map *em;
1300 struct map_lookup *map;
1301 unsigned int num_items;
1302
1303 read_lock(&em_tree->lock);
1304 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1305 read_unlock(&em_tree->lock);
1306 ASSERT(em && em->start == chunk_offset);
1307
1308 /*
1309 * We need to reserve 3 + N units from the metadata space info in order
1310 * to remove a block group (done at btrfs_remove_chunk() and at
1311 * btrfs_remove_block_group()), which are used for:
1312 *
1313 * 1 unit for adding the free space inode's orphan (located in the tree
1314 * of tree roots).
1315 * 1 unit for deleting the block group item (located in the extent
1316 * tree).
1317 * 1 unit for deleting the free space item (located in tree of tree
1318 * roots).
1319 * N units for deleting N device extent items corresponding to each
1320 * stripe (located in the device tree).
1321 *
1322 * In order to remove a block group we also need to reserve units in the
1323 * system space info in order to update the chunk tree (update one or
1324 * more device items and remove one chunk item), but this is done at
1325 * btrfs_remove_chunk() through a call to check_system_chunk().
1326 */
1327 map = em->map_lookup;
1328 num_items = 3 + map->num_stripes;
1329 free_extent_map(em);
1330
1331 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1332 }
1333
1334 /*
1335 * Mark block group @cache read-only, so later write won't happen to block
1336 * group @cache.
1337 *
1338 * If @force is not set, this function will only mark the block group readonly
1339 * if we have enough free space (1M) in other metadata/system block groups.
1340 * If @force is not set, this function will mark the block group readonly
1341 * without checking free space.
1342 *
1343 * NOTE: This function doesn't care if other block groups can contain all the
1344 * data in this block group. That check should be done by relocation routine,
1345 * not this function.
1346 */
inc_block_group_ro(struct btrfs_block_group * cache,int force)1347 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1348 {
1349 struct btrfs_space_info *sinfo = cache->space_info;
1350 u64 num_bytes;
1351 int ret = -ENOSPC;
1352
1353 spin_lock(&sinfo->lock);
1354 spin_lock(&cache->lock);
1355
1356 if (cache->swap_extents) {
1357 ret = -ETXTBSY;
1358 goto out;
1359 }
1360
1361 if (cache->ro) {
1362 cache->ro++;
1363 ret = 0;
1364 goto out;
1365 }
1366
1367 num_bytes = cache->length - cache->reserved - cache->pinned -
1368 cache->bytes_super - cache->zone_unusable - cache->used;
1369
1370 /*
1371 * Data never overcommits, even in mixed mode, so do just the straight
1372 * check of left over space in how much we have allocated.
1373 */
1374 if (force) {
1375 ret = 0;
1376 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1377 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1378
1379 /*
1380 * Here we make sure if we mark this bg RO, we still have enough
1381 * free space as buffer.
1382 */
1383 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1384 ret = 0;
1385 } else {
1386 /*
1387 * We overcommit metadata, so we need to do the
1388 * btrfs_can_overcommit check here, and we need to pass in
1389 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1390 * leeway to allow us to mark this block group as read only.
1391 */
1392 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1393 BTRFS_RESERVE_NO_FLUSH))
1394 ret = 0;
1395 }
1396
1397 if (!ret) {
1398 sinfo->bytes_readonly += num_bytes;
1399 if (btrfs_is_zoned(cache->fs_info)) {
1400 /* Migrate zone_unusable bytes to readonly */
1401 sinfo->bytes_readonly += cache->zone_unusable;
1402 btrfs_space_info_update_bytes_zone_unusable(cache->fs_info, sinfo,
1403 -cache->zone_unusable);
1404 cache->zone_unusable = 0;
1405 }
1406 cache->ro++;
1407 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1408 }
1409 out:
1410 spin_unlock(&cache->lock);
1411 spin_unlock(&sinfo->lock);
1412 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1413 btrfs_info(cache->fs_info,
1414 "unable to make block group %llu ro", cache->start);
1415 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1416 }
1417 return ret;
1418 }
1419
clean_pinned_extents(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)1420 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1421 struct btrfs_block_group *bg)
1422 {
1423 struct btrfs_fs_info *fs_info = bg->fs_info;
1424 struct btrfs_transaction *prev_trans = NULL;
1425 const u64 start = bg->start;
1426 const u64 end = start + bg->length - 1;
1427 int ret;
1428
1429 spin_lock(&fs_info->trans_lock);
1430 if (trans->transaction->list.prev != &fs_info->trans_list) {
1431 prev_trans = list_last_entry(&trans->transaction->list,
1432 struct btrfs_transaction, list);
1433 refcount_inc(&prev_trans->use_count);
1434 }
1435 spin_unlock(&fs_info->trans_lock);
1436
1437 /*
1438 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1439 * btrfs_finish_extent_commit(). If we are at transaction N, another
1440 * task might be running finish_extent_commit() for the previous
1441 * transaction N - 1, and have seen a range belonging to the block
1442 * group in pinned_extents before we were able to clear the whole block
1443 * group range from pinned_extents. This means that task can lookup for
1444 * the block group after we unpinned it from pinned_extents and removed
1445 * it, leading to a BUG_ON() at unpin_extent_range().
1446 */
1447 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1448 if (prev_trans) {
1449 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1450 EXTENT_DIRTY);
1451 if (ret)
1452 goto out;
1453 }
1454
1455 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1456 EXTENT_DIRTY);
1457 out:
1458 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1459 if (prev_trans)
1460 btrfs_put_transaction(prev_trans);
1461
1462 return ret == 0;
1463 }
1464
1465 /*
1466 * Process the unused_bgs list and remove any that don't have any allocated
1467 * space inside of them.
1468 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1469 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1470 {
1471 LIST_HEAD(retry_list);
1472 struct btrfs_block_group *block_group;
1473 struct btrfs_space_info *space_info;
1474 struct btrfs_trans_handle *trans;
1475 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1476 int ret = 0;
1477
1478 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1479 return;
1480
1481 if (btrfs_fs_closing(fs_info))
1482 return;
1483
1484 /*
1485 * Long running balances can keep us blocked here for eternity, so
1486 * simply skip deletion if we're unable to get the mutex.
1487 */
1488 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1489 return;
1490
1491 spin_lock(&fs_info->unused_bgs_lock);
1492 while (!list_empty(&fs_info->unused_bgs)) {
1493 u64 used;
1494 int trimming;
1495
1496 block_group = list_first_entry(&fs_info->unused_bgs,
1497 struct btrfs_block_group,
1498 bg_list);
1499 list_del_init(&block_group->bg_list);
1500
1501 space_info = block_group->space_info;
1502
1503 if (ret || btrfs_mixed_space_info(space_info)) {
1504 btrfs_put_block_group(block_group);
1505 continue;
1506 }
1507 spin_unlock(&fs_info->unused_bgs_lock);
1508
1509 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1510
1511 /* Don't want to race with allocators so take the groups_sem */
1512 down_write(&space_info->groups_sem);
1513
1514 /*
1515 * Async discard moves the final block group discard to be prior
1516 * to the unused_bgs code path. Therefore, if it's not fully
1517 * trimmed, punt it back to the async discard lists.
1518 */
1519 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1520 !btrfs_is_free_space_trimmed(block_group)) {
1521 trace_btrfs_skip_unused_block_group(block_group);
1522 up_write(&space_info->groups_sem);
1523 /* Requeue if we failed because of async discard */
1524 btrfs_discard_queue_work(&fs_info->discard_ctl,
1525 block_group);
1526 goto next;
1527 }
1528
1529 spin_lock(&space_info->lock);
1530 spin_lock(&block_group->lock);
1531 if (btrfs_is_block_group_used(block_group) || block_group->ro ||
1532 list_is_singular(&block_group->list)) {
1533 /*
1534 * We want to bail if we made new allocations or have
1535 * outstanding allocations in this block group. We do
1536 * the ro check in case balance is currently acting on
1537 * this block group.
1538 */
1539 trace_btrfs_skip_unused_block_group(block_group);
1540 spin_unlock(&block_group->lock);
1541 spin_unlock(&space_info->lock);
1542 up_write(&space_info->groups_sem);
1543 goto next;
1544 }
1545
1546 /*
1547 * The block group may be unused but there may be space reserved
1548 * accounting with the existence of that block group, that is,
1549 * space_info->bytes_may_use was incremented by a task but no
1550 * space was yet allocated from the block group by the task.
1551 * That space may or may not be allocated, as we are generally
1552 * pessimistic about space reservation for metadata as well as
1553 * for data when using compression (as we reserve space based on
1554 * the worst case, when data can't be compressed, and before
1555 * actually attempting compression, before starting writeback).
1556 *
1557 * So check if the total space of the space_info minus the size
1558 * of this block group is less than the used space of the
1559 * space_info - if that's the case, then it means we have tasks
1560 * that might be relying on the block group in order to allocate
1561 * extents, and add back the block group to the unused list when
1562 * we finish, so that we retry later in case no tasks ended up
1563 * needing to allocate extents from the block group.
1564 */
1565 used = btrfs_space_info_used(space_info, true);
1566 if (space_info->total_bytes - block_group->length < used &&
1567 block_group->zone_unusable < block_group->length) {
1568 /*
1569 * Add a reference for the list, compensate for the ref
1570 * drop under the "next" label for the
1571 * fs_info->unused_bgs list.
1572 */
1573 btrfs_get_block_group(block_group);
1574 list_add_tail(&block_group->bg_list, &retry_list);
1575
1576 trace_btrfs_skip_unused_block_group(block_group);
1577 spin_unlock(&block_group->lock);
1578 spin_unlock(&space_info->lock);
1579 up_write(&space_info->groups_sem);
1580 goto next;
1581 }
1582
1583 spin_unlock(&block_group->lock);
1584 spin_unlock(&space_info->lock);
1585
1586 /* We don't want to force the issue, only flip if it's ok. */
1587 ret = inc_block_group_ro(block_group, 0);
1588 up_write(&space_info->groups_sem);
1589 if (ret < 0) {
1590 ret = 0;
1591 goto next;
1592 }
1593
1594 ret = btrfs_zone_finish(block_group);
1595 if (ret < 0) {
1596 btrfs_dec_block_group_ro(block_group);
1597 if (ret == -EAGAIN)
1598 ret = 0;
1599 goto next;
1600 }
1601
1602 /*
1603 * Want to do this before we do anything else so we can recover
1604 * properly if we fail to join the transaction.
1605 */
1606 trans = btrfs_start_trans_remove_block_group(fs_info,
1607 block_group->start);
1608 if (IS_ERR(trans)) {
1609 btrfs_dec_block_group_ro(block_group);
1610 ret = PTR_ERR(trans);
1611 goto next;
1612 }
1613
1614 /*
1615 * We could have pending pinned extents for this block group,
1616 * just delete them, we don't care about them anymore.
1617 */
1618 if (!clean_pinned_extents(trans, block_group)) {
1619 btrfs_dec_block_group_ro(block_group);
1620 goto end_trans;
1621 }
1622
1623 /*
1624 * At this point, the block_group is read only and should fail
1625 * new allocations. However, btrfs_finish_extent_commit() can
1626 * cause this block_group to be placed back on the discard
1627 * lists because now the block_group isn't fully discarded.
1628 * Bail here and try again later after discarding everything.
1629 */
1630 spin_lock(&fs_info->discard_ctl.lock);
1631 if (!list_empty(&block_group->discard_list)) {
1632 spin_unlock(&fs_info->discard_ctl.lock);
1633 btrfs_dec_block_group_ro(block_group);
1634 btrfs_discard_queue_work(&fs_info->discard_ctl,
1635 block_group);
1636 goto end_trans;
1637 }
1638 spin_unlock(&fs_info->discard_ctl.lock);
1639
1640 /* Reset pinned so btrfs_put_block_group doesn't complain */
1641 spin_lock(&space_info->lock);
1642 spin_lock(&block_group->lock);
1643
1644 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1645 -block_group->pinned);
1646 space_info->bytes_readonly += block_group->pinned;
1647 block_group->pinned = 0;
1648
1649 spin_unlock(&block_group->lock);
1650 spin_unlock(&space_info->lock);
1651
1652 /*
1653 * The normal path here is an unused block group is passed here,
1654 * then trimming is handled in the transaction commit path.
1655 * Async discard interposes before this to do the trimming
1656 * before coming down the unused block group path as trimming
1657 * will no longer be done later in the transaction commit path.
1658 */
1659 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1660 goto flip_async;
1661
1662 /*
1663 * DISCARD can flip during remount. On zoned filesystems, we
1664 * need to reset sequential-required zones.
1665 */
1666 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1667 btrfs_is_zoned(fs_info);
1668
1669 /* Implicit trim during transaction commit. */
1670 if (trimming)
1671 btrfs_freeze_block_group(block_group);
1672
1673 /*
1674 * Btrfs_remove_chunk will abort the transaction if things go
1675 * horribly wrong.
1676 */
1677 ret = btrfs_remove_chunk(trans, block_group->start);
1678
1679 if (ret) {
1680 if (trimming)
1681 btrfs_unfreeze_block_group(block_group);
1682 goto end_trans;
1683 }
1684
1685 /*
1686 * If we're not mounted with -odiscard, we can just forget
1687 * about this block group. Otherwise we'll need to wait
1688 * until transaction commit to do the actual discard.
1689 */
1690 if (trimming) {
1691 spin_lock(&fs_info->unused_bgs_lock);
1692 /*
1693 * A concurrent scrub might have added us to the list
1694 * fs_info->unused_bgs, so use a list_move operation
1695 * to add the block group to the deleted_bgs list.
1696 */
1697 list_move(&block_group->bg_list,
1698 &trans->transaction->deleted_bgs);
1699 spin_unlock(&fs_info->unused_bgs_lock);
1700 btrfs_get_block_group(block_group);
1701 }
1702 end_trans:
1703 btrfs_end_transaction(trans);
1704 next:
1705 btrfs_put_block_group(block_group);
1706 spin_lock(&fs_info->unused_bgs_lock);
1707 }
1708 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1709 spin_unlock(&fs_info->unused_bgs_lock);
1710 mutex_unlock(&fs_info->reclaim_bgs_lock);
1711 return;
1712
1713 flip_async:
1714 btrfs_end_transaction(trans);
1715 spin_lock(&fs_info->unused_bgs_lock);
1716 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1717 spin_unlock(&fs_info->unused_bgs_lock);
1718 mutex_unlock(&fs_info->reclaim_bgs_lock);
1719 btrfs_put_block_group(block_group);
1720 btrfs_discard_punt_unused_bgs_list(fs_info);
1721 }
1722
btrfs_mark_bg_unused(struct btrfs_block_group * bg)1723 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1724 {
1725 struct btrfs_fs_info *fs_info = bg->fs_info;
1726
1727 spin_lock(&fs_info->unused_bgs_lock);
1728 if (list_empty(&bg->bg_list)) {
1729 btrfs_get_block_group(bg);
1730 trace_btrfs_add_unused_block_group(bg);
1731 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1732 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1733 /* Pull out the block group from the reclaim_bgs list. */
1734 trace_btrfs_add_unused_block_group(bg);
1735 list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1736 }
1737 spin_unlock(&fs_info->unused_bgs_lock);
1738 }
1739
1740 /*
1741 * We want block groups with a low number of used bytes to be in the beginning
1742 * of the list, so they will get reclaimed first.
1743 */
reclaim_bgs_cmp(void * unused,const struct list_head * a,const struct list_head * b)1744 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1745 const struct list_head *b)
1746 {
1747 const struct btrfs_block_group *bg1, *bg2;
1748
1749 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1750 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1751
1752 return bg1->used > bg2->used;
1753 }
1754
btrfs_should_reclaim(struct btrfs_fs_info * fs_info)1755 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1756 {
1757 if (btrfs_is_zoned(fs_info))
1758 return btrfs_zoned_should_reclaim(fs_info);
1759 return true;
1760 }
1761
should_reclaim_block_group(struct btrfs_block_group * bg,u64 bytes_freed)1762 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1763 {
1764 const struct btrfs_space_info *space_info = bg->space_info;
1765 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1766 const u64 new_val = bg->used;
1767 const u64 old_val = new_val + bytes_freed;
1768 u64 thresh;
1769
1770 if (reclaim_thresh == 0)
1771 return false;
1772
1773 thresh = mult_perc(bg->length, reclaim_thresh);
1774
1775 /*
1776 * If we were below the threshold before don't reclaim, we are likely a
1777 * brand new block group and we don't want to relocate new block groups.
1778 */
1779 if (old_val < thresh)
1780 return false;
1781 if (new_val >= thresh)
1782 return false;
1783 return true;
1784 }
1785
btrfs_reclaim_bgs_work(struct work_struct * work)1786 void btrfs_reclaim_bgs_work(struct work_struct *work)
1787 {
1788 struct btrfs_fs_info *fs_info =
1789 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1790 struct btrfs_block_group *bg;
1791 struct btrfs_space_info *space_info;
1792 LIST_HEAD(retry_list);
1793
1794 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1795 return;
1796
1797 if (btrfs_fs_closing(fs_info))
1798 return;
1799
1800 if (!btrfs_should_reclaim(fs_info))
1801 return;
1802
1803 sb_start_write(fs_info->sb);
1804
1805 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1806 sb_end_write(fs_info->sb);
1807 return;
1808 }
1809
1810 /*
1811 * Long running balances can keep us blocked here for eternity, so
1812 * simply skip reclaim if we're unable to get the mutex.
1813 */
1814 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1815 btrfs_exclop_finish(fs_info);
1816 sb_end_write(fs_info->sb);
1817 return;
1818 }
1819
1820 spin_lock(&fs_info->unused_bgs_lock);
1821 /*
1822 * Sort happens under lock because we can't simply splice it and sort.
1823 * The block groups might still be in use and reachable via bg_list,
1824 * and their presence in the reclaim_bgs list must be preserved.
1825 */
1826 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1827 while (!list_empty(&fs_info->reclaim_bgs)) {
1828 u64 zone_unusable;
1829 int ret = 0;
1830
1831 bg = list_first_entry(&fs_info->reclaim_bgs,
1832 struct btrfs_block_group,
1833 bg_list);
1834 list_del_init(&bg->bg_list);
1835
1836 space_info = bg->space_info;
1837 spin_unlock(&fs_info->unused_bgs_lock);
1838
1839 /* Don't race with allocators so take the groups_sem */
1840 down_write(&space_info->groups_sem);
1841
1842 spin_lock(&bg->lock);
1843 if (bg->reserved || bg->pinned || bg->ro) {
1844 /*
1845 * We want to bail if we made new allocations or have
1846 * outstanding allocations in this block group. We do
1847 * the ro check in case balance is currently acting on
1848 * this block group.
1849 */
1850 spin_unlock(&bg->lock);
1851 up_write(&space_info->groups_sem);
1852 goto next;
1853 }
1854 if (bg->used == 0) {
1855 /*
1856 * It is possible that we trigger relocation on a block
1857 * group as its extents are deleted and it first goes
1858 * below the threshold, then shortly after goes empty.
1859 *
1860 * In this case, relocating it does delete it, but has
1861 * some overhead in relocation specific metadata, looking
1862 * for the non-existent extents and running some extra
1863 * transactions, which we can avoid by using one of the
1864 * other mechanisms for dealing with empty block groups.
1865 */
1866 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1867 btrfs_mark_bg_unused(bg);
1868 spin_unlock(&bg->lock);
1869 up_write(&space_info->groups_sem);
1870 goto next;
1871
1872 }
1873 /*
1874 * The block group might no longer meet the reclaim condition by
1875 * the time we get around to reclaiming it, so to avoid
1876 * reclaiming overly full block_groups, skip reclaiming them.
1877 *
1878 * Since the decision making process also depends on the amount
1879 * being freed, pass in a fake giant value to skip that extra
1880 * check, which is more meaningful when adding to the list in
1881 * the first place.
1882 */
1883 if (!should_reclaim_block_group(bg, bg->length)) {
1884 spin_unlock(&bg->lock);
1885 up_write(&space_info->groups_sem);
1886 goto next;
1887 }
1888 spin_unlock(&bg->lock);
1889
1890 /*
1891 * Get out fast, in case we're read-only or unmounting the
1892 * filesystem. It is OK to drop block groups from the list even
1893 * for the read-only case. As we did sb_start_write(),
1894 * "mount -o remount,ro" won't happen and read-only filesystem
1895 * means it is forced read-only due to a fatal error. So, it
1896 * never gets back to read-write to let us reclaim again.
1897 */
1898 if (btrfs_need_cleaner_sleep(fs_info)) {
1899 up_write(&space_info->groups_sem);
1900 goto next;
1901 }
1902
1903 /*
1904 * Cache the zone_unusable value before turning the block group
1905 * to read only. As soon as the blog group is read only it's
1906 * zone_unusable value gets moved to the block group's read-only
1907 * bytes and isn't available for calculations anymore.
1908 */
1909 zone_unusable = bg->zone_unusable;
1910 ret = inc_block_group_ro(bg, 0);
1911 up_write(&space_info->groups_sem);
1912 if (ret < 0)
1913 goto next;
1914
1915 btrfs_info(fs_info,
1916 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1917 bg->start,
1918 div64_u64(bg->used * 100, bg->length),
1919 div64_u64(zone_unusable * 100, bg->length));
1920 trace_btrfs_reclaim_block_group(bg);
1921 ret = btrfs_relocate_chunk(fs_info, bg->start);
1922 if (ret) {
1923 btrfs_dec_block_group_ro(bg);
1924 btrfs_err(fs_info, "error relocating chunk %llu",
1925 bg->start);
1926 }
1927
1928 next:
1929 if (ret) {
1930 /* Refcount held by the reclaim_bgs list after splice. */
1931 spin_lock(&fs_info->unused_bgs_lock);
1932 /*
1933 * This block group might be added to the unused list
1934 * during the above process. Move it back to the
1935 * reclaim list otherwise.
1936 */
1937 if (list_empty(&bg->bg_list)) {
1938 btrfs_get_block_group(bg);
1939 list_add_tail(&bg->bg_list, &retry_list);
1940 }
1941 spin_unlock(&fs_info->unused_bgs_lock);
1942 }
1943 btrfs_put_block_group(bg);
1944
1945 mutex_unlock(&fs_info->reclaim_bgs_lock);
1946 /*
1947 * Reclaiming all the block groups in the list can take really
1948 * long. Prioritize cleaning up unused block groups.
1949 */
1950 btrfs_delete_unused_bgs(fs_info);
1951 /*
1952 * If we are interrupted by a balance, we can just bail out. The
1953 * cleaner thread restart again if necessary.
1954 */
1955 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1956 goto end;
1957 spin_lock(&fs_info->unused_bgs_lock);
1958 }
1959 spin_unlock(&fs_info->unused_bgs_lock);
1960 mutex_unlock(&fs_info->reclaim_bgs_lock);
1961 end:
1962 spin_lock(&fs_info->unused_bgs_lock);
1963 list_splice_tail(&retry_list, &fs_info->reclaim_bgs);
1964 spin_unlock(&fs_info->unused_bgs_lock);
1965 btrfs_exclop_finish(fs_info);
1966 sb_end_write(fs_info->sb);
1967 }
1968
btrfs_reclaim_bgs(struct btrfs_fs_info * fs_info)1969 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1970 {
1971 spin_lock(&fs_info->unused_bgs_lock);
1972 if (!list_empty(&fs_info->reclaim_bgs))
1973 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1974 spin_unlock(&fs_info->unused_bgs_lock);
1975 }
1976
btrfs_mark_bg_to_reclaim(struct btrfs_block_group * bg)1977 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1978 {
1979 struct btrfs_fs_info *fs_info = bg->fs_info;
1980
1981 spin_lock(&fs_info->unused_bgs_lock);
1982 if (list_empty(&bg->bg_list)) {
1983 btrfs_get_block_group(bg);
1984 trace_btrfs_add_reclaim_block_group(bg);
1985 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1986 }
1987 spin_unlock(&fs_info->unused_bgs_lock);
1988 }
1989
read_bg_from_eb(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_path * path)1990 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1991 struct btrfs_path *path)
1992 {
1993 struct extent_map_tree *em_tree;
1994 struct extent_map *em;
1995 struct btrfs_block_group_item bg;
1996 struct extent_buffer *leaf;
1997 int slot;
1998 u64 flags;
1999 int ret = 0;
2000
2001 slot = path->slots[0];
2002 leaf = path->nodes[0];
2003
2004 em_tree = &fs_info->mapping_tree;
2005 read_lock(&em_tree->lock);
2006 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
2007 read_unlock(&em_tree->lock);
2008 if (!em) {
2009 btrfs_err(fs_info,
2010 "logical %llu len %llu found bg but no related chunk",
2011 key->objectid, key->offset);
2012 return -ENOENT;
2013 }
2014
2015 if (em->start != key->objectid || em->len != key->offset) {
2016 btrfs_err(fs_info,
2017 "block group %llu len %llu mismatch with chunk %llu len %llu",
2018 key->objectid, key->offset, em->start, em->len);
2019 ret = -EUCLEAN;
2020 goto out_free_em;
2021 }
2022
2023 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
2024 sizeof(bg));
2025 flags = btrfs_stack_block_group_flags(&bg) &
2026 BTRFS_BLOCK_GROUP_TYPE_MASK;
2027
2028 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2029 btrfs_err(fs_info,
2030 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2031 key->objectid, key->offset, flags,
2032 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
2033 ret = -EUCLEAN;
2034 }
2035
2036 out_free_em:
2037 free_extent_map(em);
2038 return ret;
2039 }
2040
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)2041 static int find_first_block_group(struct btrfs_fs_info *fs_info,
2042 struct btrfs_path *path,
2043 struct btrfs_key *key)
2044 {
2045 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2046 int ret;
2047 struct btrfs_key found_key;
2048
2049 btrfs_for_each_slot(root, key, &found_key, path, ret) {
2050 if (found_key.objectid >= key->objectid &&
2051 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
2052 return read_bg_from_eb(fs_info, &found_key, path);
2053 }
2054 }
2055 return ret;
2056 }
2057
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)2058 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2059 {
2060 u64 extra_flags = chunk_to_extended(flags) &
2061 BTRFS_EXTENDED_PROFILE_MASK;
2062
2063 write_seqlock(&fs_info->profiles_lock);
2064 if (flags & BTRFS_BLOCK_GROUP_DATA)
2065 fs_info->avail_data_alloc_bits |= extra_flags;
2066 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2067 fs_info->avail_metadata_alloc_bits |= extra_flags;
2068 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2069 fs_info->avail_system_alloc_bits |= extra_flags;
2070 write_sequnlock(&fs_info->profiles_lock);
2071 }
2072
2073 /*
2074 * Map a physical disk address to a list of logical addresses.
2075 *
2076 * @fs_info: the filesystem
2077 * @chunk_start: logical address of block group
2078 * @physical: physical address to map to logical addresses
2079 * @logical: return array of logical addresses which map to @physical
2080 * @naddrs: length of @logical
2081 * @stripe_len: size of IO stripe for the given block group
2082 *
2083 * Maps a particular @physical disk address to a list of @logical addresses.
2084 * Used primarily to exclude those portions of a block group that contain super
2085 * block copies.
2086 */
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)2087 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2088 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2089 {
2090 struct extent_map *em;
2091 struct map_lookup *map;
2092 u64 *buf;
2093 u64 bytenr;
2094 u64 data_stripe_length;
2095 u64 io_stripe_size;
2096 int i, nr = 0;
2097 int ret = 0;
2098
2099 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2100 if (IS_ERR(em))
2101 return -EIO;
2102
2103 map = em->map_lookup;
2104 data_stripe_length = em->orig_block_len;
2105 io_stripe_size = BTRFS_STRIPE_LEN;
2106 chunk_start = em->start;
2107
2108 /* For RAID5/6 adjust to a full IO stripe length */
2109 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2110 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2111
2112 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2113 if (!buf) {
2114 ret = -ENOMEM;
2115 goto out;
2116 }
2117
2118 for (i = 0; i < map->num_stripes; i++) {
2119 bool already_inserted = false;
2120 u32 stripe_nr;
2121 u32 offset;
2122 int j;
2123
2124 if (!in_range(physical, map->stripes[i].physical,
2125 data_stripe_length))
2126 continue;
2127
2128 stripe_nr = (physical - map->stripes[i].physical) >>
2129 BTRFS_STRIPE_LEN_SHIFT;
2130 offset = (physical - map->stripes[i].physical) &
2131 BTRFS_STRIPE_LEN_MASK;
2132
2133 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2134 BTRFS_BLOCK_GROUP_RAID10))
2135 stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2136 map->sub_stripes);
2137 /*
2138 * The remaining case would be for RAID56, multiply by
2139 * nr_data_stripes(). Alternatively, just use rmap_len below
2140 * instead of map->stripe_len
2141 */
2142 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2143
2144 /* Ensure we don't add duplicate addresses */
2145 for (j = 0; j < nr; j++) {
2146 if (buf[j] == bytenr) {
2147 already_inserted = true;
2148 break;
2149 }
2150 }
2151
2152 if (!already_inserted)
2153 buf[nr++] = bytenr;
2154 }
2155
2156 *logical = buf;
2157 *naddrs = nr;
2158 *stripe_len = io_stripe_size;
2159 out:
2160 free_extent_map(em);
2161 return ret;
2162 }
2163
exclude_super_stripes(struct btrfs_block_group * cache)2164 static int exclude_super_stripes(struct btrfs_block_group *cache)
2165 {
2166 struct btrfs_fs_info *fs_info = cache->fs_info;
2167 const bool zoned = btrfs_is_zoned(fs_info);
2168 u64 bytenr;
2169 u64 *logical;
2170 int stripe_len;
2171 int i, nr, ret;
2172
2173 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2174 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2175 cache->bytes_super += stripe_len;
2176 ret = set_extent_bit(&fs_info->excluded_extents, cache->start,
2177 cache->start + stripe_len - 1,
2178 EXTENT_UPTODATE, NULL);
2179 if (ret)
2180 return ret;
2181 }
2182
2183 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2184 bytenr = btrfs_sb_offset(i);
2185 ret = btrfs_rmap_block(fs_info, cache->start,
2186 bytenr, &logical, &nr, &stripe_len);
2187 if (ret)
2188 return ret;
2189
2190 /* Shouldn't have super stripes in sequential zones */
2191 if (zoned && nr) {
2192 kfree(logical);
2193 btrfs_err(fs_info,
2194 "zoned: block group %llu must not contain super block",
2195 cache->start);
2196 return -EUCLEAN;
2197 }
2198
2199 while (nr--) {
2200 u64 len = min_t(u64, stripe_len,
2201 cache->start + cache->length - logical[nr]);
2202
2203 cache->bytes_super += len;
2204 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr],
2205 logical[nr] + len - 1,
2206 EXTENT_UPTODATE, NULL);
2207 if (ret) {
2208 kfree(logical);
2209 return ret;
2210 }
2211 }
2212
2213 kfree(logical);
2214 }
2215 return 0;
2216 }
2217
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start)2218 static struct btrfs_block_group *btrfs_create_block_group_cache(
2219 struct btrfs_fs_info *fs_info, u64 start)
2220 {
2221 struct btrfs_block_group *cache;
2222
2223 cache = kzalloc(sizeof(*cache), GFP_NOFS);
2224 if (!cache)
2225 return NULL;
2226
2227 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2228 GFP_NOFS);
2229 if (!cache->free_space_ctl) {
2230 kfree(cache);
2231 return NULL;
2232 }
2233
2234 cache->start = start;
2235
2236 cache->fs_info = fs_info;
2237 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2238
2239 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2240
2241 refcount_set(&cache->refs, 1);
2242 spin_lock_init(&cache->lock);
2243 init_rwsem(&cache->data_rwsem);
2244 INIT_LIST_HEAD(&cache->list);
2245 INIT_LIST_HEAD(&cache->cluster_list);
2246 INIT_LIST_HEAD(&cache->bg_list);
2247 INIT_LIST_HEAD(&cache->ro_list);
2248 INIT_LIST_HEAD(&cache->discard_list);
2249 INIT_LIST_HEAD(&cache->dirty_list);
2250 INIT_LIST_HEAD(&cache->io_list);
2251 INIT_LIST_HEAD(&cache->active_bg_list);
2252 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2253 atomic_set(&cache->frozen, 0);
2254 mutex_init(&cache->free_space_lock);
2255
2256 return cache;
2257 }
2258
2259 /*
2260 * Iterate all chunks and verify that each of them has the corresponding block
2261 * group
2262 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)2263 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2264 {
2265 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2266 struct extent_map *em;
2267 struct btrfs_block_group *bg;
2268 u64 start = 0;
2269 int ret = 0;
2270
2271 while (1) {
2272 read_lock(&map_tree->lock);
2273 /*
2274 * lookup_extent_mapping will return the first extent map
2275 * intersecting the range, so setting @len to 1 is enough to
2276 * get the first chunk.
2277 */
2278 em = lookup_extent_mapping(map_tree, start, 1);
2279 read_unlock(&map_tree->lock);
2280 if (!em)
2281 break;
2282
2283 bg = btrfs_lookup_block_group(fs_info, em->start);
2284 if (!bg) {
2285 btrfs_err(fs_info,
2286 "chunk start=%llu len=%llu doesn't have corresponding block group",
2287 em->start, em->len);
2288 ret = -EUCLEAN;
2289 free_extent_map(em);
2290 break;
2291 }
2292 if (bg->start != em->start || bg->length != em->len ||
2293 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2294 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2295 btrfs_err(fs_info,
2296 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2297 em->start, em->len,
2298 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2299 bg->start, bg->length,
2300 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2301 ret = -EUCLEAN;
2302 free_extent_map(em);
2303 btrfs_put_block_group(bg);
2304 break;
2305 }
2306 start = em->start + em->len;
2307 free_extent_map(em);
2308 btrfs_put_block_group(bg);
2309 }
2310 return ret;
2311 }
2312
read_one_block_group(struct btrfs_fs_info * info,struct btrfs_block_group_item * bgi,const struct btrfs_key * key,int need_clear)2313 static int read_one_block_group(struct btrfs_fs_info *info,
2314 struct btrfs_block_group_item *bgi,
2315 const struct btrfs_key *key,
2316 int need_clear)
2317 {
2318 struct btrfs_block_group *cache;
2319 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2320 int ret;
2321
2322 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2323
2324 cache = btrfs_create_block_group_cache(info, key->objectid);
2325 if (!cache)
2326 return -ENOMEM;
2327
2328 cache->length = key->offset;
2329 cache->used = btrfs_stack_block_group_used(bgi);
2330 cache->commit_used = cache->used;
2331 cache->flags = btrfs_stack_block_group_flags(bgi);
2332 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2333
2334 set_free_space_tree_thresholds(cache);
2335
2336 if (need_clear) {
2337 /*
2338 * When we mount with old space cache, we need to
2339 * set BTRFS_DC_CLEAR and set dirty flag.
2340 *
2341 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2342 * truncate the old free space cache inode and
2343 * setup a new one.
2344 * b) Setting 'dirty flag' makes sure that we flush
2345 * the new space cache info onto disk.
2346 */
2347 if (btrfs_test_opt(info, SPACE_CACHE))
2348 cache->disk_cache_state = BTRFS_DC_CLEAR;
2349 }
2350 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2351 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2352 btrfs_err(info,
2353 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2354 cache->start);
2355 ret = -EINVAL;
2356 goto error;
2357 }
2358
2359 ret = btrfs_load_block_group_zone_info(cache, false);
2360 if (ret) {
2361 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2362 cache->start);
2363 goto error;
2364 }
2365
2366 /*
2367 * We need to exclude the super stripes now so that the space info has
2368 * super bytes accounted for, otherwise we'll think we have more space
2369 * than we actually do.
2370 */
2371 ret = exclude_super_stripes(cache);
2372 if (ret) {
2373 /* We may have excluded something, so call this just in case. */
2374 btrfs_free_excluded_extents(cache);
2375 goto error;
2376 }
2377
2378 /*
2379 * For zoned filesystem, space after the allocation offset is the only
2380 * free space for a block group. So, we don't need any caching work.
2381 * btrfs_calc_zone_unusable() will set the amount of free space and
2382 * zone_unusable space.
2383 *
2384 * For regular filesystem, check for two cases, either we are full, and
2385 * therefore don't need to bother with the caching work since we won't
2386 * find any space, or we are empty, and we can just add all the space
2387 * in and be done with it. This saves us _a_lot_ of time, particularly
2388 * in the full case.
2389 */
2390 if (btrfs_is_zoned(info)) {
2391 btrfs_calc_zone_unusable(cache);
2392 /* Should not have any excluded extents. Just in case, though. */
2393 btrfs_free_excluded_extents(cache);
2394 } else if (cache->length == cache->used) {
2395 cache->cached = BTRFS_CACHE_FINISHED;
2396 btrfs_free_excluded_extents(cache);
2397 } else if (cache->used == 0) {
2398 cache->cached = BTRFS_CACHE_FINISHED;
2399 ret = btrfs_add_new_free_space(cache, cache->start,
2400 cache->start + cache->length, NULL);
2401 btrfs_free_excluded_extents(cache);
2402 if (ret)
2403 goto error;
2404 }
2405
2406 ret = btrfs_add_block_group_cache(info, cache);
2407 if (ret) {
2408 btrfs_remove_free_space_cache(cache);
2409 goto error;
2410 }
2411 trace_btrfs_add_block_group(info, cache, 0);
2412 btrfs_add_bg_to_space_info(info, cache);
2413
2414 set_avail_alloc_bits(info, cache->flags);
2415 if (btrfs_chunk_writeable(info, cache->start)) {
2416 if (cache->used == 0) {
2417 ASSERT(list_empty(&cache->bg_list));
2418 if (btrfs_test_opt(info, DISCARD_ASYNC))
2419 btrfs_discard_queue_work(&info->discard_ctl, cache);
2420 else
2421 btrfs_mark_bg_unused(cache);
2422 }
2423 } else {
2424 inc_block_group_ro(cache, 1);
2425 }
2426
2427 return 0;
2428 error:
2429 btrfs_put_block_group(cache);
2430 return ret;
2431 }
2432
fill_dummy_bgs(struct btrfs_fs_info * fs_info)2433 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2434 {
2435 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2436 struct rb_node *node;
2437 int ret = 0;
2438
2439 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2440 struct extent_map *em;
2441 struct map_lookup *map;
2442 struct btrfs_block_group *bg;
2443
2444 em = rb_entry(node, struct extent_map, rb_node);
2445 map = em->map_lookup;
2446 bg = btrfs_create_block_group_cache(fs_info, em->start);
2447 if (!bg) {
2448 ret = -ENOMEM;
2449 break;
2450 }
2451
2452 /* Fill dummy cache as FULL */
2453 bg->length = em->len;
2454 bg->flags = map->type;
2455 bg->cached = BTRFS_CACHE_FINISHED;
2456 bg->used = em->len;
2457 bg->flags = map->type;
2458 ret = btrfs_add_block_group_cache(fs_info, bg);
2459 /*
2460 * We may have some valid block group cache added already, in
2461 * that case we skip to the next one.
2462 */
2463 if (ret == -EEXIST) {
2464 ret = 0;
2465 btrfs_put_block_group(bg);
2466 continue;
2467 }
2468
2469 if (ret) {
2470 btrfs_remove_free_space_cache(bg);
2471 btrfs_put_block_group(bg);
2472 break;
2473 }
2474
2475 btrfs_add_bg_to_space_info(fs_info, bg);
2476
2477 set_avail_alloc_bits(fs_info, bg->flags);
2478 }
2479 if (!ret)
2480 btrfs_init_global_block_rsv(fs_info);
2481 return ret;
2482 }
2483
btrfs_read_block_groups(struct btrfs_fs_info * info)2484 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2485 {
2486 struct btrfs_root *root = btrfs_block_group_root(info);
2487 struct btrfs_path *path;
2488 int ret;
2489 struct btrfs_block_group *cache;
2490 struct btrfs_space_info *space_info;
2491 struct btrfs_key key;
2492 int need_clear = 0;
2493 u64 cache_gen;
2494
2495 /*
2496 * Either no extent root (with ibadroots rescue option) or we have
2497 * unsupported RO options. The fs can never be mounted read-write, so no
2498 * need to waste time searching block group items.
2499 *
2500 * This also allows new extent tree related changes to be RO compat,
2501 * no need for a full incompat flag.
2502 */
2503 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2504 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2505 return fill_dummy_bgs(info);
2506
2507 key.objectid = 0;
2508 key.offset = 0;
2509 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2510 path = btrfs_alloc_path();
2511 if (!path)
2512 return -ENOMEM;
2513
2514 cache_gen = btrfs_super_cache_generation(info->super_copy);
2515 if (btrfs_test_opt(info, SPACE_CACHE) &&
2516 btrfs_super_generation(info->super_copy) != cache_gen)
2517 need_clear = 1;
2518 if (btrfs_test_opt(info, CLEAR_CACHE))
2519 need_clear = 1;
2520
2521 while (1) {
2522 struct btrfs_block_group_item bgi;
2523 struct extent_buffer *leaf;
2524 int slot;
2525
2526 ret = find_first_block_group(info, path, &key);
2527 if (ret > 0)
2528 break;
2529 if (ret != 0)
2530 goto error;
2531
2532 leaf = path->nodes[0];
2533 slot = path->slots[0];
2534
2535 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2536 sizeof(bgi));
2537
2538 btrfs_item_key_to_cpu(leaf, &key, slot);
2539 btrfs_release_path(path);
2540 ret = read_one_block_group(info, &bgi, &key, need_clear);
2541 if (ret < 0)
2542 goto error;
2543 key.objectid += key.offset;
2544 key.offset = 0;
2545 }
2546 btrfs_release_path(path);
2547
2548 list_for_each_entry(space_info, &info->space_info, list) {
2549 int i;
2550
2551 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2552 if (list_empty(&space_info->block_groups[i]))
2553 continue;
2554 cache = list_first_entry(&space_info->block_groups[i],
2555 struct btrfs_block_group,
2556 list);
2557 btrfs_sysfs_add_block_group_type(cache);
2558 }
2559
2560 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2561 (BTRFS_BLOCK_GROUP_RAID10 |
2562 BTRFS_BLOCK_GROUP_RAID1_MASK |
2563 BTRFS_BLOCK_GROUP_RAID56_MASK |
2564 BTRFS_BLOCK_GROUP_DUP)))
2565 continue;
2566 /*
2567 * Avoid allocating from un-mirrored block group if there are
2568 * mirrored block groups.
2569 */
2570 list_for_each_entry(cache,
2571 &space_info->block_groups[BTRFS_RAID_RAID0],
2572 list)
2573 inc_block_group_ro(cache, 1);
2574 list_for_each_entry(cache,
2575 &space_info->block_groups[BTRFS_RAID_SINGLE],
2576 list)
2577 inc_block_group_ro(cache, 1);
2578 }
2579
2580 btrfs_init_global_block_rsv(info);
2581 ret = check_chunk_block_group_mappings(info);
2582 error:
2583 btrfs_free_path(path);
2584 /*
2585 * We've hit some error while reading the extent tree, and have
2586 * rescue=ibadroots mount option.
2587 * Try to fill the tree using dummy block groups so that the user can
2588 * continue to mount and grab their data.
2589 */
2590 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2591 ret = fill_dummy_bgs(info);
2592 return ret;
2593 }
2594
2595 /*
2596 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2597 * allocation.
2598 *
2599 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2600 * phases.
2601 */
insert_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group)2602 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2603 struct btrfs_block_group *block_group)
2604 {
2605 struct btrfs_fs_info *fs_info = trans->fs_info;
2606 struct btrfs_block_group_item bgi;
2607 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2608 struct btrfs_key key;
2609 u64 old_commit_used;
2610 int ret;
2611
2612 spin_lock(&block_group->lock);
2613 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2614 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2615 block_group->global_root_id);
2616 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2617 old_commit_used = block_group->commit_used;
2618 block_group->commit_used = block_group->used;
2619 key.objectid = block_group->start;
2620 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2621 key.offset = block_group->length;
2622 spin_unlock(&block_group->lock);
2623
2624 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2625 if (ret < 0) {
2626 spin_lock(&block_group->lock);
2627 block_group->commit_used = old_commit_used;
2628 spin_unlock(&block_group->lock);
2629 }
2630
2631 return ret;
2632 }
2633
insert_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)2634 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2635 struct btrfs_device *device, u64 chunk_offset,
2636 u64 start, u64 num_bytes)
2637 {
2638 struct btrfs_fs_info *fs_info = device->fs_info;
2639 struct btrfs_root *root = fs_info->dev_root;
2640 struct btrfs_path *path;
2641 struct btrfs_dev_extent *extent;
2642 struct extent_buffer *leaf;
2643 struct btrfs_key key;
2644 int ret;
2645
2646 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2647 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2648 path = btrfs_alloc_path();
2649 if (!path)
2650 return -ENOMEM;
2651
2652 key.objectid = device->devid;
2653 key.type = BTRFS_DEV_EXTENT_KEY;
2654 key.offset = start;
2655 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2656 if (ret)
2657 goto out;
2658
2659 leaf = path->nodes[0];
2660 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2661 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2662 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2663 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2664 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2665
2666 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2667 btrfs_mark_buffer_dirty(trans, leaf);
2668 out:
2669 btrfs_free_path(path);
2670 return ret;
2671 }
2672
2673 /*
2674 * This function belongs to phase 2.
2675 *
2676 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2677 * phases.
2678 */
insert_dev_extents(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)2679 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2680 u64 chunk_offset, u64 chunk_size)
2681 {
2682 struct btrfs_fs_info *fs_info = trans->fs_info;
2683 struct btrfs_device *device;
2684 struct extent_map *em;
2685 struct map_lookup *map;
2686 u64 dev_offset;
2687 u64 stripe_size;
2688 int i;
2689 int ret = 0;
2690
2691 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2692 if (IS_ERR(em))
2693 return PTR_ERR(em);
2694
2695 map = em->map_lookup;
2696 stripe_size = em->orig_block_len;
2697
2698 /*
2699 * Take the device list mutex to prevent races with the final phase of
2700 * a device replace operation that replaces the device object associated
2701 * with the map's stripes, because the device object's id can change
2702 * at any time during that final phase of the device replace operation
2703 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2704 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2705 * resulting in persisting a device extent item with such ID.
2706 */
2707 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2708 for (i = 0; i < map->num_stripes; i++) {
2709 device = map->stripes[i].dev;
2710 dev_offset = map->stripes[i].physical;
2711
2712 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2713 stripe_size);
2714 if (ret)
2715 break;
2716 }
2717 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2718
2719 free_extent_map(em);
2720 return ret;
2721 }
2722
2723 /*
2724 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2725 * chunk allocation.
2726 *
2727 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2728 * phases.
2729 */
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)2730 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2731 {
2732 struct btrfs_fs_info *fs_info = trans->fs_info;
2733 struct btrfs_block_group *block_group;
2734 int ret = 0;
2735
2736 while (!list_empty(&trans->new_bgs)) {
2737 int index;
2738
2739 block_group = list_first_entry(&trans->new_bgs,
2740 struct btrfs_block_group,
2741 bg_list);
2742 if (ret)
2743 goto next;
2744
2745 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2746
2747 ret = insert_block_group_item(trans, block_group);
2748 if (ret)
2749 btrfs_abort_transaction(trans, ret);
2750 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2751 &block_group->runtime_flags)) {
2752 mutex_lock(&fs_info->chunk_mutex);
2753 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2754 mutex_unlock(&fs_info->chunk_mutex);
2755 if (ret)
2756 btrfs_abort_transaction(trans, ret);
2757 }
2758 ret = insert_dev_extents(trans, block_group->start,
2759 block_group->length);
2760 if (ret)
2761 btrfs_abort_transaction(trans, ret);
2762 add_block_group_free_space(trans, block_group);
2763
2764 /*
2765 * If we restriped during balance, we may have added a new raid
2766 * type, so now add the sysfs entries when it is safe to do so.
2767 * We don't have to worry about locking here as it's handled in
2768 * btrfs_sysfs_add_block_group_type.
2769 */
2770 if (block_group->space_info->block_group_kobjs[index] == NULL)
2771 btrfs_sysfs_add_block_group_type(block_group);
2772
2773 /* Already aborted the transaction if it failed. */
2774 next:
2775 btrfs_delayed_refs_rsv_release(fs_info, 1);
2776 list_del_init(&block_group->bg_list);
2777 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2778 }
2779 btrfs_trans_release_chunk_metadata(trans);
2780 }
2781
2782 /*
2783 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2784 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2785 */
calculate_global_root_id(struct btrfs_fs_info * fs_info,u64 offset)2786 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2787 {
2788 u64 div = SZ_1G;
2789 u64 index;
2790
2791 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2792 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2793
2794 /* If we have a smaller fs index based on 128MiB. */
2795 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2796 div = SZ_128M;
2797
2798 offset = div64_u64(offset, div);
2799 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2800 return index;
2801 }
2802
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 type,u64 chunk_offset,u64 size)2803 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2804 u64 type,
2805 u64 chunk_offset, u64 size)
2806 {
2807 struct btrfs_fs_info *fs_info = trans->fs_info;
2808 struct btrfs_block_group *cache;
2809 int ret;
2810
2811 btrfs_set_log_full_commit(trans);
2812
2813 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2814 if (!cache)
2815 return ERR_PTR(-ENOMEM);
2816
2817 /*
2818 * Mark it as new before adding it to the rbtree of block groups or any
2819 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2820 * before the new flag is set.
2821 */
2822 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2823
2824 cache->length = size;
2825 set_free_space_tree_thresholds(cache);
2826 cache->flags = type;
2827 cache->cached = BTRFS_CACHE_FINISHED;
2828 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2829
2830 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2831 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2832
2833 ret = btrfs_load_block_group_zone_info(cache, true);
2834 if (ret) {
2835 btrfs_put_block_group(cache);
2836 return ERR_PTR(ret);
2837 }
2838
2839 ret = exclude_super_stripes(cache);
2840 if (ret) {
2841 /* We may have excluded something, so call this just in case */
2842 btrfs_free_excluded_extents(cache);
2843 btrfs_put_block_group(cache);
2844 return ERR_PTR(ret);
2845 }
2846
2847 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2848 btrfs_free_excluded_extents(cache);
2849 if (ret) {
2850 btrfs_put_block_group(cache);
2851 return ERR_PTR(ret);
2852 }
2853
2854 /*
2855 * Ensure the corresponding space_info object is created and
2856 * assigned to our block group. We want our bg to be added to the rbtree
2857 * with its ->space_info set.
2858 */
2859 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2860 ASSERT(cache->space_info);
2861
2862 ret = btrfs_add_block_group_cache(fs_info, cache);
2863 if (ret) {
2864 btrfs_remove_free_space_cache(cache);
2865 btrfs_put_block_group(cache);
2866 return ERR_PTR(ret);
2867 }
2868
2869 /*
2870 * Now that our block group has its ->space_info set and is inserted in
2871 * the rbtree, update the space info's counters.
2872 */
2873 trace_btrfs_add_block_group(fs_info, cache, 1);
2874 btrfs_add_bg_to_space_info(fs_info, cache);
2875 btrfs_update_global_block_rsv(fs_info);
2876
2877 #ifdef CONFIG_BTRFS_DEBUG
2878 if (btrfs_should_fragment_free_space(cache)) {
2879 cache->space_info->bytes_used += size >> 1;
2880 fragment_free_space(cache);
2881 }
2882 #endif
2883
2884 list_add_tail(&cache->bg_list, &trans->new_bgs);
2885 trans->delayed_ref_updates++;
2886 btrfs_update_delayed_refs_rsv(trans);
2887
2888 set_avail_alloc_bits(fs_info, type);
2889 return cache;
2890 }
2891
2892 /*
2893 * Mark one block group RO, can be called several times for the same block
2894 * group.
2895 *
2896 * @cache: the destination block group
2897 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2898 * ensure we still have some free space after marking this
2899 * block group RO.
2900 */
btrfs_inc_block_group_ro(struct btrfs_block_group * cache,bool do_chunk_alloc)2901 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2902 bool do_chunk_alloc)
2903 {
2904 struct btrfs_fs_info *fs_info = cache->fs_info;
2905 struct btrfs_trans_handle *trans;
2906 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2907 u64 alloc_flags;
2908 int ret;
2909 bool dirty_bg_running;
2910
2911 /*
2912 * This can only happen when we are doing read-only scrub on read-only
2913 * mount.
2914 * In that case we should not start a new transaction on read-only fs.
2915 * Thus here we skip all chunk allocations.
2916 */
2917 if (sb_rdonly(fs_info->sb)) {
2918 mutex_lock(&fs_info->ro_block_group_mutex);
2919 ret = inc_block_group_ro(cache, 0);
2920 mutex_unlock(&fs_info->ro_block_group_mutex);
2921 return ret;
2922 }
2923
2924 do {
2925 trans = btrfs_join_transaction(root);
2926 if (IS_ERR(trans))
2927 return PTR_ERR(trans);
2928
2929 dirty_bg_running = false;
2930
2931 /*
2932 * We're not allowed to set block groups readonly after the dirty
2933 * block group cache has started writing. If it already started,
2934 * back off and let this transaction commit.
2935 */
2936 mutex_lock(&fs_info->ro_block_group_mutex);
2937 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2938 u64 transid = trans->transid;
2939
2940 mutex_unlock(&fs_info->ro_block_group_mutex);
2941 btrfs_end_transaction(trans);
2942
2943 ret = btrfs_wait_for_commit(fs_info, transid);
2944 if (ret)
2945 return ret;
2946 dirty_bg_running = true;
2947 }
2948 } while (dirty_bg_running);
2949
2950 if (do_chunk_alloc) {
2951 /*
2952 * If we are changing raid levels, try to allocate a
2953 * corresponding block group with the new raid level.
2954 */
2955 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2956 if (alloc_flags != cache->flags) {
2957 ret = btrfs_chunk_alloc(trans, alloc_flags,
2958 CHUNK_ALLOC_FORCE);
2959 /*
2960 * ENOSPC is allowed here, we may have enough space
2961 * already allocated at the new raid level to carry on
2962 */
2963 if (ret == -ENOSPC)
2964 ret = 0;
2965 if (ret < 0)
2966 goto out;
2967 }
2968 }
2969
2970 ret = inc_block_group_ro(cache, 0);
2971 if (!ret)
2972 goto out;
2973 if (ret == -ETXTBSY)
2974 goto unlock_out;
2975
2976 /*
2977 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system
2978 * chunk allocation storm to exhaust the system chunk array. Otherwise
2979 * we still want to try our best to mark the block group read-only.
2980 */
2981 if (!do_chunk_alloc && ret == -ENOSPC &&
2982 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2983 goto unlock_out;
2984
2985 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2986 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2987 if (ret < 0)
2988 goto out;
2989 /*
2990 * We have allocated a new chunk. We also need to activate that chunk to
2991 * grant metadata tickets for zoned filesystem.
2992 */
2993 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2994 if (ret < 0)
2995 goto out;
2996
2997 ret = inc_block_group_ro(cache, 0);
2998 if (ret == -ETXTBSY)
2999 goto unlock_out;
3000 out:
3001 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
3002 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3003 mutex_lock(&fs_info->chunk_mutex);
3004 check_system_chunk(trans, alloc_flags);
3005 mutex_unlock(&fs_info->chunk_mutex);
3006 }
3007 unlock_out:
3008 mutex_unlock(&fs_info->ro_block_group_mutex);
3009
3010 btrfs_end_transaction(trans);
3011 return ret;
3012 }
3013
btrfs_dec_block_group_ro(struct btrfs_block_group * cache)3014 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
3015 {
3016 struct btrfs_space_info *sinfo = cache->space_info;
3017 u64 num_bytes;
3018
3019 BUG_ON(!cache->ro);
3020
3021 spin_lock(&sinfo->lock);
3022 spin_lock(&cache->lock);
3023 if (!--cache->ro) {
3024 if (btrfs_is_zoned(cache->fs_info)) {
3025 /* Migrate zone_unusable bytes back */
3026 cache->zone_unusable =
3027 (cache->alloc_offset - cache->used - cache->pinned -
3028 cache->reserved) +
3029 (cache->length - cache->zone_capacity);
3030 btrfs_space_info_update_bytes_zone_unusable(cache->fs_info, sinfo,
3031 cache->zone_unusable);
3032 sinfo->bytes_readonly -= cache->zone_unusable;
3033 }
3034 num_bytes = cache->length - cache->reserved -
3035 cache->pinned - cache->bytes_super -
3036 cache->zone_unusable - cache->used;
3037 sinfo->bytes_readonly -= num_bytes;
3038 list_del_init(&cache->ro_list);
3039 }
3040 spin_unlock(&cache->lock);
3041 spin_unlock(&sinfo->lock);
3042 }
3043
update_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * cache)3044 static int update_block_group_item(struct btrfs_trans_handle *trans,
3045 struct btrfs_path *path,
3046 struct btrfs_block_group *cache)
3047 {
3048 struct btrfs_fs_info *fs_info = trans->fs_info;
3049 int ret;
3050 struct btrfs_root *root = btrfs_block_group_root(fs_info);
3051 unsigned long bi;
3052 struct extent_buffer *leaf;
3053 struct btrfs_block_group_item bgi;
3054 struct btrfs_key key;
3055 u64 old_commit_used;
3056 u64 used;
3057
3058 /*
3059 * Block group items update can be triggered out of commit transaction
3060 * critical section, thus we need a consistent view of used bytes.
3061 * We cannot use cache->used directly outside of the spin lock, as it
3062 * may be changed.
3063 */
3064 spin_lock(&cache->lock);
3065 old_commit_used = cache->commit_used;
3066 used = cache->used;
3067 /* No change in used bytes, can safely skip it. */
3068 if (cache->commit_used == used) {
3069 spin_unlock(&cache->lock);
3070 return 0;
3071 }
3072 cache->commit_used = used;
3073 spin_unlock(&cache->lock);
3074
3075 key.objectid = cache->start;
3076 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3077 key.offset = cache->length;
3078
3079 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3080 if (ret) {
3081 if (ret > 0)
3082 ret = -ENOENT;
3083 goto fail;
3084 }
3085
3086 leaf = path->nodes[0];
3087 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3088 btrfs_set_stack_block_group_used(&bgi, used);
3089 btrfs_set_stack_block_group_chunk_objectid(&bgi,
3090 cache->global_root_id);
3091 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3092 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3093 btrfs_mark_buffer_dirty(trans, leaf);
3094 fail:
3095 btrfs_release_path(path);
3096 /*
3097 * We didn't update the block group item, need to revert commit_used
3098 * unless the block group item didn't exist yet - this is to prevent a
3099 * race with a concurrent insertion of the block group item, with
3100 * insert_block_group_item(), that happened just after we attempted to
3101 * update. In that case we would reset commit_used to 0 just after the
3102 * insertion set it to a value greater than 0 - if the block group later
3103 * becomes with 0 used bytes, we would incorrectly skip its update.
3104 */
3105 if (ret < 0 && ret != -ENOENT) {
3106 spin_lock(&cache->lock);
3107 cache->commit_used = old_commit_used;
3108 spin_unlock(&cache->lock);
3109 }
3110 return ret;
3111
3112 }
3113
cache_save_setup(struct btrfs_block_group * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3114 static int cache_save_setup(struct btrfs_block_group *block_group,
3115 struct btrfs_trans_handle *trans,
3116 struct btrfs_path *path)
3117 {
3118 struct btrfs_fs_info *fs_info = block_group->fs_info;
3119 struct btrfs_root *root = fs_info->tree_root;
3120 struct inode *inode = NULL;
3121 struct extent_changeset *data_reserved = NULL;
3122 u64 alloc_hint = 0;
3123 int dcs = BTRFS_DC_ERROR;
3124 u64 cache_size = 0;
3125 int retries = 0;
3126 int ret = 0;
3127
3128 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3129 return 0;
3130
3131 /*
3132 * If this block group is smaller than 100 megs don't bother caching the
3133 * block group.
3134 */
3135 if (block_group->length < (100 * SZ_1M)) {
3136 spin_lock(&block_group->lock);
3137 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3138 spin_unlock(&block_group->lock);
3139 return 0;
3140 }
3141
3142 if (TRANS_ABORTED(trans))
3143 return 0;
3144 again:
3145 inode = lookup_free_space_inode(block_group, path);
3146 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3147 ret = PTR_ERR(inode);
3148 btrfs_release_path(path);
3149 goto out;
3150 }
3151
3152 if (IS_ERR(inode)) {
3153 BUG_ON(retries);
3154 retries++;
3155
3156 if (block_group->ro)
3157 goto out_free;
3158
3159 ret = create_free_space_inode(trans, block_group, path);
3160 if (ret)
3161 goto out_free;
3162 goto again;
3163 }
3164
3165 /*
3166 * We want to set the generation to 0, that way if anything goes wrong
3167 * from here on out we know not to trust this cache when we load up next
3168 * time.
3169 */
3170 BTRFS_I(inode)->generation = 0;
3171 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3172 if (ret) {
3173 /*
3174 * So theoretically we could recover from this, simply set the
3175 * super cache generation to 0 so we know to invalidate the
3176 * cache, but then we'd have to keep track of the block groups
3177 * that fail this way so we know we _have_ to reset this cache
3178 * before the next commit or risk reading stale cache. So to
3179 * limit our exposure to horrible edge cases lets just abort the
3180 * transaction, this only happens in really bad situations
3181 * anyway.
3182 */
3183 btrfs_abort_transaction(trans, ret);
3184 goto out_put;
3185 }
3186 WARN_ON(ret);
3187
3188 /* We've already setup this transaction, go ahead and exit */
3189 if (block_group->cache_generation == trans->transid &&
3190 i_size_read(inode)) {
3191 dcs = BTRFS_DC_SETUP;
3192 goto out_put;
3193 }
3194
3195 if (i_size_read(inode) > 0) {
3196 ret = btrfs_check_trunc_cache_free_space(fs_info,
3197 &fs_info->global_block_rsv);
3198 if (ret)
3199 goto out_put;
3200
3201 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3202 if (ret)
3203 goto out_put;
3204 }
3205
3206 spin_lock(&block_group->lock);
3207 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3208 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3209 /*
3210 * don't bother trying to write stuff out _if_
3211 * a) we're not cached,
3212 * b) we're with nospace_cache mount option,
3213 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3214 */
3215 dcs = BTRFS_DC_WRITTEN;
3216 spin_unlock(&block_group->lock);
3217 goto out_put;
3218 }
3219 spin_unlock(&block_group->lock);
3220
3221 /*
3222 * We hit an ENOSPC when setting up the cache in this transaction, just
3223 * skip doing the setup, we've already cleared the cache so we're safe.
3224 */
3225 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3226 ret = -ENOSPC;
3227 goto out_put;
3228 }
3229
3230 /*
3231 * Try to preallocate enough space based on how big the block group is.
3232 * Keep in mind this has to include any pinned space which could end up
3233 * taking up quite a bit since it's not folded into the other space
3234 * cache.
3235 */
3236 cache_size = div_u64(block_group->length, SZ_256M);
3237 if (!cache_size)
3238 cache_size = 1;
3239
3240 cache_size *= 16;
3241 cache_size *= fs_info->sectorsize;
3242
3243 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3244 cache_size, false);
3245 if (ret)
3246 goto out_put;
3247
3248 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3249 cache_size, cache_size,
3250 &alloc_hint);
3251 /*
3252 * Our cache requires contiguous chunks so that we don't modify a bunch
3253 * of metadata or split extents when writing the cache out, which means
3254 * we can enospc if we are heavily fragmented in addition to just normal
3255 * out of space conditions. So if we hit this just skip setting up any
3256 * other block groups for this transaction, maybe we'll unpin enough
3257 * space the next time around.
3258 */
3259 if (!ret)
3260 dcs = BTRFS_DC_SETUP;
3261 else if (ret == -ENOSPC)
3262 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3263
3264 out_put:
3265 iput(inode);
3266 out_free:
3267 btrfs_release_path(path);
3268 out:
3269 spin_lock(&block_group->lock);
3270 if (!ret && dcs == BTRFS_DC_SETUP)
3271 block_group->cache_generation = trans->transid;
3272 block_group->disk_cache_state = dcs;
3273 spin_unlock(&block_group->lock);
3274
3275 extent_changeset_free(data_reserved);
3276 return ret;
3277 }
3278
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)3279 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3280 {
3281 struct btrfs_fs_info *fs_info = trans->fs_info;
3282 struct btrfs_block_group *cache, *tmp;
3283 struct btrfs_transaction *cur_trans = trans->transaction;
3284 struct btrfs_path *path;
3285
3286 if (list_empty(&cur_trans->dirty_bgs) ||
3287 !btrfs_test_opt(fs_info, SPACE_CACHE))
3288 return 0;
3289
3290 path = btrfs_alloc_path();
3291 if (!path)
3292 return -ENOMEM;
3293
3294 /* Could add new block groups, use _safe just in case */
3295 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3296 dirty_list) {
3297 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3298 cache_save_setup(cache, trans, path);
3299 }
3300
3301 btrfs_free_path(path);
3302 return 0;
3303 }
3304
3305 /*
3306 * Transaction commit does final block group cache writeback during a critical
3307 * section where nothing is allowed to change the FS. This is required in
3308 * order for the cache to actually match the block group, but can introduce a
3309 * lot of latency into the commit.
3310 *
3311 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3312 * There's a chance we'll have to redo some of it if the block group changes
3313 * again during the commit, but it greatly reduces the commit latency by
3314 * getting rid of the easy block groups while we're still allowing others to
3315 * join the commit.
3316 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)3317 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3318 {
3319 struct btrfs_fs_info *fs_info = trans->fs_info;
3320 struct btrfs_block_group *cache;
3321 struct btrfs_transaction *cur_trans = trans->transaction;
3322 int ret = 0;
3323 int should_put;
3324 struct btrfs_path *path = NULL;
3325 LIST_HEAD(dirty);
3326 struct list_head *io = &cur_trans->io_bgs;
3327 int loops = 0;
3328
3329 spin_lock(&cur_trans->dirty_bgs_lock);
3330 if (list_empty(&cur_trans->dirty_bgs)) {
3331 spin_unlock(&cur_trans->dirty_bgs_lock);
3332 return 0;
3333 }
3334 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3335 spin_unlock(&cur_trans->dirty_bgs_lock);
3336
3337 again:
3338 /* Make sure all the block groups on our dirty list actually exist */
3339 btrfs_create_pending_block_groups(trans);
3340
3341 if (!path) {
3342 path = btrfs_alloc_path();
3343 if (!path) {
3344 ret = -ENOMEM;
3345 goto out;
3346 }
3347 }
3348
3349 /*
3350 * cache_write_mutex is here only to save us from balance or automatic
3351 * removal of empty block groups deleting this block group while we are
3352 * writing out the cache
3353 */
3354 mutex_lock(&trans->transaction->cache_write_mutex);
3355 while (!list_empty(&dirty)) {
3356 bool drop_reserve = true;
3357
3358 cache = list_first_entry(&dirty, struct btrfs_block_group,
3359 dirty_list);
3360 /*
3361 * This can happen if something re-dirties a block group that
3362 * is already under IO. Just wait for it to finish and then do
3363 * it all again
3364 */
3365 if (!list_empty(&cache->io_list)) {
3366 list_del_init(&cache->io_list);
3367 btrfs_wait_cache_io(trans, cache, path);
3368 btrfs_put_block_group(cache);
3369 }
3370
3371
3372 /*
3373 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3374 * it should update the cache_state. Don't delete until after
3375 * we wait.
3376 *
3377 * Since we're not running in the commit critical section
3378 * we need the dirty_bgs_lock to protect from update_block_group
3379 */
3380 spin_lock(&cur_trans->dirty_bgs_lock);
3381 list_del_init(&cache->dirty_list);
3382 spin_unlock(&cur_trans->dirty_bgs_lock);
3383
3384 should_put = 1;
3385
3386 cache_save_setup(cache, trans, path);
3387
3388 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3389 cache->io_ctl.inode = NULL;
3390 ret = btrfs_write_out_cache(trans, cache, path);
3391 if (ret == 0 && cache->io_ctl.inode) {
3392 should_put = 0;
3393
3394 /*
3395 * The cache_write_mutex is protecting the
3396 * io_list, also refer to the definition of
3397 * btrfs_transaction::io_bgs for more details
3398 */
3399 list_add_tail(&cache->io_list, io);
3400 } else {
3401 /*
3402 * If we failed to write the cache, the
3403 * generation will be bad and life goes on
3404 */
3405 ret = 0;
3406 }
3407 }
3408 if (!ret) {
3409 ret = update_block_group_item(trans, path, cache);
3410 /*
3411 * Our block group might still be attached to the list
3412 * of new block groups in the transaction handle of some
3413 * other task (struct btrfs_trans_handle->new_bgs). This
3414 * means its block group item isn't yet in the extent
3415 * tree. If this happens ignore the error, as we will
3416 * try again later in the critical section of the
3417 * transaction commit.
3418 */
3419 if (ret == -ENOENT) {
3420 ret = 0;
3421 spin_lock(&cur_trans->dirty_bgs_lock);
3422 if (list_empty(&cache->dirty_list)) {
3423 list_add_tail(&cache->dirty_list,
3424 &cur_trans->dirty_bgs);
3425 btrfs_get_block_group(cache);
3426 drop_reserve = false;
3427 }
3428 spin_unlock(&cur_trans->dirty_bgs_lock);
3429 } else if (ret) {
3430 btrfs_abort_transaction(trans, ret);
3431 }
3432 }
3433
3434 /* If it's not on the io list, we need to put the block group */
3435 if (should_put)
3436 btrfs_put_block_group(cache);
3437 if (drop_reserve)
3438 btrfs_delayed_refs_rsv_release(fs_info, 1);
3439 /*
3440 * Avoid blocking other tasks for too long. It might even save
3441 * us from writing caches for block groups that are going to be
3442 * removed.
3443 */
3444 mutex_unlock(&trans->transaction->cache_write_mutex);
3445 if (ret)
3446 goto out;
3447 mutex_lock(&trans->transaction->cache_write_mutex);
3448 }
3449 mutex_unlock(&trans->transaction->cache_write_mutex);
3450
3451 /*
3452 * Go through delayed refs for all the stuff we've just kicked off
3453 * and then loop back (just once)
3454 */
3455 if (!ret)
3456 ret = btrfs_run_delayed_refs(trans, 0);
3457 if (!ret && loops == 0) {
3458 loops++;
3459 spin_lock(&cur_trans->dirty_bgs_lock);
3460 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3461 /*
3462 * dirty_bgs_lock protects us from concurrent block group
3463 * deletes too (not just cache_write_mutex).
3464 */
3465 if (!list_empty(&dirty)) {
3466 spin_unlock(&cur_trans->dirty_bgs_lock);
3467 goto again;
3468 }
3469 spin_unlock(&cur_trans->dirty_bgs_lock);
3470 }
3471 out:
3472 if (ret < 0) {
3473 spin_lock(&cur_trans->dirty_bgs_lock);
3474 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3475 spin_unlock(&cur_trans->dirty_bgs_lock);
3476 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3477 }
3478
3479 btrfs_free_path(path);
3480 return ret;
3481 }
3482
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)3483 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3484 {
3485 struct btrfs_fs_info *fs_info = trans->fs_info;
3486 struct btrfs_block_group *cache;
3487 struct btrfs_transaction *cur_trans = trans->transaction;
3488 int ret = 0;
3489 int should_put;
3490 struct btrfs_path *path;
3491 struct list_head *io = &cur_trans->io_bgs;
3492
3493 path = btrfs_alloc_path();
3494 if (!path)
3495 return -ENOMEM;
3496
3497 /*
3498 * Even though we are in the critical section of the transaction commit,
3499 * we can still have concurrent tasks adding elements to this
3500 * transaction's list of dirty block groups. These tasks correspond to
3501 * endio free space workers started when writeback finishes for a
3502 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3503 * allocate new block groups as a result of COWing nodes of the root
3504 * tree when updating the free space inode. The writeback for the space
3505 * caches is triggered by an earlier call to
3506 * btrfs_start_dirty_block_groups() and iterations of the following
3507 * loop.
3508 * Also we want to do the cache_save_setup first and then run the
3509 * delayed refs to make sure we have the best chance at doing this all
3510 * in one shot.
3511 */
3512 spin_lock(&cur_trans->dirty_bgs_lock);
3513 while (!list_empty(&cur_trans->dirty_bgs)) {
3514 cache = list_first_entry(&cur_trans->dirty_bgs,
3515 struct btrfs_block_group,
3516 dirty_list);
3517
3518 /*
3519 * This can happen if cache_save_setup re-dirties a block group
3520 * that is already under IO. Just wait for it to finish and
3521 * then do it all again
3522 */
3523 if (!list_empty(&cache->io_list)) {
3524 spin_unlock(&cur_trans->dirty_bgs_lock);
3525 list_del_init(&cache->io_list);
3526 btrfs_wait_cache_io(trans, cache, path);
3527 btrfs_put_block_group(cache);
3528 spin_lock(&cur_trans->dirty_bgs_lock);
3529 }
3530
3531 /*
3532 * Don't remove from the dirty list until after we've waited on
3533 * any pending IO
3534 */
3535 list_del_init(&cache->dirty_list);
3536 spin_unlock(&cur_trans->dirty_bgs_lock);
3537 should_put = 1;
3538
3539 cache_save_setup(cache, trans, path);
3540
3541 if (!ret)
3542 ret = btrfs_run_delayed_refs(trans,
3543 (unsigned long) -1);
3544
3545 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3546 cache->io_ctl.inode = NULL;
3547 ret = btrfs_write_out_cache(trans, cache, path);
3548 if (ret == 0 && cache->io_ctl.inode) {
3549 should_put = 0;
3550 list_add_tail(&cache->io_list, io);
3551 } else {
3552 /*
3553 * If we failed to write the cache, the
3554 * generation will be bad and life goes on
3555 */
3556 ret = 0;
3557 }
3558 }
3559 if (!ret) {
3560 ret = update_block_group_item(trans, path, cache);
3561 /*
3562 * One of the free space endio workers might have
3563 * created a new block group while updating a free space
3564 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3565 * and hasn't released its transaction handle yet, in
3566 * which case the new block group is still attached to
3567 * its transaction handle and its creation has not
3568 * finished yet (no block group item in the extent tree
3569 * yet, etc). If this is the case, wait for all free
3570 * space endio workers to finish and retry. This is a
3571 * very rare case so no need for a more efficient and
3572 * complex approach.
3573 */
3574 if (ret == -ENOENT) {
3575 wait_event(cur_trans->writer_wait,
3576 atomic_read(&cur_trans->num_writers) == 1);
3577 ret = update_block_group_item(trans, path, cache);
3578 }
3579 if (ret)
3580 btrfs_abort_transaction(trans, ret);
3581 }
3582
3583 /* If its not on the io list, we need to put the block group */
3584 if (should_put)
3585 btrfs_put_block_group(cache);
3586 btrfs_delayed_refs_rsv_release(fs_info, 1);
3587 spin_lock(&cur_trans->dirty_bgs_lock);
3588 }
3589 spin_unlock(&cur_trans->dirty_bgs_lock);
3590
3591 /*
3592 * Refer to the definition of io_bgs member for details why it's safe
3593 * to use it without any locking
3594 */
3595 while (!list_empty(io)) {
3596 cache = list_first_entry(io, struct btrfs_block_group,
3597 io_list);
3598 list_del_init(&cache->io_list);
3599 btrfs_wait_cache_io(trans, cache, path);
3600 btrfs_put_block_group(cache);
3601 }
3602
3603 btrfs_free_path(path);
3604 return ret;
3605 }
3606
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool alloc)3607 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3608 u64 bytenr, u64 num_bytes, bool alloc)
3609 {
3610 struct btrfs_fs_info *info = trans->fs_info;
3611 struct btrfs_block_group *cache = NULL;
3612 u64 total = num_bytes;
3613 u64 old_val;
3614 u64 byte_in_group;
3615 int factor;
3616 int ret = 0;
3617
3618 /* Block accounting for super block */
3619 spin_lock(&info->delalloc_root_lock);
3620 old_val = btrfs_super_bytes_used(info->super_copy);
3621 if (alloc)
3622 old_val += num_bytes;
3623 else
3624 old_val -= num_bytes;
3625 btrfs_set_super_bytes_used(info->super_copy, old_val);
3626 spin_unlock(&info->delalloc_root_lock);
3627
3628 while (total) {
3629 struct btrfs_space_info *space_info;
3630 bool reclaim = false;
3631
3632 cache = btrfs_lookup_block_group(info, bytenr);
3633 if (!cache) {
3634 ret = -ENOENT;
3635 break;
3636 }
3637 space_info = cache->space_info;
3638 factor = btrfs_bg_type_to_factor(cache->flags);
3639
3640 /*
3641 * If this block group has free space cache written out, we
3642 * need to make sure to load it if we are removing space. This
3643 * is because we need the unpinning stage to actually add the
3644 * space back to the block group, otherwise we will leak space.
3645 */
3646 if (!alloc && !btrfs_block_group_done(cache))
3647 btrfs_cache_block_group(cache, true);
3648
3649 byte_in_group = bytenr - cache->start;
3650 WARN_ON(byte_in_group > cache->length);
3651
3652 spin_lock(&space_info->lock);
3653 spin_lock(&cache->lock);
3654
3655 if (btrfs_test_opt(info, SPACE_CACHE) &&
3656 cache->disk_cache_state < BTRFS_DC_CLEAR)
3657 cache->disk_cache_state = BTRFS_DC_CLEAR;
3658
3659 old_val = cache->used;
3660 num_bytes = min(total, cache->length - byte_in_group);
3661 if (alloc) {
3662 old_val += num_bytes;
3663 cache->used = old_val;
3664 cache->reserved -= num_bytes;
3665 space_info->bytes_reserved -= num_bytes;
3666 space_info->bytes_used += num_bytes;
3667 space_info->disk_used += num_bytes * factor;
3668 spin_unlock(&cache->lock);
3669 spin_unlock(&space_info->lock);
3670 } else {
3671 old_val -= num_bytes;
3672 cache->used = old_val;
3673 cache->pinned += num_bytes;
3674 btrfs_space_info_update_bytes_pinned(info, space_info,
3675 num_bytes);
3676 space_info->bytes_used -= num_bytes;
3677 space_info->disk_used -= num_bytes * factor;
3678
3679 reclaim = should_reclaim_block_group(cache, num_bytes);
3680
3681 spin_unlock(&cache->lock);
3682 spin_unlock(&space_info->lock);
3683
3684 set_extent_bit(&trans->transaction->pinned_extents,
3685 bytenr, bytenr + num_bytes - 1,
3686 EXTENT_DIRTY, NULL);
3687 }
3688
3689 spin_lock(&trans->transaction->dirty_bgs_lock);
3690 if (list_empty(&cache->dirty_list)) {
3691 list_add_tail(&cache->dirty_list,
3692 &trans->transaction->dirty_bgs);
3693 trans->delayed_ref_updates++;
3694 btrfs_get_block_group(cache);
3695 }
3696 spin_unlock(&trans->transaction->dirty_bgs_lock);
3697
3698 /*
3699 * No longer have used bytes in this block group, queue it for
3700 * deletion. We do this after adding the block group to the
3701 * dirty list to avoid races between cleaner kthread and space
3702 * cache writeout.
3703 */
3704 if (!alloc && old_val == 0) {
3705 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3706 btrfs_mark_bg_unused(cache);
3707 } else if (!alloc && reclaim) {
3708 btrfs_mark_bg_to_reclaim(cache);
3709 }
3710
3711 btrfs_put_block_group(cache);
3712 total -= num_bytes;
3713 bytenr += num_bytes;
3714 }
3715
3716 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3717 btrfs_update_delayed_refs_rsv(trans);
3718 return ret;
3719 }
3720
3721 /*
3722 * Update the block_group and space info counters.
3723 *
3724 * @cache: The cache we are manipulating
3725 * @ram_bytes: The number of bytes of file content, and will be same to
3726 * @num_bytes except for the compress path.
3727 * @num_bytes: The number of bytes in question
3728 * @delalloc: The blocks are allocated for the delalloc write
3729 *
3730 * This is called by the allocator when it reserves space. If this is a
3731 * reservation and the block group has become read only we cannot make the
3732 * reservation and return -EAGAIN, otherwise this function always succeeds.
3733 */
btrfs_add_reserved_bytes(struct btrfs_block_group * cache,u64 ram_bytes,u64 num_bytes,int delalloc,bool force_wrong_size_class)3734 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3735 u64 ram_bytes, u64 num_bytes, int delalloc,
3736 bool force_wrong_size_class)
3737 {
3738 struct btrfs_space_info *space_info = cache->space_info;
3739 enum btrfs_block_group_size_class size_class;
3740 int ret = 0;
3741
3742 spin_lock(&space_info->lock);
3743 spin_lock(&cache->lock);
3744 if (cache->ro) {
3745 ret = -EAGAIN;
3746 goto out;
3747 }
3748
3749 if (btrfs_block_group_should_use_size_class(cache)) {
3750 size_class = btrfs_calc_block_group_size_class(num_bytes);
3751 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3752 if (ret)
3753 goto out;
3754 }
3755 cache->reserved += num_bytes;
3756 space_info->bytes_reserved += num_bytes;
3757 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3758 space_info->flags, num_bytes, 1);
3759 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3760 space_info, -ram_bytes);
3761 if (delalloc)
3762 cache->delalloc_bytes += num_bytes;
3763
3764 /*
3765 * Compression can use less space than we reserved, so wake tickets if
3766 * that happens.
3767 */
3768 if (num_bytes < ram_bytes)
3769 btrfs_try_granting_tickets(cache->fs_info, space_info);
3770 out:
3771 spin_unlock(&cache->lock);
3772 spin_unlock(&space_info->lock);
3773 return ret;
3774 }
3775
3776 /*
3777 * Update the block_group and space info counters.
3778 *
3779 * @cache: The cache we are manipulating
3780 * @num_bytes: The number of bytes in question
3781 * @delalloc: The blocks are allocated for the delalloc write
3782 *
3783 * This is called by somebody who is freeing space that was never actually used
3784 * on disk. For example if you reserve some space for a new leaf in transaction
3785 * A and before transaction A commits you free that leaf, you call this with
3786 * reserve set to 0 in order to clear the reservation.
3787 */
btrfs_free_reserved_bytes(struct btrfs_block_group * cache,u64 num_bytes,int delalloc)3788 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3789 u64 num_bytes, int delalloc)
3790 {
3791 struct btrfs_space_info *space_info = cache->space_info;
3792
3793 spin_lock(&space_info->lock);
3794 spin_lock(&cache->lock);
3795 if (cache->ro)
3796 space_info->bytes_readonly += num_bytes;
3797 cache->reserved -= num_bytes;
3798 space_info->bytes_reserved -= num_bytes;
3799 space_info->max_extent_size = 0;
3800
3801 if (delalloc)
3802 cache->delalloc_bytes -= num_bytes;
3803 spin_unlock(&cache->lock);
3804
3805 btrfs_try_granting_tickets(cache->fs_info, space_info);
3806 spin_unlock(&space_info->lock);
3807 }
3808
force_metadata_allocation(struct btrfs_fs_info * info)3809 static void force_metadata_allocation(struct btrfs_fs_info *info)
3810 {
3811 struct list_head *head = &info->space_info;
3812 struct btrfs_space_info *found;
3813
3814 list_for_each_entry(found, head, list) {
3815 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3816 found->force_alloc = CHUNK_ALLOC_FORCE;
3817 }
3818 }
3819
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)3820 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3821 struct btrfs_space_info *sinfo, int force)
3822 {
3823 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3824 u64 thresh;
3825
3826 if (force == CHUNK_ALLOC_FORCE)
3827 return 1;
3828
3829 /*
3830 * in limited mode, we want to have some free space up to
3831 * about 1% of the FS size.
3832 */
3833 if (force == CHUNK_ALLOC_LIMITED) {
3834 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3835 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3836
3837 if (sinfo->total_bytes - bytes_used < thresh)
3838 return 1;
3839 }
3840
3841 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3842 return 0;
3843 return 1;
3844 }
3845
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)3846 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3847 {
3848 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3849
3850 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3851 }
3852
do_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags)3853 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3854 {
3855 struct btrfs_block_group *bg;
3856 int ret;
3857
3858 /*
3859 * Check if we have enough space in the system space info because we
3860 * will need to update device items in the chunk btree and insert a new
3861 * chunk item in the chunk btree as well. This will allocate a new
3862 * system block group if needed.
3863 */
3864 check_system_chunk(trans, flags);
3865
3866 bg = btrfs_create_chunk(trans, flags);
3867 if (IS_ERR(bg)) {
3868 ret = PTR_ERR(bg);
3869 goto out;
3870 }
3871
3872 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3873 /*
3874 * Normally we are not expected to fail with -ENOSPC here, since we have
3875 * previously reserved space in the system space_info and allocated one
3876 * new system chunk if necessary. However there are three exceptions:
3877 *
3878 * 1) We may have enough free space in the system space_info but all the
3879 * existing system block groups have a profile which can not be used
3880 * for extent allocation.
3881 *
3882 * This happens when mounting in degraded mode. For example we have a
3883 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3884 * using the other device in degraded mode. If we then allocate a chunk,
3885 * we may have enough free space in the existing system space_info, but
3886 * none of the block groups can be used for extent allocation since they
3887 * have a RAID1 profile, and because we are in degraded mode with a
3888 * single device, we are forced to allocate a new system chunk with a
3889 * SINGLE profile. Making check_system_chunk() iterate over all system
3890 * block groups and check if they have a usable profile and enough space
3891 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3892 * try again after forcing allocation of a new system chunk. Like this
3893 * we avoid paying the cost of that search in normal circumstances, when
3894 * we were not mounted in degraded mode;
3895 *
3896 * 2) We had enough free space info the system space_info, and one suitable
3897 * block group to allocate from when we called check_system_chunk()
3898 * above. However right after we called it, the only system block group
3899 * with enough free space got turned into RO mode by a running scrub,
3900 * and in this case we have to allocate a new one and retry. We only
3901 * need do this allocate and retry once, since we have a transaction
3902 * handle and scrub uses the commit root to search for block groups;
3903 *
3904 * 3) We had one system block group with enough free space when we called
3905 * check_system_chunk(), but after that, right before we tried to
3906 * allocate the last extent buffer we needed, a discard operation came
3907 * in and it temporarily removed the last free space entry from the
3908 * block group (discard removes a free space entry, discards it, and
3909 * then adds back the entry to the block group cache).
3910 */
3911 if (ret == -ENOSPC) {
3912 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3913 struct btrfs_block_group *sys_bg;
3914
3915 sys_bg = btrfs_create_chunk(trans, sys_flags);
3916 if (IS_ERR(sys_bg)) {
3917 ret = PTR_ERR(sys_bg);
3918 btrfs_abort_transaction(trans, ret);
3919 goto out;
3920 }
3921
3922 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3923 if (ret) {
3924 btrfs_abort_transaction(trans, ret);
3925 goto out;
3926 }
3927
3928 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3929 if (ret) {
3930 btrfs_abort_transaction(trans, ret);
3931 goto out;
3932 }
3933 } else if (ret) {
3934 btrfs_abort_transaction(trans, ret);
3935 goto out;
3936 }
3937 out:
3938 btrfs_trans_release_chunk_metadata(trans);
3939
3940 if (ret)
3941 return ERR_PTR(ret);
3942
3943 btrfs_get_block_group(bg);
3944 return bg;
3945 }
3946
3947 /*
3948 * Chunk allocation is done in 2 phases:
3949 *
3950 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3951 * the chunk, the chunk mapping, create its block group and add the items
3952 * that belong in the chunk btree to it - more specifically, we need to
3953 * update device items in the chunk btree and add a new chunk item to it.
3954 *
3955 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3956 * group item to the extent btree and the device extent items to the devices
3957 * btree.
3958 *
3959 * This is done to prevent deadlocks. For example when COWing a node from the
3960 * extent btree we are holding a write lock on the node's parent and if we
3961 * trigger chunk allocation and attempted to insert the new block group item
3962 * in the extent btree right way, we could deadlock because the path for the
3963 * insertion can include that parent node. At first glance it seems impossible
3964 * to trigger chunk allocation after starting a transaction since tasks should
3965 * reserve enough transaction units (metadata space), however while that is true
3966 * most of the time, chunk allocation may still be triggered for several reasons:
3967 *
3968 * 1) When reserving metadata, we check if there is enough free space in the
3969 * metadata space_info and therefore don't trigger allocation of a new chunk.
3970 * However later when the task actually tries to COW an extent buffer from
3971 * the extent btree or from the device btree for example, it is forced to
3972 * allocate a new block group (chunk) because the only one that had enough
3973 * free space was just turned to RO mode by a running scrub for example (or
3974 * device replace, block group reclaim thread, etc), so we can not use it
3975 * for allocating an extent and end up being forced to allocate a new one;
3976 *
3977 * 2) Because we only check that the metadata space_info has enough free bytes,
3978 * we end up not allocating a new metadata chunk in that case. However if
3979 * the filesystem was mounted in degraded mode, none of the existing block
3980 * groups might be suitable for extent allocation due to their incompatible
3981 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3982 * use a RAID1 profile, in degraded mode using a single device). In this case
3983 * when the task attempts to COW some extent buffer of the extent btree for
3984 * example, it will trigger allocation of a new metadata block group with a
3985 * suitable profile (SINGLE profile in the example of the degraded mount of
3986 * the RAID1 filesystem);
3987 *
3988 * 3) The task has reserved enough transaction units / metadata space, but when
3989 * it attempts to COW an extent buffer from the extent or device btree for
3990 * example, it does not find any free extent in any metadata block group,
3991 * therefore forced to try to allocate a new metadata block group.
3992 * This is because some other task allocated all available extents in the
3993 * meanwhile - this typically happens with tasks that don't reserve space
3994 * properly, either intentionally or as a bug. One example where this is
3995 * done intentionally is fsync, as it does not reserve any transaction units
3996 * and ends up allocating a variable number of metadata extents for log
3997 * tree extent buffers;
3998 *
3999 * 4) The task has reserved enough transaction units / metadata space, but right
4000 * before it tries to allocate the last extent buffer it needs, a discard
4001 * operation comes in and, temporarily, removes the last free space entry from
4002 * the only metadata block group that had free space (discard starts by
4003 * removing a free space entry from a block group, then does the discard
4004 * operation and, once it's done, it adds back the free space entry to the
4005 * block group).
4006 *
4007 * We also need this 2 phases setup when adding a device to a filesystem with
4008 * a seed device - we must create new metadata and system chunks without adding
4009 * any of the block group items to the chunk, extent and device btrees. If we
4010 * did not do it this way, we would get ENOSPC when attempting to update those
4011 * btrees, since all the chunks from the seed device are read-only.
4012 *
4013 * Phase 1 does the updates and insertions to the chunk btree because if we had
4014 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
4015 * parallel, we risk having too many system chunks allocated by many tasks if
4016 * many tasks reach phase 1 without the previous ones completing phase 2. In the
4017 * extreme case this leads to exhaustion of the system chunk array in the
4018 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
4019 * and with RAID filesystems (so we have more device items in the chunk btree).
4020 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4021 * the system chunk array due to concurrent allocations") provides more details.
4022 *
4023 * Allocation of system chunks does not happen through this function. A task that
4024 * needs to update the chunk btree (the only btree that uses system chunks), must
4025 * preallocate chunk space by calling either check_system_chunk() or
4026 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4027 * metadata chunk or when removing a chunk, while the later is used before doing
4028 * a modification to the chunk btree - use cases for the later are adding,
4029 * removing and resizing a device as well as relocation of a system chunk.
4030 * See the comment below for more details.
4031 *
4032 * The reservation of system space, done through check_system_chunk(), as well
4033 * as all the updates and insertions into the chunk btree must be done while
4034 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4035 * an extent buffer from the chunks btree we never trigger allocation of a new
4036 * system chunk, which would result in a deadlock (trying to lock twice an
4037 * extent buffer of the chunk btree, first time before triggering the chunk
4038 * allocation and the second time during chunk allocation while attempting to
4039 * update the chunks btree). The system chunk array is also updated while holding
4040 * that mutex. The same logic applies to removing chunks - we must reserve system
4041 * space, update the chunk btree and the system chunk array in the superblock
4042 * while holding fs_info->chunk_mutex.
4043 *
4044 * This function, btrfs_chunk_alloc(), belongs to phase 1.
4045 *
4046 * If @force is CHUNK_ALLOC_FORCE:
4047 * - return 1 if it successfully allocates a chunk,
4048 * - return errors including -ENOSPC otherwise.
4049 * If @force is NOT CHUNK_ALLOC_FORCE:
4050 * - return 0 if it doesn't need to allocate a new chunk,
4051 * - return 1 if it successfully allocates a chunk,
4052 * - return errors including -ENOSPC otherwise.
4053 */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)4054 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4055 enum btrfs_chunk_alloc_enum force)
4056 {
4057 struct btrfs_fs_info *fs_info = trans->fs_info;
4058 struct btrfs_space_info *space_info;
4059 struct btrfs_block_group *ret_bg;
4060 bool wait_for_alloc = false;
4061 bool should_alloc = false;
4062 bool from_extent_allocation = false;
4063 int ret = 0;
4064
4065 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4066 from_extent_allocation = true;
4067 force = CHUNK_ALLOC_FORCE;
4068 }
4069
4070 /* Don't re-enter if we're already allocating a chunk */
4071 if (trans->allocating_chunk)
4072 return -ENOSPC;
4073 /*
4074 * Allocation of system chunks can not happen through this path, as we
4075 * could end up in a deadlock if we are allocating a data or metadata
4076 * chunk and there is another task modifying the chunk btree.
4077 *
4078 * This is because while we are holding the chunk mutex, we will attempt
4079 * to add the new chunk item to the chunk btree or update an existing
4080 * device item in the chunk btree, while the other task that is modifying
4081 * the chunk btree is attempting to COW an extent buffer while holding a
4082 * lock on it and on its parent - if the COW operation triggers a system
4083 * chunk allocation, then we can deadlock because we are holding the
4084 * chunk mutex and we may need to access that extent buffer or its parent
4085 * in order to add the chunk item or update a device item.
4086 *
4087 * Tasks that want to modify the chunk tree should reserve system space
4088 * before updating the chunk btree, by calling either
4089 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4090 * It's possible that after a task reserves the space, it still ends up
4091 * here - this happens in the cases described above at do_chunk_alloc().
4092 * The task will have to either retry or fail.
4093 */
4094 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4095 return -ENOSPC;
4096
4097 space_info = btrfs_find_space_info(fs_info, flags);
4098 ASSERT(space_info);
4099
4100 do {
4101 spin_lock(&space_info->lock);
4102 if (force < space_info->force_alloc)
4103 force = space_info->force_alloc;
4104 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4105 if (space_info->full) {
4106 /* No more free physical space */
4107 if (should_alloc)
4108 ret = -ENOSPC;
4109 else
4110 ret = 0;
4111 spin_unlock(&space_info->lock);
4112 return ret;
4113 } else if (!should_alloc) {
4114 spin_unlock(&space_info->lock);
4115 return 0;
4116 } else if (space_info->chunk_alloc) {
4117 /*
4118 * Someone is already allocating, so we need to block
4119 * until this someone is finished and then loop to
4120 * recheck if we should continue with our allocation
4121 * attempt.
4122 */
4123 wait_for_alloc = true;
4124 force = CHUNK_ALLOC_NO_FORCE;
4125 spin_unlock(&space_info->lock);
4126 mutex_lock(&fs_info->chunk_mutex);
4127 mutex_unlock(&fs_info->chunk_mutex);
4128 } else {
4129 /* Proceed with allocation */
4130 space_info->chunk_alloc = 1;
4131 wait_for_alloc = false;
4132 spin_unlock(&space_info->lock);
4133 }
4134
4135 cond_resched();
4136 } while (wait_for_alloc);
4137
4138 mutex_lock(&fs_info->chunk_mutex);
4139 trans->allocating_chunk = true;
4140
4141 /*
4142 * If we have mixed data/metadata chunks we want to make sure we keep
4143 * allocating mixed chunks instead of individual chunks.
4144 */
4145 if (btrfs_mixed_space_info(space_info))
4146 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4147
4148 /*
4149 * if we're doing a data chunk, go ahead and make sure that
4150 * we keep a reasonable number of metadata chunks allocated in the
4151 * FS as well.
4152 */
4153 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4154 fs_info->data_chunk_allocations++;
4155 if (!(fs_info->data_chunk_allocations %
4156 fs_info->metadata_ratio))
4157 force_metadata_allocation(fs_info);
4158 }
4159
4160 ret_bg = do_chunk_alloc(trans, flags);
4161 trans->allocating_chunk = false;
4162
4163 if (IS_ERR(ret_bg)) {
4164 ret = PTR_ERR(ret_bg);
4165 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4166 /*
4167 * New block group is likely to be used soon. Try to activate
4168 * it now. Failure is OK for now.
4169 */
4170 btrfs_zone_activate(ret_bg);
4171 }
4172
4173 if (!ret)
4174 btrfs_put_block_group(ret_bg);
4175
4176 spin_lock(&space_info->lock);
4177 if (ret < 0) {
4178 if (ret == -ENOSPC)
4179 space_info->full = 1;
4180 else
4181 goto out;
4182 } else {
4183 ret = 1;
4184 space_info->max_extent_size = 0;
4185 }
4186
4187 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4188 out:
4189 space_info->chunk_alloc = 0;
4190 spin_unlock(&space_info->lock);
4191 mutex_unlock(&fs_info->chunk_mutex);
4192
4193 return ret;
4194 }
4195
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)4196 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4197 {
4198 u64 num_dev;
4199
4200 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4201 if (!num_dev)
4202 num_dev = fs_info->fs_devices->rw_devices;
4203
4204 return num_dev;
4205 }
4206
reserve_chunk_space(struct btrfs_trans_handle * trans,u64 bytes,u64 type)4207 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4208 u64 bytes,
4209 u64 type)
4210 {
4211 struct btrfs_fs_info *fs_info = trans->fs_info;
4212 struct btrfs_space_info *info;
4213 u64 left;
4214 int ret = 0;
4215
4216 /*
4217 * Needed because we can end up allocating a system chunk and for an
4218 * atomic and race free space reservation in the chunk block reserve.
4219 */
4220 lockdep_assert_held(&fs_info->chunk_mutex);
4221
4222 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4223 spin_lock(&info->lock);
4224 left = info->total_bytes - btrfs_space_info_used(info, true);
4225 spin_unlock(&info->lock);
4226
4227 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4228 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4229 left, bytes, type);
4230 btrfs_dump_space_info(fs_info, info, 0, 0);
4231 }
4232
4233 if (left < bytes) {
4234 u64 flags = btrfs_system_alloc_profile(fs_info);
4235 struct btrfs_block_group *bg;
4236
4237 /*
4238 * Ignore failure to create system chunk. We might end up not
4239 * needing it, as we might not need to COW all nodes/leafs from
4240 * the paths we visit in the chunk tree (they were already COWed
4241 * or created in the current transaction for example).
4242 */
4243 bg = btrfs_create_chunk(trans, flags);
4244 if (IS_ERR(bg)) {
4245 ret = PTR_ERR(bg);
4246 } else {
4247 /*
4248 * We have a new chunk. We also need to activate it for
4249 * zoned filesystem.
4250 */
4251 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4252 if (ret < 0)
4253 return;
4254
4255 /*
4256 * If we fail to add the chunk item here, we end up
4257 * trying again at phase 2 of chunk allocation, at
4258 * btrfs_create_pending_block_groups(). So ignore
4259 * any error here. An ENOSPC here could happen, due to
4260 * the cases described at do_chunk_alloc() - the system
4261 * block group we just created was just turned into RO
4262 * mode by a scrub for example, or a running discard
4263 * temporarily removed its free space entries, etc.
4264 */
4265 btrfs_chunk_alloc_add_chunk_item(trans, bg);
4266 }
4267 }
4268
4269 if (!ret) {
4270 ret = btrfs_block_rsv_add(fs_info,
4271 &fs_info->chunk_block_rsv,
4272 bytes, BTRFS_RESERVE_NO_FLUSH);
4273 if (!ret)
4274 trans->chunk_bytes_reserved += bytes;
4275 }
4276 }
4277
4278 /*
4279 * Reserve space in the system space for allocating or removing a chunk.
4280 * The caller must be holding fs_info->chunk_mutex.
4281 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)4282 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4283 {
4284 struct btrfs_fs_info *fs_info = trans->fs_info;
4285 const u64 num_devs = get_profile_num_devs(fs_info, type);
4286 u64 bytes;
4287
4288 /* num_devs device items to update and 1 chunk item to add or remove. */
4289 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4290 btrfs_calc_insert_metadata_size(fs_info, 1);
4291
4292 reserve_chunk_space(trans, bytes, type);
4293 }
4294
4295 /*
4296 * Reserve space in the system space, if needed, for doing a modification to the
4297 * chunk btree.
4298 *
4299 * @trans: A transaction handle.
4300 * @is_item_insertion: Indicate if the modification is for inserting a new item
4301 * in the chunk btree or if it's for the deletion or update
4302 * of an existing item.
4303 *
4304 * This is used in a context where we need to update the chunk btree outside
4305 * block group allocation and removal, to avoid a deadlock with a concurrent
4306 * task that is allocating a metadata or data block group and therefore needs to
4307 * update the chunk btree while holding the chunk mutex. After the update to the
4308 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4309 *
4310 */
btrfs_reserve_chunk_metadata(struct btrfs_trans_handle * trans,bool is_item_insertion)4311 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4312 bool is_item_insertion)
4313 {
4314 struct btrfs_fs_info *fs_info = trans->fs_info;
4315 u64 bytes;
4316
4317 if (is_item_insertion)
4318 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4319 else
4320 bytes = btrfs_calc_metadata_size(fs_info, 1);
4321
4322 mutex_lock(&fs_info->chunk_mutex);
4323 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4324 mutex_unlock(&fs_info->chunk_mutex);
4325 }
4326
btrfs_put_block_group_cache(struct btrfs_fs_info * info)4327 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4328 {
4329 struct btrfs_block_group *block_group;
4330
4331 block_group = btrfs_lookup_first_block_group(info, 0);
4332 while (block_group) {
4333 btrfs_wait_block_group_cache_done(block_group);
4334 spin_lock(&block_group->lock);
4335 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4336 &block_group->runtime_flags)) {
4337 struct inode *inode = block_group->inode;
4338
4339 block_group->inode = NULL;
4340 spin_unlock(&block_group->lock);
4341
4342 ASSERT(block_group->io_ctl.inode == NULL);
4343 iput(inode);
4344 } else {
4345 spin_unlock(&block_group->lock);
4346 }
4347 block_group = btrfs_next_block_group(block_group);
4348 }
4349 }
4350
4351 /*
4352 * Must be called only after stopping all workers, since we could have block
4353 * group caching kthreads running, and therefore they could race with us if we
4354 * freed the block groups before stopping them.
4355 */
btrfs_free_block_groups(struct btrfs_fs_info * info)4356 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4357 {
4358 struct btrfs_block_group *block_group;
4359 struct btrfs_space_info *space_info;
4360 struct btrfs_caching_control *caching_ctl;
4361 struct rb_node *n;
4362
4363 if (btrfs_is_zoned(info)) {
4364 if (info->active_meta_bg) {
4365 btrfs_put_block_group(info->active_meta_bg);
4366 info->active_meta_bg = NULL;
4367 }
4368 if (info->active_system_bg) {
4369 btrfs_put_block_group(info->active_system_bg);
4370 info->active_system_bg = NULL;
4371 }
4372 }
4373
4374 write_lock(&info->block_group_cache_lock);
4375 while (!list_empty(&info->caching_block_groups)) {
4376 caching_ctl = list_entry(info->caching_block_groups.next,
4377 struct btrfs_caching_control, list);
4378 list_del(&caching_ctl->list);
4379 btrfs_put_caching_control(caching_ctl);
4380 }
4381 write_unlock(&info->block_group_cache_lock);
4382
4383 spin_lock(&info->unused_bgs_lock);
4384 while (!list_empty(&info->unused_bgs)) {
4385 block_group = list_first_entry(&info->unused_bgs,
4386 struct btrfs_block_group,
4387 bg_list);
4388 list_del_init(&block_group->bg_list);
4389 btrfs_put_block_group(block_group);
4390 }
4391
4392 while (!list_empty(&info->reclaim_bgs)) {
4393 block_group = list_first_entry(&info->reclaim_bgs,
4394 struct btrfs_block_group,
4395 bg_list);
4396 list_del_init(&block_group->bg_list);
4397 btrfs_put_block_group(block_group);
4398 }
4399 spin_unlock(&info->unused_bgs_lock);
4400
4401 spin_lock(&info->zone_active_bgs_lock);
4402 while (!list_empty(&info->zone_active_bgs)) {
4403 block_group = list_first_entry(&info->zone_active_bgs,
4404 struct btrfs_block_group,
4405 active_bg_list);
4406 list_del_init(&block_group->active_bg_list);
4407 btrfs_put_block_group(block_group);
4408 }
4409 spin_unlock(&info->zone_active_bgs_lock);
4410
4411 write_lock(&info->block_group_cache_lock);
4412 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4413 block_group = rb_entry(n, struct btrfs_block_group,
4414 cache_node);
4415 rb_erase_cached(&block_group->cache_node,
4416 &info->block_group_cache_tree);
4417 RB_CLEAR_NODE(&block_group->cache_node);
4418 write_unlock(&info->block_group_cache_lock);
4419
4420 down_write(&block_group->space_info->groups_sem);
4421 list_del(&block_group->list);
4422 up_write(&block_group->space_info->groups_sem);
4423
4424 /*
4425 * We haven't cached this block group, which means we could
4426 * possibly have excluded extents on this block group.
4427 */
4428 if (block_group->cached == BTRFS_CACHE_NO ||
4429 block_group->cached == BTRFS_CACHE_ERROR)
4430 btrfs_free_excluded_extents(block_group);
4431
4432 btrfs_remove_free_space_cache(block_group);
4433 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4434 ASSERT(list_empty(&block_group->dirty_list));
4435 ASSERT(list_empty(&block_group->io_list));
4436 ASSERT(list_empty(&block_group->bg_list));
4437 ASSERT(refcount_read(&block_group->refs) == 1);
4438 ASSERT(block_group->swap_extents == 0);
4439 btrfs_put_block_group(block_group);
4440
4441 write_lock(&info->block_group_cache_lock);
4442 }
4443 write_unlock(&info->block_group_cache_lock);
4444
4445 btrfs_release_global_block_rsv(info);
4446
4447 while (!list_empty(&info->space_info)) {
4448 space_info = list_entry(info->space_info.next,
4449 struct btrfs_space_info,
4450 list);
4451
4452 /*
4453 * Do not hide this behind enospc_debug, this is actually
4454 * important and indicates a real bug if this happens.
4455 */
4456 if (WARN_ON(space_info->bytes_pinned > 0 ||
4457 space_info->bytes_may_use > 0))
4458 btrfs_dump_space_info(info, space_info, 0, 0);
4459
4460 /*
4461 * If there was a failure to cleanup a log tree, very likely due
4462 * to an IO failure on a writeback attempt of one or more of its
4463 * extent buffers, we could not do proper (and cheap) unaccounting
4464 * of their reserved space, so don't warn on bytes_reserved > 0 in
4465 * that case.
4466 */
4467 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4468 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4469 if (WARN_ON(space_info->bytes_reserved > 0))
4470 btrfs_dump_space_info(info, space_info, 0, 0);
4471 }
4472
4473 WARN_ON(space_info->reclaim_size > 0);
4474 list_del(&space_info->list);
4475 btrfs_sysfs_remove_space_info(space_info);
4476 }
4477 return 0;
4478 }
4479
btrfs_freeze_block_group(struct btrfs_block_group * cache)4480 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4481 {
4482 atomic_inc(&cache->frozen);
4483 }
4484
btrfs_unfreeze_block_group(struct btrfs_block_group * block_group)4485 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4486 {
4487 struct btrfs_fs_info *fs_info = block_group->fs_info;
4488 struct extent_map_tree *em_tree;
4489 struct extent_map *em;
4490 bool cleanup;
4491
4492 spin_lock(&block_group->lock);
4493 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4494 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4495 spin_unlock(&block_group->lock);
4496
4497 if (cleanup) {
4498 em_tree = &fs_info->mapping_tree;
4499 write_lock(&em_tree->lock);
4500 em = lookup_extent_mapping(em_tree, block_group->start,
4501 1);
4502 BUG_ON(!em); /* logic error, can't happen */
4503 remove_extent_mapping(em_tree, em);
4504 write_unlock(&em_tree->lock);
4505
4506 /* once for us and once for the tree */
4507 free_extent_map(em);
4508 free_extent_map(em);
4509
4510 /*
4511 * We may have left one free space entry and other possible
4512 * tasks trimming this block group have left 1 entry each one.
4513 * Free them if any.
4514 */
4515 btrfs_remove_free_space_cache(block_group);
4516 }
4517 }
4518
btrfs_inc_block_group_swap_extents(struct btrfs_block_group * bg)4519 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4520 {
4521 bool ret = true;
4522
4523 spin_lock(&bg->lock);
4524 if (bg->ro)
4525 ret = false;
4526 else
4527 bg->swap_extents++;
4528 spin_unlock(&bg->lock);
4529
4530 return ret;
4531 }
4532
btrfs_dec_block_group_swap_extents(struct btrfs_block_group * bg,int amount)4533 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4534 {
4535 spin_lock(&bg->lock);
4536 ASSERT(!bg->ro);
4537 ASSERT(bg->swap_extents >= amount);
4538 bg->swap_extents -= amount;
4539 spin_unlock(&bg->lock);
4540 }
4541
btrfs_calc_block_group_size_class(u64 size)4542 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4543 {
4544 if (size <= SZ_128K)
4545 return BTRFS_BG_SZ_SMALL;
4546 if (size <= SZ_8M)
4547 return BTRFS_BG_SZ_MEDIUM;
4548 return BTRFS_BG_SZ_LARGE;
4549 }
4550
4551 /*
4552 * Handle a block group allocating an extent in a size class
4553 *
4554 * @bg: The block group we allocated in.
4555 * @size_class: The size class of the allocation.
4556 * @force_wrong_size_class: Whether we are desperate enough to allow
4557 * mismatched size classes.
4558 *
4559 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4560 * case of a race that leads to the wrong size class without
4561 * force_wrong_size_class set.
4562 *
4563 * find_free_extent will skip block groups with a mismatched size class until
4564 * it really needs to avoid ENOSPC. In that case it will set
4565 * force_wrong_size_class. However, if a block group is newly allocated and
4566 * doesn't yet have a size class, then it is possible for two allocations of
4567 * different sizes to race and both try to use it. The loser is caught here and
4568 * has to retry.
4569 */
btrfs_use_block_group_size_class(struct btrfs_block_group * bg,enum btrfs_block_group_size_class size_class,bool force_wrong_size_class)4570 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4571 enum btrfs_block_group_size_class size_class,
4572 bool force_wrong_size_class)
4573 {
4574 ASSERT(size_class != BTRFS_BG_SZ_NONE);
4575
4576 /* The new allocation is in the right size class, do nothing */
4577 if (bg->size_class == size_class)
4578 return 0;
4579 /*
4580 * The new allocation is in a mismatched size class.
4581 * This means one of two things:
4582 *
4583 * 1. Two tasks in find_free_extent for different size_classes raced
4584 * and hit the same empty block_group. Make the loser try again.
4585 * 2. A call to find_free_extent got desperate enough to set
4586 * 'force_wrong_slab'. Don't change the size_class, but allow the
4587 * allocation.
4588 */
4589 if (bg->size_class != BTRFS_BG_SZ_NONE) {
4590 if (force_wrong_size_class)
4591 return 0;
4592 return -EAGAIN;
4593 }
4594 /*
4595 * The happy new block group case: the new allocation is the first
4596 * one in the block_group so we set size_class.
4597 */
4598 bg->size_class = size_class;
4599
4600 return 0;
4601 }
4602
btrfs_block_group_should_use_size_class(struct btrfs_block_group * bg)4603 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4604 {
4605 if (btrfs_is_zoned(bg->fs_info))
4606 return false;
4607 if (!btrfs_is_block_group_data_only(bg))
4608 return false;
4609 return true;
4610 }
4611