1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
65
66 #include <net/protocol.h>
67 #include <net/dst.h>
68 #include <net/sock.h>
69 #include <net/checksum.h>
70 #include <net/gso.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 #include <net/mpls.h>
74 #include <net/mptcp.h>
75 #include <net/mctp.h>
76 #include <net/page_pool/helpers.h>
77 #include <net/dropreason.h>
78
79 #include <linux/uaccess.h>
80 #include <trace/events/skb.h>
81 #include <linux/highmem.h>
82 #include <linux/capability.h>
83 #include <linux/user_namespace.h>
84 #include <linux/indirect_call_wrapper.h>
85 #include <linux/textsearch.h>
86
87 #include "dev.h"
88 #include "sock_destructor.h"
89
90 struct kmem_cache *skbuff_cache __ro_after_init;
91 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
92 #ifdef CONFIG_SKB_EXTENSIONS
93 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
94 #endif
95
96
97 static struct kmem_cache *skb_small_head_cache __ro_after_init;
98
99 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
100
101 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
102 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
103 * size, and we can differentiate heads from skb_small_head_cache
104 * vs system slabs by looking at their size (skb_end_offset()).
105 */
106 #define SKB_SMALL_HEAD_CACHE_SIZE \
107 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \
108 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \
109 SKB_SMALL_HEAD_SIZE)
110
111 #define SKB_SMALL_HEAD_HEADROOM \
112 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
113
114 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
115 EXPORT_SYMBOL(sysctl_max_skb_frags);
116
117 #undef FN
118 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
119 static const char * const drop_reasons[] = {
120 [SKB_CONSUMED] = "CONSUMED",
121 DEFINE_DROP_REASON(FN, FN)
122 };
123
124 static const struct drop_reason_list drop_reasons_core = {
125 .reasons = drop_reasons,
126 .n_reasons = ARRAY_SIZE(drop_reasons),
127 };
128
129 const struct drop_reason_list __rcu *
130 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
131 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
132 };
133 EXPORT_SYMBOL(drop_reasons_by_subsys);
134
135 /**
136 * drop_reasons_register_subsys - register another drop reason subsystem
137 * @subsys: the subsystem to register, must not be the core
138 * @list: the list of drop reasons within the subsystem, must point to
139 * a statically initialized list
140 */
drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,const struct drop_reason_list * list)141 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
142 const struct drop_reason_list *list)
143 {
144 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
145 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
146 "invalid subsystem %d\n", subsys))
147 return;
148
149 /* must point to statically allocated memory, so INIT is OK */
150 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
151 }
152 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
153
154 /**
155 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
156 * @subsys: the subsystem to remove, must not be the core
157 *
158 * Note: This will synchronize_rcu() to ensure no users when it returns.
159 */
drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)160 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
161 {
162 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
163 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
164 "invalid subsystem %d\n", subsys))
165 return;
166
167 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
168
169 synchronize_rcu();
170 }
171 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
172
173 /**
174 * skb_panic - private function for out-of-line support
175 * @skb: buffer
176 * @sz: size
177 * @addr: address
178 * @msg: skb_over_panic or skb_under_panic
179 *
180 * Out-of-line support for skb_put() and skb_push().
181 * Called via the wrapper skb_over_panic() or skb_under_panic().
182 * Keep out of line to prevent kernel bloat.
183 * __builtin_return_address is not used because it is not always reliable.
184 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])185 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
186 const char msg[])
187 {
188 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
189 msg, addr, skb->len, sz, skb->head, skb->data,
190 (unsigned long)skb->tail, (unsigned long)skb->end,
191 skb->dev ? skb->dev->name : "<NULL>");
192 BUG();
193 }
194
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)195 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
196 {
197 skb_panic(skb, sz, addr, __func__);
198 }
199
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)200 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
201 {
202 skb_panic(skb, sz, addr, __func__);
203 }
204
205 #define NAPI_SKB_CACHE_SIZE 64
206 #define NAPI_SKB_CACHE_BULK 16
207 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
208
209 #if PAGE_SIZE == SZ_4K
210
211 #define NAPI_HAS_SMALL_PAGE_FRAG 1
212 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc)
213
214 /* specialized page frag allocator using a single order 0 page
215 * and slicing it into 1K sized fragment. Constrained to systems
216 * with a very limited amount of 1K fragments fitting a single
217 * page - to avoid excessive truesize underestimation
218 */
219
220 struct page_frag_1k {
221 void *va;
222 u16 offset;
223 bool pfmemalloc;
224 };
225
page_frag_alloc_1k(struct page_frag_1k * nc,gfp_t gfp)226 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
227 {
228 struct page *page;
229 int offset;
230
231 offset = nc->offset - SZ_1K;
232 if (likely(offset >= 0))
233 goto use_frag;
234
235 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
236 if (!page)
237 return NULL;
238
239 nc->va = page_address(page);
240 nc->pfmemalloc = page_is_pfmemalloc(page);
241 offset = PAGE_SIZE - SZ_1K;
242 page_ref_add(page, offset / SZ_1K);
243
244 use_frag:
245 nc->offset = offset;
246 return nc->va + offset;
247 }
248 #else
249
250 /* the small page is actually unused in this build; add dummy helpers
251 * to please the compiler and avoid later preprocessor's conditionals
252 */
253 #define NAPI_HAS_SMALL_PAGE_FRAG 0
254 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false
255
256 struct page_frag_1k {
257 };
258
page_frag_alloc_1k(struct page_frag_1k * nc,gfp_t gfp_mask)259 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
260 {
261 return NULL;
262 }
263
264 #endif
265
266 struct napi_alloc_cache {
267 struct page_frag_cache page;
268 struct page_frag_1k page_small;
269 unsigned int skb_count;
270 void *skb_cache[NAPI_SKB_CACHE_SIZE];
271 };
272
273 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
274 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
275
276 /* Double check that napi_get_frags() allocates skbs with
277 * skb->head being backed by slab, not a page fragment.
278 * This is to make sure bug fixed in 3226b158e67c
279 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
280 * does not accidentally come back.
281 */
napi_get_frags_check(struct napi_struct * napi)282 void napi_get_frags_check(struct napi_struct *napi)
283 {
284 struct sk_buff *skb;
285
286 local_bh_disable();
287 skb = napi_get_frags(napi);
288 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
289 napi_free_frags(napi);
290 local_bh_enable();
291 }
292
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)293 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
294 {
295 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
296
297 fragsz = SKB_DATA_ALIGN(fragsz);
298
299 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
300 }
301 EXPORT_SYMBOL(__napi_alloc_frag_align);
302
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)303 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
304 {
305 void *data;
306
307 fragsz = SKB_DATA_ALIGN(fragsz);
308 if (in_hardirq() || irqs_disabled()) {
309 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
310
311 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
312 } else {
313 struct napi_alloc_cache *nc;
314
315 local_bh_disable();
316 nc = this_cpu_ptr(&napi_alloc_cache);
317 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
318 local_bh_enable();
319 }
320 return data;
321 }
322 EXPORT_SYMBOL(__netdev_alloc_frag_align);
323
napi_skb_cache_get(void)324 static struct sk_buff *napi_skb_cache_get(void)
325 {
326 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
327 struct sk_buff *skb;
328
329 if (unlikely(!nc->skb_count)) {
330 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
331 GFP_ATOMIC,
332 NAPI_SKB_CACHE_BULK,
333 nc->skb_cache);
334 if (unlikely(!nc->skb_count))
335 return NULL;
336 }
337
338 skb = nc->skb_cache[--nc->skb_count];
339 kasan_unpoison_object_data(skbuff_cache, skb);
340
341 return skb;
342 }
343
__finalize_skb_around(struct sk_buff * skb,void * data,unsigned int size)344 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
345 unsigned int size)
346 {
347 struct skb_shared_info *shinfo;
348
349 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
350
351 /* Assumes caller memset cleared SKB */
352 skb->truesize = SKB_TRUESIZE(size);
353 refcount_set(&skb->users, 1);
354 skb->head = data;
355 skb->data = data;
356 skb_reset_tail_pointer(skb);
357 skb_set_end_offset(skb, size);
358 skb->mac_header = (typeof(skb->mac_header))~0U;
359 skb->transport_header = (typeof(skb->transport_header))~0U;
360 skb->alloc_cpu = raw_smp_processor_id();
361 /* make sure we initialize shinfo sequentially */
362 shinfo = skb_shinfo(skb);
363 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
364 atomic_set(&shinfo->dataref, 1);
365
366 skb_set_kcov_handle(skb, kcov_common_handle());
367 }
368
__slab_build_skb(struct sk_buff * skb,void * data,unsigned int * size)369 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
370 unsigned int *size)
371 {
372 void *resized;
373
374 /* Must find the allocation size (and grow it to match). */
375 *size = ksize(data);
376 /* krealloc() will immediately return "data" when
377 * "ksize(data)" is requested: it is the existing upper
378 * bounds. As a result, GFP_ATOMIC will be ignored. Note
379 * that this "new" pointer needs to be passed back to the
380 * caller for use so the __alloc_size hinting will be
381 * tracked correctly.
382 */
383 resized = krealloc(data, *size, GFP_ATOMIC);
384 WARN_ON_ONCE(resized != data);
385 return resized;
386 }
387
388 /* build_skb() variant which can operate on slab buffers.
389 * Note that this should be used sparingly as slab buffers
390 * cannot be combined efficiently by GRO!
391 */
slab_build_skb(void * data)392 struct sk_buff *slab_build_skb(void *data)
393 {
394 struct sk_buff *skb;
395 unsigned int size;
396
397 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
398 if (unlikely(!skb))
399 return NULL;
400
401 memset(skb, 0, offsetof(struct sk_buff, tail));
402 data = __slab_build_skb(skb, data, &size);
403 __finalize_skb_around(skb, data, size);
404
405 return skb;
406 }
407 EXPORT_SYMBOL(slab_build_skb);
408
409 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)410 static void __build_skb_around(struct sk_buff *skb, void *data,
411 unsigned int frag_size)
412 {
413 unsigned int size = frag_size;
414
415 /* frag_size == 0 is considered deprecated now. Callers
416 * using slab buffer should use slab_build_skb() instead.
417 */
418 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
419 data = __slab_build_skb(skb, data, &size);
420
421 __finalize_skb_around(skb, data, size);
422 }
423
424 /**
425 * __build_skb - build a network buffer
426 * @data: data buffer provided by caller
427 * @frag_size: size of data (must not be 0)
428 *
429 * Allocate a new &sk_buff. Caller provides space holding head and
430 * skb_shared_info. @data must have been allocated from the page
431 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
432 * allocation is deprecated, and callers should use slab_build_skb()
433 * instead.)
434 * The return is the new skb buffer.
435 * On a failure the return is %NULL, and @data is not freed.
436 * Notes :
437 * Before IO, driver allocates only data buffer where NIC put incoming frame
438 * Driver should add room at head (NET_SKB_PAD) and
439 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
440 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
441 * before giving packet to stack.
442 * RX rings only contains data buffers, not full skbs.
443 */
__build_skb(void * data,unsigned int frag_size)444 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
445 {
446 struct sk_buff *skb;
447
448 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
449 if (unlikely(!skb))
450 return NULL;
451
452 memset(skb, 0, offsetof(struct sk_buff, tail));
453 __build_skb_around(skb, data, frag_size);
454
455 return skb;
456 }
457
458 /* build_skb() is wrapper over __build_skb(), that specifically
459 * takes care of skb->head and skb->pfmemalloc
460 */
build_skb(void * data,unsigned int frag_size)461 struct sk_buff *build_skb(void *data, unsigned int frag_size)
462 {
463 struct sk_buff *skb = __build_skb(data, frag_size);
464
465 if (likely(skb && frag_size)) {
466 skb->head_frag = 1;
467 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
468 }
469 return skb;
470 }
471 EXPORT_SYMBOL(build_skb);
472
473 /**
474 * build_skb_around - build a network buffer around provided skb
475 * @skb: sk_buff provide by caller, must be memset cleared
476 * @data: data buffer provided by caller
477 * @frag_size: size of data
478 */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)479 struct sk_buff *build_skb_around(struct sk_buff *skb,
480 void *data, unsigned int frag_size)
481 {
482 if (unlikely(!skb))
483 return NULL;
484
485 __build_skb_around(skb, data, frag_size);
486
487 if (frag_size) {
488 skb->head_frag = 1;
489 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
490 }
491 return skb;
492 }
493 EXPORT_SYMBOL(build_skb_around);
494
495 /**
496 * __napi_build_skb - build a network buffer
497 * @data: data buffer provided by caller
498 * @frag_size: size of data
499 *
500 * Version of __build_skb() that uses NAPI percpu caches to obtain
501 * skbuff_head instead of inplace allocation.
502 *
503 * Returns a new &sk_buff on success, %NULL on allocation failure.
504 */
__napi_build_skb(void * data,unsigned int frag_size)505 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
506 {
507 struct sk_buff *skb;
508
509 skb = napi_skb_cache_get();
510 if (unlikely(!skb))
511 return NULL;
512
513 memset(skb, 0, offsetof(struct sk_buff, tail));
514 __build_skb_around(skb, data, frag_size);
515
516 return skb;
517 }
518
519 /**
520 * napi_build_skb - build a network buffer
521 * @data: data buffer provided by caller
522 * @frag_size: size of data
523 *
524 * Version of __napi_build_skb() that takes care of skb->head_frag
525 * and skb->pfmemalloc when the data is a page or page fragment.
526 *
527 * Returns a new &sk_buff on success, %NULL on allocation failure.
528 */
napi_build_skb(void * data,unsigned int frag_size)529 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
530 {
531 struct sk_buff *skb = __napi_build_skb(data, frag_size);
532
533 if (likely(skb) && frag_size) {
534 skb->head_frag = 1;
535 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
536 }
537
538 return skb;
539 }
540 EXPORT_SYMBOL(napi_build_skb);
541
542 /*
543 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
544 * the caller if emergency pfmemalloc reserves are being used. If it is and
545 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
546 * may be used. Otherwise, the packet data may be discarded until enough
547 * memory is free
548 */
kmalloc_reserve(unsigned int * size,gfp_t flags,int node,bool * pfmemalloc)549 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
550 bool *pfmemalloc)
551 {
552 bool ret_pfmemalloc = false;
553 size_t obj_size;
554 void *obj;
555
556 obj_size = SKB_HEAD_ALIGN(*size);
557 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
558 !(flags & KMALLOC_NOT_NORMAL_BITS)) {
559 obj = kmem_cache_alloc_node(skb_small_head_cache,
560 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
561 node);
562 *size = SKB_SMALL_HEAD_CACHE_SIZE;
563 if (obj || !(gfp_pfmemalloc_allowed(flags)))
564 goto out;
565 /* Try again but now we are using pfmemalloc reserves */
566 ret_pfmemalloc = true;
567 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
568 goto out;
569 }
570
571 obj_size = kmalloc_size_roundup(obj_size);
572 /* The following cast might truncate high-order bits of obj_size, this
573 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
574 */
575 *size = (unsigned int)obj_size;
576
577 /*
578 * Try a regular allocation, when that fails and we're not entitled
579 * to the reserves, fail.
580 */
581 obj = kmalloc_node_track_caller(obj_size,
582 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
583 node);
584 if (obj || !(gfp_pfmemalloc_allowed(flags)))
585 goto out;
586
587 /* Try again but now we are using pfmemalloc reserves */
588 ret_pfmemalloc = true;
589 obj = kmalloc_node_track_caller(obj_size, flags, node);
590
591 out:
592 if (pfmemalloc)
593 *pfmemalloc = ret_pfmemalloc;
594
595 return obj;
596 }
597
598 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
599 * 'private' fields and also do memory statistics to find all the
600 * [BEEP] leaks.
601 *
602 */
603
604 /**
605 * __alloc_skb - allocate a network buffer
606 * @size: size to allocate
607 * @gfp_mask: allocation mask
608 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
609 * instead of head cache and allocate a cloned (child) skb.
610 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
611 * allocations in case the data is required for writeback
612 * @node: numa node to allocate memory on
613 *
614 * Allocate a new &sk_buff. The returned buffer has no headroom and a
615 * tail room of at least size bytes. The object has a reference count
616 * of one. The return is the buffer. On a failure the return is %NULL.
617 *
618 * Buffers may only be allocated from interrupts using a @gfp_mask of
619 * %GFP_ATOMIC.
620 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)621 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
622 int flags, int node)
623 {
624 struct kmem_cache *cache;
625 struct sk_buff *skb;
626 bool pfmemalloc;
627 u8 *data;
628
629 cache = (flags & SKB_ALLOC_FCLONE)
630 ? skbuff_fclone_cache : skbuff_cache;
631
632 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
633 gfp_mask |= __GFP_MEMALLOC;
634
635 /* Get the HEAD */
636 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
637 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
638 skb = napi_skb_cache_get();
639 else
640 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
641 if (unlikely(!skb))
642 return NULL;
643 prefetchw(skb);
644
645 /* We do our best to align skb_shared_info on a separate cache
646 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
647 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
648 * Both skb->head and skb_shared_info are cache line aligned.
649 */
650 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
651 if (unlikely(!data))
652 goto nodata;
653 /* kmalloc_size_roundup() might give us more room than requested.
654 * Put skb_shared_info exactly at the end of allocated zone,
655 * to allow max possible filling before reallocation.
656 */
657 prefetchw(data + SKB_WITH_OVERHEAD(size));
658
659 /*
660 * Only clear those fields we need to clear, not those that we will
661 * actually initialise below. Hence, don't put any more fields after
662 * the tail pointer in struct sk_buff!
663 */
664 memset(skb, 0, offsetof(struct sk_buff, tail));
665 __build_skb_around(skb, data, size);
666 skb->pfmemalloc = pfmemalloc;
667
668 if (flags & SKB_ALLOC_FCLONE) {
669 struct sk_buff_fclones *fclones;
670
671 fclones = container_of(skb, struct sk_buff_fclones, skb1);
672
673 skb->fclone = SKB_FCLONE_ORIG;
674 refcount_set(&fclones->fclone_ref, 1);
675 }
676
677 return skb;
678
679 nodata:
680 kmem_cache_free(cache, skb);
681 return NULL;
682 }
683 EXPORT_SYMBOL(__alloc_skb);
684
685 /**
686 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
687 * @dev: network device to receive on
688 * @len: length to allocate
689 * @gfp_mask: get_free_pages mask, passed to alloc_skb
690 *
691 * Allocate a new &sk_buff and assign it a usage count of one. The
692 * buffer has NET_SKB_PAD headroom built in. Users should allocate
693 * the headroom they think they need without accounting for the
694 * built in space. The built in space is used for optimisations.
695 *
696 * %NULL is returned if there is no free memory.
697 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)698 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
699 gfp_t gfp_mask)
700 {
701 struct page_frag_cache *nc;
702 struct sk_buff *skb;
703 bool pfmemalloc;
704 void *data;
705
706 len += NET_SKB_PAD;
707
708 /* If requested length is either too small or too big,
709 * we use kmalloc() for skb->head allocation.
710 */
711 if (len <= SKB_WITH_OVERHEAD(1024) ||
712 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
713 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
714 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
715 if (!skb)
716 goto skb_fail;
717 goto skb_success;
718 }
719
720 len = SKB_HEAD_ALIGN(len);
721
722 if (sk_memalloc_socks())
723 gfp_mask |= __GFP_MEMALLOC;
724
725 if (in_hardirq() || irqs_disabled()) {
726 nc = this_cpu_ptr(&netdev_alloc_cache);
727 data = page_frag_alloc(nc, len, gfp_mask);
728 pfmemalloc = nc->pfmemalloc;
729 } else {
730 local_bh_disable();
731 nc = this_cpu_ptr(&napi_alloc_cache.page);
732 data = page_frag_alloc(nc, len, gfp_mask);
733 pfmemalloc = nc->pfmemalloc;
734 local_bh_enable();
735 }
736
737 if (unlikely(!data))
738 return NULL;
739
740 skb = __build_skb(data, len);
741 if (unlikely(!skb)) {
742 skb_free_frag(data);
743 return NULL;
744 }
745
746 if (pfmemalloc)
747 skb->pfmemalloc = 1;
748 skb->head_frag = 1;
749
750 skb_success:
751 skb_reserve(skb, NET_SKB_PAD);
752 skb->dev = dev;
753
754 skb_fail:
755 return skb;
756 }
757 EXPORT_SYMBOL(__netdev_alloc_skb);
758
759 /**
760 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
761 * @napi: napi instance this buffer was allocated for
762 * @len: length to allocate
763 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
764 *
765 * Allocate a new sk_buff for use in NAPI receive. This buffer will
766 * attempt to allocate the head from a special reserved region used
767 * only for NAPI Rx allocation. By doing this we can save several
768 * CPU cycles by avoiding having to disable and re-enable IRQs.
769 *
770 * %NULL is returned if there is no free memory.
771 */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)772 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
773 gfp_t gfp_mask)
774 {
775 struct napi_alloc_cache *nc;
776 struct sk_buff *skb;
777 bool pfmemalloc;
778 void *data;
779
780 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
781 len += NET_SKB_PAD + NET_IP_ALIGN;
782
783 /* If requested length is either too small or too big,
784 * we use kmalloc() for skb->head allocation.
785 * When the small frag allocator is available, prefer it over kmalloc
786 * for small fragments
787 */
788 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
789 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
790 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
791 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
792 NUMA_NO_NODE);
793 if (!skb)
794 goto skb_fail;
795 goto skb_success;
796 }
797
798 nc = this_cpu_ptr(&napi_alloc_cache);
799
800 if (sk_memalloc_socks())
801 gfp_mask |= __GFP_MEMALLOC;
802
803 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
804 /* we are artificially inflating the allocation size, but
805 * that is not as bad as it may look like, as:
806 * - 'len' less than GRO_MAX_HEAD makes little sense
807 * - On most systems, larger 'len' values lead to fragment
808 * size above 512 bytes
809 * - kmalloc would use the kmalloc-1k slab for such values
810 * - Builds with smaller GRO_MAX_HEAD will very likely do
811 * little networking, as that implies no WiFi and no
812 * tunnels support, and 32 bits arches.
813 */
814 len = SZ_1K;
815
816 data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
817 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
818 } else {
819 len = SKB_HEAD_ALIGN(len);
820
821 data = page_frag_alloc(&nc->page, len, gfp_mask);
822 pfmemalloc = nc->page.pfmemalloc;
823 }
824
825 if (unlikely(!data))
826 return NULL;
827
828 skb = __napi_build_skb(data, len);
829 if (unlikely(!skb)) {
830 skb_free_frag(data);
831 return NULL;
832 }
833
834 if (pfmemalloc)
835 skb->pfmemalloc = 1;
836 skb->head_frag = 1;
837
838 skb_success:
839 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
840 skb->dev = napi->dev;
841
842 skb_fail:
843 return skb;
844 }
845 EXPORT_SYMBOL(__napi_alloc_skb);
846
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)847 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
848 int size, unsigned int truesize)
849 {
850 skb_fill_page_desc(skb, i, page, off, size);
851 skb->len += size;
852 skb->data_len += size;
853 skb->truesize += truesize;
854 }
855 EXPORT_SYMBOL(skb_add_rx_frag);
856
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)857 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
858 unsigned int truesize)
859 {
860 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
861
862 skb_frag_size_add(frag, size);
863 skb->len += size;
864 skb->data_len += size;
865 skb->truesize += truesize;
866 }
867 EXPORT_SYMBOL(skb_coalesce_rx_frag);
868
skb_drop_list(struct sk_buff ** listp)869 static void skb_drop_list(struct sk_buff **listp)
870 {
871 kfree_skb_list(*listp);
872 *listp = NULL;
873 }
874
skb_drop_fraglist(struct sk_buff * skb)875 static inline void skb_drop_fraglist(struct sk_buff *skb)
876 {
877 skb_drop_list(&skb_shinfo(skb)->frag_list);
878 }
879
skb_clone_fraglist(struct sk_buff * skb)880 static void skb_clone_fraglist(struct sk_buff *skb)
881 {
882 struct sk_buff *list;
883
884 skb_walk_frags(skb, list)
885 skb_get(list);
886 }
887
888 #if IS_ENABLED(CONFIG_PAGE_POOL)
napi_pp_put_page(struct page * page,bool napi_safe)889 bool napi_pp_put_page(struct page *page, bool napi_safe)
890 {
891 bool allow_direct = false;
892 struct page_pool *pp;
893
894 page = compound_head(page);
895
896 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
897 * in order to preserve any existing bits, such as bit 0 for the
898 * head page of compound page and bit 1 for pfmemalloc page, so
899 * mask those bits for freeing side when doing below checking,
900 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
901 * to avoid recycling the pfmemalloc page.
902 */
903 if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE))
904 return false;
905
906 pp = page->pp;
907
908 /* Allow direct recycle if we have reasons to believe that we are
909 * in the same context as the consumer would run, so there's
910 * no possible race.
911 * __page_pool_put_page() makes sure we're not in hardirq context
912 * and interrupts are enabled prior to accessing the cache.
913 */
914 if (napi_safe || in_softirq()) {
915 const struct napi_struct *napi = READ_ONCE(pp->p.napi);
916
917 allow_direct = napi &&
918 READ_ONCE(napi->list_owner) == smp_processor_id();
919 }
920
921 /* Driver set this to memory recycling info. Reset it on recycle.
922 * This will *not* work for NIC using a split-page memory model.
923 * The page will be returned to the pool here regardless of the
924 * 'flipped' fragment being in use or not.
925 */
926 page_pool_put_full_page(pp, page, allow_direct);
927
928 return true;
929 }
930 EXPORT_SYMBOL(napi_pp_put_page);
931 #endif
932
skb_pp_recycle(struct sk_buff * skb,void * data,bool napi_safe)933 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
934 {
935 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
936 return false;
937 return napi_pp_put_page(virt_to_page(data), napi_safe);
938 }
939
skb_kfree_head(void * head,unsigned int end_offset)940 static void skb_kfree_head(void *head, unsigned int end_offset)
941 {
942 if (end_offset == SKB_SMALL_HEAD_HEADROOM)
943 kmem_cache_free(skb_small_head_cache, head);
944 else
945 kfree(head);
946 }
947
skb_free_head(struct sk_buff * skb,bool napi_safe)948 static void skb_free_head(struct sk_buff *skb, bool napi_safe)
949 {
950 unsigned char *head = skb->head;
951
952 if (skb->head_frag) {
953 if (skb_pp_recycle(skb, head, napi_safe))
954 return;
955 skb_free_frag(head);
956 } else {
957 skb_kfree_head(head, skb_end_offset(skb));
958 }
959 }
960
skb_release_data(struct sk_buff * skb,enum skb_drop_reason reason,bool napi_safe)961 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
962 bool napi_safe)
963 {
964 struct skb_shared_info *shinfo = skb_shinfo(skb);
965 int i;
966
967 if (skb->cloned &&
968 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
969 &shinfo->dataref))
970 goto exit;
971
972 if (skb_zcopy(skb)) {
973 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
974
975 skb_zcopy_clear(skb, true);
976 if (skip_unref)
977 goto free_head;
978 }
979
980 for (i = 0; i < shinfo->nr_frags; i++)
981 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
982
983 free_head:
984 if (shinfo->frag_list)
985 kfree_skb_list_reason(shinfo->frag_list, reason);
986
987 skb_free_head(skb, napi_safe);
988 exit:
989 /* When we clone an SKB we copy the reycling bit. The pp_recycle
990 * bit is only set on the head though, so in order to avoid races
991 * while trying to recycle fragments on __skb_frag_unref() we need
992 * to make one SKB responsible for triggering the recycle path.
993 * So disable the recycling bit if an SKB is cloned and we have
994 * additional references to the fragmented part of the SKB.
995 * Eventually the last SKB will have the recycling bit set and it's
996 * dataref set to 0, which will trigger the recycling
997 */
998 skb->pp_recycle = 0;
999 }
1000
1001 /*
1002 * Free an skbuff by memory without cleaning the state.
1003 */
kfree_skbmem(struct sk_buff * skb)1004 static void kfree_skbmem(struct sk_buff *skb)
1005 {
1006 struct sk_buff_fclones *fclones;
1007
1008 switch (skb->fclone) {
1009 case SKB_FCLONE_UNAVAILABLE:
1010 kmem_cache_free(skbuff_cache, skb);
1011 return;
1012
1013 case SKB_FCLONE_ORIG:
1014 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1015
1016 /* We usually free the clone (TX completion) before original skb
1017 * This test would have no chance to be true for the clone,
1018 * while here, branch prediction will be good.
1019 */
1020 if (refcount_read(&fclones->fclone_ref) == 1)
1021 goto fastpath;
1022 break;
1023
1024 default: /* SKB_FCLONE_CLONE */
1025 fclones = container_of(skb, struct sk_buff_fclones, skb2);
1026 break;
1027 }
1028 if (!refcount_dec_and_test(&fclones->fclone_ref))
1029 return;
1030 fastpath:
1031 kmem_cache_free(skbuff_fclone_cache, fclones);
1032 }
1033
skb_release_head_state(struct sk_buff * skb)1034 void skb_release_head_state(struct sk_buff *skb)
1035 {
1036 skb_dst_drop(skb);
1037 if (skb->destructor) {
1038 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1039 skb->destructor(skb);
1040 }
1041 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1042 nf_conntrack_put(skb_nfct(skb));
1043 #endif
1044 skb_ext_put(skb);
1045 }
1046
1047 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb,enum skb_drop_reason reason,bool napi_safe)1048 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1049 bool napi_safe)
1050 {
1051 skb_release_head_state(skb);
1052 if (likely(skb->head))
1053 skb_release_data(skb, reason, napi_safe);
1054 }
1055
1056 /**
1057 * __kfree_skb - private function
1058 * @skb: buffer
1059 *
1060 * Free an sk_buff. Release anything attached to the buffer.
1061 * Clean the state. This is an internal helper function. Users should
1062 * always call kfree_skb
1063 */
1064
__kfree_skb(struct sk_buff * skb)1065 void __kfree_skb(struct sk_buff *skb)
1066 {
1067 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1068 kfree_skbmem(skb);
1069 }
1070 EXPORT_SYMBOL(__kfree_skb);
1071
1072 static __always_inline
__kfree_skb_reason(struct sk_buff * skb,enum skb_drop_reason reason)1073 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1074 {
1075 if (unlikely(!skb_unref(skb)))
1076 return false;
1077
1078 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1079 u32_get_bits(reason,
1080 SKB_DROP_REASON_SUBSYS_MASK) >=
1081 SKB_DROP_REASON_SUBSYS_NUM);
1082
1083 if (reason == SKB_CONSUMED)
1084 trace_consume_skb(skb, __builtin_return_address(0));
1085 else
1086 trace_kfree_skb(skb, __builtin_return_address(0), reason);
1087 return true;
1088 }
1089
1090 /**
1091 * kfree_skb_reason - free an sk_buff with special reason
1092 * @skb: buffer to free
1093 * @reason: reason why this skb is dropped
1094 *
1095 * Drop a reference to the buffer and free it if the usage count has
1096 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1097 * tracepoint.
1098 */
1099 void __fix_address
kfree_skb_reason(struct sk_buff * skb,enum skb_drop_reason reason)1100 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1101 {
1102 if (__kfree_skb_reason(skb, reason))
1103 __kfree_skb(skb);
1104 }
1105 EXPORT_SYMBOL(kfree_skb_reason);
1106
1107 #define KFREE_SKB_BULK_SIZE 16
1108
1109 struct skb_free_array {
1110 unsigned int skb_count;
1111 void *skb_array[KFREE_SKB_BULK_SIZE];
1112 };
1113
kfree_skb_add_bulk(struct sk_buff * skb,struct skb_free_array * sa,enum skb_drop_reason reason)1114 static void kfree_skb_add_bulk(struct sk_buff *skb,
1115 struct skb_free_array *sa,
1116 enum skb_drop_reason reason)
1117 {
1118 /* if SKB is a clone, don't handle this case */
1119 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1120 __kfree_skb(skb);
1121 return;
1122 }
1123
1124 skb_release_all(skb, reason, false);
1125 sa->skb_array[sa->skb_count++] = skb;
1126
1127 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1128 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1129 sa->skb_array);
1130 sa->skb_count = 0;
1131 }
1132 }
1133
1134 void __fix_address
kfree_skb_list_reason(struct sk_buff * segs,enum skb_drop_reason reason)1135 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1136 {
1137 struct skb_free_array sa;
1138
1139 sa.skb_count = 0;
1140
1141 while (segs) {
1142 struct sk_buff *next = segs->next;
1143
1144 if (__kfree_skb_reason(segs, reason)) {
1145 skb_poison_list(segs);
1146 kfree_skb_add_bulk(segs, &sa, reason);
1147 }
1148
1149 segs = next;
1150 }
1151
1152 if (sa.skb_count)
1153 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1154 }
1155 EXPORT_SYMBOL(kfree_skb_list_reason);
1156
1157 /* Dump skb information and contents.
1158 *
1159 * Must only be called from net_ratelimit()-ed paths.
1160 *
1161 * Dumps whole packets if full_pkt, only headers otherwise.
1162 */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)1163 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1164 {
1165 struct skb_shared_info *sh = skb_shinfo(skb);
1166 struct net_device *dev = skb->dev;
1167 struct sock *sk = skb->sk;
1168 struct sk_buff *list_skb;
1169 bool has_mac, has_trans;
1170 int headroom, tailroom;
1171 int i, len, seg_len;
1172
1173 if (full_pkt)
1174 len = skb->len;
1175 else
1176 len = min_t(int, skb->len, MAX_HEADER + 128);
1177
1178 headroom = skb_headroom(skb);
1179 tailroom = skb_tailroom(skb);
1180
1181 has_mac = skb_mac_header_was_set(skb);
1182 has_trans = skb_transport_header_was_set(skb);
1183
1184 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1185 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1186 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1187 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1188 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1189 level, skb->len, headroom, skb_headlen(skb), tailroom,
1190 has_mac ? skb->mac_header : -1,
1191 has_mac ? skb_mac_header_len(skb) : -1,
1192 skb->network_header,
1193 has_trans ? skb_network_header_len(skb) : -1,
1194 has_trans ? skb->transport_header : -1,
1195 sh->tx_flags, sh->nr_frags,
1196 sh->gso_size, sh->gso_type, sh->gso_segs,
1197 skb->csum, skb->ip_summed, skb->csum_complete_sw,
1198 skb->csum_valid, skb->csum_level,
1199 skb->hash, skb->sw_hash, skb->l4_hash,
1200 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1201
1202 if (dev)
1203 printk("%sdev name=%s feat=%pNF\n",
1204 level, dev->name, &dev->features);
1205 if (sk)
1206 printk("%ssk family=%hu type=%u proto=%u\n",
1207 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1208
1209 if (full_pkt && headroom)
1210 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1211 16, 1, skb->head, headroom, false);
1212
1213 seg_len = min_t(int, skb_headlen(skb), len);
1214 if (seg_len)
1215 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1216 16, 1, skb->data, seg_len, false);
1217 len -= seg_len;
1218
1219 if (full_pkt && tailroom)
1220 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1221 16, 1, skb_tail_pointer(skb), tailroom, false);
1222
1223 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1224 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1225 u32 p_off, p_len, copied;
1226 struct page *p;
1227 u8 *vaddr;
1228
1229 skb_frag_foreach_page(frag, skb_frag_off(frag),
1230 skb_frag_size(frag), p, p_off, p_len,
1231 copied) {
1232 seg_len = min_t(int, p_len, len);
1233 vaddr = kmap_atomic(p);
1234 print_hex_dump(level, "skb frag: ",
1235 DUMP_PREFIX_OFFSET,
1236 16, 1, vaddr + p_off, seg_len, false);
1237 kunmap_atomic(vaddr);
1238 len -= seg_len;
1239 if (!len)
1240 break;
1241 }
1242 }
1243
1244 if (full_pkt && skb_has_frag_list(skb)) {
1245 printk("skb fraglist:\n");
1246 skb_walk_frags(skb, list_skb)
1247 skb_dump(level, list_skb, true);
1248 }
1249 }
1250 EXPORT_SYMBOL(skb_dump);
1251
1252 /**
1253 * skb_tx_error - report an sk_buff xmit error
1254 * @skb: buffer that triggered an error
1255 *
1256 * Report xmit error if a device callback is tracking this skb.
1257 * skb must be freed afterwards.
1258 */
skb_tx_error(struct sk_buff * skb)1259 void skb_tx_error(struct sk_buff *skb)
1260 {
1261 if (skb) {
1262 skb_zcopy_downgrade_managed(skb);
1263 skb_zcopy_clear(skb, true);
1264 }
1265 }
1266 EXPORT_SYMBOL(skb_tx_error);
1267
1268 #ifdef CONFIG_TRACEPOINTS
1269 /**
1270 * consume_skb - free an skbuff
1271 * @skb: buffer to free
1272 *
1273 * Drop a ref to the buffer and free it if the usage count has hit zero
1274 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1275 * is being dropped after a failure and notes that
1276 */
consume_skb(struct sk_buff * skb)1277 void consume_skb(struct sk_buff *skb)
1278 {
1279 if (!skb_unref(skb))
1280 return;
1281
1282 trace_consume_skb(skb, __builtin_return_address(0));
1283 __kfree_skb(skb);
1284 }
1285 EXPORT_SYMBOL(consume_skb);
1286 #endif
1287
1288 /**
1289 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1290 * @skb: buffer to free
1291 *
1292 * Alike consume_skb(), but this variant assumes that this is the last
1293 * skb reference and all the head states have been already dropped
1294 */
__consume_stateless_skb(struct sk_buff * skb)1295 void __consume_stateless_skb(struct sk_buff *skb)
1296 {
1297 trace_consume_skb(skb, __builtin_return_address(0));
1298 skb_release_data(skb, SKB_CONSUMED, false);
1299 kfree_skbmem(skb);
1300 }
1301
napi_skb_cache_put(struct sk_buff * skb)1302 static void napi_skb_cache_put(struct sk_buff *skb)
1303 {
1304 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1305 u32 i;
1306
1307 kasan_poison_object_data(skbuff_cache, skb);
1308 nc->skb_cache[nc->skb_count++] = skb;
1309
1310 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1311 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1312 kasan_unpoison_object_data(skbuff_cache,
1313 nc->skb_cache[i]);
1314
1315 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1316 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1317 nc->skb_count = NAPI_SKB_CACHE_HALF;
1318 }
1319 }
1320
__napi_kfree_skb(struct sk_buff * skb,enum skb_drop_reason reason)1321 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1322 {
1323 skb_release_all(skb, reason, true);
1324 napi_skb_cache_put(skb);
1325 }
1326
napi_skb_free_stolen_head(struct sk_buff * skb)1327 void napi_skb_free_stolen_head(struct sk_buff *skb)
1328 {
1329 if (unlikely(skb->slow_gro)) {
1330 nf_reset_ct(skb);
1331 skb_dst_drop(skb);
1332 skb_ext_put(skb);
1333 skb_orphan(skb);
1334 skb->slow_gro = 0;
1335 }
1336 napi_skb_cache_put(skb);
1337 }
1338
napi_consume_skb(struct sk_buff * skb,int budget)1339 void napi_consume_skb(struct sk_buff *skb, int budget)
1340 {
1341 /* Zero budget indicate non-NAPI context called us, like netpoll */
1342 if (unlikely(!budget)) {
1343 dev_consume_skb_any(skb);
1344 return;
1345 }
1346
1347 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1348
1349 if (!skb_unref(skb))
1350 return;
1351
1352 /* if reaching here SKB is ready to free */
1353 trace_consume_skb(skb, __builtin_return_address(0));
1354
1355 /* if SKB is a clone, don't handle this case */
1356 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1357 __kfree_skb(skb);
1358 return;
1359 }
1360
1361 skb_release_all(skb, SKB_CONSUMED, !!budget);
1362 napi_skb_cache_put(skb);
1363 }
1364 EXPORT_SYMBOL(napi_consume_skb);
1365
1366 /* Make sure a field is contained by headers group */
1367 #define CHECK_SKB_FIELD(field) \
1368 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1369 offsetof(struct sk_buff, headers.field)); \
1370
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1371 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1372 {
1373 new->tstamp = old->tstamp;
1374 /* We do not copy old->sk */
1375 new->dev = old->dev;
1376 memcpy(new->cb, old->cb, sizeof(old->cb));
1377 skb_dst_copy(new, old);
1378 __skb_ext_copy(new, old);
1379 __nf_copy(new, old, false);
1380
1381 /* Note : this field could be in the headers group.
1382 * It is not yet because we do not want to have a 16 bit hole
1383 */
1384 new->queue_mapping = old->queue_mapping;
1385
1386 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1387 CHECK_SKB_FIELD(protocol);
1388 CHECK_SKB_FIELD(csum);
1389 CHECK_SKB_FIELD(hash);
1390 CHECK_SKB_FIELD(priority);
1391 CHECK_SKB_FIELD(skb_iif);
1392 CHECK_SKB_FIELD(vlan_proto);
1393 CHECK_SKB_FIELD(vlan_tci);
1394 CHECK_SKB_FIELD(transport_header);
1395 CHECK_SKB_FIELD(network_header);
1396 CHECK_SKB_FIELD(mac_header);
1397 CHECK_SKB_FIELD(inner_protocol);
1398 CHECK_SKB_FIELD(inner_transport_header);
1399 CHECK_SKB_FIELD(inner_network_header);
1400 CHECK_SKB_FIELD(inner_mac_header);
1401 CHECK_SKB_FIELD(mark);
1402 #ifdef CONFIG_NETWORK_SECMARK
1403 CHECK_SKB_FIELD(secmark);
1404 #endif
1405 #ifdef CONFIG_NET_RX_BUSY_POLL
1406 CHECK_SKB_FIELD(napi_id);
1407 #endif
1408 CHECK_SKB_FIELD(alloc_cpu);
1409 #ifdef CONFIG_XPS
1410 CHECK_SKB_FIELD(sender_cpu);
1411 #endif
1412 #ifdef CONFIG_NET_SCHED
1413 CHECK_SKB_FIELD(tc_index);
1414 #endif
1415
1416 }
1417
1418 /*
1419 * You should not add any new code to this function. Add it to
1420 * __copy_skb_header above instead.
1421 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1422 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1423 {
1424 #define C(x) n->x = skb->x
1425
1426 n->next = n->prev = NULL;
1427 n->sk = NULL;
1428 __copy_skb_header(n, skb);
1429
1430 C(len);
1431 C(data_len);
1432 C(mac_len);
1433 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1434 n->cloned = 1;
1435 n->nohdr = 0;
1436 n->peeked = 0;
1437 C(pfmemalloc);
1438 C(pp_recycle);
1439 n->destructor = NULL;
1440 C(tail);
1441 C(end);
1442 C(head);
1443 C(head_frag);
1444 C(data);
1445 C(truesize);
1446 refcount_set(&n->users, 1);
1447
1448 atomic_inc(&(skb_shinfo(skb)->dataref));
1449 skb->cloned = 1;
1450
1451 return n;
1452 #undef C
1453 }
1454
1455 /**
1456 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1457 * @first: first sk_buff of the msg
1458 */
alloc_skb_for_msg(struct sk_buff * first)1459 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1460 {
1461 struct sk_buff *n;
1462
1463 n = alloc_skb(0, GFP_ATOMIC);
1464 if (!n)
1465 return NULL;
1466
1467 n->len = first->len;
1468 n->data_len = first->len;
1469 n->truesize = first->truesize;
1470
1471 skb_shinfo(n)->frag_list = first;
1472
1473 __copy_skb_header(n, first);
1474 n->destructor = NULL;
1475
1476 return n;
1477 }
1478 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1479
1480 /**
1481 * skb_morph - morph one skb into another
1482 * @dst: the skb to receive the contents
1483 * @src: the skb to supply the contents
1484 *
1485 * This is identical to skb_clone except that the target skb is
1486 * supplied by the user.
1487 *
1488 * The target skb is returned upon exit.
1489 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1490 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1491 {
1492 skb_release_all(dst, SKB_CONSUMED, false);
1493 return __skb_clone(dst, src);
1494 }
1495 EXPORT_SYMBOL_GPL(skb_morph);
1496
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1497 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1498 {
1499 unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1500 struct user_struct *user;
1501
1502 if (capable(CAP_IPC_LOCK) || !size)
1503 return 0;
1504
1505 rlim = rlimit(RLIMIT_MEMLOCK);
1506 if (rlim == RLIM_INFINITY)
1507 return 0;
1508
1509 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1510 max_pg = rlim >> PAGE_SHIFT;
1511 user = mmp->user ? : current_user();
1512
1513 old_pg = atomic_long_read(&user->locked_vm);
1514 do {
1515 new_pg = old_pg + num_pg;
1516 if (new_pg > max_pg)
1517 return -ENOBUFS;
1518 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1519
1520 if (!mmp->user) {
1521 mmp->user = get_uid(user);
1522 mmp->num_pg = num_pg;
1523 } else {
1524 mmp->num_pg += num_pg;
1525 }
1526
1527 return 0;
1528 }
1529 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1530
mm_unaccount_pinned_pages(struct mmpin * mmp)1531 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1532 {
1533 if (mmp->user) {
1534 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1535 free_uid(mmp->user);
1536 }
1537 }
1538 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1539
msg_zerocopy_alloc(struct sock * sk,size_t size)1540 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1541 {
1542 struct ubuf_info_msgzc *uarg;
1543 struct sk_buff *skb;
1544
1545 WARN_ON_ONCE(!in_task());
1546
1547 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1548 if (!skb)
1549 return NULL;
1550
1551 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1552 uarg = (void *)skb->cb;
1553 uarg->mmp.user = NULL;
1554
1555 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1556 kfree_skb(skb);
1557 return NULL;
1558 }
1559
1560 uarg->ubuf.callback = msg_zerocopy_callback;
1561 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1562 uarg->len = 1;
1563 uarg->bytelen = size;
1564 uarg->zerocopy = 1;
1565 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1566 refcount_set(&uarg->ubuf.refcnt, 1);
1567 sock_hold(sk);
1568
1569 return &uarg->ubuf;
1570 }
1571
skb_from_uarg(struct ubuf_info_msgzc * uarg)1572 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1573 {
1574 return container_of((void *)uarg, struct sk_buff, cb);
1575 }
1576
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1577 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1578 struct ubuf_info *uarg)
1579 {
1580 if (uarg) {
1581 struct ubuf_info_msgzc *uarg_zc;
1582 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1583 u32 bytelen, next;
1584
1585 /* there might be non MSG_ZEROCOPY users */
1586 if (uarg->callback != msg_zerocopy_callback)
1587 return NULL;
1588
1589 /* realloc only when socket is locked (TCP, UDP cork),
1590 * so uarg->len and sk_zckey access is serialized
1591 */
1592 if (!sock_owned_by_user(sk)) {
1593 WARN_ON_ONCE(1);
1594 return NULL;
1595 }
1596
1597 uarg_zc = uarg_to_msgzc(uarg);
1598 bytelen = uarg_zc->bytelen + size;
1599 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1600 /* TCP can create new skb to attach new uarg */
1601 if (sk->sk_type == SOCK_STREAM)
1602 goto new_alloc;
1603 return NULL;
1604 }
1605
1606 next = (u32)atomic_read(&sk->sk_zckey);
1607 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1608 if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1609 return NULL;
1610 uarg_zc->len++;
1611 uarg_zc->bytelen = bytelen;
1612 atomic_set(&sk->sk_zckey, ++next);
1613
1614 /* no extra ref when appending to datagram (MSG_MORE) */
1615 if (sk->sk_type == SOCK_STREAM)
1616 net_zcopy_get(uarg);
1617
1618 return uarg;
1619 }
1620 }
1621
1622 new_alloc:
1623 return msg_zerocopy_alloc(sk, size);
1624 }
1625 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1626
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1627 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1628 {
1629 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1630 u32 old_lo, old_hi;
1631 u64 sum_len;
1632
1633 old_lo = serr->ee.ee_info;
1634 old_hi = serr->ee.ee_data;
1635 sum_len = old_hi - old_lo + 1ULL + len;
1636
1637 if (sum_len >= (1ULL << 32))
1638 return false;
1639
1640 if (lo != old_hi + 1)
1641 return false;
1642
1643 serr->ee.ee_data += len;
1644 return true;
1645 }
1646
__msg_zerocopy_callback(struct ubuf_info_msgzc * uarg)1647 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1648 {
1649 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1650 struct sock_exterr_skb *serr;
1651 struct sock *sk = skb->sk;
1652 struct sk_buff_head *q;
1653 unsigned long flags;
1654 bool is_zerocopy;
1655 u32 lo, hi;
1656 u16 len;
1657
1658 mm_unaccount_pinned_pages(&uarg->mmp);
1659
1660 /* if !len, there was only 1 call, and it was aborted
1661 * so do not queue a completion notification
1662 */
1663 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1664 goto release;
1665
1666 len = uarg->len;
1667 lo = uarg->id;
1668 hi = uarg->id + len - 1;
1669 is_zerocopy = uarg->zerocopy;
1670
1671 serr = SKB_EXT_ERR(skb);
1672 memset(serr, 0, sizeof(*serr));
1673 serr->ee.ee_errno = 0;
1674 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1675 serr->ee.ee_data = hi;
1676 serr->ee.ee_info = lo;
1677 if (!is_zerocopy)
1678 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1679
1680 q = &sk->sk_error_queue;
1681 spin_lock_irqsave(&q->lock, flags);
1682 tail = skb_peek_tail(q);
1683 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1684 !skb_zerocopy_notify_extend(tail, lo, len)) {
1685 __skb_queue_tail(q, skb);
1686 skb = NULL;
1687 }
1688 spin_unlock_irqrestore(&q->lock, flags);
1689
1690 sk_error_report(sk);
1691
1692 release:
1693 consume_skb(skb);
1694 sock_put(sk);
1695 }
1696
msg_zerocopy_callback(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1697 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1698 bool success)
1699 {
1700 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1701
1702 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1703
1704 if (refcount_dec_and_test(&uarg->refcnt))
1705 __msg_zerocopy_callback(uarg_zc);
1706 }
1707 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1708
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1709 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1710 {
1711 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1712
1713 atomic_dec(&sk->sk_zckey);
1714 uarg_to_msgzc(uarg)->len--;
1715
1716 if (have_uref)
1717 msg_zerocopy_callback(NULL, uarg, true);
1718 }
1719 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1720
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1721 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1722 struct msghdr *msg, int len,
1723 struct ubuf_info *uarg)
1724 {
1725 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1726 int err, orig_len = skb->len;
1727
1728 /* An skb can only point to one uarg. This edge case happens when
1729 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1730 */
1731 if (orig_uarg && uarg != orig_uarg)
1732 return -EEXIST;
1733
1734 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1735 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1736 struct sock *save_sk = skb->sk;
1737
1738 /* Streams do not free skb on error. Reset to prev state. */
1739 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1740 skb->sk = sk;
1741 ___pskb_trim(skb, orig_len);
1742 skb->sk = save_sk;
1743 return err;
1744 }
1745
1746 skb_zcopy_set(skb, uarg, NULL);
1747 return skb->len - orig_len;
1748 }
1749 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1750
__skb_zcopy_downgrade_managed(struct sk_buff * skb)1751 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1752 {
1753 int i;
1754
1755 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1756 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1757 skb_frag_ref(skb, i);
1758 }
1759 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1760
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1761 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1762 gfp_t gfp_mask)
1763 {
1764 if (skb_zcopy(orig)) {
1765 if (skb_zcopy(nskb)) {
1766 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1767 if (!gfp_mask) {
1768 WARN_ON_ONCE(1);
1769 return -ENOMEM;
1770 }
1771 if (skb_uarg(nskb) == skb_uarg(orig))
1772 return 0;
1773 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1774 return -EIO;
1775 }
1776 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1777 }
1778 return 0;
1779 }
1780
1781 /**
1782 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1783 * @skb: the skb to modify
1784 * @gfp_mask: allocation priority
1785 *
1786 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1787 * It will copy all frags into kernel and drop the reference
1788 * to userspace pages.
1789 *
1790 * If this function is called from an interrupt gfp_mask() must be
1791 * %GFP_ATOMIC.
1792 *
1793 * Returns 0 on success or a negative error code on failure
1794 * to allocate kernel memory to copy to.
1795 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1796 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1797 {
1798 int num_frags = skb_shinfo(skb)->nr_frags;
1799 struct page *page, *head = NULL;
1800 int i, order, psize, new_frags;
1801 u32 d_off;
1802
1803 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1804 return -EINVAL;
1805
1806 if (!num_frags)
1807 goto release;
1808
1809 /* We might have to allocate high order pages, so compute what minimum
1810 * page order is needed.
1811 */
1812 order = 0;
1813 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1814 order++;
1815 psize = (PAGE_SIZE << order);
1816
1817 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1818 for (i = 0; i < new_frags; i++) {
1819 page = alloc_pages(gfp_mask | __GFP_COMP, order);
1820 if (!page) {
1821 while (head) {
1822 struct page *next = (struct page *)page_private(head);
1823 put_page(head);
1824 head = next;
1825 }
1826 return -ENOMEM;
1827 }
1828 set_page_private(page, (unsigned long)head);
1829 head = page;
1830 }
1831
1832 page = head;
1833 d_off = 0;
1834 for (i = 0; i < num_frags; i++) {
1835 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1836 u32 p_off, p_len, copied;
1837 struct page *p;
1838 u8 *vaddr;
1839
1840 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1841 p, p_off, p_len, copied) {
1842 u32 copy, done = 0;
1843 vaddr = kmap_atomic(p);
1844
1845 while (done < p_len) {
1846 if (d_off == psize) {
1847 d_off = 0;
1848 page = (struct page *)page_private(page);
1849 }
1850 copy = min_t(u32, psize - d_off, p_len - done);
1851 memcpy(page_address(page) + d_off,
1852 vaddr + p_off + done, copy);
1853 done += copy;
1854 d_off += copy;
1855 }
1856 kunmap_atomic(vaddr);
1857 }
1858 }
1859
1860 /* skb frags release userspace buffers */
1861 for (i = 0; i < num_frags; i++)
1862 skb_frag_unref(skb, i);
1863
1864 /* skb frags point to kernel buffers */
1865 for (i = 0; i < new_frags - 1; i++) {
1866 __skb_fill_page_desc(skb, i, head, 0, psize);
1867 head = (struct page *)page_private(head);
1868 }
1869 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1870 skb_shinfo(skb)->nr_frags = new_frags;
1871
1872 release:
1873 skb_zcopy_clear(skb, false);
1874 return 0;
1875 }
1876 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1877
1878 /**
1879 * skb_clone - duplicate an sk_buff
1880 * @skb: buffer to clone
1881 * @gfp_mask: allocation priority
1882 *
1883 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1884 * copies share the same packet data but not structure. The new
1885 * buffer has a reference count of 1. If the allocation fails the
1886 * function returns %NULL otherwise the new buffer is returned.
1887 *
1888 * If this function is called from an interrupt gfp_mask() must be
1889 * %GFP_ATOMIC.
1890 */
1891
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1892 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1893 {
1894 struct sk_buff_fclones *fclones = container_of(skb,
1895 struct sk_buff_fclones,
1896 skb1);
1897 struct sk_buff *n;
1898
1899 if (skb_orphan_frags(skb, gfp_mask))
1900 return NULL;
1901
1902 if (skb->fclone == SKB_FCLONE_ORIG &&
1903 refcount_read(&fclones->fclone_ref) == 1) {
1904 n = &fclones->skb2;
1905 refcount_set(&fclones->fclone_ref, 2);
1906 n->fclone = SKB_FCLONE_CLONE;
1907 } else {
1908 if (skb_pfmemalloc(skb))
1909 gfp_mask |= __GFP_MEMALLOC;
1910
1911 n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1912 if (!n)
1913 return NULL;
1914
1915 n->fclone = SKB_FCLONE_UNAVAILABLE;
1916 }
1917
1918 return __skb_clone(n, skb);
1919 }
1920 EXPORT_SYMBOL(skb_clone);
1921
skb_headers_offset_update(struct sk_buff * skb,int off)1922 void skb_headers_offset_update(struct sk_buff *skb, int off)
1923 {
1924 /* Only adjust this if it actually is csum_start rather than csum */
1925 if (skb->ip_summed == CHECKSUM_PARTIAL)
1926 skb->csum_start += off;
1927 /* {transport,network,mac}_header and tail are relative to skb->head */
1928 skb->transport_header += off;
1929 skb->network_header += off;
1930 if (skb_mac_header_was_set(skb))
1931 skb->mac_header += off;
1932 skb->inner_transport_header += off;
1933 skb->inner_network_header += off;
1934 skb->inner_mac_header += off;
1935 }
1936 EXPORT_SYMBOL(skb_headers_offset_update);
1937
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1938 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1939 {
1940 __copy_skb_header(new, old);
1941
1942 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1943 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1944 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1945 }
1946 EXPORT_SYMBOL(skb_copy_header);
1947
skb_alloc_rx_flag(const struct sk_buff * skb)1948 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1949 {
1950 if (skb_pfmemalloc(skb))
1951 return SKB_ALLOC_RX;
1952 return 0;
1953 }
1954
1955 /**
1956 * skb_copy - create private copy of an sk_buff
1957 * @skb: buffer to copy
1958 * @gfp_mask: allocation priority
1959 *
1960 * Make a copy of both an &sk_buff and its data. This is used when the
1961 * caller wishes to modify the data and needs a private copy of the
1962 * data to alter. Returns %NULL on failure or the pointer to the buffer
1963 * on success. The returned buffer has a reference count of 1.
1964 *
1965 * As by-product this function converts non-linear &sk_buff to linear
1966 * one, so that &sk_buff becomes completely private and caller is allowed
1967 * to modify all the data of returned buffer. This means that this
1968 * function is not recommended for use in circumstances when only
1969 * header is going to be modified. Use pskb_copy() instead.
1970 */
1971
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1972 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1973 {
1974 struct sk_buff *n;
1975 unsigned int size;
1976 int headerlen;
1977
1978 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
1979 return NULL;
1980
1981 headerlen = skb_headroom(skb);
1982 size = skb_end_offset(skb) + skb->data_len;
1983 n = __alloc_skb(size, gfp_mask,
1984 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1985 if (!n)
1986 return NULL;
1987
1988 /* Set the data pointer */
1989 skb_reserve(n, headerlen);
1990 /* Set the tail pointer and length */
1991 skb_put(n, skb->len);
1992
1993 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1994
1995 skb_copy_header(n, skb);
1996 return n;
1997 }
1998 EXPORT_SYMBOL(skb_copy);
1999
2000 /**
2001 * __pskb_copy_fclone - create copy of an sk_buff with private head.
2002 * @skb: buffer to copy
2003 * @headroom: headroom of new skb
2004 * @gfp_mask: allocation priority
2005 * @fclone: if true allocate the copy of the skb from the fclone
2006 * cache instead of the head cache; it is recommended to set this
2007 * to true for the cases where the copy will likely be cloned
2008 *
2009 * Make a copy of both an &sk_buff and part of its data, located
2010 * in header. Fragmented data remain shared. This is used when
2011 * the caller wishes to modify only header of &sk_buff and needs
2012 * private copy of the header to alter. Returns %NULL on failure
2013 * or the pointer to the buffer on success.
2014 * The returned buffer has a reference count of 1.
2015 */
2016
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)2017 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2018 gfp_t gfp_mask, bool fclone)
2019 {
2020 unsigned int size = skb_headlen(skb) + headroom;
2021 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2022 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2023
2024 if (!n)
2025 goto out;
2026
2027 /* Set the data pointer */
2028 skb_reserve(n, headroom);
2029 /* Set the tail pointer and length */
2030 skb_put(n, skb_headlen(skb));
2031 /* Copy the bytes */
2032 skb_copy_from_linear_data(skb, n->data, n->len);
2033
2034 n->truesize += skb->data_len;
2035 n->data_len = skb->data_len;
2036 n->len = skb->len;
2037
2038 if (skb_shinfo(skb)->nr_frags) {
2039 int i;
2040
2041 if (skb_orphan_frags(skb, gfp_mask) ||
2042 skb_zerocopy_clone(n, skb, gfp_mask)) {
2043 kfree_skb(n);
2044 n = NULL;
2045 goto out;
2046 }
2047 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2048 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2049 skb_frag_ref(skb, i);
2050 }
2051 skb_shinfo(n)->nr_frags = i;
2052 }
2053
2054 if (skb_has_frag_list(skb)) {
2055 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2056 skb_clone_fraglist(n);
2057 }
2058
2059 skb_copy_header(n, skb);
2060 out:
2061 return n;
2062 }
2063 EXPORT_SYMBOL(__pskb_copy_fclone);
2064
2065 /**
2066 * pskb_expand_head - reallocate header of &sk_buff
2067 * @skb: buffer to reallocate
2068 * @nhead: room to add at head
2069 * @ntail: room to add at tail
2070 * @gfp_mask: allocation priority
2071 *
2072 * Expands (or creates identical copy, if @nhead and @ntail are zero)
2073 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2074 * reference count of 1. Returns zero in the case of success or error,
2075 * if expansion failed. In the last case, &sk_buff is not changed.
2076 *
2077 * All the pointers pointing into skb header may change and must be
2078 * reloaded after call to this function.
2079 */
2080
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)2081 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2082 gfp_t gfp_mask)
2083 {
2084 unsigned int osize = skb_end_offset(skb);
2085 unsigned int size = osize + nhead + ntail;
2086 long off;
2087 u8 *data;
2088 int i;
2089
2090 BUG_ON(nhead < 0);
2091
2092 BUG_ON(skb_shared(skb));
2093
2094 skb_zcopy_downgrade_managed(skb);
2095
2096 if (skb_pfmemalloc(skb))
2097 gfp_mask |= __GFP_MEMALLOC;
2098
2099 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2100 if (!data)
2101 goto nodata;
2102 size = SKB_WITH_OVERHEAD(size);
2103
2104 /* Copy only real data... and, alas, header. This should be
2105 * optimized for the cases when header is void.
2106 */
2107 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2108
2109 memcpy((struct skb_shared_info *)(data + size),
2110 skb_shinfo(skb),
2111 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2112
2113 /*
2114 * if shinfo is shared we must drop the old head gracefully, but if it
2115 * is not we can just drop the old head and let the existing refcount
2116 * be since all we did is relocate the values
2117 */
2118 if (skb_cloned(skb)) {
2119 if (skb_orphan_frags(skb, gfp_mask))
2120 goto nofrags;
2121 if (skb_zcopy(skb))
2122 refcount_inc(&skb_uarg(skb)->refcnt);
2123 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2124 skb_frag_ref(skb, i);
2125
2126 if (skb_has_frag_list(skb))
2127 skb_clone_fraglist(skb);
2128
2129 skb_release_data(skb, SKB_CONSUMED, false);
2130 } else {
2131 skb_free_head(skb, false);
2132 }
2133 off = (data + nhead) - skb->head;
2134
2135 skb->head = data;
2136 skb->head_frag = 0;
2137 skb->data += off;
2138
2139 skb_set_end_offset(skb, size);
2140 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2141 off = nhead;
2142 #endif
2143 skb->tail += off;
2144 skb_headers_offset_update(skb, nhead);
2145 skb->cloned = 0;
2146 skb->hdr_len = 0;
2147 skb->nohdr = 0;
2148 atomic_set(&skb_shinfo(skb)->dataref, 1);
2149
2150 skb_metadata_clear(skb);
2151
2152 /* It is not generally safe to change skb->truesize.
2153 * For the moment, we really care of rx path, or
2154 * when skb is orphaned (not attached to a socket).
2155 */
2156 if (!skb->sk || skb->destructor == sock_edemux)
2157 skb->truesize += size - osize;
2158
2159 return 0;
2160
2161 nofrags:
2162 skb_kfree_head(data, size);
2163 nodata:
2164 return -ENOMEM;
2165 }
2166 EXPORT_SYMBOL(pskb_expand_head);
2167
2168 /* Make private copy of skb with writable head and some headroom */
2169
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)2170 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2171 {
2172 struct sk_buff *skb2;
2173 int delta = headroom - skb_headroom(skb);
2174
2175 if (delta <= 0)
2176 skb2 = pskb_copy(skb, GFP_ATOMIC);
2177 else {
2178 skb2 = skb_clone(skb, GFP_ATOMIC);
2179 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2180 GFP_ATOMIC)) {
2181 kfree_skb(skb2);
2182 skb2 = NULL;
2183 }
2184 }
2185 return skb2;
2186 }
2187 EXPORT_SYMBOL(skb_realloc_headroom);
2188
2189 /* Note: We plan to rework this in linux-6.4 */
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2190 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2191 {
2192 unsigned int saved_end_offset, saved_truesize;
2193 struct skb_shared_info *shinfo;
2194 int res;
2195
2196 saved_end_offset = skb_end_offset(skb);
2197 saved_truesize = skb->truesize;
2198
2199 res = pskb_expand_head(skb, 0, 0, pri);
2200 if (res)
2201 return res;
2202
2203 skb->truesize = saved_truesize;
2204
2205 if (likely(skb_end_offset(skb) == saved_end_offset))
2206 return 0;
2207
2208 /* We can not change skb->end if the original or new value
2209 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2210 */
2211 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2212 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2213 /* We think this path should not be taken.
2214 * Add a temporary trace to warn us just in case.
2215 */
2216 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2217 saved_end_offset, skb_end_offset(skb));
2218 WARN_ON_ONCE(1);
2219 return 0;
2220 }
2221
2222 shinfo = skb_shinfo(skb);
2223
2224 /* We are about to change back skb->end,
2225 * we need to move skb_shinfo() to its new location.
2226 */
2227 memmove(skb->head + saved_end_offset,
2228 shinfo,
2229 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2230
2231 skb_set_end_offset(skb, saved_end_offset);
2232
2233 return 0;
2234 }
2235
2236 /**
2237 * skb_expand_head - reallocate header of &sk_buff
2238 * @skb: buffer to reallocate
2239 * @headroom: needed headroom
2240 *
2241 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2242 * if possible; copies skb->sk to new skb as needed
2243 * and frees original skb in case of failures.
2244 *
2245 * It expect increased headroom and generates warning otherwise.
2246 */
2247
skb_expand_head(struct sk_buff * skb,unsigned int headroom)2248 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2249 {
2250 int delta = headroom - skb_headroom(skb);
2251 int osize = skb_end_offset(skb);
2252 struct sock *sk = skb->sk;
2253
2254 if (WARN_ONCE(delta <= 0,
2255 "%s is expecting an increase in the headroom", __func__))
2256 return skb;
2257
2258 delta = SKB_DATA_ALIGN(delta);
2259 /* pskb_expand_head() might crash, if skb is shared. */
2260 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2261 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2262
2263 if (unlikely(!nskb))
2264 goto fail;
2265
2266 if (sk)
2267 skb_set_owner_w(nskb, sk);
2268 consume_skb(skb);
2269 skb = nskb;
2270 }
2271 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2272 goto fail;
2273
2274 if (sk && is_skb_wmem(skb)) {
2275 delta = skb_end_offset(skb) - osize;
2276 refcount_add(delta, &sk->sk_wmem_alloc);
2277 skb->truesize += delta;
2278 }
2279 return skb;
2280
2281 fail:
2282 kfree_skb(skb);
2283 return NULL;
2284 }
2285 EXPORT_SYMBOL(skb_expand_head);
2286
2287 /**
2288 * skb_copy_expand - copy and expand sk_buff
2289 * @skb: buffer to copy
2290 * @newheadroom: new free bytes at head
2291 * @newtailroom: new free bytes at tail
2292 * @gfp_mask: allocation priority
2293 *
2294 * Make a copy of both an &sk_buff and its data and while doing so
2295 * allocate additional space.
2296 *
2297 * This is used when the caller wishes to modify the data and needs a
2298 * private copy of the data to alter as well as more space for new fields.
2299 * Returns %NULL on failure or the pointer to the buffer
2300 * on success. The returned buffer has a reference count of 1.
2301 *
2302 * You must pass %GFP_ATOMIC as the allocation priority if this function
2303 * is called from an interrupt.
2304 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)2305 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2306 int newheadroom, int newtailroom,
2307 gfp_t gfp_mask)
2308 {
2309 /*
2310 * Allocate the copy buffer
2311 */
2312 int head_copy_len, head_copy_off;
2313 struct sk_buff *n;
2314 int oldheadroom;
2315
2316 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2317 return NULL;
2318
2319 oldheadroom = skb_headroom(skb);
2320 n = __alloc_skb(newheadroom + skb->len + newtailroom,
2321 gfp_mask, skb_alloc_rx_flag(skb),
2322 NUMA_NO_NODE);
2323 if (!n)
2324 return NULL;
2325
2326 skb_reserve(n, newheadroom);
2327
2328 /* Set the tail pointer and length */
2329 skb_put(n, skb->len);
2330
2331 head_copy_len = oldheadroom;
2332 head_copy_off = 0;
2333 if (newheadroom <= head_copy_len)
2334 head_copy_len = newheadroom;
2335 else
2336 head_copy_off = newheadroom - head_copy_len;
2337
2338 /* Copy the linear header and data. */
2339 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2340 skb->len + head_copy_len));
2341
2342 skb_copy_header(n, skb);
2343
2344 skb_headers_offset_update(n, newheadroom - oldheadroom);
2345
2346 return n;
2347 }
2348 EXPORT_SYMBOL(skb_copy_expand);
2349
2350 /**
2351 * __skb_pad - zero pad the tail of an skb
2352 * @skb: buffer to pad
2353 * @pad: space to pad
2354 * @free_on_error: free buffer on error
2355 *
2356 * Ensure that a buffer is followed by a padding area that is zero
2357 * filled. Used by network drivers which may DMA or transfer data
2358 * beyond the buffer end onto the wire.
2359 *
2360 * May return error in out of memory cases. The skb is freed on error
2361 * if @free_on_error is true.
2362 */
2363
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)2364 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2365 {
2366 int err;
2367 int ntail;
2368
2369 /* If the skbuff is non linear tailroom is always zero.. */
2370 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2371 memset(skb->data+skb->len, 0, pad);
2372 return 0;
2373 }
2374
2375 ntail = skb->data_len + pad - (skb->end - skb->tail);
2376 if (likely(skb_cloned(skb) || ntail > 0)) {
2377 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2378 if (unlikely(err))
2379 goto free_skb;
2380 }
2381
2382 /* FIXME: The use of this function with non-linear skb's really needs
2383 * to be audited.
2384 */
2385 err = skb_linearize(skb);
2386 if (unlikely(err))
2387 goto free_skb;
2388
2389 memset(skb->data + skb->len, 0, pad);
2390 return 0;
2391
2392 free_skb:
2393 if (free_on_error)
2394 kfree_skb(skb);
2395 return err;
2396 }
2397 EXPORT_SYMBOL(__skb_pad);
2398
2399 /**
2400 * pskb_put - add data to the tail of a potentially fragmented buffer
2401 * @skb: start of the buffer to use
2402 * @tail: tail fragment of the buffer to use
2403 * @len: amount of data to add
2404 *
2405 * This function extends the used data area of the potentially
2406 * fragmented buffer. @tail must be the last fragment of @skb -- or
2407 * @skb itself. If this would exceed the total buffer size the kernel
2408 * will panic. A pointer to the first byte of the extra data is
2409 * returned.
2410 */
2411
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)2412 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2413 {
2414 if (tail != skb) {
2415 skb->data_len += len;
2416 skb->len += len;
2417 }
2418 return skb_put(tail, len);
2419 }
2420 EXPORT_SYMBOL_GPL(pskb_put);
2421
2422 /**
2423 * skb_put - add data to a buffer
2424 * @skb: buffer to use
2425 * @len: amount of data to add
2426 *
2427 * This function extends the used data area of the buffer. If this would
2428 * exceed the total buffer size the kernel will panic. A pointer to the
2429 * first byte of the extra data is returned.
2430 */
skb_put(struct sk_buff * skb,unsigned int len)2431 void *skb_put(struct sk_buff *skb, unsigned int len)
2432 {
2433 void *tmp = skb_tail_pointer(skb);
2434 SKB_LINEAR_ASSERT(skb);
2435 skb->tail += len;
2436 skb->len += len;
2437 if (unlikely(skb->tail > skb->end))
2438 skb_over_panic(skb, len, __builtin_return_address(0));
2439 return tmp;
2440 }
2441 EXPORT_SYMBOL(skb_put);
2442
2443 /**
2444 * skb_push - add data to the start of a buffer
2445 * @skb: buffer to use
2446 * @len: amount of data to add
2447 *
2448 * This function extends the used data area of the buffer at the buffer
2449 * start. If this would exceed the total buffer headroom the kernel will
2450 * panic. A pointer to the first byte of the extra data is returned.
2451 */
skb_push(struct sk_buff * skb,unsigned int len)2452 void *skb_push(struct sk_buff *skb, unsigned int len)
2453 {
2454 skb->data -= len;
2455 skb->len += len;
2456 if (unlikely(skb->data < skb->head))
2457 skb_under_panic(skb, len, __builtin_return_address(0));
2458 return skb->data;
2459 }
2460 EXPORT_SYMBOL(skb_push);
2461
2462 /**
2463 * skb_pull - remove data from the start of a buffer
2464 * @skb: buffer to use
2465 * @len: amount of data to remove
2466 *
2467 * This function removes data from the start of a buffer, returning
2468 * the memory to the headroom. A pointer to the next data in the buffer
2469 * is returned. Once the data has been pulled future pushes will overwrite
2470 * the old data.
2471 */
skb_pull(struct sk_buff * skb,unsigned int len)2472 void *skb_pull(struct sk_buff *skb, unsigned int len)
2473 {
2474 return skb_pull_inline(skb, len);
2475 }
2476 EXPORT_SYMBOL(skb_pull);
2477
2478 /**
2479 * skb_pull_data - remove data from the start of a buffer returning its
2480 * original position.
2481 * @skb: buffer to use
2482 * @len: amount of data to remove
2483 *
2484 * This function removes data from the start of a buffer, returning
2485 * the memory to the headroom. A pointer to the original data in the buffer
2486 * is returned after checking if there is enough data to pull. Once the
2487 * data has been pulled future pushes will overwrite the old data.
2488 */
skb_pull_data(struct sk_buff * skb,size_t len)2489 void *skb_pull_data(struct sk_buff *skb, size_t len)
2490 {
2491 void *data = skb->data;
2492
2493 if (skb->len < len)
2494 return NULL;
2495
2496 skb_pull(skb, len);
2497
2498 return data;
2499 }
2500 EXPORT_SYMBOL(skb_pull_data);
2501
2502 /**
2503 * skb_trim - remove end from a buffer
2504 * @skb: buffer to alter
2505 * @len: new length
2506 *
2507 * Cut the length of a buffer down by removing data from the tail. If
2508 * the buffer is already under the length specified it is not modified.
2509 * The skb must be linear.
2510 */
skb_trim(struct sk_buff * skb,unsigned int len)2511 void skb_trim(struct sk_buff *skb, unsigned int len)
2512 {
2513 if (skb->len > len)
2514 __skb_trim(skb, len);
2515 }
2516 EXPORT_SYMBOL(skb_trim);
2517
2518 /* Trims skb to length len. It can change skb pointers.
2519 */
2520
___pskb_trim(struct sk_buff * skb,unsigned int len)2521 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2522 {
2523 struct sk_buff **fragp;
2524 struct sk_buff *frag;
2525 int offset = skb_headlen(skb);
2526 int nfrags = skb_shinfo(skb)->nr_frags;
2527 int i;
2528 int err;
2529
2530 if (skb_cloned(skb) &&
2531 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2532 return err;
2533
2534 i = 0;
2535 if (offset >= len)
2536 goto drop_pages;
2537
2538 for (; i < nfrags; i++) {
2539 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2540
2541 if (end < len) {
2542 offset = end;
2543 continue;
2544 }
2545
2546 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2547
2548 drop_pages:
2549 skb_shinfo(skb)->nr_frags = i;
2550
2551 for (; i < nfrags; i++)
2552 skb_frag_unref(skb, i);
2553
2554 if (skb_has_frag_list(skb))
2555 skb_drop_fraglist(skb);
2556 goto done;
2557 }
2558
2559 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2560 fragp = &frag->next) {
2561 int end = offset + frag->len;
2562
2563 if (skb_shared(frag)) {
2564 struct sk_buff *nfrag;
2565
2566 nfrag = skb_clone(frag, GFP_ATOMIC);
2567 if (unlikely(!nfrag))
2568 return -ENOMEM;
2569
2570 nfrag->next = frag->next;
2571 consume_skb(frag);
2572 frag = nfrag;
2573 *fragp = frag;
2574 }
2575
2576 if (end < len) {
2577 offset = end;
2578 continue;
2579 }
2580
2581 if (end > len &&
2582 unlikely((err = pskb_trim(frag, len - offset))))
2583 return err;
2584
2585 if (frag->next)
2586 skb_drop_list(&frag->next);
2587 break;
2588 }
2589
2590 done:
2591 if (len > skb_headlen(skb)) {
2592 skb->data_len -= skb->len - len;
2593 skb->len = len;
2594 } else {
2595 skb->len = len;
2596 skb->data_len = 0;
2597 skb_set_tail_pointer(skb, len);
2598 }
2599
2600 if (!skb->sk || skb->destructor == sock_edemux)
2601 skb_condense(skb);
2602 return 0;
2603 }
2604 EXPORT_SYMBOL(___pskb_trim);
2605
2606 /* Note : use pskb_trim_rcsum() instead of calling this directly
2607 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2608 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2609 {
2610 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2611 int delta = skb->len - len;
2612
2613 skb->csum = csum_block_sub(skb->csum,
2614 skb_checksum(skb, len, delta, 0),
2615 len);
2616 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2617 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2618 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2619
2620 if (offset + sizeof(__sum16) > hdlen)
2621 return -EINVAL;
2622 }
2623 return __pskb_trim(skb, len);
2624 }
2625 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2626
2627 /**
2628 * __pskb_pull_tail - advance tail of skb header
2629 * @skb: buffer to reallocate
2630 * @delta: number of bytes to advance tail
2631 *
2632 * The function makes a sense only on a fragmented &sk_buff,
2633 * it expands header moving its tail forward and copying necessary
2634 * data from fragmented part.
2635 *
2636 * &sk_buff MUST have reference count of 1.
2637 *
2638 * Returns %NULL (and &sk_buff does not change) if pull failed
2639 * or value of new tail of skb in the case of success.
2640 *
2641 * All the pointers pointing into skb header may change and must be
2642 * reloaded after call to this function.
2643 */
2644
2645 /* Moves tail of skb head forward, copying data from fragmented part,
2646 * when it is necessary.
2647 * 1. It may fail due to malloc failure.
2648 * 2. It may change skb pointers.
2649 *
2650 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2651 */
__pskb_pull_tail(struct sk_buff * skb,int delta)2652 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2653 {
2654 /* If skb has not enough free space at tail, get new one
2655 * plus 128 bytes for future expansions. If we have enough
2656 * room at tail, reallocate without expansion only if skb is cloned.
2657 */
2658 int i, k, eat = (skb->tail + delta) - skb->end;
2659
2660 if (eat > 0 || skb_cloned(skb)) {
2661 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2662 GFP_ATOMIC))
2663 return NULL;
2664 }
2665
2666 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2667 skb_tail_pointer(skb), delta));
2668
2669 /* Optimization: no fragments, no reasons to preestimate
2670 * size of pulled pages. Superb.
2671 */
2672 if (!skb_has_frag_list(skb))
2673 goto pull_pages;
2674
2675 /* Estimate size of pulled pages. */
2676 eat = delta;
2677 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2678 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2679
2680 if (size >= eat)
2681 goto pull_pages;
2682 eat -= size;
2683 }
2684
2685 /* If we need update frag list, we are in troubles.
2686 * Certainly, it is possible to add an offset to skb data,
2687 * but taking into account that pulling is expected to
2688 * be very rare operation, it is worth to fight against
2689 * further bloating skb head and crucify ourselves here instead.
2690 * Pure masohism, indeed. 8)8)
2691 */
2692 if (eat) {
2693 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2694 struct sk_buff *clone = NULL;
2695 struct sk_buff *insp = NULL;
2696
2697 do {
2698 if (list->len <= eat) {
2699 /* Eaten as whole. */
2700 eat -= list->len;
2701 list = list->next;
2702 insp = list;
2703 } else {
2704 /* Eaten partially. */
2705 if (skb_is_gso(skb) && !list->head_frag &&
2706 skb_headlen(list))
2707 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2708
2709 if (skb_shared(list)) {
2710 /* Sucks! We need to fork list. :-( */
2711 clone = skb_clone(list, GFP_ATOMIC);
2712 if (!clone)
2713 return NULL;
2714 insp = list->next;
2715 list = clone;
2716 } else {
2717 /* This may be pulled without
2718 * problems. */
2719 insp = list;
2720 }
2721 if (!pskb_pull(list, eat)) {
2722 kfree_skb(clone);
2723 return NULL;
2724 }
2725 break;
2726 }
2727 } while (eat);
2728
2729 /* Free pulled out fragments. */
2730 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2731 skb_shinfo(skb)->frag_list = list->next;
2732 consume_skb(list);
2733 }
2734 /* And insert new clone at head. */
2735 if (clone) {
2736 clone->next = list;
2737 skb_shinfo(skb)->frag_list = clone;
2738 }
2739 }
2740 /* Success! Now we may commit changes to skb data. */
2741
2742 pull_pages:
2743 eat = delta;
2744 k = 0;
2745 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2746 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2747
2748 if (size <= eat) {
2749 skb_frag_unref(skb, i);
2750 eat -= size;
2751 } else {
2752 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2753
2754 *frag = skb_shinfo(skb)->frags[i];
2755 if (eat) {
2756 skb_frag_off_add(frag, eat);
2757 skb_frag_size_sub(frag, eat);
2758 if (!i)
2759 goto end;
2760 eat = 0;
2761 }
2762 k++;
2763 }
2764 }
2765 skb_shinfo(skb)->nr_frags = k;
2766
2767 end:
2768 skb->tail += delta;
2769 skb->data_len -= delta;
2770
2771 if (!skb->data_len)
2772 skb_zcopy_clear(skb, false);
2773
2774 return skb_tail_pointer(skb);
2775 }
2776 EXPORT_SYMBOL(__pskb_pull_tail);
2777
2778 /**
2779 * skb_copy_bits - copy bits from skb to kernel buffer
2780 * @skb: source skb
2781 * @offset: offset in source
2782 * @to: destination buffer
2783 * @len: number of bytes to copy
2784 *
2785 * Copy the specified number of bytes from the source skb to the
2786 * destination buffer.
2787 *
2788 * CAUTION ! :
2789 * If its prototype is ever changed,
2790 * check arch/{*}/net/{*}.S files,
2791 * since it is called from BPF assembly code.
2792 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2793 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2794 {
2795 int start = skb_headlen(skb);
2796 struct sk_buff *frag_iter;
2797 int i, copy;
2798
2799 if (offset > (int)skb->len - len)
2800 goto fault;
2801
2802 /* Copy header. */
2803 if ((copy = start - offset) > 0) {
2804 if (copy > len)
2805 copy = len;
2806 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2807 if ((len -= copy) == 0)
2808 return 0;
2809 offset += copy;
2810 to += copy;
2811 }
2812
2813 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2814 int end;
2815 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2816
2817 WARN_ON(start > offset + len);
2818
2819 end = start + skb_frag_size(f);
2820 if ((copy = end - offset) > 0) {
2821 u32 p_off, p_len, copied;
2822 struct page *p;
2823 u8 *vaddr;
2824
2825 if (copy > len)
2826 copy = len;
2827
2828 skb_frag_foreach_page(f,
2829 skb_frag_off(f) + offset - start,
2830 copy, p, p_off, p_len, copied) {
2831 vaddr = kmap_atomic(p);
2832 memcpy(to + copied, vaddr + p_off, p_len);
2833 kunmap_atomic(vaddr);
2834 }
2835
2836 if ((len -= copy) == 0)
2837 return 0;
2838 offset += copy;
2839 to += copy;
2840 }
2841 start = end;
2842 }
2843
2844 skb_walk_frags(skb, frag_iter) {
2845 int end;
2846
2847 WARN_ON(start > offset + len);
2848
2849 end = start + frag_iter->len;
2850 if ((copy = end - offset) > 0) {
2851 if (copy > len)
2852 copy = len;
2853 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2854 goto fault;
2855 if ((len -= copy) == 0)
2856 return 0;
2857 offset += copy;
2858 to += copy;
2859 }
2860 start = end;
2861 }
2862
2863 if (!len)
2864 return 0;
2865
2866 fault:
2867 return -EFAULT;
2868 }
2869 EXPORT_SYMBOL(skb_copy_bits);
2870
2871 /*
2872 * Callback from splice_to_pipe(), if we need to release some pages
2873 * at the end of the spd in case we error'ed out in filling the pipe.
2874 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2875 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2876 {
2877 put_page(spd->pages[i]);
2878 }
2879
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2880 static struct page *linear_to_page(struct page *page, unsigned int *len,
2881 unsigned int *offset,
2882 struct sock *sk)
2883 {
2884 struct page_frag *pfrag = sk_page_frag(sk);
2885
2886 if (!sk_page_frag_refill(sk, pfrag))
2887 return NULL;
2888
2889 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2890
2891 memcpy(page_address(pfrag->page) + pfrag->offset,
2892 page_address(page) + *offset, *len);
2893 *offset = pfrag->offset;
2894 pfrag->offset += *len;
2895
2896 return pfrag->page;
2897 }
2898
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2899 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2900 struct page *page,
2901 unsigned int offset)
2902 {
2903 return spd->nr_pages &&
2904 spd->pages[spd->nr_pages - 1] == page &&
2905 (spd->partial[spd->nr_pages - 1].offset +
2906 spd->partial[spd->nr_pages - 1].len == offset);
2907 }
2908
2909 /*
2910 * Fill page/offset/length into spd, if it can hold more pages.
2911 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2912 static bool spd_fill_page(struct splice_pipe_desc *spd,
2913 struct pipe_inode_info *pipe, struct page *page,
2914 unsigned int *len, unsigned int offset,
2915 bool linear,
2916 struct sock *sk)
2917 {
2918 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2919 return true;
2920
2921 if (linear) {
2922 page = linear_to_page(page, len, &offset, sk);
2923 if (!page)
2924 return true;
2925 }
2926 if (spd_can_coalesce(spd, page, offset)) {
2927 spd->partial[spd->nr_pages - 1].len += *len;
2928 return false;
2929 }
2930 get_page(page);
2931 spd->pages[spd->nr_pages] = page;
2932 spd->partial[spd->nr_pages].len = *len;
2933 spd->partial[spd->nr_pages].offset = offset;
2934 spd->nr_pages++;
2935
2936 return false;
2937 }
2938
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2939 static bool __splice_segment(struct page *page, unsigned int poff,
2940 unsigned int plen, unsigned int *off,
2941 unsigned int *len,
2942 struct splice_pipe_desc *spd, bool linear,
2943 struct sock *sk,
2944 struct pipe_inode_info *pipe)
2945 {
2946 if (!*len)
2947 return true;
2948
2949 /* skip this segment if already processed */
2950 if (*off >= plen) {
2951 *off -= plen;
2952 return false;
2953 }
2954
2955 /* ignore any bits we already processed */
2956 poff += *off;
2957 plen -= *off;
2958 *off = 0;
2959
2960 do {
2961 unsigned int flen = min(*len, plen);
2962
2963 if (spd_fill_page(spd, pipe, page, &flen, poff,
2964 linear, sk))
2965 return true;
2966 poff += flen;
2967 plen -= flen;
2968 *len -= flen;
2969 } while (*len && plen);
2970
2971 return false;
2972 }
2973
2974 /*
2975 * Map linear and fragment data from the skb to spd. It reports true if the
2976 * pipe is full or if we already spliced the requested length.
2977 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2978 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2979 unsigned int *offset, unsigned int *len,
2980 struct splice_pipe_desc *spd, struct sock *sk)
2981 {
2982 int seg;
2983 struct sk_buff *iter;
2984
2985 /* map the linear part :
2986 * If skb->head_frag is set, this 'linear' part is backed by a
2987 * fragment, and if the head is not shared with any clones then
2988 * we can avoid a copy since we own the head portion of this page.
2989 */
2990 if (__splice_segment(virt_to_page(skb->data),
2991 (unsigned long) skb->data & (PAGE_SIZE - 1),
2992 skb_headlen(skb),
2993 offset, len, spd,
2994 skb_head_is_locked(skb),
2995 sk, pipe))
2996 return true;
2997
2998 /*
2999 * then map the fragments
3000 */
3001 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3002 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3003
3004 if (__splice_segment(skb_frag_page(f),
3005 skb_frag_off(f), skb_frag_size(f),
3006 offset, len, spd, false, sk, pipe))
3007 return true;
3008 }
3009
3010 skb_walk_frags(skb, iter) {
3011 if (*offset >= iter->len) {
3012 *offset -= iter->len;
3013 continue;
3014 }
3015 /* __skb_splice_bits() only fails if the output has no room
3016 * left, so no point in going over the frag_list for the error
3017 * case.
3018 */
3019 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3020 return true;
3021 }
3022
3023 return false;
3024 }
3025
3026 /*
3027 * Map data from the skb to a pipe. Should handle both the linear part,
3028 * the fragments, and the frag list.
3029 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)3030 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3031 struct pipe_inode_info *pipe, unsigned int tlen,
3032 unsigned int flags)
3033 {
3034 struct partial_page partial[MAX_SKB_FRAGS];
3035 struct page *pages[MAX_SKB_FRAGS];
3036 struct splice_pipe_desc spd = {
3037 .pages = pages,
3038 .partial = partial,
3039 .nr_pages_max = MAX_SKB_FRAGS,
3040 .ops = &nosteal_pipe_buf_ops,
3041 .spd_release = sock_spd_release,
3042 };
3043 int ret = 0;
3044
3045 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3046
3047 if (spd.nr_pages)
3048 ret = splice_to_pipe(pipe, &spd);
3049
3050 return ret;
3051 }
3052 EXPORT_SYMBOL_GPL(skb_splice_bits);
3053
sendmsg_locked(struct sock * sk,struct msghdr * msg)3054 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3055 {
3056 struct socket *sock = sk->sk_socket;
3057 size_t size = msg_data_left(msg);
3058
3059 if (!sock)
3060 return -EINVAL;
3061
3062 if (!sock->ops->sendmsg_locked)
3063 return sock_no_sendmsg_locked(sk, msg, size);
3064
3065 return sock->ops->sendmsg_locked(sk, msg, size);
3066 }
3067
sendmsg_unlocked(struct sock * sk,struct msghdr * msg)3068 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3069 {
3070 struct socket *sock = sk->sk_socket;
3071
3072 if (!sock)
3073 return -EINVAL;
3074 return sock_sendmsg(sock, msg);
3075 }
3076
3077 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg)3078 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3079 int len, sendmsg_func sendmsg)
3080 {
3081 unsigned int orig_len = len;
3082 struct sk_buff *head = skb;
3083 unsigned short fragidx;
3084 int slen, ret;
3085
3086 do_frag_list:
3087
3088 /* Deal with head data */
3089 while (offset < skb_headlen(skb) && len) {
3090 struct kvec kv;
3091 struct msghdr msg;
3092
3093 slen = min_t(int, len, skb_headlen(skb) - offset);
3094 kv.iov_base = skb->data + offset;
3095 kv.iov_len = slen;
3096 memset(&msg, 0, sizeof(msg));
3097 msg.msg_flags = MSG_DONTWAIT;
3098
3099 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3100 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3101 sendmsg_unlocked, sk, &msg);
3102 if (ret <= 0)
3103 goto error;
3104
3105 offset += ret;
3106 len -= ret;
3107 }
3108
3109 /* All the data was skb head? */
3110 if (!len)
3111 goto out;
3112
3113 /* Make offset relative to start of frags */
3114 offset -= skb_headlen(skb);
3115
3116 /* Find where we are in frag list */
3117 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3118 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3119
3120 if (offset < skb_frag_size(frag))
3121 break;
3122
3123 offset -= skb_frag_size(frag);
3124 }
3125
3126 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3127 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3128
3129 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3130
3131 while (slen) {
3132 struct bio_vec bvec;
3133 struct msghdr msg = {
3134 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3135 };
3136
3137 bvec_set_page(&bvec, skb_frag_page(frag), slen,
3138 skb_frag_off(frag) + offset);
3139 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3140 slen);
3141
3142 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3143 sendmsg_unlocked, sk, &msg);
3144 if (ret <= 0)
3145 goto error;
3146
3147 len -= ret;
3148 offset += ret;
3149 slen -= ret;
3150 }
3151
3152 offset = 0;
3153 }
3154
3155 if (len) {
3156 /* Process any frag lists */
3157
3158 if (skb == head) {
3159 if (skb_has_frag_list(skb)) {
3160 skb = skb_shinfo(skb)->frag_list;
3161 goto do_frag_list;
3162 }
3163 } else if (skb->next) {
3164 skb = skb->next;
3165 goto do_frag_list;
3166 }
3167 }
3168
3169 out:
3170 return orig_len - len;
3171
3172 error:
3173 return orig_len == len ? ret : orig_len - len;
3174 }
3175
3176 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)3177 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3178 int len)
3179 {
3180 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3181 }
3182 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3183
3184 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)3185 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3186 {
3187 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3188 }
3189
3190 /**
3191 * skb_store_bits - store bits from kernel buffer to skb
3192 * @skb: destination buffer
3193 * @offset: offset in destination
3194 * @from: source buffer
3195 * @len: number of bytes to copy
3196 *
3197 * Copy the specified number of bytes from the source buffer to the
3198 * destination skb. This function handles all the messy bits of
3199 * traversing fragment lists and such.
3200 */
3201
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)3202 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3203 {
3204 int start = skb_headlen(skb);
3205 struct sk_buff *frag_iter;
3206 int i, copy;
3207
3208 if (offset > (int)skb->len - len)
3209 goto fault;
3210
3211 if ((copy = start - offset) > 0) {
3212 if (copy > len)
3213 copy = len;
3214 skb_copy_to_linear_data_offset(skb, offset, from, copy);
3215 if ((len -= copy) == 0)
3216 return 0;
3217 offset += copy;
3218 from += copy;
3219 }
3220
3221 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3222 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3223 int end;
3224
3225 WARN_ON(start > offset + len);
3226
3227 end = start + skb_frag_size(frag);
3228 if ((copy = end - offset) > 0) {
3229 u32 p_off, p_len, copied;
3230 struct page *p;
3231 u8 *vaddr;
3232
3233 if (copy > len)
3234 copy = len;
3235
3236 skb_frag_foreach_page(frag,
3237 skb_frag_off(frag) + offset - start,
3238 copy, p, p_off, p_len, copied) {
3239 vaddr = kmap_atomic(p);
3240 memcpy(vaddr + p_off, from + copied, p_len);
3241 kunmap_atomic(vaddr);
3242 }
3243
3244 if ((len -= copy) == 0)
3245 return 0;
3246 offset += copy;
3247 from += copy;
3248 }
3249 start = end;
3250 }
3251
3252 skb_walk_frags(skb, frag_iter) {
3253 int end;
3254
3255 WARN_ON(start > offset + len);
3256
3257 end = start + frag_iter->len;
3258 if ((copy = end - offset) > 0) {
3259 if (copy > len)
3260 copy = len;
3261 if (skb_store_bits(frag_iter, offset - start,
3262 from, copy))
3263 goto fault;
3264 if ((len -= copy) == 0)
3265 return 0;
3266 offset += copy;
3267 from += copy;
3268 }
3269 start = end;
3270 }
3271 if (!len)
3272 return 0;
3273
3274 fault:
3275 return -EFAULT;
3276 }
3277 EXPORT_SYMBOL(skb_store_bits);
3278
3279 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)3280 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3281 __wsum csum, const struct skb_checksum_ops *ops)
3282 {
3283 int start = skb_headlen(skb);
3284 int i, copy = start - offset;
3285 struct sk_buff *frag_iter;
3286 int pos = 0;
3287
3288 /* Checksum header. */
3289 if (copy > 0) {
3290 if (copy > len)
3291 copy = len;
3292 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3293 skb->data + offset, copy, csum);
3294 if ((len -= copy) == 0)
3295 return csum;
3296 offset += copy;
3297 pos = copy;
3298 }
3299
3300 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3301 int end;
3302 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3303
3304 WARN_ON(start > offset + len);
3305
3306 end = start + skb_frag_size(frag);
3307 if ((copy = end - offset) > 0) {
3308 u32 p_off, p_len, copied;
3309 struct page *p;
3310 __wsum csum2;
3311 u8 *vaddr;
3312
3313 if (copy > len)
3314 copy = len;
3315
3316 skb_frag_foreach_page(frag,
3317 skb_frag_off(frag) + offset - start,
3318 copy, p, p_off, p_len, copied) {
3319 vaddr = kmap_atomic(p);
3320 csum2 = INDIRECT_CALL_1(ops->update,
3321 csum_partial_ext,
3322 vaddr + p_off, p_len, 0);
3323 kunmap_atomic(vaddr);
3324 csum = INDIRECT_CALL_1(ops->combine,
3325 csum_block_add_ext, csum,
3326 csum2, pos, p_len);
3327 pos += p_len;
3328 }
3329
3330 if (!(len -= copy))
3331 return csum;
3332 offset += copy;
3333 }
3334 start = end;
3335 }
3336
3337 skb_walk_frags(skb, frag_iter) {
3338 int end;
3339
3340 WARN_ON(start > offset + len);
3341
3342 end = start + frag_iter->len;
3343 if ((copy = end - offset) > 0) {
3344 __wsum csum2;
3345 if (copy > len)
3346 copy = len;
3347 csum2 = __skb_checksum(frag_iter, offset - start,
3348 copy, 0, ops);
3349 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3350 csum, csum2, pos, copy);
3351 if ((len -= copy) == 0)
3352 return csum;
3353 offset += copy;
3354 pos += copy;
3355 }
3356 start = end;
3357 }
3358 BUG_ON(len);
3359
3360 return csum;
3361 }
3362 EXPORT_SYMBOL(__skb_checksum);
3363
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)3364 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3365 int len, __wsum csum)
3366 {
3367 const struct skb_checksum_ops ops = {
3368 .update = csum_partial_ext,
3369 .combine = csum_block_add_ext,
3370 };
3371
3372 return __skb_checksum(skb, offset, len, csum, &ops);
3373 }
3374 EXPORT_SYMBOL(skb_checksum);
3375
3376 /* Both of above in one bottle. */
3377
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)3378 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3379 u8 *to, int len)
3380 {
3381 int start = skb_headlen(skb);
3382 int i, copy = start - offset;
3383 struct sk_buff *frag_iter;
3384 int pos = 0;
3385 __wsum csum = 0;
3386
3387 /* Copy header. */
3388 if (copy > 0) {
3389 if (copy > len)
3390 copy = len;
3391 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3392 copy);
3393 if ((len -= copy) == 0)
3394 return csum;
3395 offset += copy;
3396 to += copy;
3397 pos = copy;
3398 }
3399
3400 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3401 int end;
3402
3403 WARN_ON(start > offset + len);
3404
3405 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3406 if ((copy = end - offset) > 0) {
3407 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3408 u32 p_off, p_len, copied;
3409 struct page *p;
3410 __wsum csum2;
3411 u8 *vaddr;
3412
3413 if (copy > len)
3414 copy = len;
3415
3416 skb_frag_foreach_page(frag,
3417 skb_frag_off(frag) + offset - start,
3418 copy, p, p_off, p_len, copied) {
3419 vaddr = kmap_atomic(p);
3420 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3421 to + copied,
3422 p_len);
3423 kunmap_atomic(vaddr);
3424 csum = csum_block_add(csum, csum2, pos);
3425 pos += p_len;
3426 }
3427
3428 if (!(len -= copy))
3429 return csum;
3430 offset += copy;
3431 to += copy;
3432 }
3433 start = end;
3434 }
3435
3436 skb_walk_frags(skb, frag_iter) {
3437 __wsum csum2;
3438 int end;
3439
3440 WARN_ON(start > offset + len);
3441
3442 end = start + frag_iter->len;
3443 if ((copy = end - offset) > 0) {
3444 if (copy > len)
3445 copy = len;
3446 csum2 = skb_copy_and_csum_bits(frag_iter,
3447 offset - start,
3448 to, copy);
3449 csum = csum_block_add(csum, csum2, pos);
3450 if ((len -= copy) == 0)
3451 return csum;
3452 offset += copy;
3453 to += copy;
3454 pos += copy;
3455 }
3456 start = end;
3457 }
3458 BUG_ON(len);
3459 return csum;
3460 }
3461 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3462
__skb_checksum_complete_head(struct sk_buff * skb,int len)3463 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3464 {
3465 __sum16 sum;
3466
3467 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3468 /* See comments in __skb_checksum_complete(). */
3469 if (likely(!sum)) {
3470 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3471 !skb->csum_complete_sw)
3472 netdev_rx_csum_fault(skb->dev, skb);
3473 }
3474 if (!skb_shared(skb))
3475 skb->csum_valid = !sum;
3476 return sum;
3477 }
3478 EXPORT_SYMBOL(__skb_checksum_complete_head);
3479
3480 /* This function assumes skb->csum already holds pseudo header's checksum,
3481 * which has been changed from the hardware checksum, for example, by
3482 * __skb_checksum_validate_complete(). And, the original skb->csum must
3483 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3484 *
3485 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3486 * zero. The new checksum is stored back into skb->csum unless the skb is
3487 * shared.
3488 */
__skb_checksum_complete(struct sk_buff * skb)3489 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3490 {
3491 __wsum csum;
3492 __sum16 sum;
3493
3494 csum = skb_checksum(skb, 0, skb->len, 0);
3495
3496 sum = csum_fold(csum_add(skb->csum, csum));
3497 /* This check is inverted, because we already knew the hardware
3498 * checksum is invalid before calling this function. So, if the
3499 * re-computed checksum is valid instead, then we have a mismatch
3500 * between the original skb->csum and skb_checksum(). This means either
3501 * the original hardware checksum is incorrect or we screw up skb->csum
3502 * when moving skb->data around.
3503 */
3504 if (likely(!sum)) {
3505 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3506 !skb->csum_complete_sw)
3507 netdev_rx_csum_fault(skb->dev, skb);
3508 }
3509
3510 if (!skb_shared(skb)) {
3511 /* Save full packet checksum */
3512 skb->csum = csum;
3513 skb->ip_summed = CHECKSUM_COMPLETE;
3514 skb->csum_complete_sw = 1;
3515 skb->csum_valid = !sum;
3516 }
3517
3518 return sum;
3519 }
3520 EXPORT_SYMBOL(__skb_checksum_complete);
3521
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)3522 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3523 {
3524 net_warn_ratelimited(
3525 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3526 __func__);
3527 return 0;
3528 }
3529
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)3530 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3531 int offset, int len)
3532 {
3533 net_warn_ratelimited(
3534 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3535 __func__);
3536 return 0;
3537 }
3538
3539 static const struct skb_checksum_ops default_crc32c_ops = {
3540 .update = warn_crc32c_csum_update,
3541 .combine = warn_crc32c_csum_combine,
3542 };
3543
3544 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3545 &default_crc32c_ops;
3546 EXPORT_SYMBOL(crc32c_csum_stub);
3547
3548 /**
3549 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3550 * @from: source buffer
3551 *
3552 * Calculates the amount of linear headroom needed in the 'to' skb passed
3553 * into skb_zerocopy().
3554 */
3555 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3556 skb_zerocopy_headlen(const struct sk_buff *from)
3557 {
3558 unsigned int hlen = 0;
3559
3560 if (!from->head_frag ||
3561 skb_headlen(from) < L1_CACHE_BYTES ||
3562 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3563 hlen = skb_headlen(from);
3564 if (!hlen)
3565 hlen = from->len;
3566 }
3567
3568 if (skb_has_frag_list(from))
3569 hlen = from->len;
3570
3571 return hlen;
3572 }
3573 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3574
3575 /**
3576 * skb_zerocopy - Zero copy skb to skb
3577 * @to: destination buffer
3578 * @from: source buffer
3579 * @len: number of bytes to copy from source buffer
3580 * @hlen: size of linear headroom in destination buffer
3581 *
3582 * Copies up to `len` bytes from `from` to `to` by creating references
3583 * to the frags in the source buffer.
3584 *
3585 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3586 * headroom in the `to` buffer.
3587 *
3588 * Return value:
3589 * 0: everything is OK
3590 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3591 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3592 */
3593 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3594 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3595 {
3596 int i, j = 0;
3597 int plen = 0; /* length of skb->head fragment */
3598 int ret;
3599 struct page *page;
3600 unsigned int offset;
3601
3602 BUG_ON(!from->head_frag && !hlen);
3603
3604 /* dont bother with small payloads */
3605 if (len <= skb_tailroom(to))
3606 return skb_copy_bits(from, 0, skb_put(to, len), len);
3607
3608 if (hlen) {
3609 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3610 if (unlikely(ret))
3611 return ret;
3612 len -= hlen;
3613 } else {
3614 plen = min_t(int, skb_headlen(from), len);
3615 if (plen) {
3616 page = virt_to_head_page(from->head);
3617 offset = from->data - (unsigned char *)page_address(page);
3618 __skb_fill_page_desc(to, 0, page, offset, plen);
3619 get_page(page);
3620 j = 1;
3621 len -= plen;
3622 }
3623 }
3624
3625 skb_len_add(to, len + plen);
3626
3627 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3628 skb_tx_error(from);
3629 return -ENOMEM;
3630 }
3631 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3632
3633 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3634 int size;
3635
3636 if (!len)
3637 break;
3638 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3639 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3640 len);
3641 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3642 len -= size;
3643 skb_frag_ref(to, j);
3644 j++;
3645 }
3646 skb_shinfo(to)->nr_frags = j;
3647
3648 return 0;
3649 }
3650 EXPORT_SYMBOL_GPL(skb_zerocopy);
3651
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3652 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3653 {
3654 __wsum csum;
3655 long csstart;
3656
3657 if (skb->ip_summed == CHECKSUM_PARTIAL)
3658 csstart = skb_checksum_start_offset(skb);
3659 else
3660 csstart = skb_headlen(skb);
3661
3662 BUG_ON(csstart > skb_headlen(skb));
3663
3664 skb_copy_from_linear_data(skb, to, csstart);
3665
3666 csum = 0;
3667 if (csstart != skb->len)
3668 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3669 skb->len - csstart);
3670
3671 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3672 long csstuff = csstart + skb->csum_offset;
3673
3674 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3675 }
3676 }
3677 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3678
3679 /**
3680 * skb_dequeue - remove from the head of the queue
3681 * @list: list to dequeue from
3682 *
3683 * Remove the head of the list. The list lock is taken so the function
3684 * may be used safely with other locking list functions. The head item is
3685 * returned or %NULL if the list is empty.
3686 */
3687
skb_dequeue(struct sk_buff_head * list)3688 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3689 {
3690 unsigned long flags;
3691 struct sk_buff *result;
3692
3693 spin_lock_irqsave(&list->lock, flags);
3694 result = __skb_dequeue(list);
3695 spin_unlock_irqrestore(&list->lock, flags);
3696 return result;
3697 }
3698 EXPORT_SYMBOL(skb_dequeue);
3699
3700 /**
3701 * skb_dequeue_tail - remove from the tail of the queue
3702 * @list: list to dequeue from
3703 *
3704 * Remove the tail of the list. The list lock is taken so the function
3705 * may be used safely with other locking list functions. The tail item is
3706 * returned or %NULL if the list is empty.
3707 */
skb_dequeue_tail(struct sk_buff_head * list)3708 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3709 {
3710 unsigned long flags;
3711 struct sk_buff *result;
3712
3713 spin_lock_irqsave(&list->lock, flags);
3714 result = __skb_dequeue_tail(list);
3715 spin_unlock_irqrestore(&list->lock, flags);
3716 return result;
3717 }
3718 EXPORT_SYMBOL(skb_dequeue_tail);
3719
3720 /**
3721 * skb_queue_purge_reason - empty a list
3722 * @list: list to empty
3723 * @reason: drop reason
3724 *
3725 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3726 * the list and one reference dropped. This function takes the list
3727 * lock and is atomic with respect to other list locking functions.
3728 */
skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3729 void skb_queue_purge_reason(struct sk_buff_head *list,
3730 enum skb_drop_reason reason)
3731 {
3732 struct sk_buff *skb;
3733
3734 while ((skb = skb_dequeue(list)) != NULL)
3735 kfree_skb_reason(skb, reason);
3736 }
3737 EXPORT_SYMBOL(skb_queue_purge_reason);
3738
3739 /**
3740 * skb_rbtree_purge - empty a skb rbtree
3741 * @root: root of the rbtree to empty
3742 * Return value: the sum of truesizes of all purged skbs.
3743 *
3744 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3745 * the list and one reference dropped. This function does not take
3746 * any lock. Synchronization should be handled by the caller (e.g., TCP
3747 * out-of-order queue is protected by the socket lock).
3748 */
skb_rbtree_purge(struct rb_root * root)3749 unsigned int skb_rbtree_purge(struct rb_root *root)
3750 {
3751 struct rb_node *p = rb_first(root);
3752 unsigned int sum = 0;
3753
3754 while (p) {
3755 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3756
3757 p = rb_next(p);
3758 rb_erase(&skb->rbnode, root);
3759 sum += skb->truesize;
3760 kfree_skb(skb);
3761 }
3762 return sum;
3763 }
3764
skb_errqueue_purge(struct sk_buff_head * list)3765 void skb_errqueue_purge(struct sk_buff_head *list)
3766 {
3767 struct sk_buff *skb, *next;
3768 struct sk_buff_head kill;
3769 unsigned long flags;
3770
3771 __skb_queue_head_init(&kill);
3772
3773 spin_lock_irqsave(&list->lock, flags);
3774 skb_queue_walk_safe(list, skb, next) {
3775 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3776 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3777 continue;
3778 __skb_unlink(skb, list);
3779 __skb_queue_tail(&kill, skb);
3780 }
3781 spin_unlock_irqrestore(&list->lock, flags);
3782 __skb_queue_purge(&kill);
3783 }
3784 EXPORT_SYMBOL(skb_errqueue_purge);
3785
3786 /**
3787 * skb_queue_head - queue a buffer at the list head
3788 * @list: list to use
3789 * @newsk: buffer to queue
3790 *
3791 * Queue a buffer at the start of the list. This function takes the
3792 * list lock and can be used safely with other locking &sk_buff functions
3793 * safely.
3794 *
3795 * A buffer cannot be placed on two lists at the same time.
3796 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3797 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3798 {
3799 unsigned long flags;
3800
3801 spin_lock_irqsave(&list->lock, flags);
3802 __skb_queue_head(list, newsk);
3803 spin_unlock_irqrestore(&list->lock, flags);
3804 }
3805 EXPORT_SYMBOL(skb_queue_head);
3806
3807 /**
3808 * skb_queue_tail - queue a buffer at the list tail
3809 * @list: list to use
3810 * @newsk: buffer to queue
3811 *
3812 * Queue a buffer at the tail of the list. This function takes the
3813 * list lock and can be used safely with other locking &sk_buff functions
3814 * safely.
3815 *
3816 * A buffer cannot be placed on two lists at the same time.
3817 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3818 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3819 {
3820 unsigned long flags;
3821
3822 spin_lock_irqsave(&list->lock, flags);
3823 __skb_queue_tail(list, newsk);
3824 spin_unlock_irqrestore(&list->lock, flags);
3825 }
3826 EXPORT_SYMBOL(skb_queue_tail);
3827
3828 /**
3829 * skb_unlink - remove a buffer from a list
3830 * @skb: buffer to remove
3831 * @list: list to use
3832 *
3833 * Remove a packet from a list. The list locks are taken and this
3834 * function is atomic with respect to other list locked calls
3835 *
3836 * You must know what list the SKB is on.
3837 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3838 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3839 {
3840 unsigned long flags;
3841
3842 spin_lock_irqsave(&list->lock, flags);
3843 __skb_unlink(skb, list);
3844 spin_unlock_irqrestore(&list->lock, flags);
3845 }
3846 EXPORT_SYMBOL(skb_unlink);
3847
3848 /**
3849 * skb_append - append a buffer
3850 * @old: buffer to insert after
3851 * @newsk: buffer to insert
3852 * @list: list to use
3853 *
3854 * Place a packet after a given packet in a list. The list locks are taken
3855 * and this function is atomic with respect to other list locked calls.
3856 * A buffer cannot be placed on two lists at the same time.
3857 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3858 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3859 {
3860 unsigned long flags;
3861
3862 spin_lock_irqsave(&list->lock, flags);
3863 __skb_queue_after(list, old, newsk);
3864 spin_unlock_irqrestore(&list->lock, flags);
3865 }
3866 EXPORT_SYMBOL(skb_append);
3867
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3868 static inline void skb_split_inside_header(struct sk_buff *skb,
3869 struct sk_buff* skb1,
3870 const u32 len, const int pos)
3871 {
3872 int i;
3873
3874 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3875 pos - len);
3876 /* And move data appendix as is. */
3877 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3878 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3879
3880 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3881 skb_shinfo(skb)->nr_frags = 0;
3882 skb1->data_len = skb->data_len;
3883 skb1->len += skb1->data_len;
3884 skb->data_len = 0;
3885 skb->len = len;
3886 skb_set_tail_pointer(skb, len);
3887 }
3888
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3889 static inline void skb_split_no_header(struct sk_buff *skb,
3890 struct sk_buff* skb1,
3891 const u32 len, int pos)
3892 {
3893 int i, k = 0;
3894 const int nfrags = skb_shinfo(skb)->nr_frags;
3895
3896 skb_shinfo(skb)->nr_frags = 0;
3897 skb1->len = skb1->data_len = skb->len - len;
3898 skb->len = len;
3899 skb->data_len = len - pos;
3900
3901 for (i = 0; i < nfrags; i++) {
3902 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3903
3904 if (pos + size > len) {
3905 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3906
3907 if (pos < len) {
3908 /* Split frag.
3909 * We have two variants in this case:
3910 * 1. Move all the frag to the second
3911 * part, if it is possible. F.e.
3912 * this approach is mandatory for TUX,
3913 * where splitting is expensive.
3914 * 2. Split is accurately. We make this.
3915 */
3916 skb_frag_ref(skb, i);
3917 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3918 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3919 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3920 skb_shinfo(skb)->nr_frags++;
3921 }
3922 k++;
3923 } else
3924 skb_shinfo(skb)->nr_frags++;
3925 pos += size;
3926 }
3927 skb_shinfo(skb1)->nr_frags = k;
3928 }
3929
3930 /**
3931 * skb_split - Split fragmented skb to two parts at length len.
3932 * @skb: the buffer to split
3933 * @skb1: the buffer to receive the second part
3934 * @len: new length for skb
3935 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3936 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3937 {
3938 int pos = skb_headlen(skb);
3939 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3940
3941 skb_zcopy_downgrade_managed(skb);
3942
3943 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3944 skb_zerocopy_clone(skb1, skb, 0);
3945 if (len < pos) /* Split line is inside header. */
3946 skb_split_inside_header(skb, skb1, len, pos);
3947 else /* Second chunk has no header, nothing to copy. */
3948 skb_split_no_header(skb, skb1, len, pos);
3949 }
3950 EXPORT_SYMBOL(skb_split);
3951
3952 /* Shifting from/to a cloned skb is a no-go.
3953 *
3954 * Caller cannot keep skb_shinfo related pointers past calling here!
3955 */
skb_prepare_for_shift(struct sk_buff * skb)3956 static int skb_prepare_for_shift(struct sk_buff *skb)
3957 {
3958 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3959 }
3960
3961 /**
3962 * skb_shift - Shifts paged data partially from skb to another
3963 * @tgt: buffer into which tail data gets added
3964 * @skb: buffer from which the paged data comes from
3965 * @shiftlen: shift up to this many bytes
3966 *
3967 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3968 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3969 * It's up to caller to free skb if everything was shifted.
3970 *
3971 * If @tgt runs out of frags, the whole operation is aborted.
3972 *
3973 * Skb cannot include anything else but paged data while tgt is allowed
3974 * to have non-paged data as well.
3975 *
3976 * TODO: full sized shift could be optimized but that would need
3977 * specialized skb free'er to handle frags without up-to-date nr_frags.
3978 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3979 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3980 {
3981 int from, to, merge, todo;
3982 skb_frag_t *fragfrom, *fragto;
3983
3984 BUG_ON(shiftlen > skb->len);
3985
3986 if (skb_headlen(skb))
3987 return 0;
3988 if (skb_zcopy(tgt) || skb_zcopy(skb))
3989 return 0;
3990
3991 todo = shiftlen;
3992 from = 0;
3993 to = skb_shinfo(tgt)->nr_frags;
3994 fragfrom = &skb_shinfo(skb)->frags[from];
3995
3996 /* Actual merge is delayed until the point when we know we can
3997 * commit all, so that we don't have to undo partial changes
3998 */
3999 if (!to ||
4000 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4001 skb_frag_off(fragfrom))) {
4002 merge = -1;
4003 } else {
4004 merge = to - 1;
4005
4006 todo -= skb_frag_size(fragfrom);
4007 if (todo < 0) {
4008 if (skb_prepare_for_shift(skb) ||
4009 skb_prepare_for_shift(tgt))
4010 return 0;
4011
4012 /* All previous frag pointers might be stale! */
4013 fragfrom = &skb_shinfo(skb)->frags[from];
4014 fragto = &skb_shinfo(tgt)->frags[merge];
4015
4016 skb_frag_size_add(fragto, shiftlen);
4017 skb_frag_size_sub(fragfrom, shiftlen);
4018 skb_frag_off_add(fragfrom, shiftlen);
4019
4020 goto onlymerged;
4021 }
4022
4023 from++;
4024 }
4025
4026 /* Skip full, not-fitting skb to avoid expensive operations */
4027 if ((shiftlen == skb->len) &&
4028 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4029 return 0;
4030
4031 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4032 return 0;
4033
4034 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4035 if (to == MAX_SKB_FRAGS)
4036 return 0;
4037
4038 fragfrom = &skb_shinfo(skb)->frags[from];
4039 fragto = &skb_shinfo(tgt)->frags[to];
4040
4041 if (todo >= skb_frag_size(fragfrom)) {
4042 *fragto = *fragfrom;
4043 todo -= skb_frag_size(fragfrom);
4044 from++;
4045 to++;
4046
4047 } else {
4048 __skb_frag_ref(fragfrom);
4049 skb_frag_page_copy(fragto, fragfrom);
4050 skb_frag_off_copy(fragto, fragfrom);
4051 skb_frag_size_set(fragto, todo);
4052
4053 skb_frag_off_add(fragfrom, todo);
4054 skb_frag_size_sub(fragfrom, todo);
4055 todo = 0;
4056
4057 to++;
4058 break;
4059 }
4060 }
4061
4062 /* Ready to "commit" this state change to tgt */
4063 skb_shinfo(tgt)->nr_frags = to;
4064
4065 if (merge >= 0) {
4066 fragfrom = &skb_shinfo(skb)->frags[0];
4067 fragto = &skb_shinfo(tgt)->frags[merge];
4068
4069 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4070 __skb_frag_unref(fragfrom, skb->pp_recycle);
4071 }
4072
4073 /* Reposition in the original skb */
4074 to = 0;
4075 while (from < skb_shinfo(skb)->nr_frags)
4076 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4077 skb_shinfo(skb)->nr_frags = to;
4078
4079 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4080
4081 onlymerged:
4082 /* Most likely the tgt won't ever need its checksum anymore, skb on
4083 * the other hand might need it if it needs to be resent
4084 */
4085 tgt->ip_summed = CHECKSUM_PARTIAL;
4086 skb->ip_summed = CHECKSUM_PARTIAL;
4087
4088 skb_len_add(skb, -shiftlen);
4089 skb_len_add(tgt, shiftlen);
4090
4091 return shiftlen;
4092 }
4093
4094 /**
4095 * skb_prepare_seq_read - Prepare a sequential read of skb data
4096 * @skb: the buffer to read
4097 * @from: lower offset of data to be read
4098 * @to: upper offset of data to be read
4099 * @st: state variable
4100 *
4101 * Initializes the specified state variable. Must be called before
4102 * invoking skb_seq_read() for the first time.
4103 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)4104 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4105 unsigned int to, struct skb_seq_state *st)
4106 {
4107 st->lower_offset = from;
4108 st->upper_offset = to;
4109 st->root_skb = st->cur_skb = skb;
4110 st->frag_idx = st->stepped_offset = 0;
4111 st->frag_data = NULL;
4112 st->frag_off = 0;
4113 }
4114 EXPORT_SYMBOL(skb_prepare_seq_read);
4115
4116 /**
4117 * skb_seq_read - Sequentially read skb data
4118 * @consumed: number of bytes consumed by the caller so far
4119 * @data: destination pointer for data to be returned
4120 * @st: state variable
4121 *
4122 * Reads a block of skb data at @consumed relative to the
4123 * lower offset specified to skb_prepare_seq_read(). Assigns
4124 * the head of the data block to @data and returns the length
4125 * of the block or 0 if the end of the skb data or the upper
4126 * offset has been reached.
4127 *
4128 * The caller is not required to consume all of the data
4129 * returned, i.e. @consumed is typically set to the number
4130 * of bytes already consumed and the next call to
4131 * skb_seq_read() will return the remaining part of the block.
4132 *
4133 * Note 1: The size of each block of data returned can be arbitrary,
4134 * this limitation is the cost for zerocopy sequential
4135 * reads of potentially non linear data.
4136 *
4137 * Note 2: Fragment lists within fragments are not implemented
4138 * at the moment, state->root_skb could be replaced with
4139 * a stack for this purpose.
4140 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)4141 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4142 struct skb_seq_state *st)
4143 {
4144 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4145 skb_frag_t *frag;
4146
4147 if (unlikely(abs_offset >= st->upper_offset)) {
4148 if (st->frag_data) {
4149 kunmap_atomic(st->frag_data);
4150 st->frag_data = NULL;
4151 }
4152 return 0;
4153 }
4154
4155 next_skb:
4156 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4157
4158 if (abs_offset < block_limit && !st->frag_data) {
4159 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4160 return block_limit - abs_offset;
4161 }
4162
4163 if (st->frag_idx == 0 && !st->frag_data)
4164 st->stepped_offset += skb_headlen(st->cur_skb);
4165
4166 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4167 unsigned int pg_idx, pg_off, pg_sz;
4168
4169 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4170
4171 pg_idx = 0;
4172 pg_off = skb_frag_off(frag);
4173 pg_sz = skb_frag_size(frag);
4174
4175 if (skb_frag_must_loop(skb_frag_page(frag))) {
4176 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4177 pg_off = offset_in_page(pg_off + st->frag_off);
4178 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4179 PAGE_SIZE - pg_off);
4180 }
4181
4182 block_limit = pg_sz + st->stepped_offset;
4183 if (abs_offset < block_limit) {
4184 if (!st->frag_data)
4185 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4186
4187 *data = (u8 *)st->frag_data + pg_off +
4188 (abs_offset - st->stepped_offset);
4189
4190 return block_limit - abs_offset;
4191 }
4192
4193 if (st->frag_data) {
4194 kunmap_atomic(st->frag_data);
4195 st->frag_data = NULL;
4196 }
4197
4198 st->stepped_offset += pg_sz;
4199 st->frag_off += pg_sz;
4200 if (st->frag_off == skb_frag_size(frag)) {
4201 st->frag_off = 0;
4202 st->frag_idx++;
4203 }
4204 }
4205
4206 if (st->frag_data) {
4207 kunmap_atomic(st->frag_data);
4208 st->frag_data = NULL;
4209 }
4210
4211 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4212 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4213 st->frag_idx = 0;
4214 goto next_skb;
4215 } else if (st->cur_skb->next) {
4216 st->cur_skb = st->cur_skb->next;
4217 st->frag_idx = 0;
4218 goto next_skb;
4219 }
4220
4221 return 0;
4222 }
4223 EXPORT_SYMBOL(skb_seq_read);
4224
4225 /**
4226 * skb_abort_seq_read - Abort a sequential read of skb data
4227 * @st: state variable
4228 *
4229 * Must be called if skb_seq_read() was not called until it
4230 * returned 0.
4231 */
skb_abort_seq_read(struct skb_seq_state * st)4232 void skb_abort_seq_read(struct skb_seq_state *st)
4233 {
4234 if (st->frag_data)
4235 kunmap_atomic(st->frag_data);
4236 }
4237 EXPORT_SYMBOL(skb_abort_seq_read);
4238
4239 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
4240
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)4241 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4242 struct ts_config *conf,
4243 struct ts_state *state)
4244 {
4245 return skb_seq_read(offset, text, TS_SKB_CB(state));
4246 }
4247
skb_ts_finish(struct ts_config * conf,struct ts_state * state)4248 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4249 {
4250 skb_abort_seq_read(TS_SKB_CB(state));
4251 }
4252
4253 /**
4254 * skb_find_text - Find a text pattern in skb data
4255 * @skb: the buffer to look in
4256 * @from: search offset
4257 * @to: search limit
4258 * @config: textsearch configuration
4259 *
4260 * Finds a pattern in the skb data according to the specified
4261 * textsearch configuration. Use textsearch_next() to retrieve
4262 * subsequent occurrences of the pattern. Returns the offset
4263 * to the first occurrence or UINT_MAX if no match was found.
4264 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)4265 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4266 unsigned int to, struct ts_config *config)
4267 {
4268 unsigned int patlen = config->ops->get_pattern_len(config);
4269 struct ts_state state;
4270 unsigned int ret;
4271
4272 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4273
4274 config->get_next_block = skb_ts_get_next_block;
4275 config->finish = skb_ts_finish;
4276
4277 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4278
4279 ret = textsearch_find(config, &state);
4280 return (ret + patlen <= to - from ? ret : UINT_MAX);
4281 }
4282 EXPORT_SYMBOL(skb_find_text);
4283
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size,size_t max_frags)4284 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4285 int offset, size_t size, size_t max_frags)
4286 {
4287 int i = skb_shinfo(skb)->nr_frags;
4288
4289 if (skb_can_coalesce(skb, i, page, offset)) {
4290 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4291 } else if (i < max_frags) {
4292 skb_zcopy_downgrade_managed(skb);
4293 get_page(page);
4294 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4295 } else {
4296 return -EMSGSIZE;
4297 }
4298
4299 return 0;
4300 }
4301 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4302
4303 /**
4304 * skb_pull_rcsum - pull skb and update receive checksum
4305 * @skb: buffer to update
4306 * @len: length of data pulled
4307 *
4308 * This function performs an skb_pull on the packet and updates
4309 * the CHECKSUM_COMPLETE checksum. It should be used on
4310 * receive path processing instead of skb_pull unless you know
4311 * that the checksum difference is zero (e.g., a valid IP header)
4312 * or you are setting ip_summed to CHECKSUM_NONE.
4313 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)4314 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4315 {
4316 unsigned char *data = skb->data;
4317
4318 BUG_ON(len > skb->len);
4319 __skb_pull(skb, len);
4320 skb_postpull_rcsum(skb, data, len);
4321 return skb->data;
4322 }
4323 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4324
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)4325 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4326 {
4327 skb_frag_t head_frag;
4328 struct page *page;
4329
4330 page = virt_to_head_page(frag_skb->head);
4331 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4332 (unsigned char *)page_address(page),
4333 skb_headlen(frag_skb));
4334 return head_frag;
4335 }
4336
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)4337 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4338 netdev_features_t features,
4339 unsigned int offset)
4340 {
4341 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4342 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4343 unsigned int delta_truesize = 0;
4344 unsigned int delta_len = 0;
4345 struct sk_buff *tail = NULL;
4346 struct sk_buff *nskb, *tmp;
4347 int len_diff, err;
4348
4349 skb_push(skb, -skb_network_offset(skb) + offset);
4350
4351 /* Ensure the head is writeable before touching the shared info */
4352 err = skb_unclone(skb, GFP_ATOMIC);
4353 if (err)
4354 goto err_linearize;
4355
4356 skb_shinfo(skb)->frag_list = NULL;
4357
4358 while (list_skb) {
4359 nskb = list_skb;
4360 list_skb = list_skb->next;
4361
4362 err = 0;
4363 delta_truesize += nskb->truesize;
4364 if (skb_shared(nskb)) {
4365 tmp = skb_clone(nskb, GFP_ATOMIC);
4366 if (tmp) {
4367 consume_skb(nskb);
4368 nskb = tmp;
4369 err = skb_unclone(nskb, GFP_ATOMIC);
4370 } else {
4371 err = -ENOMEM;
4372 }
4373 }
4374
4375 if (!tail)
4376 skb->next = nskb;
4377 else
4378 tail->next = nskb;
4379
4380 if (unlikely(err)) {
4381 nskb->next = list_skb;
4382 goto err_linearize;
4383 }
4384
4385 tail = nskb;
4386
4387 delta_len += nskb->len;
4388
4389 skb_push(nskb, -skb_network_offset(nskb) + offset);
4390
4391 skb_release_head_state(nskb);
4392 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4393 __copy_skb_header(nskb, skb);
4394
4395 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4396 nskb->transport_header += len_diff;
4397 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4398 nskb->data - tnl_hlen,
4399 offset + tnl_hlen);
4400
4401 if (skb_needs_linearize(nskb, features) &&
4402 __skb_linearize(nskb))
4403 goto err_linearize;
4404 }
4405
4406 skb->truesize = skb->truesize - delta_truesize;
4407 skb->data_len = skb->data_len - delta_len;
4408 skb->len = skb->len - delta_len;
4409
4410 skb_gso_reset(skb);
4411
4412 skb->prev = tail;
4413
4414 if (skb_needs_linearize(skb, features) &&
4415 __skb_linearize(skb))
4416 goto err_linearize;
4417
4418 skb_get(skb);
4419
4420 return skb;
4421
4422 err_linearize:
4423 kfree_skb_list(skb->next);
4424 skb->next = NULL;
4425 return ERR_PTR(-ENOMEM);
4426 }
4427 EXPORT_SYMBOL_GPL(skb_segment_list);
4428
4429 /**
4430 * skb_segment - Perform protocol segmentation on skb.
4431 * @head_skb: buffer to segment
4432 * @features: features for the output path (see dev->features)
4433 *
4434 * This function performs segmentation on the given skb. It returns
4435 * a pointer to the first in a list of new skbs for the segments.
4436 * In case of error it returns ERR_PTR(err).
4437 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)4438 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4439 netdev_features_t features)
4440 {
4441 struct sk_buff *segs = NULL;
4442 struct sk_buff *tail = NULL;
4443 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4444 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4445 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4446 unsigned int offset = doffset;
4447 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4448 unsigned int partial_segs = 0;
4449 unsigned int headroom;
4450 unsigned int len = head_skb->len;
4451 struct sk_buff *frag_skb;
4452 skb_frag_t *frag;
4453 __be16 proto;
4454 bool csum, sg;
4455 int err = -ENOMEM;
4456 int i = 0;
4457 int nfrags, pos;
4458
4459 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4460 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4461 struct sk_buff *check_skb;
4462
4463 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4464 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4465 /* gso_size is untrusted, and we have a frag_list with
4466 * a linear non head_frag item.
4467 *
4468 * If head_skb's headlen does not fit requested gso_size,
4469 * it means that the frag_list members do NOT terminate
4470 * on exact gso_size boundaries. Hence we cannot perform
4471 * skb_frag_t page sharing. Therefore we must fallback to
4472 * copying the frag_list skbs; we do so by disabling SG.
4473 */
4474 features &= ~NETIF_F_SG;
4475 break;
4476 }
4477 }
4478 }
4479
4480 __skb_push(head_skb, doffset);
4481 proto = skb_network_protocol(head_skb, NULL);
4482 if (unlikely(!proto))
4483 return ERR_PTR(-EINVAL);
4484
4485 sg = !!(features & NETIF_F_SG);
4486 csum = !!can_checksum_protocol(features, proto);
4487
4488 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4489 if (!(features & NETIF_F_GSO_PARTIAL)) {
4490 struct sk_buff *iter;
4491 unsigned int frag_len;
4492
4493 if (!list_skb ||
4494 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4495 goto normal;
4496
4497 /* If we get here then all the required
4498 * GSO features except frag_list are supported.
4499 * Try to split the SKB to multiple GSO SKBs
4500 * with no frag_list.
4501 * Currently we can do that only when the buffers don't
4502 * have a linear part and all the buffers except
4503 * the last are of the same length.
4504 */
4505 frag_len = list_skb->len;
4506 skb_walk_frags(head_skb, iter) {
4507 if (frag_len != iter->len && iter->next)
4508 goto normal;
4509 if (skb_headlen(iter) && !iter->head_frag)
4510 goto normal;
4511
4512 len -= iter->len;
4513 }
4514
4515 if (len != frag_len)
4516 goto normal;
4517 }
4518
4519 /* GSO partial only requires that we trim off any excess that
4520 * doesn't fit into an MSS sized block, so take care of that
4521 * now.
4522 * Cap len to not accidentally hit GSO_BY_FRAGS.
4523 */
4524 partial_segs = min(len, GSO_BY_FRAGS - 1U) / mss;
4525 if (partial_segs > 1)
4526 mss *= partial_segs;
4527 else
4528 partial_segs = 0;
4529 }
4530
4531 normal:
4532 headroom = skb_headroom(head_skb);
4533 pos = skb_headlen(head_skb);
4534
4535 if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4536 return ERR_PTR(-ENOMEM);
4537
4538 nfrags = skb_shinfo(head_skb)->nr_frags;
4539 frag = skb_shinfo(head_skb)->frags;
4540 frag_skb = head_skb;
4541
4542 do {
4543 struct sk_buff *nskb;
4544 skb_frag_t *nskb_frag;
4545 int hsize;
4546 int size;
4547
4548 if (unlikely(mss == GSO_BY_FRAGS)) {
4549 len = list_skb->len;
4550 } else {
4551 len = head_skb->len - offset;
4552 if (len > mss)
4553 len = mss;
4554 }
4555
4556 hsize = skb_headlen(head_skb) - offset;
4557
4558 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4559 (skb_headlen(list_skb) == len || sg)) {
4560 BUG_ON(skb_headlen(list_skb) > len);
4561
4562 nskb = skb_clone(list_skb, GFP_ATOMIC);
4563 if (unlikely(!nskb))
4564 goto err;
4565
4566 i = 0;
4567 nfrags = skb_shinfo(list_skb)->nr_frags;
4568 frag = skb_shinfo(list_skb)->frags;
4569 frag_skb = list_skb;
4570 pos += skb_headlen(list_skb);
4571
4572 while (pos < offset + len) {
4573 BUG_ON(i >= nfrags);
4574
4575 size = skb_frag_size(frag);
4576 if (pos + size > offset + len)
4577 break;
4578
4579 i++;
4580 pos += size;
4581 frag++;
4582 }
4583
4584 list_skb = list_skb->next;
4585
4586 if (unlikely(pskb_trim(nskb, len))) {
4587 kfree_skb(nskb);
4588 goto err;
4589 }
4590
4591 hsize = skb_end_offset(nskb);
4592 if (skb_cow_head(nskb, doffset + headroom)) {
4593 kfree_skb(nskb);
4594 goto err;
4595 }
4596
4597 nskb->truesize += skb_end_offset(nskb) - hsize;
4598 skb_release_head_state(nskb);
4599 __skb_push(nskb, doffset);
4600 } else {
4601 if (hsize < 0)
4602 hsize = 0;
4603 if (hsize > len || !sg)
4604 hsize = len;
4605
4606 nskb = __alloc_skb(hsize + doffset + headroom,
4607 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4608 NUMA_NO_NODE);
4609
4610 if (unlikely(!nskb))
4611 goto err;
4612
4613 skb_reserve(nskb, headroom);
4614 __skb_put(nskb, doffset);
4615 }
4616
4617 if (segs)
4618 tail->next = nskb;
4619 else
4620 segs = nskb;
4621 tail = nskb;
4622
4623 __copy_skb_header(nskb, head_skb);
4624
4625 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4626 skb_reset_mac_len(nskb);
4627
4628 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4629 nskb->data - tnl_hlen,
4630 doffset + tnl_hlen);
4631
4632 if (nskb->len == len + doffset)
4633 goto perform_csum_check;
4634
4635 if (!sg) {
4636 if (!csum) {
4637 if (!nskb->remcsum_offload)
4638 nskb->ip_summed = CHECKSUM_NONE;
4639 SKB_GSO_CB(nskb)->csum =
4640 skb_copy_and_csum_bits(head_skb, offset,
4641 skb_put(nskb,
4642 len),
4643 len);
4644 SKB_GSO_CB(nskb)->csum_start =
4645 skb_headroom(nskb) + doffset;
4646 } else {
4647 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4648 goto err;
4649 }
4650 continue;
4651 }
4652
4653 nskb_frag = skb_shinfo(nskb)->frags;
4654
4655 skb_copy_from_linear_data_offset(head_skb, offset,
4656 skb_put(nskb, hsize), hsize);
4657
4658 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4659 SKBFL_SHARED_FRAG;
4660
4661 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4662 goto err;
4663
4664 while (pos < offset + len) {
4665 if (i >= nfrags) {
4666 if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4667 skb_zerocopy_clone(nskb, list_skb,
4668 GFP_ATOMIC))
4669 goto err;
4670
4671 i = 0;
4672 nfrags = skb_shinfo(list_skb)->nr_frags;
4673 frag = skb_shinfo(list_skb)->frags;
4674 frag_skb = list_skb;
4675 if (!skb_headlen(list_skb)) {
4676 BUG_ON(!nfrags);
4677 } else {
4678 BUG_ON(!list_skb->head_frag);
4679
4680 /* to make room for head_frag. */
4681 i--;
4682 frag--;
4683 }
4684
4685 list_skb = list_skb->next;
4686 }
4687
4688 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4689 MAX_SKB_FRAGS)) {
4690 net_warn_ratelimited(
4691 "skb_segment: too many frags: %u %u\n",
4692 pos, mss);
4693 err = -EINVAL;
4694 goto err;
4695 }
4696
4697 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4698 __skb_frag_ref(nskb_frag);
4699 size = skb_frag_size(nskb_frag);
4700
4701 if (pos < offset) {
4702 skb_frag_off_add(nskb_frag, offset - pos);
4703 skb_frag_size_sub(nskb_frag, offset - pos);
4704 }
4705
4706 skb_shinfo(nskb)->nr_frags++;
4707
4708 if (pos + size <= offset + len) {
4709 i++;
4710 frag++;
4711 pos += size;
4712 } else {
4713 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4714 goto skip_fraglist;
4715 }
4716
4717 nskb_frag++;
4718 }
4719
4720 skip_fraglist:
4721 nskb->data_len = len - hsize;
4722 nskb->len += nskb->data_len;
4723 nskb->truesize += nskb->data_len;
4724
4725 perform_csum_check:
4726 if (!csum) {
4727 if (skb_has_shared_frag(nskb) &&
4728 __skb_linearize(nskb))
4729 goto err;
4730
4731 if (!nskb->remcsum_offload)
4732 nskb->ip_summed = CHECKSUM_NONE;
4733 SKB_GSO_CB(nskb)->csum =
4734 skb_checksum(nskb, doffset,
4735 nskb->len - doffset, 0);
4736 SKB_GSO_CB(nskb)->csum_start =
4737 skb_headroom(nskb) + doffset;
4738 }
4739 } while ((offset += len) < head_skb->len);
4740
4741 /* Some callers want to get the end of the list.
4742 * Put it in segs->prev to avoid walking the list.
4743 * (see validate_xmit_skb_list() for example)
4744 */
4745 segs->prev = tail;
4746
4747 if (partial_segs) {
4748 struct sk_buff *iter;
4749 int type = skb_shinfo(head_skb)->gso_type;
4750 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4751
4752 /* Update type to add partial and then remove dodgy if set */
4753 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4754 type &= ~SKB_GSO_DODGY;
4755
4756 /* Update GSO info and prepare to start updating headers on
4757 * our way back down the stack of protocols.
4758 */
4759 for (iter = segs; iter; iter = iter->next) {
4760 skb_shinfo(iter)->gso_size = gso_size;
4761 skb_shinfo(iter)->gso_segs = partial_segs;
4762 skb_shinfo(iter)->gso_type = type;
4763 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4764 }
4765
4766 if (tail->len - doffset <= gso_size)
4767 skb_shinfo(tail)->gso_size = 0;
4768 else if (tail != segs)
4769 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4770 }
4771
4772 /* Following permits correct backpressure, for protocols
4773 * using skb_set_owner_w().
4774 * Idea is to tranfert ownership from head_skb to last segment.
4775 */
4776 if (head_skb->destructor == sock_wfree) {
4777 swap(tail->truesize, head_skb->truesize);
4778 swap(tail->destructor, head_skb->destructor);
4779 swap(tail->sk, head_skb->sk);
4780 }
4781 return segs;
4782
4783 err:
4784 kfree_skb_list(segs);
4785 return ERR_PTR(err);
4786 }
4787 EXPORT_SYMBOL_GPL(skb_segment);
4788
4789 #ifdef CONFIG_SKB_EXTENSIONS
4790 #define SKB_EXT_ALIGN_VALUE 8
4791 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4792
4793 static const u8 skb_ext_type_len[] = {
4794 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4795 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4796 #endif
4797 #ifdef CONFIG_XFRM
4798 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4799 #endif
4800 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4801 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4802 #endif
4803 #if IS_ENABLED(CONFIG_MPTCP)
4804 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4805 #endif
4806 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4807 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4808 #endif
4809 };
4810
skb_ext_total_length(void)4811 static __always_inline unsigned int skb_ext_total_length(void)
4812 {
4813 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4814 int i;
4815
4816 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4817 l += skb_ext_type_len[i];
4818
4819 return l;
4820 }
4821
skb_extensions_init(void)4822 static void skb_extensions_init(void)
4823 {
4824 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4825 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4826 BUILD_BUG_ON(skb_ext_total_length() > 255);
4827 #endif
4828
4829 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4830 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4831 0,
4832 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4833 NULL);
4834 }
4835 #else
skb_extensions_init(void)4836 static void skb_extensions_init(void) {}
4837 #endif
4838
4839 /* The SKB kmem_cache slab is critical for network performance. Never
4840 * merge/alias the slab with similar sized objects. This avoids fragmentation
4841 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4842 */
4843 #ifndef CONFIG_SLUB_TINY
4844 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE
4845 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4846 #define FLAG_SKB_NO_MERGE 0
4847 #endif
4848
skb_init(void)4849 void __init skb_init(void)
4850 {
4851 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4852 sizeof(struct sk_buff),
4853 0,
4854 SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4855 FLAG_SKB_NO_MERGE,
4856 offsetof(struct sk_buff, cb),
4857 sizeof_field(struct sk_buff, cb),
4858 NULL);
4859 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4860 sizeof(struct sk_buff_fclones),
4861 0,
4862 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4863 NULL);
4864 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4865 * struct skb_shared_info is located at the end of skb->head,
4866 * and should not be copied to/from user.
4867 */
4868 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4869 SKB_SMALL_HEAD_CACHE_SIZE,
4870 0,
4871 SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4872 0,
4873 SKB_SMALL_HEAD_HEADROOM,
4874 NULL);
4875 skb_extensions_init();
4876 }
4877
4878 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4879 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4880 unsigned int recursion_level)
4881 {
4882 int start = skb_headlen(skb);
4883 int i, copy = start - offset;
4884 struct sk_buff *frag_iter;
4885 int elt = 0;
4886
4887 if (unlikely(recursion_level >= 24))
4888 return -EMSGSIZE;
4889
4890 if (copy > 0) {
4891 if (copy > len)
4892 copy = len;
4893 sg_set_buf(sg, skb->data + offset, copy);
4894 elt++;
4895 if ((len -= copy) == 0)
4896 return elt;
4897 offset += copy;
4898 }
4899
4900 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4901 int end;
4902
4903 WARN_ON(start > offset + len);
4904
4905 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4906 if ((copy = end - offset) > 0) {
4907 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4908 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4909 return -EMSGSIZE;
4910
4911 if (copy > len)
4912 copy = len;
4913 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4914 skb_frag_off(frag) + offset - start);
4915 elt++;
4916 if (!(len -= copy))
4917 return elt;
4918 offset += copy;
4919 }
4920 start = end;
4921 }
4922
4923 skb_walk_frags(skb, frag_iter) {
4924 int end, ret;
4925
4926 WARN_ON(start > offset + len);
4927
4928 end = start + frag_iter->len;
4929 if ((copy = end - offset) > 0) {
4930 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4931 return -EMSGSIZE;
4932
4933 if (copy > len)
4934 copy = len;
4935 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4936 copy, recursion_level + 1);
4937 if (unlikely(ret < 0))
4938 return ret;
4939 elt += ret;
4940 if ((len -= copy) == 0)
4941 return elt;
4942 offset += copy;
4943 }
4944 start = end;
4945 }
4946 BUG_ON(len);
4947 return elt;
4948 }
4949
4950 /**
4951 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4952 * @skb: Socket buffer containing the buffers to be mapped
4953 * @sg: The scatter-gather list to map into
4954 * @offset: The offset into the buffer's contents to start mapping
4955 * @len: Length of buffer space to be mapped
4956 *
4957 * Fill the specified scatter-gather list with mappings/pointers into a
4958 * region of the buffer space attached to a socket buffer. Returns either
4959 * the number of scatterlist items used, or -EMSGSIZE if the contents
4960 * could not fit.
4961 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4962 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4963 {
4964 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4965
4966 if (nsg <= 0)
4967 return nsg;
4968
4969 sg_mark_end(&sg[nsg - 1]);
4970
4971 return nsg;
4972 }
4973 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4974
4975 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4976 * sglist without mark the sg which contain last skb data as the end.
4977 * So the caller can mannipulate sg list as will when padding new data after
4978 * the first call without calling sg_unmark_end to expend sg list.
4979 *
4980 * Scenario to use skb_to_sgvec_nomark:
4981 * 1. sg_init_table
4982 * 2. skb_to_sgvec_nomark(payload1)
4983 * 3. skb_to_sgvec_nomark(payload2)
4984 *
4985 * This is equivalent to:
4986 * 1. sg_init_table
4987 * 2. skb_to_sgvec(payload1)
4988 * 3. sg_unmark_end
4989 * 4. skb_to_sgvec(payload2)
4990 *
4991 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4992 * is more preferable.
4993 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4994 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4995 int offset, int len)
4996 {
4997 return __skb_to_sgvec(skb, sg, offset, len, 0);
4998 }
4999 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5000
5001
5002
5003 /**
5004 * skb_cow_data - Check that a socket buffer's data buffers are writable
5005 * @skb: The socket buffer to check.
5006 * @tailbits: Amount of trailing space to be added
5007 * @trailer: Returned pointer to the skb where the @tailbits space begins
5008 *
5009 * Make sure that the data buffers attached to a socket buffer are
5010 * writable. If they are not, private copies are made of the data buffers
5011 * and the socket buffer is set to use these instead.
5012 *
5013 * If @tailbits is given, make sure that there is space to write @tailbits
5014 * bytes of data beyond current end of socket buffer. @trailer will be
5015 * set to point to the skb in which this space begins.
5016 *
5017 * The number of scatterlist elements required to completely map the
5018 * COW'd and extended socket buffer will be returned.
5019 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)5020 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5021 {
5022 int copyflag;
5023 int elt;
5024 struct sk_buff *skb1, **skb_p;
5025
5026 /* If skb is cloned or its head is paged, reallocate
5027 * head pulling out all the pages (pages are considered not writable
5028 * at the moment even if they are anonymous).
5029 */
5030 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5031 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5032 return -ENOMEM;
5033
5034 /* Easy case. Most of packets will go this way. */
5035 if (!skb_has_frag_list(skb)) {
5036 /* A little of trouble, not enough of space for trailer.
5037 * This should not happen, when stack is tuned to generate
5038 * good frames. OK, on miss we reallocate and reserve even more
5039 * space, 128 bytes is fair. */
5040
5041 if (skb_tailroom(skb) < tailbits &&
5042 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5043 return -ENOMEM;
5044
5045 /* Voila! */
5046 *trailer = skb;
5047 return 1;
5048 }
5049
5050 /* Misery. We are in troubles, going to mincer fragments... */
5051
5052 elt = 1;
5053 skb_p = &skb_shinfo(skb)->frag_list;
5054 copyflag = 0;
5055
5056 while ((skb1 = *skb_p) != NULL) {
5057 int ntail = 0;
5058
5059 /* The fragment is partially pulled by someone,
5060 * this can happen on input. Copy it and everything
5061 * after it. */
5062
5063 if (skb_shared(skb1))
5064 copyflag = 1;
5065
5066 /* If the skb is the last, worry about trailer. */
5067
5068 if (skb1->next == NULL && tailbits) {
5069 if (skb_shinfo(skb1)->nr_frags ||
5070 skb_has_frag_list(skb1) ||
5071 skb_tailroom(skb1) < tailbits)
5072 ntail = tailbits + 128;
5073 }
5074
5075 if (copyflag ||
5076 skb_cloned(skb1) ||
5077 ntail ||
5078 skb_shinfo(skb1)->nr_frags ||
5079 skb_has_frag_list(skb1)) {
5080 struct sk_buff *skb2;
5081
5082 /* Fuck, we are miserable poor guys... */
5083 if (ntail == 0)
5084 skb2 = skb_copy(skb1, GFP_ATOMIC);
5085 else
5086 skb2 = skb_copy_expand(skb1,
5087 skb_headroom(skb1),
5088 ntail,
5089 GFP_ATOMIC);
5090 if (unlikely(skb2 == NULL))
5091 return -ENOMEM;
5092
5093 if (skb1->sk)
5094 skb_set_owner_w(skb2, skb1->sk);
5095
5096 /* Looking around. Are we still alive?
5097 * OK, link new skb, drop old one */
5098
5099 skb2->next = skb1->next;
5100 *skb_p = skb2;
5101 kfree_skb(skb1);
5102 skb1 = skb2;
5103 }
5104 elt++;
5105 *trailer = skb1;
5106 skb_p = &skb1->next;
5107 }
5108
5109 return elt;
5110 }
5111 EXPORT_SYMBOL_GPL(skb_cow_data);
5112
sock_rmem_free(struct sk_buff * skb)5113 static void sock_rmem_free(struct sk_buff *skb)
5114 {
5115 struct sock *sk = skb->sk;
5116
5117 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5118 }
5119
skb_set_err_queue(struct sk_buff * skb)5120 static void skb_set_err_queue(struct sk_buff *skb)
5121 {
5122 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5123 * So, it is safe to (mis)use it to mark skbs on the error queue.
5124 */
5125 skb->pkt_type = PACKET_OUTGOING;
5126 BUILD_BUG_ON(PACKET_OUTGOING == 0);
5127 }
5128
5129 /*
5130 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5131 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)5132 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5133 {
5134 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5135 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5136 return -ENOMEM;
5137
5138 skb_orphan(skb);
5139 skb->sk = sk;
5140 skb->destructor = sock_rmem_free;
5141 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5142 skb_set_err_queue(skb);
5143
5144 /* before exiting rcu section, make sure dst is refcounted */
5145 skb_dst_force(skb);
5146
5147 skb_queue_tail(&sk->sk_error_queue, skb);
5148 if (!sock_flag(sk, SOCK_DEAD))
5149 sk_error_report(sk);
5150 return 0;
5151 }
5152 EXPORT_SYMBOL(sock_queue_err_skb);
5153
is_icmp_err_skb(const struct sk_buff * skb)5154 static bool is_icmp_err_skb(const struct sk_buff *skb)
5155 {
5156 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5157 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5158 }
5159
sock_dequeue_err_skb(struct sock * sk)5160 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5161 {
5162 struct sk_buff_head *q = &sk->sk_error_queue;
5163 struct sk_buff *skb, *skb_next = NULL;
5164 bool icmp_next = false;
5165 unsigned long flags;
5166
5167 spin_lock_irqsave(&q->lock, flags);
5168 skb = __skb_dequeue(q);
5169 if (skb && (skb_next = skb_peek(q))) {
5170 icmp_next = is_icmp_err_skb(skb_next);
5171 if (icmp_next)
5172 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5173 }
5174 spin_unlock_irqrestore(&q->lock, flags);
5175
5176 if (is_icmp_err_skb(skb) && !icmp_next)
5177 sk->sk_err = 0;
5178
5179 if (skb_next)
5180 sk_error_report(sk);
5181
5182 return skb;
5183 }
5184 EXPORT_SYMBOL(sock_dequeue_err_skb);
5185
5186 /**
5187 * skb_clone_sk - create clone of skb, and take reference to socket
5188 * @skb: the skb to clone
5189 *
5190 * This function creates a clone of a buffer that holds a reference on
5191 * sk_refcnt. Buffers created via this function are meant to be
5192 * returned using sock_queue_err_skb, or free via kfree_skb.
5193 *
5194 * When passing buffers allocated with this function to sock_queue_err_skb
5195 * it is necessary to wrap the call with sock_hold/sock_put in order to
5196 * prevent the socket from being released prior to being enqueued on
5197 * the sk_error_queue.
5198 */
skb_clone_sk(struct sk_buff * skb)5199 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5200 {
5201 struct sock *sk = skb->sk;
5202 struct sk_buff *clone;
5203
5204 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5205 return NULL;
5206
5207 clone = skb_clone(skb, GFP_ATOMIC);
5208 if (!clone) {
5209 sock_put(sk);
5210 return NULL;
5211 }
5212
5213 clone->sk = sk;
5214 clone->destructor = sock_efree;
5215
5216 return clone;
5217 }
5218 EXPORT_SYMBOL(skb_clone_sk);
5219
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)5220 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5221 struct sock *sk,
5222 int tstype,
5223 bool opt_stats)
5224 {
5225 struct sock_exterr_skb *serr;
5226 int err;
5227
5228 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5229
5230 serr = SKB_EXT_ERR(skb);
5231 memset(serr, 0, sizeof(*serr));
5232 serr->ee.ee_errno = ENOMSG;
5233 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5234 serr->ee.ee_info = tstype;
5235 serr->opt_stats = opt_stats;
5236 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5237 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5238 serr->ee.ee_data = skb_shinfo(skb)->tskey;
5239 if (sk_is_tcp(sk))
5240 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5241 }
5242
5243 err = sock_queue_err_skb(sk, skb);
5244
5245 if (err)
5246 kfree_skb(skb);
5247 }
5248
skb_may_tx_timestamp(struct sock * sk,bool tsonly)5249 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5250 {
5251 bool ret;
5252
5253 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5254 return true;
5255
5256 read_lock_bh(&sk->sk_callback_lock);
5257 ret = sk->sk_socket && sk->sk_socket->file &&
5258 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5259 read_unlock_bh(&sk->sk_callback_lock);
5260 return ret;
5261 }
5262
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)5263 void skb_complete_tx_timestamp(struct sk_buff *skb,
5264 struct skb_shared_hwtstamps *hwtstamps)
5265 {
5266 struct sock *sk = skb->sk;
5267
5268 if (!skb_may_tx_timestamp(sk, false))
5269 goto err;
5270
5271 /* Take a reference to prevent skb_orphan() from freeing the socket,
5272 * but only if the socket refcount is not zero.
5273 */
5274 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5275 *skb_hwtstamps(skb) = *hwtstamps;
5276 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5277 sock_put(sk);
5278 return;
5279 }
5280
5281 err:
5282 kfree_skb(skb);
5283 }
5284 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5285
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5286 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5287 const struct sk_buff *ack_skb,
5288 struct skb_shared_hwtstamps *hwtstamps,
5289 struct sock *sk, int tstype)
5290 {
5291 struct sk_buff *skb;
5292 bool tsonly, opt_stats = false;
5293 u32 tsflags;
5294
5295 if (!sk)
5296 return;
5297
5298 tsflags = READ_ONCE(sk->sk_tsflags);
5299 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5300 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5301 return;
5302
5303 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5304 if (!skb_may_tx_timestamp(sk, tsonly))
5305 return;
5306
5307 if (tsonly) {
5308 #ifdef CONFIG_INET
5309 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5310 sk_is_tcp(sk)) {
5311 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5312 ack_skb);
5313 opt_stats = true;
5314 } else
5315 #endif
5316 skb = alloc_skb(0, GFP_ATOMIC);
5317 } else {
5318 skb = skb_clone(orig_skb, GFP_ATOMIC);
5319
5320 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5321 kfree_skb(skb);
5322 return;
5323 }
5324 }
5325 if (!skb)
5326 return;
5327
5328 if (tsonly) {
5329 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5330 SKBTX_ANY_TSTAMP;
5331 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5332 }
5333
5334 if (hwtstamps)
5335 *skb_hwtstamps(skb) = *hwtstamps;
5336 else
5337 __net_timestamp(skb);
5338
5339 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5340 }
5341 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5342
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)5343 void skb_tstamp_tx(struct sk_buff *orig_skb,
5344 struct skb_shared_hwtstamps *hwtstamps)
5345 {
5346 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5347 SCM_TSTAMP_SND);
5348 }
5349 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5350
5351 #ifdef CONFIG_WIRELESS
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)5352 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5353 {
5354 struct sock *sk = skb->sk;
5355 struct sock_exterr_skb *serr;
5356 int err = 1;
5357
5358 skb->wifi_acked_valid = 1;
5359 skb->wifi_acked = acked;
5360
5361 serr = SKB_EXT_ERR(skb);
5362 memset(serr, 0, sizeof(*serr));
5363 serr->ee.ee_errno = ENOMSG;
5364 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5365
5366 /* Take a reference to prevent skb_orphan() from freeing the socket,
5367 * but only if the socket refcount is not zero.
5368 */
5369 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5370 err = sock_queue_err_skb(sk, skb);
5371 sock_put(sk);
5372 }
5373 if (err)
5374 kfree_skb(skb);
5375 }
5376 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5377 #endif /* CONFIG_WIRELESS */
5378
5379 /**
5380 * skb_partial_csum_set - set up and verify partial csum values for packet
5381 * @skb: the skb to set
5382 * @start: the number of bytes after skb->data to start checksumming.
5383 * @off: the offset from start to place the checksum.
5384 *
5385 * For untrusted partially-checksummed packets, we need to make sure the values
5386 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5387 *
5388 * This function checks and sets those values and skb->ip_summed: if this
5389 * returns false you should drop the packet.
5390 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)5391 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5392 {
5393 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5394 u32 csum_start = skb_headroom(skb) + (u32)start;
5395
5396 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5397 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5398 start, off, skb_headroom(skb), skb_headlen(skb));
5399 return false;
5400 }
5401 skb->ip_summed = CHECKSUM_PARTIAL;
5402 skb->csum_start = csum_start;
5403 skb->csum_offset = off;
5404 skb->transport_header = csum_start;
5405 return true;
5406 }
5407 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5408
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5409 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5410 unsigned int max)
5411 {
5412 if (skb_headlen(skb) >= len)
5413 return 0;
5414
5415 /* If we need to pullup then pullup to the max, so we
5416 * won't need to do it again.
5417 */
5418 if (max > skb->len)
5419 max = skb->len;
5420
5421 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5422 return -ENOMEM;
5423
5424 if (skb_headlen(skb) < len)
5425 return -EPROTO;
5426
5427 return 0;
5428 }
5429
5430 #define MAX_TCP_HDR_LEN (15 * 4)
5431
skb_checksum_setup_ip(struct sk_buff * skb,typeof (IPPROTO_IP)proto,unsigned int off)5432 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5433 typeof(IPPROTO_IP) proto,
5434 unsigned int off)
5435 {
5436 int err;
5437
5438 switch (proto) {
5439 case IPPROTO_TCP:
5440 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5441 off + MAX_TCP_HDR_LEN);
5442 if (!err && !skb_partial_csum_set(skb, off,
5443 offsetof(struct tcphdr,
5444 check)))
5445 err = -EPROTO;
5446 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5447
5448 case IPPROTO_UDP:
5449 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5450 off + sizeof(struct udphdr));
5451 if (!err && !skb_partial_csum_set(skb, off,
5452 offsetof(struct udphdr,
5453 check)))
5454 err = -EPROTO;
5455 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5456 }
5457
5458 return ERR_PTR(-EPROTO);
5459 }
5460
5461 /* This value should be large enough to cover a tagged ethernet header plus
5462 * maximally sized IP and TCP or UDP headers.
5463 */
5464 #define MAX_IP_HDR_LEN 128
5465
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5466 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5467 {
5468 unsigned int off;
5469 bool fragment;
5470 __sum16 *csum;
5471 int err;
5472
5473 fragment = false;
5474
5475 err = skb_maybe_pull_tail(skb,
5476 sizeof(struct iphdr),
5477 MAX_IP_HDR_LEN);
5478 if (err < 0)
5479 goto out;
5480
5481 if (ip_is_fragment(ip_hdr(skb)))
5482 fragment = true;
5483
5484 off = ip_hdrlen(skb);
5485
5486 err = -EPROTO;
5487
5488 if (fragment)
5489 goto out;
5490
5491 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5492 if (IS_ERR(csum))
5493 return PTR_ERR(csum);
5494
5495 if (recalculate)
5496 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5497 ip_hdr(skb)->daddr,
5498 skb->len - off,
5499 ip_hdr(skb)->protocol, 0);
5500 err = 0;
5501
5502 out:
5503 return err;
5504 }
5505
5506 /* This value should be large enough to cover a tagged ethernet header plus
5507 * an IPv6 header, all options, and a maximal TCP or UDP header.
5508 */
5509 #define MAX_IPV6_HDR_LEN 256
5510
5511 #define OPT_HDR(type, skb, off) \
5512 (type *)(skb_network_header(skb) + (off))
5513
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5514 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5515 {
5516 int err;
5517 u8 nexthdr;
5518 unsigned int off;
5519 unsigned int len;
5520 bool fragment;
5521 bool done;
5522 __sum16 *csum;
5523
5524 fragment = false;
5525 done = false;
5526
5527 off = sizeof(struct ipv6hdr);
5528
5529 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5530 if (err < 0)
5531 goto out;
5532
5533 nexthdr = ipv6_hdr(skb)->nexthdr;
5534
5535 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5536 while (off <= len && !done) {
5537 switch (nexthdr) {
5538 case IPPROTO_DSTOPTS:
5539 case IPPROTO_HOPOPTS:
5540 case IPPROTO_ROUTING: {
5541 struct ipv6_opt_hdr *hp;
5542
5543 err = skb_maybe_pull_tail(skb,
5544 off +
5545 sizeof(struct ipv6_opt_hdr),
5546 MAX_IPV6_HDR_LEN);
5547 if (err < 0)
5548 goto out;
5549
5550 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5551 nexthdr = hp->nexthdr;
5552 off += ipv6_optlen(hp);
5553 break;
5554 }
5555 case IPPROTO_AH: {
5556 struct ip_auth_hdr *hp;
5557
5558 err = skb_maybe_pull_tail(skb,
5559 off +
5560 sizeof(struct ip_auth_hdr),
5561 MAX_IPV6_HDR_LEN);
5562 if (err < 0)
5563 goto out;
5564
5565 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5566 nexthdr = hp->nexthdr;
5567 off += ipv6_authlen(hp);
5568 break;
5569 }
5570 case IPPROTO_FRAGMENT: {
5571 struct frag_hdr *hp;
5572
5573 err = skb_maybe_pull_tail(skb,
5574 off +
5575 sizeof(struct frag_hdr),
5576 MAX_IPV6_HDR_LEN);
5577 if (err < 0)
5578 goto out;
5579
5580 hp = OPT_HDR(struct frag_hdr, skb, off);
5581
5582 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5583 fragment = true;
5584
5585 nexthdr = hp->nexthdr;
5586 off += sizeof(struct frag_hdr);
5587 break;
5588 }
5589 default:
5590 done = true;
5591 break;
5592 }
5593 }
5594
5595 err = -EPROTO;
5596
5597 if (!done || fragment)
5598 goto out;
5599
5600 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5601 if (IS_ERR(csum))
5602 return PTR_ERR(csum);
5603
5604 if (recalculate)
5605 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5606 &ipv6_hdr(skb)->daddr,
5607 skb->len - off, nexthdr, 0);
5608 err = 0;
5609
5610 out:
5611 return err;
5612 }
5613
5614 /**
5615 * skb_checksum_setup - set up partial checksum offset
5616 * @skb: the skb to set up
5617 * @recalculate: if true the pseudo-header checksum will be recalculated
5618 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5619 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5620 {
5621 int err;
5622
5623 switch (skb->protocol) {
5624 case htons(ETH_P_IP):
5625 err = skb_checksum_setup_ipv4(skb, recalculate);
5626 break;
5627
5628 case htons(ETH_P_IPV6):
5629 err = skb_checksum_setup_ipv6(skb, recalculate);
5630 break;
5631
5632 default:
5633 err = -EPROTO;
5634 break;
5635 }
5636
5637 return err;
5638 }
5639 EXPORT_SYMBOL(skb_checksum_setup);
5640
5641 /**
5642 * skb_checksum_maybe_trim - maybe trims the given skb
5643 * @skb: the skb to check
5644 * @transport_len: the data length beyond the network header
5645 *
5646 * Checks whether the given skb has data beyond the given transport length.
5647 * If so, returns a cloned skb trimmed to this transport length.
5648 * Otherwise returns the provided skb. Returns NULL in error cases
5649 * (e.g. transport_len exceeds skb length or out-of-memory).
5650 *
5651 * Caller needs to set the skb transport header and free any returned skb if it
5652 * differs from the provided skb.
5653 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5654 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5655 unsigned int transport_len)
5656 {
5657 struct sk_buff *skb_chk;
5658 unsigned int len = skb_transport_offset(skb) + transport_len;
5659 int ret;
5660
5661 if (skb->len < len)
5662 return NULL;
5663 else if (skb->len == len)
5664 return skb;
5665
5666 skb_chk = skb_clone(skb, GFP_ATOMIC);
5667 if (!skb_chk)
5668 return NULL;
5669
5670 ret = pskb_trim_rcsum(skb_chk, len);
5671 if (ret) {
5672 kfree_skb(skb_chk);
5673 return NULL;
5674 }
5675
5676 return skb_chk;
5677 }
5678
5679 /**
5680 * skb_checksum_trimmed - validate checksum of an skb
5681 * @skb: the skb to check
5682 * @transport_len: the data length beyond the network header
5683 * @skb_chkf: checksum function to use
5684 *
5685 * Applies the given checksum function skb_chkf to the provided skb.
5686 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5687 *
5688 * If the skb has data beyond the given transport length, then a
5689 * trimmed & cloned skb is checked and returned.
5690 *
5691 * Caller needs to set the skb transport header and free any returned skb if it
5692 * differs from the provided skb.
5693 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5694 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5695 unsigned int transport_len,
5696 __sum16(*skb_chkf)(struct sk_buff *skb))
5697 {
5698 struct sk_buff *skb_chk;
5699 unsigned int offset = skb_transport_offset(skb);
5700 __sum16 ret;
5701
5702 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5703 if (!skb_chk)
5704 goto err;
5705
5706 if (!pskb_may_pull(skb_chk, offset))
5707 goto err;
5708
5709 skb_pull_rcsum(skb_chk, offset);
5710 ret = skb_chkf(skb_chk);
5711 skb_push_rcsum(skb_chk, offset);
5712
5713 if (ret)
5714 goto err;
5715
5716 return skb_chk;
5717
5718 err:
5719 if (skb_chk && skb_chk != skb)
5720 kfree_skb(skb_chk);
5721
5722 return NULL;
5723
5724 }
5725 EXPORT_SYMBOL(skb_checksum_trimmed);
5726
__skb_warn_lro_forwarding(const struct sk_buff * skb)5727 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5728 {
5729 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5730 skb->dev->name);
5731 }
5732 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5733
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5734 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5735 {
5736 if (head_stolen) {
5737 skb_release_head_state(skb);
5738 kmem_cache_free(skbuff_cache, skb);
5739 } else {
5740 __kfree_skb(skb);
5741 }
5742 }
5743 EXPORT_SYMBOL(kfree_skb_partial);
5744
5745 /**
5746 * skb_try_coalesce - try to merge skb to prior one
5747 * @to: prior buffer
5748 * @from: buffer to add
5749 * @fragstolen: pointer to boolean
5750 * @delta_truesize: how much more was allocated than was requested
5751 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5752 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5753 bool *fragstolen, int *delta_truesize)
5754 {
5755 struct skb_shared_info *to_shinfo, *from_shinfo;
5756 int i, delta, len = from->len;
5757
5758 *fragstolen = false;
5759
5760 if (skb_cloned(to))
5761 return false;
5762
5763 /* In general, avoid mixing page_pool and non-page_pool allocated
5764 * pages within the same SKB. Additionally avoid dealing with clones
5765 * with page_pool pages, in case the SKB is using page_pool fragment
5766 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5767 * references for cloned SKBs at the moment that would result in
5768 * inconsistent reference counts.
5769 * In theory we could take full references if @from is cloned and
5770 * !@to->pp_recycle but its tricky (due to potential race with
5771 * the clone disappearing) and rare, so not worth dealing with.
5772 */
5773 if (to->pp_recycle != from->pp_recycle ||
5774 (from->pp_recycle && skb_cloned(from)))
5775 return false;
5776
5777 if (len <= skb_tailroom(to)) {
5778 if (len)
5779 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5780 *delta_truesize = 0;
5781 return true;
5782 }
5783
5784 to_shinfo = skb_shinfo(to);
5785 from_shinfo = skb_shinfo(from);
5786 if (to_shinfo->frag_list || from_shinfo->frag_list)
5787 return false;
5788 if (skb_zcopy(to) || skb_zcopy(from))
5789 return false;
5790
5791 if (skb_headlen(from) != 0) {
5792 struct page *page;
5793 unsigned int offset;
5794
5795 if (to_shinfo->nr_frags +
5796 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5797 return false;
5798
5799 if (skb_head_is_locked(from))
5800 return false;
5801
5802 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5803
5804 page = virt_to_head_page(from->head);
5805 offset = from->data - (unsigned char *)page_address(page);
5806
5807 skb_fill_page_desc(to, to_shinfo->nr_frags,
5808 page, offset, skb_headlen(from));
5809 *fragstolen = true;
5810 } else {
5811 if (to_shinfo->nr_frags +
5812 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5813 return false;
5814
5815 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5816 }
5817
5818 WARN_ON_ONCE(delta < len);
5819
5820 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5821 from_shinfo->frags,
5822 from_shinfo->nr_frags * sizeof(skb_frag_t));
5823 to_shinfo->nr_frags += from_shinfo->nr_frags;
5824
5825 if (!skb_cloned(from))
5826 from_shinfo->nr_frags = 0;
5827
5828 /* if the skb is not cloned this does nothing
5829 * since we set nr_frags to 0.
5830 */
5831 for (i = 0; i < from_shinfo->nr_frags; i++)
5832 __skb_frag_ref(&from_shinfo->frags[i]);
5833
5834 to->truesize += delta;
5835 to->len += len;
5836 to->data_len += len;
5837
5838 *delta_truesize = delta;
5839 return true;
5840 }
5841 EXPORT_SYMBOL(skb_try_coalesce);
5842
5843 /**
5844 * skb_scrub_packet - scrub an skb
5845 *
5846 * @skb: buffer to clean
5847 * @xnet: packet is crossing netns
5848 *
5849 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5850 * into/from a tunnel. Some information have to be cleared during these
5851 * operations.
5852 * skb_scrub_packet can also be used to clean a skb before injecting it in
5853 * another namespace (@xnet == true). We have to clear all information in the
5854 * skb that could impact namespace isolation.
5855 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5856 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5857 {
5858 skb->pkt_type = PACKET_HOST;
5859 skb->skb_iif = 0;
5860 skb->ignore_df = 0;
5861 skb_dst_drop(skb);
5862 skb_ext_reset(skb);
5863 nf_reset_ct(skb);
5864 nf_reset_trace(skb);
5865
5866 #ifdef CONFIG_NET_SWITCHDEV
5867 skb->offload_fwd_mark = 0;
5868 skb->offload_l3_fwd_mark = 0;
5869 #endif
5870
5871 if (!xnet)
5872 return;
5873
5874 ipvs_reset(skb);
5875 skb->mark = 0;
5876 skb_clear_tstamp(skb);
5877 }
5878 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5879
skb_reorder_vlan_header(struct sk_buff * skb)5880 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5881 {
5882 int mac_len, meta_len;
5883 void *meta;
5884
5885 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5886 kfree_skb(skb);
5887 return NULL;
5888 }
5889
5890 mac_len = skb->data - skb_mac_header(skb);
5891 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5892 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5893 mac_len - VLAN_HLEN - ETH_TLEN);
5894 }
5895
5896 meta_len = skb_metadata_len(skb);
5897 if (meta_len) {
5898 meta = skb_metadata_end(skb) - meta_len;
5899 memmove(meta + VLAN_HLEN, meta, meta_len);
5900 }
5901
5902 skb->mac_header += VLAN_HLEN;
5903 return skb;
5904 }
5905
skb_vlan_untag(struct sk_buff * skb)5906 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5907 {
5908 struct vlan_hdr *vhdr;
5909 u16 vlan_tci;
5910
5911 if (unlikely(skb_vlan_tag_present(skb))) {
5912 /* vlan_tci is already set-up so leave this for another time */
5913 return skb;
5914 }
5915
5916 skb = skb_share_check(skb, GFP_ATOMIC);
5917 if (unlikely(!skb))
5918 goto err_free;
5919 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5920 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5921 goto err_free;
5922
5923 vhdr = (struct vlan_hdr *)skb->data;
5924 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5925 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5926
5927 skb_pull_rcsum(skb, VLAN_HLEN);
5928 vlan_set_encap_proto(skb, vhdr);
5929
5930 skb = skb_reorder_vlan_header(skb);
5931 if (unlikely(!skb))
5932 goto err_free;
5933
5934 skb_reset_network_header(skb);
5935 if (!skb_transport_header_was_set(skb))
5936 skb_reset_transport_header(skb);
5937 skb_reset_mac_len(skb);
5938
5939 return skb;
5940
5941 err_free:
5942 kfree_skb(skb);
5943 return NULL;
5944 }
5945 EXPORT_SYMBOL(skb_vlan_untag);
5946
skb_ensure_writable(struct sk_buff * skb,unsigned int write_len)5947 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5948 {
5949 if (!pskb_may_pull(skb, write_len))
5950 return -ENOMEM;
5951
5952 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5953 return 0;
5954
5955 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5956 }
5957 EXPORT_SYMBOL(skb_ensure_writable);
5958
5959 /* remove VLAN header from packet and update csum accordingly.
5960 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5961 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5962 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5963 {
5964 int offset = skb->data - skb_mac_header(skb);
5965 int err;
5966
5967 if (WARN_ONCE(offset,
5968 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5969 offset)) {
5970 return -EINVAL;
5971 }
5972
5973 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5974 if (unlikely(err))
5975 return err;
5976
5977 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5978
5979 vlan_remove_tag(skb, vlan_tci);
5980
5981 skb->mac_header += VLAN_HLEN;
5982
5983 if (skb_network_offset(skb) < ETH_HLEN)
5984 skb_set_network_header(skb, ETH_HLEN);
5985
5986 skb_reset_mac_len(skb);
5987
5988 return err;
5989 }
5990 EXPORT_SYMBOL(__skb_vlan_pop);
5991
5992 /* Pop a vlan tag either from hwaccel or from payload.
5993 * Expects skb->data at mac header.
5994 */
skb_vlan_pop(struct sk_buff * skb)5995 int skb_vlan_pop(struct sk_buff *skb)
5996 {
5997 u16 vlan_tci;
5998 __be16 vlan_proto;
5999 int err;
6000
6001 if (likely(skb_vlan_tag_present(skb))) {
6002 __vlan_hwaccel_clear_tag(skb);
6003 } else {
6004 if (unlikely(!eth_type_vlan(skb->protocol)))
6005 return 0;
6006
6007 err = __skb_vlan_pop(skb, &vlan_tci);
6008 if (err)
6009 return err;
6010 }
6011 /* move next vlan tag to hw accel tag */
6012 if (likely(!eth_type_vlan(skb->protocol)))
6013 return 0;
6014
6015 vlan_proto = skb->protocol;
6016 err = __skb_vlan_pop(skb, &vlan_tci);
6017 if (unlikely(err))
6018 return err;
6019
6020 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6021 return 0;
6022 }
6023 EXPORT_SYMBOL(skb_vlan_pop);
6024
6025 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6026 * Expects skb->data at mac header.
6027 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)6028 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6029 {
6030 if (skb_vlan_tag_present(skb)) {
6031 int offset = skb->data - skb_mac_header(skb);
6032 int err;
6033
6034 if (WARN_ONCE(offset,
6035 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6036 offset)) {
6037 return -EINVAL;
6038 }
6039
6040 err = __vlan_insert_tag(skb, skb->vlan_proto,
6041 skb_vlan_tag_get(skb));
6042 if (err)
6043 return err;
6044
6045 skb->protocol = skb->vlan_proto;
6046 skb->mac_len += VLAN_HLEN;
6047
6048 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6049 }
6050 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6051 return 0;
6052 }
6053 EXPORT_SYMBOL(skb_vlan_push);
6054
6055 /**
6056 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6057 *
6058 * @skb: Socket buffer to modify
6059 *
6060 * Drop the Ethernet header of @skb.
6061 *
6062 * Expects that skb->data points to the mac header and that no VLAN tags are
6063 * present.
6064 *
6065 * Returns 0 on success, -errno otherwise.
6066 */
skb_eth_pop(struct sk_buff * skb)6067 int skb_eth_pop(struct sk_buff *skb)
6068 {
6069 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6070 skb_network_offset(skb) < ETH_HLEN)
6071 return -EPROTO;
6072
6073 skb_pull_rcsum(skb, ETH_HLEN);
6074 skb_reset_mac_header(skb);
6075 skb_reset_mac_len(skb);
6076
6077 return 0;
6078 }
6079 EXPORT_SYMBOL(skb_eth_pop);
6080
6081 /**
6082 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6083 *
6084 * @skb: Socket buffer to modify
6085 * @dst: Destination MAC address of the new header
6086 * @src: Source MAC address of the new header
6087 *
6088 * Prepend @skb with a new Ethernet header.
6089 *
6090 * Expects that skb->data points to the mac header, which must be empty.
6091 *
6092 * Returns 0 on success, -errno otherwise.
6093 */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)6094 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6095 const unsigned char *src)
6096 {
6097 struct ethhdr *eth;
6098 int err;
6099
6100 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6101 return -EPROTO;
6102
6103 err = skb_cow_head(skb, sizeof(*eth));
6104 if (err < 0)
6105 return err;
6106
6107 skb_push(skb, sizeof(*eth));
6108 skb_reset_mac_header(skb);
6109 skb_reset_mac_len(skb);
6110
6111 eth = eth_hdr(skb);
6112 ether_addr_copy(eth->h_dest, dst);
6113 ether_addr_copy(eth->h_source, src);
6114 eth->h_proto = skb->protocol;
6115
6116 skb_postpush_rcsum(skb, eth, sizeof(*eth));
6117
6118 return 0;
6119 }
6120 EXPORT_SYMBOL(skb_eth_push);
6121
6122 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)6123 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6124 __be16 ethertype)
6125 {
6126 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6127 __be16 diff[] = { ~hdr->h_proto, ethertype };
6128
6129 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6130 }
6131
6132 hdr->h_proto = ethertype;
6133 }
6134
6135 /**
6136 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6137 * the packet
6138 *
6139 * @skb: buffer
6140 * @mpls_lse: MPLS label stack entry to push
6141 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6142 * @mac_len: length of the MAC header
6143 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6144 * ethernet
6145 *
6146 * Expects skb->data at mac header.
6147 *
6148 * Returns 0 on success, -errno otherwise.
6149 */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)6150 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6151 int mac_len, bool ethernet)
6152 {
6153 struct mpls_shim_hdr *lse;
6154 int err;
6155
6156 if (unlikely(!eth_p_mpls(mpls_proto)))
6157 return -EINVAL;
6158
6159 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6160 if (skb->encapsulation)
6161 return -EINVAL;
6162
6163 err = skb_cow_head(skb, MPLS_HLEN);
6164 if (unlikely(err))
6165 return err;
6166
6167 if (!skb->inner_protocol) {
6168 skb_set_inner_network_header(skb, skb_network_offset(skb));
6169 skb_set_inner_protocol(skb, skb->protocol);
6170 }
6171
6172 skb_push(skb, MPLS_HLEN);
6173 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6174 mac_len);
6175 skb_reset_mac_header(skb);
6176 skb_set_network_header(skb, mac_len);
6177 skb_reset_mac_len(skb);
6178
6179 lse = mpls_hdr(skb);
6180 lse->label_stack_entry = mpls_lse;
6181 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6182
6183 if (ethernet && mac_len >= ETH_HLEN)
6184 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6185 skb->protocol = mpls_proto;
6186
6187 return 0;
6188 }
6189 EXPORT_SYMBOL_GPL(skb_mpls_push);
6190
6191 /**
6192 * skb_mpls_pop() - pop the outermost MPLS header
6193 *
6194 * @skb: buffer
6195 * @next_proto: ethertype of header after popped MPLS header
6196 * @mac_len: length of the MAC header
6197 * @ethernet: flag to indicate if the packet is ethernet
6198 *
6199 * Expects skb->data at mac header.
6200 *
6201 * Returns 0 on success, -errno otherwise.
6202 */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)6203 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6204 bool ethernet)
6205 {
6206 int err;
6207
6208 if (unlikely(!eth_p_mpls(skb->protocol)))
6209 return 0;
6210
6211 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6212 if (unlikely(err))
6213 return err;
6214
6215 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6216 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6217 mac_len);
6218
6219 __skb_pull(skb, MPLS_HLEN);
6220 skb_reset_mac_header(skb);
6221 skb_set_network_header(skb, mac_len);
6222
6223 if (ethernet && mac_len >= ETH_HLEN) {
6224 struct ethhdr *hdr;
6225
6226 /* use mpls_hdr() to get ethertype to account for VLANs. */
6227 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6228 skb_mod_eth_type(skb, hdr, next_proto);
6229 }
6230 skb->protocol = next_proto;
6231
6232 return 0;
6233 }
6234 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6235
6236 /**
6237 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6238 *
6239 * @skb: buffer
6240 * @mpls_lse: new MPLS label stack entry to update to
6241 *
6242 * Expects skb->data at mac header.
6243 *
6244 * Returns 0 on success, -errno otherwise.
6245 */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)6246 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6247 {
6248 int err;
6249
6250 if (unlikely(!eth_p_mpls(skb->protocol)))
6251 return -EINVAL;
6252
6253 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6254 if (unlikely(err))
6255 return err;
6256
6257 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6258 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6259
6260 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6261 }
6262
6263 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6264
6265 return 0;
6266 }
6267 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6268
6269 /**
6270 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6271 *
6272 * @skb: buffer
6273 *
6274 * Expects skb->data at mac header.
6275 *
6276 * Returns 0 on success, -errno otherwise.
6277 */
skb_mpls_dec_ttl(struct sk_buff * skb)6278 int skb_mpls_dec_ttl(struct sk_buff *skb)
6279 {
6280 u32 lse;
6281 u8 ttl;
6282
6283 if (unlikely(!eth_p_mpls(skb->protocol)))
6284 return -EINVAL;
6285
6286 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6287 return -ENOMEM;
6288
6289 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6290 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6291 if (!--ttl)
6292 return -EINVAL;
6293
6294 lse &= ~MPLS_LS_TTL_MASK;
6295 lse |= ttl << MPLS_LS_TTL_SHIFT;
6296
6297 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6298 }
6299 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6300
6301 /**
6302 * alloc_skb_with_frags - allocate skb with page frags
6303 *
6304 * @header_len: size of linear part
6305 * @data_len: needed length in frags
6306 * @order: max page order desired.
6307 * @errcode: pointer to error code if any
6308 * @gfp_mask: allocation mask
6309 *
6310 * This can be used to allocate a paged skb, given a maximal order for frags.
6311 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int order,int * errcode,gfp_t gfp_mask)6312 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6313 unsigned long data_len,
6314 int order,
6315 int *errcode,
6316 gfp_t gfp_mask)
6317 {
6318 unsigned long chunk;
6319 struct sk_buff *skb;
6320 struct page *page;
6321 int nr_frags = 0;
6322
6323 *errcode = -EMSGSIZE;
6324 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6325 return NULL;
6326
6327 *errcode = -ENOBUFS;
6328 skb = alloc_skb(header_len, gfp_mask);
6329 if (!skb)
6330 return NULL;
6331
6332 while (data_len) {
6333 if (nr_frags == MAX_SKB_FRAGS - 1)
6334 goto failure;
6335 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6336 order--;
6337
6338 if (order) {
6339 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6340 __GFP_COMP |
6341 __GFP_NOWARN,
6342 order);
6343 if (!page) {
6344 order--;
6345 continue;
6346 }
6347 } else {
6348 page = alloc_page(gfp_mask);
6349 if (!page)
6350 goto failure;
6351 }
6352 chunk = min_t(unsigned long, data_len,
6353 PAGE_SIZE << order);
6354 skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6355 nr_frags++;
6356 skb->truesize += (PAGE_SIZE << order);
6357 data_len -= chunk;
6358 }
6359 return skb;
6360
6361 failure:
6362 kfree_skb(skb);
6363 return NULL;
6364 }
6365 EXPORT_SYMBOL(alloc_skb_with_frags);
6366
6367 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6368 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6369 const int headlen, gfp_t gfp_mask)
6370 {
6371 int i;
6372 unsigned int size = skb_end_offset(skb);
6373 int new_hlen = headlen - off;
6374 u8 *data;
6375
6376 if (skb_pfmemalloc(skb))
6377 gfp_mask |= __GFP_MEMALLOC;
6378
6379 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6380 if (!data)
6381 return -ENOMEM;
6382 size = SKB_WITH_OVERHEAD(size);
6383
6384 /* Copy real data, and all frags */
6385 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6386 skb->len -= off;
6387
6388 memcpy((struct skb_shared_info *)(data + size),
6389 skb_shinfo(skb),
6390 offsetof(struct skb_shared_info,
6391 frags[skb_shinfo(skb)->nr_frags]));
6392 if (skb_cloned(skb)) {
6393 /* drop the old head gracefully */
6394 if (skb_orphan_frags(skb, gfp_mask)) {
6395 skb_kfree_head(data, size);
6396 return -ENOMEM;
6397 }
6398 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6399 skb_frag_ref(skb, i);
6400 if (skb_has_frag_list(skb))
6401 skb_clone_fraglist(skb);
6402 skb_release_data(skb, SKB_CONSUMED, false);
6403 } else {
6404 /* we can reuse existing recount- all we did was
6405 * relocate values
6406 */
6407 skb_free_head(skb, false);
6408 }
6409
6410 skb->head = data;
6411 skb->data = data;
6412 skb->head_frag = 0;
6413 skb_set_end_offset(skb, size);
6414 skb_set_tail_pointer(skb, skb_headlen(skb));
6415 skb_headers_offset_update(skb, 0);
6416 skb->cloned = 0;
6417 skb->hdr_len = 0;
6418 skb->nohdr = 0;
6419 atomic_set(&skb_shinfo(skb)->dataref, 1);
6420
6421 return 0;
6422 }
6423
6424 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6425
6426 /* carve out the first eat bytes from skb's frag_list. May recurse into
6427 * pskb_carve()
6428 */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6429 static int pskb_carve_frag_list(struct sk_buff *skb,
6430 struct skb_shared_info *shinfo, int eat,
6431 gfp_t gfp_mask)
6432 {
6433 struct sk_buff *list = shinfo->frag_list;
6434 struct sk_buff *clone = NULL;
6435 struct sk_buff *insp = NULL;
6436
6437 do {
6438 if (!list) {
6439 pr_err("Not enough bytes to eat. Want %d\n", eat);
6440 return -EFAULT;
6441 }
6442 if (list->len <= eat) {
6443 /* Eaten as whole. */
6444 eat -= list->len;
6445 list = list->next;
6446 insp = list;
6447 } else {
6448 /* Eaten partially. */
6449 if (skb_shared(list)) {
6450 clone = skb_clone(list, gfp_mask);
6451 if (!clone)
6452 return -ENOMEM;
6453 insp = list->next;
6454 list = clone;
6455 } else {
6456 /* This may be pulled without problems. */
6457 insp = list;
6458 }
6459 if (pskb_carve(list, eat, gfp_mask) < 0) {
6460 kfree_skb(clone);
6461 return -ENOMEM;
6462 }
6463 break;
6464 }
6465 } while (eat);
6466
6467 /* Free pulled out fragments. */
6468 while ((list = shinfo->frag_list) != insp) {
6469 shinfo->frag_list = list->next;
6470 consume_skb(list);
6471 }
6472 /* And insert new clone at head. */
6473 if (clone) {
6474 clone->next = list;
6475 shinfo->frag_list = clone;
6476 }
6477 return 0;
6478 }
6479
6480 /* carve off first len bytes from skb. Split line (off) is in the
6481 * non-linear part of skb
6482 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6483 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6484 int pos, gfp_t gfp_mask)
6485 {
6486 int i, k = 0;
6487 unsigned int size = skb_end_offset(skb);
6488 u8 *data;
6489 const int nfrags = skb_shinfo(skb)->nr_frags;
6490 struct skb_shared_info *shinfo;
6491
6492 if (skb_pfmemalloc(skb))
6493 gfp_mask |= __GFP_MEMALLOC;
6494
6495 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6496 if (!data)
6497 return -ENOMEM;
6498 size = SKB_WITH_OVERHEAD(size);
6499
6500 memcpy((struct skb_shared_info *)(data + size),
6501 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6502 if (skb_orphan_frags(skb, gfp_mask)) {
6503 skb_kfree_head(data, size);
6504 return -ENOMEM;
6505 }
6506 shinfo = (struct skb_shared_info *)(data + size);
6507 for (i = 0; i < nfrags; i++) {
6508 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6509
6510 if (pos + fsize > off) {
6511 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6512
6513 if (pos < off) {
6514 /* Split frag.
6515 * We have two variants in this case:
6516 * 1. Move all the frag to the second
6517 * part, if it is possible. F.e.
6518 * this approach is mandatory for TUX,
6519 * where splitting is expensive.
6520 * 2. Split is accurately. We make this.
6521 */
6522 skb_frag_off_add(&shinfo->frags[0], off - pos);
6523 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6524 }
6525 skb_frag_ref(skb, i);
6526 k++;
6527 }
6528 pos += fsize;
6529 }
6530 shinfo->nr_frags = k;
6531 if (skb_has_frag_list(skb))
6532 skb_clone_fraglist(skb);
6533
6534 /* split line is in frag list */
6535 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6536 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6537 if (skb_has_frag_list(skb))
6538 kfree_skb_list(skb_shinfo(skb)->frag_list);
6539 skb_kfree_head(data, size);
6540 return -ENOMEM;
6541 }
6542 skb_release_data(skb, SKB_CONSUMED, false);
6543
6544 skb->head = data;
6545 skb->head_frag = 0;
6546 skb->data = data;
6547 skb_set_end_offset(skb, size);
6548 skb_reset_tail_pointer(skb);
6549 skb_headers_offset_update(skb, 0);
6550 skb->cloned = 0;
6551 skb->hdr_len = 0;
6552 skb->nohdr = 0;
6553 skb->len -= off;
6554 skb->data_len = skb->len;
6555 atomic_set(&skb_shinfo(skb)->dataref, 1);
6556 return 0;
6557 }
6558
6559 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6560 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6561 {
6562 int headlen = skb_headlen(skb);
6563
6564 if (len < headlen)
6565 return pskb_carve_inside_header(skb, len, headlen, gfp);
6566 else
6567 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6568 }
6569
6570 /* Extract to_copy bytes starting at off from skb, and return this in
6571 * a new skb
6572 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6573 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6574 int to_copy, gfp_t gfp)
6575 {
6576 struct sk_buff *clone = skb_clone(skb, gfp);
6577
6578 if (!clone)
6579 return NULL;
6580
6581 if (pskb_carve(clone, off, gfp) < 0 ||
6582 pskb_trim(clone, to_copy)) {
6583 kfree_skb(clone);
6584 return NULL;
6585 }
6586 return clone;
6587 }
6588 EXPORT_SYMBOL(pskb_extract);
6589
6590 /**
6591 * skb_condense - try to get rid of fragments/frag_list if possible
6592 * @skb: buffer
6593 *
6594 * Can be used to save memory before skb is added to a busy queue.
6595 * If packet has bytes in frags and enough tail room in skb->head,
6596 * pull all of them, so that we can free the frags right now and adjust
6597 * truesize.
6598 * Notes:
6599 * We do not reallocate skb->head thus can not fail.
6600 * Caller must re-evaluate skb->truesize if needed.
6601 */
skb_condense(struct sk_buff * skb)6602 void skb_condense(struct sk_buff *skb)
6603 {
6604 if (skb->data_len) {
6605 if (skb->data_len > skb->end - skb->tail ||
6606 skb_cloned(skb))
6607 return;
6608
6609 /* Nice, we can free page frag(s) right now */
6610 __pskb_pull_tail(skb, skb->data_len);
6611 }
6612 /* At this point, skb->truesize might be over estimated,
6613 * because skb had a fragment, and fragments do not tell
6614 * their truesize.
6615 * When we pulled its content into skb->head, fragment
6616 * was freed, but __pskb_pull_tail() could not possibly
6617 * adjust skb->truesize, not knowing the frag truesize.
6618 */
6619 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6620 }
6621 EXPORT_SYMBOL(skb_condense);
6622
6623 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6624 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6625 {
6626 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6627 }
6628
6629 /**
6630 * __skb_ext_alloc - allocate a new skb extensions storage
6631 *
6632 * @flags: See kmalloc().
6633 *
6634 * Returns the newly allocated pointer. The pointer can later attached to a
6635 * skb via __skb_ext_set().
6636 * Note: caller must handle the skb_ext as an opaque data.
6637 */
__skb_ext_alloc(gfp_t flags)6638 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6639 {
6640 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6641
6642 if (new) {
6643 memset(new->offset, 0, sizeof(new->offset));
6644 refcount_set(&new->refcnt, 1);
6645 }
6646
6647 return new;
6648 }
6649
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6650 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6651 unsigned int old_active)
6652 {
6653 struct skb_ext *new;
6654
6655 if (refcount_read(&old->refcnt) == 1)
6656 return old;
6657
6658 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6659 if (!new)
6660 return NULL;
6661
6662 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6663 refcount_set(&new->refcnt, 1);
6664
6665 #ifdef CONFIG_XFRM
6666 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6667 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6668 unsigned int i;
6669
6670 for (i = 0; i < sp->len; i++)
6671 xfrm_state_hold(sp->xvec[i]);
6672 }
6673 #endif
6674 #ifdef CONFIG_MCTP_FLOWS
6675 if (old_active & (1 << SKB_EXT_MCTP)) {
6676 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6677
6678 if (flow->key)
6679 refcount_inc(&flow->key->refs);
6680 }
6681 #endif
6682 __skb_ext_put(old);
6683 return new;
6684 }
6685
6686 /**
6687 * __skb_ext_set - attach the specified extension storage to this skb
6688 * @skb: buffer
6689 * @id: extension id
6690 * @ext: extension storage previously allocated via __skb_ext_alloc()
6691 *
6692 * Existing extensions, if any, are cleared.
6693 *
6694 * Returns the pointer to the extension.
6695 */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6696 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6697 struct skb_ext *ext)
6698 {
6699 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6700
6701 skb_ext_put(skb);
6702 newlen = newoff + skb_ext_type_len[id];
6703 ext->chunks = newlen;
6704 ext->offset[id] = newoff;
6705 skb->extensions = ext;
6706 skb->active_extensions = 1 << id;
6707 return skb_ext_get_ptr(ext, id);
6708 }
6709
6710 /**
6711 * skb_ext_add - allocate space for given extension, COW if needed
6712 * @skb: buffer
6713 * @id: extension to allocate space for
6714 *
6715 * Allocates enough space for the given extension.
6716 * If the extension is already present, a pointer to that extension
6717 * is returned.
6718 *
6719 * If the skb was cloned, COW applies and the returned memory can be
6720 * modified without changing the extension space of clones buffers.
6721 *
6722 * Returns pointer to the extension or NULL on allocation failure.
6723 */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6724 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6725 {
6726 struct skb_ext *new, *old = NULL;
6727 unsigned int newlen, newoff;
6728
6729 if (skb->active_extensions) {
6730 old = skb->extensions;
6731
6732 new = skb_ext_maybe_cow(old, skb->active_extensions);
6733 if (!new)
6734 return NULL;
6735
6736 if (__skb_ext_exist(new, id))
6737 goto set_active;
6738
6739 newoff = new->chunks;
6740 } else {
6741 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6742
6743 new = __skb_ext_alloc(GFP_ATOMIC);
6744 if (!new)
6745 return NULL;
6746 }
6747
6748 newlen = newoff + skb_ext_type_len[id];
6749 new->chunks = newlen;
6750 new->offset[id] = newoff;
6751 set_active:
6752 skb->slow_gro = 1;
6753 skb->extensions = new;
6754 skb->active_extensions |= 1 << id;
6755 return skb_ext_get_ptr(new, id);
6756 }
6757 EXPORT_SYMBOL(skb_ext_add);
6758
6759 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6760 static void skb_ext_put_sp(struct sec_path *sp)
6761 {
6762 unsigned int i;
6763
6764 for (i = 0; i < sp->len; i++)
6765 xfrm_state_put(sp->xvec[i]);
6766 }
6767 #endif
6768
6769 #ifdef CONFIG_MCTP_FLOWS
skb_ext_put_mctp(struct mctp_flow * flow)6770 static void skb_ext_put_mctp(struct mctp_flow *flow)
6771 {
6772 if (flow->key)
6773 mctp_key_unref(flow->key);
6774 }
6775 #endif
6776
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6777 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6778 {
6779 struct skb_ext *ext = skb->extensions;
6780
6781 skb->active_extensions &= ~(1 << id);
6782 if (skb->active_extensions == 0) {
6783 skb->extensions = NULL;
6784 __skb_ext_put(ext);
6785 #ifdef CONFIG_XFRM
6786 } else if (id == SKB_EXT_SEC_PATH &&
6787 refcount_read(&ext->refcnt) == 1) {
6788 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6789
6790 skb_ext_put_sp(sp);
6791 sp->len = 0;
6792 #endif
6793 }
6794 }
6795 EXPORT_SYMBOL(__skb_ext_del);
6796
__skb_ext_put(struct skb_ext * ext)6797 void __skb_ext_put(struct skb_ext *ext)
6798 {
6799 /* If this is last clone, nothing can increment
6800 * it after check passes. Avoids one atomic op.
6801 */
6802 if (refcount_read(&ext->refcnt) == 1)
6803 goto free_now;
6804
6805 if (!refcount_dec_and_test(&ext->refcnt))
6806 return;
6807 free_now:
6808 #ifdef CONFIG_XFRM
6809 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6810 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6811 #endif
6812 #ifdef CONFIG_MCTP_FLOWS
6813 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6814 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6815 #endif
6816
6817 kmem_cache_free(skbuff_ext_cache, ext);
6818 }
6819 EXPORT_SYMBOL(__skb_ext_put);
6820 #endif /* CONFIG_SKB_EXTENSIONS */
6821
6822 /**
6823 * skb_attempt_defer_free - queue skb for remote freeing
6824 * @skb: buffer
6825 *
6826 * Put @skb in a per-cpu list, using the cpu which
6827 * allocated the skb/pages to reduce false sharing
6828 * and memory zone spinlock contention.
6829 */
skb_attempt_defer_free(struct sk_buff * skb)6830 void skb_attempt_defer_free(struct sk_buff *skb)
6831 {
6832 int cpu = skb->alloc_cpu;
6833 struct softnet_data *sd;
6834 unsigned int defer_max;
6835 bool kick;
6836
6837 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6838 !cpu_online(cpu) ||
6839 cpu == raw_smp_processor_id()) {
6840 nodefer: __kfree_skb(skb);
6841 return;
6842 }
6843
6844 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6845 DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6846
6847 sd = &per_cpu(softnet_data, cpu);
6848 defer_max = READ_ONCE(sysctl_skb_defer_max);
6849 if (READ_ONCE(sd->defer_count) >= defer_max)
6850 goto nodefer;
6851
6852 spin_lock_bh(&sd->defer_lock);
6853 /* Send an IPI every time queue reaches half capacity. */
6854 kick = sd->defer_count == (defer_max >> 1);
6855 /* Paired with the READ_ONCE() few lines above */
6856 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6857
6858 skb->next = sd->defer_list;
6859 /* Paired with READ_ONCE() in skb_defer_free_flush() */
6860 WRITE_ONCE(sd->defer_list, skb);
6861 spin_unlock_bh(&sd->defer_lock);
6862
6863 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6864 * if we are unlucky enough (this seems very unlikely).
6865 */
6866 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6867 smp_call_function_single_async(cpu, &sd->defer_csd);
6868 }
6869
skb_splice_csum_page(struct sk_buff * skb,struct page * page,size_t offset,size_t len)6870 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
6871 size_t offset, size_t len)
6872 {
6873 const char *kaddr;
6874 __wsum csum;
6875
6876 kaddr = kmap_local_page(page);
6877 csum = csum_partial(kaddr + offset, len, 0);
6878 kunmap_local(kaddr);
6879 skb->csum = csum_block_add(skb->csum, csum, skb->len);
6880 }
6881
6882 /**
6883 * skb_splice_from_iter - Splice (or copy) pages to skbuff
6884 * @skb: The buffer to add pages to
6885 * @iter: Iterator representing the pages to be added
6886 * @maxsize: Maximum amount of pages to be added
6887 * @gfp: Allocation flags
6888 *
6889 * This is a common helper function for supporting MSG_SPLICE_PAGES. It
6890 * extracts pages from an iterator and adds them to the socket buffer if
6891 * possible, copying them to fragments if not possible (such as if they're slab
6892 * pages).
6893 *
6894 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
6895 * insufficient space in the buffer to transfer anything.
6896 */
skb_splice_from_iter(struct sk_buff * skb,struct iov_iter * iter,ssize_t maxsize,gfp_t gfp)6897 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
6898 ssize_t maxsize, gfp_t gfp)
6899 {
6900 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
6901 struct page *pages[8], **ppages = pages;
6902 ssize_t spliced = 0, ret = 0;
6903 unsigned int i;
6904
6905 while (iter->count > 0) {
6906 ssize_t space, nr, len;
6907 size_t off;
6908
6909 ret = -EMSGSIZE;
6910 space = frag_limit - skb_shinfo(skb)->nr_frags;
6911 if (space < 0)
6912 break;
6913
6914 /* We might be able to coalesce without increasing nr_frags */
6915 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
6916
6917 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
6918 if (len <= 0) {
6919 ret = len ?: -EIO;
6920 break;
6921 }
6922
6923 i = 0;
6924 do {
6925 struct page *page = pages[i++];
6926 size_t part = min_t(size_t, PAGE_SIZE - off, len);
6927
6928 ret = -EIO;
6929 if (WARN_ON_ONCE(!sendpage_ok(page)))
6930 goto out;
6931
6932 ret = skb_append_pagefrags(skb, page, off, part,
6933 frag_limit);
6934 if (ret < 0) {
6935 iov_iter_revert(iter, len);
6936 goto out;
6937 }
6938
6939 if (skb->ip_summed == CHECKSUM_NONE)
6940 skb_splice_csum_page(skb, page, off, part);
6941
6942 off = 0;
6943 spliced += part;
6944 maxsize -= part;
6945 len -= part;
6946 } while (len > 0);
6947
6948 if (maxsize <= 0)
6949 break;
6950 }
6951
6952 out:
6953 skb_len_add(skb, spliced);
6954 return spliced ?: ret;
6955 }
6956 EXPORT_SYMBOL(skb_splice_from_iter);
6957