xref: /openbmc/linux/block/blk-mq.c (revision ed4543328f7108e1047b83b96ca7f7208747d930)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Block multiqueue core code
4   *
5   * Copyright (C) 2013-2014 Jens Axboe
6   * Copyright (C) 2013-2014 Christoph Hellwig
7   */
8  #include <linux/kernel.h>
9  #include <linux/module.h>
10  #include <linux/backing-dev.h>
11  #include <linux/bio.h>
12  #include <linux/blkdev.h>
13  #include <linux/blk-integrity.h>
14  #include <linux/kmemleak.h>
15  #include <linux/mm.h>
16  #include <linux/init.h>
17  #include <linux/slab.h>
18  #include <linux/workqueue.h>
19  #include <linux/smp.h>
20  #include <linux/interrupt.h>
21  #include <linux/llist.h>
22  #include <linux/cpu.h>
23  #include <linux/cache.h>
24  #include <linux/sched/sysctl.h>
25  #include <linux/sched/topology.h>
26  #include <linux/sched/signal.h>
27  #include <linux/delay.h>
28  #include <linux/crash_dump.h>
29  #include <linux/prefetch.h>
30  #include <linux/blk-crypto.h>
31  #include <linux/part_stat.h>
32  
33  #include <trace/events/block.h>
34  
35  #include <linux/t10-pi.h>
36  #include "blk.h"
37  #include "blk-mq.h"
38  #include "blk-mq-debugfs.h"
39  #include "blk-pm.h"
40  #include "blk-stat.h"
41  #include "blk-mq-sched.h"
42  #include "blk-rq-qos.h"
43  
44  static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45  static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46  static DEFINE_MUTEX(blk_mq_cpuhp_lock);
47  
48  static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49  static void blk_mq_request_bypass_insert(struct request *rq,
50  		blk_insert_t flags);
51  static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52  		struct list_head *list);
53  static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54  			 struct io_comp_batch *iob, unsigned int flags);
55  
56  /*
57   * Check if any of the ctx, dispatch list or elevator
58   * have pending work in this hardware queue.
59   */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)60  static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61  {
62  	return !list_empty_careful(&hctx->dispatch) ||
63  		sbitmap_any_bit_set(&hctx->ctx_map) ||
64  			blk_mq_sched_has_work(hctx);
65  }
66  
67  /*
68   * Mark this ctx as having pending work in this hardware queue
69   */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)70  static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71  				     struct blk_mq_ctx *ctx)
72  {
73  	const int bit = ctx->index_hw[hctx->type];
74  
75  	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76  		sbitmap_set_bit(&hctx->ctx_map, bit);
77  }
78  
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)79  static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80  				      struct blk_mq_ctx *ctx)
81  {
82  	const int bit = ctx->index_hw[hctx->type];
83  
84  	sbitmap_clear_bit(&hctx->ctx_map, bit);
85  }
86  
87  struct mq_inflight {
88  	struct block_device *part;
89  	unsigned int inflight[2];
90  };
91  
blk_mq_check_inflight(struct request * rq,void * priv)92  static bool blk_mq_check_inflight(struct request *rq, void *priv)
93  {
94  	struct mq_inflight *mi = priv;
95  
96  	if (rq->part && blk_do_io_stat(rq) &&
97  	    (!mi->part->bd_partno || rq->part == mi->part) &&
98  	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99  		mi->inflight[rq_data_dir(rq)]++;
100  
101  	return true;
102  }
103  
blk_mq_in_flight(struct request_queue * q,struct block_device * part)104  unsigned int blk_mq_in_flight(struct request_queue *q,
105  		struct block_device *part)
106  {
107  	struct mq_inflight mi = { .part = part };
108  
109  	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110  
111  	return mi.inflight[0] + mi.inflight[1];
112  }
113  
blk_mq_in_flight_rw(struct request_queue * q,struct block_device * part,unsigned int inflight[2])114  void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115  		unsigned int inflight[2])
116  {
117  	struct mq_inflight mi = { .part = part };
118  
119  	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120  	inflight[0] = mi.inflight[0];
121  	inflight[1] = mi.inflight[1];
122  }
123  
blk_freeze_queue_start(struct request_queue * q)124  void blk_freeze_queue_start(struct request_queue *q)
125  {
126  	mutex_lock(&q->mq_freeze_lock);
127  	if (++q->mq_freeze_depth == 1) {
128  		percpu_ref_kill(&q->q_usage_counter);
129  		mutex_unlock(&q->mq_freeze_lock);
130  		if (queue_is_mq(q))
131  			blk_mq_run_hw_queues(q, false);
132  	} else {
133  		mutex_unlock(&q->mq_freeze_lock);
134  	}
135  }
136  EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137  
blk_mq_freeze_queue_wait(struct request_queue * q)138  void blk_mq_freeze_queue_wait(struct request_queue *q)
139  {
140  	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141  }
142  EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143  
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)144  int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145  				     unsigned long timeout)
146  {
147  	return wait_event_timeout(q->mq_freeze_wq,
148  					percpu_ref_is_zero(&q->q_usage_counter),
149  					timeout);
150  }
151  EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152  
153  /*
154   * Guarantee no request is in use, so we can change any data structure of
155   * the queue afterward.
156   */
blk_freeze_queue(struct request_queue * q)157  void blk_freeze_queue(struct request_queue *q)
158  {
159  	/*
160  	 * In the !blk_mq case we are only calling this to kill the
161  	 * q_usage_counter, otherwise this increases the freeze depth
162  	 * and waits for it to return to zero.  For this reason there is
163  	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164  	 * exported to drivers as the only user for unfreeze is blk_mq.
165  	 */
166  	blk_freeze_queue_start(q);
167  	blk_mq_freeze_queue_wait(q);
168  }
169  
blk_mq_freeze_queue(struct request_queue * q)170  void blk_mq_freeze_queue(struct request_queue *q)
171  {
172  	/*
173  	 * ...just an alias to keep freeze and unfreeze actions balanced
174  	 * in the blk_mq_* namespace
175  	 */
176  	blk_freeze_queue(q);
177  }
178  EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179  
__blk_mq_unfreeze_queue(struct request_queue * q,bool force_atomic)180  void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181  {
182  	mutex_lock(&q->mq_freeze_lock);
183  	if (force_atomic)
184  		q->q_usage_counter.data->force_atomic = true;
185  	q->mq_freeze_depth--;
186  	WARN_ON_ONCE(q->mq_freeze_depth < 0);
187  	if (!q->mq_freeze_depth) {
188  		percpu_ref_resurrect(&q->q_usage_counter);
189  		wake_up_all(&q->mq_freeze_wq);
190  	}
191  	mutex_unlock(&q->mq_freeze_lock);
192  }
193  
blk_mq_unfreeze_queue(struct request_queue * q)194  void blk_mq_unfreeze_queue(struct request_queue *q)
195  {
196  	__blk_mq_unfreeze_queue(q, false);
197  }
198  EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199  
200  /*
201   * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202   * mpt3sas driver such that this function can be removed.
203   */
blk_mq_quiesce_queue_nowait(struct request_queue * q)204  void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205  {
206  	unsigned long flags;
207  
208  	spin_lock_irqsave(&q->queue_lock, flags);
209  	if (!q->quiesce_depth++)
210  		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211  	spin_unlock_irqrestore(&q->queue_lock, flags);
212  }
213  EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214  
215  /**
216   * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217   * @set: tag_set to wait on
218   *
219   * Note: it is driver's responsibility for making sure that quiesce has
220   * been started on or more of the request_queues of the tag_set.  This
221   * function only waits for the quiesce on those request_queues that had
222   * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223   */
blk_mq_wait_quiesce_done(struct blk_mq_tag_set * set)224  void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225  {
226  	if (set->flags & BLK_MQ_F_BLOCKING)
227  		synchronize_srcu(set->srcu);
228  	else
229  		synchronize_rcu();
230  }
231  EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232  
233  /**
234   * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235   * @q: request queue.
236   *
237   * Note: this function does not prevent that the struct request end_io()
238   * callback function is invoked. Once this function is returned, we make
239   * sure no dispatch can happen until the queue is unquiesced via
240   * blk_mq_unquiesce_queue().
241   */
blk_mq_quiesce_queue(struct request_queue * q)242  void blk_mq_quiesce_queue(struct request_queue *q)
243  {
244  	blk_mq_quiesce_queue_nowait(q);
245  	/* nothing to wait for non-mq queues */
246  	if (queue_is_mq(q))
247  		blk_mq_wait_quiesce_done(q->tag_set);
248  }
249  EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250  
251  /*
252   * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253   * @q: request queue.
254   *
255   * This function recovers queue into the state before quiescing
256   * which is done by blk_mq_quiesce_queue.
257   */
blk_mq_unquiesce_queue(struct request_queue * q)258  void blk_mq_unquiesce_queue(struct request_queue *q)
259  {
260  	unsigned long flags;
261  	bool run_queue = false;
262  
263  	spin_lock_irqsave(&q->queue_lock, flags);
264  	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265  		;
266  	} else if (!--q->quiesce_depth) {
267  		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268  		run_queue = true;
269  	}
270  	spin_unlock_irqrestore(&q->queue_lock, flags);
271  
272  	/* dispatch requests which are inserted during quiescing */
273  	if (run_queue)
274  		blk_mq_run_hw_queues(q, true);
275  }
276  EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277  
blk_mq_quiesce_tagset(struct blk_mq_tag_set * set)278  void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279  {
280  	struct request_queue *q;
281  
282  	mutex_lock(&set->tag_list_lock);
283  	list_for_each_entry(q, &set->tag_list, tag_set_list) {
284  		if (!blk_queue_skip_tagset_quiesce(q))
285  			blk_mq_quiesce_queue_nowait(q);
286  	}
287  	mutex_unlock(&set->tag_list_lock);
288  
289  	blk_mq_wait_quiesce_done(set);
290  }
291  EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
292  
blk_mq_unquiesce_tagset(struct blk_mq_tag_set * set)293  void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
294  {
295  	struct request_queue *q;
296  
297  	mutex_lock(&set->tag_list_lock);
298  	list_for_each_entry(q, &set->tag_list, tag_set_list) {
299  		if (!blk_queue_skip_tagset_quiesce(q))
300  			blk_mq_unquiesce_queue(q);
301  	}
302  	mutex_unlock(&set->tag_list_lock);
303  }
304  EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
305  
blk_mq_wake_waiters(struct request_queue * q)306  void blk_mq_wake_waiters(struct request_queue *q)
307  {
308  	struct blk_mq_hw_ctx *hctx;
309  	unsigned long i;
310  
311  	queue_for_each_hw_ctx(q, hctx, i)
312  		if (blk_mq_hw_queue_mapped(hctx))
313  			blk_mq_tag_wakeup_all(hctx->tags, true);
314  }
315  
blk_rq_init(struct request_queue * q,struct request * rq)316  void blk_rq_init(struct request_queue *q, struct request *rq)
317  {
318  	memset(rq, 0, sizeof(*rq));
319  
320  	INIT_LIST_HEAD(&rq->queuelist);
321  	rq->q = q;
322  	rq->__sector = (sector_t) -1;
323  	INIT_HLIST_NODE(&rq->hash);
324  	RB_CLEAR_NODE(&rq->rb_node);
325  	rq->tag = BLK_MQ_NO_TAG;
326  	rq->internal_tag = BLK_MQ_NO_TAG;
327  	rq->start_time_ns = ktime_get_ns();
328  	rq->part = NULL;
329  	blk_crypto_rq_set_defaults(rq);
330  }
331  EXPORT_SYMBOL(blk_rq_init);
332  
333  /* Set start and alloc time when the allocated request is actually used */
blk_mq_rq_time_init(struct request * rq,u64 alloc_time_ns)334  static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
335  {
336  	if (blk_mq_need_time_stamp(rq))
337  		rq->start_time_ns = ktime_get_ns();
338  	else
339  		rq->start_time_ns = 0;
340  
341  #ifdef CONFIG_BLK_RQ_ALLOC_TIME
342  	if (blk_queue_rq_alloc_time(rq->q))
343  		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
344  	else
345  		rq->alloc_time_ns = 0;
346  #endif
347  }
348  
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,struct blk_mq_tags * tags,unsigned int tag)349  static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
350  		struct blk_mq_tags *tags, unsigned int tag)
351  {
352  	struct blk_mq_ctx *ctx = data->ctx;
353  	struct blk_mq_hw_ctx *hctx = data->hctx;
354  	struct request_queue *q = data->q;
355  	struct request *rq = tags->static_rqs[tag];
356  
357  	rq->q = q;
358  	rq->mq_ctx = ctx;
359  	rq->mq_hctx = hctx;
360  	rq->cmd_flags = data->cmd_flags;
361  
362  	if (data->flags & BLK_MQ_REQ_PM)
363  		data->rq_flags |= RQF_PM;
364  	if (blk_queue_io_stat(q))
365  		data->rq_flags |= RQF_IO_STAT;
366  	rq->rq_flags = data->rq_flags;
367  
368  	if (data->rq_flags & RQF_SCHED_TAGS) {
369  		rq->tag = BLK_MQ_NO_TAG;
370  		rq->internal_tag = tag;
371  	} else {
372  		rq->tag = tag;
373  		rq->internal_tag = BLK_MQ_NO_TAG;
374  	}
375  	rq->timeout = 0;
376  
377  	rq->part = NULL;
378  	rq->io_start_time_ns = 0;
379  	rq->stats_sectors = 0;
380  	rq->nr_phys_segments = 0;
381  #if defined(CONFIG_BLK_DEV_INTEGRITY)
382  	rq->nr_integrity_segments = 0;
383  #endif
384  	rq->end_io = NULL;
385  	rq->end_io_data = NULL;
386  
387  	blk_crypto_rq_set_defaults(rq);
388  	INIT_LIST_HEAD(&rq->queuelist);
389  	/* tag was already set */
390  	WRITE_ONCE(rq->deadline, 0);
391  	req_ref_set(rq, 1);
392  
393  	if (rq->rq_flags & RQF_USE_SCHED) {
394  		struct elevator_queue *e = data->q->elevator;
395  
396  		INIT_HLIST_NODE(&rq->hash);
397  		RB_CLEAR_NODE(&rq->rb_node);
398  
399  		if (e->type->ops.prepare_request)
400  			e->type->ops.prepare_request(rq);
401  	}
402  
403  	return rq;
404  }
405  
406  static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data * data)407  __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
408  {
409  	unsigned int tag, tag_offset;
410  	struct blk_mq_tags *tags;
411  	struct request *rq;
412  	unsigned long tag_mask;
413  	int i, nr = 0;
414  
415  	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
416  	if (unlikely(!tag_mask))
417  		return NULL;
418  
419  	tags = blk_mq_tags_from_data(data);
420  	for (i = 0; tag_mask; i++) {
421  		if (!(tag_mask & (1UL << i)))
422  			continue;
423  		tag = tag_offset + i;
424  		prefetch(tags->static_rqs[tag]);
425  		tag_mask &= ~(1UL << i);
426  		rq = blk_mq_rq_ctx_init(data, tags, tag);
427  		rq_list_add(data->cached_rq, rq);
428  		nr++;
429  	}
430  	/* caller already holds a reference, add for remainder */
431  	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
432  	data->nr_tags -= nr;
433  
434  	return rq_list_pop(data->cached_rq);
435  }
436  
__blk_mq_alloc_requests(struct blk_mq_alloc_data * data)437  static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
438  {
439  	struct request_queue *q = data->q;
440  	u64 alloc_time_ns = 0;
441  	struct request *rq;
442  	unsigned int tag;
443  
444  	/* alloc_time includes depth and tag waits */
445  	if (blk_queue_rq_alloc_time(q))
446  		alloc_time_ns = ktime_get_ns();
447  
448  	if (data->cmd_flags & REQ_NOWAIT)
449  		data->flags |= BLK_MQ_REQ_NOWAIT;
450  
451  retry:
452  	data->ctx = blk_mq_get_ctx(q);
453  	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
454  
455  	if (q->elevator) {
456  		/*
457  		 * All requests use scheduler tags when an I/O scheduler is
458  		 * enabled for the queue.
459  		 */
460  		data->rq_flags |= RQF_SCHED_TAGS;
461  
462  		/*
463  		 * Flush/passthrough requests are special and go directly to the
464  		 * dispatch list.
465  		 */
466  		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
467  		    !blk_op_is_passthrough(data->cmd_flags)) {
468  			struct elevator_mq_ops *ops = &q->elevator->type->ops;
469  
470  			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
471  
472  			data->rq_flags |= RQF_USE_SCHED;
473  			if (ops->limit_depth)
474  				ops->limit_depth(data->cmd_flags, data);
475  		}
476  	} else {
477  		blk_mq_tag_busy(data->hctx);
478  	}
479  
480  	if (data->flags & BLK_MQ_REQ_RESERVED)
481  		data->rq_flags |= RQF_RESV;
482  
483  	/*
484  	 * Try batched alloc if we want more than 1 tag.
485  	 */
486  	if (data->nr_tags > 1) {
487  		rq = __blk_mq_alloc_requests_batch(data);
488  		if (rq) {
489  			blk_mq_rq_time_init(rq, alloc_time_ns);
490  			return rq;
491  		}
492  		data->nr_tags = 1;
493  	}
494  
495  	/*
496  	 * Waiting allocations only fail because of an inactive hctx.  In that
497  	 * case just retry the hctx assignment and tag allocation as CPU hotplug
498  	 * should have migrated us to an online CPU by now.
499  	 */
500  	tag = blk_mq_get_tag(data);
501  	if (tag == BLK_MQ_NO_TAG) {
502  		if (data->flags & BLK_MQ_REQ_NOWAIT)
503  			return NULL;
504  		/*
505  		 * Give up the CPU and sleep for a random short time to
506  		 * ensure that thread using a realtime scheduling class
507  		 * are migrated off the CPU, and thus off the hctx that
508  		 * is going away.
509  		 */
510  		msleep(3);
511  		goto retry;
512  	}
513  
514  	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
515  	blk_mq_rq_time_init(rq, alloc_time_ns);
516  	return rq;
517  }
518  
blk_mq_rq_cache_fill(struct request_queue * q,struct blk_plug * plug,blk_opf_t opf,blk_mq_req_flags_t flags)519  static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
520  					    struct blk_plug *plug,
521  					    blk_opf_t opf,
522  					    blk_mq_req_flags_t flags)
523  {
524  	struct blk_mq_alloc_data data = {
525  		.q		= q,
526  		.flags		= flags,
527  		.cmd_flags	= opf,
528  		.nr_tags	= plug->nr_ios,
529  		.cached_rq	= &plug->cached_rq,
530  	};
531  	struct request *rq;
532  
533  	if (blk_queue_enter(q, flags))
534  		return NULL;
535  
536  	plug->nr_ios = 1;
537  
538  	rq = __blk_mq_alloc_requests(&data);
539  	if (unlikely(!rq))
540  		blk_queue_exit(q);
541  	return rq;
542  }
543  
blk_mq_alloc_cached_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)544  static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
545  						   blk_opf_t opf,
546  						   blk_mq_req_flags_t flags)
547  {
548  	struct blk_plug *plug = current->plug;
549  	struct request *rq;
550  
551  	if (!plug)
552  		return NULL;
553  
554  	if (rq_list_empty(plug->cached_rq)) {
555  		if (plug->nr_ios == 1)
556  			return NULL;
557  		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
558  		if (!rq)
559  			return NULL;
560  	} else {
561  		rq = rq_list_peek(&plug->cached_rq);
562  		if (!rq || rq->q != q)
563  			return NULL;
564  
565  		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
566  			return NULL;
567  		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
568  			return NULL;
569  
570  		plug->cached_rq = rq_list_next(rq);
571  		blk_mq_rq_time_init(rq, 0);
572  	}
573  
574  	rq->cmd_flags = opf;
575  	INIT_LIST_HEAD(&rq->queuelist);
576  	return rq;
577  }
578  
blk_mq_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)579  struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
580  		blk_mq_req_flags_t flags)
581  {
582  	struct request *rq;
583  
584  	rq = blk_mq_alloc_cached_request(q, opf, flags);
585  	if (!rq) {
586  		struct blk_mq_alloc_data data = {
587  			.q		= q,
588  			.flags		= flags,
589  			.cmd_flags	= opf,
590  			.nr_tags	= 1,
591  		};
592  		int ret;
593  
594  		ret = blk_queue_enter(q, flags);
595  		if (ret)
596  			return ERR_PTR(ret);
597  
598  		rq = __blk_mq_alloc_requests(&data);
599  		if (!rq)
600  			goto out_queue_exit;
601  	}
602  	rq->__data_len = 0;
603  	rq->__sector = (sector_t) -1;
604  	rq->bio = rq->biotail = NULL;
605  	return rq;
606  out_queue_exit:
607  	blk_queue_exit(q);
608  	return ERR_PTR(-EWOULDBLOCK);
609  }
610  EXPORT_SYMBOL(blk_mq_alloc_request);
611  
blk_mq_alloc_request_hctx(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags,unsigned int hctx_idx)612  struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
613  	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
614  {
615  	struct blk_mq_alloc_data data = {
616  		.q		= q,
617  		.flags		= flags,
618  		.cmd_flags	= opf,
619  		.nr_tags	= 1,
620  	};
621  	u64 alloc_time_ns = 0;
622  	struct request *rq;
623  	unsigned int cpu;
624  	unsigned int tag;
625  	int ret;
626  
627  	/* alloc_time includes depth and tag waits */
628  	if (blk_queue_rq_alloc_time(q))
629  		alloc_time_ns = ktime_get_ns();
630  
631  	/*
632  	 * If the tag allocator sleeps we could get an allocation for a
633  	 * different hardware context.  No need to complicate the low level
634  	 * allocator for this for the rare use case of a command tied to
635  	 * a specific queue.
636  	 */
637  	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
638  	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
639  		return ERR_PTR(-EINVAL);
640  
641  	if (hctx_idx >= q->nr_hw_queues)
642  		return ERR_PTR(-EIO);
643  
644  	ret = blk_queue_enter(q, flags);
645  	if (ret)
646  		return ERR_PTR(ret);
647  
648  	/*
649  	 * Check if the hardware context is actually mapped to anything.
650  	 * If not tell the caller that it should skip this queue.
651  	 */
652  	ret = -EXDEV;
653  	data.hctx = xa_load(&q->hctx_table, hctx_idx);
654  	if (!blk_mq_hw_queue_mapped(data.hctx))
655  		goto out_queue_exit;
656  	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
657  	if (cpu >= nr_cpu_ids)
658  		goto out_queue_exit;
659  	data.ctx = __blk_mq_get_ctx(q, cpu);
660  
661  	if (q->elevator)
662  		data.rq_flags |= RQF_SCHED_TAGS;
663  	else
664  		blk_mq_tag_busy(data.hctx);
665  
666  	if (flags & BLK_MQ_REQ_RESERVED)
667  		data.rq_flags |= RQF_RESV;
668  
669  	ret = -EWOULDBLOCK;
670  	tag = blk_mq_get_tag(&data);
671  	if (tag == BLK_MQ_NO_TAG)
672  		goto out_queue_exit;
673  	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
674  	blk_mq_rq_time_init(rq, alloc_time_ns);
675  	rq->__data_len = 0;
676  	rq->__sector = (sector_t) -1;
677  	rq->bio = rq->biotail = NULL;
678  	return rq;
679  
680  out_queue_exit:
681  	blk_queue_exit(q);
682  	return ERR_PTR(ret);
683  }
684  EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
685  
blk_mq_finish_request(struct request * rq)686  static void blk_mq_finish_request(struct request *rq)
687  {
688  	struct request_queue *q = rq->q;
689  
690  	if (rq->rq_flags & RQF_USE_SCHED) {
691  		q->elevator->type->ops.finish_request(rq);
692  		/*
693  		 * For postflush request that may need to be
694  		 * completed twice, we should clear this flag
695  		 * to avoid double finish_request() on the rq.
696  		 */
697  		rq->rq_flags &= ~RQF_USE_SCHED;
698  	}
699  }
700  
__blk_mq_free_request(struct request * rq)701  static void __blk_mq_free_request(struct request *rq)
702  {
703  	struct request_queue *q = rq->q;
704  	struct blk_mq_ctx *ctx = rq->mq_ctx;
705  	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
706  	const int sched_tag = rq->internal_tag;
707  
708  	blk_crypto_free_request(rq);
709  	blk_pm_mark_last_busy(rq);
710  	rq->mq_hctx = NULL;
711  
712  	if (rq->rq_flags & RQF_MQ_INFLIGHT)
713  		__blk_mq_dec_active_requests(hctx);
714  
715  	if (rq->tag != BLK_MQ_NO_TAG)
716  		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
717  	if (sched_tag != BLK_MQ_NO_TAG)
718  		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
719  	blk_mq_sched_restart(hctx);
720  	blk_queue_exit(q);
721  }
722  
blk_mq_free_request(struct request * rq)723  void blk_mq_free_request(struct request *rq)
724  {
725  	struct request_queue *q = rq->q;
726  
727  	blk_mq_finish_request(rq);
728  
729  	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
730  		laptop_io_completion(q->disk->bdi);
731  
732  	rq_qos_done(q, rq);
733  
734  	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
735  	if (req_ref_put_and_test(rq))
736  		__blk_mq_free_request(rq);
737  }
738  EXPORT_SYMBOL_GPL(blk_mq_free_request);
739  
blk_mq_free_plug_rqs(struct blk_plug * plug)740  void blk_mq_free_plug_rqs(struct blk_plug *plug)
741  {
742  	struct request *rq;
743  
744  	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
745  		blk_mq_free_request(rq);
746  }
747  
blk_dump_rq_flags(struct request * rq,char * msg)748  void blk_dump_rq_flags(struct request *rq, char *msg)
749  {
750  	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
751  		rq->q->disk ? rq->q->disk->disk_name : "?",
752  		(__force unsigned long long) rq->cmd_flags);
753  
754  	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
755  	       (unsigned long long)blk_rq_pos(rq),
756  	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
757  	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
758  	       rq->bio, rq->biotail, blk_rq_bytes(rq));
759  }
760  EXPORT_SYMBOL(blk_dump_rq_flags);
761  
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)762  static void req_bio_endio(struct request *rq, struct bio *bio,
763  			  unsigned int nbytes, blk_status_t error)
764  {
765  	if (unlikely(error)) {
766  		bio->bi_status = error;
767  	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
768  		/*
769  		 * Partial zone append completions cannot be supported as the
770  		 * BIO fragments may end up not being written sequentially.
771  		 */
772  		if (bio->bi_iter.bi_size != nbytes)
773  			bio->bi_status = BLK_STS_IOERR;
774  		else
775  			bio->bi_iter.bi_sector = rq->__sector;
776  	}
777  
778  	bio_advance(bio, nbytes);
779  
780  	if (unlikely(rq->rq_flags & RQF_QUIET))
781  		bio_set_flag(bio, BIO_QUIET);
782  	/* don't actually finish bio if it's part of flush sequence */
783  	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
784  		bio_endio(bio);
785  }
786  
blk_account_io_completion(struct request * req,unsigned int bytes)787  static void blk_account_io_completion(struct request *req, unsigned int bytes)
788  {
789  	if (req->part && blk_do_io_stat(req)) {
790  		const int sgrp = op_stat_group(req_op(req));
791  
792  		part_stat_lock();
793  		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
794  		part_stat_unlock();
795  	}
796  }
797  
blk_print_req_error(struct request * req,blk_status_t status)798  static void blk_print_req_error(struct request *req, blk_status_t status)
799  {
800  	printk_ratelimited(KERN_ERR
801  		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
802  		"phys_seg %u prio class %u\n",
803  		blk_status_to_str(status),
804  		req->q->disk ? req->q->disk->disk_name : "?",
805  		blk_rq_pos(req), (__force u32)req_op(req),
806  		blk_op_str(req_op(req)),
807  		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
808  		req->nr_phys_segments,
809  		IOPRIO_PRIO_CLASS(req->ioprio));
810  }
811  
812  /*
813   * Fully end IO on a request. Does not support partial completions, or
814   * errors.
815   */
blk_complete_request(struct request * req)816  static void blk_complete_request(struct request *req)
817  {
818  	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
819  	int total_bytes = blk_rq_bytes(req);
820  	struct bio *bio = req->bio;
821  
822  	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
823  
824  	if (!bio)
825  		return;
826  
827  #ifdef CONFIG_BLK_DEV_INTEGRITY
828  	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
829  		req->q->integrity.profile->complete_fn(req, total_bytes);
830  #endif
831  
832  	/*
833  	 * Upper layers may call blk_crypto_evict_key() anytime after the last
834  	 * bio_endio().  Therefore, the keyslot must be released before that.
835  	 */
836  	blk_crypto_rq_put_keyslot(req);
837  
838  	blk_account_io_completion(req, total_bytes);
839  
840  	do {
841  		struct bio *next = bio->bi_next;
842  
843  		/* Completion has already been traced */
844  		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
845  
846  		if (req_op(req) == REQ_OP_ZONE_APPEND)
847  			bio->bi_iter.bi_sector = req->__sector;
848  
849  		if (!is_flush)
850  			bio_endio(bio);
851  		bio = next;
852  	} while (bio);
853  
854  	/*
855  	 * Reset counters so that the request stacking driver
856  	 * can find how many bytes remain in the request
857  	 * later.
858  	 */
859  	if (!req->end_io) {
860  		req->bio = NULL;
861  		req->__data_len = 0;
862  	}
863  }
864  
865  /**
866   * blk_update_request - Complete multiple bytes without completing the request
867   * @req:      the request being processed
868   * @error:    block status code
869   * @nr_bytes: number of bytes to complete for @req
870   *
871   * Description:
872   *     Ends I/O on a number of bytes attached to @req, but doesn't complete
873   *     the request structure even if @req doesn't have leftover.
874   *     If @req has leftover, sets it up for the next range of segments.
875   *
876   *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
877   *     %false return from this function.
878   *
879   * Note:
880   *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
881   *      except in the consistency check at the end of this function.
882   *
883   * Return:
884   *     %false - this request doesn't have any more data
885   *     %true  - this request has more data
886   **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)887  bool blk_update_request(struct request *req, blk_status_t error,
888  		unsigned int nr_bytes)
889  {
890  	int total_bytes;
891  
892  	trace_block_rq_complete(req, error, nr_bytes);
893  
894  	if (!req->bio)
895  		return false;
896  
897  #ifdef CONFIG_BLK_DEV_INTEGRITY
898  	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
899  	    error == BLK_STS_OK)
900  		req->q->integrity.profile->complete_fn(req, nr_bytes);
901  #endif
902  
903  	/*
904  	 * Upper layers may call blk_crypto_evict_key() anytime after the last
905  	 * bio_endio().  Therefore, the keyslot must be released before that.
906  	 */
907  	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
908  		__blk_crypto_rq_put_keyslot(req);
909  
910  	if (unlikely(error && !blk_rq_is_passthrough(req) &&
911  		     !(req->rq_flags & RQF_QUIET)) &&
912  		     !test_bit(GD_DEAD, &req->q->disk->state)) {
913  		blk_print_req_error(req, error);
914  		trace_block_rq_error(req, error, nr_bytes);
915  	}
916  
917  	blk_account_io_completion(req, nr_bytes);
918  
919  	total_bytes = 0;
920  	while (req->bio) {
921  		struct bio *bio = req->bio;
922  		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
923  
924  		if (bio_bytes == bio->bi_iter.bi_size)
925  			req->bio = bio->bi_next;
926  
927  		/* Completion has already been traced */
928  		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
929  		req_bio_endio(req, bio, bio_bytes, error);
930  
931  		total_bytes += bio_bytes;
932  		nr_bytes -= bio_bytes;
933  
934  		if (!nr_bytes)
935  			break;
936  	}
937  
938  	/*
939  	 * completely done
940  	 */
941  	if (!req->bio) {
942  		/*
943  		 * Reset counters so that the request stacking driver
944  		 * can find how many bytes remain in the request
945  		 * later.
946  		 */
947  		req->__data_len = 0;
948  		return false;
949  	}
950  
951  	req->__data_len -= total_bytes;
952  
953  	/* update sector only for requests with clear definition of sector */
954  	if (!blk_rq_is_passthrough(req))
955  		req->__sector += total_bytes >> 9;
956  
957  	/* mixed attributes always follow the first bio */
958  	if (req->rq_flags & RQF_MIXED_MERGE) {
959  		req->cmd_flags &= ~REQ_FAILFAST_MASK;
960  		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
961  	}
962  
963  	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
964  		/*
965  		 * If total number of sectors is less than the first segment
966  		 * size, something has gone terribly wrong.
967  		 */
968  		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
969  			blk_dump_rq_flags(req, "request botched");
970  			req->__data_len = blk_rq_cur_bytes(req);
971  		}
972  
973  		/* recalculate the number of segments */
974  		req->nr_phys_segments = blk_recalc_rq_segments(req);
975  	}
976  
977  	return true;
978  }
979  EXPORT_SYMBOL_GPL(blk_update_request);
980  
blk_account_io_done(struct request * req,u64 now)981  static inline void blk_account_io_done(struct request *req, u64 now)
982  {
983  	trace_block_io_done(req);
984  
985  	/*
986  	 * Account IO completion.  flush_rq isn't accounted as a
987  	 * normal IO on queueing nor completion.  Accounting the
988  	 * containing request is enough.
989  	 */
990  	if (blk_do_io_stat(req) && req->part &&
991  	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
992  		const int sgrp = op_stat_group(req_op(req));
993  
994  		part_stat_lock();
995  		update_io_ticks(req->part, jiffies, true);
996  		part_stat_inc(req->part, ios[sgrp]);
997  		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
998  		part_stat_local_dec(req->part,
999  				    in_flight[op_is_write(req_op(req))]);
1000  		part_stat_unlock();
1001  	}
1002  }
1003  
blk_account_io_start(struct request * req)1004  static inline void blk_account_io_start(struct request *req)
1005  {
1006  	trace_block_io_start(req);
1007  
1008  	if (blk_do_io_stat(req)) {
1009  		/*
1010  		 * All non-passthrough requests are created from a bio with one
1011  		 * exception: when a flush command that is part of a flush sequence
1012  		 * generated by the state machine in blk-flush.c is cloned onto the
1013  		 * lower device by dm-multipath we can get here without a bio.
1014  		 */
1015  		if (req->bio)
1016  			req->part = req->bio->bi_bdev;
1017  		else
1018  			req->part = req->q->disk->part0;
1019  
1020  		part_stat_lock();
1021  		update_io_ticks(req->part, jiffies, false);
1022  		part_stat_local_inc(req->part,
1023  				    in_flight[op_is_write(req_op(req))]);
1024  		part_stat_unlock();
1025  	}
1026  }
1027  
__blk_mq_end_request_acct(struct request * rq,u64 now)1028  static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1029  {
1030  	if (rq->rq_flags & RQF_STATS)
1031  		blk_stat_add(rq, now);
1032  
1033  	blk_mq_sched_completed_request(rq, now);
1034  	blk_account_io_done(rq, now);
1035  }
1036  
__blk_mq_end_request(struct request * rq,blk_status_t error)1037  inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038  {
1039  	if (blk_mq_need_time_stamp(rq))
1040  		__blk_mq_end_request_acct(rq, ktime_get_ns());
1041  
1042  	blk_mq_finish_request(rq);
1043  
1044  	if (rq->end_io) {
1045  		rq_qos_done(rq->q, rq);
1046  		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1047  			blk_mq_free_request(rq);
1048  	} else {
1049  		blk_mq_free_request(rq);
1050  	}
1051  }
1052  EXPORT_SYMBOL(__blk_mq_end_request);
1053  
blk_mq_end_request(struct request * rq,blk_status_t error)1054  void blk_mq_end_request(struct request *rq, blk_status_t error)
1055  {
1056  	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1057  		BUG();
1058  	__blk_mq_end_request(rq, error);
1059  }
1060  EXPORT_SYMBOL(blk_mq_end_request);
1061  
1062  #define TAG_COMP_BATCH		32
1063  
blk_mq_flush_tag_batch(struct blk_mq_hw_ctx * hctx,int * tag_array,int nr_tags)1064  static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1065  					  int *tag_array, int nr_tags)
1066  {
1067  	struct request_queue *q = hctx->queue;
1068  
1069  	/*
1070  	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1071  	 * update hctx->nr_active in batch
1072  	 */
1073  	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1074  		__blk_mq_sub_active_requests(hctx, nr_tags);
1075  
1076  	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1077  	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1078  }
1079  
blk_mq_end_request_batch(struct io_comp_batch * iob)1080  void blk_mq_end_request_batch(struct io_comp_batch *iob)
1081  {
1082  	int tags[TAG_COMP_BATCH], nr_tags = 0;
1083  	struct blk_mq_hw_ctx *cur_hctx = NULL;
1084  	struct request *rq;
1085  	u64 now = 0;
1086  
1087  	if (iob->need_ts)
1088  		now = ktime_get_ns();
1089  
1090  	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1091  		prefetch(rq->bio);
1092  		prefetch(rq->rq_next);
1093  
1094  		blk_complete_request(rq);
1095  		if (iob->need_ts)
1096  			__blk_mq_end_request_acct(rq, now);
1097  
1098  		blk_mq_finish_request(rq);
1099  
1100  		rq_qos_done(rq->q, rq);
1101  
1102  		/*
1103  		 * If end_io handler returns NONE, then it still has
1104  		 * ownership of the request.
1105  		 */
1106  		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1107  			continue;
1108  
1109  		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1110  		if (!req_ref_put_and_test(rq))
1111  			continue;
1112  
1113  		blk_crypto_free_request(rq);
1114  		blk_pm_mark_last_busy(rq);
1115  
1116  		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1117  			if (cur_hctx)
1118  				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1119  			nr_tags = 0;
1120  			cur_hctx = rq->mq_hctx;
1121  		}
1122  		tags[nr_tags++] = rq->tag;
1123  	}
1124  
1125  	if (nr_tags)
1126  		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1127  }
1128  EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1129  
blk_complete_reqs(struct llist_head * list)1130  static void blk_complete_reqs(struct llist_head *list)
1131  {
1132  	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1133  	struct request *rq, *next;
1134  
1135  	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1136  		rq->q->mq_ops->complete(rq);
1137  }
1138  
blk_done_softirq(struct softirq_action * h)1139  static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1140  {
1141  	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1142  }
1143  
blk_softirq_cpu_dead(unsigned int cpu)1144  static int blk_softirq_cpu_dead(unsigned int cpu)
1145  {
1146  	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1147  	return 0;
1148  }
1149  
__blk_mq_complete_request_remote(void * data)1150  static void __blk_mq_complete_request_remote(void *data)
1151  {
1152  	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1153  }
1154  
blk_mq_complete_need_ipi(struct request * rq)1155  static inline bool blk_mq_complete_need_ipi(struct request *rq)
1156  {
1157  	int cpu = raw_smp_processor_id();
1158  
1159  	if (!IS_ENABLED(CONFIG_SMP) ||
1160  	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1161  		return false;
1162  	/*
1163  	 * With force threaded interrupts enabled, raising softirq from an SMP
1164  	 * function call will always result in waking the ksoftirqd thread.
1165  	 * This is probably worse than completing the request on a different
1166  	 * cache domain.
1167  	 */
1168  	if (force_irqthreads())
1169  		return false;
1170  
1171  	/* same CPU or cache domain?  Complete locally */
1172  	if (cpu == rq->mq_ctx->cpu ||
1173  	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1174  	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1175  		return false;
1176  
1177  	/* don't try to IPI to an offline CPU */
1178  	return cpu_online(rq->mq_ctx->cpu);
1179  }
1180  
blk_mq_complete_send_ipi(struct request * rq)1181  static void blk_mq_complete_send_ipi(struct request *rq)
1182  {
1183  	unsigned int cpu;
1184  
1185  	cpu = rq->mq_ctx->cpu;
1186  	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1187  		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1188  }
1189  
blk_mq_raise_softirq(struct request * rq)1190  static void blk_mq_raise_softirq(struct request *rq)
1191  {
1192  	struct llist_head *list;
1193  
1194  	preempt_disable();
1195  	list = this_cpu_ptr(&blk_cpu_done);
1196  	if (llist_add(&rq->ipi_list, list))
1197  		raise_softirq(BLOCK_SOFTIRQ);
1198  	preempt_enable();
1199  }
1200  
blk_mq_complete_request_remote(struct request * rq)1201  bool blk_mq_complete_request_remote(struct request *rq)
1202  {
1203  	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1204  
1205  	/*
1206  	 * For request which hctx has only one ctx mapping,
1207  	 * or a polled request, always complete locally,
1208  	 * it's pointless to redirect the completion.
1209  	 */
1210  	if ((rq->mq_hctx->nr_ctx == 1 &&
1211  	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1212  	     rq->cmd_flags & REQ_POLLED)
1213  		return false;
1214  
1215  	if (blk_mq_complete_need_ipi(rq)) {
1216  		blk_mq_complete_send_ipi(rq);
1217  		return true;
1218  	}
1219  
1220  	if (rq->q->nr_hw_queues == 1) {
1221  		blk_mq_raise_softirq(rq);
1222  		return true;
1223  	}
1224  	return false;
1225  }
1226  EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1227  
1228  /**
1229   * blk_mq_complete_request - end I/O on a request
1230   * @rq:		the request being processed
1231   *
1232   * Description:
1233   *	Complete a request by scheduling the ->complete_rq operation.
1234   **/
blk_mq_complete_request(struct request * rq)1235  void blk_mq_complete_request(struct request *rq)
1236  {
1237  	if (!blk_mq_complete_request_remote(rq))
1238  		rq->q->mq_ops->complete(rq);
1239  }
1240  EXPORT_SYMBOL(blk_mq_complete_request);
1241  
1242  /**
1243   * blk_mq_start_request - Start processing a request
1244   * @rq: Pointer to request to be started
1245   *
1246   * Function used by device drivers to notify the block layer that a request
1247   * is going to be processed now, so blk layer can do proper initializations
1248   * such as starting the timeout timer.
1249   */
blk_mq_start_request(struct request * rq)1250  void blk_mq_start_request(struct request *rq)
1251  {
1252  	struct request_queue *q = rq->q;
1253  
1254  	trace_block_rq_issue(rq);
1255  
1256  	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1257  		rq->io_start_time_ns = ktime_get_ns();
1258  		rq->stats_sectors = blk_rq_sectors(rq);
1259  		rq->rq_flags |= RQF_STATS;
1260  		rq_qos_issue(q, rq);
1261  	}
1262  
1263  	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1264  
1265  	blk_add_timer(rq);
1266  	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1267  
1268  #ifdef CONFIG_BLK_DEV_INTEGRITY
1269  	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1270  		q->integrity.profile->prepare_fn(rq);
1271  #endif
1272  	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1273  	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1274  }
1275  EXPORT_SYMBOL(blk_mq_start_request);
1276  
1277  /*
1278   * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1279   * queues. This is important for md arrays to benefit from merging
1280   * requests.
1281   */
blk_plug_max_rq_count(struct blk_plug * plug)1282  static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1283  {
1284  	if (plug->multiple_queues)
1285  		return BLK_MAX_REQUEST_COUNT * 2;
1286  	return BLK_MAX_REQUEST_COUNT;
1287  }
1288  
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)1289  static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1290  {
1291  	struct request *last = rq_list_peek(&plug->mq_list);
1292  
1293  	if (!plug->rq_count) {
1294  		trace_block_plug(rq->q);
1295  	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1296  		   (!blk_queue_nomerges(rq->q) &&
1297  		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1298  		blk_mq_flush_plug_list(plug, false);
1299  		last = NULL;
1300  		trace_block_plug(rq->q);
1301  	}
1302  
1303  	if (!plug->multiple_queues && last && last->q != rq->q)
1304  		plug->multiple_queues = true;
1305  	/*
1306  	 * Any request allocated from sched tags can't be issued to
1307  	 * ->queue_rqs() directly
1308  	 */
1309  	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1310  		plug->has_elevator = true;
1311  	rq->rq_next = NULL;
1312  	rq_list_add(&plug->mq_list, rq);
1313  	plug->rq_count++;
1314  }
1315  
1316  /**
1317   * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1318   * @rq:		request to insert
1319   * @at_head:    insert request at head or tail of queue
1320   *
1321   * Description:
1322   *    Insert a fully prepared request at the back of the I/O scheduler queue
1323   *    for execution.  Don't wait for completion.
1324   *
1325   * Note:
1326   *    This function will invoke @done directly if the queue is dead.
1327   */
blk_execute_rq_nowait(struct request * rq,bool at_head)1328  void blk_execute_rq_nowait(struct request *rq, bool at_head)
1329  {
1330  	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1331  
1332  	WARN_ON(irqs_disabled());
1333  	WARN_ON(!blk_rq_is_passthrough(rq));
1334  
1335  	blk_account_io_start(rq);
1336  
1337  	/*
1338  	 * As plugging can be enabled for passthrough requests on a zoned
1339  	 * device, directly accessing the plug instead of using blk_mq_plug()
1340  	 * should not have any consequences.
1341  	 */
1342  	if (current->plug && !at_head) {
1343  		blk_add_rq_to_plug(current->plug, rq);
1344  		return;
1345  	}
1346  
1347  	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1348  	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1349  }
1350  EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1351  
1352  struct blk_rq_wait {
1353  	struct completion done;
1354  	blk_status_t ret;
1355  };
1356  
blk_end_sync_rq(struct request * rq,blk_status_t ret)1357  static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1358  {
1359  	struct blk_rq_wait *wait = rq->end_io_data;
1360  
1361  	wait->ret = ret;
1362  	complete(&wait->done);
1363  	return RQ_END_IO_NONE;
1364  }
1365  
blk_rq_is_poll(struct request * rq)1366  bool blk_rq_is_poll(struct request *rq)
1367  {
1368  	if (!rq->mq_hctx)
1369  		return false;
1370  	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1371  		return false;
1372  	return true;
1373  }
1374  EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1375  
blk_rq_poll_completion(struct request * rq,struct completion * wait)1376  static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1377  {
1378  	do {
1379  		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1380  		cond_resched();
1381  	} while (!completion_done(wait));
1382  }
1383  
1384  /**
1385   * blk_execute_rq - insert a request into queue for execution
1386   * @rq:		request to insert
1387   * @at_head:    insert request at head or tail of queue
1388   *
1389   * Description:
1390   *    Insert a fully prepared request at the back of the I/O scheduler queue
1391   *    for execution and wait for completion.
1392   * Return: The blk_status_t result provided to blk_mq_end_request().
1393   */
blk_execute_rq(struct request * rq,bool at_head)1394  blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1395  {
1396  	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1397  	struct blk_rq_wait wait = {
1398  		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1399  	};
1400  
1401  	WARN_ON(irqs_disabled());
1402  	WARN_ON(!blk_rq_is_passthrough(rq));
1403  
1404  	rq->end_io_data = &wait;
1405  	rq->end_io = blk_end_sync_rq;
1406  
1407  	blk_account_io_start(rq);
1408  	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1409  	blk_mq_run_hw_queue(hctx, false);
1410  
1411  	if (blk_rq_is_poll(rq)) {
1412  		blk_rq_poll_completion(rq, &wait.done);
1413  	} else {
1414  		/*
1415  		 * Prevent hang_check timer from firing at us during very long
1416  		 * I/O
1417  		 */
1418  		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1419  
1420  		if (hang_check)
1421  			while (!wait_for_completion_io_timeout(&wait.done,
1422  					hang_check * (HZ/2)))
1423  				;
1424  		else
1425  			wait_for_completion_io(&wait.done);
1426  	}
1427  
1428  	return wait.ret;
1429  }
1430  EXPORT_SYMBOL(blk_execute_rq);
1431  
__blk_mq_requeue_request(struct request * rq)1432  static void __blk_mq_requeue_request(struct request *rq)
1433  {
1434  	struct request_queue *q = rq->q;
1435  
1436  	blk_mq_put_driver_tag(rq);
1437  
1438  	trace_block_rq_requeue(rq);
1439  	rq_qos_requeue(q, rq);
1440  
1441  	if (blk_mq_request_started(rq)) {
1442  		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1443  		rq->rq_flags &= ~RQF_TIMED_OUT;
1444  	}
1445  }
1446  
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)1447  void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1448  {
1449  	struct request_queue *q = rq->q;
1450  	unsigned long flags;
1451  
1452  	__blk_mq_requeue_request(rq);
1453  
1454  	/* this request will be re-inserted to io scheduler queue */
1455  	blk_mq_sched_requeue_request(rq);
1456  
1457  	spin_lock_irqsave(&q->requeue_lock, flags);
1458  	list_add_tail(&rq->queuelist, &q->requeue_list);
1459  	spin_unlock_irqrestore(&q->requeue_lock, flags);
1460  
1461  	if (kick_requeue_list)
1462  		blk_mq_kick_requeue_list(q);
1463  }
1464  EXPORT_SYMBOL(blk_mq_requeue_request);
1465  
blk_mq_requeue_work(struct work_struct * work)1466  static void blk_mq_requeue_work(struct work_struct *work)
1467  {
1468  	struct request_queue *q =
1469  		container_of(work, struct request_queue, requeue_work.work);
1470  	LIST_HEAD(rq_list);
1471  	LIST_HEAD(flush_list);
1472  	struct request *rq;
1473  
1474  	spin_lock_irq(&q->requeue_lock);
1475  	list_splice_init(&q->requeue_list, &rq_list);
1476  	list_splice_init(&q->flush_list, &flush_list);
1477  	spin_unlock_irq(&q->requeue_lock);
1478  
1479  	while (!list_empty(&rq_list)) {
1480  		rq = list_entry(rq_list.next, struct request, queuelist);
1481  		/*
1482  		 * If RQF_DONTPREP ist set, the request has been started by the
1483  		 * driver already and might have driver-specific data allocated
1484  		 * already.  Insert it into the hctx dispatch list to avoid
1485  		 * block layer merges for the request.
1486  		 */
1487  		if (rq->rq_flags & RQF_DONTPREP) {
1488  			list_del_init(&rq->queuelist);
1489  			blk_mq_request_bypass_insert(rq, 0);
1490  		} else {
1491  			list_del_init(&rq->queuelist);
1492  			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1493  		}
1494  	}
1495  
1496  	while (!list_empty(&flush_list)) {
1497  		rq = list_entry(flush_list.next, struct request, queuelist);
1498  		list_del_init(&rq->queuelist);
1499  		blk_mq_insert_request(rq, 0);
1500  	}
1501  
1502  	blk_mq_run_hw_queues(q, false);
1503  }
1504  
blk_mq_kick_requeue_list(struct request_queue * q)1505  void blk_mq_kick_requeue_list(struct request_queue *q)
1506  {
1507  	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1508  }
1509  EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1510  
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)1511  void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1512  				    unsigned long msecs)
1513  {
1514  	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1515  				    msecs_to_jiffies(msecs));
1516  }
1517  EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1518  
blk_is_flush_data_rq(struct request * rq)1519  static bool blk_is_flush_data_rq(struct request *rq)
1520  {
1521  	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1522  }
1523  
blk_mq_rq_inflight(struct request * rq,void * priv)1524  static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1525  {
1526  	/*
1527  	 * If we find a request that isn't idle we know the queue is busy
1528  	 * as it's checked in the iter.
1529  	 * Return false to stop the iteration.
1530  	 *
1531  	 * In case of queue quiesce, if one flush data request is completed,
1532  	 * don't count it as inflight given the flush sequence is suspended,
1533  	 * and the original flush data request is invisible to driver, just
1534  	 * like other pending requests because of quiesce
1535  	 */
1536  	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1537  				blk_is_flush_data_rq(rq) &&
1538  				blk_mq_request_completed(rq))) {
1539  		bool *busy = priv;
1540  
1541  		*busy = true;
1542  		return false;
1543  	}
1544  
1545  	return true;
1546  }
1547  
blk_mq_queue_inflight(struct request_queue * q)1548  bool blk_mq_queue_inflight(struct request_queue *q)
1549  {
1550  	bool busy = false;
1551  
1552  	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1553  	return busy;
1554  }
1555  EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1556  
blk_mq_rq_timed_out(struct request * req)1557  static void blk_mq_rq_timed_out(struct request *req)
1558  {
1559  	req->rq_flags |= RQF_TIMED_OUT;
1560  	if (req->q->mq_ops->timeout) {
1561  		enum blk_eh_timer_return ret;
1562  
1563  		ret = req->q->mq_ops->timeout(req);
1564  		if (ret == BLK_EH_DONE)
1565  			return;
1566  		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1567  	}
1568  
1569  	blk_add_timer(req);
1570  }
1571  
1572  struct blk_expired_data {
1573  	bool has_timedout_rq;
1574  	unsigned long next;
1575  	unsigned long timeout_start;
1576  };
1577  
blk_mq_req_expired(struct request * rq,struct blk_expired_data * expired)1578  static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1579  {
1580  	unsigned long deadline;
1581  
1582  	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1583  		return false;
1584  	if (rq->rq_flags & RQF_TIMED_OUT)
1585  		return false;
1586  
1587  	deadline = READ_ONCE(rq->deadline);
1588  	if (time_after_eq(expired->timeout_start, deadline))
1589  		return true;
1590  
1591  	if (expired->next == 0)
1592  		expired->next = deadline;
1593  	else if (time_after(expired->next, deadline))
1594  		expired->next = deadline;
1595  	return false;
1596  }
1597  
blk_mq_put_rq_ref(struct request * rq)1598  void blk_mq_put_rq_ref(struct request *rq)
1599  {
1600  	if (is_flush_rq(rq)) {
1601  		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1602  			blk_mq_free_request(rq);
1603  	} else if (req_ref_put_and_test(rq)) {
1604  		__blk_mq_free_request(rq);
1605  	}
1606  }
1607  
blk_mq_check_expired(struct request * rq,void * priv)1608  static bool blk_mq_check_expired(struct request *rq, void *priv)
1609  {
1610  	struct blk_expired_data *expired = priv;
1611  
1612  	/*
1613  	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1614  	 * be reallocated underneath the timeout handler's processing, then
1615  	 * the expire check is reliable. If the request is not expired, then
1616  	 * it was completed and reallocated as a new request after returning
1617  	 * from blk_mq_check_expired().
1618  	 */
1619  	if (blk_mq_req_expired(rq, expired)) {
1620  		expired->has_timedout_rq = true;
1621  		return false;
1622  	}
1623  	return true;
1624  }
1625  
blk_mq_handle_expired(struct request * rq,void * priv)1626  static bool blk_mq_handle_expired(struct request *rq, void *priv)
1627  {
1628  	struct blk_expired_data *expired = priv;
1629  
1630  	if (blk_mq_req_expired(rq, expired))
1631  		blk_mq_rq_timed_out(rq);
1632  	return true;
1633  }
1634  
blk_mq_timeout_work(struct work_struct * work)1635  static void blk_mq_timeout_work(struct work_struct *work)
1636  {
1637  	struct request_queue *q =
1638  		container_of(work, struct request_queue, timeout_work);
1639  	struct blk_expired_data expired = {
1640  		.timeout_start = jiffies,
1641  	};
1642  	struct blk_mq_hw_ctx *hctx;
1643  	unsigned long i;
1644  
1645  	/* A deadlock might occur if a request is stuck requiring a
1646  	 * timeout at the same time a queue freeze is waiting
1647  	 * completion, since the timeout code would not be able to
1648  	 * acquire the queue reference here.
1649  	 *
1650  	 * That's why we don't use blk_queue_enter here; instead, we use
1651  	 * percpu_ref_tryget directly, because we need to be able to
1652  	 * obtain a reference even in the short window between the queue
1653  	 * starting to freeze, by dropping the first reference in
1654  	 * blk_freeze_queue_start, and the moment the last request is
1655  	 * consumed, marked by the instant q_usage_counter reaches
1656  	 * zero.
1657  	 */
1658  	if (!percpu_ref_tryget(&q->q_usage_counter))
1659  		return;
1660  
1661  	/* check if there is any timed-out request */
1662  	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1663  	if (expired.has_timedout_rq) {
1664  		/*
1665  		 * Before walking tags, we must ensure any submit started
1666  		 * before the current time has finished. Since the submit
1667  		 * uses srcu or rcu, wait for a synchronization point to
1668  		 * ensure all running submits have finished
1669  		 */
1670  		blk_mq_wait_quiesce_done(q->tag_set);
1671  
1672  		expired.next = 0;
1673  		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1674  	}
1675  
1676  	if (expired.next != 0) {
1677  		mod_timer(&q->timeout, expired.next);
1678  	} else {
1679  		/*
1680  		 * Request timeouts are handled as a forward rolling timer. If
1681  		 * we end up here it means that no requests are pending and
1682  		 * also that no request has been pending for a while. Mark
1683  		 * each hctx as idle.
1684  		 */
1685  		queue_for_each_hw_ctx(q, hctx, i) {
1686  			/* the hctx may be unmapped, so check it here */
1687  			if (blk_mq_hw_queue_mapped(hctx))
1688  				blk_mq_tag_idle(hctx);
1689  		}
1690  	}
1691  	blk_queue_exit(q);
1692  }
1693  
1694  struct flush_busy_ctx_data {
1695  	struct blk_mq_hw_ctx *hctx;
1696  	struct list_head *list;
1697  };
1698  
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1699  static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1700  {
1701  	struct flush_busy_ctx_data *flush_data = data;
1702  	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1703  	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1704  	enum hctx_type type = hctx->type;
1705  
1706  	spin_lock(&ctx->lock);
1707  	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1708  	sbitmap_clear_bit(sb, bitnr);
1709  	spin_unlock(&ctx->lock);
1710  	return true;
1711  }
1712  
1713  /*
1714   * Process software queues that have been marked busy, splicing them
1715   * to the for-dispatch
1716   */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1717  void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1718  {
1719  	struct flush_busy_ctx_data data = {
1720  		.hctx = hctx,
1721  		.list = list,
1722  	};
1723  
1724  	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1725  }
1726  EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1727  
1728  struct dispatch_rq_data {
1729  	struct blk_mq_hw_ctx *hctx;
1730  	struct request *rq;
1731  };
1732  
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1733  static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1734  		void *data)
1735  {
1736  	struct dispatch_rq_data *dispatch_data = data;
1737  	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1738  	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1739  	enum hctx_type type = hctx->type;
1740  
1741  	spin_lock(&ctx->lock);
1742  	if (!list_empty(&ctx->rq_lists[type])) {
1743  		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1744  		list_del_init(&dispatch_data->rq->queuelist);
1745  		if (list_empty(&ctx->rq_lists[type]))
1746  			sbitmap_clear_bit(sb, bitnr);
1747  	}
1748  	spin_unlock(&ctx->lock);
1749  
1750  	return !dispatch_data->rq;
1751  }
1752  
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1753  struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1754  					struct blk_mq_ctx *start)
1755  {
1756  	unsigned off = start ? start->index_hw[hctx->type] : 0;
1757  	struct dispatch_rq_data data = {
1758  		.hctx = hctx,
1759  		.rq   = NULL,
1760  	};
1761  
1762  	__sbitmap_for_each_set(&hctx->ctx_map, off,
1763  			       dispatch_rq_from_ctx, &data);
1764  
1765  	return data.rq;
1766  }
1767  
__blk_mq_alloc_driver_tag(struct request * rq)1768  static bool __blk_mq_alloc_driver_tag(struct request *rq)
1769  {
1770  	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1771  	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1772  	int tag;
1773  
1774  	blk_mq_tag_busy(rq->mq_hctx);
1775  
1776  	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1777  		bt = &rq->mq_hctx->tags->breserved_tags;
1778  		tag_offset = 0;
1779  	} else {
1780  		if (!hctx_may_queue(rq->mq_hctx, bt))
1781  			return false;
1782  	}
1783  
1784  	tag = __sbitmap_queue_get(bt);
1785  	if (tag == BLK_MQ_NO_TAG)
1786  		return false;
1787  
1788  	rq->tag = tag + tag_offset;
1789  	return true;
1790  }
1791  
__blk_mq_get_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)1792  bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1793  {
1794  	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1795  		return false;
1796  
1797  	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1798  			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1799  		rq->rq_flags |= RQF_MQ_INFLIGHT;
1800  		__blk_mq_inc_active_requests(hctx);
1801  	}
1802  	hctx->tags->rqs[rq->tag] = rq;
1803  	return true;
1804  }
1805  
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1806  static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1807  				int flags, void *key)
1808  {
1809  	struct blk_mq_hw_ctx *hctx;
1810  
1811  	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1812  
1813  	spin_lock(&hctx->dispatch_wait_lock);
1814  	if (!list_empty(&wait->entry)) {
1815  		struct sbitmap_queue *sbq;
1816  
1817  		list_del_init(&wait->entry);
1818  		sbq = &hctx->tags->bitmap_tags;
1819  		atomic_dec(&sbq->ws_active);
1820  	}
1821  	spin_unlock(&hctx->dispatch_wait_lock);
1822  
1823  	blk_mq_run_hw_queue(hctx, true);
1824  	return 1;
1825  }
1826  
1827  /*
1828   * Mark us waiting for a tag. For shared tags, this involves hooking us into
1829   * the tag wakeups. For non-shared tags, we can simply mark us needing a
1830   * restart. For both cases, take care to check the condition again after
1831   * marking us as waiting.
1832   */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1833  static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1834  				 struct request *rq)
1835  {
1836  	struct sbitmap_queue *sbq;
1837  	struct wait_queue_head *wq;
1838  	wait_queue_entry_t *wait;
1839  	bool ret;
1840  
1841  	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1842  	    !(blk_mq_is_shared_tags(hctx->flags))) {
1843  		blk_mq_sched_mark_restart_hctx(hctx);
1844  
1845  		/*
1846  		 * It's possible that a tag was freed in the window between the
1847  		 * allocation failure and adding the hardware queue to the wait
1848  		 * queue.
1849  		 *
1850  		 * Don't clear RESTART here, someone else could have set it.
1851  		 * At most this will cost an extra queue run.
1852  		 */
1853  		return blk_mq_get_driver_tag(rq);
1854  	}
1855  
1856  	wait = &hctx->dispatch_wait;
1857  	if (!list_empty_careful(&wait->entry))
1858  		return false;
1859  
1860  	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1861  		sbq = &hctx->tags->breserved_tags;
1862  	else
1863  		sbq = &hctx->tags->bitmap_tags;
1864  	wq = &bt_wait_ptr(sbq, hctx)->wait;
1865  
1866  	spin_lock_irq(&wq->lock);
1867  	spin_lock(&hctx->dispatch_wait_lock);
1868  	if (!list_empty(&wait->entry)) {
1869  		spin_unlock(&hctx->dispatch_wait_lock);
1870  		spin_unlock_irq(&wq->lock);
1871  		return false;
1872  	}
1873  
1874  	atomic_inc(&sbq->ws_active);
1875  	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1876  	__add_wait_queue(wq, wait);
1877  
1878  	/*
1879  	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1880  	 * not imply barrier in case of failure.
1881  	 *
1882  	 * Order adding us to wait queue and allocating driver tag.
1883  	 *
1884  	 * The pair is the one implied in sbitmap_queue_wake_up() which
1885  	 * orders clearing sbitmap tag bits and waitqueue_active() in
1886  	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1887  	 *
1888  	 * Otherwise, re-order of adding wait queue and getting driver tag
1889  	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1890  	 * the waitqueue_active() may not observe us in wait queue.
1891  	 */
1892  	smp_mb();
1893  
1894  	/*
1895  	 * It's possible that a tag was freed in the window between the
1896  	 * allocation failure and adding the hardware queue to the wait
1897  	 * queue.
1898  	 */
1899  	ret = blk_mq_get_driver_tag(rq);
1900  	if (!ret) {
1901  		spin_unlock(&hctx->dispatch_wait_lock);
1902  		spin_unlock_irq(&wq->lock);
1903  		return false;
1904  	}
1905  
1906  	/*
1907  	 * We got a tag, remove ourselves from the wait queue to ensure
1908  	 * someone else gets the wakeup.
1909  	 */
1910  	list_del_init(&wait->entry);
1911  	atomic_dec(&sbq->ws_active);
1912  	spin_unlock(&hctx->dispatch_wait_lock);
1913  	spin_unlock_irq(&wq->lock);
1914  
1915  	return true;
1916  }
1917  
1918  #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1919  #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1920  /*
1921   * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1922   * - EWMA is one simple way to compute running average value
1923   * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1924   * - take 4 as factor for avoiding to get too small(0) result, and this
1925   *   factor doesn't matter because EWMA decreases exponentially
1926   */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1927  static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1928  {
1929  	unsigned int ewma;
1930  
1931  	ewma = hctx->dispatch_busy;
1932  
1933  	if (!ewma && !busy)
1934  		return;
1935  
1936  	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1937  	if (busy)
1938  		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1939  	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1940  
1941  	hctx->dispatch_busy = ewma;
1942  }
1943  
1944  #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1945  
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1946  static void blk_mq_handle_dev_resource(struct request *rq,
1947  				       struct list_head *list)
1948  {
1949  	list_add(&rq->queuelist, list);
1950  	__blk_mq_requeue_request(rq);
1951  }
1952  
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1953  static void blk_mq_handle_zone_resource(struct request *rq,
1954  					struct list_head *zone_list)
1955  {
1956  	/*
1957  	 * If we end up here it is because we cannot dispatch a request to a
1958  	 * specific zone due to LLD level zone-write locking or other zone
1959  	 * related resource not being available. In this case, set the request
1960  	 * aside in zone_list for retrying it later.
1961  	 */
1962  	list_add(&rq->queuelist, zone_list);
1963  	__blk_mq_requeue_request(rq);
1964  }
1965  
1966  enum prep_dispatch {
1967  	PREP_DISPATCH_OK,
1968  	PREP_DISPATCH_NO_TAG,
1969  	PREP_DISPATCH_NO_BUDGET,
1970  };
1971  
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1972  static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1973  						  bool need_budget)
1974  {
1975  	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1976  	int budget_token = -1;
1977  
1978  	if (need_budget) {
1979  		budget_token = blk_mq_get_dispatch_budget(rq->q);
1980  		if (budget_token < 0) {
1981  			blk_mq_put_driver_tag(rq);
1982  			return PREP_DISPATCH_NO_BUDGET;
1983  		}
1984  		blk_mq_set_rq_budget_token(rq, budget_token);
1985  	}
1986  
1987  	if (!blk_mq_get_driver_tag(rq)) {
1988  		/*
1989  		 * The initial allocation attempt failed, so we need to
1990  		 * rerun the hardware queue when a tag is freed. The
1991  		 * waitqueue takes care of that. If the queue is run
1992  		 * before we add this entry back on the dispatch list,
1993  		 * we'll re-run it below.
1994  		 */
1995  		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1996  			/*
1997  			 * All budgets not got from this function will be put
1998  			 * together during handling partial dispatch
1999  			 */
2000  			if (need_budget)
2001  				blk_mq_put_dispatch_budget(rq->q, budget_token);
2002  			return PREP_DISPATCH_NO_TAG;
2003  		}
2004  	}
2005  
2006  	return PREP_DISPATCH_OK;
2007  }
2008  
2009  /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,struct list_head * list)2010  static void blk_mq_release_budgets(struct request_queue *q,
2011  		struct list_head *list)
2012  {
2013  	struct request *rq;
2014  
2015  	list_for_each_entry(rq, list, queuelist) {
2016  		int budget_token = blk_mq_get_rq_budget_token(rq);
2017  
2018  		if (budget_token >= 0)
2019  			blk_mq_put_dispatch_budget(q, budget_token);
2020  	}
2021  }
2022  
2023  /*
2024   * blk_mq_commit_rqs will notify driver using bd->last that there is no
2025   * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2026   * details)
2027   * Attention, we should explicitly call this in unusual cases:
2028   *  1) did not queue everything initially scheduled to queue
2029   *  2) the last attempt to queue a request failed
2030   */
blk_mq_commit_rqs(struct blk_mq_hw_ctx * hctx,int queued,bool from_schedule)2031  static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2032  			      bool from_schedule)
2033  {
2034  	if (hctx->queue->mq_ops->commit_rqs && queued) {
2035  		trace_block_unplug(hctx->queue, queued, !from_schedule);
2036  		hctx->queue->mq_ops->commit_rqs(hctx);
2037  	}
2038  }
2039  
2040  /*
2041   * Returns true if we did some work AND can potentially do more.
2042   */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)2043  bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2044  			     unsigned int nr_budgets)
2045  {
2046  	enum prep_dispatch prep;
2047  	struct request_queue *q = hctx->queue;
2048  	struct request *rq;
2049  	int queued;
2050  	blk_status_t ret = BLK_STS_OK;
2051  	LIST_HEAD(zone_list);
2052  	bool needs_resource = false;
2053  
2054  	if (list_empty(list))
2055  		return false;
2056  
2057  	/*
2058  	 * Now process all the entries, sending them to the driver.
2059  	 */
2060  	queued = 0;
2061  	do {
2062  		struct blk_mq_queue_data bd;
2063  
2064  		rq = list_first_entry(list, struct request, queuelist);
2065  
2066  		WARN_ON_ONCE(hctx != rq->mq_hctx);
2067  		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2068  		if (prep != PREP_DISPATCH_OK)
2069  			break;
2070  
2071  		list_del_init(&rq->queuelist);
2072  
2073  		bd.rq = rq;
2074  		bd.last = list_empty(list);
2075  
2076  		/*
2077  		 * once the request is queued to lld, no need to cover the
2078  		 * budget any more
2079  		 */
2080  		if (nr_budgets)
2081  			nr_budgets--;
2082  		ret = q->mq_ops->queue_rq(hctx, &bd);
2083  		switch (ret) {
2084  		case BLK_STS_OK:
2085  			queued++;
2086  			break;
2087  		case BLK_STS_RESOURCE:
2088  			needs_resource = true;
2089  			fallthrough;
2090  		case BLK_STS_DEV_RESOURCE:
2091  			blk_mq_handle_dev_resource(rq, list);
2092  			goto out;
2093  		case BLK_STS_ZONE_RESOURCE:
2094  			/*
2095  			 * Move the request to zone_list and keep going through
2096  			 * the dispatch list to find more requests the drive can
2097  			 * accept.
2098  			 */
2099  			blk_mq_handle_zone_resource(rq, &zone_list);
2100  			needs_resource = true;
2101  			break;
2102  		default:
2103  			blk_mq_end_request(rq, ret);
2104  		}
2105  	} while (!list_empty(list));
2106  out:
2107  	if (!list_empty(&zone_list))
2108  		list_splice_tail_init(&zone_list, list);
2109  
2110  	/* If we didn't flush the entire list, we could have told the driver
2111  	 * there was more coming, but that turned out to be a lie.
2112  	 */
2113  	if (!list_empty(list) || ret != BLK_STS_OK)
2114  		blk_mq_commit_rqs(hctx, queued, false);
2115  
2116  	/*
2117  	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2118  	 * that is where we will continue on next queue run.
2119  	 */
2120  	if (!list_empty(list)) {
2121  		bool needs_restart;
2122  		/* For non-shared tags, the RESTART check will suffice */
2123  		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2124  			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2125  			blk_mq_is_shared_tags(hctx->flags));
2126  
2127  		if (nr_budgets)
2128  			blk_mq_release_budgets(q, list);
2129  
2130  		spin_lock(&hctx->lock);
2131  		list_splice_tail_init(list, &hctx->dispatch);
2132  		spin_unlock(&hctx->lock);
2133  
2134  		/*
2135  		 * Order adding requests to hctx->dispatch and checking
2136  		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2137  		 * in blk_mq_sched_restart(). Avoid restart code path to
2138  		 * miss the new added requests to hctx->dispatch, meantime
2139  		 * SCHED_RESTART is observed here.
2140  		 */
2141  		smp_mb();
2142  
2143  		/*
2144  		 * If SCHED_RESTART was set by the caller of this function and
2145  		 * it is no longer set that means that it was cleared by another
2146  		 * thread and hence that a queue rerun is needed.
2147  		 *
2148  		 * If 'no_tag' is set, that means that we failed getting
2149  		 * a driver tag with an I/O scheduler attached. If our dispatch
2150  		 * waitqueue is no longer active, ensure that we run the queue
2151  		 * AFTER adding our entries back to the list.
2152  		 *
2153  		 * If no I/O scheduler has been configured it is possible that
2154  		 * the hardware queue got stopped and restarted before requests
2155  		 * were pushed back onto the dispatch list. Rerun the queue to
2156  		 * avoid starvation. Notes:
2157  		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2158  		 *   been stopped before rerunning a queue.
2159  		 * - Some but not all block drivers stop a queue before
2160  		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2161  		 *   and dm-rq.
2162  		 *
2163  		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2164  		 * bit is set, run queue after a delay to avoid IO stalls
2165  		 * that could otherwise occur if the queue is idle.  We'll do
2166  		 * similar if we couldn't get budget or couldn't lock a zone
2167  		 * and SCHED_RESTART is set.
2168  		 */
2169  		needs_restart = blk_mq_sched_needs_restart(hctx);
2170  		if (prep == PREP_DISPATCH_NO_BUDGET)
2171  			needs_resource = true;
2172  		if (!needs_restart ||
2173  		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2174  			blk_mq_run_hw_queue(hctx, true);
2175  		else if (needs_resource)
2176  			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2177  
2178  		blk_mq_update_dispatch_busy(hctx, true);
2179  		return false;
2180  	}
2181  
2182  	blk_mq_update_dispatch_busy(hctx, false);
2183  	return true;
2184  }
2185  
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)2186  static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2187  {
2188  	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2189  
2190  	if (cpu >= nr_cpu_ids)
2191  		cpu = cpumask_first(hctx->cpumask);
2192  	return cpu;
2193  }
2194  
2195  /*
2196   * It'd be great if the workqueue API had a way to pass
2197   * in a mask and had some smarts for more clever placement.
2198   * For now we just round-robin here, switching for every
2199   * BLK_MQ_CPU_WORK_BATCH queued items.
2200   */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)2201  static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2202  {
2203  	bool tried = false;
2204  	int next_cpu = hctx->next_cpu;
2205  
2206  	if (hctx->queue->nr_hw_queues == 1)
2207  		return WORK_CPU_UNBOUND;
2208  
2209  	if (--hctx->next_cpu_batch <= 0) {
2210  select_cpu:
2211  		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2212  				cpu_online_mask);
2213  		if (next_cpu >= nr_cpu_ids)
2214  			next_cpu = blk_mq_first_mapped_cpu(hctx);
2215  		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2216  	}
2217  
2218  	/*
2219  	 * Do unbound schedule if we can't find a online CPU for this hctx,
2220  	 * and it should only happen in the path of handling CPU DEAD.
2221  	 */
2222  	if (!cpu_online(next_cpu)) {
2223  		if (!tried) {
2224  			tried = true;
2225  			goto select_cpu;
2226  		}
2227  
2228  		/*
2229  		 * Make sure to re-select CPU next time once after CPUs
2230  		 * in hctx->cpumask become online again.
2231  		 */
2232  		hctx->next_cpu = next_cpu;
2233  		hctx->next_cpu_batch = 1;
2234  		return WORK_CPU_UNBOUND;
2235  	}
2236  
2237  	hctx->next_cpu = next_cpu;
2238  	return next_cpu;
2239  }
2240  
2241  /**
2242   * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2243   * @hctx: Pointer to the hardware queue to run.
2244   * @msecs: Milliseconds of delay to wait before running the queue.
2245   *
2246   * Run a hardware queue asynchronously with a delay of @msecs.
2247   */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)2248  void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2249  {
2250  	if (unlikely(blk_mq_hctx_stopped(hctx)))
2251  		return;
2252  	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2253  				    msecs_to_jiffies(msecs));
2254  }
2255  EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2256  
blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx * hctx)2257  static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2258  {
2259  	bool need_run;
2260  
2261  	/*
2262  	 * When queue is quiesced, we may be switching io scheduler, or
2263  	 * updating nr_hw_queues, or other things, and we can't run queue
2264  	 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2265  	 *
2266  	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2267  	 * quiesced.
2268  	 */
2269  	__blk_mq_run_dispatch_ops(hctx->queue, false,
2270  		need_run = !blk_queue_quiesced(hctx->queue) &&
2271  		blk_mq_hctx_has_pending(hctx));
2272  	return need_run;
2273  }
2274  
2275  /**
2276   * blk_mq_run_hw_queue - Start to run a hardware queue.
2277   * @hctx: Pointer to the hardware queue to run.
2278   * @async: If we want to run the queue asynchronously.
2279   *
2280   * Check if the request queue is not in a quiesced state and if there are
2281   * pending requests to be sent. If this is true, run the queue to send requests
2282   * to hardware.
2283   */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2284  void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2285  {
2286  	bool need_run;
2287  
2288  	/*
2289  	 * We can't run the queue inline with interrupts disabled.
2290  	 */
2291  	WARN_ON_ONCE(!async && in_interrupt());
2292  
2293  	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2294  
2295  	need_run = blk_mq_hw_queue_need_run(hctx);
2296  	if (!need_run) {
2297  		unsigned long flags;
2298  
2299  		/*
2300  		 * Synchronize with blk_mq_unquiesce_queue(), because we check
2301  		 * if hw queue is quiesced locklessly above, we need the use
2302  		 * ->queue_lock to make sure we see the up-to-date status to
2303  		 * not miss rerunning the hw queue.
2304  		 */
2305  		spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2306  		need_run = blk_mq_hw_queue_need_run(hctx);
2307  		spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2308  
2309  		if (!need_run)
2310  			return;
2311  	}
2312  
2313  	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2314  		blk_mq_delay_run_hw_queue(hctx, 0);
2315  		return;
2316  	}
2317  
2318  	blk_mq_run_dispatch_ops(hctx->queue,
2319  				blk_mq_sched_dispatch_requests(hctx));
2320  }
2321  EXPORT_SYMBOL(blk_mq_run_hw_queue);
2322  
2323  /*
2324   * Return prefered queue to dispatch from (if any) for non-mq aware IO
2325   * scheduler.
2326   */
blk_mq_get_sq_hctx(struct request_queue * q)2327  static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2328  {
2329  	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2330  	/*
2331  	 * If the IO scheduler does not respect hardware queues when
2332  	 * dispatching, we just don't bother with multiple HW queues and
2333  	 * dispatch from hctx for the current CPU since running multiple queues
2334  	 * just causes lock contention inside the scheduler and pointless cache
2335  	 * bouncing.
2336  	 */
2337  	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2338  
2339  	if (!blk_mq_hctx_stopped(hctx))
2340  		return hctx;
2341  	return NULL;
2342  }
2343  
2344  /**
2345   * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2346   * @q: Pointer to the request queue to run.
2347   * @async: If we want to run the queue asynchronously.
2348   */
blk_mq_run_hw_queues(struct request_queue * q,bool async)2349  void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2350  {
2351  	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2352  	unsigned long i;
2353  
2354  	sq_hctx = NULL;
2355  	if (blk_queue_sq_sched(q))
2356  		sq_hctx = blk_mq_get_sq_hctx(q);
2357  	queue_for_each_hw_ctx(q, hctx, i) {
2358  		if (blk_mq_hctx_stopped(hctx))
2359  			continue;
2360  		/*
2361  		 * Dispatch from this hctx either if there's no hctx preferred
2362  		 * by IO scheduler or if it has requests that bypass the
2363  		 * scheduler.
2364  		 */
2365  		if (!sq_hctx || sq_hctx == hctx ||
2366  		    !list_empty_careful(&hctx->dispatch))
2367  			blk_mq_run_hw_queue(hctx, async);
2368  	}
2369  }
2370  EXPORT_SYMBOL(blk_mq_run_hw_queues);
2371  
2372  /**
2373   * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2374   * @q: Pointer to the request queue to run.
2375   * @msecs: Milliseconds of delay to wait before running the queues.
2376   */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)2377  void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2378  {
2379  	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2380  	unsigned long i;
2381  
2382  	sq_hctx = NULL;
2383  	if (blk_queue_sq_sched(q))
2384  		sq_hctx = blk_mq_get_sq_hctx(q);
2385  	queue_for_each_hw_ctx(q, hctx, i) {
2386  		if (blk_mq_hctx_stopped(hctx))
2387  			continue;
2388  		/*
2389  		 * If there is already a run_work pending, leave the
2390  		 * pending delay untouched. Otherwise, a hctx can stall
2391  		 * if another hctx is re-delaying the other's work
2392  		 * before the work executes.
2393  		 */
2394  		if (delayed_work_pending(&hctx->run_work))
2395  			continue;
2396  		/*
2397  		 * Dispatch from this hctx either if there's no hctx preferred
2398  		 * by IO scheduler or if it has requests that bypass the
2399  		 * scheduler.
2400  		 */
2401  		if (!sq_hctx || sq_hctx == hctx ||
2402  		    !list_empty_careful(&hctx->dispatch))
2403  			blk_mq_delay_run_hw_queue(hctx, msecs);
2404  	}
2405  }
2406  EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2407  
2408  /*
2409   * This function is often used for pausing .queue_rq() by driver when
2410   * there isn't enough resource or some conditions aren't satisfied, and
2411   * BLK_STS_RESOURCE is usually returned.
2412   *
2413   * We do not guarantee that dispatch can be drained or blocked
2414   * after blk_mq_stop_hw_queue() returns. Please use
2415   * blk_mq_quiesce_queue() for that requirement.
2416   */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)2417  void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2418  {
2419  	cancel_delayed_work(&hctx->run_work);
2420  
2421  	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2422  }
2423  EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2424  
2425  /*
2426   * This function is often used for pausing .queue_rq() by driver when
2427   * there isn't enough resource or some conditions aren't satisfied, and
2428   * BLK_STS_RESOURCE is usually returned.
2429   *
2430   * We do not guarantee that dispatch can be drained or blocked
2431   * after blk_mq_stop_hw_queues() returns. Please use
2432   * blk_mq_quiesce_queue() for that requirement.
2433   */
blk_mq_stop_hw_queues(struct request_queue * q)2434  void blk_mq_stop_hw_queues(struct request_queue *q)
2435  {
2436  	struct blk_mq_hw_ctx *hctx;
2437  	unsigned long i;
2438  
2439  	queue_for_each_hw_ctx(q, hctx, i)
2440  		blk_mq_stop_hw_queue(hctx);
2441  }
2442  EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2443  
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)2444  void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2445  {
2446  	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2447  
2448  	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2449  }
2450  EXPORT_SYMBOL(blk_mq_start_hw_queue);
2451  
blk_mq_start_hw_queues(struct request_queue * q)2452  void blk_mq_start_hw_queues(struct request_queue *q)
2453  {
2454  	struct blk_mq_hw_ctx *hctx;
2455  	unsigned long i;
2456  
2457  	queue_for_each_hw_ctx(q, hctx, i)
2458  		blk_mq_start_hw_queue(hctx);
2459  }
2460  EXPORT_SYMBOL(blk_mq_start_hw_queues);
2461  
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2462  void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2463  {
2464  	if (!blk_mq_hctx_stopped(hctx))
2465  		return;
2466  
2467  	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2468  	/*
2469  	 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2470  	 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2471  	 * list in the subsequent routine.
2472  	 */
2473  	smp_mb__after_atomic();
2474  	blk_mq_run_hw_queue(hctx, async);
2475  }
2476  EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2477  
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)2478  void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2479  {
2480  	struct blk_mq_hw_ctx *hctx;
2481  	unsigned long i;
2482  
2483  	queue_for_each_hw_ctx(q, hctx, i)
2484  		blk_mq_start_stopped_hw_queue(hctx, async ||
2485  					(hctx->flags & BLK_MQ_F_BLOCKING));
2486  }
2487  EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2488  
blk_mq_run_work_fn(struct work_struct * work)2489  static void blk_mq_run_work_fn(struct work_struct *work)
2490  {
2491  	struct blk_mq_hw_ctx *hctx =
2492  		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2493  
2494  	blk_mq_run_dispatch_ops(hctx->queue,
2495  				blk_mq_sched_dispatch_requests(hctx));
2496  }
2497  
2498  /**
2499   * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2500   * @rq: Pointer to request to be inserted.
2501   * @flags: BLK_MQ_INSERT_*
2502   *
2503   * Should only be used carefully, when the caller knows we want to
2504   * bypass a potential IO scheduler on the target device.
2505   */
blk_mq_request_bypass_insert(struct request * rq,blk_insert_t flags)2506  static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2507  {
2508  	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2509  
2510  	spin_lock(&hctx->lock);
2511  	if (flags & BLK_MQ_INSERT_AT_HEAD)
2512  		list_add(&rq->queuelist, &hctx->dispatch);
2513  	else
2514  		list_add_tail(&rq->queuelist, &hctx->dispatch);
2515  	spin_unlock(&hctx->lock);
2516  }
2517  
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)2518  static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2519  		struct blk_mq_ctx *ctx, struct list_head *list,
2520  		bool run_queue_async)
2521  {
2522  	struct request *rq;
2523  	enum hctx_type type = hctx->type;
2524  
2525  	/*
2526  	 * Try to issue requests directly if the hw queue isn't busy to save an
2527  	 * extra enqueue & dequeue to the sw queue.
2528  	 */
2529  	if (!hctx->dispatch_busy && !run_queue_async) {
2530  		blk_mq_run_dispatch_ops(hctx->queue,
2531  			blk_mq_try_issue_list_directly(hctx, list));
2532  		if (list_empty(list))
2533  			goto out;
2534  	}
2535  
2536  	/*
2537  	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2538  	 * offline now
2539  	 */
2540  	list_for_each_entry(rq, list, queuelist) {
2541  		BUG_ON(rq->mq_ctx != ctx);
2542  		trace_block_rq_insert(rq);
2543  		if (rq->cmd_flags & REQ_NOWAIT)
2544  			run_queue_async = true;
2545  	}
2546  
2547  	spin_lock(&ctx->lock);
2548  	list_splice_tail_init(list, &ctx->rq_lists[type]);
2549  	blk_mq_hctx_mark_pending(hctx, ctx);
2550  	spin_unlock(&ctx->lock);
2551  out:
2552  	blk_mq_run_hw_queue(hctx, run_queue_async);
2553  }
2554  
blk_mq_insert_request(struct request * rq,blk_insert_t flags)2555  static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2556  {
2557  	struct request_queue *q = rq->q;
2558  	struct blk_mq_ctx *ctx = rq->mq_ctx;
2559  	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2560  
2561  	if (blk_rq_is_passthrough(rq)) {
2562  		/*
2563  		 * Passthrough request have to be added to hctx->dispatch
2564  		 * directly.  The device may be in a situation where it can't
2565  		 * handle FS request, and always returns BLK_STS_RESOURCE for
2566  		 * them, which gets them added to hctx->dispatch.
2567  		 *
2568  		 * If a passthrough request is required to unblock the queues,
2569  		 * and it is added to the scheduler queue, there is no chance to
2570  		 * dispatch it given we prioritize requests in hctx->dispatch.
2571  		 */
2572  		blk_mq_request_bypass_insert(rq, flags);
2573  	} else if (req_op(rq) == REQ_OP_FLUSH) {
2574  		/*
2575  		 * Firstly normal IO request is inserted to scheduler queue or
2576  		 * sw queue, meantime we add flush request to dispatch queue(
2577  		 * hctx->dispatch) directly and there is at most one in-flight
2578  		 * flush request for each hw queue, so it doesn't matter to add
2579  		 * flush request to tail or front of the dispatch queue.
2580  		 *
2581  		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2582  		 * command, and queueing it will fail when there is any
2583  		 * in-flight normal IO request(NCQ command). When adding flush
2584  		 * rq to the front of hctx->dispatch, it is easier to introduce
2585  		 * extra time to flush rq's latency because of S_SCHED_RESTART
2586  		 * compared with adding to the tail of dispatch queue, then
2587  		 * chance of flush merge is increased, and less flush requests
2588  		 * will be issued to controller. It is observed that ~10% time
2589  		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2590  		 * drive when adding flush rq to the front of hctx->dispatch.
2591  		 *
2592  		 * Simply queue flush rq to the front of hctx->dispatch so that
2593  		 * intensive flush workloads can benefit in case of NCQ HW.
2594  		 */
2595  		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2596  	} else if (q->elevator) {
2597  		LIST_HEAD(list);
2598  
2599  		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2600  
2601  		list_add(&rq->queuelist, &list);
2602  		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2603  	} else {
2604  		trace_block_rq_insert(rq);
2605  
2606  		spin_lock(&ctx->lock);
2607  		if (flags & BLK_MQ_INSERT_AT_HEAD)
2608  			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2609  		else
2610  			list_add_tail(&rq->queuelist,
2611  				      &ctx->rq_lists[hctx->type]);
2612  		blk_mq_hctx_mark_pending(hctx, ctx);
2613  		spin_unlock(&ctx->lock);
2614  	}
2615  }
2616  
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)2617  static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2618  		unsigned int nr_segs)
2619  {
2620  	int err;
2621  
2622  	if (bio->bi_opf & REQ_RAHEAD)
2623  		rq->cmd_flags |= REQ_FAILFAST_MASK;
2624  
2625  	rq->__sector = bio->bi_iter.bi_sector;
2626  	blk_rq_bio_prep(rq, bio, nr_segs);
2627  
2628  	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2629  	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2630  	WARN_ON_ONCE(err);
2631  
2632  	blk_account_io_start(rq);
2633  }
2634  
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool last)2635  static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2636  					    struct request *rq, bool last)
2637  {
2638  	struct request_queue *q = rq->q;
2639  	struct blk_mq_queue_data bd = {
2640  		.rq = rq,
2641  		.last = last,
2642  	};
2643  	blk_status_t ret;
2644  
2645  	/*
2646  	 * For OK queue, we are done. For error, caller may kill it.
2647  	 * Any other error (busy), just add it to our list as we
2648  	 * previously would have done.
2649  	 */
2650  	ret = q->mq_ops->queue_rq(hctx, &bd);
2651  	switch (ret) {
2652  	case BLK_STS_OK:
2653  		blk_mq_update_dispatch_busy(hctx, false);
2654  		break;
2655  	case BLK_STS_RESOURCE:
2656  	case BLK_STS_DEV_RESOURCE:
2657  		blk_mq_update_dispatch_busy(hctx, true);
2658  		__blk_mq_requeue_request(rq);
2659  		break;
2660  	default:
2661  		blk_mq_update_dispatch_busy(hctx, false);
2662  		break;
2663  	}
2664  
2665  	return ret;
2666  }
2667  
blk_mq_get_budget_and_tag(struct request * rq)2668  static bool blk_mq_get_budget_and_tag(struct request *rq)
2669  {
2670  	int budget_token;
2671  
2672  	budget_token = blk_mq_get_dispatch_budget(rq->q);
2673  	if (budget_token < 0)
2674  		return false;
2675  	blk_mq_set_rq_budget_token(rq, budget_token);
2676  	if (!blk_mq_get_driver_tag(rq)) {
2677  		blk_mq_put_dispatch_budget(rq->q, budget_token);
2678  		return false;
2679  	}
2680  	return true;
2681  }
2682  
2683  /**
2684   * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2685   * @hctx: Pointer of the associated hardware queue.
2686   * @rq: Pointer to request to be sent.
2687   *
2688   * If the device has enough resources to accept a new request now, send the
2689   * request directly to device driver. Else, insert at hctx->dispatch queue, so
2690   * we can try send it another time in the future. Requests inserted at this
2691   * queue have higher priority.
2692   */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq)2693  static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2694  		struct request *rq)
2695  {
2696  	blk_status_t ret;
2697  
2698  	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2699  		blk_mq_insert_request(rq, 0);
2700  		blk_mq_run_hw_queue(hctx, false);
2701  		return;
2702  	}
2703  
2704  	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2705  		blk_mq_insert_request(rq, 0);
2706  		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2707  		return;
2708  	}
2709  
2710  	ret = __blk_mq_issue_directly(hctx, rq, true);
2711  	switch (ret) {
2712  	case BLK_STS_OK:
2713  		break;
2714  	case BLK_STS_RESOURCE:
2715  	case BLK_STS_DEV_RESOURCE:
2716  		blk_mq_request_bypass_insert(rq, 0);
2717  		blk_mq_run_hw_queue(hctx, false);
2718  		break;
2719  	default:
2720  		blk_mq_end_request(rq, ret);
2721  		break;
2722  	}
2723  }
2724  
blk_mq_request_issue_directly(struct request * rq,bool last)2725  static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2726  {
2727  	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2728  
2729  	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2730  		blk_mq_insert_request(rq, 0);
2731  		blk_mq_run_hw_queue(hctx, false);
2732  		return BLK_STS_OK;
2733  	}
2734  
2735  	if (!blk_mq_get_budget_and_tag(rq))
2736  		return BLK_STS_RESOURCE;
2737  	return __blk_mq_issue_directly(hctx, rq, last);
2738  }
2739  
blk_mq_plug_issue_direct(struct blk_plug * plug)2740  static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2741  {
2742  	struct blk_mq_hw_ctx *hctx = NULL;
2743  	struct request *rq;
2744  	int queued = 0;
2745  	blk_status_t ret = BLK_STS_OK;
2746  
2747  	while ((rq = rq_list_pop(&plug->mq_list))) {
2748  		bool last = rq_list_empty(plug->mq_list);
2749  
2750  		if (hctx != rq->mq_hctx) {
2751  			if (hctx) {
2752  				blk_mq_commit_rqs(hctx, queued, false);
2753  				queued = 0;
2754  			}
2755  			hctx = rq->mq_hctx;
2756  		}
2757  
2758  		ret = blk_mq_request_issue_directly(rq, last);
2759  		switch (ret) {
2760  		case BLK_STS_OK:
2761  			queued++;
2762  			break;
2763  		case BLK_STS_RESOURCE:
2764  		case BLK_STS_DEV_RESOURCE:
2765  			blk_mq_request_bypass_insert(rq, 0);
2766  			blk_mq_run_hw_queue(hctx, false);
2767  			goto out;
2768  		default:
2769  			blk_mq_end_request(rq, ret);
2770  			break;
2771  		}
2772  	}
2773  
2774  out:
2775  	if (ret != BLK_STS_OK)
2776  		blk_mq_commit_rqs(hctx, queued, false);
2777  }
2778  
__blk_mq_flush_plug_list(struct request_queue * q,struct blk_plug * plug)2779  static void __blk_mq_flush_plug_list(struct request_queue *q,
2780  				     struct blk_plug *plug)
2781  {
2782  	if (blk_queue_quiesced(q))
2783  		return;
2784  	q->mq_ops->queue_rqs(&plug->mq_list);
2785  }
2786  
blk_mq_dispatch_plug_list(struct blk_plug * plug,bool from_sched)2787  static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2788  {
2789  	struct blk_mq_hw_ctx *this_hctx = NULL;
2790  	struct blk_mq_ctx *this_ctx = NULL;
2791  	struct request *requeue_list = NULL;
2792  	struct request **requeue_lastp = &requeue_list;
2793  	unsigned int depth = 0;
2794  	bool is_passthrough = false;
2795  	LIST_HEAD(list);
2796  
2797  	do {
2798  		struct request *rq = rq_list_pop(&plug->mq_list);
2799  
2800  		if (!this_hctx) {
2801  			this_hctx = rq->mq_hctx;
2802  			this_ctx = rq->mq_ctx;
2803  			is_passthrough = blk_rq_is_passthrough(rq);
2804  		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2805  			   is_passthrough != blk_rq_is_passthrough(rq)) {
2806  			rq_list_add_tail(&requeue_lastp, rq);
2807  			continue;
2808  		}
2809  		list_add(&rq->queuelist, &list);
2810  		depth++;
2811  	} while (!rq_list_empty(plug->mq_list));
2812  
2813  	plug->mq_list = requeue_list;
2814  	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2815  
2816  	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2817  	/* passthrough requests should never be issued to the I/O scheduler */
2818  	if (is_passthrough) {
2819  		spin_lock(&this_hctx->lock);
2820  		list_splice_tail_init(&list, &this_hctx->dispatch);
2821  		spin_unlock(&this_hctx->lock);
2822  		blk_mq_run_hw_queue(this_hctx, from_sched);
2823  	} else if (this_hctx->queue->elevator) {
2824  		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2825  				&list, 0);
2826  		blk_mq_run_hw_queue(this_hctx, from_sched);
2827  	} else {
2828  		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2829  	}
2830  	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2831  }
2832  
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)2833  void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2834  {
2835  	struct request *rq;
2836  
2837  	/*
2838  	 * We may have been called recursively midway through handling
2839  	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2840  	 * To avoid mq_list changing under our feet, clear rq_count early and
2841  	 * bail out specifically if rq_count is 0 rather than checking
2842  	 * whether the mq_list is empty.
2843  	 */
2844  	if (plug->rq_count == 0)
2845  		return;
2846  	plug->rq_count = 0;
2847  
2848  	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2849  		struct request_queue *q;
2850  
2851  		rq = rq_list_peek(&plug->mq_list);
2852  		q = rq->q;
2853  
2854  		/*
2855  		 * Peek first request and see if we have a ->queue_rqs() hook.
2856  		 * If we do, we can dispatch the whole plug list in one go. We
2857  		 * already know at this point that all requests belong to the
2858  		 * same queue, caller must ensure that's the case.
2859  		 *
2860  		 * Since we pass off the full list to the driver at this point,
2861  		 * we do not increment the active request count for the queue.
2862  		 * Bypass shared tags for now because of that.
2863  		 */
2864  		if (q->mq_ops->queue_rqs &&
2865  		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2866  			blk_mq_run_dispatch_ops(q,
2867  				__blk_mq_flush_plug_list(q, plug));
2868  			if (rq_list_empty(plug->mq_list))
2869  				return;
2870  		}
2871  
2872  		blk_mq_run_dispatch_ops(q,
2873  				blk_mq_plug_issue_direct(plug));
2874  		if (rq_list_empty(plug->mq_list))
2875  			return;
2876  	}
2877  
2878  	do {
2879  		blk_mq_dispatch_plug_list(plug, from_schedule);
2880  	} while (!rq_list_empty(plug->mq_list));
2881  }
2882  
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2883  static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2884  		struct list_head *list)
2885  {
2886  	int queued = 0;
2887  	blk_status_t ret = BLK_STS_OK;
2888  
2889  	while (!list_empty(list)) {
2890  		struct request *rq = list_first_entry(list, struct request,
2891  				queuelist);
2892  
2893  		list_del_init(&rq->queuelist);
2894  		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2895  		switch (ret) {
2896  		case BLK_STS_OK:
2897  			queued++;
2898  			break;
2899  		case BLK_STS_RESOURCE:
2900  		case BLK_STS_DEV_RESOURCE:
2901  			blk_mq_request_bypass_insert(rq, 0);
2902  			if (list_empty(list))
2903  				blk_mq_run_hw_queue(hctx, false);
2904  			goto out;
2905  		default:
2906  			blk_mq_end_request(rq, ret);
2907  			break;
2908  		}
2909  	}
2910  
2911  out:
2912  	if (ret != BLK_STS_OK)
2913  		blk_mq_commit_rqs(hctx, queued, false);
2914  }
2915  
blk_mq_attempt_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2916  static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2917  				     struct bio *bio, unsigned int nr_segs)
2918  {
2919  	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2920  		if (blk_attempt_plug_merge(q, bio, nr_segs))
2921  			return true;
2922  		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2923  			return true;
2924  	}
2925  	return false;
2926  }
2927  
blk_mq_get_new_requests(struct request_queue * q,struct blk_plug * plug,struct bio * bio,unsigned int nsegs)2928  static struct request *blk_mq_get_new_requests(struct request_queue *q,
2929  					       struct blk_plug *plug,
2930  					       struct bio *bio,
2931  					       unsigned int nsegs)
2932  {
2933  	struct blk_mq_alloc_data data = {
2934  		.q		= q,
2935  		.nr_tags	= 1,
2936  		.cmd_flags	= bio->bi_opf,
2937  	};
2938  	struct request *rq;
2939  
2940  	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2941  		return NULL;
2942  
2943  	rq_qos_throttle(q, bio);
2944  
2945  	if (plug) {
2946  		data.nr_tags = plug->nr_ios;
2947  		plug->nr_ios = 1;
2948  		data.cached_rq = &plug->cached_rq;
2949  	}
2950  
2951  	rq = __blk_mq_alloc_requests(&data);
2952  	if (rq)
2953  		return rq;
2954  	rq_qos_cleanup(q, bio);
2955  	if (bio->bi_opf & REQ_NOWAIT)
2956  		bio_wouldblock_error(bio);
2957  	return NULL;
2958  }
2959  
2960  /* return true if this @rq can be used for @bio */
blk_mq_can_use_cached_rq(struct request * rq,struct blk_plug * plug,struct bio * bio)2961  static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2962  		struct bio *bio)
2963  {
2964  	enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2965  	enum hctx_type hctx_type = rq->mq_hctx->type;
2966  
2967  	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2968  
2969  	if (type != hctx_type &&
2970  	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2971  		return false;
2972  	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2973  		return false;
2974  
2975  	/*
2976  	 * If any qos ->throttle() end up blocking, we will have flushed the
2977  	 * plug and hence killed the cached_rq list as well. Pop this entry
2978  	 * before we throttle.
2979  	 */
2980  	plug->cached_rq = rq_list_next(rq);
2981  	rq_qos_throttle(rq->q, bio);
2982  
2983  	blk_mq_rq_time_init(rq, 0);
2984  	rq->cmd_flags = bio->bi_opf;
2985  	INIT_LIST_HEAD(&rq->queuelist);
2986  	return true;
2987  }
2988  
2989  /**
2990   * blk_mq_submit_bio - Create and send a request to block device.
2991   * @bio: Bio pointer.
2992   *
2993   * Builds up a request structure from @q and @bio and send to the device. The
2994   * request may not be queued directly to hardware if:
2995   * * This request can be merged with another one
2996   * * We want to place request at plug queue for possible future merging
2997   * * There is an IO scheduler active at this queue
2998   *
2999   * It will not queue the request if there is an error with the bio, or at the
3000   * request creation.
3001   */
blk_mq_submit_bio(struct bio * bio)3002  void blk_mq_submit_bio(struct bio *bio)
3003  {
3004  	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3005  	struct blk_plug *plug = blk_mq_plug(bio);
3006  	const int is_sync = op_is_sync(bio->bi_opf);
3007  	struct blk_mq_hw_ctx *hctx;
3008  	struct request *rq = NULL;
3009  	unsigned int nr_segs = 1;
3010  	blk_status_t ret;
3011  
3012  	bio = blk_queue_bounce(bio, q);
3013  
3014  	if (plug) {
3015  		rq = rq_list_peek(&plug->cached_rq);
3016  		if (rq && rq->q != q)
3017  			rq = NULL;
3018  	}
3019  	if (rq) {
3020  		if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3021  			bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3022  			if (!bio)
3023  				return;
3024  		}
3025  		if (!bio_integrity_prep(bio))
3026  			return;
3027  		if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3028  			return;
3029  		if (blk_mq_can_use_cached_rq(rq, plug, bio))
3030  			goto done;
3031  		percpu_ref_get(&q->q_usage_counter);
3032  	} else {
3033  		if (unlikely(bio_queue_enter(bio)))
3034  			return;
3035  		if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3036  			bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3037  			if (!bio)
3038  				goto fail;
3039  		}
3040  		if (!bio_integrity_prep(bio))
3041  			goto fail;
3042  	}
3043  
3044  	rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3045  	if (unlikely(!rq)) {
3046  fail:
3047  		blk_queue_exit(q);
3048  		return;
3049  	}
3050  
3051  done:
3052  	trace_block_getrq(bio);
3053  
3054  	rq_qos_track(q, rq, bio);
3055  
3056  	blk_mq_bio_to_request(rq, bio, nr_segs);
3057  
3058  	ret = blk_crypto_rq_get_keyslot(rq);
3059  	if (ret != BLK_STS_OK) {
3060  		bio->bi_status = ret;
3061  		bio_endio(bio);
3062  		blk_mq_free_request(rq);
3063  		return;
3064  	}
3065  
3066  	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3067  		return;
3068  
3069  	if (plug) {
3070  		blk_add_rq_to_plug(plug, rq);
3071  		return;
3072  	}
3073  
3074  	hctx = rq->mq_hctx;
3075  	if ((rq->rq_flags & RQF_USE_SCHED) ||
3076  	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3077  		blk_mq_insert_request(rq, 0);
3078  		blk_mq_run_hw_queue(hctx, true);
3079  	} else {
3080  		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3081  	}
3082  }
3083  
3084  #ifdef CONFIG_BLK_MQ_STACKING
3085  /**
3086   * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3087   * @rq: the request being queued
3088   */
blk_insert_cloned_request(struct request * rq)3089  blk_status_t blk_insert_cloned_request(struct request *rq)
3090  {
3091  	struct request_queue *q = rq->q;
3092  	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3093  	unsigned int max_segments = blk_rq_get_max_segments(rq);
3094  	blk_status_t ret;
3095  
3096  	if (blk_rq_sectors(rq) > max_sectors) {
3097  		/*
3098  		 * SCSI device does not have a good way to return if
3099  		 * Write Same/Zero is actually supported. If a device rejects
3100  		 * a non-read/write command (discard, write same,etc.) the
3101  		 * low-level device driver will set the relevant queue limit to
3102  		 * 0 to prevent blk-lib from issuing more of the offending
3103  		 * operations. Commands queued prior to the queue limit being
3104  		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3105  		 * errors being propagated to upper layers.
3106  		 */
3107  		if (max_sectors == 0)
3108  			return BLK_STS_NOTSUPP;
3109  
3110  		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3111  			__func__, blk_rq_sectors(rq), max_sectors);
3112  		return BLK_STS_IOERR;
3113  	}
3114  
3115  	/*
3116  	 * The queue settings related to segment counting may differ from the
3117  	 * original queue.
3118  	 */
3119  	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3120  	if (rq->nr_phys_segments > max_segments) {
3121  		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3122  			__func__, rq->nr_phys_segments, max_segments);
3123  		return BLK_STS_IOERR;
3124  	}
3125  
3126  	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3127  		return BLK_STS_IOERR;
3128  
3129  	ret = blk_crypto_rq_get_keyslot(rq);
3130  	if (ret != BLK_STS_OK)
3131  		return ret;
3132  
3133  	blk_account_io_start(rq);
3134  
3135  	/*
3136  	 * Since we have a scheduler attached on the top device,
3137  	 * bypass a potential scheduler on the bottom device for
3138  	 * insert.
3139  	 */
3140  	blk_mq_run_dispatch_ops(q,
3141  			ret = blk_mq_request_issue_directly(rq, true));
3142  	if (ret)
3143  		blk_account_io_done(rq, ktime_get_ns());
3144  	return ret;
3145  }
3146  EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3147  
3148  /**
3149   * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3150   * @rq: the clone request to be cleaned up
3151   *
3152   * Description:
3153   *     Free all bios in @rq for a cloned request.
3154   */
blk_rq_unprep_clone(struct request * rq)3155  void blk_rq_unprep_clone(struct request *rq)
3156  {
3157  	struct bio *bio;
3158  
3159  	while ((bio = rq->bio) != NULL) {
3160  		rq->bio = bio->bi_next;
3161  
3162  		bio_put(bio);
3163  	}
3164  }
3165  EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3166  
3167  /**
3168   * blk_rq_prep_clone - Helper function to setup clone request
3169   * @rq: the request to be setup
3170   * @rq_src: original request to be cloned
3171   * @bs: bio_set that bios for clone are allocated from
3172   * @gfp_mask: memory allocation mask for bio
3173   * @bio_ctr: setup function to be called for each clone bio.
3174   *           Returns %0 for success, non %0 for failure.
3175   * @data: private data to be passed to @bio_ctr
3176   *
3177   * Description:
3178   *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3179   *     Also, pages which the original bios are pointing to are not copied
3180   *     and the cloned bios just point same pages.
3181   *     So cloned bios must be completed before original bios, which means
3182   *     the caller must complete @rq before @rq_src.
3183   */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3184  int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3185  		      struct bio_set *bs, gfp_t gfp_mask,
3186  		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3187  		      void *data)
3188  {
3189  	struct bio *bio, *bio_src;
3190  
3191  	if (!bs)
3192  		bs = &fs_bio_set;
3193  
3194  	__rq_for_each_bio(bio_src, rq_src) {
3195  		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3196  				      bs);
3197  		if (!bio)
3198  			goto free_and_out;
3199  
3200  		if (bio_ctr && bio_ctr(bio, bio_src, data))
3201  			goto free_and_out;
3202  
3203  		if (rq->bio) {
3204  			rq->biotail->bi_next = bio;
3205  			rq->biotail = bio;
3206  		} else {
3207  			rq->bio = rq->biotail = bio;
3208  		}
3209  		bio = NULL;
3210  	}
3211  
3212  	/* Copy attributes of the original request to the clone request. */
3213  	rq->__sector = blk_rq_pos(rq_src);
3214  	rq->__data_len = blk_rq_bytes(rq_src);
3215  	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3216  		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3217  		rq->special_vec = rq_src->special_vec;
3218  	}
3219  	rq->nr_phys_segments = rq_src->nr_phys_segments;
3220  	rq->ioprio = rq_src->ioprio;
3221  
3222  	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3223  		goto free_and_out;
3224  
3225  	return 0;
3226  
3227  free_and_out:
3228  	if (bio)
3229  		bio_put(bio);
3230  	blk_rq_unprep_clone(rq);
3231  
3232  	return -ENOMEM;
3233  }
3234  EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3235  #endif /* CONFIG_BLK_MQ_STACKING */
3236  
3237  /*
3238   * Steal bios from a request and add them to a bio list.
3239   * The request must not have been partially completed before.
3240   */
blk_steal_bios(struct bio_list * list,struct request * rq)3241  void blk_steal_bios(struct bio_list *list, struct request *rq)
3242  {
3243  	if (rq->bio) {
3244  		if (list->tail)
3245  			list->tail->bi_next = rq->bio;
3246  		else
3247  			list->head = rq->bio;
3248  		list->tail = rq->biotail;
3249  
3250  		rq->bio = NULL;
3251  		rq->biotail = NULL;
3252  	}
3253  
3254  	rq->__data_len = 0;
3255  }
3256  EXPORT_SYMBOL_GPL(blk_steal_bios);
3257  
order_to_size(unsigned int order)3258  static size_t order_to_size(unsigned int order)
3259  {
3260  	return (size_t)PAGE_SIZE << order;
3261  }
3262  
3263  /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tags * drv_tags,struct blk_mq_tags * tags)3264  static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3265  				    struct blk_mq_tags *tags)
3266  {
3267  	struct page *page;
3268  	unsigned long flags;
3269  
3270  	/*
3271  	 * There is no need to clear mapping if driver tags is not initialized
3272  	 * or the mapping belongs to the driver tags.
3273  	 */
3274  	if (!drv_tags || drv_tags == tags)
3275  		return;
3276  
3277  	list_for_each_entry(page, &tags->page_list, lru) {
3278  		unsigned long start = (unsigned long)page_address(page);
3279  		unsigned long end = start + order_to_size(page->private);
3280  		int i;
3281  
3282  		for (i = 0; i < drv_tags->nr_tags; i++) {
3283  			struct request *rq = drv_tags->rqs[i];
3284  			unsigned long rq_addr = (unsigned long)rq;
3285  
3286  			if (rq_addr >= start && rq_addr < end) {
3287  				WARN_ON_ONCE(req_ref_read(rq) != 0);
3288  				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3289  			}
3290  		}
3291  	}
3292  
3293  	/*
3294  	 * Wait until all pending iteration is done.
3295  	 *
3296  	 * Request reference is cleared and it is guaranteed to be observed
3297  	 * after the ->lock is released.
3298  	 */
3299  	spin_lock_irqsave(&drv_tags->lock, flags);
3300  	spin_unlock_irqrestore(&drv_tags->lock, flags);
3301  }
3302  
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3303  void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3304  		     unsigned int hctx_idx)
3305  {
3306  	struct blk_mq_tags *drv_tags;
3307  	struct page *page;
3308  
3309  	if (list_empty(&tags->page_list))
3310  		return;
3311  
3312  	if (blk_mq_is_shared_tags(set->flags))
3313  		drv_tags = set->shared_tags;
3314  	else
3315  		drv_tags = set->tags[hctx_idx];
3316  
3317  	if (tags->static_rqs && set->ops->exit_request) {
3318  		int i;
3319  
3320  		for (i = 0; i < tags->nr_tags; i++) {
3321  			struct request *rq = tags->static_rqs[i];
3322  
3323  			if (!rq)
3324  				continue;
3325  			set->ops->exit_request(set, rq, hctx_idx);
3326  			tags->static_rqs[i] = NULL;
3327  		}
3328  	}
3329  
3330  	blk_mq_clear_rq_mapping(drv_tags, tags);
3331  
3332  	while (!list_empty(&tags->page_list)) {
3333  		page = list_first_entry(&tags->page_list, struct page, lru);
3334  		list_del_init(&page->lru);
3335  		/*
3336  		 * Remove kmemleak object previously allocated in
3337  		 * blk_mq_alloc_rqs().
3338  		 */
3339  		kmemleak_free(page_address(page));
3340  		__free_pages(page, page->private);
3341  	}
3342  }
3343  
blk_mq_free_rq_map(struct blk_mq_tags * tags)3344  void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3345  {
3346  	kfree(tags->rqs);
3347  	tags->rqs = NULL;
3348  	kfree(tags->static_rqs);
3349  	tags->static_rqs = NULL;
3350  
3351  	blk_mq_free_tags(tags);
3352  }
3353  
hctx_idx_to_type(struct blk_mq_tag_set * set,unsigned int hctx_idx)3354  static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3355  		unsigned int hctx_idx)
3356  {
3357  	int i;
3358  
3359  	for (i = 0; i < set->nr_maps; i++) {
3360  		unsigned int start = set->map[i].queue_offset;
3361  		unsigned int end = start + set->map[i].nr_queues;
3362  
3363  		if (hctx_idx >= start && hctx_idx < end)
3364  			break;
3365  	}
3366  
3367  	if (i >= set->nr_maps)
3368  		i = HCTX_TYPE_DEFAULT;
3369  
3370  	return i;
3371  }
3372  
blk_mq_get_hctx_node(struct blk_mq_tag_set * set,unsigned int hctx_idx)3373  static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3374  		unsigned int hctx_idx)
3375  {
3376  	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3377  
3378  	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3379  }
3380  
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)3381  static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3382  					       unsigned int hctx_idx,
3383  					       unsigned int nr_tags,
3384  					       unsigned int reserved_tags)
3385  {
3386  	int node = blk_mq_get_hctx_node(set, hctx_idx);
3387  	struct blk_mq_tags *tags;
3388  
3389  	if (node == NUMA_NO_NODE)
3390  		node = set->numa_node;
3391  
3392  	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3393  				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3394  	if (!tags)
3395  		return NULL;
3396  
3397  	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3398  				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3399  				 node);
3400  	if (!tags->rqs)
3401  		goto err_free_tags;
3402  
3403  	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3404  					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3405  					node);
3406  	if (!tags->static_rqs)
3407  		goto err_free_rqs;
3408  
3409  	return tags;
3410  
3411  err_free_rqs:
3412  	kfree(tags->rqs);
3413  err_free_tags:
3414  	blk_mq_free_tags(tags);
3415  	return NULL;
3416  }
3417  
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)3418  static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3419  			       unsigned int hctx_idx, int node)
3420  {
3421  	int ret;
3422  
3423  	if (set->ops->init_request) {
3424  		ret = set->ops->init_request(set, rq, hctx_idx, node);
3425  		if (ret)
3426  			return ret;
3427  	}
3428  
3429  	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3430  	return 0;
3431  }
3432  
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)3433  static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3434  			    struct blk_mq_tags *tags,
3435  			    unsigned int hctx_idx, unsigned int depth)
3436  {
3437  	unsigned int i, j, entries_per_page, max_order = 4;
3438  	int node = blk_mq_get_hctx_node(set, hctx_idx);
3439  	size_t rq_size, left;
3440  
3441  	if (node == NUMA_NO_NODE)
3442  		node = set->numa_node;
3443  
3444  	INIT_LIST_HEAD(&tags->page_list);
3445  
3446  	/*
3447  	 * rq_size is the size of the request plus driver payload, rounded
3448  	 * to the cacheline size
3449  	 */
3450  	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3451  				cache_line_size());
3452  	left = rq_size * depth;
3453  
3454  	for (i = 0; i < depth; ) {
3455  		int this_order = max_order;
3456  		struct page *page;
3457  		int to_do;
3458  		void *p;
3459  
3460  		while (this_order && left < order_to_size(this_order - 1))
3461  			this_order--;
3462  
3463  		do {
3464  			page = alloc_pages_node(node,
3465  				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3466  				this_order);
3467  			if (page)
3468  				break;
3469  			if (!this_order--)
3470  				break;
3471  			if (order_to_size(this_order) < rq_size)
3472  				break;
3473  		} while (1);
3474  
3475  		if (!page)
3476  			goto fail;
3477  
3478  		page->private = this_order;
3479  		list_add_tail(&page->lru, &tags->page_list);
3480  
3481  		p = page_address(page);
3482  		/*
3483  		 * Allow kmemleak to scan these pages as they contain pointers
3484  		 * to additional allocations like via ops->init_request().
3485  		 */
3486  		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3487  		entries_per_page = order_to_size(this_order) / rq_size;
3488  		to_do = min(entries_per_page, depth - i);
3489  		left -= to_do * rq_size;
3490  		for (j = 0; j < to_do; j++) {
3491  			struct request *rq = p;
3492  
3493  			tags->static_rqs[i] = rq;
3494  			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3495  				tags->static_rqs[i] = NULL;
3496  				goto fail;
3497  			}
3498  
3499  			p += rq_size;
3500  			i++;
3501  		}
3502  	}
3503  	return 0;
3504  
3505  fail:
3506  	blk_mq_free_rqs(set, tags, hctx_idx);
3507  	return -ENOMEM;
3508  }
3509  
3510  struct rq_iter_data {
3511  	struct blk_mq_hw_ctx *hctx;
3512  	bool has_rq;
3513  };
3514  
blk_mq_has_request(struct request * rq,void * data)3515  static bool blk_mq_has_request(struct request *rq, void *data)
3516  {
3517  	struct rq_iter_data *iter_data = data;
3518  
3519  	if (rq->mq_hctx != iter_data->hctx)
3520  		return true;
3521  	iter_data->has_rq = true;
3522  	return false;
3523  }
3524  
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)3525  static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3526  {
3527  	struct blk_mq_tags *tags = hctx->sched_tags ?
3528  			hctx->sched_tags : hctx->tags;
3529  	struct rq_iter_data data = {
3530  		.hctx	= hctx,
3531  	};
3532  
3533  	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3534  	return data.has_rq;
3535  }
3536  
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)3537  static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3538  		struct blk_mq_hw_ctx *hctx)
3539  {
3540  	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3541  		return false;
3542  	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3543  		return false;
3544  	return true;
3545  }
3546  
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)3547  static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3548  {
3549  	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3550  			struct blk_mq_hw_ctx, cpuhp_online);
3551  
3552  	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3553  	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3554  		return 0;
3555  
3556  	/*
3557  	 * Prevent new request from being allocated on the current hctx.
3558  	 *
3559  	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3560  	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3561  	 * seen once we return from the tag allocator.
3562  	 */
3563  	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3564  	smp_mb__after_atomic();
3565  
3566  	/*
3567  	 * Try to grab a reference to the queue and wait for any outstanding
3568  	 * requests.  If we could not grab a reference the queue has been
3569  	 * frozen and there are no requests.
3570  	 */
3571  	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3572  		while (blk_mq_hctx_has_requests(hctx))
3573  			msleep(5);
3574  		percpu_ref_put(&hctx->queue->q_usage_counter);
3575  	}
3576  
3577  	return 0;
3578  }
3579  
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)3580  static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3581  {
3582  	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3583  			struct blk_mq_hw_ctx, cpuhp_online);
3584  
3585  	if (cpumask_test_cpu(cpu, hctx->cpumask))
3586  		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3587  	return 0;
3588  }
3589  
3590  /*
3591   * 'cpu' is going away. splice any existing rq_list entries from this
3592   * software queue to the hw queue dispatch list, and ensure that it
3593   * gets run.
3594   */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)3595  static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3596  {
3597  	struct blk_mq_hw_ctx *hctx;
3598  	struct blk_mq_ctx *ctx;
3599  	LIST_HEAD(tmp);
3600  	enum hctx_type type;
3601  
3602  	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3603  	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3604  		return 0;
3605  
3606  	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3607  	type = hctx->type;
3608  
3609  	spin_lock(&ctx->lock);
3610  	if (!list_empty(&ctx->rq_lists[type])) {
3611  		list_splice_init(&ctx->rq_lists[type], &tmp);
3612  		blk_mq_hctx_clear_pending(hctx, ctx);
3613  	}
3614  	spin_unlock(&ctx->lock);
3615  
3616  	if (list_empty(&tmp))
3617  		return 0;
3618  
3619  	spin_lock(&hctx->lock);
3620  	list_splice_tail_init(&tmp, &hctx->dispatch);
3621  	spin_unlock(&hctx->lock);
3622  
3623  	blk_mq_run_hw_queue(hctx, true);
3624  	return 0;
3625  }
3626  
__blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3627  static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3628  {
3629  	lockdep_assert_held(&blk_mq_cpuhp_lock);
3630  
3631  	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3632  	    !hlist_unhashed(&hctx->cpuhp_online)) {
3633  		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3634  						    &hctx->cpuhp_online);
3635  		INIT_HLIST_NODE(&hctx->cpuhp_online);
3636  	}
3637  
3638  	if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3639  		cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3640  						    &hctx->cpuhp_dead);
3641  		INIT_HLIST_NODE(&hctx->cpuhp_dead);
3642  	}
3643  }
3644  
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3645  static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3646  {
3647  	mutex_lock(&blk_mq_cpuhp_lock);
3648  	__blk_mq_remove_cpuhp(hctx);
3649  	mutex_unlock(&blk_mq_cpuhp_lock);
3650  }
3651  
__blk_mq_add_cpuhp(struct blk_mq_hw_ctx * hctx)3652  static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3653  {
3654  	lockdep_assert_held(&blk_mq_cpuhp_lock);
3655  
3656  	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3657  	    hlist_unhashed(&hctx->cpuhp_online))
3658  		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3659  				&hctx->cpuhp_online);
3660  
3661  	if (hlist_unhashed(&hctx->cpuhp_dead))
3662  		cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3663  				&hctx->cpuhp_dead);
3664  }
3665  
__blk_mq_remove_cpuhp_list(struct list_head * head)3666  static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3667  {
3668  	struct blk_mq_hw_ctx *hctx;
3669  
3670  	lockdep_assert_held(&blk_mq_cpuhp_lock);
3671  
3672  	list_for_each_entry(hctx, head, hctx_list)
3673  		__blk_mq_remove_cpuhp(hctx);
3674  }
3675  
3676  /*
3677   * Unregister cpuhp callbacks from exited hw queues
3678   *
3679   * Safe to call if this `request_queue` is live
3680   */
blk_mq_remove_hw_queues_cpuhp(struct request_queue * q)3681  static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3682  {
3683  	LIST_HEAD(hctx_list);
3684  
3685  	spin_lock(&q->unused_hctx_lock);
3686  	list_splice_init(&q->unused_hctx_list, &hctx_list);
3687  	spin_unlock(&q->unused_hctx_lock);
3688  
3689  	mutex_lock(&blk_mq_cpuhp_lock);
3690  	__blk_mq_remove_cpuhp_list(&hctx_list);
3691  	mutex_unlock(&blk_mq_cpuhp_lock);
3692  
3693  	spin_lock(&q->unused_hctx_lock);
3694  	list_splice(&hctx_list, &q->unused_hctx_list);
3695  	spin_unlock(&q->unused_hctx_lock);
3696  }
3697  
3698  /*
3699   * Register cpuhp callbacks from all hw queues
3700   *
3701   * Safe to call if this `request_queue` is live
3702   */
blk_mq_add_hw_queues_cpuhp(struct request_queue * q)3703  static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3704  {
3705  	struct blk_mq_hw_ctx *hctx;
3706  	unsigned long i;
3707  
3708  	mutex_lock(&blk_mq_cpuhp_lock);
3709  	queue_for_each_hw_ctx(q, hctx, i)
3710  		__blk_mq_add_cpuhp(hctx);
3711  	mutex_unlock(&blk_mq_cpuhp_lock);
3712  }
3713  
3714  /*
3715   * Before freeing hw queue, clearing the flush request reference in
3716   * tags->rqs[] for avoiding potential UAF.
3717   */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)3718  static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3719  		unsigned int queue_depth, struct request *flush_rq)
3720  {
3721  	int i;
3722  	unsigned long flags;
3723  
3724  	/* The hw queue may not be mapped yet */
3725  	if (!tags)
3726  		return;
3727  
3728  	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3729  
3730  	for (i = 0; i < queue_depth; i++)
3731  		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3732  
3733  	/*
3734  	 * Wait until all pending iteration is done.
3735  	 *
3736  	 * Request reference is cleared and it is guaranteed to be observed
3737  	 * after the ->lock is released.
3738  	 */
3739  	spin_lock_irqsave(&tags->lock, flags);
3740  	spin_unlock_irqrestore(&tags->lock, flags);
3741  }
3742  
3743  /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)3744  static void blk_mq_exit_hctx(struct request_queue *q,
3745  		struct blk_mq_tag_set *set,
3746  		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3747  {
3748  	struct request *flush_rq = hctx->fq->flush_rq;
3749  
3750  	if (blk_mq_hw_queue_mapped(hctx))
3751  		blk_mq_tag_idle(hctx);
3752  
3753  	if (blk_queue_init_done(q))
3754  		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3755  				set->queue_depth, flush_rq);
3756  	if (set->ops->exit_request)
3757  		set->ops->exit_request(set, flush_rq, hctx_idx);
3758  
3759  	if (set->ops->exit_hctx)
3760  		set->ops->exit_hctx(hctx, hctx_idx);
3761  
3762  	xa_erase(&q->hctx_table, hctx_idx);
3763  
3764  	spin_lock(&q->unused_hctx_lock);
3765  	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3766  	spin_unlock(&q->unused_hctx_lock);
3767  }
3768  
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)3769  static void blk_mq_exit_hw_queues(struct request_queue *q,
3770  		struct blk_mq_tag_set *set, int nr_queue)
3771  {
3772  	struct blk_mq_hw_ctx *hctx;
3773  	unsigned long i;
3774  
3775  	queue_for_each_hw_ctx(q, hctx, i) {
3776  		if (i == nr_queue)
3777  			break;
3778  		blk_mq_remove_cpuhp(hctx);
3779  		blk_mq_exit_hctx(q, set, hctx, i);
3780  	}
3781  }
3782  
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)3783  static int blk_mq_init_hctx(struct request_queue *q,
3784  		struct blk_mq_tag_set *set,
3785  		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3786  {
3787  	hctx->queue_num = hctx_idx;
3788  
3789  	hctx->tags = set->tags[hctx_idx];
3790  
3791  	if (set->ops->init_hctx &&
3792  	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3793  		goto fail;
3794  
3795  	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3796  				hctx->numa_node))
3797  		goto exit_hctx;
3798  
3799  	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3800  		goto exit_flush_rq;
3801  
3802  	return 0;
3803  
3804   exit_flush_rq:
3805  	if (set->ops->exit_request)
3806  		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3807   exit_hctx:
3808  	if (set->ops->exit_hctx)
3809  		set->ops->exit_hctx(hctx, hctx_idx);
3810   fail:
3811  	return -1;
3812  }
3813  
3814  static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)3815  blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3816  		int node)
3817  {
3818  	struct blk_mq_hw_ctx *hctx;
3819  	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3820  
3821  	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3822  	if (!hctx)
3823  		goto fail_alloc_hctx;
3824  
3825  	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3826  		goto free_hctx;
3827  
3828  	atomic_set(&hctx->nr_active, 0);
3829  	if (node == NUMA_NO_NODE)
3830  		node = set->numa_node;
3831  	hctx->numa_node = node;
3832  
3833  	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3834  	spin_lock_init(&hctx->lock);
3835  	INIT_LIST_HEAD(&hctx->dispatch);
3836  	INIT_HLIST_NODE(&hctx->cpuhp_dead);
3837  	INIT_HLIST_NODE(&hctx->cpuhp_online);
3838  	hctx->queue = q;
3839  	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3840  
3841  	INIT_LIST_HEAD(&hctx->hctx_list);
3842  
3843  	/*
3844  	 * Allocate space for all possible cpus to avoid allocation at
3845  	 * runtime
3846  	 */
3847  	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3848  			gfp, node);
3849  	if (!hctx->ctxs)
3850  		goto free_cpumask;
3851  
3852  	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3853  				gfp, node, false, false))
3854  		goto free_ctxs;
3855  	hctx->nr_ctx = 0;
3856  
3857  	spin_lock_init(&hctx->dispatch_wait_lock);
3858  	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3859  	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3860  
3861  	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3862  	if (!hctx->fq)
3863  		goto free_bitmap;
3864  
3865  	blk_mq_hctx_kobj_init(hctx);
3866  
3867  	return hctx;
3868  
3869   free_bitmap:
3870  	sbitmap_free(&hctx->ctx_map);
3871   free_ctxs:
3872  	kfree(hctx->ctxs);
3873   free_cpumask:
3874  	free_cpumask_var(hctx->cpumask);
3875   free_hctx:
3876  	kfree(hctx);
3877   fail_alloc_hctx:
3878  	return NULL;
3879  }
3880  
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)3881  static void blk_mq_init_cpu_queues(struct request_queue *q,
3882  				   unsigned int nr_hw_queues)
3883  {
3884  	struct blk_mq_tag_set *set = q->tag_set;
3885  	unsigned int i, j;
3886  
3887  	for_each_possible_cpu(i) {
3888  		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3889  		struct blk_mq_hw_ctx *hctx;
3890  		int k;
3891  
3892  		__ctx->cpu = i;
3893  		spin_lock_init(&__ctx->lock);
3894  		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3895  			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3896  
3897  		__ctx->queue = q;
3898  
3899  		/*
3900  		 * Set local node, IFF we have more than one hw queue. If
3901  		 * not, we remain on the home node of the device
3902  		 */
3903  		for (j = 0; j < set->nr_maps; j++) {
3904  			hctx = blk_mq_map_queue_type(q, j, i);
3905  			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3906  				hctx->numa_node = cpu_to_node(i);
3907  		}
3908  	}
3909  }
3910  
blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int depth)3911  struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3912  					     unsigned int hctx_idx,
3913  					     unsigned int depth)
3914  {
3915  	struct blk_mq_tags *tags;
3916  	int ret;
3917  
3918  	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3919  	if (!tags)
3920  		return NULL;
3921  
3922  	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3923  	if (ret) {
3924  		blk_mq_free_rq_map(tags);
3925  		return NULL;
3926  	}
3927  
3928  	return tags;
3929  }
3930  
__blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,int hctx_idx)3931  static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3932  				       int hctx_idx)
3933  {
3934  	if (blk_mq_is_shared_tags(set->flags)) {
3935  		set->tags[hctx_idx] = set->shared_tags;
3936  
3937  		return true;
3938  	}
3939  
3940  	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3941  						       set->queue_depth);
3942  
3943  	return set->tags[hctx_idx];
3944  }
3945  
blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3946  void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3947  			     struct blk_mq_tags *tags,
3948  			     unsigned int hctx_idx)
3949  {
3950  	if (tags) {
3951  		blk_mq_free_rqs(set, tags, hctx_idx);
3952  		blk_mq_free_rq_map(tags);
3953  	}
3954  }
3955  
__blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx)3956  static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3957  				      unsigned int hctx_idx)
3958  {
3959  	if (!blk_mq_is_shared_tags(set->flags))
3960  		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3961  
3962  	set->tags[hctx_idx] = NULL;
3963  }
3964  
blk_mq_map_swqueue(struct request_queue * q)3965  static void blk_mq_map_swqueue(struct request_queue *q)
3966  {
3967  	unsigned int j, hctx_idx;
3968  	unsigned long i;
3969  	struct blk_mq_hw_ctx *hctx;
3970  	struct blk_mq_ctx *ctx;
3971  	struct blk_mq_tag_set *set = q->tag_set;
3972  
3973  	queue_for_each_hw_ctx(q, hctx, i) {
3974  		cpumask_clear(hctx->cpumask);
3975  		hctx->nr_ctx = 0;
3976  		hctx->dispatch_from = NULL;
3977  	}
3978  
3979  	/*
3980  	 * Map software to hardware queues.
3981  	 *
3982  	 * If the cpu isn't present, the cpu is mapped to first hctx.
3983  	 */
3984  	for_each_possible_cpu(i) {
3985  
3986  		ctx = per_cpu_ptr(q->queue_ctx, i);
3987  		for (j = 0; j < set->nr_maps; j++) {
3988  			if (!set->map[j].nr_queues) {
3989  				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3990  						HCTX_TYPE_DEFAULT, i);
3991  				continue;
3992  			}
3993  			hctx_idx = set->map[j].mq_map[i];
3994  			/* unmapped hw queue can be remapped after CPU topo changed */
3995  			if (!set->tags[hctx_idx] &&
3996  			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3997  				/*
3998  				 * If tags initialization fail for some hctx,
3999  				 * that hctx won't be brought online.  In this
4000  				 * case, remap the current ctx to hctx[0] which
4001  				 * is guaranteed to always have tags allocated
4002  				 */
4003  				set->map[j].mq_map[i] = 0;
4004  			}
4005  
4006  			hctx = blk_mq_map_queue_type(q, j, i);
4007  			ctx->hctxs[j] = hctx;
4008  			/*
4009  			 * If the CPU is already set in the mask, then we've
4010  			 * mapped this one already. This can happen if
4011  			 * devices share queues across queue maps.
4012  			 */
4013  			if (cpumask_test_cpu(i, hctx->cpumask))
4014  				continue;
4015  
4016  			cpumask_set_cpu(i, hctx->cpumask);
4017  			hctx->type = j;
4018  			ctx->index_hw[hctx->type] = hctx->nr_ctx;
4019  			hctx->ctxs[hctx->nr_ctx++] = ctx;
4020  
4021  			/*
4022  			 * If the nr_ctx type overflows, we have exceeded the
4023  			 * amount of sw queues we can support.
4024  			 */
4025  			BUG_ON(!hctx->nr_ctx);
4026  		}
4027  
4028  		for (; j < HCTX_MAX_TYPES; j++)
4029  			ctx->hctxs[j] = blk_mq_map_queue_type(q,
4030  					HCTX_TYPE_DEFAULT, i);
4031  	}
4032  
4033  	queue_for_each_hw_ctx(q, hctx, i) {
4034  		/*
4035  		 * If no software queues are mapped to this hardware queue,
4036  		 * disable it and free the request entries.
4037  		 */
4038  		if (!hctx->nr_ctx) {
4039  			/* Never unmap queue 0.  We need it as a
4040  			 * fallback in case of a new remap fails
4041  			 * allocation
4042  			 */
4043  			if (i)
4044  				__blk_mq_free_map_and_rqs(set, i);
4045  
4046  			hctx->tags = NULL;
4047  			continue;
4048  		}
4049  
4050  		hctx->tags = set->tags[i];
4051  		WARN_ON(!hctx->tags);
4052  
4053  		/*
4054  		 * Set the map size to the number of mapped software queues.
4055  		 * This is more accurate and more efficient than looping
4056  		 * over all possibly mapped software queues.
4057  		 */
4058  		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4059  
4060  		/*
4061  		 * Initialize batch roundrobin counts
4062  		 */
4063  		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4064  		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4065  	}
4066  }
4067  
4068  /*
4069   * Caller needs to ensure that we're either frozen/quiesced, or that
4070   * the queue isn't live yet.
4071   */
queue_set_hctx_shared(struct request_queue * q,bool shared)4072  static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4073  {
4074  	struct blk_mq_hw_ctx *hctx;
4075  	unsigned long i;
4076  
4077  	queue_for_each_hw_ctx(q, hctx, i) {
4078  		if (shared) {
4079  			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4080  		} else {
4081  			blk_mq_tag_idle(hctx);
4082  			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4083  		}
4084  	}
4085  }
4086  
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)4087  static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4088  					 bool shared)
4089  {
4090  	struct request_queue *q;
4091  
4092  	lockdep_assert_held(&set->tag_list_lock);
4093  
4094  	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4095  		blk_mq_freeze_queue(q);
4096  		queue_set_hctx_shared(q, shared);
4097  		blk_mq_unfreeze_queue(q);
4098  	}
4099  }
4100  
blk_mq_del_queue_tag_set(struct request_queue * q)4101  static void blk_mq_del_queue_tag_set(struct request_queue *q)
4102  {
4103  	struct blk_mq_tag_set *set = q->tag_set;
4104  
4105  	mutex_lock(&set->tag_list_lock);
4106  	list_del(&q->tag_set_list);
4107  	if (list_is_singular(&set->tag_list)) {
4108  		/* just transitioned to unshared */
4109  		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4110  		/* update existing queue */
4111  		blk_mq_update_tag_set_shared(set, false);
4112  	}
4113  	mutex_unlock(&set->tag_list_lock);
4114  	INIT_LIST_HEAD(&q->tag_set_list);
4115  }
4116  
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)4117  static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4118  				     struct request_queue *q)
4119  {
4120  	mutex_lock(&set->tag_list_lock);
4121  
4122  	/*
4123  	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4124  	 */
4125  	if (!list_empty(&set->tag_list) &&
4126  	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4127  		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4128  		/* update existing queue */
4129  		blk_mq_update_tag_set_shared(set, true);
4130  	}
4131  	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4132  		queue_set_hctx_shared(q, true);
4133  	list_add_tail(&q->tag_set_list, &set->tag_list);
4134  
4135  	mutex_unlock(&set->tag_list_lock);
4136  }
4137  
4138  /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)4139  static int blk_mq_alloc_ctxs(struct request_queue *q)
4140  {
4141  	struct blk_mq_ctxs *ctxs;
4142  	int cpu;
4143  
4144  	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4145  	if (!ctxs)
4146  		return -ENOMEM;
4147  
4148  	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4149  	if (!ctxs->queue_ctx)
4150  		goto fail;
4151  
4152  	for_each_possible_cpu(cpu) {
4153  		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4154  		ctx->ctxs = ctxs;
4155  	}
4156  
4157  	q->mq_kobj = &ctxs->kobj;
4158  	q->queue_ctx = ctxs->queue_ctx;
4159  
4160  	return 0;
4161   fail:
4162  	kfree(ctxs);
4163  	return -ENOMEM;
4164  }
4165  
4166  /*
4167   * It is the actual release handler for mq, but we do it from
4168   * request queue's release handler for avoiding use-after-free
4169   * and headache because q->mq_kobj shouldn't have been introduced,
4170   * but we can't group ctx/kctx kobj without it.
4171   */
blk_mq_release(struct request_queue * q)4172  void blk_mq_release(struct request_queue *q)
4173  {
4174  	struct blk_mq_hw_ctx *hctx, *next;
4175  	unsigned long i;
4176  
4177  	queue_for_each_hw_ctx(q, hctx, i)
4178  		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4179  
4180  	/* all hctx are in .unused_hctx_list now */
4181  	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4182  		list_del_init(&hctx->hctx_list);
4183  		kobject_put(&hctx->kobj);
4184  	}
4185  
4186  	xa_destroy(&q->hctx_table);
4187  
4188  	/*
4189  	 * release .mq_kobj and sw queue's kobject now because
4190  	 * both share lifetime with request queue.
4191  	 */
4192  	blk_mq_sysfs_deinit(q);
4193  }
4194  
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)4195  static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4196  		void *queuedata)
4197  {
4198  	struct request_queue *q;
4199  	int ret;
4200  
4201  	q = blk_alloc_queue(set->numa_node);
4202  	if (!q)
4203  		return ERR_PTR(-ENOMEM);
4204  	q->queuedata = queuedata;
4205  	ret = blk_mq_init_allocated_queue(set, q);
4206  	if (ret) {
4207  		blk_put_queue(q);
4208  		return ERR_PTR(ret);
4209  	}
4210  	return q;
4211  }
4212  
blk_mq_init_queue(struct blk_mq_tag_set * set)4213  struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4214  {
4215  	return blk_mq_init_queue_data(set, NULL);
4216  }
4217  EXPORT_SYMBOL(blk_mq_init_queue);
4218  
4219  /**
4220   * blk_mq_destroy_queue - shutdown a request queue
4221   * @q: request queue to shutdown
4222   *
4223   * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4224   * requests will be failed with -ENODEV. The caller is responsible for dropping
4225   * the reference from blk_mq_init_queue() by calling blk_put_queue().
4226   *
4227   * Context: can sleep
4228   */
blk_mq_destroy_queue(struct request_queue * q)4229  void blk_mq_destroy_queue(struct request_queue *q)
4230  {
4231  	WARN_ON_ONCE(!queue_is_mq(q));
4232  	WARN_ON_ONCE(blk_queue_registered(q));
4233  
4234  	might_sleep();
4235  
4236  	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4237  	blk_queue_start_drain(q);
4238  	blk_mq_freeze_queue_wait(q);
4239  
4240  	blk_sync_queue(q);
4241  	blk_mq_cancel_work_sync(q);
4242  	blk_mq_exit_queue(q);
4243  }
4244  EXPORT_SYMBOL(blk_mq_destroy_queue);
4245  
__blk_mq_alloc_disk(struct blk_mq_tag_set * set,void * queuedata,struct lock_class_key * lkclass)4246  struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4247  		struct lock_class_key *lkclass)
4248  {
4249  	struct request_queue *q;
4250  	struct gendisk *disk;
4251  
4252  	q = blk_mq_init_queue_data(set, queuedata);
4253  	if (IS_ERR(q))
4254  		return ERR_CAST(q);
4255  
4256  	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4257  	if (!disk) {
4258  		blk_mq_destroy_queue(q);
4259  		blk_put_queue(q);
4260  		return ERR_PTR(-ENOMEM);
4261  	}
4262  	set_bit(GD_OWNS_QUEUE, &disk->state);
4263  	return disk;
4264  }
4265  EXPORT_SYMBOL(__blk_mq_alloc_disk);
4266  
blk_mq_alloc_disk_for_queue(struct request_queue * q,struct lock_class_key * lkclass)4267  struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4268  		struct lock_class_key *lkclass)
4269  {
4270  	struct gendisk *disk;
4271  
4272  	if (!blk_get_queue(q))
4273  		return NULL;
4274  	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4275  	if (!disk)
4276  		blk_put_queue(q);
4277  	return disk;
4278  }
4279  EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4280  
4281  /*
4282   * Only hctx removed from cpuhp list can be reused
4283   */
blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx * hctx)4284  static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx)
4285  {
4286  	return hlist_unhashed(&hctx->cpuhp_online) &&
4287  		hlist_unhashed(&hctx->cpuhp_dead);
4288  }
4289  
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)4290  static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4291  		struct blk_mq_tag_set *set, struct request_queue *q,
4292  		int hctx_idx, int node)
4293  {
4294  	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4295  
4296  	/* reuse dead hctx first */
4297  	spin_lock(&q->unused_hctx_lock);
4298  	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4299  		if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) {
4300  			hctx = tmp;
4301  			break;
4302  		}
4303  	}
4304  	if (hctx)
4305  		list_del_init(&hctx->hctx_list);
4306  	spin_unlock(&q->unused_hctx_lock);
4307  
4308  	if (!hctx)
4309  		hctx = blk_mq_alloc_hctx(q, set, node);
4310  	if (!hctx)
4311  		goto fail;
4312  
4313  	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4314  		goto free_hctx;
4315  
4316  	return hctx;
4317  
4318   free_hctx:
4319  	kobject_put(&hctx->kobj);
4320   fail:
4321  	return NULL;
4322  }
4323  
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)4324  static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4325  						struct request_queue *q)
4326  {
4327  	struct blk_mq_hw_ctx *hctx;
4328  	unsigned long i, j;
4329  
4330  	/* protect against switching io scheduler  */
4331  	mutex_lock(&q->sysfs_lock);
4332  	for (i = 0; i < set->nr_hw_queues; i++) {
4333  		int old_node;
4334  		int node = blk_mq_get_hctx_node(set, i);
4335  		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4336  
4337  		if (old_hctx) {
4338  			old_node = old_hctx->numa_node;
4339  			blk_mq_exit_hctx(q, set, old_hctx, i);
4340  		}
4341  
4342  		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4343  			if (!old_hctx)
4344  				break;
4345  			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4346  					node, old_node);
4347  			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4348  			WARN_ON_ONCE(!hctx);
4349  		}
4350  	}
4351  	/*
4352  	 * Increasing nr_hw_queues fails. Free the newly allocated
4353  	 * hctxs and keep the previous q->nr_hw_queues.
4354  	 */
4355  	if (i != set->nr_hw_queues) {
4356  		j = q->nr_hw_queues;
4357  	} else {
4358  		j = i;
4359  		q->nr_hw_queues = set->nr_hw_queues;
4360  	}
4361  
4362  	xa_for_each_start(&q->hctx_table, j, hctx, j)
4363  		blk_mq_exit_hctx(q, set, hctx, j);
4364  	mutex_unlock(&q->sysfs_lock);
4365  
4366  	/* unregister cpuhp callbacks for exited hctxs */
4367  	blk_mq_remove_hw_queues_cpuhp(q);
4368  
4369  	/* register cpuhp for new initialized hctxs */
4370  	blk_mq_add_hw_queues_cpuhp(q);
4371  }
4372  
blk_mq_update_poll_flag(struct request_queue * q)4373  static void blk_mq_update_poll_flag(struct request_queue *q)
4374  {
4375  	struct blk_mq_tag_set *set = q->tag_set;
4376  
4377  	if (set->nr_maps > HCTX_TYPE_POLL &&
4378  	    set->map[HCTX_TYPE_POLL].nr_queues)
4379  		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4380  	else
4381  		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4382  }
4383  
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)4384  int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4385  		struct request_queue *q)
4386  {
4387  	/* mark the queue as mq asap */
4388  	q->mq_ops = set->ops;
4389  
4390  	if (blk_mq_alloc_ctxs(q))
4391  		goto err_exit;
4392  
4393  	/* init q->mq_kobj and sw queues' kobjects */
4394  	blk_mq_sysfs_init(q);
4395  
4396  	INIT_LIST_HEAD(&q->unused_hctx_list);
4397  	spin_lock_init(&q->unused_hctx_lock);
4398  
4399  	xa_init(&q->hctx_table);
4400  
4401  	blk_mq_realloc_hw_ctxs(set, q);
4402  	if (!q->nr_hw_queues)
4403  		goto err_hctxs;
4404  
4405  	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4406  	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4407  
4408  	q->tag_set = set;
4409  
4410  	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4411  	blk_mq_update_poll_flag(q);
4412  
4413  	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4414  	INIT_LIST_HEAD(&q->flush_list);
4415  	INIT_LIST_HEAD(&q->requeue_list);
4416  	spin_lock_init(&q->requeue_lock);
4417  
4418  	q->nr_requests = set->queue_depth;
4419  
4420  	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4421  	blk_mq_add_queue_tag_set(set, q);
4422  	blk_mq_map_swqueue(q);
4423  	return 0;
4424  
4425  err_hctxs:
4426  	blk_mq_release(q);
4427  err_exit:
4428  	q->mq_ops = NULL;
4429  	return -ENOMEM;
4430  }
4431  EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4432  
4433  /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)4434  void blk_mq_exit_queue(struct request_queue *q)
4435  {
4436  	struct blk_mq_tag_set *set = q->tag_set;
4437  
4438  	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4439  	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4440  	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4441  	blk_mq_del_queue_tag_set(q);
4442  }
4443  
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)4444  static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4445  {
4446  	int i;
4447  
4448  	if (blk_mq_is_shared_tags(set->flags)) {
4449  		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4450  						BLK_MQ_NO_HCTX_IDX,
4451  						set->queue_depth);
4452  		if (!set->shared_tags)
4453  			return -ENOMEM;
4454  	}
4455  
4456  	for (i = 0; i < set->nr_hw_queues; i++) {
4457  		if (!__blk_mq_alloc_map_and_rqs(set, i))
4458  			goto out_unwind;
4459  		cond_resched();
4460  	}
4461  
4462  	return 0;
4463  
4464  out_unwind:
4465  	while (--i >= 0)
4466  		__blk_mq_free_map_and_rqs(set, i);
4467  
4468  	if (blk_mq_is_shared_tags(set->flags)) {
4469  		blk_mq_free_map_and_rqs(set, set->shared_tags,
4470  					BLK_MQ_NO_HCTX_IDX);
4471  	}
4472  
4473  	return -ENOMEM;
4474  }
4475  
4476  /*
4477   * Allocate the request maps associated with this tag_set. Note that this
4478   * may reduce the depth asked for, if memory is tight. set->queue_depth
4479   * will be updated to reflect the allocated depth.
4480   */
blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set * set)4481  static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4482  {
4483  	unsigned int depth;
4484  	int err;
4485  
4486  	depth = set->queue_depth;
4487  	do {
4488  		err = __blk_mq_alloc_rq_maps(set);
4489  		if (!err)
4490  			break;
4491  
4492  		set->queue_depth >>= 1;
4493  		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4494  			err = -ENOMEM;
4495  			break;
4496  		}
4497  	} while (set->queue_depth);
4498  
4499  	if (!set->queue_depth || err) {
4500  		pr_err("blk-mq: failed to allocate request map\n");
4501  		return -ENOMEM;
4502  	}
4503  
4504  	if (depth != set->queue_depth)
4505  		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4506  						depth, set->queue_depth);
4507  
4508  	return 0;
4509  }
4510  
blk_mq_update_queue_map(struct blk_mq_tag_set * set)4511  static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4512  {
4513  	/*
4514  	 * blk_mq_map_queues() and multiple .map_queues() implementations
4515  	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4516  	 * number of hardware queues.
4517  	 */
4518  	if (set->nr_maps == 1)
4519  		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4520  
4521  	if (set->ops->map_queues && !is_kdump_kernel()) {
4522  		int i;
4523  
4524  		/*
4525  		 * transport .map_queues is usually done in the following
4526  		 * way:
4527  		 *
4528  		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4529  		 * 	mask = get_cpu_mask(queue)
4530  		 * 	for_each_cpu(cpu, mask)
4531  		 * 		set->map[x].mq_map[cpu] = queue;
4532  		 * }
4533  		 *
4534  		 * When we need to remap, the table has to be cleared for
4535  		 * killing stale mapping since one CPU may not be mapped
4536  		 * to any hw queue.
4537  		 */
4538  		for (i = 0; i < set->nr_maps; i++)
4539  			blk_mq_clear_mq_map(&set->map[i]);
4540  
4541  		set->ops->map_queues(set);
4542  	} else {
4543  		BUG_ON(set->nr_maps > 1);
4544  		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4545  	}
4546  }
4547  
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int new_nr_hw_queues)4548  static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4549  				       int new_nr_hw_queues)
4550  {
4551  	struct blk_mq_tags **new_tags;
4552  	int i;
4553  
4554  	if (set->nr_hw_queues >= new_nr_hw_queues)
4555  		goto done;
4556  
4557  	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4558  				GFP_KERNEL, set->numa_node);
4559  	if (!new_tags)
4560  		return -ENOMEM;
4561  
4562  	if (set->tags)
4563  		memcpy(new_tags, set->tags, set->nr_hw_queues *
4564  		       sizeof(*set->tags));
4565  	kfree(set->tags);
4566  	set->tags = new_tags;
4567  
4568  	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4569  		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4570  			while (--i >= set->nr_hw_queues)
4571  				__blk_mq_free_map_and_rqs(set, i);
4572  			return -ENOMEM;
4573  		}
4574  		cond_resched();
4575  	}
4576  
4577  done:
4578  	set->nr_hw_queues = new_nr_hw_queues;
4579  	return 0;
4580  }
4581  
4582  /*
4583   * Alloc a tag set to be associated with one or more request queues.
4584   * May fail with EINVAL for various error conditions. May adjust the
4585   * requested depth down, if it's too large. In that case, the set
4586   * value will be stored in set->queue_depth.
4587   */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)4588  int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4589  {
4590  	int i, ret;
4591  
4592  	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4593  
4594  	if (!set->nr_hw_queues)
4595  		return -EINVAL;
4596  	if (!set->queue_depth)
4597  		return -EINVAL;
4598  	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4599  		return -EINVAL;
4600  
4601  	if (!set->ops->queue_rq)
4602  		return -EINVAL;
4603  
4604  	if (!set->ops->get_budget ^ !set->ops->put_budget)
4605  		return -EINVAL;
4606  
4607  	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4608  		pr_info("blk-mq: reduced tag depth to %u\n",
4609  			BLK_MQ_MAX_DEPTH);
4610  		set->queue_depth = BLK_MQ_MAX_DEPTH;
4611  	}
4612  
4613  	if (!set->nr_maps)
4614  		set->nr_maps = 1;
4615  	else if (set->nr_maps > HCTX_MAX_TYPES)
4616  		return -EINVAL;
4617  
4618  	/*
4619  	 * If a crashdump is active, then we are potentially in a very
4620  	 * memory constrained environment. Limit us to 1 queue and
4621  	 * 64 tags to prevent using too much memory.
4622  	 */
4623  	if (is_kdump_kernel()) {
4624  		set->nr_hw_queues = 1;
4625  		set->nr_maps = 1;
4626  		set->queue_depth = min(64U, set->queue_depth);
4627  	}
4628  	/*
4629  	 * There is no use for more h/w queues than cpus if we just have
4630  	 * a single map
4631  	 */
4632  	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4633  		set->nr_hw_queues = nr_cpu_ids;
4634  
4635  	if (set->flags & BLK_MQ_F_BLOCKING) {
4636  		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4637  		if (!set->srcu)
4638  			return -ENOMEM;
4639  		ret = init_srcu_struct(set->srcu);
4640  		if (ret)
4641  			goto out_free_srcu;
4642  	}
4643  
4644  	ret = -ENOMEM;
4645  	set->tags = kcalloc_node(set->nr_hw_queues,
4646  				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4647  				 set->numa_node);
4648  	if (!set->tags)
4649  		goto out_cleanup_srcu;
4650  
4651  	for (i = 0; i < set->nr_maps; i++) {
4652  		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4653  						  sizeof(set->map[i].mq_map[0]),
4654  						  GFP_KERNEL, set->numa_node);
4655  		if (!set->map[i].mq_map)
4656  			goto out_free_mq_map;
4657  		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4658  	}
4659  
4660  	blk_mq_update_queue_map(set);
4661  
4662  	ret = blk_mq_alloc_set_map_and_rqs(set);
4663  	if (ret)
4664  		goto out_free_mq_map;
4665  
4666  	mutex_init(&set->tag_list_lock);
4667  	INIT_LIST_HEAD(&set->tag_list);
4668  
4669  	return 0;
4670  
4671  out_free_mq_map:
4672  	for (i = 0; i < set->nr_maps; i++) {
4673  		kfree(set->map[i].mq_map);
4674  		set->map[i].mq_map = NULL;
4675  	}
4676  	kfree(set->tags);
4677  	set->tags = NULL;
4678  out_cleanup_srcu:
4679  	if (set->flags & BLK_MQ_F_BLOCKING)
4680  		cleanup_srcu_struct(set->srcu);
4681  out_free_srcu:
4682  	if (set->flags & BLK_MQ_F_BLOCKING)
4683  		kfree(set->srcu);
4684  	return ret;
4685  }
4686  EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4687  
4688  /* allocate and initialize a tagset for a simple single-queue device */
blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)4689  int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4690  		const struct blk_mq_ops *ops, unsigned int queue_depth,
4691  		unsigned int set_flags)
4692  {
4693  	memset(set, 0, sizeof(*set));
4694  	set->ops = ops;
4695  	set->nr_hw_queues = 1;
4696  	set->nr_maps = 1;
4697  	set->queue_depth = queue_depth;
4698  	set->numa_node = NUMA_NO_NODE;
4699  	set->flags = set_flags;
4700  	return blk_mq_alloc_tag_set(set);
4701  }
4702  EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4703  
blk_mq_free_tag_set(struct blk_mq_tag_set * set)4704  void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4705  {
4706  	int i, j;
4707  
4708  	for (i = 0; i < set->nr_hw_queues; i++)
4709  		__blk_mq_free_map_and_rqs(set, i);
4710  
4711  	if (blk_mq_is_shared_tags(set->flags)) {
4712  		blk_mq_free_map_and_rqs(set, set->shared_tags,
4713  					BLK_MQ_NO_HCTX_IDX);
4714  	}
4715  
4716  	for (j = 0; j < set->nr_maps; j++) {
4717  		kfree(set->map[j].mq_map);
4718  		set->map[j].mq_map = NULL;
4719  	}
4720  
4721  	kfree(set->tags);
4722  	set->tags = NULL;
4723  	if (set->flags & BLK_MQ_F_BLOCKING) {
4724  		cleanup_srcu_struct(set->srcu);
4725  		kfree(set->srcu);
4726  	}
4727  }
4728  EXPORT_SYMBOL(blk_mq_free_tag_set);
4729  
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)4730  int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4731  {
4732  	struct blk_mq_tag_set *set = q->tag_set;
4733  	struct blk_mq_hw_ctx *hctx;
4734  	int ret;
4735  	unsigned long i;
4736  
4737  	if (!set)
4738  		return -EINVAL;
4739  
4740  	if (q->nr_requests == nr)
4741  		return 0;
4742  
4743  	blk_mq_freeze_queue(q);
4744  	blk_mq_quiesce_queue(q);
4745  
4746  	ret = 0;
4747  	queue_for_each_hw_ctx(q, hctx, i) {
4748  		if (!hctx->tags)
4749  			continue;
4750  		/*
4751  		 * If we're using an MQ scheduler, just update the scheduler
4752  		 * queue depth. This is similar to what the old code would do.
4753  		 */
4754  		if (hctx->sched_tags) {
4755  			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4756  						      nr, true);
4757  		} else {
4758  			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4759  						      false);
4760  		}
4761  		if (ret)
4762  			break;
4763  		if (q->elevator && q->elevator->type->ops.depth_updated)
4764  			q->elevator->type->ops.depth_updated(hctx);
4765  	}
4766  	if (!ret) {
4767  		q->nr_requests = nr;
4768  		if (blk_mq_is_shared_tags(set->flags)) {
4769  			if (q->elevator)
4770  				blk_mq_tag_update_sched_shared_tags(q);
4771  			else
4772  				blk_mq_tag_resize_shared_tags(set, nr);
4773  		}
4774  	}
4775  
4776  	blk_mq_unquiesce_queue(q);
4777  	blk_mq_unfreeze_queue(q);
4778  
4779  	return ret;
4780  }
4781  
4782  /*
4783   * request_queue and elevator_type pair.
4784   * It is just used by __blk_mq_update_nr_hw_queues to cache
4785   * the elevator_type associated with a request_queue.
4786   */
4787  struct blk_mq_qe_pair {
4788  	struct list_head node;
4789  	struct request_queue *q;
4790  	struct elevator_type *type;
4791  };
4792  
4793  /*
4794   * Cache the elevator_type in qe pair list and switch the
4795   * io scheduler to 'none'
4796   */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)4797  static bool blk_mq_elv_switch_none(struct list_head *head,
4798  		struct request_queue *q)
4799  {
4800  	struct blk_mq_qe_pair *qe;
4801  
4802  	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4803  	if (!qe)
4804  		return false;
4805  
4806  	/* q->elevator needs protection from ->sysfs_lock */
4807  	mutex_lock(&q->sysfs_lock);
4808  
4809  	/* the check has to be done with holding sysfs_lock */
4810  	if (!q->elevator) {
4811  		kfree(qe);
4812  		goto unlock;
4813  	}
4814  
4815  	INIT_LIST_HEAD(&qe->node);
4816  	qe->q = q;
4817  	qe->type = q->elevator->type;
4818  	/* keep a reference to the elevator module as we'll switch back */
4819  	__elevator_get(qe->type);
4820  	list_add(&qe->node, head);
4821  	elevator_disable(q);
4822  unlock:
4823  	mutex_unlock(&q->sysfs_lock);
4824  
4825  	return true;
4826  }
4827  
blk_lookup_qe_pair(struct list_head * head,struct request_queue * q)4828  static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4829  						struct request_queue *q)
4830  {
4831  	struct blk_mq_qe_pair *qe;
4832  
4833  	list_for_each_entry(qe, head, node)
4834  		if (qe->q == q)
4835  			return qe;
4836  
4837  	return NULL;
4838  }
4839  
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)4840  static void blk_mq_elv_switch_back(struct list_head *head,
4841  				  struct request_queue *q)
4842  {
4843  	struct blk_mq_qe_pair *qe;
4844  	struct elevator_type *t;
4845  
4846  	qe = blk_lookup_qe_pair(head, q);
4847  	if (!qe)
4848  		return;
4849  	t = qe->type;
4850  	list_del(&qe->node);
4851  	kfree(qe);
4852  
4853  	mutex_lock(&q->sysfs_lock);
4854  	elevator_switch(q, t);
4855  	/* drop the reference acquired in blk_mq_elv_switch_none */
4856  	elevator_put(t);
4857  	mutex_unlock(&q->sysfs_lock);
4858  }
4859  
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4860  static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4861  							int nr_hw_queues)
4862  {
4863  	struct request_queue *q;
4864  	LIST_HEAD(head);
4865  	int prev_nr_hw_queues = set->nr_hw_queues;
4866  	int i;
4867  
4868  	lockdep_assert_held(&set->tag_list_lock);
4869  
4870  	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4871  		nr_hw_queues = nr_cpu_ids;
4872  	if (nr_hw_queues < 1)
4873  		return;
4874  	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4875  		return;
4876  
4877  	list_for_each_entry(q, &set->tag_list, tag_set_list)
4878  		blk_mq_freeze_queue(q);
4879  	/*
4880  	 * Switch IO scheduler to 'none', cleaning up the data associated
4881  	 * with the previous scheduler. We will switch back once we are done
4882  	 * updating the new sw to hw queue mappings.
4883  	 */
4884  	list_for_each_entry(q, &set->tag_list, tag_set_list)
4885  		if (!blk_mq_elv_switch_none(&head, q))
4886  			goto switch_back;
4887  
4888  	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4889  		blk_mq_debugfs_unregister_hctxs(q);
4890  		blk_mq_sysfs_unregister_hctxs(q);
4891  	}
4892  
4893  	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4894  		goto reregister;
4895  
4896  fallback:
4897  	blk_mq_update_queue_map(set);
4898  	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4899  		blk_mq_realloc_hw_ctxs(set, q);
4900  		blk_mq_update_poll_flag(q);
4901  		if (q->nr_hw_queues != set->nr_hw_queues) {
4902  			int i = prev_nr_hw_queues;
4903  
4904  			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4905  					nr_hw_queues, prev_nr_hw_queues);
4906  			for (; i < set->nr_hw_queues; i++)
4907  				__blk_mq_free_map_and_rqs(set, i);
4908  
4909  			set->nr_hw_queues = prev_nr_hw_queues;
4910  			goto fallback;
4911  		}
4912  		blk_mq_map_swqueue(q);
4913  	}
4914  
4915  reregister:
4916  	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4917  		blk_mq_sysfs_register_hctxs(q);
4918  		blk_mq_debugfs_register_hctxs(q);
4919  	}
4920  
4921  switch_back:
4922  	list_for_each_entry(q, &set->tag_list, tag_set_list)
4923  		blk_mq_elv_switch_back(&head, q);
4924  
4925  	list_for_each_entry(q, &set->tag_list, tag_set_list)
4926  		blk_mq_unfreeze_queue(q);
4927  
4928  	/* Free the excess tags when nr_hw_queues shrink. */
4929  	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4930  		__blk_mq_free_map_and_rqs(set, i);
4931  }
4932  
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4933  void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4934  {
4935  	mutex_lock(&set->tag_list_lock);
4936  	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4937  	mutex_unlock(&set->tag_list_lock);
4938  }
4939  EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4940  
blk_hctx_poll(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob,unsigned int flags)4941  static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4942  			 struct io_comp_batch *iob, unsigned int flags)
4943  {
4944  	long state = get_current_state();
4945  	int ret;
4946  
4947  	do {
4948  		ret = q->mq_ops->poll(hctx, iob);
4949  		if (ret > 0) {
4950  			__set_current_state(TASK_RUNNING);
4951  			return ret;
4952  		}
4953  
4954  		if (signal_pending_state(state, current))
4955  			__set_current_state(TASK_RUNNING);
4956  		if (task_is_running(current))
4957  			return 1;
4958  
4959  		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4960  			break;
4961  		cpu_relax();
4962  	} while (!need_resched());
4963  
4964  	__set_current_state(TASK_RUNNING);
4965  	return 0;
4966  }
4967  
blk_mq_poll(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)4968  int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4969  		struct io_comp_batch *iob, unsigned int flags)
4970  {
4971  	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4972  
4973  	return blk_hctx_poll(q, hctx, iob, flags);
4974  }
4975  
blk_rq_poll(struct request * rq,struct io_comp_batch * iob,unsigned int poll_flags)4976  int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4977  		unsigned int poll_flags)
4978  {
4979  	struct request_queue *q = rq->q;
4980  	int ret;
4981  
4982  	if (!blk_rq_is_poll(rq))
4983  		return 0;
4984  	if (!percpu_ref_tryget(&q->q_usage_counter))
4985  		return 0;
4986  
4987  	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4988  	blk_queue_exit(q);
4989  
4990  	return ret;
4991  }
4992  EXPORT_SYMBOL_GPL(blk_rq_poll);
4993  
blk_mq_rq_cpu(struct request * rq)4994  unsigned int blk_mq_rq_cpu(struct request *rq)
4995  {
4996  	return rq->mq_ctx->cpu;
4997  }
4998  EXPORT_SYMBOL(blk_mq_rq_cpu);
4999  
blk_mq_cancel_work_sync(struct request_queue * q)5000  void blk_mq_cancel_work_sync(struct request_queue *q)
5001  {
5002  	struct blk_mq_hw_ctx *hctx;
5003  	unsigned long i;
5004  
5005  	cancel_delayed_work_sync(&q->requeue_work);
5006  
5007  	queue_for_each_hw_ctx(q, hctx, i)
5008  		cancel_delayed_work_sync(&hctx->run_work);
5009  }
5010  
blk_mq_init(void)5011  static int __init blk_mq_init(void)
5012  {
5013  	int i;
5014  
5015  	for_each_possible_cpu(i)
5016  		init_llist_head(&per_cpu(blk_cpu_done, i));
5017  	for_each_possible_cpu(i)
5018  		INIT_CSD(&per_cpu(blk_cpu_csd, i),
5019  			 __blk_mq_complete_request_remote, NULL);
5020  	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5021  
5022  	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5023  				  "block/softirq:dead", NULL,
5024  				  blk_softirq_cpu_dead);
5025  	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5026  				blk_mq_hctx_notify_dead);
5027  	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5028  				blk_mq_hctx_notify_online,
5029  				blk_mq_hctx_notify_offline);
5030  	return 0;
5031  }
5032  subsys_initcall(blk_mq_init);
5033