1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 46 static DEFINE_MUTEX(blk_mq_cpuhp_lock); 47 48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 49 static void blk_mq_request_bypass_insert(struct request *rq, 50 blk_insert_t flags); 51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 52 struct list_head *list); 53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 54 struct io_comp_batch *iob, unsigned int flags); 55 56 /* 57 * Check if any of the ctx, dispatch list or elevator 58 * have pending work in this hardware queue. 59 */ blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 61 { 62 return !list_empty_careful(&hctx->dispatch) || 63 sbitmap_any_bit_set(&hctx->ctx_map) || 64 blk_mq_sched_has_work(hctx); 65 } 66 67 /* 68 * Mark this ctx as having pending work in this hardware queue 69 */ blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 71 struct blk_mq_ctx *ctx) 72 { 73 const int bit = ctx->index_hw[hctx->type]; 74 75 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 76 sbitmap_set_bit(&hctx->ctx_map, bit); 77 } 78 blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 80 struct blk_mq_ctx *ctx) 81 { 82 const int bit = ctx->index_hw[hctx->type]; 83 84 sbitmap_clear_bit(&hctx->ctx_map, bit); 85 } 86 87 struct mq_inflight { 88 struct block_device *part; 89 unsigned int inflight[2]; 90 }; 91 blk_mq_check_inflight(struct request * rq,void * priv)92 static bool blk_mq_check_inflight(struct request *rq, void *priv) 93 { 94 struct mq_inflight *mi = priv; 95 96 if (rq->part && blk_do_io_stat(rq) && 97 (!mi->part->bd_partno || rq->part == mi->part) && 98 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 99 mi->inflight[rq_data_dir(rq)]++; 100 101 return true; 102 } 103 blk_mq_in_flight(struct request_queue * q,struct block_device * part)104 unsigned int blk_mq_in_flight(struct request_queue *q, 105 struct block_device *part) 106 { 107 struct mq_inflight mi = { .part = part }; 108 109 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 110 111 return mi.inflight[0] + mi.inflight[1]; 112 } 113 blk_mq_in_flight_rw(struct request_queue * q,struct block_device * part,unsigned int inflight[2])114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 115 unsigned int inflight[2]) 116 { 117 struct mq_inflight mi = { .part = part }; 118 119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 120 inflight[0] = mi.inflight[0]; 121 inflight[1] = mi.inflight[1]; 122 } 123 blk_freeze_queue_start(struct request_queue * q)124 void blk_freeze_queue_start(struct request_queue *q) 125 { 126 mutex_lock(&q->mq_freeze_lock); 127 if (++q->mq_freeze_depth == 1) { 128 percpu_ref_kill(&q->q_usage_counter); 129 mutex_unlock(&q->mq_freeze_lock); 130 if (queue_is_mq(q)) 131 blk_mq_run_hw_queues(q, false); 132 } else { 133 mutex_unlock(&q->mq_freeze_lock); 134 } 135 } 136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 137 blk_mq_freeze_queue_wait(struct request_queue * q)138 void blk_mq_freeze_queue_wait(struct request_queue *q) 139 { 140 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 141 } 142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 143 blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 145 unsigned long timeout) 146 { 147 return wait_event_timeout(q->mq_freeze_wq, 148 percpu_ref_is_zero(&q->q_usage_counter), 149 timeout); 150 } 151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 152 153 /* 154 * Guarantee no request is in use, so we can change any data structure of 155 * the queue afterward. 156 */ blk_freeze_queue(struct request_queue * q)157 void blk_freeze_queue(struct request_queue *q) 158 { 159 /* 160 * In the !blk_mq case we are only calling this to kill the 161 * q_usage_counter, otherwise this increases the freeze depth 162 * and waits for it to return to zero. For this reason there is 163 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 164 * exported to drivers as the only user for unfreeze is blk_mq. 165 */ 166 blk_freeze_queue_start(q); 167 blk_mq_freeze_queue_wait(q); 168 } 169 blk_mq_freeze_queue(struct request_queue * q)170 void blk_mq_freeze_queue(struct request_queue *q) 171 { 172 /* 173 * ...just an alias to keep freeze and unfreeze actions balanced 174 * in the blk_mq_* namespace 175 */ 176 blk_freeze_queue(q); 177 } 178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 179 __blk_mq_unfreeze_queue(struct request_queue * q,bool force_atomic)180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 181 { 182 mutex_lock(&q->mq_freeze_lock); 183 if (force_atomic) 184 q->q_usage_counter.data->force_atomic = true; 185 q->mq_freeze_depth--; 186 WARN_ON_ONCE(q->mq_freeze_depth < 0); 187 if (!q->mq_freeze_depth) { 188 percpu_ref_resurrect(&q->q_usage_counter); 189 wake_up_all(&q->mq_freeze_wq); 190 } 191 mutex_unlock(&q->mq_freeze_lock); 192 } 193 blk_mq_unfreeze_queue(struct request_queue * q)194 void blk_mq_unfreeze_queue(struct request_queue *q) 195 { 196 __blk_mq_unfreeze_queue(q, false); 197 } 198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 199 200 /* 201 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 202 * mpt3sas driver such that this function can be removed. 203 */ blk_mq_quiesce_queue_nowait(struct request_queue * q)204 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 205 { 206 unsigned long flags; 207 208 spin_lock_irqsave(&q->queue_lock, flags); 209 if (!q->quiesce_depth++) 210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 211 spin_unlock_irqrestore(&q->queue_lock, flags); 212 } 213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 214 215 /** 216 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 217 * @set: tag_set to wait on 218 * 219 * Note: it is driver's responsibility for making sure that quiesce has 220 * been started on or more of the request_queues of the tag_set. This 221 * function only waits for the quiesce on those request_queues that had 222 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 223 */ blk_mq_wait_quiesce_done(struct blk_mq_tag_set * set)224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 225 { 226 if (set->flags & BLK_MQ_F_BLOCKING) 227 synchronize_srcu(set->srcu); 228 else 229 synchronize_rcu(); 230 } 231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 232 233 /** 234 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 235 * @q: request queue. 236 * 237 * Note: this function does not prevent that the struct request end_io() 238 * callback function is invoked. Once this function is returned, we make 239 * sure no dispatch can happen until the queue is unquiesced via 240 * blk_mq_unquiesce_queue(). 241 */ blk_mq_quiesce_queue(struct request_queue * q)242 void blk_mq_quiesce_queue(struct request_queue *q) 243 { 244 blk_mq_quiesce_queue_nowait(q); 245 /* nothing to wait for non-mq queues */ 246 if (queue_is_mq(q)) 247 blk_mq_wait_quiesce_done(q->tag_set); 248 } 249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 250 251 /* 252 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 253 * @q: request queue. 254 * 255 * This function recovers queue into the state before quiescing 256 * which is done by blk_mq_quiesce_queue. 257 */ blk_mq_unquiesce_queue(struct request_queue * q)258 void blk_mq_unquiesce_queue(struct request_queue *q) 259 { 260 unsigned long flags; 261 bool run_queue = false; 262 263 spin_lock_irqsave(&q->queue_lock, flags); 264 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 265 ; 266 } else if (!--q->quiesce_depth) { 267 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 268 run_queue = true; 269 } 270 spin_unlock_irqrestore(&q->queue_lock, flags); 271 272 /* dispatch requests which are inserted during quiescing */ 273 if (run_queue) 274 blk_mq_run_hw_queues(q, true); 275 } 276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 277 blk_mq_quiesce_tagset(struct blk_mq_tag_set * set)278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 279 { 280 struct request_queue *q; 281 282 mutex_lock(&set->tag_list_lock); 283 list_for_each_entry(q, &set->tag_list, tag_set_list) { 284 if (!blk_queue_skip_tagset_quiesce(q)) 285 blk_mq_quiesce_queue_nowait(q); 286 } 287 mutex_unlock(&set->tag_list_lock); 288 289 blk_mq_wait_quiesce_done(set); 290 } 291 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 292 blk_mq_unquiesce_tagset(struct blk_mq_tag_set * set)293 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 294 { 295 struct request_queue *q; 296 297 mutex_lock(&set->tag_list_lock); 298 list_for_each_entry(q, &set->tag_list, tag_set_list) { 299 if (!blk_queue_skip_tagset_quiesce(q)) 300 blk_mq_unquiesce_queue(q); 301 } 302 mutex_unlock(&set->tag_list_lock); 303 } 304 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 305 blk_mq_wake_waiters(struct request_queue * q)306 void blk_mq_wake_waiters(struct request_queue *q) 307 { 308 struct blk_mq_hw_ctx *hctx; 309 unsigned long i; 310 311 queue_for_each_hw_ctx(q, hctx, i) 312 if (blk_mq_hw_queue_mapped(hctx)) 313 blk_mq_tag_wakeup_all(hctx->tags, true); 314 } 315 blk_rq_init(struct request_queue * q,struct request * rq)316 void blk_rq_init(struct request_queue *q, struct request *rq) 317 { 318 memset(rq, 0, sizeof(*rq)); 319 320 INIT_LIST_HEAD(&rq->queuelist); 321 rq->q = q; 322 rq->__sector = (sector_t) -1; 323 INIT_HLIST_NODE(&rq->hash); 324 RB_CLEAR_NODE(&rq->rb_node); 325 rq->tag = BLK_MQ_NO_TAG; 326 rq->internal_tag = BLK_MQ_NO_TAG; 327 rq->start_time_ns = ktime_get_ns(); 328 rq->part = NULL; 329 blk_crypto_rq_set_defaults(rq); 330 } 331 EXPORT_SYMBOL(blk_rq_init); 332 333 /* Set start and alloc time when the allocated request is actually used */ blk_mq_rq_time_init(struct request * rq,u64 alloc_time_ns)334 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 335 { 336 if (blk_mq_need_time_stamp(rq)) 337 rq->start_time_ns = ktime_get_ns(); 338 else 339 rq->start_time_ns = 0; 340 341 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 342 if (blk_queue_rq_alloc_time(rq->q)) 343 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns; 344 else 345 rq->alloc_time_ns = 0; 346 #endif 347 } 348 blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,struct blk_mq_tags * tags,unsigned int tag)349 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 350 struct blk_mq_tags *tags, unsigned int tag) 351 { 352 struct blk_mq_ctx *ctx = data->ctx; 353 struct blk_mq_hw_ctx *hctx = data->hctx; 354 struct request_queue *q = data->q; 355 struct request *rq = tags->static_rqs[tag]; 356 357 rq->q = q; 358 rq->mq_ctx = ctx; 359 rq->mq_hctx = hctx; 360 rq->cmd_flags = data->cmd_flags; 361 362 if (data->flags & BLK_MQ_REQ_PM) 363 data->rq_flags |= RQF_PM; 364 if (blk_queue_io_stat(q)) 365 data->rq_flags |= RQF_IO_STAT; 366 rq->rq_flags = data->rq_flags; 367 368 if (data->rq_flags & RQF_SCHED_TAGS) { 369 rq->tag = BLK_MQ_NO_TAG; 370 rq->internal_tag = tag; 371 } else { 372 rq->tag = tag; 373 rq->internal_tag = BLK_MQ_NO_TAG; 374 } 375 rq->timeout = 0; 376 377 rq->part = NULL; 378 rq->io_start_time_ns = 0; 379 rq->stats_sectors = 0; 380 rq->nr_phys_segments = 0; 381 #if defined(CONFIG_BLK_DEV_INTEGRITY) 382 rq->nr_integrity_segments = 0; 383 #endif 384 rq->end_io = NULL; 385 rq->end_io_data = NULL; 386 387 blk_crypto_rq_set_defaults(rq); 388 INIT_LIST_HEAD(&rq->queuelist); 389 /* tag was already set */ 390 WRITE_ONCE(rq->deadline, 0); 391 req_ref_set(rq, 1); 392 393 if (rq->rq_flags & RQF_USE_SCHED) { 394 struct elevator_queue *e = data->q->elevator; 395 396 INIT_HLIST_NODE(&rq->hash); 397 RB_CLEAR_NODE(&rq->rb_node); 398 399 if (e->type->ops.prepare_request) 400 e->type->ops.prepare_request(rq); 401 } 402 403 return rq; 404 } 405 406 static inline struct request * __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data * data)407 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 408 { 409 unsigned int tag, tag_offset; 410 struct blk_mq_tags *tags; 411 struct request *rq; 412 unsigned long tag_mask; 413 int i, nr = 0; 414 415 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 416 if (unlikely(!tag_mask)) 417 return NULL; 418 419 tags = blk_mq_tags_from_data(data); 420 for (i = 0; tag_mask; i++) { 421 if (!(tag_mask & (1UL << i))) 422 continue; 423 tag = tag_offset + i; 424 prefetch(tags->static_rqs[tag]); 425 tag_mask &= ~(1UL << i); 426 rq = blk_mq_rq_ctx_init(data, tags, tag); 427 rq_list_add(data->cached_rq, rq); 428 nr++; 429 } 430 /* caller already holds a reference, add for remainder */ 431 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 432 data->nr_tags -= nr; 433 434 return rq_list_pop(data->cached_rq); 435 } 436 __blk_mq_alloc_requests(struct blk_mq_alloc_data * data)437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 438 { 439 struct request_queue *q = data->q; 440 u64 alloc_time_ns = 0; 441 struct request *rq; 442 unsigned int tag; 443 444 /* alloc_time includes depth and tag waits */ 445 if (blk_queue_rq_alloc_time(q)) 446 alloc_time_ns = ktime_get_ns(); 447 448 if (data->cmd_flags & REQ_NOWAIT) 449 data->flags |= BLK_MQ_REQ_NOWAIT; 450 451 retry: 452 data->ctx = blk_mq_get_ctx(q); 453 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 454 455 if (q->elevator) { 456 /* 457 * All requests use scheduler tags when an I/O scheduler is 458 * enabled for the queue. 459 */ 460 data->rq_flags |= RQF_SCHED_TAGS; 461 462 /* 463 * Flush/passthrough requests are special and go directly to the 464 * dispatch list. 465 */ 466 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 467 !blk_op_is_passthrough(data->cmd_flags)) { 468 struct elevator_mq_ops *ops = &q->elevator->type->ops; 469 470 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 471 472 data->rq_flags |= RQF_USE_SCHED; 473 if (ops->limit_depth) 474 ops->limit_depth(data->cmd_flags, data); 475 } 476 } else { 477 blk_mq_tag_busy(data->hctx); 478 } 479 480 if (data->flags & BLK_MQ_REQ_RESERVED) 481 data->rq_flags |= RQF_RESV; 482 483 /* 484 * Try batched alloc if we want more than 1 tag. 485 */ 486 if (data->nr_tags > 1) { 487 rq = __blk_mq_alloc_requests_batch(data); 488 if (rq) { 489 blk_mq_rq_time_init(rq, alloc_time_ns); 490 return rq; 491 } 492 data->nr_tags = 1; 493 } 494 495 /* 496 * Waiting allocations only fail because of an inactive hctx. In that 497 * case just retry the hctx assignment and tag allocation as CPU hotplug 498 * should have migrated us to an online CPU by now. 499 */ 500 tag = blk_mq_get_tag(data); 501 if (tag == BLK_MQ_NO_TAG) { 502 if (data->flags & BLK_MQ_REQ_NOWAIT) 503 return NULL; 504 /* 505 * Give up the CPU and sleep for a random short time to 506 * ensure that thread using a realtime scheduling class 507 * are migrated off the CPU, and thus off the hctx that 508 * is going away. 509 */ 510 msleep(3); 511 goto retry; 512 } 513 514 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 515 blk_mq_rq_time_init(rq, alloc_time_ns); 516 return rq; 517 } 518 blk_mq_rq_cache_fill(struct request_queue * q,struct blk_plug * plug,blk_opf_t opf,blk_mq_req_flags_t flags)519 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 520 struct blk_plug *plug, 521 blk_opf_t opf, 522 blk_mq_req_flags_t flags) 523 { 524 struct blk_mq_alloc_data data = { 525 .q = q, 526 .flags = flags, 527 .cmd_flags = opf, 528 .nr_tags = plug->nr_ios, 529 .cached_rq = &plug->cached_rq, 530 }; 531 struct request *rq; 532 533 if (blk_queue_enter(q, flags)) 534 return NULL; 535 536 plug->nr_ios = 1; 537 538 rq = __blk_mq_alloc_requests(&data); 539 if (unlikely(!rq)) 540 blk_queue_exit(q); 541 return rq; 542 } 543 blk_mq_alloc_cached_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)544 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 545 blk_opf_t opf, 546 blk_mq_req_flags_t flags) 547 { 548 struct blk_plug *plug = current->plug; 549 struct request *rq; 550 551 if (!plug) 552 return NULL; 553 554 if (rq_list_empty(plug->cached_rq)) { 555 if (plug->nr_ios == 1) 556 return NULL; 557 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 558 if (!rq) 559 return NULL; 560 } else { 561 rq = rq_list_peek(&plug->cached_rq); 562 if (!rq || rq->q != q) 563 return NULL; 564 565 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 566 return NULL; 567 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 568 return NULL; 569 570 plug->cached_rq = rq_list_next(rq); 571 blk_mq_rq_time_init(rq, 0); 572 } 573 574 rq->cmd_flags = opf; 575 INIT_LIST_HEAD(&rq->queuelist); 576 return rq; 577 } 578 blk_mq_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)579 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 580 blk_mq_req_flags_t flags) 581 { 582 struct request *rq; 583 584 rq = blk_mq_alloc_cached_request(q, opf, flags); 585 if (!rq) { 586 struct blk_mq_alloc_data data = { 587 .q = q, 588 .flags = flags, 589 .cmd_flags = opf, 590 .nr_tags = 1, 591 }; 592 int ret; 593 594 ret = blk_queue_enter(q, flags); 595 if (ret) 596 return ERR_PTR(ret); 597 598 rq = __blk_mq_alloc_requests(&data); 599 if (!rq) 600 goto out_queue_exit; 601 } 602 rq->__data_len = 0; 603 rq->__sector = (sector_t) -1; 604 rq->bio = rq->biotail = NULL; 605 return rq; 606 out_queue_exit: 607 blk_queue_exit(q); 608 return ERR_PTR(-EWOULDBLOCK); 609 } 610 EXPORT_SYMBOL(blk_mq_alloc_request); 611 blk_mq_alloc_request_hctx(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags,unsigned int hctx_idx)612 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 613 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 614 { 615 struct blk_mq_alloc_data data = { 616 .q = q, 617 .flags = flags, 618 .cmd_flags = opf, 619 .nr_tags = 1, 620 }; 621 u64 alloc_time_ns = 0; 622 struct request *rq; 623 unsigned int cpu; 624 unsigned int tag; 625 int ret; 626 627 /* alloc_time includes depth and tag waits */ 628 if (blk_queue_rq_alloc_time(q)) 629 alloc_time_ns = ktime_get_ns(); 630 631 /* 632 * If the tag allocator sleeps we could get an allocation for a 633 * different hardware context. No need to complicate the low level 634 * allocator for this for the rare use case of a command tied to 635 * a specific queue. 636 */ 637 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 638 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 639 return ERR_PTR(-EINVAL); 640 641 if (hctx_idx >= q->nr_hw_queues) 642 return ERR_PTR(-EIO); 643 644 ret = blk_queue_enter(q, flags); 645 if (ret) 646 return ERR_PTR(ret); 647 648 /* 649 * Check if the hardware context is actually mapped to anything. 650 * If not tell the caller that it should skip this queue. 651 */ 652 ret = -EXDEV; 653 data.hctx = xa_load(&q->hctx_table, hctx_idx); 654 if (!blk_mq_hw_queue_mapped(data.hctx)) 655 goto out_queue_exit; 656 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 657 if (cpu >= nr_cpu_ids) 658 goto out_queue_exit; 659 data.ctx = __blk_mq_get_ctx(q, cpu); 660 661 if (q->elevator) 662 data.rq_flags |= RQF_SCHED_TAGS; 663 else 664 blk_mq_tag_busy(data.hctx); 665 666 if (flags & BLK_MQ_REQ_RESERVED) 667 data.rq_flags |= RQF_RESV; 668 669 ret = -EWOULDBLOCK; 670 tag = blk_mq_get_tag(&data); 671 if (tag == BLK_MQ_NO_TAG) 672 goto out_queue_exit; 673 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 674 blk_mq_rq_time_init(rq, alloc_time_ns); 675 rq->__data_len = 0; 676 rq->__sector = (sector_t) -1; 677 rq->bio = rq->biotail = NULL; 678 return rq; 679 680 out_queue_exit: 681 blk_queue_exit(q); 682 return ERR_PTR(ret); 683 } 684 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 685 blk_mq_finish_request(struct request * rq)686 static void blk_mq_finish_request(struct request *rq) 687 { 688 struct request_queue *q = rq->q; 689 690 if (rq->rq_flags & RQF_USE_SCHED) { 691 q->elevator->type->ops.finish_request(rq); 692 /* 693 * For postflush request that may need to be 694 * completed twice, we should clear this flag 695 * to avoid double finish_request() on the rq. 696 */ 697 rq->rq_flags &= ~RQF_USE_SCHED; 698 } 699 } 700 __blk_mq_free_request(struct request * rq)701 static void __blk_mq_free_request(struct request *rq) 702 { 703 struct request_queue *q = rq->q; 704 struct blk_mq_ctx *ctx = rq->mq_ctx; 705 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 706 const int sched_tag = rq->internal_tag; 707 708 blk_crypto_free_request(rq); 709 blk_pm_mark_last_busy(rq); 710 rq->mq_hctx = NULL; 711 712 if (rq->rq_flags & RQF_MQ_INFLIGHT) 713 __blk_mq_dec_active_requests(hctx); 714 715 if (rq->tag != BLK_MQ_NO_TAG) 716 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 717 if (sched_tag != BLK_MQ_NO_TAG) 718 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 719 blk_mq_sched_restart(hctx); 720 blk_queue_exit(q); 721 } 722 blk_mq_free_request(struct request * rq)723 void blk_mq_free_request(struct request *rq) 724 { 725 struct request_queue *q = rq->q; 726 727 blk_mq_finish_request(rq); 728 729 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 730 laptop_io_completion(q->disk->bdi); 731 732 rq_qos_done(q, rq); 733 734 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 735 if (req_ref_put_and_test(rq)) 736 __blk_mq_free_request(rq); 737 } 738 EXPORT_SYMBOL_GPL(blk_mq_free_request); 739 blk_mq_free_plug_rqs(struct blk_plug * plug)740 void blk_mq_free_plug_rqs(struct blk_plug *plug) 741 { 742 struct request *rq; 743 744 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 745 blk_mq_free_request(rq); 746 } 747 blk_dump_rq_flags(struct request * rq,char * msg)748 void blk_dump_rq_flags(struct request *rq, char *msg) 749 { 750 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 751 rq->q->disk ? rq->q->disk->disk_name : "?", 752 (__force unsigned long long) rq->cmd_flags); 753 754 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 755 (unsigned long long)blk_rq_pos(rq), 756 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 757 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 758 rq->bio, rq->biotail, blk_rq_bytes(rq)); 759 } 760 EXPORT_SYMBOL(blk_dump_rq_flags); 761 req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)762 static void req_bio_endio(struct request *rq, struct bio *bio, 763 unsigned int nbytes, blk_status_t error) 764 { 765 if (unlikely(error)) { 766 bio->bi_status = error; 767 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 768 /* 769 * Partial zone append completions cannot be supported as the 770 * BIO fragments may end up not being written sequentially. 771 */ 772 if (bio->bi_iter.bi_size != nbytes) 773 bio->bi_status = BLK_STS_IOERR; 774 else 775 bio->bi_iter.bi_sector = rq->__sector; 776 } 777 778 bio_advance(bio, nbytes); 779 780 if (unlikely(rq->rq_flags & RQF_QUIET)) 781 bio_set_flag(bio, BIO_QUIET); 782 /* don't actually finish bio if it's part of flush sequence */ 783 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 784 bio_endio(bio); 785 } 786 blk_account_io_completion(struct request * req,unsigned int bytes)787 static void blk_account_io_completion(struct request *req, unsigned int bytes) 788 { 789 if (req->part && blk_do_io_stat(req)) { 790 const int sgrp = op_stat_group(req_op(req)); 791 792 part_stat_lock(); 793 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 794 part_stat_unlock(); 795 } 796 } 797 blk_print_req_error(struct request * req,blk_status_t status)798 static void blk_print_req_error(struct request *req, blk_status_t status) 799 { 800 printk_ratelimited(KERN_ERR 801 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 802 "phys_seg %u prio class %u\n", 803 blk_status_to_str(status), 804 req->q->disk ? req->q->disk->disk_name : "?", 805 blk_rq_pos(req), (__force u32)req_op(req), 806 blk_op_str(req_op(req)), 807 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 808 req->nr_phys_segments, 809 IOPRIO_PRIO_CLASS(req->ioprio)); 810 } 811 812 /* 813 * Fully end IO on a request. Does not support partial completions, or 814 * errors. 815 */ blk_complete_request(struct request * req)816 static void blk_complete_request(struct request *req) 817 { 818 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 819 int total_bytes = blk_rq_bytes(req); 820 struct bio *bio = req->bio; 821 822 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 823 824 if (!bio) 825 return; 826 827 #ifdef CONFIG_BLK_DEV_INTEGRITY 828 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 829 req->q->integrity.profile->complete_fn(req, total_bytes); 830 #endif 831 832 /* 833 * Upper layers may call blk_crypto_evict_key() anytime after the last 834 * bio_endio(). Therefore, the keyslot must be released before that. 835 */ 836 blk_crypto_rq_put_keyslot(req); 837 838 blk_account_io_completion(req, total_bytes); 839 840 do { 841 struct bio *next = bio->bi_next; 842 843 /* Completion has already been traced */ 844 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 845 846 if (req_op(req) == REQ_OP_ZONE_APPEND) 847 bio->bi_iter.bi_sector = req->__sector; 848 849 if (!is_flush) 850 bio_endio(bio); 851 bio = next; 852 } while (bio); 853 854 /* 855 * Reset counters so that the request stacking driver 856 * can find how many bytes remain in the request 857 * later. 858 */ 859 if (!req->end_io) { 860 req->bio = NULL; 861 req->__data_len = 0; 862 } 863 } 864 865 /** 866 * blk_update_request - Complete multiple bytes without completing the request 867 * @req: the request being processed 868 * @error: block status code 869 * @nr_bytes: number of bytes to complete for @req 870 * 871 * Description: 872 * Ends I/O on a number of bytes attached to @req, but doesn't complete 873 * the request structure even if @req doesn't have leftover. 874 * If @req has leftover, sets it up for the next range of segments. 875 * 876 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 877 * %false return from this function. 878 * 879 * Note: 880 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 881 * except in the consistency check at the end of this function. 882 * 883 * Return: 884 * %false - this request doesn't have any more data 885 * %true - this request has more data 886 **/ blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)887 bool blk_update_request(struct request *req, blk_status_t error, 888 unsigned int nr_bytes) 889 { 890 int total_bytes; 891 892 trace_block_rq_complete(req, error, nr_bytes); 893 894 if (!req->bio) 895 return false; 896 897 #ifdef CONFIG_BLK_DEV_INTEGRITY 898 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 899 error == BLK_STS_OK) 900 req->q->integrity.profile->complete_fn(req, nr_bytes); 901 #endif 902 903 /* 904 * Upper layers may call blk_crypto_evict_key() anytime after the last 905 * bio_endio(). Therefore, the keyslot must be released before that. 906 */ 907 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 908 __blk_crypto_rq_put_keyslot(req); 909 910 if (unlikely(error && !blk_rq_is_passthrough(req) && 911 !(req->rq_flags & RQF_QUIET)) && 912 !test_bit(GD_DEAD, &req->q->disk->state)) { 913 blk_print_req_error(req, error); 914 trace_block_rq_error(req, error, nr_bytes); 915 } 916 917 blk_account_io_completion(req, nr_bytes); 918 919 total_bytes = 0; 920 while (req->bio) { 921 struct bio *bio = req->bio; 922 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 923 924 if (bio_bytes == bio->bi_iter.bi_size) 925 req->bio = bio->bi_next; 926 927 /* Completion has already been traced */ 928 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 929 req_bio_endio(req, bio, bio_bytes, error); 930 931 total_bytes += bio_bytes; 932 nr_bytes -= bio_bytes; 933 934 if (!nr_bytes) 935 break; 936 } 937 938 /* 939 * completely done 940 */ 941 if (!req->bio) { 942 /* 943 * Reset counters so that the request stacking driver 944 * can find how many bytes remain in the request 945 * later. 946 */ 947 req->__data_len = 0; 948 return false; 949 } 950 951 req->__data_len -= total_bytes; 952 953 /* update sector only for requests with clear definition of sector */ 954 if (!blk_rq_is_passthrough(req)) 955 req->__sector += total_bytes >> 9; 956 957 /* mixed attributes always follow the first bio */ 958 if (req->rq_flags & RQF_MIXED_MERGE) { 959 req->cmd_flags &= ~REQ_FAILFAST_MASK; 960 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 961 } 962 963 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 964 /* 965 * If total number of sectors is less than the first segment 966 * size, something has gone terribly wrong. 967 */ 968 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 969 blk_dump_rq_flags(req, "request botched"); 970 req->__data_len = blk_rq_cur_bytes(req); 971 } 972 973 /* recalculate the number of segments */ 974 req->nr_phys_segments = blk_recalc_rq_segments(req); 975 } 976 977 return true; 978 } 979 EXPORT_SYMBOL_GPL(blk_update_request); 980 blk_account_io_done(struct request * req,u64 now)981 static inline void blk_account_io_done(struct request *req, u64 now) 982 { 983 trace_block_io_done(req); 984 985 /* 986 * Account IO completion. flush_rq isn't accounted as a 987 * normal IO on queueing nor completion. Accounting the 988 * containing request is enough. 989 */ 990 if (blk_do_io_stat(req) && req->part && 991 !(req->rq_flags & RQF_FLUSH_SEQ)) { 992 const int sgrp = op_stat_group(req_op(req)); 993 994 part_stat_lock(); 995 update_io_ticks(req->part, jiffies, true); 996 part_stat_inc(req->part, ios[sgrp]); 997 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 998 part_stat_local_dec(req->part, 999 in_flight[op_is_write(req_op(req))]); 1000 part_stat_unlock(); 1001 } 1002 } 1003 blk_account_io_start(struct request * req)1004 static inline void blk_account_io_start(struct request *req) 1005 { 1006 trace_block_io_start(req); 1007 1008 if (blk_do_io_stat(req)) { 1009 /* 1010 * All non-passthrough requests are created from a bio with one 1011 * exception: when a flush command that is part of a flush sequence 1012 * generated by the state machine in blk-flush.c is cloned onto the 1013 * lower device by dm-multipath we can get here without a bio. 1014 */ 1015 if (req->bio) 1016 req->part = req->bio->bi_bdev; 1017 else 1018 req->part = req->q->disk->part0; 1019 1020 part_stat_lock(); 1021 update_io_ticks(req->part, jiffies, false); 1022 part_stat_local_inc(req->part, 1023 in_flight[op_is_write(req_op(req))]); 1024 part_stat_unlock(); 1025 } 1026 } 1027 __blk_mq_end_request_acct(struct request * rq,u64 now)1028 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1029 { 1030 if (rq->rq_flags & RQF_STATS) 1031 blk_stat_add(rq, now); 1032 1033 blk_mq_sched_completed_request(rq, now); 1034 blk_account_io_done(rq, now); 1035 } 1036 __blk_mq_end_request(struct request * rq,blk_status_t error)1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1038 { 1039 if (blk_mq_need_time_stamp(rq)) 1040 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1041 1042 blk_mq_finish_request(rq); 1043 1044 if (rq->end_io) { 1045 rq_qos_done(rq->q, rq); 1046 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1047 blk_mq_free_request(rq); 1048 } else { 1049 blk_mq_free_request(rq); 1050 } 1051 } 1052 EXPORT_SYMBOL(__blk_mq_end_request); 1053 blk_mq_end_request(struct request * rq,blk_status_t error)1054 void blk_mq_end_request(struct request *rq, blk_status_t error) 1055 { 1056 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1057 BUG(); 1058 __blk_mq_end_request(rq, error); 1059 } 1060 EXPORT_SYMBOL(blk_mq_end_request); 1061 1062 #define TAG_COMP_BATCH 32 1063 blk_mq_flush_tag_batch(struct blk_mq_hw_ctx * hctx,int * tag_array,int nr_tags)1064 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1065 int *tag_array, int nr_tags) 1066 { 1067 struct request_queue *q = hctx->queue; 1068 1069 /* 1070 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1071 * update hctx->nr_active in batch 1072 */ 1073 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1074 __blk_mq_sub_active_requests(hctx, nr_tags); 1075 1076 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1077 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1078 } 1079 blk_mq_end_request_batch(struct io_comp_batch * iob)1080 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1081 { 1082 int tags[TAG_COMP_BATCH], nr_tags = 0; 1083 struct blk_mq_hw_ctx *cur_hctx = NULL; 1084 struct request *rq; 1085 u64 now = 0; 1086 1087 if (iob->need_ts) 1088 now = ktime_get_ns(); 1089 1090 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1091 prefetch(rq->bio); 1092 prefetch(rq->rq_next); 1093 1094 blk_complete_request(rq); 1095 if (iob->need_ts) 1096 __blk_mq_end_request_acct(rq, now); 1097 1098 blk_mq_finish_request(rq); 1099 1100 rq_qos_done(rq->q, rq); 1101 1102 /* 1103 * If end_io handler returns NONE, then it still has 1104 * ownership of the request. 1105 */ 1106 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1107 continue; 1108 1109 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1110 if (!req_ref_put_and_test(rq)) 1111 continue; 1112 1113 blk_crypto_free_request(rq); 1114 blk_pm_mark_last_busy(rq); 1115 1116 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1117 if (cur_hctx) 1118 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1119 nr_tags = 0; 1120 cur_hctx = rq->mq_hctx; 1121 } 1122 tags[nr_tags++] = rq->tag; 1123 } 1124 1125 if (nr_tags) 1126 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1127 } 1128 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1129 blk_complete_reqs(struct llist_head * list)1130 static void blk_complete_reqs(struct llist_head *list) 1131 { 1132 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1133 struct request *rq, *next; 1134 1135 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1136 rq->q->mq_ops->complete(rq); 1137 } 1138 blk_done_softirq(struct softirq_action * h)1139 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1140 { 1141 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1142 } 1143 blk_softirq_cpu_dead(unsigned int cpu)1144 static int blk_softirq_cpu_dead(unsigned int cpu) 1145 { 1146 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1147 return 0; 1148 } 1149 __blk_mq_complete_request_remote(void * data)1150 static void __blk_mq_complete_request_remote(void *data) 1151 { 1152 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1153 } 1154 blk_mq_complete_need_ipi(struct request * rq)1155 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1156 { 1157 int cpu = raw_smp_processor_id(); 1158 1159 if (!IS_ENABLED(CONFIG_SMP) || 1160 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1161 return false; 1162 /* 1163 * With force threaded interrupts enabled, raising softirq from an SMP 1164 * function call will always result in waking the ksoftirqd thread. 1165 * This is probably worse than completing the request on a different 1166 * cache domain. 1167 */ 1168 if (force_irqthreads()) 1169 return false; 1170 1171 /* same CPU or cache domain? Complete locally */ 1172 if (cpu == rq->mq_ctx->cpu || 1173 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1174 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1175 return false; 1176 1177 /* don't try to IPI to an offline CPU */ 1178 return cpu_online(rq->mq_ctx->cpu); 1179 } 1180 blk_mq_complete_send_ipi(struct request * rq)1181 static void blk_mq_complete_send_ipi(struct request *rq) 1182 { 1183 unsigned int cpu; 1184 1185 cpu = rq->mq_ctx->cpu; 1186 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1187 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1188 } 1189 blk_mq_raise_softirq(struct request * rq)1190 static void blk_mq_raise_softirq(struct request *rq) 1191 { 1192 struct llist_head *list; 1193 1194 preempt_disable(); 1195 list = this_cpu_ptr(&blk_cpu_done); 1196 if (llist_add(&rq->ipi_list, list)) 1197 raise_softirq(BLOCK_SOFTIRQ); 1198 preempt_enable(); 1199 } 1200 blk_mq_complete_request_remote(struct request * rq)1201 bool blk_mq_complete_request_remote(struct request *rq) 1202 { 1203 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1204 1205 /* 1206 * For request which hctx has only one ctx mapping, 1207 * or a polled request, always complete locally, 1208 * it's pointless to redirect the completion. 1209 */ 1210 if ((rq->mq_hctx->nr_ctx == 1 && 1211 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1212 rq->cmd_flags & REQ_POLLED) 1213 return false; 1214 1215 if (blk_mq_complete_need_ipi(rq)) { 1216 blk_mq_complete_send_ipi(rq); 1217 return true; 1218 } 1219 1220 if (rq->q->nr_hw_queues == 1) { 1221 blk_mq_raise_softirq(rq); 1222 return true; 1223 } 1224 return false; 1225 } 1226 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1227 1228 /** 1229 * blk_mq_complete_request - end I/O on a request 1230 * @rq: the request being processed 1231 * 1232 * Description: 1233 * Complete a request by scheduling the ->complete_rq operation. 1234 **/ blk_mq_complete_request(struct request * rq)1235 void blk_mq_complete_request(struct request *rq) 1236 { 1237 if (!blk_mq_complete_request_remote(rq)) 1238 rq->q->mq_ops->complete(rq); 1239 } 1240 EXPORT_SYMBOL(blk_mq_complete_request); 1241 1242 /** 1243 * blk_mq_start_request - Start processing a request 1244 * @rq: Pointer to request to be started 1245 * 1246 * Function used by device drivers to notify the block layer that a request 1247 * is going to be processed now, so blk layer can do proper initializations 1248 * such as starting the timeout timer. 1249 */ blk_mq_start_request(struct request * rq)1250 void blk_mq_start_request(struct request *rq) 1251 { 1252 struct request_queue *q = rq->q; 1253 1254 trace_block_rq_issue(rq); 1255 1256 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1257 rq->io_start_time_ns = ktime_get_ns(); 1258 rq->stats_sectors = blk_rq_sectors(rq); 1259 rq->rq_flags |= RQF_STATS; 1260 rq_qos_issue(q, rq); 1261 } 1262 1263 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1264 1265 blk_add_timer(rq); 1266 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1267 1268 #ifdef CONFIG_BLK_DEV_INTEGRITY 1269 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1270 q->integrity.profile->prepare_fn(rq); 1271 #endif 1272 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1273 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1274 } 1275 EXPORT_SYMBOL(blk_mq_start_request); 1276 1277 /* 1278 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1279 * queues. This is important for md arrays to benefit from merging 1280 * requests. 1281 */ blk_plug_max_rq_count(struct blk_plug * plug)1282 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1283 { 1284 if (plug->multiple_queues) 1285 return BLK_MAX_REQUEST_COUNT * 2; 1286 return BLK_MAX_REQUEST_COUNT; 1287 } 1288 blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)1289 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1290 { 1291 struct request *last = rq_list_peek(&plug->mq_list); 1292 1293 if (!plug->rq_count) { 1294 trace_block_plug(rq->q); 1295 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1296 (!blk_queue_nomerges(rq->q) && 1297 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1298 blk_mq_flush_plug_list(plug, false); 1299 last = NULL; 1300 trace_block_plug(rq->q); 1301 } 1302 1303 if (!plug->multiple_queues && last && last->q != rq->q) 1304 plug->multiple_queues = true; 1305 /* 1306 * Any request allocated from sched tags can't be issued to 1307 * ->queue_rqs() directly 1308 */ 1309 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1310 plug->has_elevator = true; 1311 rq->rq_next = NULL; 1312 rq_list_add(&plug->mq_list, rq); 1313 plug->rq_count++; 1314 } 1315 1316 /** 1317 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1318 * @rq: request to insert 1319 * @at_head: insert request at head or tail of queue 1320 * 1321 * Description: 1322 * Insert a fully prepared request at the back of the I/O scheduler queue 1323 * for execution. Don't wait for completion. 1324 * 1325 * Note: 1326 * This function will invoke @done directly if the queue is dead. 1327 */ blk_execute_rq_nowait(struct request * rq,bool at_head)1328 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1329 { 1330 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1331 1332 WARN_ON(irqs_disabled()); 1333 WARN_ON(!blk_rq_is_passthrough(rq)); 1334 1335 blk_account_io_start(rq); 1336 1337 /* 1338 * As plugging can be enabled for passthrough requests on a zoned 1339 * device, directly accessing the plug instead of using blk_mq_plug() 1340 * should not have any consequences. 1341 */ 1342 if (current->plug && !at_head) { 1343 blk_add_rq_to_plug(current->plug, rq); 1344 return; 1345 } 1346 1347 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1348 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1349 } 1350 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1351 1352 struct blk_rq_wait { 1353 struct completion done; 1354 blk_status_t ret; 1355 }; 1356 blk_end_sync_rq(struct request * rq,blk_status_t ret)1357 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1358 { 1359 struct blk_rq_wait *wait = rq->end_io_data; 1360 1361 wait->ret = ret; 1362 complete(&wait->done); 1363 return RQ_END_IO_NONE; 1364 } 1365 blk_rq_is_poll(struct request * rq)1366 bool blk_rq_is_poll(struct request *rq) 1367 { 1368 if (!rq->mq_hctx) 1369 return false; 1370 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1371 return false; 1372 return true; 1373 } 1374 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1375 blk_rq_poll_completion(struct request * rq,struct completion * wait)1376 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1377 { 1378 do { 1379 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1380 cond_resched(); 1381 } while (!completion_done(wait)); 1382 } 1383 1384 /** 1385 * blk_execute_rq - insert a request into queue for execution 1386 * @rq: request to insert 1387 * @at_head: insert request at head or tail of queue 1388 * 1389 * Description: 1390 * Insert a fully prepared request at the back of the I/O scheduler queue 1391 * for execution and wait for completion. 1392 * Return: The blk_status_t result provided to blk_mq_end_request(). 1393 */ blk_execute_rq(struct request * rq,bool at_head)1394 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1395 { 1396 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1397 struct blk_rq_wait wait = { 1398 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1399 }; 1400 1401 WARN_ON(irqs_disabled()); 1402 WARN_ON(!blk_rq_is_passthrough(rq)); 1403 1404 rq->end_io_data = &wait; 1405 rq->end_io = blk_end_sync_rq; 1406 1407 blk_account_io_start(rq); 1408 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1409 blk_mq_run_hw_queue(hctx, false); 1410 1411 if (blk_rq_is_poll(rq)) { 1412 blk_rq_poll_completion(rq, &wait.done); 1413 } else { 1414 /* 1415 * Prevent hang_check timer from firing at us during very long 1416 * I/O 1417 */ 1418 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1419 1420 if (hang_check) 1421 while (!wait_for_completion_io_timeout(&wait.done, 1422 hang_check * (HZ/2))) 1423 ; 1424 else 1425 wait_for_completion_io(&wait.done); 1426 } 1427 1428 return wait.ret; 1429 } 1430 EXPORT_SYMBOL(blk_execute_rq); 1431 __blk_mq_requeue_request(struct request * rq)1432 static void __blk_mq_requeue_request(struct request *rq) 1433 { 1434 struct request_queue *q = rq->q; 1435 1436 blk_mq_put_driver_tag(rq); 1437 1438 trace_block_rq_requeue(rq); 1439 rq_qos_requeue(q, rq); 1440 1441 if (blk_mq_request_started(rq)) { 1442 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1443 rq->rq_flags &= ~RQF_TIMED_OUT; 1444 } 1445 } 1446 blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)1447 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1448 { 1449 struct request_queue *q = rq->q; 1450 unsigned long flags; 1451 1452 __blk_mq_requeue_request(rq); 1453 1454 /* this request will be re-inserted to io scheduler queue */ 1455 blk_mq_sched_requeue_request(rq); 1456 1457 spin_lock_irqsave(&q->requeue_lock, flags); 1458 list_add_tail(&rq->queuelist, &q->requeue_list); 1459 spin_unlock_irqrestore(&q->requeue_lock, flags); 1460 1461 if (kick_requeue_list) 1462 blk_mq_kick_requeue_list(q); 1463 } 1464 EXPORT_SYMBOL(blk_mq_requeue_request); 1465 blk_mq_requeue_work(struct work_struct * work)1466 static void blk_mq_requeue_work(struct work_struct *work) 1467 { 1468 struct request_queue *q = 1469 container_of(work, struct request_queue, requeue_work.work); 1470 LIST_HEAD(rq_list); 1471 LIST_HEAD(flush_list); 1472 struct request *rq; 1473 1474 spin_lock_irq(&q->requeue_lock); 1475 list_splice_init(&q->requeue_list, &rq_list); 1476 list_splice_init(&q->flush_list, &flush_list); 1477 spin_unlock_irq(&q->requeue_lock); 1478 1479 while (!list_empty(&rq_list)) { 1480 rq = list_entry(rq_list.next, struct request, queuelist); 1481 /* 1482 * If RQF_DONTPREP ist set, the request has been started by the 1483 * driver already and might have driver-specific data allocated 1484 * already. Insert it into the hctx dispatch list to avoid 1485 * block layer merges for the request. 1486 */ 1487 if (rq->rq_flags & RQF_DONTPREP) { 1488 list_del_init(&rq->queuelist); 1489 blk_mq_request_bypass_insert(rq, 0); 1490 } else { 1491 list_del_init(&rq->queuelist); 1492 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1493 } 1494 } 1495 1496 while (!list_empty(&flush_list)) { 1497 rq = list_entry(flush_list.next, struct request, queuelist); 1498 list_del_init(&rq->queuelist); 1499 blk_mq_insert_request(rq, 0); 1500 } 1501 1502 blk_mq_run_hw_queues(q, false); 1503 } 1504 blk_mq_kick_requeue_list(struct request_queue * q)1505 void blk_mq_kick_requeue_list(struct request_queue *q) 1506 { 1507 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1508 } 1509 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1510 blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)1511 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1512 unsigned long msecs) 1513 { 1514 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1515 msecs_to_jiffies(msecs)); 1516 } 1517 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1518 blk_is_flush_data_rq(struct request * rq)1519 static bool blk_is_flush_data_rq(struct request *rq) 1520 { 1521 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1522 } 1523 blk_mq_rq_inflight(struct request * rq,void * priv)1524 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1525 { 1526 /* 1527 * If we find a request that isn't idle we know the queue is busy 1528 * as it's checked in the iter. 1529 * Return false to stop the iteration. 1530 * 1531 * In case of queue quiesce, if one flush data request is completed, 1532 * don't count it as inflight given the flush sequence is suspended, 1533 * and the original flush data request is invisible to driver, just 1534 * like other pending requests because of quiesce 1535 */ 1536 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1537 blk_is_flush_data_rq(rq) && 1538 blk_mq_request_completed(rq))) { 1539 bool *busy = priv; 1540 1541 *busy = true; 1542 return false; 1543 } 1544 1545 return true; 1546 } 1547 blk_mq_queue_inflight(struct request_queue * q)1548 bool blk_mq_queue_inflight(struct request_queue *q) 1549 { 1550 bool busy = false; 1551 1552 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1553 return busy; 1554 } 1555 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1556 blk_mq_rq_timed_out(struct request * req)1557 static void blk_mq_rq_timed_out(struct request *req) 1558 { 1559 req->rq_flags |= RQF_TIMED_OUT; 1560 if (req->q->mq_ops->timeout) { 1561 enum blk_eh_timer_return ret; 1562 1563 ret = req->q->mq_ops->timeout(req); 1564 if (ret == BLK_EH_DONE) 1565 return; 1566 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1567 } 1568 1569 blk_add_timer(req); 1570 } 1571 1572 struct blk_expired_data { 1573 bool has_timedout_rq; 1574 unsigned long next; 1575 unsigned long timeout_start; 1576 }; 1577 blk_mq_req_expired(struct request * rq,struct blk_expired_data * expired)1578 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1579 { 1580 unsigned long deadline; 1581 1582 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1583 return false; 1584 if (rq->rq_flags & RQF_TIMED_OUT) 1585 return false; 1586 1587 deadline = READ_ONCE(rq->deadline); 1588 if (time_after_eq(expired->timeout_start, deadline)) 1589 return true; 1590 1591 if (expired->next == 0) 1592 expired->next = deadline; 1593 else if (time_after(expired->next, deadline)) 1594 expired->next = deadline; 1595 return false; 1596 } 1597 blk_mq_put_rq_ref(struct request * rq)1598 void blk_mq_put_rq_ref(struct request *rq) 1599 { 1600 if (is_flush_rq(rq)) { 1601 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1602 blk_mq_free_request(rq); 1603 } else if (req_ref_put_and_test(rq)) { 1604 __blk_mq_free_request(rq); 1605 } 1606 } 1607 blk_mq_check_expired(struct request * rq,void * priv)1608 static bool blk_mq_check_expired(struct request *rq, void *priv) 1609 { 1610 struct blk_expired_data *expired = priv; 1611 1612 /* 1613 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1614 * be reallocated underneath the timeout handler's processing, then 1615 * the expire check is reliable. If the request is not expired, then 1616 * it was completed and reallocated as a new request after returning 1617 * from blk_mq_check_expired(). 1618 */ 1619 if (blk_mq_req_expired(rq, expired)) { 1620 expired->has_timedout_rq = true; 1621 return false; 1622 } 1623 return true; 1624 } 1625 blk_mq_handle_expired(struct request * rq,void * priv)1626 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1627 { 1628 struct blk_expired_data *expired = priv; 1629 1630 if (blk_mq_req_expired(rq, expired)) 1631 blk_mq_rq_timed_out(rq); 1632 return true; 1633 } 1634 blk_mq_timeout_work(struct work_struct * work)1635 static void blk_mq_timeout_work(struct work_struct *work) 1636 { 1637 struct request_queue *q = 1638 container_of(work, struct request_queue, timeout_work); 1639 struct blk_expired_data expired = { 1640 .timeout_start = jiffies, 1641 }; 1642 struct blk_mq_hw_ctx *hctx; 1643 unsigned long i; 1644 1645 /* A deadlock might occur if a request is stuck requiring a 1646 * timeout at the same time a queue freeze is waiting 1647 * completion, since the timeout code would not be able to 1648 * acquire the queue reference here. 1649 * 1650 * That's why we don't use blk_queue_enter here; instead, we use 1651 * percpu_ref_tryget directly, because we need to be able to 1652 * obtain a reference even in the short window between the queue 1653 * starting to freeze, by dropping the first reference in 1654 * blk_freeze_queue_start, and the moment the last request is 1655 * consumed, marked by the instant q_usage_counter reaches 1656 * zero. 1657 */ 1658 if (!percpu_ref_tryget(&q->q_usage_counter)) 1659 return; 1660 1661 /* check if there is any timed-out request */ 1662 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1663 if (expired.has_timedout_rq) { 1664 /* 1665 * Before walking tags, we must ensure any submit started 1666 * before the current time has finished. Since the submit 1667 * uses srcu or rcu, wait for a synchronization point to 1668 * ensure all running submits have finished 1669 */ 1670 blk_mq_wait_quiesce_done(q->tag_set); 1671 1672 expired.next = 0; 1673 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1674 } 1675 1676 if (expired.next != 0) { 1677 mod_timer(&q->timeout, expired.next); 1678 } else { 1679 /* 1680 * Request timeouts are handled as a forward rolling timer. If 1681 * we end up here it means that no requests are pending and 1682 * also that no request has been pending for a while. Mark 1683 * each hctx as idle. 1684 */ 1685 queue_for_each_hw_ctx(q, hctx, i) { 1686 /* the hctx may be unmapped, so check it here */ 1687 if (blk_mq_hw_queue_mapped(hctx)) 1688 blk_mq_tag_idle(hctx); 1689 } 1690 } 1691 blk_queue_exit(q); 1692 } 1693 1694 struct flush_busy_ctx_data { 1695 struct blk_mq_hw_ctx *hctx; 1696 struct list_head *list; 1697 }; 1698 flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1699 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1700 { 1701 struct flush_busy_ctx_data *flush_data = data; 1702 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1703 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1704 enum hctx_type type = hctx->type; 1705 1706 spin_lock(&ctx->lock); 1707 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1708 sbitmap_clear_bit(sb, bitnr); 1709 spin_unlock(&ctx->lock); 1710 return true; 1711 } 1712 1713 /* 1714 * Process software queues that have been marked busy, splicing them 1715 * to the for-dispatch 1716 */ blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1717 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1718 { 1719 struct flush_busy_ctx_data data = { 1720 .hctx = hctx, 1721 .list = list, 1722 }; 1723 1724 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1725 } 1726 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1727 1728 struct dispatch_rq_data { 1729 struct blk_mq_hw_ctx *hctx; 1730 struct request *rq; 1731 }; 1732 dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1733 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1734 void *data) 1735 { 1736 struct dispatch_rq_data *dispatch_data = data; 1737 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1738 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1739 enum hctx_type type = hctx->type; 1740 1741 spin_lock(&ctx->lock); 1742 if (!list_empty(&ctx->rq_lists[type])) { 1743 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1744 list_del_init(&dispatch_data->rq->queuelist); 1745 if (list_empty(&ctx->rq_lists[type])) 1746 sbitmap_clear_bit(sb, bitnr); 1747 } 1748 spin_unlock(&ctx->lock); 1749 1750 return !dispatch_data->rq; 1751 } 1752 blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1753 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1754 struct blk_mq_ctx *start) 1755 { 1756 unsigned off = start ? start->index_hw[hctx->type] : 0; 1757 struct dispatch_rq_data data = { 1758 .hctx = hctx, 1759 .rq = NULL, 1760 }; 1761 1762 __sbitmap_for_each_set(&hctx->ctx_map, off, 1763 dispatch_rq_from_ctx, &data); 1764 1765 return data.rq; 1766 } 1767 __blk_mq_alloc_driver_tag(struct request * rq)1768 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1769 { 1770 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1771 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1772 int tag; 1773 1774 blk_mq_tag_busy(rq->mq_hctx); 1775 1776 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1777 bt = &rq->mq_hctx->tags->breserved_tags; 1778 tag_offset = 0; 1779 } else { 1780 if (!hctx_may_queue(rq->mq_hctx, bt)) 1781 return false; 1782 } 1783 1784 tag = __sbitmap_queue_get(bt); 1785 if (tag == BLK_MQ_NO_TAG) 1786 return false; 1787 1788 rq->tag = tag + tag_offset; 1789 return true; 1790 } 1791 __blk_mq_get_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)1792 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1793 { 1794 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1795 return false; 1796 1797 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1798 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1799 rq->rq_flags |= RQF_MQ_INFLIGHT; 1800 __blk_mq_inc_active_requests(hctx); 1801 } 1802 hctx->tags->rqs[rq->tag] = rq; 1803 return true; 1804 } 1805 blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1806 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1807 int flags, void *key) 1808 { 1809 struct blk_mq_hw_ctx *hctx; 1810 1811 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1812 1813 spin_lock(&hctx->dispatch_wait_lock); 1814 if (!list_empty(&wait->entry)) { 1815 struct sbitmap_queue *sbq; 1816 1817 list_del_init(&wait->entry); 1818 sbq = &hctx->tags->bitmap_tags; 1819 atomic_dec(&sbq->ws_active); 1820 } 1821 spin_unlock(&hctx->dispatch_wait_lock); 1822 1823 blk_mq_run_hw_queue(hctx, true); 1824 return 1; 1825 } 1826 1827 /* 1828 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1829 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1830 * restart. For both cases, take care to check the condition again after 1831 * marking us as waiting. 1832 */ blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1833 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1834 struct request *rq) 1835 { 1836 struct sbitmap_queue *sbq; 1837 struct wait_queue_head *wq; 1838 wait_queue_entry_t *wait; 1839 bool ret; 1840 1841 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1842 !(blk_mq_is_shared_tags(hctx->flags))) { 1843 blk_mq_sched_mark_restart_hctx(hctx); 1844 1845 /* 1846 * It's possible that a tag was freed in the window between the 1847 * allocation failure and adding the hardware queue to the wait 1848 * queue. 1849 * 1850 * Don't clear RESTART here, someone else could have set it. 1851 * At most this will cost an extra queue run. 1852 */ 1853 return blk_mq_get_driver_tag(rq); 1854 } 1855 1856 wait = &hctx->dispatch_wait; 1857 if (!list_empty_careful(&wait->entry)) 1858 return false; 1859 1860 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1861 sbq = &hctx->tags->breserved_tags; 1862 else 1863 sbq = &hctx->tags->bitmap_tags; 1864 wq = &bt_wait_ptr(sbq, hctx)->wait; 1865 1866 spin_lock_irq(&wq->lock); 1867 spin_lock(&hctx->dispatch_wait_lock); 1868 if (!list_empty(&wait->entry)) { 1869 spin_unlock(&hctx->dispatch_wait_lock); 1870 spin_unlock_irq(&wq->lock); 1871 return false; 1872 } 1873 1874 atomic_inc(&sbq->ws_active); 1875 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1876 __add_wait_queue(wq, wait); 1877 1878 /* 1879 * Add one explicit barrier since blk_mq_get_driver_tag() may 1880 * not imply barrier in case of failure. 1881 * 1882 * Order adding us to wait queue and allocating driver tag. 1883 * 1884 * The pair is the one implied in sbitmap_queue_wake_up() which 1885 * orders clearing sbitmap tag bits and waitqueue_active() in 1886 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1887 * 1888 * Otherwise, re-order of adding wait queue and getting driver tag 1889 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1890 * the waitqueue_active() may not observe us in wait queue. 1891 */ 1892 smp_mb(); 1893 1894 /* 1895 * It's possible that a tag was freed in the window between the 1896 * allocation failure and adding the hardware queue to the wait 1897 * queue. 1898 */ 1899 ret = blk_mq_get_driver_tag(rq); 1900 if (!ret) { 1901 spin_unlock(&hctx->dispatch_wait_lock); 1902 spin_unlock_irq(&wq->lock); 1903 return false; 1904 } 1905 1906 /* 1907 * We got a tag, remove ourselves from the wait queue to ensure 1908 * someone else gets the wakeup. 1909 */ 1910 list_del_init(&wait->entry); 1911 atomic_dec(&sbq->ws_active); 1912 spin_unlock(&hctx->dispatch_wait_lock); 1913 spin_unlock_irq(&wq->lock); 1914 1915 return true; 1916 } 1917 1918 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1919 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1920 /* 1921 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1922 * - EWMA is one simple way to compute running average value 1923 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1924 * - take 4 as factor for avoiding to get too small(0) result, and this 1925 * factor doesn't matter because EWMA decreases exponentially 1926 */ blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1927 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1928 { 1929 unsigned int ewma; 1930 1931 ewma = hctx->dispatch_busy; 1932 1933 if (!ewma && !busy) 1934 return; 1935 1936 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1937 if (busy) 1938 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1939 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1940 1941 hctx->dispatch_busy = ewma; 1942 } 1943 1944 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1945 blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1946 static void blk_mq_handle_dev_resource(struct request *rq, 1947 struct list_head *list) 1948 { 1949 list_add(&rq->queuelist, list); 1950 __blk_mq_requeue_request(rq); 1951 } 1952 blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1953 static void blk_mq_handle_zone_resource(struct request *rq, 1954 struct list_head *zone_list) 1955 { 1956 /* 1957 * If we end up here it is because we cannot dispatch a request to a 1958 * specific zone due to LLD level zone-write locking or other zone 1959 * related resource not being available. In this case, set the request 1960 * aside in zone_list for retrying it later. 1961 */ 1962 list_add(&rq->queuelist, zone_list); 1963 __blk_mq_requeue_request(rq); 1964 } 1965 1966 enum prep_dispatch { 1967 PREP_DISPATCH_OK, 1968 PREP_DISPATCH_NO_TAG, 1969 PREP_DISPATCH_NO_BUDGET, 1970 }; 1971 blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1972 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1973 bool need_budget) 1974 { 1975 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1976 int budget_token = -1; 1977 1978 if (need_budget) { 1979 budget_token = blk_mq_get_dispatch_budget(rq->q); 1980 if (budget_token < 0) { 1981 blk_mq_put_driver_tag(rq); 1982 return PREP_DISPATCH_NO_BUDGET; 1983 } 1984 blk_mq_set_rq_budget_token(rq, budget_token); 1985 } 1986 1987 if (!blk_mq_get_driver_tag(rq)) { 1988 /* 1989 * The initial allocation attempt failed, so we need to 1990 * rerun the hardware queue when a tag is freed. The 1991 * waitqueue takes care of that. If the queue is run 1992 * before we add this entry back on the dispatch list, 1993 * we'll re-run it below. 1994 */ 1995 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1996 /* 1997 * All budgets not got from this function will be put 1998 * together during handling partial dispatch 1999 */ 2000 if (need_budget) 2001 blk_mq_put_dispatch_budget(rq->q, budget_token); 2002 return PREP_DISPATCH_NO_TAG; 2003 } 2004 } 2005 2006 return PREP_DISPATCH_OK; 2007 } 2008 2009 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ blk_mq_release_budgets(struct request_queue * q,struct list_head * list)2010 static void blk_mq_release_budgets(struct request_queue *q, 2011 struct list_head *list) 2012 { 2013 struct request *rq; 2014 2015 list_for_each_entry(rq, list, queuelist) { 2016 int budget_token = blk_mq_get_rq_budget_token(rq); 2017 2018 if (budget_token >= 0) 2019 blk_mq_put_dispatch_budget(q, budget_token); 2020 } 2021 } 2022 2023 /* 2024 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2025 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2026 * details) 2027 * Attention, we should explicitly call this in unusual cases: 2028 * 1) did not queue everything initially scheduled to queue 2029 * 2) the last attempt to queue a request failed 2030 */ blk_mq_commit_rqs(struct blk_mq_hw_ctx * hctx,int queued,bool from_schedule)2031 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2032 bool from_schedule) 2033 { 2034 if (hctx->queue->mq_ops->commit_rqs && queued) { 2035 trace_block_unplug(hctx->queue, queued, !from_schedule); 2036 hctx->queue->mq_ops->commit_rqs(hctx); 2037 } 2038 } 2039 2040 /* 2041 * Returns true if we did some work AND can potentially do more. 2042 */ blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)2043 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2044 unsigned int nr_budgets) 2045 { 2046 enum prep_dispatch prep; 2047 struct request_queue *q = hctx->queue; 2048 struct request *rq; 2049 int queued; 2050 blk_status_t ret = BLK_STS_OK; 2051 LIST_HEAD(zone_list); 2052 bool needs_resource = false; 2053 2054 if (list_empty(list)) 2055 return false; 2056 2057 /* 2058 * Now process all the entries, sending them to the driver. 2059 */ 2060 queued = 0; 2061 do { 2062 struct blk_mq_queue_data bd; 2063 2064 rq = list_first_entry(list, struct request, queuelist); 2065 2066 WARN_ON_ONCE(hctx != rq->mq_hctx); 2067 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2068 if (prep != PREP_DISPATCH_OK) 2069 break; 2070 2071 list_del_init(&rq->queuelist); 2072 2073 bd.rq = rq; 2074 bd.last = list_empty(list); 2075 2076 /* 2077 * once the request is queued to lld, no need to cover the 2078 * budget any more 2079 */ 2080 if (nr_budgets) 2081 nr_budgets--; 2082 ret = q->mq_ops->queue_rq(hctx, &bd); 2083 switch (ret) { 2084 case BLK_STS_OK: 2085 queued++; 2086 break; 2087 case BLK_STS_RESOURCE: 2088 needs_resource = true; 2089 fallthrough; 2090 case BLK_STS_DEV_RESOURCE: 2091 blk_mq_handle_dev_resource(rq, list); 2092 goto out; 2093 case BLK_STS_ZONE_RESOURCE: 2094 /* 2095 * Move the request to zone_list and keep going through 2096 * the dispatch list to find more requests the drive can 2097 * accept. 2098 */ 2099 blk_mq_handle_zone_resource(rq, &zone_list); 2100 needs_resource = true; 2101 break; 2102 default: 2103 blk_mq_end_request(rq, ret); 2104 } 2105 } while (!list_empty(list)); 2106 out: 2107 if (!list_empty(&zone_list)) 2108 list_splice_tail_init(&zone_list, list); 2109 2110 /* If we didn't flush the entire list, we could have told the driver 2111 * there was more coming, but that turned out to be a lie. 2112 */ 2113 if (!list_empty(list) || ret != BLK_STS_OK) 2114 blk_mq_commit_rqs(hctx, queued, false); 2115 2116 /* 2117 * Any items that need requeuing? Stuff them into hctx->dispatch, 2118 * that is where we will continue on next queue run. 2119 */ 2120 if (!list_empty(list)) { 2121 bool needs_restart; 2122 /* For non-shared tags, the RESTART check will suffice */ 2123 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2124 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2125 blk_mq_is_shared_tags(hctx->flags)); 2126 2127 if (nr_budgets) 2128 blk_mq_release_budgets(q, list); 2129 2130 spin_lock(&hctx->lock); 2131 list_splice_tail_init(list, &hctx->dispatch); 2132 spin_unlock(&hctx->lock); 2133 2134 /* 2135 * Order adding requests to hctx->dispatch and checking 2136 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2137 * in blk_mq_sched_restart(). Avoid restart code path to 2138 * miss the new added requests to hctx->dispatch, meantime 2139 * SCHED_RESTART is observed here. 2140 */ 2141 smp_mb(); 2142 2143 /* 2144 * If SCHED_RESTART was set by the caller of this function and 2145 * it is no longer set that means that it was cleared by another 2146 * thread and hence that a queue rerun is needed. 2147 * 2148 * If 'no_tag' is set, that means that we failed getting 2149 * a driver tag with an I/O scheduler attached. If our dispatch 2150 * waitqueue is no longer active, ensure that we run the queue 2151 * AFTER adding our entries back to the list. 2152 * 2153 * If no I/O scheduler has been configured it is possible that 2154 * the hardware queue got stopped and restarted before requests 2155 * were pushed back onto the dispatch list. Rerun the queue to 2156 * avoid starvation. Notes: 2157 * - blk_mq_run_hw_queue() checks whether or not a queue has 2158 * been stopped before rerunning a queue. 2159 * - Some but not all block drivers stop a queue before 2160 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2161 * and dm-rq. 2162 * 2163 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2164 * bit is set, run queue after a delay to avoid IO stalls 2165 * that could otherwise occur if the queue is idle. We'll do 2166 * similar if we couldn't get budget or couldn't lock a zone 2167 * and SCHED_RESTART is set. 2168 */ 2169 needs_restart = blk_mq_sched_needs_restart(hctx); 2170 if (prep == PREP_DISPATCH_NO_BUDGET) 2171 needs_resource = true; 2172 if (!needs_restart || 2173 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2174 blk_mq_run_hw_queue(hctx, true); 2175 else if (needs_resource) 2176 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2177 2178 blk_mq_update_dispatch_busy(hctx, true); 2179 return false; 2180 } 2181 2182 blk_mq_update_dispatch_busy(hctx, false); 2183 return true; 2184 } 2185 blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)2186 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2187 { 2188 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2189 2190 if (cpu >= nr_cpu_ids) 2191 cpu = cpumask_first(hctx->cpumask); 2192 return cpu; 2193 } 2194 2195 /* 2196 * It'd be great if the workqueue API had a way to pass 2197 * in a mask and had some smarts for more clever placement. 2198 * For now we just round-robin here, switching for every 2199 * BLK_MQ_CPU_WORK_BATCH queued items. 2200 */ blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)2201 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2202 { 2203 bool tried = false; 2204 int next_cpu = hctx->next_cpu; 2205 2206 if (hctx->queue->nr_hw_queues == 1) 2207 return WORK_CPU_UNBOUND; 2208 2209 if (--hctx->next_cpu_batch <= 0) { 2210 select_cpu: 2211 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2212 cpu_online_mask); 2213 if (next_cpu >= nr_cpu_ids) 2214 next_cpu = blk_mq_first_mapped_cpu(hctx); 2215 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2216 } 2217 2218 /* 2219 * Do unbound schedule if we can't find a online CPU for this hctx, 2220 * and it should only happen in the path of handling CPU DEAD. 2221 */ 2222 if (!cpu_online(next_cpu)) { 2223 if (!tried) { 2224 tried = true; 2225 goto select_cpu; 2226 } 2227 2228 /* 2229 * Make sure to re-select CPU next time once after CPUs 2230 * in hctx->cpumask become online again. 2231 */ 2232 hctx->next_cpu = next_cpu; 2233 hctx->next_cpu_batch = 1; 2234 return WORK_CPU_UNBOUND; 2235 } 2236 2237 hctx->next_cpu = next_cpu; 2238 return next_cpu; 2239 } 2240 2241 /** 2242 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2243 * @hctx: Pointer to the hardware queue to run. 2244 * @msecs: Milliseconds of delay to wait before running the queue. 2245 * 2246 * Run a hardware queue asynchronously with a delay of @msecs. 2247 */ blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)2248 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2249 { 2250 if (unlikely(blk_mq_hctx_stopped(hctx))) 2251 return; 2252 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2253 msecs_to_jiffies(msecs)); 2254 } 2255 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2256 blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx * hctx)2257 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx) 2258 { 2259 bool need_run; 2260 2261 /* 2262 * When queue is quiesced, we may be switching io scheduler, or 2263 * updating nr_hw_queues, or other things, and we can't run queue 2264 * any more, even blk_mq_hctx_has_pending() can't be called safely. 2265 * 2266 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2267 * quiesced. 2268 */ 2269 __blk_mq_run_dispatch_ops(hctx->queue, false, 2270 need_run = !blk_queue_quiesced(hctx->queue) && 2271 blk_mq_hctx_has_pending(hctx)); 2272 return need_run; 2273 } 2274 2275 /** 2276 * blk_mq_run_hw_queue - Start to run a hardware queue. 2277 * @hctx: Pointer to the hardware queue to run. 2278 * @async: If we want to run the queue asynchronously. 2279 * 2280 * Check if the request queue is not in a quiesced state and if there are 2281 * pending requests to be sent. If this is true, run the queue to send requests 2282 * to hardware. 2283 */ blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2284 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2285 { 2286 bool need_run; 2287 2288 /* 2289 * We can't run the queue inline with interrupts disabled. 2290 */ 2291 WARN_ON_ONCE(!async && in_interrupt()); 2292 2293 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2294 2295 need_run = blk_mq_hw_queue_need_run(hctx); 2296 if (!need_run) { 2297 unsigned long flags; 2298 2299 /* 2300 * Synchronize with blk_mq_unquiesce_queue(), because we check 2301 * if hw queue is quiesced locklessly above, we need the use 2302 * ->queue_lock to make sure we see the up-to-date status to 2303 * not miss rerunning the hw queue. 2304 */ 2305 spin_lock_irqsave(&hctx->queue->queue_lock, flags); 2306 need_run = blk_mq_hw_queue_need_run(hctx); 2307 spin_unlock_irqrestore(&hctx->queue->queue_lock, flags); 2308 2309 if (!need_run) 2310 return; 2311 } 2312 2313 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2314 blk_mq_delay_run_hw_queue(hctx, 0); 2315 return; 2316 } 2317 2318 blk_mq_run_dispatch_ops(hctx->queue, 2319 blk_mq_sched_dispatch_requests(hctx)); 2320 } 2321 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2322 2323 /* 2324 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2325 * scheduler. 2326 */ blk_mq_get_sq_hctx(struct request_queue * q)2327 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2328 { 2329 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2330 /* 2331 * If the IO scheduler does not respect hardware queues when 2332 * dispatching, we just don't bother with multiple HW queues and 2333 * dispatch from hctx for the current CPU since running multiple queues 2334 * just causes lock contention inside the scheduler and pointless cache 2335 * bouncing. 2336 */ 2337 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2338 2339 if (!blk_mq_hctx_stopped(hctx)) 2340 return hctx; 2341 return NULL; 2342 } 2343 2344 /** 2345 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2346 * @q: Pointer to the request queue to run. 2347 * @async: If we want to run the queue asynchronously. 2348 */ blk_mq_run_hw_queues(struct request_queue * q,bool async)2349 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2350 { 2351 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2352 unsigned long i; 2353 2354 sq_hctx = NULL; 2355 if (blk_queue_sq_sched(q)) 2356 sq_hctx = blk_mq_get_sq_hctx(q); 2357 queue_for_each_hw_ctx(q, hctx, i) { 2358 if (blk_mq_hctx_stopped(hctx)) 2359 continue; 2360 /* 2361 * Dispatch from this hctx either if there's no hctx preferred 2362 * by IO scheduler or if it has requests that bypass the 2363 * scheduler. 2364 */ 2365 if (!sq_hctx || sq_hctx == hctx || 2366 !list_empty_careful(&hctx->dispatch)) 2367 blk_mq_run_hw_queue(hctx, async); 2368 } 2369 } 2370 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2371 2372 /** 2373 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2374 * @q: Pointer to the request queue to run. 2375 * @msecs: Milliseconds of delay to wait before running the queues. 2376 */ blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)2377 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2378 { 2379 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2380 unsigned long i; 2381 2382 sq_hctx = NULL; 2383 if (blk_queue_sq_sched(q)) 2384 sq_hctx = blk_mq_get_sq_hctx(q); 2385 queue_for_each_hw_ctx(q, hctx, i) { 2386 if (blk_mq_hctx_stopped(hctx)) 2387 continue; 2388 /* 2389 * If there is already a run_work pending, leave the 2390 * pending delay untouched. Otherwise, a hctx can stall 2391 * if another hctx is re-delaying the other's work 2392 * before the work executes. 2393 */ 2394 if (delayed_work_pending(&hctx->run_work)) 2395 continue; 2396 /* 2397 * Dispatch from this hctx either if there's no hctx preferred 2398 * by IO scheduler or if it has requests that bypass the 2399 * scheduler. 2400 */ 2401 if (!sq_hctx || sq_hctx == hctx || 2402 !list_empty_careful(&hctx->dispatch)) 2403 blk_mq_delay_run_hw_queue(hctx, msecs); 2404 } 2405 } 2406 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2407 2408 /* 2409 * This function is often used for pausing .queue_rq() by driver when 2410 * there isn't enough resource or some conditions aren't satisfied, and 2411 * BLK_STS_RESOURCE is usually returned. 2412 * 2413 * We do not guarantee that dispatch can be drained or blocked 2414 * after blk_mq_stop_hw_queue() returns. Please use 2415 * blk_mq_quiesce_queue() for that requirement. 2416 */ blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)2417 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2418 { 2419 cancel_delayed_work(&hctx->run_work); 2420 2421 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2422 } 2423 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2424 2425 /* 2426 * This function is often used for pausing .queue_rq() by driver when 2427 * there isn't enough resource or some conditions aren't satisfied, and 2428 * BLK_STS_RESOURCE is usually returned. 2429 * 2430 * We do not guarantee that dispatch can be drained or blocked 2431 * after blk_mq_stop_hw_queues() returns. Please use 2432 * blk_mq_quiesce_queue() for that requirement. 2433 */ blk_mq_stop_hw_queues(struct request_queue * q)2434 void blk_mq_stop_hw_queues(struct request_queue *q) 2435 { 2436 struct blk_mq_hw_ctx *hctx; 2437 unsigned long i; 2438 2439 queue_for_each_hw_ctx(q, hctx, i) 2440 blk_mq_stop_hw_queue(hctx); 2441 } 2442 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2443 blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)2444 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2445 { 2446 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2447 2448 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2449 } 2450 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2451 blk_mq_start_hw_queues(struct request_queue * q)2452 void blk_mq_start_hw_queues(struct request_queue *q) 2453 { 2454 struct blk_mq_hw_ctx *hctx; 2455 unsigned long i; 2456 2457 queue_for_each_hw_ctx(q, hctx, i) 2458 blk_mq_start_hw_queue(hctx); 2459 } 2460 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2461 blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2462 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2463 { 2464 if (!blk_mq_hctx_stopped(hctx)) 2465 return; 2466 2467 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2468 /* 2469 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the 2470 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch 2471 * list in the subsequent routine. 2472 */ 2473 smp_mb__after_atomic(); 2474 blk_mq_run_hw_queue(hctx, async); 2475 } 2476 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2477 blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)2478 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2479 { 2480 struct blk_mq_hw_ctx *hctx; 2481 unsigned long i; 2482 2483 queue_for_each_hw_ctx(q, hctx, i) 2484 blk_mq_start_stopped_hw_queue(hctx, async || 2485 (hctx->flags & BLK_MQ_F_BLOCKING)); 2486 } 2487 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2488 blk_mq_run_work_fn(struct work_struct * work)2489 static void blk_mq_run_work_fn(struct work_struct *work) 2490 { 2491 struct blk_mq_hw_ctx *hctx = 2492 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2493 2494 blk_mq_run_dispatch_ops(hctx->queue, 2495 blk_mq_sched_dispatch_requests(hctx)); 2496 } 2497 2498 /** 2499 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2500 * @rq: Pointer to request to be inserted. 2501 * @flags: BLK_MQ_INSERT_* 2502 * 2503 * Should only be used carefully, when the caller knows we want to 2504 * bypass a potential IO scheduler on the target device. 2505 */ blk_mq_request_bypass_insert(struct request * rq,blk_insert_t flags)2506 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2507 { 2508 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2509 2510 spin_lock(&hctx->lock); 2511 if (flags & BLK_MQ_INSERT_AT_HEAD) 2512 list_add(&rq->queuelist, &hctx->dispatch); 2513 else 2514 list_add_tail(&rq->queuelist, &hctx->dispatch); 2515 spin_unlock(&hctx->lock); 2516 } 2517 blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)2518 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2519 struct blk_mq_ctx *ctx, struct list_head *list, 2520 bool run_queue_async) 2521 { 2522 struct request *rq; 2523 enum hctx_type type = hctx->type; 2524 2525 /* 2526 * Try to issue requests directly if the hw queue isn't busy to save an 2527 * extra enqueue & dequeue to the sw queue. 2528 */ 2529 if (!hctx->dispatch_busy && !run_queue_async) { 2530 blk_mq_run_dispatch_ops(hctx->queue, 2531 blk_mq_try_issue_list_directly(hctx, list)); 2532 if (list_empty(list)) 2533 goto out; 2534 } 2535 2536 /* 2537 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2538 * offline now 2539 */ 2540 list_for_each_entry(rq, list, queuelist) { 2541 BUG_ON(rq->mq_ctx != ctx); 2542 trace_block_rq_insert(rq); 2543 if (rq->cmd_flags & REQ_NOWAIT) 2544 run_queue_async = true; 2545 } 2546 2547 spin_lock(&ctx->lock); 2548 list_splice_tail_init(list, &ctx->rq_lists[type]); 2549 blk_mq_hctx_mark_pending(hctx, ctx); 2550 spin_unlock(&ctx->lock); 2551 out: 2552 blk_mq_run_hw_queue(hctx, run_queue_async); 2553 } 2554 blk_mq_insert_request(struct request * rq,blk_insert_t flags)2555 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2556 { 2557 struct request_queue *q = rq->q; 2558 struct blk_mq_ctx *ctx = rq->mq_ctx; 2559 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2560 2561 if (blk_rq_is_passthrough(rq)) { 2562 /* 2563 * Passthrough request have to be added to hctx->dispatch 2564 * directly. The device may be in a situation where it can't 2565 * handle FS request, and always returns BLK_STS_RESOURCE for 2566 * them, which gets them added to hctx->dispatch. 2567 * 2568 * If a passthrough request is required to unblock the queues, 2569 * and it is added to the scheduler queue, there is no chance to 2570 * dispatch it given we prioritize requests in hctx->dispatch. 2571 */ 2572 blk_mq_request_bypass_insert(rq, flags); 2573 } else if (req_op(rq) == REQ_OP_FLUSH) { 2574 /* 2575 * Firstly normal IO request is inserted to scheduler queue or 2576 * sw queue, meantime we add flush request to dispatch queue( 2577 * hctx->dispatch) directly and there is at most one in-flight 2578 * flush request for each hw queue, so it doesn't matter to add 2579 * flush request to tail or front of the dispatch queue. 2580 * 2581 * Secondly in case of NCQ, flush request belongs to non-NCQ 2582 * command, and queueing it will fail when there is any 2583 * in-flight normal IO request(NCQ command). When adding flush 2584 * rq to the front of hctx->dispatch, it is easier to introduce 2585 * extra time to flush rq's latency because of S_SCHED_RESTART 2586 * compared with adding to the tail of dispatch queue, then 2587 * chance of flush merge is increased, and less flush requests 2588 * will be issued to controller. It is observed that ~10% time 2589 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2590 * drive when adding flush rq to the front of hctx->dispatch. 2591 * 2592 * Simply queue flush rq to the front of hctx->dispatch so that 2593 * intensive flush workloads can benefit in case of NCQ HW. 2594 */ 2595 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2596 } else if (q->elevator) { 2597 LIST_HEAD(list); 2598 2599 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2600 2601 list_add(&rq->queuelist, &list); 2602 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2603 } else { 2604 trace_block_rq_insert(rq); 2605 2606 spin_lock(&ctx->lock); 2607 if (flags & BLK_MQ_INSERT_AT_HEAD) 2608 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2609 else 2610 list_add_tail(&rq->queuelist, 2611 &ctx->rq_lists[hctx->type]); 2612 blk_mq_hctx_mark_pending(hctx, ctx); 2613 spin_unlock(&ctx->lock); 2614 } 2615 } 2616 blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)2617 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2618 unsigned int nr_segs) 2619 { 2620 int err; 2621 2622 if (bio->bi_opf & REQ_RAHEAD) 2623 rq->cmd_flags |= REQ_FAILFAST_MASK; 2624 2625 rq->__sector = bio->bi_iter.bi_sector; 2626 blk_rq_bio_prep(rq, bio, nr_segs); 2627 2628 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2629 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2630 WARN_ON_ONCE(err); 2631 2632 blk_account_io_start(rq); 2633 } 2634 __blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool last)2635 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2636 struct request *rq, bool last) 2637 { 2638 struct request_queue *q = rq->q; 2639 struct blk_mq_queue_data bd = { 2640 .rq = rq, 2641 .last = last, 2642 }; 2643 blk_status_t ret; 2644 2645 /* 2646 * For OK queue, we are done. For error, caller may kill it. 2647 * Any other error (busy), just add it to our list as we 2648 * previously would have done. 2649 */ 2650 ret = q->mq_ops->queue_rq(hctx, &bd); 2651 switch (ret) { 2652 case BLK_STS_OK: 2653 blk_mq_update_dispatch_busy(hctx, false); 2654 break; 2655 case BLK_STS_RESOURCE: 2656 case BLK_STS_DEV_RESOURCE: 2657 blk_mq_update_dispatch_busy(hctx, true); 2658 __blk_mq_requeue_request(rq); 2659 break; 2660 default: 2661 blk_mq_update_dispatch_busy(hctx, false); 2662 break; 2663 } 2664 2665 return ret; 2666 } 2667 blk_mq_get_budget_and_tag(struct request * rq)2668 static bool blk_mq_get_budget_and_tag(struct request *rq) 2669 { 2670 int budget_token; 2671 2672 budget_token = blk_mq_get_dispatch_budget(rq->q); 2673 if (budget_token < 0) 2674 return false; 2675 blk_mq_set_rq_budget_token(rq, budget_token); 2676 if (!blk_mq_get_driver_tag(rq)) { 2677 blk_mq_put_dispatch_budget(rq->q, budget_token); 2678 return false; 2679 } 2680 return true; 2681 } 2682 2683 /** 2684 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2685 * @hctx: Pointer of the associated hardware queue. 2686 * @rq: Pointer to request to be sent. 2687 * 2688 * If the device has enough resources to accept a new request now, send the 2689 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2690 * we can try send it another time in the future. Requests inserted at this 2691 * queue have higher priority. 2692 */ blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq)2693 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2694 struct request *rq) 2695 { 2696 blk_status_t ret; 2697 2698 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2699 blk_mq_insert_request(rq, 0); 2700 blk_mq_run_hw_queue(hctx, false); 2701 return; 2702 } 2703 2704 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2705 blk_mq_insert_request(rq, 0); 2706 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2707 return; 2708 } 2709 2710 ret = __blk_mq_issue_directly(hctx, rq, true); 2711 switch (ret) { 2712 case BLK_STS_OK: 2713 break; 2714 case BLK_STS_RESOURCE: 2715 case BLK_STS_DEV_RESOURCE: 2716 blk_mq_request_bypass_insert(rq, 0); 2717 blk_mq_run_hw_queue(hctx, false); 2718 break; 2719 default: 2720 blk_mq_end_request(rq, ret); 2721 break; 2722 } 2723 } 2724 blk_mq_request_issue_directly(struct request * rq,bool last)2725 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2726 { 2727 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2728 2729 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2730 blk_mq_insert_request(rq, 0); 2731 blk_mq_run_hw_queue(hctx, false); 2732 return BLK_STS_OK; 2733 } 2734 2735 if (!blk_mq_get_budget_and_tag(rq)) 2736 return BLK_STS_RESOURCE; 2737 return __blk_mq_issue_directly(hctx, rq, last); 2738 } 2739 blk_mq_plug_issue_direct(struct blk_plug * plug)2740 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2741 { 2742 struct blk_mq_hw_ctx *hctx = NULL; 2743 struct request *rq; 2744 int queued = 0; 2745 blk_status_t ret = BLK_STS_OK; 2746 2747 while ((rq = rq_list_pop(&plug->mq_list))) { 2748 bool last = rq_list_empty(plug->mq_list); 2749 2750 if (hctx != rq->mq_hctx) { 2751 if (hctx) { 2752 blk_mq_commit_rqs(hctx, queued, false); 2753 queued = 0; 2754 } 2755 hctx = rq->mq_hctx; 2756 } 2757 2758 ret = blk_mq_request_issue_directly(rq, last); 2759 switch (ret) { 2760 case BLK_STS_OK: 2761 queued++; 2762 break; 2763 case BLK_STS_RESOURCE: 2764 case BLK_STS_DEV_RESOURCE: 2765 blk_mq_request_bypass_insert(rq, 0); 2766 blk_mq_run_hw_queue(hctx, false); 2767 goto out; 2768 default: 2769 blk_mq_end_request(rq, ret); 2770 break; 2771 } 2772 } 2773 2774 out: 2775 if (ret != BLK_STS_OK) 2776 blk_mq_commit_rqs(hctx, queued, false); 2777 } 2778 __blk_mq_flush_plug_list(struct request_queue * q,struct blk_plug * plug)2779 static void __blk_mq_flush_plug_list(struct request_queue *q, 2780 struct blk_plug *plug) 2781 { 2782 if (blk_queue_quiesced(q)) 2783 return; 2784 q->mq_ops->queue_rqs(&plug->mq_list); 2785 } 2786 blk_mq_dispatch_plug_list(struct blk_plug * plug,bool from_sched)2787 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2788 { 2789 struct blk_mq_hw_ctx *this_hctx = NULL; 2790 struct blk_mq_ctx *this_ctx = NULL; 2791 struct request *requeue_list = NULL; 2792 struct request **requeue_lastp = &requeue_list; 2793 unsigned int depth = 0; 2794 bool is_passthrough = false; 2795 LIST_HEAD(list); 2796 2797 do { 2798 struct request *rq = rq_list_pop(&plug->mq_list); 2799 2800 if (!this_hctx) { 2801 this_hctx = rq->mq_hctx; 2802 this_ctx = rq->mq_ctx; 2803 is_passthrough = blk_rq_is_passthrough(rq); 2804 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2805 is_passthrough != blk_rq_is_passthrough(rq)) { 2806 rq_list_add_tail(&requeue_lastp, rq); 2807 continue; 2808 } 2809 list_add(&rq->queuelist, &list); 2810 depth++; 2811 } while (!rq_list_empty(plug->mq_list)); 2812 2813 plug->mq_list = requeue_list; 2814 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2815 2816 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2817 /* passthrough requests should never be issued to the I/O scheduler */ 2818 if (is_passthrough) { 2819 spin_lock(&this_hctx->lock); 2820 list_splice_tail_init(&list, &this_hctx->dispatch); 2821 spin_unlock(&this_hctx->lock); 2822 blk_mq_run_hw_queue(this_hctx, from_sched); 2823 } else if (this_hctx->queue->elevator) { 2824 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2825 &list, 0); 2826 blk_mq_run_hw_queue(this_hctx, from_sched); 2827 } else { 2828 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2829 } 2830 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2831 } 2832 blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)2833 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2834 { 2835 struct request *rq; 2836 2837 /* 2838 * We may have been called recursively midway through handling 2839 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2840 * To avoid mq_list changing under our feet, clear rq_count early and 2841 * bail out specifically if rq_count is 0 rather than checking 2842 * whether the mq_list is empty. 2843 */ 2844 if (plug->rq_count == 0) 2845 return; 2846 plug->rq_count = 0; 2847 2848 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2849 struct request_queue *q; 2850 2851 rq = rq_list_peek(&plug->mq_list); 2852 q = rq->q; 2853 2854 /* 2855 * Peek first request and see if we have a ->queue_rqs() hook. 2856 * If we do, we can dispatch the whole plug list in one go. We 2857 * already know at this point that all requests belong to the 2858 * same queue, caller must ensure that's the case. 2859 * 2860 * Since we pass off the full list to the driver at this point, 2861 * we do not increment the active request count for the queue. 2862 * Bypass shared tags for now because of that. 2863 */ 2864 if (q->mq_ops->queue_rqs && 2865 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2866 blk_mq_run_dispatch_ops(q, 2867 __blk_mq_flush_plug_list(q, plug)); 2868 if (rq_list_empty(plug->mq_list)) 2869 return; 2870 } 2871 2872 blk_mq_run_dispatch_ops(q, 2873 blk_mq_plug_issue_direct(plug)); 2874 if (rq_list_empty(plug->mq_list)) 2875 return; 2876 } 2877 2878 do { 2879 blk_mq_dispatch_plug_list(plug, from_schedule); 2880 } while (!rq_list_empty(plug->mq_list)); 2881 } 2882 blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2883 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2884 struct list_head *list) 2885 { 2886 int queued = 0; 2887 blk_status_t ret = BLK_STS_OK; 2888 2889 while (!list_empty(list)) { 2890 struct request *rq = list_first_entry(list, struct request, 2891 queuelist); 2892 2893 list_del_init(&rq->queuelist); 2894 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2895 switch (ret) { 2896 case BLK_STS_OK: 2897 queued++; 2898 break; 2899 case BLK_STS_RESOURCE: 2900 case BLK_STS_DEV_RESOURCE: 2901 blk_mq_request_bypass_insert(rq, 0); 2902 if (list_empty(list)) 2903 blk_mq_run_hw_queue(hctx, false); 2904 goto out; 2905 default: 2906 blk_mq_end_request(rq, ret); 2907 break; 2908 } 2909 } 2910 2911 out: 2912 if (ret != BLK_STS_OK) 2913 blk_mq_commit_rqs(hctx, queued, false); 2914 } 2915 blk_mq_attempt_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2916 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2917 struct bio *bio, unsigned int nr_segs) 2918 { 2919 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2920 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2921 return true; 2922 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2923 return true; 2924 } 2925 return false; 2926 } 2927 blk_mq_get_new_requests(struct request_queue * q,struct blk_plug * plug,struct bio * bio,unsigned int nsegs)2928 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2929 struct blk_plug *plug, 2930 struct bio *bio, 2931 unsigned int nsegs) 2932 { 2933 struct blk_mq_alloc_data data = { 2934 .q = q, 2935 .nr_tags = 1, 2936 .cmd_flags = bio->bi_opf, 2937 }; 2938 struct request *rq; 2939 2940 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2941 return NULL; 2942 2943 rq_qos_throttle(q, bio); 2944 2945 if (plug) { 2946 data.nr_tags = plug->nr_ios; 2947 plug->nr_ios = 1; 2948 data.cached_rq = &plug->cached_rq; 2949 } 2950 2951 rq = __blk_mq_alloc_requests(&data); 2952 if (rq) 2953 return rq; 2954 rq_qos_cleanup(q, bio); 2955 if (bio->bi_opf & REQ_NOWAIT) 2956 bio_wouldblock_error(bio); 2957 return NULL; 2958 } 2959 2960 /* return true if this @rq can be used for @bio */ blk_mq_can_use_cached_rq(struct request * rq,struct blk_plug * plug,struct bio * bio)2961 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug, 2962 struct bio *bio) 2963 { 2964 enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf); 2965 enum hctx_type hctx_type = rq->mq_hctx->type; 2966 2967 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq); 2968 2969 if (type != hctx_type && 2970 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2971 return false; 2972 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf)) 2973 return false; 2974 2975 /* 2976 * If any qos ->throttle() end up blocking, we will have flushed the 2977 * plug and hence killed the cached_rq list as well. Pop this entry 2978 * before we throttle. 2979 */ 2980 plug->cached_rq = rq_list_next(rq); 2981 rq_qos_throttle(rq->q, bio); 2982 2983 blk_mq_rq_time_init(rq, 0); 2984 rq->cmd_flags = bio->bi_opf; 2985 INIT_LIST_HEAD(&rq->queuelist); 2986 return true; 2987 } 2988 2989 /** 2990 * blk_mq_submit_bio - Create and send a request to block device. 2991 * @bio: Bio pointer. 2992 * 2993 * Builds up a request structure from @q and @bio and send to the device. The 2994 * request may not be queued directly to hardware if: 2995 * * This request can be merged with another one 2996 * * We want to place request at plug queue for possible future merging 2997 * * There is an IO scheduler active at this queue 2998 * 2999 * It will not queue the request if there is an error with the bio, or at the 3000 * request creation. 3001 */ blk_mq_submit_bio(struct bio * bio)3002 void blk_mq_submit_bio(struct bio *bio) 3003 { 3004 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 3005 struct blk_plug *plug = blk_mq_plug(bio); 3006 const int is_sync = op_is_sync(bio->bi_opf); 3007 struct blk_mq_hw_ctx *hctx; 3008 struct request *rq = NULL; 3009 unsigned int nr_segs = 1; 3010 blk_status_t ret; 3011 3012 bio = blk_queue_bounce(bio, q); 3013 3014 if (plug) { 3015 rq = rq_list_peek(&plug->cached_rq); 3016 if (rq && rq->q != q) 3017 rq = NULL; 3018 } 3019 if (rq) { 3020 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 3021 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3022 if (!bio) 3023 return; 3024 } 3025 if (!bio_integrity_prep(bio)) 3026 return; 3027 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 3028 return; 3029 if (blk_mq_can_use_cached_rq(rq, plug, bio)) 3030 goto done; 3031 percpu_ref_get(&q->q_usage_counter); 3032 } else { 3033 if (unlikely(bio_queue_enter(bio))) 3034 return; 3035 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 3036 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3037 if (!bio) 3038 goto fail; 3039 } 3040 if (!bio_integrity_prep(bio)) 3041 goto fail; 3042 } 3043 3044 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 3045 if (unlikely(!rq)) { 3046 fail: 3047 blk_queue_exit(q); 3048 return; 3049 } 3050 3051 done: 3052 trace_block_getrq(bio); 3053 3054 rq_qos_track(q, rq, bio); 3055 3056 blk_mq_bio_to_request(rq, bio, nr_segs); 3057 3058 ret = blk_crypto_rq_get_keyslot(rq); 3059 if (ret != BLK_STS_OK) { 3060 bio->bi_status = ret; 3061 bio_endio(bio); 3062 blk_mq_free_request(rq); 3063 return; 3064 } 3065 3066 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3067 return; 3068 3069 if (plug) { 3070 blk_add_rq_to_plug(plug, rq); 3071 return; 3072 } 3073 3074 hctx = rq->mq_hctx; 3075 if ((rq->rq_flags & RQF_USE_SCHED) || 3076 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3077 blk_mq_insert_request(rq, 0); 3078 blk_mq_run_hw_queue(hctx, true); 3079 } else { 3080 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3081 } 3082 } 3083 3084 #ifdef CONFIG_BLK_MQ_STACKING 3085 /** 3086 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3087 * @rq: the request being queued 3088 */ blk_insert_cloned_request(struct request * rq)3089 blk_status_t blk_insert_cloned_request(struct request *rq) 3090 { 3091 struct request_queue *q = rq->q; 3092 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3093 unsigned int max_segments = blk_rq_get_max_segments(rq); 3094 blk_status_t ret; 3095 3096 if (blk_rq_sectors(rq) > max_sectors) { 3097 /* 3098 * SCSI device does not have a good way to return if 3099 * Write Same/Zero is actually supported. If a device rejects 3100 * a non-read/write command (discard, write same,etc.) the 3101 * low-level device driver will set the relevant queue limit to 3102 * 0 to prevent blk-lib from issuing more of the offending 3103 * operations. Commands queued prior to the queue limit being 3104 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3105 * errors being propagated to upper layers. 3106 */ 3107 if (max_sectors == 0) 3108 return BLK_STS_NOTSUPP; 3109 3110 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3111 __func__, blk_rq_sectors(rq), max_sectors); 3112 return BLK_STS_IOERR; 3113 } 3114 3115 /* 3116 * The queue settings related to segment counting may differ from the 3117 * original queue. 3118 */ 3119 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3120 if (rq->nr_phys_segments > max_segments) { 3121 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3122 __func__, rq->nr_phys_segments, max_segments); 3123 return BLK_STS_IOERR; 3124 } 3125 3126 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3127 return BLK_STS_IOERR; 3128 3129 ret = blk_crypto_rq_get_keyslot(rq); 3130 if (ret != BLK_STS_OK) 3131 return ret; 3132 3133 blk_account_io_start(rq); 3134 3135 /* 3136 * Since we have a scheduler attached on the top device, 3137 * bypass a potential scheduler on the bottom device for 3138 * insert. 3139 */ 3140 blk_mq_run_dispatch_ops(q, 3141 ret = blk_mq_request_issue_directly(rq, true)); 3142 if (ret) 3143 blk_account_io_done(rq, ktime_get_ns()); 3144 return ret; 3145 } 3146 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3147 3148 /** 3149 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3150 * @rq: the clone request to be cleaned up 3151 * 3152 * Description: 3153 * Free all bios in @rq for a cloned request. 3154 */ blk_rq_unprep_clone(struct request * rq)3155 void blk_rq_unprep_clone(struct request *rq) 3156 { 3157 struct bio *bio; 3158 3159 while ((bio = rq->bio) != NULL) { 3160 rq->bio = bio->bi_next; 3161 3162 bio_put(bio); 3163 } 3164 } 3165 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3166 3167 /** 3168 * blk_rq_prep_clone - Helper function to setup clone request 3169 * @rq: the request to be setup 3170 * @rq_src: original request to be cloned 3171 * @bs: bio_set that bios for clone are allocated from 3172 * @gfp_mask: memory allocation mask for bio 3173 * @bio_ctr: setup function to be called for each clone bio. 3174 * Returns %0 for success, non %0 for failure. 3175 * @data: private data to be passed to @bio_ctr 3176 * 3177 * Description: 3178 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3179 * Also, pages which the original bios are pointing to are not copied 3180 * and the cloned bios just point same pages. 3181 * So cloned bios must be completed before original bios, which means 3182 * the caller must complete @rq before @rq_src. 3183 */ blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3184 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3185 struct bio_set *bs, gfp_t gfp_mask, 3186 int (*bio_ctr)(struct bio *, struct bio *, void *), 3187 void *data) 3188 { 3189 struct bio *bio, *bio_src; 3190 3191 if (!bs) 3192 bs = &fs_bio_set; 3193 3194 __rq_for_each_bio(bio_src, rq_src) { 3195 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3196 bs); 3197 if (!bio) 3198 goto free_and_out; 3199 3200 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3201 goto free_and_out; 3202 3203 if (rq->bio) { 3204 rq->biotail->bi_next = bio; 3205 rq->biotail = bio; 3206 } else { 3207 rq->bio = rq->biotail = bio; 3208 } 3209 bio = NULL; 3210 } 3211 3212 /* Copy attributes of the original request to the clone request. */ 3213 rq->__sector = blk_rq_pos(rq_src); 3214 rq->__data_len = blk_rq_bytes(rq_src); 3215 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3216 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3217 rq->special_vec = rq_src->special_vec; 3218 } 3219 rq->nr_phys_segments = rq_src->nr_phys_segments; 3220 rq->ioprio = rq_src->ioprio; 3221 3222 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3223 goto free_and_out; 3224 3225 return 0; 3226 3227 free_and_out: 3228 if (bio) 3229 bio_put(bio); 3230 blk_rq_unprep_clone(rq); 3231 3232 return -ENOMEM; 3233 } 3234 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3235 #endif /* CONFIG_BLK_MQ_STACKING */ 3236 3237 /* 3238 * Steal bios from a request and add them to a bio list. 3239 * The request must not have been partially completed before. 3240 */ blk_steal_bios(struct bio_list * list,struct request * rq)3241 void blk_steal_bios(struct bio_list *list, struct request *rq) 3242 { 3243 if (rq->bio) { 3244 if (list->tail) 3245 list->tail->bi_next = rq->bio; 3246 else 3247 list->head = rq->bio; 3248 list->tail = rq->biotail; 3249 3250 rq->bio = NULL; 3251 rq->biotail = NULL; 3252 } 3253 3254 rq->__data_len = 0; 3255 } 3256 EXPORT_SYMBOL_GPL(blk_steal_bios); 3257 order_to_size(unsigned int order)3258 static size_t order_to_size(unsigned int order) 3259 { 3260 return (size_t)PAGE_SIZE << order; 3261 } 3262 3263 /* called before freeing request pool in @tags */ blk_mq_clear_rq_mapping(struct blk_mq_tags * drv_tags,struct blk_mq_tags * tags)3264 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3265 struct blk_mq_tags *tags) 3266 { 3267 struct page *page; 3268 unsigned long flags; 3269 3270 /* 3271 * There is no need to clear mapping if driver tags is not initialized 3272 * or the mapping belongs to the driver tags. 3273 */ 3274 if (!drv_tags || drv_tags == tags) 3275 return; 3276 3277 list_for_each_entry(page, &tags->page_list, lru) { 3278 unsigned long start = (unsigned long)page_address(page); 3279 unsigned long end = start + order_to_size(page->private); 3280 int i; 3281 3282 for (i = 0; i < drv_tags->nr_tags; i++) { 3283 struct request *rq = drv_tags->rqs[i]; 3284 unsigned long rq_addr = (unsigned long)rq; 3285 3286 if (rq_addr >= start && rq_addr < end) { 3287 WARN_ON_ONCE(req_ref_read(rq) != 0); 3288 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3289 } 3290 } 3291 } 3292 3293 /* 3294 * Wait until all pending iteration is done. 3295 * 3296 * Request reference is cleared and it is guaranteed to be observed 3297 * after the ->lock is released. 3298 */ 3299 spin_lock_irqsave(&drv_tags->lock, flags); 3300 spin_unlock_irqrestore(&drv_tags->lock, flags); 3301 } 3302 blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3303 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3304 unsigned int hctx_idx) 3305 { 3306 struct blk_mq_tags *drv_tags; 3307 struct page *page; 3308 3309 if (list_empty(&tags->page_list)) 3310 return; 3311 3312 if (blk_mq_is_shared_tags(set->flags)) 3313 drv_tags = set->shared_tags; 3314 else 3315 drv_tags = set->tags[hctx_idx]; 3316 3317 if (tags->static_rqs && set->ops->exit_request) { 3318 int i; 3319 3320 for (i = 0; i < tags->nr_tags; i++) { 3321 struct request *rq = tags->static_rqs[i]; 3322 3323 if (!rq) 3324 continue; 3325 set->ops->exit_request(set, rq, hctx_idx); 3326 tags->static_rqs[i] = NULL; 3327 } 3328 } 3329 3330 blk_mq_clear_rq_mapping(drv_tags, tags); 3331 3332 while (!list_empty(&tags->page_list)) { 3333 page = list_first_entry(&tags->page_list, struct page, lru); 3334 list_del_init(&page->lru); 3335 /* 3336 * Remove kmemleak object previously allocated in 3337 * blk_mq_alloc_rqs(). 3338 */ 3339 kmemleak_free(page_address(page)); 3340 __free_pages(page, page->private); 3341 } 3342 } 3343 blk_mq_free_rq_map(struct blk_mq_tags * tags)3344 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3345 { 3346 kfree(tags->rqs); 3347 tags->rqs = NULL; 3348 kfree(tags->static_rqs); 3349 tags->static_rqs = NULL; 3350 3351 blk_mq_free_tags(tags); 3352 } 3353 hctx_idx_to_type(struct blk_mq_tag_set * set,unsigned int hctx_idx)3354 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3355 unsigned int hctx_idx) 3356 { 3357 int i; 3358 3359 for (i = 0; i < set->nr_maps; i++) { 3360 unsigned int start = set->map[i].queue_offset; 3361 unsigned int end = start + set->map[i].nr_queues; 3362 3363 if (hctx_idx >= start && hctx_idx < end) 3364 break; 3365 } 3366 3367 if (i >= set->nr_maps) 3368 i = HCTX_TYPE_DEFAULT; 3369 3370 return i; 3371 } 3372 blk_mq_get_hctx_node(struct blk_mq_tag_set * set,unsigned int hctx_idx)3373 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3374 unsigned int hctx_idx) 3375 { 3376 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3377 3378 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3379 } 3380 blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)3381 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3382 unsigned int hctx_idx, 3383 unsigned int nr_tags, 3384 unsigned int reserved_tags) 3385 { 3386 int node = blk_mq_get_hctx_node(set, hctx_idx); 3387 struct blk_mq_tags *tags; 3388 3389 if (node == NUMA_NO_NODE) 3390 node = set->numa_node; 3391 3392 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3393 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3394 if (!tags) 3395 return NULL; 3396 3397 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3398 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3399 node); 3400 if (!tags->rqs) 3401 goto err_free_tags; 3402 3403 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3404 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3405 node); 3406 if (!tags->static_rqs) 3407 goto err_free_rqs; 3408 3409 return tags; 3410 3411 err_free_rqs: 3412 kfree(tags->rqs); 3413 err_free_tags: 3414 blk_mq_free_tags(tags); 3415 return NULL; 3416 } 3417 blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)3418 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3419 unsigned int hctx_idx, int node) 3420 { 3421 int ret; 3422 3423 if (set->ops->init_request) { 3424 ret = set->ops->init_request(set, rq, hctx_idx, node); 3425 if (ret) 3426 return ret; 3427 } 3428 3429 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3430 return 0; 3431 } 3432 blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)3433 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3434 struct blk_mq_tags *tags, 3435 unsigned int hctx_idx, unsigned int depth) 3436 { 3437 unsigned int i, j, entries_per_page, max_order = 4; 3438 int node = blk_mq_get_hctx_node(set, hctx_idx); 3439 size_t rq_size, left; 3440 3441 if (node == NUMA_NO_NODE) 3442 node = set->numa_node; 3443 3444 INIT_LIST_HEAD(&tags->page_list); 3445 3446 /* 3447 * rq_size is the size of the request plus driver payload, rounded 3448 * to the cacheline size 3449 */ 3450 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3451 cache_line_size()); 3452 left = rq_size * depth; 3453 3454 for (i = 0; i < depth; ) { 3455 int this_order = max_order; 3456 struct page *page; 3457 int to_do; 3458 void *p; 3459 3460 while (this_order && left < order_to_size(this_order - 1)) 3461 this_order--; 3462 3463 do { 3464 page = alloc_pages_node(node, 3465 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3466 this_order); 3467 if (page) 3468 break; 3469 if (!this_order--) 3470 break; 3471 if (order_to_size(this_order) < rq_size) 3472 break; 3473 } while (1); 3474 3475 if (!page) 3476 goto fail; 3477 3478 page->private = this_order; 3479 list_add_tail(&page->lru, &tags->page_list); 3480 3481 p = page_address(page); 3482 /* 3483 * Allow kmemleak to scan these pages as they contain pointers 3484 * to additional allocations like via ops->init_request(). 3485 */ 3486 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3487 entries_per_page = order_to_size(this_order) / rq_size; 3488 to_do = min(entries_per_page, depth - i); 3489 left -= to_do * rq_size; 3490 for (j = 0; j < to_do; j++) { 3491 struct request *rq = p; 3492 3493 tags->static_rqs[i] = rq; 3494 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3495 tags->static_rqs[i] = NULL; 3496 goto fail; 3497 } 3498 3499 p += rq_size; 3500 i++; 3501 } 3502 } 3503 return 0; 3504 3505 fail: 3506 blk_mq_free_rqs(set, tags, hctx_idx); 3507 return -ENOMEM; 3508 } 3509 3510 struct rq_iter_data { 3511 struct blk_mq_hw_ctx *hctx; 3512 bool has_rq; 3513 }; 3514 blk_mq_has_request(struct request * rq,void * data)3515 static bool blk_mq_has_request(struct request *rq, void *data) 3516 { 3517 struct rq_iter_data *iter_data = data; 3518 3519 if (rq->mq_hctx != iter_data->hctx) 3520 return true; 3521 iter_data->has_rq = true; 3522 return false; 3523 } 3524 blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)3525 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3526 { 3527 struct blk_mq_tags *tags = hctx->sched_tags ? 3528 hctx->sched_tags : hctx->tags; 3529 struct rq_iter_data data = { 3530 .hctx = hctx, 3531 }; 3532 3533 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3534 return data.has_rq; 3535 } 3536 blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)3537 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3538 struct blk_mq_hw_ctx *hctx) 3539 { 3540 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3541 return false; 3542 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3543 return false; 3544 return true; 3545 } 3546 blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)3547 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3548 { 3549 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3550 struct blk_mq_hw_ctx, cpuhp_online); 3551 3552 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3553 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3554 return 0; 3555 3556 /* 3557 * Prevent new request from being allocated on the current hctx. 3558 * 3559 * The smp_mb__after_atomic() Pairs with the implied barrier in 3560 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3561 * seen once we return from the tag allocator. 3562 */ 3563 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3564 smp_mb__after_atomic(); 3565 3566 /* 3567 * Try to grab a reference to the queue and wait for any outstanding 3568 * requests. If we could not grab a reference the queue has been 3569 * frozen and there are no requests. 3570 */ 3571 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3572 while (blk_mq_hctx_has_requests(hctx)) 3573 msleep(5); 3574 percpu_ref_put(&hctx->queue->q_usage_counter); 3575 } 3576 3577 return 0; 3578 } 3579 blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)3580 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3581 { 3582 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3583 struct blk_mq_hw_ctx, cpuhp_online); 3584 3585 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3586 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3587 return 0; 3588 } 3589 3590 /* 3591 * 'cpu' is going away. splice any existing rq_list entries from this 3592 * software queue to the hw queue dispatch list, and ensure that it 3593 * gets run. 3594 */ blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)3595 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3596 { 3597 struct blk_mq_hw_ctx *hctx; 3598 struct blk_mq_ctx *ctx; 3599 LIST_HEAD(tmp); 3600 enum hctx_type type; 3601 3602 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3603 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3604 return 0; 3605 3606 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3607 type = hctx->type; 3608 3609 spin_lock(&ctx->lock); 3610 if (!list_empty(&ctx->rq_lists[type])) { 3611 list_splice_init(&ctx->rq_lists[type], &tmp); 3612 blk_mq_hctx_clear_pending(hctx, ctx); 3613 } 3614 spin_unlock(&ctx->lock); 3615 3616 if (list_empty(&tmp)) 3617 return 0; 3618 3619 spin_lock(&hctx->lock); 3620 list_splice_tail_init(&tmp, &hctx->dispatch); 3621 spin_unlock(&hctx->lock); 3622 3623 blk_mq_run_hw_queue(hctx, true); 3624 return 0; 3625 } 3626 __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3627 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3628 { 3629 lockdep_assert_held(&blk_mq_cpuhp_lock); 3630 3631 if (!(hctx->flags & BLK_MQ_F_STACKING) && 3632 !hlist_unhashed(&hctx->cpuhp_online)) { 3633 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3634 &hctx->cpuhp_online); 3635 INIT_HLIST_NODE(&hctx->cpuhp_online); 3636 } 3637 3638 if (!hlist_unhashed(&hctx->cpuhp_dead)) { 3639 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3640 &hctx->cpuhp_dead); 3641 INIT_HLIST_NODE(&hctx->cpuhp_dead); 3642 } 3643 } 3644 blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3645 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3646 { 3647 mutex_lock(&blk_mq_cpuhp_lock); 3648 __blk_mq_remove_cpuhp(hctx); 3649 mutex_unlock(&blk_mq_cpuhp_lock); 3650 } 3651 __blk_mq_add_cpuhp(struct blk_mq_hw_ctx * hctx)3652 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx) 3653 { 3654 lockdep_assert_held(&blk_mq_cpuhp_lock); 3655 3656 if (!(hctx->flags & BLK_MQ_F_STACKING) && 3657 hlist_unhashed(&hctx->cpuhp_online)) 3658 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3659 &hctx->cpuhp_online); 3660 3661 if (hlist_unhashed(&hctx->cpuhp_dead)) 3662 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3663 &hctx->cpuhp_dead); 3664 } 3665 __blk_mq_remove_cpuhp_list(struct list_head * head)3666 static void __blk_mq_remove_cpuhp_list(struct list_head *head) 3667 { 3668 struct blk_mq_hw_ctx *hctx; 3669 3670 lockdep_assert_held(&blk_mq_cpuhp_lock); 3671 3672 list_for_each_entry(hctx, head, hctx_list) 3673 __blk_mq_remove_cpuhp(hctx); 3674 } 3675 3676 /* 3677 * Unregister cpuhp callbacks from exited hw queues 3678 * 3679 * Safe to call if this `request_queue` is live 3680 */ blk_mq_remove_hw_queues_cpuhp(struct request_queue * q)3681 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q) 3682 { 3683 LIST_HEAD(hctx_list); 3684 3685 spin_lock(&q->unused_hctx_lock); 3686 list_splice_init(&q->unused_hctx_list, &hctx_list); 3687 spin_unlock(&q->unused_hctx_lock); 3688 3689 mutex_lock(&blk_mq_cpuhp_lock); 3690 __blk_mq_remove_cpuhp_list(&hctx_list); 3691 mutex_unlock(&blk_mq_cpuhp_lock); 3692 3693 spin_lock(&q->unused_hctx_lock); 3694 list_splice(&hctx_list, &q->unused_hctx_list); 3695 spin_unlock(&q->unused_hctx_lock); 3696 } 3697 3698 /* 3699 * Register cpuhp callbacks from all hw queues 3700 * 3701 * Safe to call if this `request_queue` is live 3702 */ blk_mq_add_hw_queues_cpuhp(struct request_queue * q)3703 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q) 3704 { 3705 struct blk_mq_hw_ctx *hctx; 3706 unsigned long i; 3707 3708 mutex_lock(&blk_mq_cpuhp_lock); 3709 queue_for_each_hw_ctx(q, hctx, i) 3710 __blk_mq_add_cpuhp(hctx); 3711 mutex_unlock(&blk_mq_cpuhp_lock); 3712 } 3713 3714 /* 3715 * Before freeing hw queue, clearing the flush request reference in 3716 * tags->rqs[] for avoiding potential UAF. 3717 */ blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)3718 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3719 unsigned int queue_depth, struct request *flush_rq) 3720 { 3721 int i; 3722 unsigned long flags; 3723 3724 /* The hw queue may not be mapped yet */ 3725 if (!tags) 3726 return; 3727 3728 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3729 3730 for (i = 0; i < queue_depth; i++) 3731 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3732 3733 /* 3734 * Wait until all pending iteration is done. 3735 * 3736 * Request reference is cleared and it is guaranteed to be observed 3737 * after the ->lock is released. 3738 */ 3739 spin_lock_irqsave(&tags->lock, flags); 3740 spin_unlock_irqrestore(&tags->lock, flags); 3741 } 3742 3743 /* hctx->ctxs will be freed in queue's release handler */ blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)3744 static void blk_mq_exit_hctx(struct request_queue *q, 3745 struct blk_mq_tag_set *set, 3746 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3747 { 3748 struct request *flush_rq = hctx->fq->flush_rq; 3749 3750 if (blk_mq_hw_queue_mapped(hctx)) 3751 blk_mq_tag_idle(hctx); 3752 3753 if (blk_queue_init_done(q)) 3754 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3755 set->queue_depth, flush_rq); 3756 if (set->ops->exit_request) 3757 set->ops->exit_request(set, flush_rq, hctx_idx); 3758 3759 if (set->ops->exit_hctx) 3760 set->ops->exit_hctx(hctx, hctx_idx); 3761 3762 xa_erase(&q->hctx_table, hctx_idx); 3763 3764 spin_lock(&q->unused_hctx_lock); 3765 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3766 spin_unlock(&q->unused_hctx_lock); 3767 } 3768 blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)3769 static void blk_mq_exit_hw_queues(struct request_queue *q, 3770 struct blk_mq_tag_set *set, int nr_queue) 3771 { 3772 struct blk_mq_hw_ctx *hctx; 3773 unsigned long i; 3774 3775 queue_for_each_hw_ctx(q, hctx, i) { 3776 if (i == nr_queue) 3777 break; 3778 blk_mq_remove_cpuhp(hctx); 3779 blk_mq_exit_hctx(q, set, hctx, i); 3780 } 3781 } 3782 blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)3783 static int blk_mq_init_hctx(struct request_queue *q, 3784 struct blk_mq_tag_set *set, 3785 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3786 { 3787 hctx->queue_num = hctx_idx; 3788 3789 hctx->tags = set->tags[hctx_idx]; 3790 3791 if (set->ops->init_hctx && 3792 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3793 goto fail; 3794 3795 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3796 hctx->numa_node)) 3797 goto exit_hctx; 3798 3799 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3800 goto exit_flush_rq; 3801 3802 return 0; 3803 3804 exit_flush_rq: 3805 if (set->ops->exit_request) 3806 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3807 exit_hctx: 3808 if (set->ops->exit_hctx) 3809 set->ops->exit_hctx(hctx, hctx_idx); 3810 fail: 3811 return -1; 3812 } 3813 3814 static struct blk_mq_hw_ctx * blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)3815 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3816 int node) 3817 { 3818 struct blk_mq_hw_ctx *hctx; 3819 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3820 3821 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3822 if (!hctx) 3823 goto fail_alloc_hctx; 3824 3825 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3826 goto free_hctx; 3827 3828 atomic_set(&hctx->nr_active, 0); 3829 if (node == NUMA_NO_NODE) 3830 node = set->numa_node; 3831 hctx->numa_node = node; 3832 3833 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3834 spin_lock_init(&hctx->lock); 3835 INIT_LIST_HEAD(&hctx->dispatch); 3836 INIT_HLIST_NODE(&hctx->cpuhp_dead); 3837 INIT_HLIST_NODE(&hctx->cpuhp_online); 3838 hctx->queue = q; 3839 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3840 3841 INIT_LIST_HEAD(&hctx->hctx_list); 3842 3843 /* 3844 * Allocate space for all possible cpus to avoid allocation at 3845 * runtime 3846 */ 3847 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3848 gfp, node); 3849 if (!hctx->ctxs) 3850 goto free_cpumask; 3851 3852 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3853 gfp, node, false, false)) 3854 goto free_ctxs; 3855 hctx->nr_ctx = 0; 3856 3857 spin_lock_init(&hctx->dispatch_wait_lock); 3858 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3859 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3860 3861 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3862 if (!hctx->fq) 3863 goto free_bitmap; 3864 3865 blk_mq_hctx_kobj_init(hctx); 3866 3867 return hctx; 3868 3869 free_bitmap: 3870 sbitmap_free(&hctx->ctx_map); 3871 free_ctxs: 3872 kfree(hctx->ctxs); 3873 free_cpumask: 3874 free_cpumask_var(hctx->cpumask); 3875 free_hctx: 3876 kfree(hctx); 3877 fail_alloc_hctx: 3878 return NULL; 3879 } 3880 blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)3881 static void blk_mq_init_cpu_queues(struct request_queue *q, 3882 unsigned int nr_hw_queues) 3883 { 3884 struct blk_mq_tag_set *set = q->tag_set; 3885 unsigned int i, j; 3886 3887 for_each_possible_cpu(i) { 3888 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3889 struct blk_mq_hw_ctx *hctx; 3890 int k; 3891 3892 __ctx->cpu = i; 3893 spin_lock_init(&__ctx->lock); 3894 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3895 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3896 3897 __ctx->queue = q; 3898 3899 /* 3900 * Set local node, IFF we have more than one hw queue. If 3901 * not, we remain on the home node of the device 3902 */ 3903 for (j = 0; j < set->nr_maps; j++) { 3904 hctx = blk_mq_map_queue_type(q, j, i); 3905 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3906 hctx->numa_node = cpu_to_node(i); 3907 } 3908 } 3909 } 3910 blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int depth)3911 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3912 unsigned int hctx_idx, 3913 unsigned int depth) 3914 { 3915 struct blk_mq_tags *tags; 3916 int ret; 3917 3918 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3919 if (!tags) 3920 return NULL; 3921 3922 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3923 if (ret) { 3924 blk_mq_free_rq_map(tags); 3925 return NULL; 3926 } 3927 3928 return tags; 3929 } 3930 __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,int hctx_idx)3931 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3932 int hctx_idx) 3933 { 3934 if (blk_mq_is_shared_tags(set->flags)) { 3935 set->tags[hctx_idx] = set->shared_tags; 3936 3937 return true; 3938 } 3939 3940 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3941 set->queue_depth); 3942 3943 return set->tags[hctx_idx]; 3944 } 3945 blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3946 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3947 struct blk_mq_tags *tags, 3948 unsigned int hctx_idx) 3949 { 3950 if (tags) { 3951 blk_mq_free_rqs(set, tags, hctx_idx); 3952 blk_mq_free_rq_map(tags); 3953 } 3954 } 3955 __blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx)3956 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3957 unsigned int hctx_idx) 3958 { 3959 if (!blk_mq_is_shared_tags(set->flags)) 3960 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3961 3962 set->tags[hctx_idx] = NULL; 3963 } 3964 blk_mq_map_swqueue(struct request_queue * q)3965 static void blk_mq_map_swqueue(struct request_queue *q) 3966 { 3967 unsigned int j, hctx_idx; 3968 unsigned long i; 3969 struct blk_mq_hw_ctx *hctx; 3970 struct blk_mq_ctx *ctx; 3971 struct blk_mq_tag_set *set = q->tag_set; 3972 3973 queue_for_each_hw_ctx(q, hctx, i) { 3974 cpumask_clear(hctx->cpumask); 3975 hctx->nr_ctx = 0; 3976 hctx->dispatch_from = NULL; 3977 } 3978 3979 /* 3980 * Map software to hardware queues. 3981 * 3982 * If the cpu isn't present, the cpu is mapped to first hctx. 3983 */ 3984 for_each_possible_cpu(i) { 3985 3986 ctx = per_cpu_ptr(q->queue_ctx, i); 3987 for (j = 0; j < set->nr_maps; j++) { 3988 if (!set->map[j].nr_queues) { 3989 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3990 HCTX_TYPE_DEFAULT, i); 3991 continue; 3992 } 3993 hctx_idx = set->map[j].mq_map[i]; 3994 /* unmapped hw queue can be remapped after CPU topo changed */ 3995 if (!set->tags[hctx_idx] && 3996 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3997 /* 3998 * If tags initialization fail for some hctx, 3999 * that hctx won't be brought online. In this 4000 * case, remap the current ctx to hctx[0] which 4001 * is guaranteed to always have tags allocated 4002 */ 4003 set->map[j].mq_map[i] = 0; 4004 } 4005 4006 hctx = blk_mq_map_queue_type(q, j, i); 4007 ctx->hctxs[j] = hctx; 4008 /* 4009 * If the CPU is already set in the mask, then we've 4010 * mapped this one already. This can happen if 4011 * devices share queues across queue maps. 4012 */ 4013 if (cpumask_test_cpu(i, hctx->cpumask)) 4014 continue; 4015 4016 cpumask_set_cpu(i, hctx->cpumask); 4017 hctx->type = j; 4018 ctx->index_hw[hctx->type] = hctx->nr_ctx; 4019 hctx->ctxs[hctx->nr_ctx++] = ctx; 4020 4021 /* 4022 * If the nr_ctx type overflows, we have exceeded the 4023 * amount of sw queues we can support. 4024 */ 4025 BUG_ON(!hctx->nr_ctx); 4026 } 4027 4028 for (; j < HCTX_MAX_TYPES; j++) 4029 ctx->hctxs[j] = blk_mq_map_queue_type(q, 4030 HCTX_TYPE_DEFAULT, i); 4031 } 4032 4033 queue_for_each_hw_ctx(q, hctx, i) { 4034 /* 4035 * If no software queues are mapped to this hardware queue, 4036 * disable it and free the request entries. 4037 */ 4038 if (!hctx->nr_ctx) { 4039 /* Never unmap queue 0. We need it as a 4040 * fallback in case of a new remap fails 4041 * allocation 4042 */ 4043 if (i) 4044 __blk_mq_free_map_and_rqs(set, i); 4045 4046 hctx->tags = NULL; 4047 continue; 4048 } 4049 4050 hctx->tags = set->tags[i]; 4051 WARN_ON(!hctx->tags); 4052 4053 /* 4054 * Set the map size to the number of mapped software queues. 4055 * This is more accurate and more efficient than looping 4056 * over all possibly mapped software queues. 4057 */ 4058 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 4059 4060 /* 4061 * Initialize batch roundrobin counts 4062 */ 4063 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 4064 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 4065 } 4066 } 4067 4068 /* 4069 * Caller needs to ensure that we're either frozen/quiesced, or that 4070 * the queue isn't live yet. 4071 */ queue_set_hctx_shared(struct request_queue * q,bool shared)4072 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 4073 { 4074 struct blk_mq_hw_ctx *hctx; 4075 unsigned long i; 4076 4077 queue_for_each_hw_ctx(q, hctx, i) { 4078 if (shared) { 4079 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4080 } else { 4081 blk_mq_tag_idle(hctx); 4082 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4083 } 4084 } 4085 } 4086 blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)4087 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 4088 bool shared) 4089 { 4090 struct request_queue *q; 4091 4092 lockdep_assert_held(&set->tag_list_lock); 4093 4094 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4095 blk_mq_freeze_queue(q); 4096 queue_set_hctx_shared(q, shared); 4097 blk_mq_unfreeze_queue(q); 4098 } 4099 } 4100 blk_mq_del_queue_tag_set(struct request_queue * q)4101 static void blk_mq_del_queue_tag_set(struct request_queue *q) 4102 { 4103 struct blk_mq_tag_set *set = q->tag_set; 4104 4105 mutex_lock(&set->tag_list_lock); 4106 list_del(&q->tag_set_list); 4107 if (list_is_singular(&set->tag_list)) { 4108 /* just transitioned to unshared */ 4109 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4110 /* update existing queue */ 4111 blk_mq_update_tag_set_shared(set, false); 4112 } 4113 mutex_unlock(&set->tag_list_lock); 4114 INIT_LIST_HEAD(&q->tag_set_list); 4115 } 4116 blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)4117 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4118 struct request_queue *q) 4119 { 4120 mutex_lock(&set->tag_list_lock); 4121 4122 /* 4123 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4124 */ 4125 if (!list_empty(&set->tag_list) && 4126 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4127 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4128 /* update existing queue */ 4129 blk_mq_update_tag_set_shared(set, true); 4130 } 4131 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4132 queue_set_hctx_shared(q, true); 4133 list_add_tail(&q->tag_set_list, &set->tag_list); 4134 4135 mutex_unlock(&set->tag_list_lock); 4136 } 4137 4138 /* All allocations will be freed in release handler of q->mq_kobj */ blk_mq_alloc_ctxs(struct request_queue * q)4139 static int blk_mq_alloc_ctxs(struct request_queue *q) 4140 { 4141 struct blk_mq_ctxs *ctxs; 4142 int cpu; 4143 4144 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4145 if (!ctxs) 4146 return -ENOMEM; 4147 4148 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4149 if (!ctxs->queue_ctx) 4150 goto fail; 4151 4152 for_each_possible_cpu(cpu) { 4153 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4154 ctx->ctxs = ctxs; 4155 } 4156 4157 q->mq_kobj = &ctxs->kobj; 4158 q->queue_ctx = ctxs->queue_ctx; 4159 4160 return 0; 4161 fail: 4162 kfree(ctxs); 4163 return -ENOMEM; 4164 } 4165 4166 /* 4167 * It is the actual release handler for mq, but we do it from 4168 * request queue's release handler for avoiding use-after-free 4169 * and headache because q->mq_kobj shouldn't have been introduced, 4170 * but we can't group ctx/kctx kobj without it. 4171 */ blk_mq_release(struct request_queue * q)4172 void blk_mq_release(struct request_queue *q) 4173 { 4174 struct blk_mq_hw_ctx *hctx, *next; 4175 unsigned long i; 4176 4177 queue_for_each_hw_ctx(q, hctx, i) 4178 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4179 4180 /* all hctx are in .unused_hctx_list now */ 4181 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4182 list_del_init(&hctx->hctx_list); 4183 kobject_put(&hctx->kobj); 4184 } 4185 4186 xa_destroy(&q->hctx_table); 4187 4188 /* 4189 * release .mq_kobj and sw queue's kobject now because 4190 * both share lifetime with request queue. 4191 */ 4192 blk_mq_sysfs_deinit(q); 4193 } 4194 blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)4195 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4196 void *queuedata) 4197 { 4198 struct request_queue *q; 4199 int ret; 4200 4201 q = blk_alloc_queue(set->numa_node); 4202 if (!q) 4203 return ERR_PTR(-ENOMEM); 4204 q->queuedata = queuedata; 4205 ret = blk_mq_init_allocated_queue(set, q); 4206 if (ret) { 4207 blk_put_queue(q); 4208 return ERR_PTR(ret); 4209 } 4210 return q; 4211 } 4212 blk_mq_init_queue(struct blk_mq_tag_set * set)4213 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4214 { 4215 return blk_mq_init_queue_data(set, NULL); 4216 } 4217 EXPORT_SYMBOL(blk_mq_init_queue); 4218 4219 /** 4220 * blk_mq_destroy_queue - shutdown a request queue 4221 * @q: request queue to shutdown 4222 * 4223 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4224 * requests will be failed with -ENODEV. The caller is responsible for dropping 4225 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4226 * 4227 * Context: can sleep 4228 */ blk_mq_destroy_queue(struct request_queue * q)4229 void blk_mq_destroy_queue(struct request_queue *q) 4230 { 4231 WARN_ON_ONCE(!queue_is_mq(q)); 4232 WARN_ON_ONCE(blk_queue_registered(q)); 4233 4234 might_sleep(); 4235 4236 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4237 blk_queue_start_drain(q); 4238 blk_mq_freeze_queue_wait(q); 4239 4240 blk_sync_queue(q); 4241 blk_mq_cancel_work_sync(q); 4242 blk_mq_exit_queue(q); 4243 } 4244 EXPORT_SYMBOL(blk_mq_destroy_queue); 4245 __blk_mq_alloc_disk(struct blk_mq_tag_set * set,void * queuedata,struct lock_class_key * lkclass)4246 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4247 struct lock_class_key *lkclass) 4248 { 4249 struct request_queue *q; 4250 struct gendisk *disk; 4251 4252 q = blk_mq_init_queue_data(set, queuedata); 4253 if (IS_ERR(q)) 4254 return ERR_CAST(q); 4255 4256 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4257 if (!disk) { 4258 blk_mq_destroy_queue(q); 4259 blk_put_queue(q); 4260 return ERR_PTR(-ENOMEM); 4261 } 4262 set_bit(GD_OWNS_QUEUE, &disk->state); 4263 return disk; 4264 } 4265 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4266 blk_mq_alloc_disk_for_queue(struct request_queue * q,struct lock_class_key * lkclass)4267 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4268 struct lock_class_key *lkclass) 4269 { 4270 struct gendisk *disk; 4271 4272 if (!blk_get_queue(q)) 4273 return NULL; 4274 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4275 if (!disk) 4276 blk_put_queue(q); 4277 return disk; 4278 } 4279 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4280 4281 /* 4282 * Only hctx removed from cpuhp list can be reused 4283 */ blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx * hctx)4284 static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx) 4285 { 4286 return hlist_unhashed(&hctx->cpuhp_online) && 4287 hlist_unhashed(&hctx->cpuhp_dead); 4288 } 4289 blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)4290 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4291 struct blk_mq_tag_set *set, struct request_queue *q, 4292 int hctx_idx, int node) 4293 { 4294 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4295 4296 /* reuse dead hctx first */ 4297 spin_lock(&q->unused_hctx_lock); 4298 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4299 if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) { 4300 hctx = tmp; 4301 break; 4302 } 4303 } 4304 if (hctx) 4305 list_del_init(&hctx->hctx_list); 4306 spin_unlock(&q->unused_hctx_lock); 4307 4308 if (!hctx) 4309 hctx = blk_mq_alloc_hctx(q, set, node); 4310 if (!hctx) 4311 goto fail; 4312 4313 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4314 goto free_hctx; 4315 4316 return hctx; 4317 4318 free_hctx: 4319 kobject_put(&hctx->kobj); 4320 fail: 4321 return NULL; 4322 } 4323 blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)4324 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4325 struct request_queue *q) 4326 { 4327 struct blk_mq_hw_ctx *hctx; 4328 unsigned long i, j; 4329 4330 /* protect against switching io scheduler */ 4331 mutex_lock(&q->sysfs_lock); 4332 for (i = 0; i < set->nr_hw_queues; i++) { 4333 int old_node; 4334 int node = blk_mq_get_hctx_node(set, i); 4335 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4336 4337 if (old_hctx) { 4338 old_node = old_hctx->numa_node; 4339 blk_mq_exit_hctx(q, set, old_hctx, i); 4340 } 4341 4342 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4343 if (!old_hctx) 4344 break; 4345 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4346 node, old_node); 4347 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4348 WARN_ON_ONCE(!hctx); 4349 } 4350 } 4351 /* 4352 * Increasing nr_hw_queues fails. Free the newly allocated 4353 * hctxs and keep the previous q->nr_hw_queues. 4354 */ 4355 if (i != set->nr_hw_queues) { 4356 j = q->nr_hw_queues; 4357 } else { 4358 j = i; 4359 q->nr_hw_queues = set->nr_hw_queues; 4360 } 4361 4362 xa_for_each_start(&q->hctx_table, j, hctx, j) 4363 blk_mq_exit_hctx(q, set, hctx, j); 4364 mutex_unlock(&q->sysfs_lock); 4365 4366 /* unregister cpuhp callbacks for exited hctxs */ 4367 blk_mq_remove_hw_queues_cpuhp(q); 4368 4369 /* register cpuhp for new initialized hctxs */ 4370 blk_mq_add_hw_queues_cpuhp(q); 4371 } 4372 blk_mq_update_poll_flag(struct request_queue * q)4373 static void blk_mq_update_poll_flag(struct request_queue *q) 4374 { 4375 struct blk_mq_tag_set *set = q->tag_set; 4376 4377 if (set->nr_maps > HCTX_TYPE_POLL && 4378 set->map[HCTX_TYPE_POLL].nr_queues) 4379 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4380 else 4381 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4382 } 4383 blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)4384 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4385 struct request_queue *q) 4386 { 4387 /* mark the queue as mq asap */ 4388 q->mq_ops = set->ops; 4389 4390 if (blk_mq_alloc_ctxs(q)) 4391 goto err_exit; 4392 4393 /* init q->mq_kobj and sw queues' kobjects */ 4394 blk_mq_sysfs_init(q); 4395 4396 INIT_LIST_HEAD(&q->unused_hctx_list); 4397 spin_lock_init(&q->unused_hctx_lock); 4398 4399 xa_init(&q->hctx_table); 4400 4401 blk_mq_realloc_hw_ctxs(set, q); 4402 if (!q->nr_hw_queues) 4403 goto err_hctxs; 4404 4405 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4406 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4407 4408 q->tag_set = set; 4409 4410 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4411 blk_mq_update_poll_flag(q); 4412 4413 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4414 INIT_LIST_HEAD(&q->flush_list); 4415 INIT_LIST_HEAD(&q->requeue_list); 4416 spin_lock_init(&q->requeue_lock); 4417 4418 q->nr_requests = set->queue_depth; 4419 4420 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4421 blk_mq_add_queue_tag_set(set, q); 4422 blk_mq_map_swqueue(q); 4423 return 0; 4424 4425 err_hctxs: 4426 blk_mq_release(q); 4427 err_exit: 4428 q->mq_ops = NULL; 4429 return -ENOMEM; 4430 } 4431 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4432 4433 /* tags can _not_ be used after returning from blk_mq_exit_queue */ blk_mq_exit_queue(struct request_queue * q)4434 void blk_mq_exit_queue(struct request_queue *q) 4435 { 4436 struct blk_mq_tag_set *set = q->tag_set; 4437 4438 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4439 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4440 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4441 blk_mq_del_queue_tag_set(q); 4442 } 4443 __blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)4444 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4445 { 4446 int i; 4447 4448 if (blk_mq_is_shared_tags(set->flags)) { 4449 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4450 BLK_MQ_NO_HCTX_IDX, 4451 set->queue_depth); 4452 if (!set->shared_tags) 4453 return -ENOMEM; 4454 } 4455 4456 for (i = 0; i < set->nr_hw_queues; i++) { 4457 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4458 goto out_unwind; 4459 cond_resched(); 4460 } 4461 4462 return 0; 4463 4464 out_unwind: 4465 while (--i >= 0) 4466 __blk_mq_free_map_and_rqs(set, i); 4467 4468 if (blk_mq_is_shared_tags(set->flags)) { 4469 blk_mq_free_map_and_rqs(set, set->shared_tags, 4470 BLK_MQ_NO_HCTX_IDX); 4471 } 4472 4473 return -ENOMEM; 4474 } 4475 4476 /* 4477 * Allocate the request maps associated with this tag_set. Note that this 4478 * may reduce the depth asked for, if memory is tight. set->queue_depth 4479 * will be updated to reflect the allocated depth. 4480 */ blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set * set)4481 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4482 { 4483 unsigned int depth; 4484 int err; 4485 4486 depth = set->queue_depth; 4487 do { 4488 err = __blk_mq_alloc_rq_maps(set); 4489 if (!err) 4490 break; 4491 4492 set->queue_depth >>= 1; 4493 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4494 err = -ENOMEM; 4495 break; 4496 } 4497 } while (set->queue_depth); 4498 4499 if (!set->queue_depth || err) { 4500 pr_err("blk-mq: failed to allocate request map\n"); 4501 return -ENOMEM; 4502 } 4503 4504 if (depth != set->queue_depth) 4505 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4506 depth, set->queue_depth); 4507 4508 return 0; 4509 } 4510 blk_mq_update_queue_map(struct blk_mq_tag_set * set)4511 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4512 { 4513 /* 4514 * blk_mq_map_queues() and multiple .map_queues() implementations 4515 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4516 * number of hardware queues. 4517 */ 4518 if (set->nr_maps == 1) 4519 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4520 4521 if (set->ops->map_queues && !is_kdump_kernel()) { 4522 int i; 4523 4524 /* 4525 * transport .map_queues is usually done in the following 4526 * way: 4527 * 4528 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4529 * mask = get_cpu_mask(queue) 4530 * for_each_cpu(cpu, mask) 4531 * set->map[x].mq_map[cpu] = queue; 4532 * } 4533 * 4534 * When we need to remap, the table has to be cleared for 4535 * killing stale mapping since one CPU may not be mapped 4536 * to any hw queue. 4537 */ 4538 for (i = 0; i < set->nr_maps; i++) 4539 blk_mq_clear_mq_map(&set->map[i]); 4540 4541 set->ops->map_queues(set); 4542 } else { 4543 BUG_ON(set->nr_maps > 1); 4544 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4545 } 4546 } 4547 blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int new_nr_hw_queues)4548 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4549 int new_nr_hw_queues) 4550 { 4551 struct blk_mq_tags **new_tags; 4552 int i; 4553 4554 if (set->nr_hw_queues >= new_nr_hw_queues) 4555 goto done; 4556 4557 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4558 GFP_KERNEL, set->numa_node); 4559 if (!new_tags) 4560 return -ENOMEM; 4561 4562 if (set->tags) 4563 memcpy(new_tags, set->tags, set->nr_hw_queues * 4564 sizeof(*set->tags)); 4565 kfree(set->tags); 4566 set->tags = new_tags; 4567 4568 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4569 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4570 while (--i >= set->nr_hw_queues) 4571 __blk_mq_free_map_and_rqs(set, i); 4572 return -ENOMEM; 4573 } 4574 cond_resched(); 4575 } 4576 4577 done: 4578 set->nr_hw_queues = new_nr_hw_queues; 4579 return 0; 4580 } 4581 4582 /* 4583 * Alloc a tag set to be associated with one or more request queues. 4584 * May fail with EINVAL for various error conditions. May adjust the 4585 * requested depth down, if it's too large. In that case, the set 4586 * value will be stored in set->queue_depth. 4587 */ blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)4588 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4589 { 4590 int i, ret; 4591 4592 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4593 4594 if (!set->nr_hw_queues) 4595 return -EINVAL; 4596 if (!set->queue_depth) 4597 return -EINVAL; 4598 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4599 return -EINVAL; 4600 4601 if (!set->ops->queue_rq) 4602 return -EINVAL; 4603 4604 if (!set->ops->get_budget ^ !set->ops->put_budget) 4605 return -EINVAL; 4606 4607 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4608 pr_info("blk-mq: reduced tag depth to %u\n", 4609 BLK_MQ_MAX_DEPTH); 4610 set->queue_depth = BLK_MQ_MAX_DEPTH; 4611 } 4612 4613 if (!set->nr_maps) 4614 set->nr_maps = 1; 4615 else if (set->nr_maps > HCTX_MAX_TYPES) 4616 return -EINVAL; 4617 4618 /* 4619 * If a crashdump is active, then we are potentially in a very 4620 * memory constrained environment. Limit us to 1 queue and 4621 * 64 tags to prevent using too much memory. 4622 */ 4623 if (is_kdump_kernel()) { 4624 set->nr_hw_queues = 1; 4625 set->nr_maps = 1; 4626 set->queue_depth = min(64U, set->queue_depth); 4627 } 4628 /* 4629 * There is no use for more h/w queues than cpus if we just have 4630 * a single map 4631 */ 4632 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4633 set->nr_hw_queues = nr_cpu_ids; 4634 4635 if (set->flags & BLK_MQ_F_BLOCKING) { 4636 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4637 if (!set->srcu) 4638 return -ENOMEM; 4639 ret = init_srcu_struct(set->srcu); 4640 if (ret) 4641 goto out_free_srcu; 4642 } 4643 4644 ret = -ENOMEM; 4645 set->tags = kcalloc_node(set->nr_hw_queues, 4646 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4647 set->numa_node); 4648 if (!set->tags) 4649 goto out_cleanup_srcu; 4650 4651 for (i = 0; i < set->nr_maps; i++) { 4652 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4653 sizeof(set->map[i].mq_map[0]), 4654 GFP_KERNEL, set->numa_node); 4655 if (!set->map[i].mq_map) 4656 goto out_free_mq_map; 4657 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4658 } 4659 4660 blk_mq_update_queue_map(set); 4661 4662 ret = blk_mq_alloc_set_map_and_rqs(set); 4663 if (ret) 4664 goto out_free_mq_map; 4665 4666 mutex_init(&set->tag_list_lock); 4667 INIT_LIST_HEAD(&set->tag_list); 4668 4669 return 0; 4670 4671 out_free_mq_map: 4672 for (i = 0; i < set->nr_maps; i++) { 4673 kfree(set->map[i].mq_map); 4674 set->map[i].mq_map = NULL; 4675 } 4676 kfree(set->tags); 4677 set->tags = NULL; 4678 out_cleanup_srcu: 4679 if (set->flags & BLK_MQ_F_BLOCKING) 4680 cleanup_srcu_struct(set->srcu); 4681 out_free_srcu: 4682 if (set->flags & BLK_MQ_F_BLOCKING) 4683 kfree(set->srcu); 4684 return ret; 4685 } 4686 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4687 4688 /* allocate and initialize a tagset for a simple single-queue device */ blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)4689 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4690 const struct blk_mq_ops *ops, unsigned int queue_depth, 4691 unsigned int set_flags) 4692 { 4693 memset(set, 0, sizeof(*set)); 4694 set->ops = ops; 4695 set->nr_hw_queues = 1; 4696 set->nr_maps = 1; 4697 set->queue_depth = queue_depth; 4698 set->numa_node = NUMA_NO_NODE; 4699 set->flags = set_flags; 4700 return blk_mq_alloc_tag_set(set); 4701 } 4702 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4703 blk_mq_free_tag_set(struct blk_mq_tag_set * set)4704 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4705 { 4706 int i, j; 4707 4708 for (i = 0; i < set->nr_hw_queues; i++) 4709 __blk_mq_free_map_and_rqs(set, i); 4710 4711 if (blk_mq_is_shared_tags(set->flags)) { 4712 blk_mq_free_map_and_rqs(set, set->shared_tags, 4713 BLK_MQ_NO_HCTX_IDX); 4714 } 4715 4716 for (j = 0; j < set->nr_maps; j++) { 4717 kfree(set->map[j].mq_map); 4718 set->map[j].mq_map = NULL; 4719 } 4720 4721 kfree(set->tags); 4722 set->tags = NULL; 4723 if (set->flags & BLK_MQ_F_BLOCKING) { 4724 cleanup_srcu_struct(set->srcu); 4725 kfree(set->srcu); 4726 } 4727 } 4728 EXPORT_SYMBOL(blk_mq_free_tag_set); 4729 blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)4730 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4731 { 4732 struct blk_mq_tag_set *set = q->tag_set; 4733 struct blk_mq_hw_ctx *hctx; 4734 int ret; 4735 unsigned long i; 4736 4737 if (!set) 4738 return -EINVAL; 4739 4740 if (q->nr_requests == nr) 4741 return 0; 4742 4743 blk_mq_freeze_queue(q); 4744 blk_mq_quiesce_queue(q); 4745 4746 ret = 0; 4747 queue_for_each_hw_ctx(q, hctx, i) { 4748 if (!hctx->tags) 4749 continue; 4750 /* 4751 * If we're using an MQ scheduler, just update the scheduler 4752 * queue depth. This is similar to what the old code would do. 4753 */ 4754 if (hctx->sched_tags) { 4755 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4756 nr, true); 4757 } else { 4758 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4759 false); 4760 } 4761 if (ret) 4762 break; 4763 if (q->elevator && q->elevator->type->ops.depth_updated) 4764 q->elevator->type->ops.depth_updated(hctx); 4765 } 4766 if (!ret) { 4767 q->nr_requests = nr; 4768 if (blk_mq_is_shared_tags(set->flags)) { 4769 if (q->elevator) 4770 blk_mq_tag_update_sched_shared_tags(q); 4771 else 4772 blk_mq_tag_resize_shared_tags(set, nr); 4773 } 4774 } 4775 4776 blk_mq_unquiesce_queue(q); 4777 blk_mq_unfreeze_queue(q); 4778 4779 return ret; 4780 } 4781 4782 /* 4783 * request_queue and elevator_type pair. 4784 * It is just used by __blk_mq_update_nr_hw_queues to cache 4785 * the elevator_type associated with a request_queue. 4786 */ 4787 struct blk_mq_qe_pair { 4788 struct list_head node; 4789 struct request_queue *q; 4790 struct elevator_type *type; 4791 }; 4792 4793 /* 4794 * Cache the elevator_type in qe pair list and switch the 4795 * io scheduler to 'none' 4796 */ blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)4797 static bool blk_mq_elv_switch_none(struct list_head *head, 4798 struct request_queue *q) 4799 { 4800 struct blk_mq_qe_pair *qe; 4801 4802 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4803 if (!qe) 4804 return false; 4805 4806 /* q->elevator needs protection from ->sysfs_lock */ 4807 mutex_lock(&q->sysfs_lock); 4808 4809 /* the check has to be done with holding sysfs_lock */ 4810 if (!q->elevator) { 4811 kfree(qe); 4812 goto unlock; 4813 } 4814 4815 INIT_LIST_HEAD(&qe->node); 4816 qe->q = q; 4817 qe->type = q->elevator->type; 4818 /* keep a reference to the elevator module as we'll switch back */ 4819 __elevator_get(qe->type); 4820 list_add(&qe->node, head); 4821 elevator_disable(q); 4822 unlock: 4823 mutex_unlock(&q->sysfs_lock); 4824 4825 return true; 4826 } 4827 blk_lookup_qe_pair(struct list_head * head,struct request_queue * q)4828 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4829 struct request_queue *q) 4830 { 4831 struct blk_mq_qe_pair *qe; 4832 4833 list_for_each_entry(qe, head, node) 4834 if (qe->q == q) 4835 return qe; 4836 4837 return NULL; 4838 } 4839 blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)4840 static void blk_mq_elv_switch_back(struct list_head *head, 4841 struct request_queue *q) 4842 { 4843 struct blk_mq_qe_pair *qe; 4844 struct elevator_type *t; 4845 4846 qe = blk_lookup_qe_pair(head, q); 4847 if (!qe) 4848 return; 4849 t = qe->type; 4850 list_del(&qe->node); 4851 kfree(qe); 4852 4853 mutex_lock(&q->sysfs_lock); 4854 elevator_switch(q, t); 4855 /* drop the reference acquired in blk_mq_elv_switch_none */ 4856 elevator_put(t); 4857 mutex_unlock(&q->sysfs_lock); 4858 } 4859 __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4860 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4861 int nr_hw_queues) 4862 { 4863 struct request_queue *q; 4864 LIST_HEAD(head); 4865 int prev_nr_hw_queues = set->nr_hw_queues; 4866 int i; 4867 4868 lockdep_assert_held(&set->tag_list_lock); 4869 4870 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4871 nr_hw_queues = nr_cpu_ids; 4872 if (nr_hw_queues < 1) 4873 return; 4874 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4875 return; 4876 4877 list_for_each_entry(q, &set->tag_list, tag_set_list) 4878 blk_mq_freeze_queue(q); 4879 /* 4880 * Switch IO scheduler to 'none', cleaning up the data associated 4881 * with the previous scheduler. We will switch back once we are done 4882 * updating the new sw to hw queue mappings. 4883 */ 4884 list_for_each_entry(q, &set->tag_list, tag_set_list) 4885 if (!blk_mq_elv_switch_none(&head, q)) 4886 goto switch_back; 4887 4888 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4889 blk_mq_debugfs_unregister_hctxs(q); 4890 blk_mq_sysfs_unregister_hctxs(q); 4891 } 4892 4893 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4894 goto reregister; 4895 4896 fallback: 4897 blk_mq_update_queue_map(set); 4898 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4899 blk_mq_realloc_hw_ctxs(set, q); 4900 blk_mq_update_poll_flag(q); 4901 if (q->nr_hw_queues != set->nr_hw_queues) { 4902 int i = prev_nr_hw_queues; 4903 4904 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4905 nr_hw_queues, prev_nr_hw_queues); 4906 for (; i < set->nr_hw_queues; i++) 4907 __blk_mq_free_map_and_rqs(set, i); 4908 4909 set->nr_hw_queues = prev_nr_hw_queues; 4910 goto fallback; 4911 } 4912 blk_mq_map_swqueue(q); 4913 } 4914 4915 reregister: 4916 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4917 blk_mq_sysfs_register_hctxs(q); 4918 blk_mq_debugfs_register_hctxs(q); 4919 } 4920 4921 switch_back: 4922 list_for_each_entry(q, &set->tag_list, tag_set_list) 4923 blk_mq_elv_switch_back(&head, q); 4924 4925 list_for_each_entry(q, &set->tag_list, tag_set_list) 4926 blk_mq_unfreeze_queue(q); 4927 4928 /* Free the excess tags when nr_hw_queues shrink. */ 4929 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 4930 __blk_mq_free_map_and_rqs(set, i); 4931 } 4932 blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4933 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4934 { 4935 mutex_lock(&set->tag_list_lock); 4936 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4937 mutex_unlock(&set->tag_list_lock); 4938 } 4939 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4940 blk_hctx_poll(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob,unsigned int flags)4941 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4942 struct io_comp_batch *iob, unsigned int flags) 4943 { 4944 long state = get_current_state(); 4945 int ret; 4946 4947 do { 4948 ret = q->mq_ops->poll(hctx, iob); 4949 if (ret > 0) { 4950 __set_current_state(TASK_RUNNING); 4951 return ret; 4952 } 4953 4954 if (signal_pending_state(state, current)) 4955 __set_current_state(TASK_RUNNING); 4956 if (task_is_running(current)) 4957 return 1; 4958 4959 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4960 break; 4961 cpu_relax(); 4962 } while (!need_resched()); 4963 4964 __set_current_state(TASK_RUNNING); 4965 return 0; 4966 } 4967 blk_mq_poll(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)4968 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 4969 struct io_comp_batch *iob, unsigned int flags) 4970 { 4971 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 4972 4973 return blk_hctx_poll(q, hctx, iob, flags); 4974 } 4975 blk_rq_poll(struct request * rq,struct io_comp_batch * iob,unsigned int poll_flags)4976 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 4977 unsigned int poll_flags) 4978 { 4979 struct request_queue *q = rq->q; 4980 int ret; 4981 4982 if (!blk_rq_is_poll(rq)) 4983 return 0; 4984 if (!percpu_ref_tryget(&q->q_usage_counter)) 4985 return 0; 4986 4987 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 4988 blk_queue_exit(q); 4989 4990 return ret; 4991 } 4992 EXPORT_SYMBOL_GPL(blk_rq_poll); 4993 blk_mq_rq_cpu(struct request * rq)4994 unsigned int blk_mq_rq_cpu(struct request *rq) 4995 { 4996 return rq->mq_ctx->cpu; 4997 } 4998 EXPORT_SYMBOL(blk_mq_rq_cpu); 4999 blk_mq_cancel_work_sync(struct request_queue * q)5000 void blk_mq_cancel_work_sync(struct request_queue *q) 5001 { 5002 struct blk_mq_hw_ctx *hctx; 5003 unsigned long i; 5004 5005 cancel_delayed_work_sync(&q->requeue_work); 5006 5007 queue_for_each_hw_ctx(q, hctx, i) 5008 cancel_delayed_work_sync(&hctx->run_work); 5009 } 5010 blk_mq_init(void)5011 static int __init blk_mq_init(void) 5012 { 5013 int i; 5014 5015 for_each_possible_cpu(i) 5016 init_llist_head(&per_cpu(blk_cpu_done, i)); 5017 for_each_possible_cpu(i) 5018 INIT_CSD(&per_cpu(blk_cpu_csd, i), 5019 __blk_mq_complete_request_remote, NULL); 5020 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 5021 5022 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 5023 "block/softirq:dead", NULL, 5024 blk_softirq_cpu_dead); 5025 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 5026 blk_mq_hctx_notify_dead); 5027 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 5028 blk_mq_hctx_notify_online, 5029 blk_mq_hctx_notify_offline); 5030 return 0; 5031 } 5032 subsys_initcall(blk_mq_init); 5033