xref: /openbmc/linux/arch/powerpc/platforms/powernv/opal.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * PowerNV OPAL high level interfaces
4   *
5   * Copyright 2011 IBM Corp.
6   */
7  
8  #define pr_fmt(fmt)	"opal: " fmt
9  
10  #include <linux/printk.h>
11  #include <linux/types.h>
12  #include <linux/of.h>
13  #include <linux/of_fdt.h>
14  #include <linux/of_platform.h>
15  #include <linux/of_address.h>
16  #include <linux/interrupt.h>
17  #include <linux/notifier.h>
18  #include <linux/slab.h>
19  #include <linux/sched.h>
20  #include <linux/kobject.h>
21  #include <linux/delay.h>
22  #include <linux/memblock.h>
23  #include <linux/kthread.h>
24  #include <linux/freezer.h>
25  #include <linux/kmsg_dump.h>
26  #include <linux/console.h>
27  #include <linux/sched/debug.h>
28  
29  #include <asm/machdep.h>
30  #include <asm/opal.h>
31  #include <asm/firmware.h>
32  #include <asm/mce.h>
33  #include <asm/imc-pmu.h>
34  #include <asm/bug.h>
35  
36  #include "powernv.h"
37  
38  #define OPAL_MSG_QUEUE_MAX 16
39  
40  struct opal_msg_node {
41  	struct list_head	list;
42  	struct opal_msg		msg;
43  };
44  
45  static DEFINE_SPINLOCK(msg_list_lock);
46  static LIST_HEAD(msg_list);
47  
48  /* /sys/firmware/opal */
49  struct kobject *opal_kobj;
50  
51  struct opal {
52  	u64 base;
53  	u64 entry;
54  	u64 size;
55  } opal;
56  
57  struct mcheck_recoverable_range {
58  	u64 start_addr;
59  	u64 end_addr;
60  	u64 recover_addr;
61  };
62  
63  static int msg_list_size;
64  
65  static struct mcheck_recoverable_range *mc_recoverable_range;
66  static int mc_recoverable_range_len;
67  
68  struct device_node *opal_node;
69  static DEFINE_SPINLOCK(opal_write_lock);
70  static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX];
71  static uint32_t opal_heartbeat;
72  static struct task_struct *kopald_tsk;
73  static struct opal_msg *opal_msg;
74  static u32 opal_msg_size __ro_after_init;
75  
opal_configure_cores(void)76  void __init opal_configure_cores(void)
77  {
78  	u64 reinit_flags = 0;
79  
80  	/* Do the actual re-init, This will clobber all FPRs, VRs, etc...
81  	 *
82  	 * It will preserve non volatile GPRs and HSPRG0/1. It will
83  	 * also restore HIDs and other SPRs to their original value
84  	 * but it might clobber a bunch.
85  	 */
86  #ifdef __BIG_ENDIAN__
87  	reinit_flags |= OPAL_REINIT_CPUS_HILE_BE;
88  #else
89  	reinit_flags |= OPAL_REINIT_CPUS_HILE_LE;
90  #endif
91  
92  	/*
93  	 * POWER9 always support running hash:
94  	 *  ie. Host hash  supports  hash guests
95  	 *      Host radix supports  hash/radix guests
96  	 */
97  	if (early_cpu_has_feature(CPU_FTR_ARCH_300)) {
98  		reinit_flags |= OPAL_REINIT_CPUS_MMU_HASH;
99  		if (early_radix_enabled())
100  			reinit_flags |= OPAL_REINIT_CPUS_MMU_RADIX;
101  	}
102  
103  	opal_reinit_cpus(reinit_flags);
104  
105  	/* Restore some bits */
106  	if (cur_cpu_spec->cpu_restore)
107  		cur_cpu_spec->cpu_restore();
108  }
109  
early_init_dt_scan_opal(unsigned long node,const char * uname,int depth,void * data)110  int __init early_init_dt_scan_opal(unsigned long node,
111  				   const char *uname, int depth, void *data)
112  {
113  	const void *basep, *entryp, *sizep;
114  	int basesz, entrysz, runtimesz;
115  
116  	if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
117  		return 0;
118  
119  	basep  = of_get_flat_dt_prop(node, "opal-base-address", &basesz);
120  	entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz);
121  	sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz);
122  
123  	if (!basep || !entryp || !sizep)
124  		return 1;
125  
126  	opal.base = of_read_number(basep, basesz/4);
127  	opal.entry = of_read_number(entryp, entrysz/4);
128  	opal.size = of_read_number(sizep, runtimesz/4);
129  
130  	pr_debug("OPAL Base  = 0x%llx (basep=%p basesz=%d)\n",
131  		 opal.base, basep, basesz);
132  	pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n",
133  		 opal.entry, entryp, entrysz);
134  	pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n",
135  		 opal.size, sizep, runtimesz);
136  
137  	if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) {
138  		powerpc_firmware_features |= FW_FEATURE_OPAL;
139  		pr_debug("OPAL detected !\n");
140  	} else {
141  		panic("OPAL != V3 detected, no longer supported.\n");
142  	}
143  
144  	return 1;
145  }
146  
early_init_dt_scan_recoverable_ranges(unsigned long node,const char * uname,int depth,void * data)147  int __init early_init_dt_scan_recoverable_ranges(unsigned long node,
148  				   const char *uname, int depth, void *data)
149  {
150  	int i, psize, size;
151  	const __be32 *prop;
152  
153  	if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
154  		return 0;
155  
156  	prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize);
157  
158  	if (!prop)
159  		return 1;
160  
161  	pr_debug("Found machine check recoverable ranges.\n");
162  
163  	/*
164  	 * Calculate number of available entries.
165  	 *
166  	 * Each recoverable address range entry is (start address, len,
167  	 * recovery address), 2 cells each for start and recovery address,
168  	 * 1 cell for len, totalling 5 cells per entry.
169  	 */
170  	mc_recoverable_range_len = psize / (sizeof(*prop) * 5);
171  
172  	/* Sanity check */
173  	if (!mc_recoverable_range_len)
174  		return 1;
175  
176  	/* Size required to hold all the entries. */
177  	size = mc_recoverable_range_len *
178  			sizeof(struct mcheck_recoverable_range);
179  
180  	/*
181  	 * Allocate a buffer to hold the MC recoverable ranges.
182  	 */
183  	mc_recoverable_range = memblock_alloc(size, __alignof__(u64));
184  	if (!mc_recoverable_range)
185  		panic("%s: Failed to allocate %u bytes align=0x%lx\n",
186  		      __func__, size, __alignof__(u64));
187  
188  	for (i = 0; i < mc_recoverable_range_len; i++) {
189  		mc_recoverable_range[i].start_addr =
190  					of_read_number(prop + (i * 5) + 0, 2);
191  		mc_recoverable_range[i].end_addr =
192  					mc_recoverable_range[i].start_addr +
193  					of_read_number(prop + (i * 5) + 2, 1);
194  		mc_recoverable_range[i].recover_addr =
195  					of_read_number(prop + (i * 5) + 3, 2);
196  
197  		pr_debug("Machine check recoverable range: %llx..%llx: %llx\n",
198  				mc_recoverable_range[i].start_addr,
199  				mc_recoverable_range[i].end_addr,
200  				mc_recoverable_range[i].recover_addr);
201  	}
202  	return 1;
203  }
204  
opal_register_exception_handlers(void)205  static int __init opal_register_exception_handlers(void)
206  {
207  #ifdef __BIG_ENDIAN__
208  	u64 glue;
209  
210  	if (!(powerpc_firmware_features & FW_FEATURE_OPAL))
211  		return -ENODEV;
212  
213  	/* Hookup some exception handlers except machine check. We use the
214  	 * fwnmi area at 0x7000 to provide the glue space to OPAL
215  	 */
216  	glue = 0x7000;
217  
218  	/*
219  	 * Only ancient OPAL firmware requires this.
220  	 * Specifically, firmware from FW810.00 (released June 2014)
221  	 * through FW810.20 (Released October 2014).
222  	 *
223  	 * Check if we are running on newer (post Oct 2014) firmware that
224  	 * exports the OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to
225  	 * patch the HMI interrupt and we catch it directly in Linux.
226  	 *
227  	 * For older firmware (i.e < FW810.20), we fallback to old behavior and
228  	 * let OPAL patch the HMI vector and handle it inside OPAL firmware.
229  	 *
230  	 * For newer firmware we catch/handle the HMI directly in Linux.
231  	 */
232  	if (!opal_check_token(OPAL_HANDLE_HMI)) {
233  		pr_info("Old firmware detected, OPAL handles HMIs.\n");
234  		opal_register_exception_handler(
235  				OPAL_HYPERVISOR_MAINTENANCE_HANDLER,
236  				0, glue);
237  		glue += 128;
238  	}
239  
240  	/*
241  	 * Only applicable to ancient firmware, all modern
242  	 * (post March 2015/skiboot 5.0) firmware will just return
243  	 * OPAL_UNSUPPORTED.
244  	 */
245  	opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue);
246  #endif
247  
248  	return 0;
249  }
250  machine_early_initcall(powernv, opal_register_exception_handlers);
251  
queue_replay_msg(void * msg)252  static void queue_replay_msg(void *msg)
253  {
254  	struct opal_msg_node *msg_node;
255  
256  	if (msg_list_size < OPAL_MSG_QUEUE_MAX) {
257  		msg_node = kzalloc(sizeof(*msg_node), GFP_ATOMIC);
258  		if (msg_node) {
259  			INIT_LIST_HEAD(&msg_node->list);
260  			memcpy(&msg_node->msg, msg, sizeof(struct opal_msg));
261  			list_add_tail(&msg_node->list, &msg_list);
262  			msg_list_size++;
263  		} else
264  			pr_warn_once("message queue no memory\n");
265  
266  		if (msg_list_size >= OPAL_MSG_QUEUE_MAX)
267  			pr_warn_once("message queue full\n");
268  	}
269  }
270  
dequeue_replay_msg(enum opal_msg_type msg_type)271  static void dequeue_replay_msg(enum opal_msg_type msg_type)
272  {
273  	struct opal_msg_node *msg_node, *tmp;
274  
275  	list_for_each_entry_safe(msg_node, tmp, &msg_list, list) {
276  		if (be32_to_cpu(msg_node->msg.msg_type) != msg_type)
277  			continue;
278  
279  		atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
280  					msg_type,
281  					&msg_node->msg);
282  
283  		list_del(&msg_node->list);
284  		kfree(msg_node);
285  		msg_list_size--;
286  	}
287  }
288  
289  /*
290   * Opal message notifier based on message type. Allow subscribers to get
291   * notified for specific messgae type.
292   */
opal_message_notifier_register(enum opal_msg_type msg_type,struct notifier_block * nb)293  int opal_message_notifier_register(enum opal_msg_type msg_type,
294  					struct notifier_block *nb)
295  {
296  	int ret;
297  	unsigned long flags;
298  
299  	if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) {
300  		pr_warn("%s: Invalid arguments, msg_type:%d\n",
301  			__func__, msg_type);
302  		return -EINVAL;
303  	}
304  
305  	spin_lock_irqsave(&msg_list_lock, flags);
306  	ret = atomic_notifier_chain_register(
307  		&opal_msg_notifier_head[msg_type], nb);
308  
309  	/*
310  	 * If the registration succeeded, replay any queued messages that came
311  	 * in prior to the notifier chain registration. msg_list_lock held here
312  	 * to ensure they're delivered prior to any subsequent messages.
313  	 */
314  	if (ret == 0)
315  		dequeue_replay_msg(msg_type);
316  
317  	spin_unlock_irqrestore(&msg_list_lock, flags);
318  
319  	return ret;
320  }
321  EXPORT_SYMBOL_GPL(opal_message_notifier_register);
322  
opal_message_notifier_unregister(enum opal_msg_type msg_type,struct notifier_block * nb)323  int opal_message_notifier_unregister(enum opal_msg_type msg_type,
324  				     struct notifier_block *nb)
325  {
326  	return atomic_notifier_chain_unregister(
327  			&opal_msg_notifier_head[msg_type], nb);
328  }
329  EXPORT_SYMBOL_GPL(opal_message_notifier_unregister);
330  
opal_message_do_notify(uint32_t msg_type,void * msg)331  static void opal_message_do_notify(uint32_t msg_type, void *msg)
332  {
333  	unsigned long flags;
334  	bool queued = false;
335  
336  	spin_lock_irqsave(&msg_list_lock, flags);
337  	if (opal_msg_notifier_head[msg_type].head == NULL) {
338  		/*
339  		 * Queue up the msg since no notifiers have registered
340  		 * yet for this msg_type.
341  		 */
342  		queue_replay_msg(msg);
343  		queued = true;
344  	}
345  	spin_unlock_irqrestore(&msg_list_lock, flags);
346  
347  	if (queued)
348  		return;
349  
350  	/* notify subscribers */
351  	atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
352  					msg_type, msg);
353  }
354  
opal_handle_message(void)355  static void opal_handle_message(void)
356  {
357  	s64 ret;
358  	u32 type;
359  
360  	ret = opal_get_msg(__pa(opal_msg), opal_msg_size);
361  	/* No opal message pending. */
362  	if (ret == OPAL_RESOURCE)
363  		return;
364  
365  	/* check for errors. */
366  	if (ret) {
367  		pr_warn("%s: Failed to retrieve opal message, err=%lld\n",
368  			__func__, ret);
369  		return;
370  	}
371  
372  	type = be32_to_cpu(opal_msg->msg_type);
373  
374  	/* Sanity check */
375  	if (type >= OPAL_MSG_TYPE_MAX) {
376  		pr_warn_once("%s: Unknown message type: %u\n", __func__, type);
377  		return;
378  	}
379  	opal_message_do_notify(type, (void *)opal_msg);
380  }
381  
opal_message_notify(int irq,void * data)382  static irqreturn_t opal_message_notify(int irq, void *data)
383  {
384  	opal_handle_message();
385  	return IRQ_HANDLED;
386  }
387  
opal_message_init(struct device_node * opal_node)388  static int __init opal_message_init(struct device_node *opal_node)
389  {
390  	int ret, i, irq;
391  
392  	ret = of_property_read_u32(opal_node, "opal-msg-size", &opal_msg_size);
393  	if (ret) {
394  		pr_notice("Failed to read opal-msg-size property\n");
395  		opal_msg_size = sizeof(struct opal_msg);
396  	}
397  
398  	opal_msg = kmalloc(opal_msg_size, GFP_KERNEL);
399  	if (!opal_msg) {
400  		opal_msg_size = sizeof(struct opal_msg);
401  		/* Try to allocate fixed message size */
402  		opal_msg = kmalloc(opal_msg_size, GFP_KERNEL);
403  		BUG_ON(opal_msg == NULL);
404  	}
405  
406  	for (i = 0; i < OPAL_MSG_TYPE_MAX; i++)
407  		ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]);
408  
409  	irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING));
410  	if (!irq) {
411  		pr_err("%s: Can't register OPAL event irq (%d)\n",
412  		       __func__, irq);
413  		return irq;
414  	}
415  
416  	ret = request_irq(irq, opal_message_notify,
417  			IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL);
418  	if (ret) {
419  		pr_err("%s: Can't request OPAL event irq (%d)\n",
420  		       __func__, ret);
421  		return ret;
422  	}
423  
424  	return 0;
425  }
426  
opal_get_chars(uint32_t vtermno,char * buf,int count)427  int opal_get_chars(uint32_t vtermno, char *buf, int count)
428  {
429  	s64 rc;
430  	__be64 evt, len;
431  
432  	if (!opal.entry)
433  		return -ENODEV;
434  	opal_poll_events(&evt);
435  	if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0)
436  		return 0;
437  	len = cpu_to_be64(count);
438  	rc = opal_console_read(vtermno, &len, buf);
439  	if (rc == OPAL_SUCCESS)
440  		return be64_to_cpu(len);
441  	return 0;
442  }
443  
__opal_put_chars(uint32_t vtermno,const char * data,int total_len,bool atomic)444  static int __opal_put_chars(uint32_t vtermno, const char *data, int total_len, bool atomic)
445  {
446  	unsigned long flags = 0 /* shut up gcc */;
447  	int written;
448  	__be64 olen;
449  	s64 rc;
450  
451  	if (!opal.entry)
452  		return -ENODEV;
453  
454  	if (atomic)
455  		spin_lock_irqsave(&opal_write_lock, flags);
456  	rc = opal_console_write_buffer_space(vtermno, &olen);
457  	if (rc || be64_to_cpu(olen) < total_len) {
458  		/* Closed -> drop characters */
459  		if (rc)
460  			written = total_len;
461  		else
462  			written = -EAGAIN;
463  		goto out;
464  	}
465  
466  	/* Should not get a partial write here because space is available. */
467  	olen = cpu_to_be64(total_len);
468  	rc = opal_console_write(vtermno, &olen, data);
469  	if (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
470  		if (rc == OPAL_BUSY_EVENT)
471  			opal_poll_events(NULL);
472  		written = -EAGAIN;
473  		goto out;
474  	}
475  
476  	/* Closed or other error drop */
477  	if (rc != OPAL_SUCCESS) {
478  		written = opal_error_code(rc);
479  		goto out;
480  	}
481  
482  	written = be64_to_cpu(olen);
483  	if (written < total_len) {
484  		if (atomic) {
485  			/* Should not happen */
486  			pr_warn("atomic console write returned partial "
487  				"len=%d written=%d\n", total_len, written);
488  		}
489  		if (!written)
490  			written = -EAGAIN;
491  	}
492  
493  out:
494  	if (atomic)
495  		spin_unlock_irqrestore(&opal_write_lock, flags);
496  
497  	return written;
498  }
499  
opal_put_chars(uint32_t vtermno,const char * data,int total_len)500  int opal_put_chars(uint32_t vtermno, const char *data, int total_len)
501  {
502  	return __opal_put_chars(vtermno, data, total_len, false);
503  }
504  
505  /*
506   * opal_put_chars_atomic will not perform partial-writes. Data will be
507   * atomically written to the terminal or not at all. This is not strictly
508   * true at the moment because console space can race with OPAL's console
509   * writes.
510   */
opal_put_chars_atomic(uint32_t vtermno,const char * data,int total_len)511  int opal_put_chars_atomic(uint32_t vtermno, const char *data, int total_len)
512  {
513  	return __opal_put_chars(vtermno, data, total_len, true);
514  }
515  
__opal_flush_console(uint32_t vtermno)516  static s64 __opal_flush_console(uint32_t vtermno)
517  {
518  	s64 rc;
519  
520  	if (!opal_check_token(OPAL_CONSOLE_FLUSH)) {
521  		__be64 evt;
522  
523  		/*
524  		 * If OPAL_CONSOLE_FLUSH is not implemented in the firmware,
525  		 * the console can still be flushed by calling the polling
526  		 * function while it has OPAL_EVENT_CONSOLE_OUTPUT events.
527  		 */
528  		WARN_ONCE(1, "opal: OPAL_CONSOLE_FLUSH missing.\n");
529  
530  		opal_poll_events(&evt);
531  		if (!(be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT))
532  			return OPAL_SUCCESS;
533  		return OPAL_BUSY;
534  
535  	} else {
536  		rc = opal_console_flush(vtermno);
537  		if (rc == OPAL_BUSY_EVENT) {
538  			opal_poll_events(NULL);
539  			rc = OPAL_BUSY;
540  		}
541  		return rc;
542  	}
543  
544  }
545  
546  /*
547   * opal_flush_console spins until the console is flushed
548   */
opal_flush_console(uint32_t vtermno)549  int opal_flush_console(uint32_t vtermno)
550  {
551  	for (;;) {
552  		s64 rc = __opal_flush_console(vtermno);
553  
554  		if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) {
555  			mdelay(1);
556  			continue;
557  		}
558  
559  		return opal_error_code(rc);
560  	}
561  }
562  
563  /*
564   * opal_flush_chars is an hvc interface that sleeps until the console is
565   * flushed if wait, otherwise it will return -EBUSY if the console has data,
566   * -EAGAIN if it has data and some of it was flushed.
567   */
opal_flush_chars(uint32_t vtermno,bool wait)568  int opal_flush_chars(uint32_t vtermno, bool wait)
569  {
570  	for (;;) {
571  		s64 rc = __opal_flush_console(vtermno);
572  
573  		if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) {
574  			if (wait) {
575  				msleep(OPAL_BUSY_DELAY_MS);
576  				continue;
577  			}
578  			if (rc == OPAL_PARTIAL)
579  				return -EAGAIN;
580  		}
581  
582  		return opal_error_code(rc);
583  	}
584  }
585  
opal_recover_mce(struct pt_regs * regs,struct machine_check_event * evt)586  static int opal_recover_mce(struct pt_regs *regs,
587  					struct machine_check_event *evt)
588  {
589  	int recovered = 0;
590  
591  	if (regs_is_unrecoverable(regs)) {
592  		/* If MSR_RI isn't set, we cannot recover */
593  		pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
594  		recovered = 0;
595  	} else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
596  		/* Platform corrected itself */
597  		recovered = 1;
598  	} else if (evt->severity == MCE_SEV_FATAL) {
599  		/* Fatal machine check */
600  		pr_err("Machine check interrupt is fatal\n");
601  		recovered = 0;
602  	}
603  
604  	if (!recovered && evt->sync_error) {
605  		/*
606  		 * Try to kill processes if we get a synchronous machine check
607  		 * (e.g., one caused by execution of this instruction). This
608  		 * will devolve into a panic if we try to kill init or are in
609  		 * an interrupt etc.
610  		 *
611  		 * TODO: Queue up this address for hwpoisioning later.
612  		 * TODO: This is not quite right for d-side machine
613  		 *       checks ->nip is not necessarily the important
614  		 *       address.
615  		 */
616  		if ((user_mode(regs))) {
617  			_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
618  			recovered = 1;
619  		} else if (die_will_crash()) {
620  			/*
621  			 * die() would kill the kernel, so better to go via
622  			 * the platform reboot code that will log the
623  			 * machine check.
624  			 */
625  			recovered = 0;
626  		} else {
627  			die_mce("Machine check", regs, SIGBUS);
628  			recovered = 1;
629  		}
630  	}
631  
632  	return recovered;
633  }
634  
pnv_platform_error_reboot(struct pt_regs * regs,const char * msg)635  void __noreturn pnv_platform_error_reboot(struct pt_regs *regs, const char *msg)
636  {
637  	panic_flush_kmsg_start();
638  
639  	pr_emerg("Hardware platform error: %s\n", msg);
640  	if (regs)
641  		show_regs(regs);
642  	smp_send_stop();
643  
644  	panic_flush_kmsg_end();
645  
646  	/*
647  	 * Don't bother to shut things down because this will
648  	 * xstop the system.
649  	 */
650  	if (opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR, msg)
651  						== OPAL_UNSUPPORTED) {
652  		pr_emerg("Reboot type %d not supported for %s\n",
653  				OPAL_REBOOT_PLATFORM_ERROR, msg);
654  	}
655  
656  	/*
657  	 * We reached here. There can be three possibilities:
658  	 * 1. We are running on a firmware level that do not support
659  	 *    opal_cec_reboot2()
660  	 * 2. We are running on a firmware level that do not support
661  	 *    OPAL_REBOOT_PLATFORM_ERROR reboot type.
662  	 * 3. We are running on FSP based system that does not need
663  	 *    opal to trigger checkstop explicitly for error analysis.
664  	 *    The FSP PRD component would have already got notified
665  	 *    about this error through other channels.
666  	 * 4. We are running on a newer skiboot that by default does
667  	 *    not cause a checkstop, drops us back to the kernel to
668  	 *    extract context and state at the time of the error.
669  	 */
670  
671  	panic(msg);
672  }
673  
opal_machine_check(struct pt_regs * regs)674  int opal_machine_check(struct pt_regs *regs)
675  {
676  	struct machine_check_event evt;
677  
678  	if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
679  		return 0;
680  
681  	/* Print things out */
682  	if (evt.version != MCE_V1) {
683  		pr_err("Machine Check Exception, Unknown event version %d !\n",
684  		       evt.version);
685  		return 0;
686  	}
687  	machine_check_print_event_info(&evt, user_mode(regs), false);
688  
689  	if (opal_recover_mce(regs, &evt))
690  		return 1;
691  
692  	pnv_platform_error_reboot(regs, "Unrecoverable Machine Check exception");
693  }
694  
695  /* Early hmi handler called in real mode. */
opal_hmi_exception_early(struct pt_regs * regs)696  int opal_hmi_exception_early(struct pt_regs *regs)
697  {
698  	s64 rc;
699  
700  	/*
701  	 * call opal hmi handler. Pass paca address as token.
702  	 * The return value OPAL_SUCCESS is an indication that there is
703  	 * an HMI event generated waiting to pull by Linux.
704  	 */
705  	rc = opal_handle_hmi();
706  	if (rc == OPAL_SUCCESS) {
707  		local_paca->hmi_event_available = 1;
708  		return 1;
709  	}
710  	return 0;
711  }
712  
opal_hmi_exception_early2(struct pt_regs * regs)713  int opal_hmi_exception_early2(struct pt_regs *regs)
714  {
715  	s64 rc;
716  	__be64 out_flags;
717  
718  	/*
719  	 * call opal hmi handler.
720  	 * Check 64-bit flag mask to find out if an event was generated,
721  	 * and whether TB is still valid or not etc.
722  	 */
723  	rc = opal_handle_hmi2(&out_flags);
724  	if (rc != OPAL_SUCCESS)
725  		return 0;
726  
727  	if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_NEW_EVENT)
728  		local_paca->hmi_event_available = 1;
729  	if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_TOD_TB_FAIL)
730  		tb_invalid = true;
731  	return 1;
732  }
733  
734  /* HMI exception handler called in virtual mode when irqs are next enabled. */
opal_handle_hmi_exception(struct pt_regs * regs)735  int opal_handle_hmi_exception(struct pt_regs *regs)
736  {
737  	/*
738  	 * Check if HMI event is available.
739  	 * if Yes, then wake kopald to process them.
740  	 */
741  	if (!local_paca->hmi_event_available)
742  		return 0;
743  
744  	local_paca->hmi_event_available = 0;
745  	opal_wake_poller();
746  
747  	return 1;
748  }
749  
find_recovery_address(uint64_t nip)750  static uint64_t find_recovery_address(uint64_t nip)
751  {
752  	int i;
753  
754  	for (i = 0; i < mc_recoverable_range_len; i++)
755  		if ((nip >= mc_recoverable_range[i].start_addr) &&
756  		    (nip < mc_recoverable_range[i].end_addr))
757  		    return mc_recoverable_range[i].recover_addr;
758  	return 0;
759  }
760  
opal_mce_check_early_recovery(struct pt_regs * regs)761  bool opal_mce_check_early_recovery(struct pt_regs *regs)
762  {
763  	uint64_t recover_addr = 0;
764  
765  	if (!opal.base || !opal.size)
766  		goto out;
767  
768  	if ((regs->nip >= opal.base) &&
769  			(regs->nip < (opal.base + opal.size)))
770  		recover_addr = find_recovery_address(regs->nip);
771  
772  	/*
773  	 * Setup regs->nip to rfi into fixup address.
774  	 */
775  	if (recover_addr)
776  		regs_set_return_ip(regs, recover_addr);
777  
778  out:
779  	return !!recover_addr;
780  }
781  
opal_sysfs_init(void)782  static int __init opal_sysfs_init(void)
783  {
784  	opal_kobj = kobject_create_and_add("opal", firmware_kobj);
785  	if (!opal_kobj) {
786  		pr_warn("kobject_create_and_add opal failed\n");
787  		return -ENOMEM;
788  	}
789  
790  	return 0;
791  }
792  
export_attr_read(struct file * fp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)793  static ssize_t export_attr_read(struct file *fp, struct kobject *kobj,
794  				struct bin_attribute *bin_attr, char *buf,
795  				loff_t off, size_t count)
796  {
797  	return memory_read_from_buffer(buf, count, &off, bin_attr->private,
798  				       bin_attr->size);
799  }
800  
opal_add_one_export(struct kobject * parent,const char * export_name,struct device_node * np,const char * prop_name)801  static int opal_add_one_export(struct kobject *parent, const char *export_name,
802  			       struct device_node *np, const char *prop_name)
803  {
804  	struct bin_attribute *attr = NULL;
805  	const char *name = NULL;
806  	u64 vals[2];
807  	int rc;
808  
809  	rc = of_property_read_u64_array(np, prop_name, &vals[0], 2);
810  	if (rc)
811  		goto out;
812  
813  	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
814  	if (!attr) {
815  		rc = -ENOMEM;
816  		goto out;
817  	}
818  	name = kstrdup(export_name, GFP_KERNEL);
819  	if (!name) {
820  		rc = -ENOMEM;
821  		goto out;
822  	}
823  
824  	sysfs_bin_attr_init(attr);
825  	attr->attr.name = name;
826  	attr->attr.mode = 0400;
827  	attr->read = export_attr_read;
828  	attr->private = __va(vals[0]);
829  	attr->size = vals[1];
830  
831  	rc = sysfs_create_bin_file(parent, attr);
832  out:
833  	if (rc) {
834  		kfree(name);
835  		kfree(attr);
836  	}
837  
838  	return rc;
839  }
840  
opal_add_exported_attrs(struct device_node * np,struct kobject * kobj)841  static void opal_add_exported_attrs(struct device_node *np,
842  				    struct kobject *kobj)
843  {
844  	struct device_node *child;
845  	struct property *prop;
846  
847  	for_each_property_of_node(np, prop) {
848  		int rc;
849  
850  		if (!strcmp(prop->name, "name") ||
851  		    !strcmp(prop->name, "phandle"))
852  			continue;
853  
854  		rc = opal_add_one_export(kobj, prop->name, np, prop->name);
855  		if (rc) {
856  			pr_warn("Unable to add export %pOF/%s, rc = %d!\n",
857  				np, prop->name, rc);
858  		}
859  	}
860  
861  	for_each_child_of_node(np, child) {
862  		struct kobject *child_kobj;
863  
864  		child_kobj = kobject_create_and_add(child->name, kobj);
865  		if (!child_kobj) {
866  			pr_err("Unable to create export dir for %pOF\n", child);
867  			continue;
868  		}
869  
870  		opal_add_exported_attrs(child, child_kobj);
871  	}
872  }
873  
874  /*
875   * opal_export_attrs: creates a sysfs node for each property listed in
876   * the device-tree under /ibm,opal/firmware/exports/
877   * All new sysfs nodes are created under /opal/exports/.
878   * This allows for reserved memory regions (e.g. HDAT) to be read.
879   * The new sysfs nodes are only readable by root.
880   */
opal_export_attrs(void)881  static void opal_export_attrs(void)
882  {
883  	struct device_node *np;
884  	struct kobject *kobj;
885  	int rc;
886  
887  	np = of_find_node_by_path("/ibm,opal/firmware/exports");
888  	if (!np)
889  		return;
890  
891  	/* Create new 'exports' directory - /sys/firmware/opal/exports */
892  	kobj = kobject_create_and_add("exports", opal_kobj);
893  	if (!kobj) {
894  		pr_warn("kobject_create_and_add() of exports failed\n");
895  		of_node_put(np);
896  		return;
897  	}
898  
899  	opal_add_exported_attrs(np, kobj);
900  
901  	/*
902  	 * NB: symbol_map existed before the generic export interface so it
903  	 * lives under the top level opal_kobj.
904  	 */
905  	rc = opal_add_one_export(opal_kobj, "symbol_map",
906  				 np->parent, "symbol-map");
907  	if (rc)
908  		pr_warn("Error %d creating OPAL symbols file\n", rc);
909  
910  	of_node_put(np);
911  }
912  
opal_dump_region_init(void)913  static void __init opal_dump_region_init(void)
914  {
915  	void *addr;
916  	uint64_t size;
917  	int rc;
918  
919  	if (!opal_check_token(OPAL_REGISTER_DUMP_REGION))
920  		return;
921  
922  	/* Register kernel log buffer */
923  	addr = log_buf_addr_get();
924  	if (addr == NULL)
925  		return;
926  
927  	size = log_buf_len_get();
928  	if (size == 0)
929  		return;
930  
931  	rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF,
932  				       __pa(addr), size);
933  	/* Don't warn if this is just an older OPAL that doesn't
934  	 * know about that call
935  	 */
936  	if (rc && rc != OPAL_UNSUPPORTED)
937  		pr_warn("DUMP: Failed to register kernel log buffer. "
938  			"rc = %d\n", rc);
939  }
940  
opal_pdev_init(const char * compatible)941  static void __init opal_pdev_init(const char *compatible)
942  {
943  	struct device_node *np;
944  
945  	for_each_compatible_node(np, NULL, compatible)
946  		of_platform_device_create(np, NULL, NULL);
947  }
948  
opal_imc_init_dev(void)949  static void __init opal_imc_init_dev(void)
950  {
951  	struct device_node *np;
952  
953  	np = of_find_compatible_node(NULL, NULL, IMC_DTB_COMPAT);
954  	if (np)
955  		of_platform_device_create(np, NULL, NULL);
956  
957  	of_node_put(np);
958  }
959  
kopald(void * unused)960  static int kopald(void *unused)
961  {
962  	unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1;
963  
964  	set_freezable();
965  	do {
966  		try_to_freeze();
967  
968  		opal_handle_events();
969  
970  		set_current_state(TASK_INTERRUPTIBLE);
971  		if (opal_have_pending_events())
972  			__set_current_state(TASK_RUNNING);
973  		else
974  			schedule_timeout(timeout);
975  
976  	} while (!kthread_should_stop());
977  
978  	return 0;
979  }
980  
opal_wake_poller(void)981  void opal_wake_poller(void)
982  {
983  	if (kopald_tsk)
984  		wake_up_process(kopald_tsk);
985  }
986  
opal_init_heartbeat(void)987  static void __init opal_init_heartbeat(void)
988  {
989  	/* Old firwmware, we assume the HVC heartbeat is sufficient */
990  	if (of_property_read_u32(opal_node, "ibm,heartbeat-ms",
991  				 &opal_heartbeat) != 0)
992  		opal_heartbeat = 0;
993  
994  	if (opal_heartbeat)
995  		kopald_tsk = kthread_run(kopald, NULL, "kopald");
996  }
997  
opal_init(void)998  static int __init opal_init(void)
999  {
1000  	struct device_node *np, *consoles, *leds;
1001  	int rc;
1002  
1003  	opal_node = of_find_node_by_path("/ibm,opal");
1004  	if (!opal_node) {
1005  		pr_warn("Device node not found\n");
1006  		return -ENODEV;
1007  	}
1008  
1009  	/* Register OPAL consoles if any ports */
1010  	consoles = of_find_node_by_path("/ibm,opal/consoles");
1011  	if (consoles) {
1012  		for_each_child_of_node(consoles, np) {
1013  			if (!of_node_name_eq(np, "serial"))
1014  				continue;
1015  			of_platform_device_create(np, NULL, NULL);
1016  		}
1017  		of_node_put(consoles);
1018  	}
1019  
1020  	/* Initialise OPAL messaging system */
1021  	opal_message_init(opal_node);
1022  
1023  	/* Initialise OPAL asynchronous completion interface */
1024  	opal_async_comp_init();
1025  
1026  	/* Initialise OPAL sensor interface */
1027  	opal_sensor_init();
1028  
1029  	/* Initialise OPAL hypervisor maintainence interrupt handling */
1030  	opal_hmi_handler_init();
1031  
1032  	/* Create i2c platform devices */
1033  	opal_pdev_init("ibm,opal-i2c");
1034  
1035  	/* Handle non-volatile memory devices */
1036  	opal_pdev_init("pmem-region");
1037  
1038  	/* Setup a heatbeat thread if requested by OPAL */
1039  	opal_init_heartbeat();
1040  
1041  	/* Detect In-Memory Collection counters and create devices*/
1042  	opal_imc_init_dev();
1043  
1044  	/* Create leds platform devices */
1045  	leds = of_find_node_by_path("/ibm,opal/leds");
1046  	if (leds) {
1047  		of_platform_device_create(leds, "opal_leds", NULL);
1048  		of_node_put(leds);
1049  	}
1050  
1051  	/* Initialise OPAL message log interface */
1052  	opal_msglog_init();
1053  
1054  	/* Create "opal" kobject under /sys/firmware */
1055  	rc = opal_sysfs_init();
1056  	if (rc == 0) {
1057  		/* Setup dump region interface */
1058  		opal_dump_region_init();
1059  		/* Setup error log interface */
1060  		rc = opal_elog_init();
1061  		/* Setup code update interface */
1062  		opal_flash_update_init();
1063  		/* Setup platform dump extract interface */
1064  		opal_platform_dump_init();
1065  		/* Setup system parameters interface */
1066  		opal_sys_param_init();
1067  		/* Setup message log sysfs interface. */
1068  		opal_msglog_sysfs_init();
1069  		/* Add all export properties*/
1070  		opal_export_attrs();
1071  	}
1072  
1073  	/* Initialize platform devices: IPMI backend, PRD & flash interface */
1074  	opal_pdev_init("ibm,opal-ipmi");
1075  	opal_pdev_init("ibm,opal-flash");
1076  	opal_pdev_init("ibm,opal-prd");
1077  
1078  	/* Initialise platform device: oppanel interface */
1079  	opal_pdev_init("ibm,opal-oppanel");
1080  
1081  	/* Initialise OPAL kmsg dumper for flushing console on panic */
1082  	opal_kmsg_init();
1083  
1084  	/* Initialise OPAL powercap interface */
1085  	opal_powercap_init();
1086  
1087  	/* Initialise OPAL Power-Shifting-Ratio interface */
1088  	opal_psr_init();
1089  
1090  	/* Initialise OPAL sensor groups */
1091  	opal_sensor_groups_init();
1092  
1093  	/* Initialise OPAL Power control interface */
1094  	opal_power_control_init();
1095  
1096  	/* Initialize OPAL secure variables */
1097  	opal_pdev_init("ibm,secvar-backend");
1098  
1099  	return 0;
1100  }
1101  machine_subsys_initcall(powernv, opal_init);
1102  
opal_shutdown(void)1103  void opal_shutdown(void)
1104  {
1105  	long rc = OPAL_BUSY;
1106  
1107  	opal_event_shutdown();
1108  
1109  	/*
1110  	 * Then sync with OPAL which ensure anything that can
1111  	 * potentially write to our memory has completed such
1112  	 * as an ongoing dump retrieval
1113  	 */
1114  	while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
1115  		rc = opal_sync_host_reboot();
1116  		if (rc == OPAL_BUSY)
1117  			opal_poll_events(NULL);
1118  		else
1119  			mdelay(10);
1120  	}
1121  
1122  	/* Unregister memory dump region */
1123  	if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION))
1124  		opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF);
1125  }
1126  
1127  /* Export this so that test modules can use it */
1128  EXPORT_SYMBOL_GPL(opal_invalid_call);
1129  EXPORT_SYMBOL_GPL(opal_xscom_read);
1130  EXPORT_SYMBOL_GPL(opal_xscom_write);
1131  EXPORT_SYMBOL_GPL(opal_ipmi_send);
1132  EXPORT_SYMBOL_GPL(opal_ipmi_recv);
1133  EXPORT_SYMBOL_GPL(opal_flash_read);
1134  EXPORT_SYMBOL_GPL(opal_flash_write);
1135  EXPORT_SYMBOL_GPL(opal_flash_erase);
1136  EXPORT_SYMBOL_GPL(opal_prd_msg);
1137  EXPORT_SYMBOL_GPL(opal_check_token);
1138  
1139  /* Convert a region of vmalloc memory to an opal sg list */
opal_vmalloc_to_sg_list(void * vmalloc_addr,unsigned long vmalloc_size)1140  struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr,
1141  					     unsigned long vmalloc_size)
1142  {
1143  	struct opal_sg_list *sg, *first = NULL;
1144  	unsigned long i = 0;
1145  
1146  	sg = kzalloc(PAGE_SIZE, GFP_KERNEL);
1147  	if (!sg)
1148  		goto nomem;
1149  
1150  	first = sg;
1151  
1152  	while (vmalloc_size > 0) {
1153  		uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT;
1154  		uint64_t length = min(vmalloc_size, PAGE_SIZE);
1155  
1156  		sg->entry[i].data = cpu_to_be64(data);
1157  		sg->entry[i].length = cpu_to_be64(length);
1158  		i++;
1159  
1160  		if (i >= SG_ENTRIES_PER_NODE) {
1161  			struct opal_sg_list *next;
1162  
1163  			next = kzalloc(PAGE_SIZE, GFP_KERNEL);
1164  			if (!next)
1165  				goto nomem;
1166  
1167  			sg->length = cpu_to_be64(
1168  					i * sizeof(struct opal_sg_entry) + 16);
1169  			i = 0;
1170  			sg->next = cpu_to_be64(__pa(next));
1171  			sg = next;
1172  		}
1173  
1174  		vmalloc_addr += length;
1175  		vmalloc_size -= length;
1176  	}
1177  
1178  	sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16);
1179  
1180  	return first;
1181  
1182  nomem:
1183  	pr_err("%s : Failed to allocate memory\n", __func__);
1184  	opal_free_sg_list(first);
1185  	return NULL;
1186  }
1187  
opal_free_sg_list(struct opal_sg_list * sg)1188  void opal_free_sg_list(struct opal_sg_list *sg)
1189  {
1190  	while (sg) {
1191  		uint64_t next = be64_to_cpu(sg->next);
1192  
1193  		kfree(sg);
1194  
1195  		if (next)
1196  			sg = __va(next);
1197  		else
1198  			sg = NULL;
1199  	}
1200  }
1201  
opal_error_code(int rc)1202  int opal_error_code(int rc)
1203  {
1204  	switch (rc) {
1205  	case OPAL_SUCCESS:		return 0;
1206  
1207  	case OPAL_PARAMETER:		return -EINVAL;
1208  	case OPAL_ASYNC_COMPLETION:	return -EINPROGRESS;
1209  	case OPAL_BUSY:
1210  	case OPAL_BUSY_EVENT:		return -EBUSY;
1211  	case OPAL_NO_MEM:		return -ENOMEM;
1212  	case OPAL_PERMISSION:		return -EPERM;
1213  
1214  	case OPAL_UNSUPPORTED:		return -EIO;
1215  	case OPAL_HARDWARE:		return -EIO;
1216  	case OPAL_INTERNAL_ERROR:	return -EIO;
1217  	case OPAL_TIMEOUT:		return -ETIMEDOUT;
1218  	default:
1219  		pr_err("%s: unexpected OPAL error %d\n", __func__, rc);
1220  		return -EIO;
1221  	}
1222  }
1223  
powernv_set_nmmu_ptcr(unsigned long ptcr)1224  void powernv_set_nmmu_ptcr(unsigned long ptcr)
1225  {
1226  	int rc;
1227  
1228  	if (firmware_has_feature(FW_FEATURE_OPAL)) {
1229  		rc = opal_nmmu_set_ptcr(-1UL, ptcr);
1230  		if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
1231  			pr_warn("%s: Unable to set nest mmu ptcr\n", __func__);
1232  	}
1233  }
1234  
1235  EXPORT_SYMBOL_GPL(opal_poll_events);
1236  EXPORT_SYMBOL_GPL(opal_rtc_read);
1237  EXPORT_SYMBOL_GPL(opal_rtc_write);
1238  EXPORT_SYMBOL_GPL(opal_tpo_read);
1239  EXPORT_SYMBOL_GPL(opal_tpo_write);
1240  EXPORT_SYMBOL_GPL(opal_i2c_request);
1241  /* Export these symbols for PowerNV LED class driver */
1242  EXPORT_SYMBOL_GPL(opal_leds_get_ind);
1243  EXPORT_SYMBOL_GPL(opal_leds_set_ind);
1244  /* Export this symbol for PowerNV Operator Panel class driver */
1245  EXPORT_SYMBOL_GPL(opal_write_oppanel_async);
1246  /* Export this for KVM */
1247  EXPORT_SYMBOL_GPL(opal_int_set_mfrr);
1248  EXPORT_SYMBOL_GPL(opal_int_eoi);
1249  EXPORT_SYMBOL_GPL(opal_error_code);
1250  /* Export the below symbol for NX compression */
1251  EXPORT_SYMBOL(opal_nx_coproc_init);
1252