1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2023. Huawei Technologies Co., Ltd */
3 #include <argp.h>
4 #include <stdbool.h>
5 #include <pthread.h>
6 #include <sys/types.h>
7 #include <sys/stat.h>
8 #include <sys/param.h>
9 #include <fcntl.h>
10
11 #include "bench.h"
12 #include "bpf_util.h"
13 #include "cgroup_helpers.h"
14 #include "htab_mem_bench.skel.h"
15
16 struct htab_mem_use_case {
17 const char *name;
18 const char **progs;
19 /* Do synchronization between addition thread and deletion thread */
20 bool need_sync;
21 };
22
23 static struct htab_mem_ctx {
24 const struct htab_mem_use_case *uc;
25 struct htab_mem_bench *skel;
26 pthread_barrier_t *notify;
27 int fd;
28 } ctx;
29
30 const char *ow_progs[] = {"overwrite", NULL};
31 const char *batch_progs[] = {"batch_add_batch_del", NULL};
32 const char *add_del_progs[] = {"add_only", "del_only", NULL};
33 const static struct htab_mem_use_case use_cases[] = {
34 { .name = "overwrite", .progs = ow_progs },
35 { .name = "batch_add_batch_del", .progs = batch_progs },
36 { .name = "add_del_on_diff_cpu", .progs = add_del_progs, .need_sync = true },
37 };
38
39 static struct htab_mem_args {
40 u32 value_size;
41 const char *use_case;
42 bool preallocated;
43 } args = {
44 .value_size = 8,
45 .use_case = "overwrite",
46 .preallocated = false,
47 };
48
49 enum {
50 ARG_VALUE_SIZE = 10000,
51 ARG_USE_CASE = 10001,
52 ARG_PREALLOCATED = 10002,
53 };
54
55 static const struct argp_option opts[] = {
56 { "value-size", ARG_VALUE_SIZE, "VALUE_SIZE", 0,
57 "Set the value size of hash map (default 8)" },
58 { "use-case", ARG_USE_CASE, "USE_CASE", 0,
59 "Set the use case of hash map: overwrite|batch_add_batch_del|add_del_on_diff_cpu" },
60 { "preallocated", ARG_PREALLOCATED, NULL, 0, "use preallocated hash map" },
61 {},
62 };
63
htab_mem_parse_arg(int key,char * arg,struct argp_state * state)64 static error_t htab_mem_parse_arg(int key, char *arg, struct argp_state *state)
65 {
66 switch (key) {
67 case ARG_VALUE_SIZE:
68 args.value_size = strtoul(arg, NULL, 10);
69 if (args.value_size > 4096) {
70 fprintf(stderr, "too big value size %u\n", args.value_size);
71 argp_usage(state);
72 }
73 break;
74 case ARG_USE_CASE:
75 args.use_case = strdup(arg);
76 if (!args.use_case) {
77 fprintf(stderr, "no mem for use-case\n");
78 argp_usage(state);
79 }
80 break;
81 case ARG_PREALLOCATED:
82 args.preallocated = true;
83 break;
84 default:
85 return ARGP_ERR_UNKNOWN;
86 }
87
88 return 0;
89 }
90
91 const struct argp bench_htab_mem_argp = {
92 .options = opts,
93 .parser = htab_mem_parse_arg,
94 };
95
htab_mem_validate(void)96 static void htab_mem_validate(void)
97 {
98 if (!strcmp(use_cases[2].name, args.use_case) && env.producer_cnt % 2) {
99 fprintf(stderr, "%s needs an even number of producers\n", args.use_case);
100 exit(1);
101 }
102 }
103
htab_mem_bench_init_barriers(void)104 static int htab_mem_bench_init_barriers(void)
105 {
106 pthread_barrier_t *barriers;
107 unsigned int i, nr;
108
109 if (!ctx.uc->need_sync)
110 return 0;
111
112 nr = (env.producer_cnt + 1) / 2;
113 barriers = calloc(nr, sizeof(*barriers));
114 if (!barriers)
115 return -1;
116
117 /* Used for synchronization between two threads */
118 for (i = 0; i < nr; i++)
119 pthread_barrier_init(&barriers[i], NULL, 2);
120
121 ctx.notify = barriers;
122 return 0;
123 }
124
htab_mem_bench_exit_barriers(void)125 static void htab_mem_bench_exit_barriers(void)
126 {
127 unsigned int i, nr;
128
129 if (!ctx.notify)
130 return;
131
132 nr = (env.producer_cnt + 1) / 2;
133 for (i = 0; i < nr; i++)
134 pthread_barrier_destroy(&ctx.notify[i]);
135 free(ctx.notify);
136 }
137
htab_mem_find_use_case_or_exit(const char * name)138 static const struct htab_mem_use_case *htab_mem_find_use_case_or_exit(const char *name)
139 {
140 unsigned int i;
141
142 for (i = 0; i < ARRAY_SIZE(use_cases); i++) {
143 if (!strcmp(name, use_cases[i].name))
144 return &use_cases[i];
145 }
146
147 fprintf(stderr, "no such use-case: %s\n", name);
148 fprintf(stderr, "available use case:");
149 for (i = 0; i < ARRAY_SIZE(use_cases); i++)
150 fprintf(stderr, " %s", use_cases[i].name);
151 fprintf(stderr, "\n");
152 exit(1);
153 }
154
htab_mem_setup(void)155 static void htab_mem_setup(void)
156 {
157 struct bpf_map *map;
158 const char **names;
159 int err;
160
161 setup_libbpf();
162
163 ctx.uc = htab_mem_find_use_case_or_exit(args.use_case);
164 err = htab_mem_bench_init_barriers();
165 if (err) {
166 fprintf(stderr, "failed to init barrier\n");
167 exit(1);
168 }
169
170 ctx.fd = cgroup_setup_and_join("/htab_mem");
171 if (ctx.fd < 0)
172 goto cleanup;
173
174 ctx.skel = htab_mem_bench__open();
175 if (!ctx.skel) {
176 fprintf(stderr, "failed to open skeleton\n");
177 goto cleanup;
178 }
179
180 map = ctx.skel->maps.htab;
181 bpf_map__set_value_size(map, args.value_size);
182 /* Ensure that different CPUs can operate on different subset */
183 bpf_map__set_max_entries(map, MAX(8192, 64 * env.nr_cpus));
184 if (args.preallocated)
185 bpf_map__set_map_flags(map, bpf_map__map_flags(map) & ~BPF_F_NO_PREALLOC);
186
187 names = ctx.uc->progs;
188 while (*names) {
189 struct bpf_program *prog;
190
191 prog = bpf_object__find_program_by_name(ctx.skel->obj, *names);
192 if (!prog) {
193 fprintf(stderr, "no such program %s\n", *names);
194 goto cleanup;
195 }
196 bpf_program__set_autoload(prog, true);
197 names++;
198 }
199 ctx.skel->bss->nr_thread = env.producer_cnt;
200
201 err = htab_mem_bench__load(ctx.skel);
202 if (err) {
203 fprintf(stderr, "failed to load skeleton\n");
204 goto cleanup;
205 }
206 err = htab_mem_bench__attach(ctx.skel);
207 if (err) {
208 fprintf(stderr, "failed to attach skeleton\n");
209 goto cleanup;
210 }
211 return;
212
213 cleanup:
214 htab_mem_bench__destroy(ctx.skel);
215 htab_mem_bench_exit_barriers();
216 if (ctx.fd >= 0) {
217 close(ctx.fd);
218 cleanup_cgroup_environment();
219 }
220 exit(1);
221 }
222
htab_mem_add_fn(pthread_barrier_t * notify)223 static void htab_mem_add_fn(pthread_barrier_t *notify)
224 {
225 while (true) {
226 /* Do addition */
227 (void)syscall(__NR_getpgid, 0);
228 /* Notify deletion thread to do deletion */
229 pthread_barrier_wait(notify);
230 /* Wait for deletion to complete */
231 pthread_barrier_wait(notify);
232 }
233 }
234
htab_mem_delete_fn(pthread_barrier_t * notify)235 static void htab_mem_delete_fn(pthread_barrier_t *notify)
236 {
237 while (true) {
238 /* Wait for addition to complete */
239 pthread_barrier_wait(notify);
240 /* Do deletion */
241 (void)syscall(__NR_getppid);
242 /* Notify addition thread to do addition */
243 pthread_barrier_wait(notify);
244 }
245 }
246
htab_mem_producer(void * arg)247 static void *htab_mem_producer(void *arg)
248 {
249 pthread_barrier_t *notify;
250 int seq;
251
252 if (!ctx.uc->need_sync) {
253 while (true)
254 (void)syscall(__NR_getpgid, 0);
255 return NULL;
256 }
257
258 seq = (long)arg;
259 notify = &ctx.notify[seq / 2];
260 if (seq & 1)
261 htab_mem_delete_fn(notify);
262 else
263 htab_mem_add_fn(notify);
264 return NULL;
265 }
266
htab_mem_read_mem_cgrp_file(const char * name,unsigned long * value)267 static void htab_mem_read_mem_cgrp_file(const char *name, unsigned long *value)
268 {
269 char buf[32];
270 ssize_t got;
271 int fd;
272
273 fd = openat(ctx.fd, name, O_RDONLY);
274 if (fd < 0) {
275 /* cgroup v1 ? */
276 fprintf(stderr, "no %s\n", name);
277 *value = 0;
278 return;
279 }
280
281 got = read(fd, buf, sizeof(buf) - 1);
282 if (got <= 0) {
283 *value = 0;
284 return;
285 }
286 buf[got] = 0;
287
288 *value = strtoull(buf, NULL, 0);
289
290 close(fd);
291 }
292
htab_mem_measure(struct bench_res * res)293 static void htab_mem_measure(struct bench_res *res)
294 {
295 res->hits = atomic_swap(&ctx.skel->bss->op_cnt, 0) / env.producer_cnt;
296 htab_mem_read_mem_cgrp_file("memory.current", &res->gp_ct);
297 }
298
htab_mem_report_progress(int iter,struct bench_res * res,long delta_ns)299 static void htab_mem_report_progress(int iter, struct bench_res *res, long delta_ns)
300 {
301 double loop, mem;
302
303 loop = res->hits / 1000.0 / (delta_ns / 1000000000.0);
304 mem = res->gp_ct / 1048576.0;
305 printf("Iter %3d (%7.3lfus): ", iter, (delta_ns - 1000000000) / 1000.0);
306 printf("per-prod-op %7.2lfk/s, memory usage %7.2lfMiB\n", loop, mem);
307 }
308
htab_mem_report_final(struct bench_res res[],int res_cnt)309 static void htab_mem_report_final(struct bench_res res[], int res_cnt)
310 {
311 double mem_mean = 0.0, mem_stddev = 0.0;
312 double loop_mean = 0.0, loop_stddev = 0.0;
313 unsigned long peak_mem;
314 int i;
315
316 for (i = 0; i < res_cnt; i++) {
317 loop_mean += res[i].hits / 1000.0 / (0.0 + res_cnt);
318 mem_mean += res[i].gp_ct / 1048576.0 / (0.0 + res_cnt);
319 }
320 if (res_cnt > 1) {
321 for (i = 0; i < res_cnt; i++) {
322 loop_stddev += (loop_mean - res[i].hits / 1000.0) *
323 (loop_mean - res[i].hits / 1000.0) /
324 (res_cnt - 1.0);
325 mem_stddev += (mem_mean - res[i].gp_ct / 1048576.0) *
326 (mem_mean - res[i].gp_ct / 1048576.0) /
327 (res_cnt - 1.0);
328 }
329 loop_stddev = sqrt(loop_stddev);
330 mem_stddev = sqrt(mem_stddev);
331 }
332
333 htab_mem_read_mem_cgrp_file("memory.peak", &peak_mem);
334 printf("Summary: per-prod-op %7.2lf \u00B1 %7.2lfk/s, memory usage %7.2lf \u00B1 %7.2lfMiB,"
335 " peak memory usage %7.2lfMiB\n",
336 loop_mean, loop_stddev, mem_mean, mem_stddev, peak_mem / 1048576.0);
337
338 cleanup_cgroup_environment();
339 }
340
341 const struct bench bench_htab_mem = {
342 .name = "htab-mem",
343 .argp = &bench_htab_mem_argp,
344 .validate = htab_mem_validate,
345 .setup = htab_mem_setup,
346 .producer_thread = htab_mem_producer,
347 .measure = htab_mem_measure,
348 .report_progress = htab_mem_report_progress,
349 .report_final = htab_mem_report_final,
350 };
351