1 /*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "exec/address-spaces.h"
27 #include "hw/hw.h"
28 #include "hw/irq.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/arm/boot.h"
31 #include "hw/arm/omap.h"
32 #include "sysemu/blockdev.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/arm/soc_dma.h"
35 #include "sysemu/qtest.h"
36 #include "sysemu/reset.h"
37 #include "sysemu/runstate.h"
38 #include "sysemu/rtc.h"
39 #include "qemu/range.h"
40 #include "hw/sysbus.h"
41 #include "qemu/cutils.h"
42 #include "qemu/bcd.h"
43 #include "target/arm/cpu-qom.h"
44
omap_log_badwidth(const char * funcname,hwaddr addr,int sz)45 static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
46 {
47 qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
48 funcname, 8 * sz, addr);
49 }
50
51 /* Should signal the TCMI/GPMC */
omap_badwidth_read8(void * opaque,hwaddr addr)52 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
53 {
54 uint8_t ret;
55
56 omap_log_badwidth(__func__, addr, 1);
57 cpu_physical_memory_read(addr, &ret, 1);
58 return ret;
59 }
60
omap_badwidth_write8(void * opaque,hwaddr addr,uint32_t value)61 void omap_badwidth_write8(void *opaque, hwaddr addr,
62 uint32_t value)
63 {
64 uint8_t val8 = value;
65
66 omap_log_badwidth(__func__, addr, 1);
67 cpu_physical_memory_write(addr, &val8, 1);
68 }
69
omap_badwidth_read16(void * opaque,hwaddr addr)70 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
71 {
72 uint16_t ret;
73
74 omap_log_badwidth(__func__, addr, 2);
75 cpu_physical_memory_read(addr, &ret, 2);
76 return ret;
77 }
78
omap_badwidth_write16(void * opaque,hwaddr addr,uint32_t value)79 void omap_badwidth_write16(void *opaque, hwaddr addr,
80 uint32_t value)
81 {
82 uint16_t val16 = value;
83
84 omap_log_badwidth(__func__, addr, 2);
85 cpu_physical_memory_write(addr, &val16, 2);
86 }
87
omap_badwidth_read32(void * opaque,hwaddr addr)88 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
89 {
90 uint32_t ret;
91
92 omap_log_badwidth(__func__, addr, 4);
93 cpu_physical_memory_read(addr, &ret, 4);
94 return ret;
95 }
96
omap_badwidth_write32(void * opaque,hwaddr addr,uint32_t value)97 void omap_badwidth_write32(void *opaque, hwaddr addr,
98 uint32_t value)
99 {
100 omap_log_badwidth(__func__, addr, 4);
101 cpu_physical_memory_write(addr, &value, 4);
102 }
103
104 /* MPU OS timers */
105 struct omap_mpu_timer_s {
106 MemoryRegion iomem;
107 qemu_irq irq;
108 omap_clk clk;
109 uint32_t val;
110 int64_t time;
111 QEMUTimer *timer;
112 QEMUBH *tick;
113 int64_t rate;
114 int it_ena;
115
116 int enable;
117 int ptv;
118 int ar;
119 int st;
120 uint32_t reset_val;
121 };
122
omap_timer_read(struct omap_mpu_timer_s * timer)123 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
124 {
125 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
126
127 if (timer->st && timer->enable && timer->rate)
128 return timer->val - muldiv64(distance >> (timer->ptv + 1),
129 timer->rate, NANOSECONDS_PER_SECOND);
130 else
131 return timer->val;
132 }
133
omap_timer_sync(struct omap_mpu_timer_s * timer)134 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
135 {
136 timer->val = omap_timer_read(timer);
137 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
138 }
139
omap_timer_update(struct omap_mpu_timer_s * timer)140 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
141 {
142 int64_t expires;
143
144 if (timer->enable && timer->st && timer->rate) {
145 timer->val = timer->reset_val; /* Should skip this on clk enable */
146 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
147 NANOSECONDS_PER_SECOND, timer->rate);
148
149 /* If timer expiry would be sooner than in about 1 ms and
150 * auto-reload isn't set, then fire immediately. This is a hack
151 * to make systems like PalmOS run in acceptable time. PalmOS
152 * sets the interval to a very low value and polls the status bit
153 * in a busy loop when it wants to sleep just a couple of CPU
154 * ticks. */
155 if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
156 timer_mod(timer->timer, timer->time + expires);
157 } else {
158 qemu_bh_schedule(timer->tick);
159 }
160 } else
161 timer_del(timer->timer);
162 }
163
omap_timer_fire(void * opaque)164 static void omap_timer_fire(void *opaque)
165 {
166 struct omap_mpu_timer_s *timer = opaque;
167
168 if (!timer->ar) {
169 timer->val = 0;
170 timer->st = 0;
171 }
172
173 if (timer->it_ena)
174 /* Edge-triggered irq */
175 qemu_irq_pulse(timer->irq);
176 }
177
omap_timer_tick(void * opaque)178 static void omap_timer_tick(void *opaque)
179 {
180 struct omap_mpu_timer_s *timer = opaque;
181
182 omap_timer_sync(timer);
183 omap_timer_fire(timer);
184 omap_timer_update(timer);
185 }
186
omap_timer_clk_update(void * opaque,int line,int on)187 static void omap_timer_clk_update(void *opaque, int line, int on)
188 {
189 struct omap_mpu_timer_s *timer = opaque;
190
191 omap_timer_sync(timer);
192 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
193 omap_timer_update(timer);
194 }
195
omap_timer_clk_setup(struct omap_mpu_timer_s * timer)196 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
197 {
198 omap_clk_adduser(timer->clk,
199 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
200 timer->rate = omap_clk_getrate(timer->clk);
201 }
202
omap_mpu_timer_read(void * opaque,hwaddr addr,unsigned size)203 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
204 unsigned size)
205 {
206 struct omap_mpu_timer_s *s = opaque;
207
208 if (size != 4) {
209 return omap_badwidth_read32(opaque, addr);
210 }
211
212 switch (addr) {
213 case 0x00: /* CNTL_TIMER */
214 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
215
216 case 0x04: /* LOAD_TIM */
217 break;
218
219 case 0x08: /* READ_TIM */
220 return omap_timer_read(s);
221 }
222
223 OMAP_BAD_REG(addr);
224 return 0;
225 }
226
omap_mpu_timer_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)227 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
228 uint64_t value, unsigned size)
229 {
230 struct omap_mpu_timer_s *s = opaque;
231
232 if (size != 4) {
233 omap_badwidth_write32(opaque, addr, value);
234 return;
235 }
236
237 switch (addr) {
238 case 0x00: /* CNTL_TIMER */
239 omap_timer_sync(s);
240 s->enable = (value >> 5) & 1;
241 s->ptv = (value >> 2) & 7;
242 s->ar = (value >> 1) & 1;
243 s->st = value & 1;
244 omap_timer_update(s);
245 return;
246
247 case 0x04: /* LOAD_TIM */
248 s->reset_val = value;
249 return;
250
251 case 0x08: /* READ_TIM */
252 OMAP_RO_REG(addr);
253 break;
254
255 default:
256 OMAP_BAD_REG(addr);
257 }
258 }
259
260 static const MemoryRegionOps omap_mpu_timer_ops = {
261 .read = omap_mpu_timer_read,
262 .write = omap_mpu_timer_write,
263 .endianness = DEVICE_LITTLE_ENDIAN,
264 };
265
omap_mpu_timer_reset(struct omap_mpu_timer_s * s)266 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
267 {
268 timer_del(s->timer);
269 s->enable = 0;
270 s->reset_val = 31337;
271 s->val = 0;
272 s->ptv = 0;
273 s->ar = 0;
274 s->st = 0;
275 s->it_ena = 1;
276 }
277
omap_mpu_timer_init(MemoryRegion * system_memory,hwaddr base,qemu_irq irq,omap_clk clk)278 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
279 hwaddr base,
280 qemu_irq irq, omap_clk clk)
281 {
282 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
283
284 s->irq = irq;
285 s->clk = clk;
286 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
287 s->tick = qemu_bh_new(omap_timer_fire, s);
288 omap_mpu_timer_reset(s);
289 omap_timer_clk_setup(s);
290
291 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
292 "omap-mpu-timer", 0x100);
293
294 memory_region_add_subregion(system_memory, base, &s->iomem);
295
296 return s;
297 }
298
299 /* Watchdog timer */
300 struct omap_watchdog_timer_s {
301 struct omap_mpu_timer_s timer;
302 MemoryRegion iomem;
303 uint8_t last_wr;
304 int mode;
305 int free;
306 int reset;
307 };
308
omap_wd_timer_read(void * opaque,hwaddr addr,unsigned size)309 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
310 unsigned size)
311 {
312 struct omap_watchdog_timer_s *s = opaque;
313
314 if (size != 2) {
315 return omap_badwidth_read16(opaque, addr);
316 }
317
318 switch (addr) {
319 case 0x00: /* CNTL_TIMER */
320 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
321 (s->timer.st << 7) | (s->free << 1);
322
323 case 0x04: /* READ_TIMER */
324 return omap_timer_read(&s->timer);
325
326 case 0x08: /* TIMER_MODE */
327 return s->mode << 15;
328 }
329
330 OMAP_BAD_REG(addr);
331 return 0;
332 }
333
omap_wd_timer_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)334 static void omap_wd_timer_write(void *opaque, hwaddr addr,
335 uint64_t value, unsigned size)
336 {
337 struct omap_watchdog_timer_s *s = opaque;
338
339 if (size != 2) {
340 omap_badwidth_write16(opaque, addr, value);
341 return;
342 }
343
344 switch (addr) {
345 case 0x00: /* CNTL_TIMER */
346 omap_timer_sync(&s->timer);
347 s->timer.ptv = (value >> 9) & 7;
348 s->timer.ar = (value >> 8) & 1;
349 s->timer.st = (value >> 7) & 1;
350 s->free = (value >> 1) & 1;
351 omap_timer_update(&s->timer);
352 break;
353
354 case 0x04: /* LOAD_TIMER */
355 s->timer.reset_val = value & 0xffff;
356 break;
357
358 case 0x08: /* TIMER_MODE */
359 if (!s->mode && ((value >> 15) & 1))
360 omap_clk_get(s->timer.clk);
361 s->mode |= (value >> 15) & 1;
362 if (s->last_wr == 0xf5) {
363 if ((value & 0xff) == 0xa0) {
364 if (s->mode) {
365 s->mode = 0;
366 omap_clk_put(s->timer.clk);
367 }
368 } else {
369 /* XXX: on T|E hardware somehow this has no effect,
370 * on Zire 71 it works as specified. */
371 s->reset = 1;
372 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
373 }
374 }
375 s->last_wr = value & 0xff;
376 break;
377
378 default:
379 OMAP_BAD_REG(addr);
380 }
381 }
382
383 static const MemoryRegionOps omap_wd_timer_ops = {
384 .read = omap_wd_timer_read,
385 .write = omap_wd_timer_write,
386 .endianness = DEVICE_NATIVE_ENDIAN,
387 };
388
omap_wd_timer_reset(struct omap_watchdog_timer_s * s)389 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
390 {
391 timer_del(s->timer.timer);
392 if (!s->mode)
393 omap_clk_get(s->timer.clk);
394 s->mode = 1;
395 s->free = 1;
396 s->reset = 0;
397 s->timer.enable = 1;
398 s->timer.it_ena = 1;
399 s->timer.reset_val = 0xffff;
400 s->timer.val = 0;
401 s->timer.st = 0;
402 s->timer.ptv = 0;
403 s->timer.ar = 0;
404 omap_timer_update(&s->timer);
405 }
406
omap_wd_timer_init(MemoryRegion * memory,hwaddr base,qemu_irq irq,omap_clk clk)407 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
408 hwaddr base,
409 qemu_irq irq, omap_clk clk)
410 {
411 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
412
413 s->timer.irq = irq;
414 s->timer.clk = clk;
415 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
416 omap_wd_timer_reset(s);
417 omap_timer_clk_setup(&s->timer);
418
419 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
420 "omap-wd-timer", 0x100);
421 memory_region_add_subregion(memory, base, &s->iomem);
422
423 return s;
424 }
425
426 /* 32-kHz timer */
427 struct omap_32khz_timer_s {
428 struct omap_mpu_timer_s timer;
429 MemoryRegion iomem;
430 };
431
omap_os_timer_read(void * opaque,hwaddr addr,unsigned size)432 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
433 unsigned size)
434 {
435 struct omap_32khz_timer_s *s = opaque;
436 int offset = addr & OMAP_MPUI_REG_MASK;
437
438 if (size != 4) {
439 return omap_badwidth_read32(opaque, addr);
440 }
441
442 switch (offset) {
443 case 0x00: /* TVR */
444 return s->timer.reset_val;
445
446 case 0x04: /* TCR */
447 return omap_timer_read(&s->timer);
448
449 case 0x08: /* CR */
450 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
451
452 default:
453 break;
454 }
455 OMAP_BAD_REG(addr);
456 return 0;
457 }
458
omap_os_timer_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)459 static void omap_os_timer_write(void *opaque, hwaddr addr,
460 uint64_t value, unsigned size)
461 {
462 struct omap_32khz_timer_s *s = opaque;
463 int offset = addr & OMAP_MPUI_REG_MASK;
464
465 if (size != 4) {
466 omap_badwidth_write32(opaque, addr, value);
467 return;
468 }
469
470 switch (offset) {
471 case 0x00: /* TVR */
472 s->timer.reset_val = value & 0x00ffffff;
473 break;
474
475 case 0x04: /* TCR */
476 OMAP_RO_REG(addr);
477 break;
478
479 case 0x08: /* CR */
480 s->timer.ar = (value >> 3) & 1;
481 s->timer.it_ena = (value >> 2) & 1;
482 if (s->timer.st != (value & 1) || (value & 2)) {
483 omap_timer_sync(&s->timer);
484 s->timer.enable = value & 1;
485 s->timer.st = value & 1;
486 omap_timer_update(&s->timer);
487 }
488 break;
489
490 default:
491 OMAP_BAD_REG(addr);
492 }
493 }
494
495 static const MemoryRegionOps omap_os_timer_ops = {
496 .read = omap_os_timer_read,
497 .write = omap_os_timer_write,
498 .endianness = DEVICE_NATIVE_ENDIAN,
499 };
500
omap_os_timer_reset(struct omap_32khz_timer_s * s)501 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
502 {
503 timer_del(s->timer.timer);
504 s->timer.enable = 0;
505 s->timer.it_ena = 0;
506 s->timer.reset_val = 0x00ffffff;
507 s->timer.val = 0;
508 s->timer.st = 0;
509 s->timer.ptv = 0;
510 s->timer.ar = 1;
511 }
512
omap_os_timer_init(MemoryRegion * memory,hwaddr base,qemu_irq irq,omap_clk clk)513 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
514 hwaddr base,
515 qemu_irq irq, omap_clk clk)
516 {
517 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
518
519 s->timer.irq = irq;
520 s->timer.clk = clk;
521 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
522 omap_os_timer_reset(s);
523 omap_timer_clk_setup(&s->timer);
524
525 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
526 "omap-os-timer", 0x800);
527 memory_region_add_subregion(memory, base, &s->iomem);
528
529 return s;
530 }
531
532 /* Ultra Low-Power Device Module */
omap_ulpd_pm_read(void * opaque,hwaddr addr,unsigned size)533 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
534 unsigned size)
535 {
536 struct omap_mpu_state_s *s = opaque;
537 uint16_t ret;
538
539 if (size != 2) {
540 return omap_badwidth_read16(opaque, addr);
541 }
542
543 switch (addr) {
544 case 0x14: /* IT_STATUS */
545 ret = s->ulpd_pm_regs[addr >> 2];
546 s->ulpd_pm_regs[addr >> 2] = 0;
547 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
548 return ret;
549
550 case 0x18: /* Reserved */
551 case 0x1c: /* Reserved */
552 case 0x20: /* Reserved */
553 case 0x28: /* Reserved */
554 case 0x2c: /* Reserved */
555 OMAP_BAD_REG(addr);
556 /* fall through */
557 case 0x00: /* COUNTER_32_LSB */
558 case 0x04: /* COUNTER_32_MSB */
559 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
560 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
561 case 0x10: /* GAUGING_CTRL */
562 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
563 case 0x30: /* CLOCK_CTRL */
564 case 0x34: /* SOFT_REQ */
565 case 0x38: /* COUNTER_32_FIQ */
566 case 0x3c: /* DPLL_CTRL */
567 case 0x40: /* STATUS_REQ */
568 /* XXX: check clk::usecount state for every clock */
569 case 0x48: /* LOCL_TIME */
570 case 0x4c: /* APLL_CTRL */
571 case 0x50: /* POWER_CTRL */
572 return s->ulpd_pm_regs[addr >> 2];
573 }
574
575 OMAP_BAD_REG(addr);
576 return 0;
577 }
578
omap_ulpd_clk_update(struct omap_mpu_state_s * s,uint16_t diff,uint16_t value)579 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
580 uint16_t diff, uint16_t value)
581 {
582 if (diff & (1 << 4)) /* USB_MCLK_EN */
583 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
584 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
585 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
586 }
587
omap_ulpd_req_update(struct omap_mpu_state_s * s,uint16_t diff,uint16_t value)588 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
589 uint16_t diff, uint16_t value)
590 {
591 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
592 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
593 if (diff & (1 << 1)) /* SOFT_COM_REQ */
594 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
595 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
596 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
597 if (diff & (1 << 3)) /* SOFT_USB_REQ */
598 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
599 }
600
omap_ulpd_pm_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)601 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
602 uint64_t value, unsigned size)
603 {
604 struct omap_mpu_state_s *s = opaque;
605 int64_t now, ticks;
606 int div, mult;
607 static const int bypass_div[4] = { 1, 2, 4, 4 };
608 uint16_t diff;
609
610 if (size != 2) {
611 omap_badwidth_write16(opaque, addr, value);
612 return;
613 }
614
615 switch (addr) {
616 case 0x00: /* COUNTER_32_LSB */
617 case 0x04: /* COUNTER_32_MSB */
618 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
619 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
620 case 0x14: /* IT_STATUS */
621 case 0x40: /* STATUS_REQ */
622 OMAP_RO_REG(addr);
623 break;
624
625 case 0x10: /* GAUGING_CTRL */
626 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
627 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
628 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
629
630 if (value & 1)
631 s->ulpd_gauge_start = now;
632 else {
633 now -= s->ulpd_gauge_start;
634
635 /* 32-kHz ticks */
636 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
637 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
638 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
639 if (ticks >> 32) /* OVERFLOW_32K */
640 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
641
642 /* High frequency ticks */
643 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
644 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
645 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
646 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
647 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
648
649 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
650 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
651 }
652 }
653 s->ulpd_pm_regs[addr >> 2] = value;
654 break;
655
656 case 0x18: /* Reserved */
657 case 0x1c: /* Reserved */
658 case 0x20: /* Reserved */
659 case 0x28: /* Reserved */
660 case 0x2c: /* Reserved */
661 OMAP_BAD_REG(addr);
662 /* fall through */
663 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
664 case 0x38: /* COUNTER_32_FIQ */
665 case 0x48: /* LOCL_TIME */
666 case 0x50: /* POWER_CTRL */
667 s->ulpd_pm_regs[addr >> 2] = value;
668 break;
669
670 case 0x30: /* CLOCK_CTRL */
671 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
672 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
673 omap_ulpd_clk_update(s, diff, value);
674 break;
675
676 case 0x34: /* SOFT_REQ */
677 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
678 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
679 omap_ulpd_req_update(s, diff, value);
680 break;
681
682 case 0x3c: /* DPLL_CTRL */
683 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
684 * omitted altogether, probably a typo. */
685 /* This register has identical semantics with DPLL(1:3) control
686 * registers, see omap_dpll_write() */
687 diff = s->ulpd_pm_regs[addr >> 2] & value;
688 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
689 if (diff & (0x3ff << 2)) {
690 if (value & (1 << 4)) { /* PLL_ENABLE */
691 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
692 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
693 } else {
694 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
695 mult = 1;
696 }
697 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
698 }
699
700 /* Enter the desired mode. */
701 s->ulpd_pm_regs[addr >> 2] =
702 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
703 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
704
705 /* Act as if the lock is restored. */
706 s->ulpd_pm_regs[addr >> 2] |= 2;
707 break;
708
709 case 0x4c: /* APLL_CTRL */
710 diff = s->ulpd_pm_regs[addr >> 2] & value;
711 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
712 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
713 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
714 (value & (1 << 0)) ? "apll" : "dpll4"));
715 break;
716
717 default:
718 OMAP_BAD_REG(addr);
719 }
720 }
721
722 static const MemoryRegionOps omap_ulpd_pm_ops = {
723 .read = omap_ulpd_pm_read,
724 .write = omap_ulpd_pm_write,
725 .endianness = DEVICE_NATIVE_ENDIAN,
726 };
727
omap_ulpd_pm_reset(struct omap_mpu_state_s * mpu)728 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
729 {
730 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
731 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
732 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
733 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
734 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
735 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
736 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
737 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
738 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
739 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
740 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
741 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
742 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
743 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
744 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
745 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
746 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
747 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
748 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
749 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
750 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
751 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
752 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
753 }
754
omap_ulpd_pm_init(MemoryRegion * system_memory,hwaddr base,struct omap_mpu_state_s * mpu)755 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
756 hwaddr base,
757 struct omap_mpu_state_s *mpu)
758 {
759 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
760 "omap-ulpd-pm", 0x800);
761 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
762 omap_ulpd_pm_reset(mpu);
763 }
764
765 /* OMAP Pin Configuration */
omap_pin_cfg_read(void * opaque,hwaddr addr,unsigned size)766 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
767 unsigned size)
768 {
769 struct omap_mpu_state_s *s = opaque;
770
771 if (size != 4) {
772 return omap_badwidth_read32(opaque, addr);
773 }
774
775 switch (addr) {
776 case 0x00: /* FUNC_MUX_CTRL_0 */
777 case 0x04: /* FUNC_MUX_CTRL_1 */
778 case 0x08: /* FUNC_MUX_CTRL_2 */
779 return s->func_mux_ctrl[addr >> 2];
780
781 case 0x0c: /* COMP_MODE_CTRL_0 */
782 return s->comp_mode_ctrl[0];
783
784 case 0x10: /* FUNC_MUX_CTRL_3 */
785 case 0x14: /* FUNC_MUX_CTRL_4 */
786 case 0x18: /* FUNC_MUX_CTRL_5 */
787 case 0x1c: /* FUNC_MUX_CTRL_6 */
788 case 0x20: /* FUNC_MUX_CTRL_7 */
789 case 0x24: /* FUNC_MUX_CTRL_8 */
790 case 0x28: /* FUNC_MUX_CTRL_9 */
791 case 0x2c: /* FUNC_MUX_CTRL_A */
792 case 0x30: /* FUNC_MUX_CTRL_B */
793 case 0x34: /* FUNC_MUX_CTRL_C */
794 case 0x38: /* FUNC_MUX_CTRL_D */
795 return s->func_mux_ctrl[(addr >> 2) - 1];
796
797 case 0x40: /* PULL_DWN_CTRL_0 */
798 case 0x44: /* PULL_DWN_CTRL_1 */
799 case 0x48: /* PULL_DWN_CTRL_2 */
800 case 0x4c: /* PULL_DWN_CTRL_3 */
801 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
802
803 case 0x50: /* GATE_INH_CTRL_0 */
804 return s->gate_inh_ctrl[0];
805
806 case 0x60: /* VOLTAGE_CTRL_0 */
807 return s->voltage_ctrl[0];
808
809 case 0x70: /* TEST_DBG_CTRL_0 */
810 return s->test_dbg_ctrl[0];
811
812 case 0x80: /* MOD_CONF_CTRL_0 */
813 return s->mod_conf_ctrl[0];
814 }
815
816 OMAP_BAD_REG(addr);
817 return 0;
818 }
819
omap_pin_funcmux0_update(struct omap_mpu_state_s * s,uint32_t diff,uint32_t value)820 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
821 uint32_t diff, uint32_t value)
822 {
823 if (s->compat1509) {
824 if (diff & (1 << 9)) /* BLUETOOTH */
825 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
826 (~value >> 9) & 1);
827 if (diff & (1 << 7)) /* USB.CLKO */
828 omap_clk_onoff(omap_findclk(s, "usb.clko"),
829 (value >> 7) & 1);
830 }
831 }
832
omap_pin_funcmux1_update(struct omap_mpu_state_s * s,uint32_t diff,uint32_t value)833 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
834 uint32_t diff, uint32_t value)
835 {
836 if (s->compat1509) {
837 if (diff & (1U << 31)) {
838 /* MCBSP3_CLK_HIZ_DI */
839 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
840 }
841 if (diff & (1 << 1)) {
842 /* CLK32K */
843 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
844 }
845 }
846 }
847
omap_pin_modconf1_update(struct omap_mpu_state_s * s,uint32_t diff,uint32_t value)848 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
849 uint32_t diff, uint32_t value)
850 {
851 if (diff & (1U << 31)) {
852 /* CONF_MOD_UART3_CLK_MODE_R */
853 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
854 omap_findclk(s, ((value >> 31) & 1) ?
855 "ck_48m" : "armper_ck"));
856 }
857 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
858 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
859 omap_findclk(s, ((value >> 30) & 1) ?
860 "ck_48m" : "armper_ck"));
861 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
862 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
863 omap_findclk(s, ((value >> 29) & 1) ?
864 "ck_48m" : "armper_ck"));
865 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
866 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
867 omap_findclk(s, ((value >> 23) & 1) ?
868 "ck_48m" : "armper_ck"));
869 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
870 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
871 omap_findclk(s, ((value >> 12) & 1) ?
872 "ck_48m" : "armper_ck"));
873 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
874 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
875 }
876
omap_pin_cfg_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)877 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
878 uint64_t value, unsigned size)
879 {
880 struct omap_mpu_state_s *s = opaque;
881 uint32_t diff;
882
883 if (size != 4) {
884 omap_badwidth_write32(opaque, addr, value);
885 return;
886 }
887
888 switch (addr) {
889 case 0x00: /* FUNC_MUX_CTRL_0 */
890 diff = s->func_mux_ctrl[addr >> 2] ^ value;
891 s->func_mux_ctrl[addr >> 2] = value;
892 omap_pin_funcmux0_update(s, diff, value);
893 return;
894
895 case 0x04: /* FUNC_MUX_CTRL_1 */
896 diff = s->func_mux_ctrl[addr >> 2] ^ value;
897 s->func_mux_ctrl[addr >> 2] = value;
898 omap_pin_funcmux1_update(s, diff, value);
899 return;
900
901 case 0x08: /* FUNC_MUX_CTRL_2 */
902 s->func_mux_ctrl[addr >> 2] = value;
903 return;
904
905 case 0x0c: /* COMP_MODE_CTRL_0 */
906 s->comp_mode_ctrl[0] = value;
907 s->compat1509 = (value != 0x0000eaef);
908 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
909 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
910 return;
911
912 case 0x10: /* FUNC_MUX_CTRL_3 */
913 case 0x14: /* FUNC_MUX_CTRL_4 */
914 case 0x18: /* FUNC_MUX_CTRL_5 */
915 case 0x1c: /* FUNC_MUX_CTRL_6 */
916 case 0x20: /* FUNC_MUX_CTRL_7 */
917 case 0x24: /* FUNC_MUX_CTRL_8 */
918 case 0x28: /* FUNC_MUX_CTRL_9 */
919 case 0x2c: /* FUNC_MUX_CTRL_A */
920 case 0x30: /* FUNC_MUX_CTRL_B */
921 case 0x34: /* FUNC_MUX_CTRL_C */
922 case 0x38: /* FUNC_MUX_CTRL_D */
923 s->func_mux_ctrl[(addr >> 2) - 1] = value;
924 return;
925
926 case 0x40: /* PULL_DWN_CTRL_0 */
927 case 0x44: /* PULL_DWN_CTRL_1 */
928 case 0x48: /* PULL_DWN_CTRL_2 */
929 case 0x4c: /* PULL_DWN_CTRL_3 */
930 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
931 return;
932
933 case 0x50: /* GATE_INH_CTRL_0 */
934 s->gate_inh_ctrl[0] = value;
935 return;
936
937 case 0x60: /* VOLTAGE_CTRL_0 */
938 s->voltage_ctrl[0] = value;
939 return;
940
941 case 0x70: /* TEST_DBG_CTRL_0 */
942 s->test_dbg_ctrl[0] = value;
943 return;
944
945 case 0x80: /* MOD_CONF_CTRL_0 */
946 diff = s->mod_conf_ctrl[0] ^ value;
947 s->mod_conf_ctrl[0] = value;
948 omap_pin_modconf1_update(s, diff, value);
949 return;
950
951 default:
952 OMAP_BAD_REG(addr);
953 }
954 }
955
956 static const MemoryRegionOps omap_pin_cfg_ops = {
957 .read = omap_pin_cfg_read,
958 .write = omap_pin_cfg_write,
959 .endianness = DEVICE_NATIVE_ENDIAN,
960 };
961
omap_pin_cfg_reset(struct omap_mpu_state_s * mpu)962 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
963 {
964 /* Start in Compatibility Mode. */
965 mpu->compat1509 = 1;
966 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
967 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
968 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
969 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
970 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
971 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
972 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
973 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
974 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
975 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
976 }
977
omap_pin_cfg_init(MemoryRegion * system_memory,hwaddr base,struct omap_mpu_state_s * mpu)978 static void omap_pin_cfg_init(MemoryRegion *system_memory,
979 hwaddr base,
980 struct omap_mpu_state_s *mpu)
981 {
982 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
983 "omap-pin-cfg", 0x800);
984 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
985 omap_pin_cfg_reset(mpu);
986 }
987
988 /* Device Identification, Die Identification */
omap_id_read(void * opaque,hwaddr addr,unsigned size)989 static uint64_t omap_id_read(void *opaque, hwaddr addr,
990 unsigned size)
991 {
992 struct omap_mpu_state_s *s = opaque;
993
994 if (size != 4) {
995 return omap_badwidth_read32(opaque, addr);
996 }
997
998 switch (addr) {
999 case 0xfffe1800: /* DIE_ID_LSB */
1000 return 0xc9581f0e;
1001 case 0xfffe1804: /* DIE_ID_MSB */
1002 return 0xa8858bfa;
1003
1004 case 0xfffe2000: /* PRODUCT_ID_LSB */
1005 return 0x00aaaafc;
1006 case 0xfffe2004: /* PRODUCT_ID_MSB */
1007 return 0xcafeb574;
1008
1009 case 0xfffed400: /* JTAG_ID_LSB */
1010 switch (s->mpu_model) {
1011 case omap310:
1012 return 0x03310315;
1013 case omap1510:
1014 return 0x03310115;
1015 default:
1016 hw_error("%s: bad mpu model\n", __func__);
1017 }
1018 break;
1019
1020 case 0xfffed404: /* JTAG_ID_MSB */
1021 switch (s->mpu_model) {
1022 case omap310:
1023 return 0xfb57402f;
1024 case omap1510:
1025 return 0xfb47002f;
1026 default:
1027 hw_error("%s: bad mpu model\n", __func__);
1028 }
1029 break;
1030 }
1031
1032 OMAP_BAD_REG(addr);
1033 return 0;
1034 }
1035
omap_id_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)1036 static void omap_id_write(void *opaque, hwaddr addr,
1037 uint64_t value, unsigned size)
1038 {
1039 if (size != 4) {
1040 omap_badwidth_write32(opaque, addr, value);
1041 return;
1042 }
1043
1044 OMAP_BAD_REG(addr);
1045 }
1046
1047 static const MemoryRegionOps omap_id_ops = {
1048 .read = omap_id_read,
1049 .write = omap_id_write,
1050 .endianness = DEVICE_NATIVE_ENDIAN,
1051 };
1052
omap_id_init(MemoryRegion * memory,struct omap_mpu_state_s * mpu)1053 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1054 {
1055 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1056 "omap-id", 0x100000000ULL);
1057 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1058 0xfffe1800, 0x800);
1059 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1060 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1061 0xfffed400, 0x100);
1062 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1063 if (!cpu_is_omap15xx(mpu)) {
1064 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1065 &mpu->id_iomem, 0xfffe2000, 0x800);
1066 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1067 }
1068 }
1069
1070 /* MPUI Control (Dummy) */
omap_mpui_read(void * opaque,hwaddr addr,unsigned size)1071 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1072 unsigned size)
1073 {
1074 struct omap_mpu_state_s *s = opaque;
1075
1076 if (size != 4) {
1077 return omap_badwidth_read32(opaque, addr);
1078 }
1079
1080 switch (addr) {
1081 case 0x00: /* CTRL */
1082 return s->mpui_ctrl;
1083 case 0x04: /* DEBUG_ADDR */
1084 return 0x01ffffff;
1085 case 0x08: /* DEBUG_DATA */
1086 return 0xffffffff;
1087 case 0x0c: /* DEBUG_FLAG */
1088 return 0x00000800;
1089 case 0x10: /* STATUS */
1090 return 0x00000000;
1091
1092 /* Not in OMAP310 */
1093 case 0x14: /* DSP_STATUS */
1094 case 0x18: /* DSP_BOOT_CONFIG */
1095 return 0x00000000;
1096 case 0x1c: /* DSP_MPUI_CONFIG */
1097 return 0x0000ffff;
1098 }
1099
1100 OMAP_BAD_REG(addr);
1101 return 0;
1102 }
1103
omap_mpui_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)1104 static void omap_mpui_write(void *opaque, hwaddr addr,
1105 uint64_t value, unsigned size)
1106 {
1107 struct omap_mpu_state_s *s = opaque;
1108
1109 if (size != 4) {
1110 omap_badwidth_write32(opaque, addr, value);
1111 return;
1112 }
1113
1114 switch (addr) {
1115 case 0x00: /* CTRL */
1116 s->mpui_ctrl = value & 0x007fffff;
1117 break;
1118
1119 case 0x04: /* DEBUG_ADDR */
1120 case 0x08: /* DEBUG_DATA */
1121 case 0x0c: /* DEBUG_FLAG */
1122 case 0x10: /* STATUS */
1123 /* Not in OMAP310 */
1124 case 0x14: /* DSP_STATUS */
1125 OMAP_RO_REG(addr);
1126 break;
1127 case 0x18: /* DSP_BOOT_CONFIG */
1128 case 0x1c: /* DSP_MPUI_CONFIG */
1129 break;
1130
1131 default:
1132 OMAP_BAD_REG(addr);
1133 }
1134 }
1135
1136 static const MemoryRegionOps omap_mpui_ops = {
1137 .read = omap_mpui_read,
1138 .write = omap_mpui_write,
1139 .endianness = DEVICE_NATIVE_ENDIAN,
1140 };
1141
omap_mpui_reset(struct omap_mpu_state_s * s)1142 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1143 {
1144 s->mpui_ctrl = 0x0003ff1b;
1145 }
1146
omap_mpui_init(MemoryRegion * memory,hwaddr base,struct omap_mpu_state_s * mpu)1147 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1148 struct omap_mpu_state_s *mpu)
1149 {
1150 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1151 "omap-mpui", 0x100);
1152 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1153
1154 omap_mpui_reset(mpu);
1155 }
1156
1157 /* TIPB Bridges */
1158 struct omap_tipb_bridge_s {
1159 qemu_irq abort;
1160 MemoryRegion iomem;
1161
1162 int width_intr;
1163 uint16_t control;
1164 uint16_t alloc;
1165 uint16_t buffer;
1166 uint16_t enh_control;
1167 };
1168
omap_tipb_bridge_read(void * opaque,hwaddr addr,unsigned size)1169 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1170 unsigned size)
1171 {
1172 struct omap_tipb_bridge_s *s = opaque;
1173
1174 if (size < 2) {
1175 return omap_badwidth_read16(opaque, addr);
1176 }
1177
1178 switch (addr) {
1179 case 0x00: /* TIPB_CNTL */
1180 return s->control;
1181 case 0x04: /* TIPB_BUS_ALLOC */
1182 return s->alloc;
1183 case 0x08: /* MPU_TIPB_CNTL */
1184 return s->buffer;
1185 case 0x0c: /* ENHANCED_TIPB_CNTL */
1186 return s->enh_control;
1187 case 0x10: /* ADDRESS_DBG */
1188 case 0x14: /* DATA_DEBUG_LOW */
1189 case 0x18: /* DATA_DEBUG_HIGH */
1190 return 0xffff;
1191 case 0x1c: /* DEBUG_CNTR_SIG */
1192 return 0x00f8;
1193 }
1194
1195 OMAP_BAD_REG(addr);
1196 return 0;
1197 }
1198
omap_tipb_bridge_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)1199 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1200 uint64_t value, unsigned size)
1201 {
1202 struct omap_tipb_bridge_s *s = opaque;
1203
1204 if (size < 2) {
1205 omap_badwidth_write16(opaque, addr, value);
1206 return;
1207 }
1208
1209 switch (addr) {
1210 case 0x00: /* TIPB_CNTL */
1211 s->control = value & 0xffff;
1212 break;
1213
1214 case 0x04: /* TIPB_BUS_ALLOC */
1215 s->alloc = value & 0x003f;
1216 break;
1217
1218 case 0x08: /* MPU_TIPB_CNTL */
1219 s->buffer = value & 0x0003;
1220 break;
1221
1222 case 0x0c: /* ENHANCED_TIPB_CNTL */
1223 s->width_intr = !(value & 2);
1224 s->enh_control = value & 0x000f;
1225 break;
1226
1227 case 0x10: /* ADDRESS_DBG */
1228 case 0x14: /* DATA_DEBUG_LOW */
1229 case 0x18: /* DATA_DEBUG_HIGH */
1230 case 0x1c: /* DEBUG_CNTR_SIG */
1231 OMAP_RO_REG(addr);
1232 break;
1233
1234 default:
1235 OMAP_BAD_REG(addr);
1236 }
1237 }
1238
1239 static const MemoryRegionOps omap_tipb_bridge_ops = {
1240 .read = omap_tipb_bridge_read,
1241 .write = omap_tipb_bridge_write,
1242 .endianness = DEVICE_NATIVE_ENDIAN,
1243 };
1244
omap_tipb_bridge_reset(struct omap_tipb_bridge_s * s)1245 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1246 {
1247 s->control = 0xffff;
1248 s->alloc = 0x0009;
1249 s->buffer = 0x0000;
1250 s->enh_control = 0x000f;
1251 }
1252
omap_tipb_bridge_init(MemoryRegion * memory,hwaddr base,qemu_irq abort_irq,omap_clk clk)1253 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1254 MemoryRegion *memory, hwaddr base,
1255 qemu_irq abort_irq, omap_clk clk)
1256 {
1257 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1258
1259 s->abort = abort_irq;
1260 omap_tipb_bridge_reset(s);
1261
1262 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1263 "omap-tipb-bridge", 0x100);
1264 memory_region_add_subregion(memory, base, &s->iomem);
1265
1266 return s;
1267 }
1268
1269 /* Dummy Traffic Controller's Memory Interface */
omap_tcmi_read(void * opaque,hwaddr addr,unsigned size)1270 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1271 unsigned size)
1272 {
1273 struct omap_mpu_state_s *s = opaque;
1274 uint32_t ret;
1275
1276 if (size != 4) {
1277 return omap_badwidth_read32(opaque, addr);
1278 }
1279
1280 switch (addr) {
1281 case 0x00: /* IMIF_PRIO */
1282 case 0x04: /* EMIFS_PRIO */
1283 case 0x08: /* EMIFF_PRIO */
1284 case 0x0c: /* EMIFS_CONFIG */
1285 case 0x10: /* EMIFS_CS0_CONFIG */
1286 case 0x14: /* EMIFS_CS1_CONFIG */
1287 case 0x18: /* EMIFS_CS2_CONFIG */
1288 case 0x1c: /* EMIFS_CS3_CONFIG */
1289 case 0x24: /* EMIFF_MRS */
1290 case 0x28: /* TIMEOUT1 */
1291 case 0x2c: /* TIMEOUT2 */
1292 case 0x30: /* TIMEOUT3 */
1293 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1294 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1295 return s->tcmi_regs[addr >> 2];
1296
1297 case 0x20: /* EMIFF_SDRAM_CONFIG */
1298 ret = s->tcmi_regs[addr >> 2];
1299 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1300 /* XXX: We can try using the VGA_DIRTY flag for this */
1301 return ret;
1302 }
1303
1304 OMAP_BAD_REG(addr);
1305 return 0;
1306 }
1307
omap_tcmi_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)1308 static void omap_tcmi_write(void *opaque, hwaddr addr,
1309 uint64_t value, unsigned size)
1310 {
1311 struct omap_mpu_state_s *s = opaque;
1312
1313 if (size != 4) {
1314 omap_badwidth_write32(opaque, addr, value);
1315 return;
1316 }
1317
1318 switch (addr) {
1319 case 0x00: /* IMIF_PRIO */
1320 case 0x04: /* EMIFS_PRIO */
1321 case 0x08: /* EMIFF_PRIO */
1322 case 0x10: /* EMIFS_CS0_CONFIG */
1323 case 0x14: /* EMIFS_CS1_CONFIG */
1324 case 0x18: /* EMIFS_CS2_CONFIG */
1325 case 0x1c: /* EMIFS_CS3_CONFIG */
1326 case 0x20: /* EMIFF_SDRAM_CONFIG */
1327 case 0x24: /* EMIFF_MRS */
1328 case 0x28: /* TIMEOUT1 */
1329 case 0x2c: /* TIMEOUT2 */
1330 case 0x30: /* TIMEOUT3 */
1331 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1332 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1333 s->tcmi_regs[addr >> 2] = value;
1334 break;
1335 case 0x0c: /* EMIFS_CONFIG */
1336 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1337 break;
1338
1339 default:
1340 OMAP_BAD_REG(addr);
1341 }
1342 }
1343
1344 static const MemoryRegionOps omap_tcmi_ops = {
1345 .read = omap_tcmi_read,
1346 .write = omap_tcmi_write,
1347 .endianness = DEVICE_NATIVE_ENDIAN,
1348 };
1349
omap_tcmi_reset(struct omap_mpu_state_s * mpu)1350 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1351 {
1352 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1353 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1354 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1355 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1356 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1357 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1358 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1359 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1360 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1361 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1362 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1363 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1364 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1365 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1366 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1367 }
1368
omap_tcmi_init(MemoryRegion * memory,hwaddr base,struct omap_mpu_state_s * mpu)1369 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1370 struct omap_mpu_state_s *mpu)
1371 {
1372 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1373 "omap-tcmi", 0x100);
1374 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1375 omap_tcmi_reset(mpu);
1376 }
1377
1378 /* Digital phase-locked loops control */
1379 struct dpll_ctl_s {
1380 MemoryRegion iomem;
1381 uint16_t mode;
1382 omap_clk dpll;
1383 };
1384
omap_dpll_read(void * opaque,hwaddr addr,unsigned size)1385 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1386 unsigned size)
1387 {
1388 struct dpll_ctl_s *s = opaque;
1389
1390 if (size != 2) {
1391 return omap_badwidth_read16(opaque, addr);
1392 }
1393
1394 if (addr == 0x00) /* CTL_REG */
1395 return s->mode;
1396
1397 OMAP_BAD_REG(addr);
1398 return 0;
1399 }
1400
omap_dpll_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)1401 static void omap_dpll_write(void *opaque, hwaddr addr,
1402 uint64_t value, unsigned size)
1403 {
1404 struct dpll_ctl_s *s = opaque;
1405 uint16_t diff;
1406 static const int bypass_div[4] = { 1, 2, 4, 4 };
1407 int div, mult;
1408
1409 if (size != 2) {
1410 omap_badwidth_write16(opaque, addr, value);
1411 return;
1412 }
1413
1414 if (addr == 0x00) { /* CTL_REG */
1415 /* See omap_ulpd_pm_write() too */
1416 diff = s->mode & value;
1417 s->mode = value & 0x2fff;
1418 if (diff & (0x3ff << 2)) {
1419 if (value & (1 << 4)) { /* PLL_ENABLE */
1420 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1421 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1422 } else {
1423 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1424 mult = 1;
1425 }
1426 omap_clk_setrate(s->dpll, div, mult);
1427 }
1428
1429 /* Enter the desired mode. */
1430 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1431
1432 /* Act as if the lock is restored. */
1433 s->mode |= 2;
1434 } else {
1435 OMAP_BAD_REG(addr);
1436 }
1437 }
1438
1439 static const MemoryRegionOps omap_dpll_ops = {
1440 .read = omap_dpll_read,
1441 .write = omap_dpll_write,
1442 .endianness = DEVICE_NATIVE_ENDIAN,
1443 };
1444
omap_dpll_reset(struct dpll_ctl_s * s)1445 static void omap_dpll_reset(struct dpll_ctl_s *s)
1446 {
1447 s->mode = 0x2002;
1448 omap_clk_setrate(s->dpll, 1, 1);
1449 }
1450
omap_dpll_init(MemoryRegion * memory,hwaddr base,omap_clk clk)1451 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1452 hwaddr base, omap_clk clk)
1453 {
1454 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1455 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1456
1457 s->dpll = clk;
1458 omap_dpll_reset(s);
1459
1460 memory_region_add_subregion(memory, base, &s->iomem);
1461 return s;
1462 }
1463
1464 /* MPU Clock/Reset/Power Mode Control */
omap_clkm_read(void * opaque,hwaddr addr,unsigned size)1465 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1466 unsigned size)
1467 {
1468 struct omap_mpu_state_s *s = opaque;
1469
1470 if (size != 2) {
1471 return omap_badwidth_read16(opaque, addr);
1472 }
1473
1474 switch (addr) {
1475 case 0x00: /* ARM_CKCTL */
1476 return s->clkm.arm_ckctl;
1477
1478 case 0x04: /* ARM_IDLECT1 */
1479 return s->clkm.arm_idlect1;
1480
1481 case 0x08: /* ARM_IDLECT2 */
1482 return s->clkm.arm_idlect2;
1483
1484 case 0x0c: /* ARM_EWUPCT */
1485 return s->clkm.arm_ewupct;
1486
1487 case 0x10: /* ARM_RSTCT1 */
1488 return s->clkm.arm_rstct1;
1489
1490 case 0x14: /* ARM_RSTCT2 */
1491 return s->clkm.arm_rstct2;
1492
1493 case 0x18: /* ARM_SYSST */
1494 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1495
1496 case 0x1c: /* ARM_CKOUT1 */
1497 return s->clkm.arm_ckout1;
1498
1499 case 0x20: /* ARM_CKOUT2 */
1500 break;
1501 }
1502
1503 OMAP_BAD_REG(addr);
1504 return 0;
1505 }
1506
omap_clkm_ckctl_update(struct omap_mpu_state_s * s,uint16_t diff,uint16_t value)1507 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1508 uint16_t diff, uint16_t value)
1509 {
1510 omap_clk clk;
1511
1512 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1513 if (value & (1 << 14))
1514 /* Reserved */;
1515 else {
1516 clk = omap_findclk(s, "arminth_ck");
1517 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1518 }
1519 }
1520 if (diff & (1 << 12)) { /* ARM_TIMXO */
1521 clk = omap_findclk(s, "armtim_ck");
1522 if (value & (1 << 12))
1523 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1524 else
1525 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1526 }
1527 /* XXX: en_dspck */
1528 if (diff & (3 << 10)) { /* DSPMMUDIV */
1529 clk = omap_findclk(s, "dspmmu_ck");
1530 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1531 }
1532 if (diff & (3 << 8)) { /* TCDIV */
1533 clk = omap_findclk(s, "tc_ck");
1534 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1535 }
1536 if (diff & (3 << 6)) { /* DSPDIV */
1537 clk = omap_findclk(s, "dsp_ck");
1538 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1539 }
1540 if (diff & (3 << 4)) { /* ARMDIV */
1541 clk = omap_findclk(s, "arm_ck");
1542 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1543 }
1544 if (diff & (3 << 2)) { /* LCDDIV */
1545 clk = omap_findclk(s, "lcd_ck");
1546 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1547 }
1548 if (diff & (3 << 0)) { /* PERDIV */
1549 clk = omap_findclk(s, "armper_ck");
1550 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1551 }
1552 }
1553
omap_clkm_idlect1_update(struct omap_mpu_state_s * s,uint16_t diff,uint16_t value)1554 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1555 uint16_t diff, uint16_t value)
1556 {
1557 omap_clk clk;
1558
1559 if (value & (1 << 11)) { /* SETARM_IDLE */
1560 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1561 }
1562 if (!(value & (1 << 10))) { /* WKUP_MODE */
1563 /* XXX: disable wakeup from IRQ */
1564 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1565 }
1566
1567 #define SET_CANIDLE(clock, bit) \
1568 if (diff & (1 << bit)) { \
1569 clk = omap_findclk(s, clock); \
1570 omap_clk_canidle(clk, (value >> bit) & 1); \
1571 }
1572 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1573 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1574 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1575 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1576 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1577 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1578 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1579 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1580 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1581 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1582 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1583 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1584 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1585 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1586 }
1587
omap_clkm_idlect2_update(struct omap_mpu_state_s * s,uint16_t diff,uint16_t value)1588 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1589 uint16_t diff, uint16_t value)
1590 {
1591 omap_clk clk;
1592
1593 #define SET_ONOFF(clock, bit) \
1594 if (diff & (1 << bit)) { \
1595 clk = omap_findclk(s, clock); \
1596 omap_clk_onoff(clk, (value >> bit) & 1); \
1597 }
1598 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1599 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1600 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1601 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1602 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1603 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1604 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1605 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1606 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1607 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1608 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1609 }
1610
omap_clkm_ckout1_update(struct omap_mpu_state_s * s,uint16_t diff,uint16_t value)1611 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1612 uint16_t diff, uint16_t value)
1613 {
1614 omap_clk clk;
1615
1616 if (diff & (3 << 4)) { /* TCLKOUT */
1617 clk = omap_findclk(s, "tclk_out");
1618 switch ((value >> 4) & 3) {
1619 case 1:
1620 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1621 omap_clk_onoff(clk, 1);
1622 break;
1623 case 2:
1624 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1625 omap_clk_onoff(clk, 1);
1626 break;
1627 default:
1628 omap_clk_onoff(clk, 0);
1629 }
1630 }
1631 if (diff & (3 << 2)) { /* DCLKOUT */
1632 clk = omap_findclk(s, "dclk_out");
1633 switch ((value >> 2) & 3) {
1634 case 0:
1635 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1636 break;
1637 case 1:
1638 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1639 break;
1640 case 2:
1641 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1642 break;
1643 case 3:
1644 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1645 break;
1646 }
1647 }
1648 if (diff & (3 << 0)) { /* ACLKOUT */
1649 clk = omap_findclk(s, "aclk_out");
1650 switch ((value >> 0) & 3) {
1651 case 1:
1652 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1653 omap_clk_onoff(clk, 1);
1654 break;
1655 case 2:
1656 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1657 omap_clk_onoff(clk, 1);
1658 break;
1659 case 3:
1660 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1661 omap_clk_onoff(clk, 1);
1662 break;
1663 default:
1664 omap_clk_onoff(clk, 0);
1665 }
1666 }
1667 }
1668
omap_clkm_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)1669 static void omap_clkm_write(void *opaque, hwaddr addr,
1670 uint64_t value, unsigned size)
1671 {
1672 struct omap_mpu_state_s *s = opaque;
1673 uint16_t diff;
1674 omap_clk clk;
1675 static const char *clkschemename[8] = {
1676 "fully synchronous", "fully asynchronous", "synchronous scalable",
1677 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1678 };
1679
1680 if (size != 2) {
1681 omap_badwidth_write16(opaque, addr, value);
1682 return;
1683 }
1684
1685 switch (addr) {
1686 case 0x00: /* ARM_CKCTL */
1687 diff = s->clkm.arm_ckctl ^ value;
1688 s->clkm.arm_ckctl = value & 0x7fff;
1689 omap_clkm_ckctl_update(s, diff, value);
1690 return;
1691
1692 case 0x04: /* ARM_IDLECT1 */
1693 diff = s->clkm.arm_idlect1 ^ value;
1694 s->clkm.arm_idlect1 = value & 0x0fff;
1695 omap_clkm_idlect1_update(s, diff, value);
1696 return;
1697
1698 case 0x08: /* ARM_IDLECT2 */
1699 diff = s->clkm.arm_idlect2 ^ value;
1700 s->clkm.arm_idlect2 = value & 0x07ff;
1701 omap_clkm_idlect2_update(s, diff, value);
1702 return;
1703
1704 case 0x0c: /* ARM_EWUPCT */
1705 s->clkm.arm_ewupct = value & 0x003f;
1706 return;
1707
1708 case 0x10: /* ARM_RSTCT1 */
1709 diff = s->clkm.arm_rstct1 ^ value;
1710 s->clkm.arm_rstct1 = value & 0x0007;
1711 if (value & 9) {
1712 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1713 s->clkm.cold_start = 0xa;
1714 }
1715 if (diff & ~value & 4) { /* DSP_RST */
1716 omap_mpui_reset(s);
1717 omap_tipb_bridge_reset(s->private_tipb);
1718 omap_tipb_bridge_reset(s->public_tipb);
1719 }
1720 if (diff & 2) { /* DSP_EN */
1721 clk = omap_findclk(s, "dsp_ck");
1722 omap_clk_canidle(clk, (~value >> 1) & 1);
1723 }
1724 return;
1725
1726 case 0x14: /* ARM_RSTCT2 */
1727 s->clkm.arm_rstct2 = value & 0x0001;
1728 return;
1729
1730 case 0x18: /* ARM_SYSST */
1731 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1732 s->clkm.clocking_scheme = (value >> 11) & 7;
1733 printf("%s: clocking scheme set to %s\n", __func__,
1734 clkschemename[s->clkm.clocking_scheme]);
1735 }
1736 s->clkm.cold_start &= value & 0x3f;
1737 return;
1738
1739 case 0x1c: /* ARM_CKOUT1 */
1740 diff = s->clkm.arm_ckout1 ^ value;
1741 s->clkm.arm_ckout1 = value & 0x003f;
1742 omap_clkm_ckout1_update(s, diff, value);
1743 return;
1744
1745 case 0x20: /* ARM_CKOUT2 */
1746 default:
1747 OMAP_BAD_REG(addr);
1748 }
1749 }
1750
1751 static const MemoryRegionOps omap_clkm_ops = {
1752 .read = omap_clkm_read,
1753 .write = omap_clkm_write,
1754 .endianness = DEVICE_NATIVE_ENDIAN,
1755 };
1756
omap_clkdsp_read(void * opaque,hwaddr addr,unsigned size)1757 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1758 unsigned size)
1759 {
1760 struct omap_mpu_state_s *s = opaque;
1761 CPUState *cpu = CPU(s->cpu);
1762
1763 if (size != 2) {
1764 return omap_badwidth_read16(opaque, addr);
1765 }
1766
1767 switch (addr) {
1768 case 0x04: /* DSP_IDLECT1 */
1769 return s->clkm.dsp_idlect1;
1770
1771 case 0x08: /* DSP_IDLECT2 */
1772 return s->clkm.dsp_idlect2;
1773
1774 case 0x14: /* DSP_RSTCT2 */
1775 return s->clkm.dsp_rstct2;
1776
1777 case 0x18: /* DSP_SYSST */
1778 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1779 (cpu->halted << 6); /* Quite useless... */
1780 }
1781
1782 OMAP_BAD_REG(addr);
1783 return 0;
1784 }
1785
omap_clkdsp_idlect1_update(struct omap_mpu_state_s * s,uint16_t diff,uint16_t value)1786 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1787 uint16_t diff, uint16_t value)
1788 {
1789 omap_clk clk;
1790
1791 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1792 }
1793
omap_clkdsp_idlect2_update(struct omap_mpu_state_s * s,uint16_t diff,uint16_t value)1794 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1795 uint16_t diff, uint16_t value)
1796 {
1797 omap_clk clk;
1798
1799 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1800 }
1801
omap_clkdsp_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)1802 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1803 uint64_t value, unsigned size)
1804 {
1805 struct omap_mpu_state_s *s = opaque;
1806 uint16_t diff;
1807
1808 if (size != 2) {
1809 omap_badwidth_write16(opaque, addr, value);
1810 return;
1811 }
1812
1813 switch (addr) {
1814 case 0x04: /* DSP_IDLECT1 */
1815 diff = s->clkm.dsp_idlect1 ^ value;
1816 s->clkm.dsp_idlect1 = value & 0x01f7;
1817 omap_clkdsp_idlect1_update(s, diff, value);
1818 break;
1819
1820 case 0x08: /* DSP_IDLECT2 */
1821 s->clkm.dsp_idlect2 = value & 0x0037;
1822 diff = s->clkm.dsp_idlect1 ^ value;
1823 omap_clkdsp_idlect2_update(s, diff, value);
1824 break;
1825
1826 case 0x14: /* DSP_RSTCT2 */
1827 s->clkm.dsp_rstct2 = value & 0x0001;
1828 break;
1829
1830 case 0x18: /* DSP_SYSST */
1831 s->clkm.cold_start &= value & 0x3f;
1832 break;
1833
1834 default:
1835 OMAP_BAD_REG(addr);
1836 }
1837 }
1838
1839 static const MemoryRegionOps omap_clkdsp_ops = {
1840 .read = omap_clkdsp_read,
1841 .write = omap_clkdsp_write,
1842 .endianness = DEVICE_NATIVE_ENDIAN,
1843 };
1844
omap_clkm_reset(struct omap_mpu_state_s * s)1845 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1846 {
1847 if (s->wdt && s->wdt->reset)
1848 s->clkm.cold_start = 0x6;
1849 s->clkm.clocking_scheme = 0;
1850 omap_clkm_ckctl_update(s, ~0, 0x3000);
1851 s->clkm.arm_ckctl = 0x3000;
1852 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1853 s->clkm.arm_idlect1 = 0x0400;
1854 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1855 s->clkm.arm_idlect2 = 0x0100;
1856 s->clkm.arm_ewupct = 0x003f;
1857 s->clkm.arm_rstct1 = 0x0000;
1858 s->clkm.arm_rstct2 = 0x0000;
1859 s->clkm.arm_ckout1 = 0x0015;
1860 s->clkm.dpll1_mode = 0x2002;
1861 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1862 s->clkm.dsp_idlect1 = 0x0040;
1863 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1864 s->clkm.dsp_idlect2 = 0x0000;
1865 s->clkm.dsp_rstct2 = 0x0000;
1866 }
1867
omap_clkm_init(MemoryRegion * memory,hwaddr mpu_base,hwaddr dsp_base,struct omap_mpu_state_s * s)1868 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1869 hwaddr dsp_base, struct omap_mpu_state_s *s)
1870 {
1871 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1872 "omap-clkm", 0x100);
1873 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1874 "omap-clkdsp", 0x1000);
1875
1876 s->clkm.arm_idlect1 = 0x03ff;
1877 s->clkm.arm_idlect2 = 0x0100;
1878 s->clkm.dsp_idlect1 = 0x0002;
1879 omap_clkm_reset(s);
1880 s->clkm.cold_start = 0x3a;
1881
1882 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1883 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1884 }
1885
1886 /* MPU I/O */
1887 struct omap_mpuio_s {
1888 qemu_irq irq;
1889 qemu_irq kbd_irq;
1890 qemu_irq *in;
1891 qemu_irq handler[16];
1892 qemu_irq wakeup;
1893 MemoryRegion iomem;
1894
1895 uint16_t inputs;
1896 uint16_t outputs;
1897 uint16_t dir;
1898 uint16_t edge;
1899 uint16_t mask;
1900 uint16_t ints;
1901
1902 uint16_t debounce;
1903 uint16_t latch;
1904 uint8_t event;
1905
1906 uint8_t buttons[5];
1907 uint8_t row_latch;
1908 uint8_t cols;
1909 int kbd_mask;
1910 int clk;
1911 };
1912
omap_mpuio_set(void * opaque,int line,int level)1913 static void omap_mpuio_set(void *opaque, int line, int level)
1914 {
1915 struct omap_mpuio_s *s = opaque;
1916 uint16_t prev = s->inputs;
1917
1918 if (level)
1919 s->inputs |= 1 << line;
1920 else
1921 s->inputs &= ~(1 << line);
1922
1923 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1924 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1925 s->ints |= 1 << line;
1926 qemu_irq_raise(s->irq);
1927 /* TODO: wakeup */
1928 }
1929 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1930 (s->event >> 1) == line) /* PIN_SELECT */
1931 s->latch = s->inputs;
1932 }
1933 }
1934
omap_mpuio_kbd_update(struct omap_mpuio_s * s)1935 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1936 {
1937 int i;
1938 uint8_t *row, rows = 0, cols = ~s->cols;
1939
1940 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1941 if (*row & cols)
1942 rows |= i;
1943
1944 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1945 s->row_latch = ~rows;
1946 }
1947
omap_mpuio_read(void * opaque,hwaddr addr,unsigned size)1948 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1949 unsigned size)
1950 {
1951 struct omap_mpuio_s *s = opaque;
1952 int offset = addr & OMAP_MPUI_REG_MASK;
1953 uint16_t ret;
1954
1955 if (size != 2) {
1956 return omap_badwidth_read16(opaque, addr);
1957 }
1958
1959 switch (offset) {
1960 case 0x00: /* INPUT_LATCH */
1961 return s->inputs;
1962
1963 case 0x04: /* OUTPUT_REG */
1964 return s->outputs;
1965
1966 case 0x08: /* IO_CNTL */
1967 return s->dir;
1968
1969 case 0x10: /* KBR_LATCH */
1970 return s->row_latch;
1971
1972 case 0x14: /* KBC_REG */
1973 return s->cols;
1974
1975 case 0x18: /* GPIO_EVENT_MODE_REG */
1976 return s->event;
1977
1978 case 0x1c: /* GPIO_INT_EDGE_REG */
1979 return s->edge;
1980
1981 case 0x20: /* KBD_INT */
1982 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1983
1984 case 0x24: /* GPIO_INT */
1985 ret = s->ints;
1986 s->ints &= s->mask;
1987 if (ret)
1988 qemu_irq_lower(s->irq);
1989 return ret;
1990
1991 case 0x28: /* KBD_MASKIT */
1992 return s->kbd_mask;
1993
1994 case 0x2c: /* GPIO_MASKIT */
1995 return s->mask;
1996
1997 case 0x30: /* GPIO_DEBOUNCING_REG */
1998 return s->debounce;
1999
2000 case 0x34: /* GPIO_LATCH_REG */
2001 return s->latch;
2002 }
2003
2004 OMAP_BAD_REG(addr);
2005 return 0;
2006 }
2007
omap_mpuio_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)2008 static void omap_mpuio_write(void *opaque, hwaddr addr,
2009 uint64_t value, unsigned size)
2010 {
2011 struct omap_mpuio_s *s = opaque;
2012 int offset = addr & OMAP_MPUI_REG_MASK;
2013 uint16_t diff;
2014 int ln;
2015
2016 if (size != 2) {
2017 omap_badwidth_write16(opaque, addr, value);
2018 return;
2019 }
2020
2021 switch (offset) {
2022 case 0x04: /* OUTPUT_REG */
2023 diff = (s->outputs ^ value) & ~s->dir;
2024 s->outputs = value;
2025 while ((ln = ctz32(diff)) != 32) {
2026 if (s->handler[ln])
2027 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2028 diff &= ~(1 << ln);
2029 }
2030 break;
2031
2032 case 0x08: /* IO_CNTL */
2033 diff = s->outputs & (s->dir ^ value);
2034 s->dir = value;
2035
2036 value = s->outputs & ~s->dir;
2037 while ((ln = ctz32(diff)) != 32) {
2038 if (s->handler[ln])
2039 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2040 diff &= ~(1 << ln);
2041 }
2042 break;
2043
2044 case 0x14: /* KBC_REG */
2045 s->cols = value;
2046 omap_mpuio_kbd_update(s);
2047 break;
2048
2049 case 0x18: /* GPIO_EVENT_MODE_REG */
2050 s->event = value & 0x1f;
2051 break;
2052
2053 case 0x1c: /* GPIO_INT_EDGE_REG */
2054 s->edge = value;
2055 break;
2056
2057 case 0x28: /* KBD_MASKIT */
2058 s->kbd_mask = value & 1;
2059 omap_mpuio_kbd_update(s);
2060 break;
2061
2062 case 0x2c: /* GPIO_MASKIT */
2063 s->mask = value;
2064 break;
2065
2066 case 0x30: /* GPIO_DEBOUNCING_REG */
2067 s->debounce = value & 0x1ff;
2068 break;
2069
2070 case 0x00: /* INPUT_LATCH */
2071 case 0x10: /* KBR_LATCH */
2072 case 0x20: /* KBD_INT */
2073 case 0x24: /* GPIO_INT */
2074 case 0x34: /* GPIO_LATCH_REG */
2075 OMAP_RO_REG(addr);
2076 return;
2077
2078 default:
2079 OMAP_BAD_REG(addr);
2080 return;
2081 }
2082 }
2083
2084 static const MemoryRegionOps omap_mpuio_ops = {
2085 .read = omap_mpuio_read,
2086 .write = omap_mpuio_write,
2087 .endianness = DEVICE_NATIVE_ENDIAN,
2088 };
2089
omap_mpuio_reset(struct omap_mpuio_s * s)2090 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2091 {
2092 s->inputs = 0;
2093 s->outputs = 0;
2094 s->dir = ~0;
2095 s->event = 0;
2096 s->edge = 0;
2097 s->kbd_mask = 0;
2098 s->mask = 0;
2099 s->debounce = 0;
2100 s->latch = 0;
2101 s->ints = 0;
2102 s->row_latch = 0x1f;
2103 s->clk = 1;
2104 }
2105
omap_mpuio_onoff(void * opaque,int line,int on)2106 static void omap_mpuio_onoff(void *opaque, int line, int on)
2107 {
2108 struct omap_mpuio_s *s = opaque;
2109
2110 s->clk = on;
2111 if (on)
2112 omap_mpuio_kbd_update(s);
2113 }
2114
omap_mpuio_init(MemoryRegion * memory,hwaddr base,qemu_irq kbd_int,qemu_irq gpio_int,qemu_irq wakeup,omap_clk clk)2115 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2116 hwaddr base,
2117 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2118 omap_clk clk)
2119 {
2120 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2121
2122 s->irq = gpio_int;
2123 s->kbd_irq = kbd_int;
2124 s->wakeup = wakeup;
2125 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2126 omap_mpuio_reset(s);
2127
2128 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2129 "omap-mpuio", 0x800);
2130 memory_region_add_subregion(memory, base, &s->iomem);
2131
2132 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2133
2134 return s;
2135 }
2136
omap_mpuio_in_get(struct omap_mpuio_s * s)2137 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2138 {
2139 return s->in;
2140 }
2141
omap_mpuio_out_set(struct omap_mpuio_s * s,int line,qemu_irq handler)2142 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2143 {
2144 if (line >= 16 || line < 0)
2145 hw_error("%s: No GPIO line %i\n", __func__, line);
2146 s->handler[line] = handler;
2147 }
2148
omap_mpuio_key(struct omap_mpuio_s * s,int row,int col,int down)2149 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2150 {
2151 if (row >= 5 || row < 0)
2152 hw_error("%s: No key %i-%i\n", __func__, col, row);
2153
2154 if (down)
2155 s->buttons[row] |= 1 << col;
2156 else
2157 s->buttons[row] &= ~(1 << col);
2158
2159 omap_mpuio_kbd_update(s);
2160 }
2161
2162 /* MicroWire Interface */
2163 struct omap_uwire_s {
2164 MemoryRegion iomem;
2165 qemu_irq txirq;
2166 qemu_irq rxirq;
2167 qemu_irq txdrq;
2168
2169 uint16_t txbuf;
2170 uint16_t rxbuf;
2171 uint16_t control;
2172 uint16_t setup[5];
2173
2174 uWireSlave *chip[4];
2175 };
2176
omap_uwire_transfer_start(struct omap_uwire_s * s)2177 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2178 {
2179 int chipselect = (s->control >> 10) & 3; /* INDEX */
2180 uWireSlave *slave = s->chip[chipselect];
2181
2182 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2183 if (s->control & (1 << 12)) /* CS_CMD */
2184 if (slave && slave->send)
2185 slave->send(slave->opaque,
2186 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2187 s->control &= ~(1 << 14); /* CSRB */
2188 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2189 * a DRQ. When is the level IRQ supposed to be reset? */
2190 }
2191
2192 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2193 if (s->control & (1 << 12)) /* CS_CMD */
2194 if (slave && slave->receive)
2195 s->rxbuf = slave->receive(slave->opaque);
2196 s->control |= 1 << 15; /* RDRB */
2197 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2198 * a DRQ. When is the level IRQ supposed to be reset? */
2199 }
2200 }
2201
omap_uwire_read(void * opaque,hwaddr addr,unsigned size)2202 static uint64_t omap_uwire_read(void *opaque, hwaddr addr, unsigned size)
2203 {
2204 struct omap_uwire_s *s = opaque;
2205 int offset = addr & OMAP_MPUI_REG_MASK;
2206
2207 if (size != 2) {
2208 return omap_badwidth_read16(opaque, addr);
2209 }
2210
2211 switch (offset) {
2212 case 0x00: /* RDR */
2213 s->control &= ~(1 << 15); /* RDRB */
2214 return s->rxbuf;
2215
2216 case 0x04: /* CSR */
2217 return s->control;
2218
2219 case 0x08: /* SR1 */
2220 return s->setup[0];
2221 case 0x0c: /* SR2 */
2222 return s->setup[1];
2223 case 0x10: /* SR3 */
2224 return s->setup[2];
2225 case 0x14: /* SR4 */
2226 return s->setup[3];
2227 case 0x18: /* SR5 */
2228 return s->setup[4];
2229 }
2230
2231 OMAP_BAD_REG(addr);
2232 return 0;
2233 }
2234
omap_uwire_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)2235 static void omap_uwire_write(void *opaque, hwaddr addr,
2236 uint64_t value, unsigned size)
2237 {
2238 struct omap_uwire_s *s = opaque;
2239 int offset = addr & OMAP_MPUI_REG_MASK;
2240
2241 if (size != 2) {
2242 omap_badwidth_write16(opaque, addr, value);
2243 return;
2244 }
2245
2246 switch (offset) {
2247 case 0x00: /* TDR */
2248 s->txbuf = value; /* TD */
2249 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2250 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2251 (s->control & (1 << 12)))) { /* CS_CMD */
2252 s->control |= 1 << 14; /* CSRB */
2253 omap_uwire_transfer_start(s);
2254 }
2255 break;
2256
2257 case 0x04: /* CSR */
2258 s->control = value & 0x1fff;
2259 if (value & (1 << 13)) /* START */
2260 omap_uwire_transfer_start(s);
2261 break;
2262
2263 case 0x08: /* SR1 */
2264 s->setup[0] = value & 0x003f;
2265 break;
2266
2267 case 0x0c: /* SR2 */
2268 s->setup[1] = value & 0x0fc0;
2269 break;
2270
2271 case 0x10: /* SR3 */
2272 s->setup[2] = value & 0x0003;
2273 break;
2274
2275 case 0x14: /* SR4 */
2276 s->setup[3] = value & 0x0001;
2277 break;
2278
2279 case 0x18: /* SR5 */
2280 s->setup[4] = value & 0x000f;
2281 break;
2282
2283 default:
2284 OMAP_BAD_REG(addr);
2285 return;
2286 }
2287 }
2288
2289 static const MemoryRegionOps omap_uwire_ops = {
2290 .read = omap_uwire_read,
2291 .write = omap_uwire_write,
2292 .endianness = DEVICE_NATIVE_ENDIAN,
2293 };
2294
omap_uwire_reset(struct omap_uwire_s * s)2295 static void omap_uwire_reset(struct omap_uwire_s *s)
2296 {
2297 s->control = 0;
2298 s->setup[0] = 0;
2299 s->setup[1] = 0;
2300 s->setup[2] = 0;
2301 s->setup[3] = 0;
2302 s->setup[4] = 0;
2303 }
2304
omap_uwire_init(MemoryRegion * system_memory,hwaddr base,qemu_irq txirq,qemu_irq rxirq,qemu_irq dma,omap_clk clk)2305 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2306 hwaddr base,
2307 qemu_irq txirq, qemu_irq rxirq,
2308 qemu_irq dma,
2309 omap_clk clk)
2310 {
2311 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2312
2313 s->txirq = txirq;
2314 s->rxirq = rxirq;
2315 s->txdrq = dma;
2316 omap_uwire_reset(s);
2317
2318 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2319 memory_region_add_subregion(system_memory, base, &s->iomem);
2320
2321 return s;
2322 }
2323
omap_uwire_attach(struct omap_uwire_s * s,uWireSlave * slave,int chipselect)2324 void omap_uwire_attach(struct omap_uwire_s *s,
2325 uWireSlave *slave, int chipselect)
2326 {
2327 if (chipselect < 0 || chipselect > 3) {
2328 error_report("%s: Bad chipselect %i", __func__, chipselect);
2329 exit(-1);
2330 }
2331
2332 s->chip[chipselect] = slave;
2333 }
2334
2335 /* Pseudonoise Pulse-Width Light Modulator */
2336 struct omap_pwl_s {
2337 MemoryRegion iomem;
2338 uint8_t output;
2339 uint8_t level;
2340 uint8_t enable;
2341 int clk;
2342 };
2343
omap_pwl_update(struct omap_pwl_s * s)2344 static void omap_pwl_update(struct omap_pwl_s *s)
2345 {
2346 int output = (s->clk && s->enable) ? s->level : 0;
2347
2348 if (output != s->output) {
2349 s->output = output;
2350 printf("%s: Backlight now at %i/256\n", __func__, output);
2351 }
2352 }
2353
omap_pwl_read(void * opaque,hwaddr addr,unsigned size)2354 static uint64_t omap_pwl_read(void *opaque, hwaddr addr, unsigned size)
2355 {
2356 struct omap_pwl_s *s = opaque;
2357 int offset = addr & OMAP_MPUI_REG_MASK;
2358
2359 if (size != 1) {
2360 return omap_badwidth_read8(opaque, addr);
2361 }
2362
2363 switch (offset) {
2364 case 0x00: /* PWL_LEVEL */
2365 return s->level;
2366 case 0x04: /* PWL_CTRL */
2367 return s->enable;
2368 }
2369 OMAP_BAD_REG(addr);
2370 return 0;
2371 }
2372
omap_pwl_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)2373 static void omap_pwl_write(void *opaque, hwaddr addr,
2374 uint64_t value, unsigned size)
2375 {
2376 struct omap_pwl_s *s = opaque;
2377 int offset = addr & OMAP_MPUI_REG_MASK;
2378
2379 if (size != 1) {
2380 omap_badwidth_write8(opaque, addr, value);
2381 return;
2382 }
2383
2384 switch (offset) {
2385 case 0x00: /* PWL_LEVEL */
2386 s->level = value;
2387 omap_pwl_update(s);
2388 break;
2389 case 0x04: /* PWL_CTRL */
2390 s->enable = value & 1;
2391 omap_pwl_update(s);
2392 break;
2393 default:
2394 OMAP_BAD_REG(addr);
2395 return;
2396 }
2397 }
2398
2399 static const MemoryRegionOps omap_pwl_ops = {
2400 .read = omap_pwl_read,
2401 .write = omap_pwl_write,
2402 .endianness = DEVICE_NATIVE_ENDIAN,
2403 };
2404
omap_pwl_reset(struct omap_pwl_s * s)2405 static void omap_pwl_reset(struct omap_pwl_s *s)
2406 {
2407 s->output = 0;
2408 s->level = 0;
2409 s->enable = 0;
2410 s->clk = 1;
2411 omap_pwl_update(s);
2412 }
2413
omap_pwl_clk_update(void * opaque,int line,int on)2414 static void omap_pwl_clk_update(void *opaque, int line, int on)
2415 {
2416 struct omap_pwl_s *s = opaque;
2417
2418 s->clk = on;
2419 omap_pwl_update(s);
2420 }
2421
omap_pwl_init(MemoryRegion * system_memory,hwaddr base,omap_clk clk)2422 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2423 hwaddr base,
2424 omap_clk clk)
2425 {
2426 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2427
2428 omap_pwl_reset(s);
2429
2430 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2431 "omap-pwl", 0x800);
2432 memory_region_add_subregion(system_memory, base, &s->iomem);
2433
2434 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2435 return s;
2436 }
2437
2438 /* Pulse-Width Tone module */
2439 struct omap_pwt_s {
2440 MemoryRegion iomem;
2441 uint8_t frc;
2442 uint8_t vrc;
2443 uint8_t gcr;
2444 omap_clk clk;
2445 };
2446
omap_pwt_read(void * opaque,hwaddr addr,unsigned size)2447 static uint64_t omap_pwt_read(void *opaque, hwaddr addr, unsigned size)
2448 {
2449 struct omap_pwt_s *s = opaque;
2450 int offset = addr & OMAP_MPUI_REG_MASK;
2451
2452 if (size != 1) {
2453 return omap_badwidth_read8(opaque, addr);
2454 }
2455
2456 switch (offset) {
2457 case 0x00: /* FRC */
2458 return s->frc;
2459 case 0x04: /* VCR */
2460 return s->vrc;
2461 case 0x08: /* GCR */
2462 return s->gcr;
2463 }
2464 OMAP_BAD_REG(addr);
2465 return 0;
2466 }
2467
omap_pwt_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)2468 static void omap_pwt_write(void *opaque, hwaddr addr,
2469 uint64_t value, unsigned size)
2470 {
2471 struct omap_pwt_s *s = opaque;
2472 int offset = addr & OMAP_MPUI_REG_MASK;
2473
2474 if (size != 1) {
2475 omap_badwidth_write8(opaque, addr, value);
2476 return;
2477 }
2478
2479 switch (offset) {
2480 case 0x00: /* FRC */
2481 s->frc = value & 0x3f;
2482 break;
2483 case 0x04: /* VRC */
2484 if ((value ^ s->vrc) & 1) {
2485 if (value & 1)
2486 printf("%s: %iHz buzz on\n", __func__, (int)
2487 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2488 ((omap_clk_getrate(s->clk) >> 3) /
2489 /* Pre-multiplexer divider */
2490 ((s->gcr & 2) ? 1 : 154) /
2491 /* Octave multiplexer */
2492 (2 << (value & 3)) *
2493 /* 101/107 divider */
2494 ((value & (1 << 2)) ? 101 : 107) *
2495 /* 49/55 divider */
2496 ((value & (1 << 3)) ? 49 : 55) *
2497 /* 50/63 divider */
2498 ((value & (1 << 4)) ? 50 : 63) *
2499 /* 80/127 divider */
2500 ((value & (1 << 5)) ? 80 : 127) /
2501 (107 * 55 * 63 * 127)));
2502 else
2503 printf("%s: silence!\n", __func__);
2504 }
2505 s->vrc = value & 0x7f;
2506 break;
2507 case 0x08: /* GCR */
2508 s->gcr = value & 3;
2509 break;
2510 default:
2511 OMAP_BAD_REG(addr);
2512 return;
2513 }
2514 }
2515
2516 static const MemoryRegionOps omap_pwt_ops = {
2517 .read =omap_pwt_read,
2518 .write = omap_pwt_write,
2519 .endianness = DEVICE_NATIVE_ENDIAN,
2520 };
2521
omap_pwt_reset(struct omap_pwt_s * s)2522 static void omap_pwt_reset(struct omap_pwt_s *s)
2523 {
2524 s->frc = 0;
2525 s->vrc = 0;
2526 s->gcr = 0;
2527 }
2528
omap_pwt_init(MemoryRegion * system_memory,hwaddr base,omap_clk clk)2529 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2530 hwaddr base,
2531 omap_clk clk)
2532 {
2533 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2534 s->clk = clk;
2535 omap_pwt_reset(s);
2536
2537 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2538 "omap-pwt", 0x800);
2539 memory_region_add_subregion(system_memory, base, &s->iomem);
2540 return s;
2541 }
2542
2543 /* Real-time Clock module */
2544 struct omap_rtc_s {
2545 MemoryRegion iomem;
2546 qemu_irq irq;
2547 qemu_irq alarm;
2548 QEMUTimer *clk;
2549
2550 uint8_t interrupts;
2551 uint8_t status;
2552 int16_t comp_reg;
2553 int running;
2554 int pm_am;
2555 int auto_comp;
2556 int round;
2557 struct tm alarm_tm;
2558 time_t alarm_ti;
2559
2560 struct tm current_tm;
2561 time_t ti;
2562 uint64_t tick;
2563 };
2564
omap_rtc_interrupts_update(struct omap_rtc_s * s)2565 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2566 {
2567 /* s->alarm is level-triggered */
2568 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2569 }
2570
omap_rtc_alarm_update(struct omap_rtc_s * s)2571 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2572 {
2573 s->alarm_ti = mktimegm(&s->alarm_tm);
2574 if (s->alarm_ti == -1)
2575 printf("%s: conversion failed\n", __func__);
2576 }
2577
omap_rtc_read(void * opaque,hwaddr addr,unsigned size)2578 static uint64_t omap_rtc_read(void *opaque, hwaddr addr, unsigned size)
2579 {
2580 struct omap_rtc_s *s = opaque;
2581 int offset = addr & OMAP_MPUI_REG_MASK;
2582 uint8_t i;
2583
2584 if (size != 1) {
2585 return omap_badwidth_read8(opaque, addr);
2586 }
2587
2588 switch (offset) {
2589 case 0x00: /* SECONDS_REG */
2590 return to_bcd(s->current_tm.tm_sec);
2591
2592 case 0x04: /* MINUTES_REG */
2593 return to_bcd(s->current_tm.tm_min);
2594
2595 case 0x08: /* HOURS_REG */
2596 if (s->pm_am)
2597 return ((s->current_tm.tm_hour > 11) << 7) |
2598 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2599 else
2600 return to_bcd(s->current_tm.tm_hour);
2601
2602 case 0x0c: /* DAYS_REG */
2603 return to_bcd(s->current_tm.tm_mday);
2604
2605 case 0x10: /* MONTHS_REG */
2606 return to_bcd(s->current_tm.tm_mon + 1);
2607
2608 case 0x14: /* YEARS_REG */
2609 return to_bcd(s->current_tm.tm_year % 100);
2610
2611 case 0x18: /* WEEK_REG */
2612 return s->current_tm.tm_wday;
2613
2614 case 0x20: /* ALARM_SECONDS_REG */
2615 return to_bcd(s->alarm_tm.tm_sec);
2616
2617 case 0x24: /* ALARM_MINUTES_REG */
2618 return to_bcd(s->alarm_tm.tm_min);
2619
2620 case 0x28: /* ALARM_HOURS_REG */
2621 if (s->pm_am)
2622 return ((s->alarm_tm.tm_hour > 11) << 7) |
2623 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2624 else
2625 return to_bcd(s->alarm_tm.tm_hour);
2626
2627 case 0x2c: /* ALARM_DAYS_REG */
2628 return to_bcd(s->alarm_tm.tm_mday);
2629
2630 case 0x30: /* ALARM_MONTHS_REG */
2631 return to_bcd(s->alarm_tm.tm_mon + 1);
2632
2633 case 0x34: /* ALARM_YEARS_REG */
2634 return to_bcd(s->alarm_tm.tm_year % 100);
2635
2636 case 0x40: /* RTC_CTRL_REG */
2637 return (s->pm_am << 3) | (s->auto_comp << 2) |
2638 (s->round << 1) | s->running;
2639
2640 case 0x44: /* RTC_STATUS_REG */
2641 i = s->status;
2642 s->status &= ~0x3d;
2643 return i;
2644
2645 case 0x48: /* RTC_INTERRUPTS_REG */
2646 return s->interrupts;
2647
2648 case 0x4c: /* RTC_COMP_LSB_REG */
2649 return ((uint16_t) s->comp_reg) & 0xff;
2650
2651 case 0x50: /* RTC_COMP_MSB_REG */
2652 return ((uint16_t) s->comp_reg) >> 8;
2653 }
2654
2655 OMAP_BAD_REG(addr);
2656 return 0;
2657 }
2658
omap_rtc_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)2659 static void omap_rtc_write(void *opaque, hwaddr addr,
2660 uint64_t value, unsigned size)
2661 {
2662 struct omap_rtc_s *s = opaque;
2663 int offset = addr & OMAP_MPUI_REG_MASK;
2664 struct tm new_tm;
2665 time_t ti[2];
2666
2667 if (size != 1) {
2668 omap_badwidth_write8(opaque, addr, value);
2669 return;
2670 }
2671
2672 switch (offset) {
2673 case 0x00: /* SECONDS_REG */
2674 #ifdef ALMDEBUG
2675 printf("RTC SEC_REG <-- %02x\n", value);
2676 #endif
2677 s->ti -= s->current_tm.tm_sec;
2678 s->ti += from_bcd(value);
2679 return;
2680
2681 case 0x04: /* MINUTES_REG */
2682 #ifdef ALMDEBUG
2683 printf("RTC MIN_REG <-- %02x\n", value);
2684 #endif
2685 s->ti -= s->current_tm.tm_min * 60;
2686 s->ti += from_bcd(value) * 60;
2687 return;
2688
2689 case 0x08: /* HOURS_REG */
2690 #ifdef ALMDEBUG
2691 printf("RTC HRS_REG <-- %02x\n", value);
2692 #endif
2693 s->ti -= s->current_tm.tm_hour * 3600;
2694 if (s->pm_am) {
2695 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2696 s->ti += ((value >> 7) & 1) * 43200;
2697 } else
2698 s->ti += from_bcd(value & 0x3f) * 3600;
2699 return;
2700
2701 case 0x0c: /* DAYS_REG */
2702 #ifdef ALMDEBUG
2703 printf("RTC DAY_REG <-- %02x\n", value);
2704 #endif
2705 s->ti -= s->current_tm.tm_mday * 86400;
2706 s->ti += from_bcd(value) * 86400;
2707 return;
2708
2709 case 0x10: /* MONTHS_REG */
2710 #ifdef ALMDEBUG
2711 printf("RTC MTH_REG <-- %02x\n", value);
2712 #endif
2713 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2714 new_tm.tm_mon = from_bcd(value);
2715 ti[0] = mktimegm(&s->current_tm);
2716 ti[1] = mktimegm(&new_tm);
2717
2718 if (ti[0] != -1 && ti[1] != -1) {
2719 s->ti -= ti[0];
2720 s->ti += ti[1];
2721 } else {
2722 /* A less accurate version */
2723 s->ti -= s->current_tm.tm_mon * 2592000;
2724 s->ti += from_bcd(value) * 2592000;
2725 }
2726 return;
2727
2728 case 0x14: /* YEARS_REG */
2729 #ifdef ALMDEBUG
2730 printf("RTC YRS_REG <-- %02x\n", value);
2731 #endif
2732 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2733 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2734 ti[0] = mktimegm(&s->current_tm);
2735 ti[1] = mktimegm(&new_tm);
2736
2737 if (ti[0] != -1 && ti[1] != -1) {
2738 s->ti -= ti[0];
2739 s->ti += ti[1];
2740 } else {
2741 /* A less accurate version */
2742 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2743 s->ti += (time_t)from_bcd(value) * 31536000;
2744 }
2745 return;
2746
2747 case 0x18: /* WEEK_REG */
2748 return; /* Ignored */
2749
2750 case 0x20: /* ALARM_SECONDS_REG */
2751 #ifdef ALMDEBUG
2752 printf("ALM SEC_REG <-- %02x\n", value);
2753 #endif
2754 s->alarm_tm.tm_sec = from_bcd(value);
2755 omap_rtc_alarm_update(s);
2756 return;
2757
2758 case 0x24: /* ALARM_MINUTES_REG */
2759 #ifdef ALMDEBUG
2760 printf("ALM MIN_REG <-- %02x\n", value);
2761 #endif
2762 s->alarm_tm.tm_min = from_bcd(value);
2763 omap_rtc_alarm_update(s);
2764 return;
2765
2766 case 0x28: /* ALARM_HOURS_REG */
2767 #ifdef ALMDEBUG
2768 printf("ALM HRS_REG <-- %02x\n", value);
2769 #endif
2770 if (s->pm_am)
2771 s->alarm_tm.tm_hour =
2772 ((from_bcd(value & 0x3f)) % 12) +
2773 ((value >> 7) & 1) * 12;
2774 else
2775 s->alarm_tm.tm_hour = from_bcd(value);
2776 omap_rtc_alarm_update(s);
2777 return;
2778
2779 case 0x2c: /* ALARM_DAYS_REG */
2780 #ifdef ALMDEBUG
2781 printf("ALM DAY_REG <-- %02x\n", value);
2782 #endif
2783 s->alarm_tm.tm_mday = from_bcd(value);
2784 omap_rtc_alarm_update(s);
2785 return;
2786
2787 case 0x30: /* ALARM_MONTHS_REG */
2788 #ifdef ALMDEBUG
2789 printf("ALM MON_REG <-- %02x\n", value);
2790 #endif
2791 s->alarm_tm.tm_mon = from_bcd(value);
2792 omap_rtc_alarm_update(s);
2793 return;
2794
2795 case 0x34: /* ALARM_YEARS_REG */
2796 #ifdef ALMDEBUG
2797 printf("ALM YRS_REG <-- %02x\n", value);
2798 #endif
2799 s->alarm_tm.tm_year = from_bcd(value);
2800 omap_rtc_alarm_update(s);
2801 return;
2802
2803 case 0x40: /* RTC_CTRL_REG */
2804 #ifdef ALMDEBUG
2805 printf("RTC CONTROL <-- %02x\n", value);
2806 #endif
2807 s->pm_am = (value >> 3) & 1;
2808 s->auto_comp = (value >> 2) & 1;
2809 s->round = (value >> 1) & 1;
2810 s->running = value & 1;
2811 s->status &= 0xfd;
2812 s->status |= s->running << 1;
2813 return;
2814
2815 case 0x44: /* RTC_STATUS_REG */
2816 #ifdef ALMDEBUG
2817 printf("RTC STATUSL <-- %02x\n", value);
2818 #endif
2819 s->status &= ~((value & 0xc0) ^ 0x80);
2820 omap_rtc_interrupts_update(s);
2821 return;
2822
2823 case 0x48: /* RTC_INTERRUPTS_REG */
2824 #ifdef ALMDEBUG
2825 printf("RTC INTRS <-- %02x\n", value);
2826 #endif
2827 s->interrupts = value;
2828 return;
2829
2830 case 0x4c: /* RTC_COMP_LSB_REG */
2831 #ifdef ALMDEBUG
2832 printf("RTC COMPLSB <-- %02x\n", value);
2833 #endif
2834 s->comp_reg &= 0xff00;
2835 s->comp_reg |= 0x00ff & value;
2836 return;
2837
2838 case 0x50: /* RTC_COMP_MSB_REG */
2839 #ifdef ALMDEBUG
2840 printf("RTC COMPMSB <-- %02x\n", value);
2841 #endif
2842 s->comp_reg &= 0x00ff;
2843 s->comp_reg |= 0xff00 & (value << 8);
2844 return;
2845
2846 default:
2847 OMAP_BAD_REG(addr);
2848 return;
2849 }
2850 }
2851
2852 static const MemoryRegionOps omap_rtc_ops = {
2853 .read = omap_rtc_read,
2854 .write = omap_rtc_write,
2855 .endianness = DEVICE_NATIVE_ENDIAN,
2856 };
2857
omap_rtc_tick(void * opaque)2858 static void omap_rtc_tick(void *opaque)
2859 {
2860 struct omap_rtc_s *s = opaque;
2861
2862 if (s->round) {
2863 /* Round to nearest full minute. */
2864 if (s->current_tm.tm_sec < 30)
2865 s->ti -= s->current_tm.tm_sec;
2866 else
2867 s->ti += 60 - s->current_tm.tm_sec;
2868
2869 s->round = 0;
2870 }
2871
2872 localtime_r(&s->ti, &s->current_tm);
2873
2874 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2875 s->status |= 0x40;
2876 omap_rtc_interrupts_update(s);
2877 }
2878
2879 if (s->interrupts & 0x04)
2880 switch (s->interrupts & 3) {
2881 case 0:
2882 s->status |= 0x04;
2883 qemu_irq_pulse(s->irq);
2884 break;
2885 case 1:
2886 if (s->current_tm.tm_sec)
2887 break;
2888 s->status |= 0x08;
2889 qemu_irq_pulse(s->irq);
2890 break;
2891 case 2:
2892 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2893 break;
2894 s->status |= 0x10;
2895 qemu_irq_pulse(s->irq);
2896 break;
2897 case 3:
2898 if (s->current_tm.tm_sec ||
2899 s->current_tm.tm_min || s->current_tm.tm_hour)
2900 break;
2901 s->status |= 0x20;
2902 qemu_irq_pulse(s->irq);
2903 break;
2904 }
2905
2906 /* Move on */
2907 if (s->running)
2908 s->ti ++;
2909 s->tick += 1000;
2910
2911 /*
2912 * Every full hour add a rough approximation of the compensation
2913 * register to the 32kHz Timer (which drives the RTC) value.
2914 */
2915 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2916 s->tick += s->comp_reg * 1000 / 32768;
2917
2918 timer_mod(s->clk, s->tick);
2919 }
2920
omap_rtc_reset(struct omap_rtc_s * s)2921 static void omap_rtc_reset(struct omap_rtc_s *s)
2922 {
2923 struct tm tm;
2924
2925 s->interrupts = 0;
2926 s->comp_reg = 0;
2927 s->running = 0;
2928 s->pm_am = 0;
2929 s->auto_comp = 0;
2930 s->round = 0;
2931 s->tick = qemu_clock_get_ms(rtc_clock);
2932 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2933 s->alarm_tm.tm_mday = 0x01;
2934 s->status = 1 << 7;
2935 qemu_get_timedate(&tm, 0);
2936 s->ti = mktimegm(&tm);
2937
2938 omap_rtc_alarm_update(s);
2939 omap_rtc_tick(s);
2940 }
2941
omap_rtc_init(MemoryRegion * system_memory,hwaddr base,qemu_irq timerirq,qemu_irq alarmirq,omap_clk clk)2942 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2943 hwaddr base,
2944 qemu_irq timerirq, qemu_irq alarmirq,
2945 omap_clk clk)
2946 {
2947 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2948
2949 s->irq = timerirq;
2950 s->alarm = alarmirq;
2951 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2952
2953 omap_rtc_reset(s);
2954
2955 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2956 "omap-rtc", 0x800);
2957 memory_region_add_subregion(system_memory, base, &s->iomem);
2958
2959 return s;
2960 }
2961
2962 /* Multi-channel Buffered Serial Port interfaces */
2963 struct omap_mcbsp_s {
2964 MemoryRegion iomem;
2965 qemu_irq txirq;
2966 qemu_irq rxirq;
2967 qemu_irq txdrq;
2968 qemu_irq rxdrq;
2969
2970 uint16_t spcr[2];
2971 uint16_t rcr[2];
2972 uint16_t xcr[2];
2973 uint16_t srgr[2];
2974 uint16_t mcr[2];
2975 uint16_t pcr;
2976 uint16_t rcer[8];
2977 uint16_t xcer[8];
2978 int tx_rate;
2979 int rx_rate;
2980 int tx_req;
2981 int rx_req;
2982
2983 I2SCodec *codec;
2984 QEMUTimer *source_timer;
2985 QEMUTimer *sink_timer;
2986 };
2987
omap_mcbsp_intr_update(struct omap_mcbsp_s * s)2988 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2989 {
2990 int irq;
2991
2992 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2993 case 0:
2994 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2995 break;
2996 case 3:
2997 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2998 break;
2999 default:
3000 irq = 0;
3001 break;
3002 }
3003
3004 if (irq)
3005 qemu_irq_pulse(s->rxirq);
3006
3007 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3008 case 0:
3009 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3010 break;
3011 case 3:
3012 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3013 break;
3014 default:
3015 irq = 0;
3016 break;
3017 }
3018
3019 if (irq)
3020 qemu_irq_pulse(s->txirq);
3021 }
3022
omap_mcbsp_rx_newdata(struct omap_mcbsp_s * s)3023 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3024 {
3025 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3026 s->spcr[0] |= 1 << 2; /* RFULL */
3027 s->spcr[0] |= 1 << 1; /* RRDY */
3028 qemu_irq_raise(s->rxdrq);
3029 omap_mcbsp_intr_update(s);
3030 }
3031
omap_mcbsp_source_tick(void * opaque)3032 static void omap_mcbsp_source_tick(void *opaque)
3033 {
3034 struct omap_mcbsp_s *s = opaque;
3035 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3036
3037 if (!s->rx_rate)
3038 return;
3039 if (s->rx_req)
3040 printf("%s: Rx FIFO overrun\n", __func__);
3041
3042 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3043
3044 omap_mcbsp_rx_newdata(s);
3045 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3046 NANOSECONDS_PER_SECOND);
3047 }
3048
omap_mcbsp_rx_start(struct omap_mcbsp_s * s)3049 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3050 {
3051 if (!s->codec || !s->codec->rts)
3052 omap_mcbsp_source_tick(s);
3053 else if (s->codec->in.len) {
3054 s->rx_req = s->codec->in.len;
3055 omap_mcbsp_rx_newdata(s);
3056 }
3057 }
3058
omap_mcbsp_rx_stop(struct omap_mcbsp_s * s)3059 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3060 {
3061 timer_del(s->source_timer);
3062 }
3063
omap_mcbsp_rx_done(struct omap_mcbsp_s * s)3064 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3065 {
3066 s->spcr[0] &= ~(1 << 1); /* RRDY */
3067 qemu_irq_lower(s->rxdrq);
3068 omap_mcbsp_intr_update(s);
3069 }
3070
omap_mcbsp_tx_newdata(struct omap_mcbsp_s * s)3071 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3072 {
3073 s->spcr[1] |= 1 << 1; /* XRDY */
3074 qemu_irq_raise(s->txdrq);
3075 omap_mcbsp_intr_update(s);
3076 }
3077
omap_mcbsp_sink_tick(void * opaque)3078 static void omap_mcbsp_sink_tick(void *opaque)
3079 {
3080 struct omap_mcbsp_s *s = opaque;
3081 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3082
3083 if (!s->tx_rate)
3084 return;
3085 if (s->tx_req)
3086 printf("%s: Tx FIFO underrun\n", __func__);
3087
3088 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3089
3090 omap_mcbsp_tx_newdata(s);
3091 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3092 NANOSECONDS_PER_SECOND);
3093 }
3094
omap_mcbsp_tx_start(struct omap_mcbsp_s * s)3095 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3096 {
3097 if (!s->codec || !s->codec->cts)
3098 omap_mcbsp_sink_tick(s);
3099 else if (s->codec->out.size) {
3100 s->tx_req = s->codec->out.size;
3101 omap_mcbsp_tx_newdata(s);
3102 }
3103 }
3104
omap_mcbsp_tx_done(struct omap_mcbsp_s * s)3105 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3106 {
3107 s->spcr[1] &= ~(1 << 1); /* XRDY */
3108 qemu_irq_lower(s->txdrq);
3109 omap_mcbsp_intr_update(s);
3110 if (s->codec && s->codec->cts)
3111 s->codec->tx_swallow(s->codec->opaque);
3112 }
3113
omap_mcbsp_tx_stop(struct omap_mcbsp_s * s)3114 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3115 {
3116 s->tx_req = 0;
3117 omap_mcbsp_tx_done(s);
3118 timer_del(s->sink_timer);
3119 }
3120
omap_mcbsp_req_update(struct omap_mcbsp_s * s)3121 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3122 {
3123 int prev_rx_rate, prev_tx_rate;
3124 int rx_rate = 0, tx_rate = 0;
3125 int cpu_rate = 1500000; /* XXX */
3126
3127 /* TODO: check CLKSTP bit */
3128 if (s->spcr[1] & (1 << 6)) { /* GRST */
3129 if (s->spcr[0] & (1 << 0)) { /* RRST */
3130 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3131 (s->pcr & (1 << 8))) { /* CLKRM */
3132 if (~s->pcr & (1 << 7)) /* SCLKME */
3133 rx_rate = cpu_rate /
3134 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3135 } else
3136 if (s->codec)
3137 rx_rate = s->codec->rx_rate;
3138 }
3139
3140 if (s->spcr[1] & (1 << 0)) { /* XRST */
3141 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3142 (s->pcr & (1 << 9))) { /* CLKXM */
3143 if (~s->pcr & (1 << 7)) /* SCLKME */
3144 tx_rate = cpu_rate /
3145 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3146 } else
3147 if (s->codec)
3148 tx_rate = s->codec->tx_rate;
3149 }
3150 }
3151 prev_tx_rate = s->tx_rate;
3152 prev_rx_rate = s->rx_rate;
3153 s->tx_rate = tx_rate;
3154 s->rx_rate = rx_rate;
3155
3156 if (s->codec)
3157 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3158
3159 if (!prev_tx_rate && tx_rate)
3160 omap_mcbsp_tx_start(s);
3161 else if (s->tx_rate && !tx_rate)
3162 omap_mcbsp_tx_stop(s);
3163
3164 if (!prev_rx_rate && rx_rate)
3165 omap_mcbsp_rx_start(s);
3166 else if (prev_tx_rate && !tx_rate)
3167 omap_mcbsp_rx_stop(s);
3168 }
3169
omap_mcbsp_read(void * opaque,hwaddr addr,unsigned size)3170 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3171 unsigned size)
3172 {
3173 struct omap_mcbsp_s *s = opaque;
3174 int offset = addr & OMAP_MPUI_REG_MASK;
3175 uint16_t ret;
3176
3177 if (size != 2) {
3178 return omap_badwidth_read16(opaque, addr);
3179 }
3180
3181 switch (offset) {
3182 case 0x00: /* DRR2 */
3183 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3184 return 0x0000;
3185 /* Fall through. */
3186 case 0x02: /* DRR1 */
3187 if (s->rx_req < 2) {
3188 printf("%s: Rx FIFO underrun\n", __func__);
3189 omap_mcbsp_rx_done(s);
3190 } else {
3191 s->tx_req -= 2;
3192 if (s->codec && s->codec->in.len >= 2) {
3193 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3194 ret |= s->codec->in.fifo[s->codec->in.start ++];
3195 s->codec->in.len -= 2;
3196 } else
3197 ret = 0x0000;
3198 if (!s->tx_req)
3199 omap_mcbsp_rx_done(s);
3200 return ret;
3201 }
3202 return 0x0000;
3203
3204 case 0x04: /* DXR2 */
3205 case 0x06: /* DXR1 */
3206 return 0x0000;
3207
3208 case 0x08: /* SPCR2 */
3209 return s->spcr[1];
3210 case 0x0a: /* SPCR1 */
3211 return s->spcr[0];
3212 case 0x0c: /* RCR2 */
3213 return s->rcr[1];
3214 case 0x0e: /* RCR1 */
3215 return s->rcr[0];
3216 case 0x10: /* XCR2 */
3217 return s->xcr[1];
3218 case 0x12: /* XCR1 */
3219 return s->xcr[0];
3220 case 0x14: /* SRGR2 */
3221 return s->srgr[1];
3222 case 0x16: /* SRGR1 */
3223 return s->srgr[0];
3224 case 0x18: /* MCR2 */
3225 return s->mcr[1];
3226 case 0x1a: /* MCR1 */
3227 return s->mcr[0];
3228 case 0x1c: /* RCERA */
3229 return s->rcer[0];
3230 case 0x1e: /* RCERB */
3231 return s->rcer[1];
3232 case 0x20: /* XCERA */
3233 return s->xcer[0];
3234 case 0x22: /* XCERB */
3235 return s->xcer[1];
3236 case 0x24: /* PCR0 */
3237 return s->pcr;
3238 case 0x26: /* RCERC */
3239 return s->rcer[2];
3240 case 0x28: /* RCERD */
3241 return s->rcer[3];
3242 case 0x2a: /* XCERC */
3243 return s->xcer[2];
3244 case 0x2c: /* XCERD */
3245 return s->xcer[3];
3246 case 0x2e: /* RCERE */
3247 return s->rcer[4];
3248 case 0x30: /* RCERF */
3249 return s->rcer[5];
3250 case 0x32: /* XCERE */
3251 return s->xcer[4];
3252 case 0x34: /* XCERF */
3253 return s->xcer[5];
3254 case 0x36: /* RCERG */
3255 return s->rcer[6];
3256 case 0x38: /* RCERH */
3257 return s->rcer[7];
3258 case 0x3a: /* XCERG */
3259 return s->xcer[6];
3260 case 0x3c: /* XCERH */
3261 return s->xcer[7];
3262 }
3263
3264 OMAP_BAD_REG(addr);
3265 return 0;
3266 }
3267
omap_mcbsp_writeh(void * opaque,hwaddr addr,uint32_t value)3268 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3269 uint32_t value)
3270 {
3271 struct omap_mcbsp_s *s = opaque;
3272 int offset = addr & OMAP_MPUI_REG_MASK;
3273
3274 switch (offset) {
3275 case 0x00: /* DRR2 */
3276 case 0x02: /* DRR1 */
3277 OMAP_RO_REG(addr);
3278 return;
3279
3280 case 0x04: /* DXR2 */
3281 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3282 return;
3283 /* Fall through. */
3284 case 0x06: /* DXR1 */
3285 if (s->tx_req > 1) {
3286 s->tx_req -= 2;
3287 if (s->codec && s->codec->cts) {
3288 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3289 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3290 }
3291 if (s->tx_req < 2)
3292 omap_mcbsp_tx_done(s);
3293 } else
3294 printf("%s: Tx FIFO overrun\n", __func__);
3295 return;
3296
3297 case 0x08: /* SPCR2 */
3298 s->spcr[1] &= 0x0002;
3299 s->spcr[1] |= 0x03f9 & value;
3300 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3301 if (~value & 1) /* XRST */
3302 s->spcr[1] &= ~6;
3303 omap_mcbsp_req_update(s);
3304 return;
3305 case 0x0a: /* SPCR1 */
3306 s->spcr[0] &= 0x0006;
3307 s->spcr[0] |= 0xf8f9 & value;
3308 if (value & (1 << 15)) /* DLB */
3309 printf("%s: Digital Loopback mode enable attempt\n", __func__);
3310 if (~value & 1) { /* RRST */
3311 s->spcr[0] &= ~6;
3312 s->rx_req = 0;
3313 omap_mcbsp_rx_done(s);
3314 }
3315 omap_mcbsp_req_update(s);
3316 return;
3317
3318 case 0x0c: /* RCR2 */
3319 s->rcr[1] = value & 0xffff;
3320 return;
3321 case 0x0e: /* RCR1 */
3322 s->rcr[0] = value & 0x7fe0;
3323 return;
3324 case 0x10: /* XCR2 */
3325 s->xcr[1] = value & 0xffff;
3326 return;
3327 case 0x12: /* XCR1 */
3328 s->xcr[0] = value & 0x7fe0;
3329 return;
3330 case 0x14: /* SRGR2 */
3331 s->srgr[1] = value & 0xffff;
3332 omap_mcbsp_req_update(s);
3333 return;
3334 case 0x16: /* SRGR1 */
3335 s->srgr[0] = value & 0xffff;
3336 omap_mcbsp_req_update(s);
3337 return;
3338 case 0x18: /* MCR2 */
3339 s->mcr[1] = value & 0x03e3;
3340 if (value & 3) /* XMCM */
3341 printf("%s: Tx channel selection mode enable attempt\n", __func__);
3342 return;
3343 case 0x1a: /* MCR1 */
3344 s->mcr[0] = value & 0x03e1;
3345 if (value & 1) /* RMCM */
3346 printf("%s: Rx channel selection mode enable attempt\n", __func__);
3347 return;
3348 case 0x1c: /* RCERA */
3349 s->rcer[0] = value & 0xffff;
3350 return;
3351 case 0x1e: /* RCERB */
3352 s->rcer[1] = value & 0xffff;
3353 return;
3354 case 0x20: /* XCERA */
3355 s->xcer[0] = value & 0xffff;
3356 return;
3357 case 0x22: /* XCERB */
3358 s->xcer[1] = value & 0xffff;
3359 return;
3360 case 0x24: /* PCR0 */
3361 s->pcr = value & 0x7faf;
3362 return;
3363 case 0x26: /* RCERC */
3364 s->rcer[2] = value & 0xffff;
3365 return;
3366 case 0x28: /* RCERD */
3367 s->rcer[3] = value & 0xffff;
3368 return;
3369 case 0x2a: /* XCERC */
3370 s->xcer[2] = value & 0xffff;
3371 return;
3372 case 0x2c: /* XCERD */
3373 s->xcer[3] = value & 0xffff;
3374 return;
3375 case 0x2e: /* RCERE */
3376 s->rcer[4] = value & 0xffff;
3377 return;
3378 case 0x30: /* RCERF */
3379 s->rcer[5] = value & 0xffff;
3380 return;
3381 case 0x32: /* XCERE */
3382 s->xcer[4] = value & 0xffff;
3383 return;
3384 case 0x34: /* XCERF */
3385 s->xcer[5] = value & 0xffff;
3386 return;
3387 case 0x36: /* RCERG */
3388 s->rcer[6] = value & 0xffff;
3389 return;
3390 case 0x38: /* RCERH */
3391 s->rcer[7] = value & 0xffff;
3392 return;
3393 case 0x3a: /* XCERG */
3394 s->xcer[6] = value & 0xffff;
3395 return;
3396 case 0x3c: /* XCERH */
3397 s->xcer[7] = value & 0xffff;
3398 return;
3399 }
3400
3401 OMAP_BAD_REG(addr);
3402 }
3403
omap_mcbsp_writew(void * opaque,hwaddr addr,uint32_t value)3404 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3405 uint32_t value)
3406 {
3407 struct omap_mcbsp_s *s = opaque;
3408 int offset = addr & OMAP_MPUI_REG_MASK;
3409
3410 if (offset == 0x04) { /* DXR */
3411 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3412 return;
3413 if (s->tx_req > 3) {
3414 s->tx_req -= 4;
3415 if (s->codec && s->codec->cts) {
3416 s->codec->out.fifo[s->codec->out.len ++] =
3417 (value >> 24) & 0xff;
3418 s->codec->out.fifo[s->codec->out.len ++] =
3419 (value >> 16) & 0xff;
3420 s->codec->out.fifo[s->codec->out.len ++] =
3421 (value >> 8) & 0xff;
3422 s->codec->out.fifo[s->codec->out.len ++] =
3423 (value >> 0) & 0xff;
3424 }
3425 if (s->tx_req < 4)
3426 omap_mcbsp_tx_done(s);
3427 } else
3428 printf("%s: Tx FIFO overrun\n", __func__);
3429 return;
3430 }
3431
3432 omap_badwidth_write16(opaque, addr, value);
3433 }
3434
omap_mcbsp_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)3435 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3436 uint64_t value, unsigned size)
3437 {
3438 switch (size) {
3439 case 2:
3440 omap_mcbsp_writeh(opaque, addr, value);
3441 break;
3442 case 4:
3443 omap_mcbsp_writew(opaque, addr, value);
3444 break;
3445 default:
3446 omap_badwidth_write16(opaque, addr, value);
3447 }
3448 }
3449
3450 static const MemoryRegionOps omap_mcbsp_ops = {
3451 .read = omap_mcbsp_read,
3452 .write = omap_mcbsp_write,
3453 .endianness = DEVICE_NATIVE_ENDIAN,
3454 };
3455
omap_mcbsp_reset(struct omap_mcbsp_s * s)3456 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3457 {
3458 memset(&s->spcr, 0, sizeof(s->spcr));
3459 memset(&s->rcr, 0, sizeof(s->rcr));
3460 memset(&s->xcr, 0, sizeof(s->xcr));
3461 s->srgr[0] = 0x0001;
3462 s->srgr[1] = 0x2000;
3463 memset(&s->mcr, 0, sizeof(s->mcr));
3464 memset(&s->pcr, 0, sizeof(s->pcr));
3465 memset(&s->rcer, 0, sizeof(s->rcer));
3466 memset(&s->xcer, 0, sizeof(s->xcer));
3467 s->tx_req = 0;
3468 s->rx_req = 0;
3469 s->tx_rate = 0;
3470 s->rx_rate = 0;
3471 timer_del(s->source_timer);
3472 timer_del(s->sink_timer);
3473 }
3474
omap_mcbsp_init(MemoryRegion * system_memory,hwaddr base,qemu_irq txirq,qemu_irq rxirq,qemu_irq * dma,omap_clk clk)3475 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3476 hwaddr base,
3477 qemu_irq txirq, qemu_irq rxirq,
3478 qemu_irq *dma, omap_clk clk)
3479 {
3480 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3481
3482 s->txirq = txirq;
3483 s->rxirq = rxirq;
3484 s->txdrq = dma[0];
3485 s->rxdrq = dma[1];
3486 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3487 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3488 omap_mcbsp_reset(s);
3489
3490 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3491 memory_region_add_subregion(system_memory, base, &s->iomem);
3492
3493 return s;
3494 }
3495
omap_mcbsp_i2s_swallow(void * opaque,int line,int level)3496 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3497 {
3498 struct omap_mcbsp_s *s = opaque;
3499
3500 if (s->rx_rate) {
3501 s->rx_req = s->codec->in.len;
3502 omap_mcbsp_rx_newdata(s);
3503 }
3504 }
3505
omap_mcbsp_i2s_start(void * opaque,int line,int level)3506 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3507 {
3508 struct omap_mcbsp_s *s = opaque;
3509
3510 if (s->tx_rate) {
3511 s->tx_req = s->codec->out.size;
3512 omap_mcbsp_tx_newdata(s);
3513 }
3514 }
3515
omap_mcbsp_i2s_attach(struct omap_mcbsp_s * s,I2SCodec * slave)3516 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3517 {
3518 s->codec = slave;
3519 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3520 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3521 }
3522
3523 /* LED Pulse Generators */
3524 struct omap_lpg_s {
3525 MemoryRegion iomem;
3526 QEMUTimer *tm;
3527
3528 uint8_t control;
3529 uint8_t power;
3530 int64_t on;
3531 int64_t period;
3532 int clk;
3533 int cycle;
3534 };
3535
omap_lpg_tick(void * opaque)3536 static void omap_lpg_tick(void *opaque)
3537 {
3538 struct omap_lpg_s *s = opaque;
3539
3540 if (s->cycle)
3541 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3542 else
3543 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3544
3545 s->cycle = !s->cycle;
3546 printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3547 }
3548
omap_lpg_update(struct omap_lpg_s * s)3549 static void omap_lpg_update(struct omap_lpg_s *s)
3550 {
3551 int64_t on, period = 1, ticks = 1000;
3552 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3553
3554 if (~s->control & (1 << 6)) /* LPGRES */
3555 on = 0;
3556 else if (s->control & (1 << 7)) /* PERM_ON */
3557 on = period;
3558 else {
3559 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3560 256 / 32);
3561 on = (s->clk && s->power) ? muldiv64(ticks,
3562 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3563 }
3564
3565 timer_del(s->tm);
3566 if (on == period && s->on < s->period)
3567 printf("%s: LED is on\n", __func__);
3568 else if (on == 0 && s->on)
3569 printf("%s: LED is off\n", __func__);
3570 else if (on && (on != s->on || period != s->period)) {
3571 s->cycle = 0;
3572 s->on = on;
3573 s->period = period;
3574 omap_lpg_tick(s);
3575 return;
3576 }
3577
3578 s->on = on;
3579 s->period = period;
3580 }
3581
omap_lpg_reset(struct omap_lpg_s * s)3582 static void omap_lpg_reset(struct omap_lpg_s *s)
3583 {
3584 s->control = 0x00;
3585 s->power = 0x00;
3586 s->clk = 1;
3587 omap_lpg_update(s);
3588 }
3589
omap_lpg_read(void * opaque,hwaddr addr,unsigned size)3590 static uint64_t omap_lpg_read(void *opaque, hwaddr addr, unsigned size)
3591 {
3592 struct omap_lpg_s *s = opaque;
3593 int offset = addr & OMAP_MPUI_REG_MASK;
3594
3595 if (size != 1) {
3596 return omap_badwidth_read8(opaque, addr);
3597 }
3598
3599 switch (offset) {
3600 case 0x00: /* LCR */
3601 return s->control;
3602
3603 case 0x04: /* PMR */
3604 return s->power;
3605 }
3606
3607 OMAP_BAD_REG(addr);
3608 return 0;
3609 }
3610
omap_lpg_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)3611 static void omap_lpg_write(void *opaque, hwaddr addr,
3612 uint64_t value, unsigned size)
3613 {
3614 struct omap_lpg_s *s = opaque;
3615 int offset = addr & OMAP_MPUI_REG_MASK;
3616
3617 if (size != 1) {
3618 omap_badwidth_write8(opaque, addr, value);
3619 return;
3620 }
3621
3622 switch (offset) {
3623 case 0x00: /* LCR */
3624 if (~value & (1 << 6)) /* LPGRES */
3625 omap_lpg_reset(s);
3626 s->control = value & 0xff;
3627 omap_lpg_update(s);
3628 return;
3629
3630 case 0x04: /* PMR */
3631 s->power = value & 0x01;
3632 omap_lpg_update(s);
3633 return;
3634
3635 default:
3636 OMAP_BAD_REG(addr);
3637 return;
3638 }
3639 }
3640
3641 static const MemoryRegionOps omap_lpg_ops = {
3642 .read = omap_lpg_read,
3643 .write = omap_lpg_write,
3644 .endianness = DEVICE_NATIVE_ENDIAN,
3645 };
3646
omap_lpg_clk_update(void * opaque,int line,int on)3647 static void omap_lpg_clk_update(void *opaque, int line, int on)
3648 {
3649 struct omap_lpg_s *s = opaque;
3650
3651 s->clk = on;
3652 omap_lpg_update(s);
3653 }
3654
omap_lpg_init(MemoryRegion * system_memory,hwaddr base,omap_clk clk)3655 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3656 hwaddr base, omap_clk clk)
3657 {
3658 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3659
3660 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3661
3662 omap_lpg_reset(s);
3663
3664 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3665 memory_region_add_subregion(system_memory, base, &s->iomem);
3666
3667 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3668
3669 return s;
3670 }
3671
3672 /* MPUI Peripheral Bridge configuration */
omap_mpui_io_read(void * opaque,hwaddr addr,unsigned size)3673 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3674 unsigned size)
3675 {
3676 if (size != 2) {
3677 return omap_badwidth_read16(opaque, addr);
3678 }
3679
3680 if (addr == OMAP_MPUI_BASE) /* CMR */
3681 return 0xfe4d;
3682
3683 OMAP_BAD_REG(addr);
3684 return 0;
3685 }
3686
omap_mpui_io_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)3687 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3688 uint64_t value, unsigned size)
3689 {
3690 /* FIXME: infinite loop */
3691 omap_badwidth_write16(opaque, addr, value);
3692 }
3693
3694 static const MemoryRegionOps omap_mpui_io_ops = {
3695 .read = omap_mpui_io_read,
3696 .write = omap_mpui_io_write,
3697 .endianness = DEVICE_NATIVE_ENDIAN,
3698 };
3699
omap_setup_mpui_io(MemoryRegion * system_memory,struct omap_mpu_state_s * mpu)3700 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3701 struct omap_mpu_state_s *mpu)
3702 {
3703 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3704 "omap-mpui-io", 0x7fff);
3705 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3706 &mpu->mpui_io_iomem);
3707 }
3708
3709 /* General chip reset */
omap1_mpu_reset(void * opaque)3710 static void omap1_mpu_reset(void *opaque)
3711 {
3712 struct omap_mpu_state_s *mpu = opaque;
3713
3714 omap_dma_reset(mpu->dma);
3715 omap_mpu_timer_reset(mpu->timer[0]);
3716 omap_mpu_timer_reset(mpu->timer[1]);
3717 omap_mpu_timer_reset(mpu->timer[2]);
3718 omap_wd_timer_reset(mpu->wdt);
3719 omap_os_timer_reset(mpu->os_timer);
3720 omap_lcdc_reset(mpu->lcd);
3721 omap_ulpd_pm_reset(mpu);
3722 omap_pin_cfg_reset(mpu);
3723 omap_mpui_reset(mpu);
3724 omap_tipb_bridge_reset(mpu->private_tipb);
3725 omap_tipb_bridge_reset(mpu->public_tipb);
3726 omap_dpll_reset(mpu->dpll[0]);
3727 omap_dpll_reset(mpu->dpll[1]);
3728 omap_dpll_reset(mpu->dpll[2]);
3729 omap_uart_reset(mpu->uart[0]);
3730 omap_uart_reset(mpu->uart[1]);
3731 omap_uart_reset(mpu->uart[2]);
3732 omap_mmc_reset(mpu->mmc);
3733 omap_mpuio_reset(mpu->mpuio);
3734 omap_uwire_reset(mpu->microwire);
3735 omap_pwl_reset(mpu->pwl);
3736 omap_pwt_reset(mpu->pwt);
3737 omap_rtc_reset(mpu->rtc);
3738 omap_mcbsp_reset(mpu->mcbsp1);
3739 omap_mcbsp_reset(mpu->mcbsp2);
3740 omap_mcbsp_reset(mpu->mcbsp3);
3741 omap_lpg_reset(mpu->led[0]);
3742 omap_lpg_reset(mpu->led[1]);
3743 omap_clkm_reset(mpu);
3744 cpu_reset(CPU(mpu->cpu));
3745 }
3746
3747 static const struct omap_map_s {
3748 hwaddr phys_dsp;
3749 hwaddr phys_mpu;
3750 uint32_t size;
3751 const char *name;
3752 } omap15xx_dsp_mm[] = {
3753 /* Strobe 0 */
3754 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3755 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3756 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3757 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3758 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3759 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3760 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3761 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3762 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3763 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3764 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3765 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3766 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3767 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3768 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3769 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3770 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3771 /* Strobe 1 */
3772 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3773
3774 { 0 }
3775 };
3776
omap_setup_dsp_mapping(MemoryRegion * system_memory,const struct omap_map_s * map)3777 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3778 const struct omap_map_s *map)
3779 {
3780 MemoryRegion *io;
3781
3782 for (; map->phys_dsp; map ++) {
3783 io = g_new(MemoryRegion, 1);
3784 memory_region_init_alias(io, NULL, map->name,
3785 system_memory, map->phys_mpu, map->size);
3786 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3787 }
3788 }
3789
omap_mpu_wakeup(void * opaque,int irq,int req)3790 void omap_mpu_wakeup(void *opaque, int irq, int req)
3791 {
3792 struct omap_mpu_state_s *mpu = opaque;
3793 CPUState *cpu = CPU(mpu->cpu);
3794
3795 if (cpu->halted) {
3796 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3797 }
3798 }
3799
3800 static const struct dma_irq_map omap1_dma_irq_map[] = {
3801 { 0, OMAP_INT_DMA_CH0_6 },
3802 { 0, OMAP_INT_DMA_CH1_7 },
3803 { 0, OMAP_INT_DMA_CH2_8 },
3804 { 0, OMAP_INT_DMA_CH3 },
3805 { 0, OMAP_INT_DMA_CH4 },
3806 { 0, OMAP_INT_DMA_CH5 },
3807 { 1, OMAP_INT_1610_DMA_CH6 },
3808 { 1, OMAP_INT_1610_DMA_CH7 },
3809 { 1, OMAP_INT_1610_DMA_CH8 },
3810 { 1, OMAP_INT_1610_DMA_CH9 },
3811 { 1, OMAP_INT_1610_DMA_CH10 },
3812 { 1, OMAP_INT_1610_DMA_CH11 },
3813 { 1, OMAP_INT_1610_DMA_CH12 },
3814 { 1, OMAP_INT_1610_DMA_CH13 },
3815 { 1, OMAP_INT_1610_DMA_CH14 },
3816 { 1, OMAP_INT_1610_DMA_CH15 }
3817 };
3818
3819 /* DMA ports for OMAP1 */
omap_validate_emiff_addr(struct omap_mpu_state_s * s,hwaddr addr)3820 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3821 hwaddr addr)
3822 {
3823 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3824 }
3825
omap_validate_emifs_addr(struct omap_mpu_state_s * s,hwaddr addr)3826 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3827 hwaddr addr)
3828 {
3829 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3830 addr);
3831 }
3832
omap_validate_imif_addr(struct omap_mpu_state_s * s,hwaddr addr)3833 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3834 hwaddr addr)
3835 {
3836 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3837 }
3838
omap_validate_tipb_addr(struct omap_mpu_state_s * s,hwaddr addr)3839 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3840 hwaddr addr)
3841 {
3842 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3843 }
3844
omap_validate_local_addr(struct omap_mpu_state_s * s,hwaddr addr)3845 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3846 hwaddr addr)
3847 {
3848 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3849 }
3850
omap_validate_tipb_mpui_addr(struct omap_mpu_state_s * s,hwaddr addr)3851 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3852 hwaddr addr)
3853 {
3854 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3855 }
3856
omap310_mpu_init(MemoryRegion * dram,const char * cpu_type)3857 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *dram,
3858 const char *cpu_type)
3859 {
3860 int i;
3861 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3862 qemu_irq dma_irqs[6];
3863 DriveInfo *dinfo;
3864 SysBusDevice *busdev;
3865 MemoryRegion *system_memory = get_system_memory();
3866
3867 /* Core */
3868 s->mpu_model = omap310;
3869 s->cpu = ARM_CPU(cpu_create(cpu_type));
3870 s->sdram_size = memory_region_size(dram);
3871 s->sram_size = OMAP15XX_SRAM_SIZE;
3872
3873 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3874
3875 /* Clocks */
3876 omap_clk_init(s);
3877
3878 /* Memory-mapped stuff */
3879 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3880 &error_fatal);
3881 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3882
3883 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3884
3885 s->ih[0] = qdev_new("omap-intc");
3886 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3887 omap_intc_set_iclk(OMAP_INTC(s->ih[0]), omap_findclk(s, "arminth_ck"));
3888 busdev = SYS_BUS_DEVICE(s->ih[0]);
3889 sysbus_realize_and_unref(busdev, &error_fatal);
3890 sysbus_connect_irq(busdev, 0,
3891 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3892 sysbus_connect_irq(busdev, 1,
3893 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3894 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3895 s->ih[1] = qdev_new("omap-intc");
3896 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3897 omap_intc_set_iclk(OMAP_INTC(s->ih[1]), omap_findclk(s, "arminth_ck"));
3898 busdev = SYS_BUS_DEVICE(s->ih[1]);
3899 sysbus_realize_and_unref(busdev, &error_fatal);
3900 sysbus_connect_irq(busdev, 0,
3901 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3902 /* The second interrupt controller's FIQ output is not wired up */
3903 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3904
3905 for (i = 0; i < 6; i++) {
3906 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3907 omap1_dma_irq_map[i].intr);
3908 }
3909 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3910 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3911 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3912
3913 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3914 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3915 s->port[imif ].addr_valid = omap_validate_imif_addr;
3916 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3917 s->port[local ].addr_valid = omap_validate_local_addr;
3918 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3919
3920 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3921 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(dram),
3922 OMAP_EMIFF_BASE, s->sdram_size);
3923 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3924 OMAP_IMIF_BASE, s->sram_size);
3925
3926 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3927 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3928 omap_findclk(s, "mputim_ck"));
3929 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3930 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3931 omap_findclk(s, "mputim_ck"));
3932 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3933 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3934 omap_findclk(s, "mputim_ck"));
3935
3936 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3937 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3938 omap_findclk(s, "armwdt_ck"));
3939
3940 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3941 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3942 omap_findclk(s, "clk32-kHz"));
3943
3944 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3945 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3946 omap_dma_get_lcdch(s->dma),
3947 omap_findclk(s, "lcd_ck"));
3948
3949 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3950 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3951 omap_id_init(system_memory, s);
3952
3953 omap_mpui_init(system_memory, 0xfffec900, s);
3954
3955 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3956 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3957 omap_findclk(s, "tipb_ck"));
3958 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3959 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3960 omap_findclk(s, "tipb_ck"));
3961
3962 omap_tcmi_init(system_memory, 0xfffecc00, s);
3963
3964 s->uart[0] = omap_uart_init(0xfffb0000,
3965 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3966 omap_findclk(s, "uart1_ck"),
3967 omap_findclk(s, "uart1_ck"),
3968 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3969 "uart1",
3970 serial_hd(0));
3971 s->uart[1] = omap_uart_init(0xfffb0800,
3972 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3973 omap_findclk(s, "uart2_ck"),
3974 omap_findclk(s, "uart2_ck"),
3975 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3976 "uart2",
3977 serial_hd(0) ? serial_hd(1) : NULL);
3978 s->uart[2] = omap_uart_init(0xfffb9800,
3979 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3980 omap_findclk(s, "uart3_ck"),
3981 omap_findclk(s, "uart3_ck"),
3982 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3983 "uart3",
3984 serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3985
3986 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3987 omap_findclk(s, "dpll1"));
3988 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3989 omap_findclk(s, "dpll2"));
3990 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3991 omap_findclk(s, "dpll3"));
3992
3993 dinfo = drive_get(IF_SD, 0, 0);
3994 if (!dinfo && !qtest_enabled()) {
3995 warn_report("missing SecureDigital device");
3996 }
3997 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
3998 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
3999 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4000 &s->drq[OMAP_DMA_MMC_TX],
4001 omap_findclk(s, "mmc_ck"));
4002
4003 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4004 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4005 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4006 s->wakeup, omap_findclk(s, "clk32-kHz"));
4007
4008 s->gpio = qdev_new("omap-gpio");
4009 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4010 omap_gpio_set_clk(OMAP1_GPIO(s->gpio), omap_findclk(s, "arm_gpio_ck"));
4011 sysbus_realize_and_unref(SYS_BUS_DEVICE(s->gpio), &error_fatal);
4012 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4013 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4014 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4015
4016 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4017 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4018 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4019 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4020
4021 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4022 omap_findclk(s, "armxor_ck"));
4023 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4024 omap_findclk(s, "armxor_ck"));
4025
4026 s->i2c[0] = qdev_new("omap_i2c");
4027 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4028 omap_i2c_set_fclk(OMAP_I2C(s->i2c[0]), omap_findclk(s, "mpuper_ck"));
4029 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4030 sysbus_realize_and_unref(busdev, &error_fatal);
4031 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4032 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4033 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4034 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4035
4036 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4037 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4038 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4039 omap_findclk(s, "clk32-kHz"));
4040
4041 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4042 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4043 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4044 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4045 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4046 qdev_get_gpio_in(s->ih[0],
4047 OMAP_INT_310_McBSP2_TX),
4048 qdev_get_gpio_in(s->ih[0],
4049 OMAP_INT_310_McBSP2_RX),
4050 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4051 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4052 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4053 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4054 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4055
4056 s->led[0] = omap_lpg_init(system_memory,
4057 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4058 s->led[1] = omap_lpg_init(system_memory,
4059 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4060
4061 /* Register mappings not currently implemented:
4062 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4063 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4064 * USB W2FC fffb4000 - fffb47ff
4065 * Camera Interface fffb6800 - fffb6fff
4066 * USB Host fffba000 - fffba7ff
4067 * FAC fffba800 - fffbafff
4068 * HDQ/1-Wire fffbc000 - fffbc7ff
4069 * TIPB switches fffbc800 - fffbcfff
4070 * Mailbox fffcf000 - fffcf7ff
4071 * Local bus IF fffec100 - fffec1ff
4072 * Local bus MMU fffec200 - fffec2ff
4073 * DSP MMU fffed200 - fffed2ff
4074 */
4075
4076 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4077 omap_setup_mpui_io(system_memory, s);
4078
4079 qemu_register_reset(omap1_mpu_reset, s);
4080
4081 return s;
4082 }
4083