1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31
32 struct pagevec;
33
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition) \
38 do { \
39 if (WARN_ON(condition)) \
40 set_sbi_flag(sbi, SBI_NEED_FSCK); \
41 } while (0)
42 #endif
43
44 enum {
45 FAULT_KMALLOC,
46 FAULT_KVMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_PAGE_GET,
49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
50 FAULT_ALLOC_NID,
51 FAULT_ORPHAN,
52 FAULT_BLOCK,
53 FAULT_DIR_DEPTH,
54 FAULT_EVICT_INODE,
55 FAULT_TRUNCATE,
56 FAULT_READ_IO,
57 FAULT_CHECKPOINT,
58 FAULT_DISCARD,
59 FAULT_WRITE_IO,
60 FAULT_SLAB_ALLOC,
61 FAULT_DQUOT_INIT,
62 FAULT_LOCK_OP,
63 FAULT_BLKADDR,
64 FAULT_MAX,
65 };
66
67 #ifdef CONFIG_F2FS_FAULT_INJECTION
68 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0))
69
70 struct f2fs_fault_info {
71 atomic_t inject_ops;
72 int inject_rate;
73 unsigned int inject_type;
74 };
75
76 extern const char *f2fs_fault_name[FAULT_MAX];
77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
78
79 /* maximum retry count for injected failure */
80 #define DEFAULT_FAILURE_RETRY_COUNT 8
81 #else
82 #define DEFAULT_FAILURE_RETRY_COUNT 1
83 #endif
84
85 /*
86 * For mount options
87 */
88 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001
89 #define F2FS_MOUNT_DISCARD 0x00000002
90 #define F2FS_MOUNT_NOHEAP 0x00000004
91 #define F2FS_MOUNT_XATTR_USER 0x00000008
92 #define F2FS_MOUNT_POSIX_ACL 0x00000010
93 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020
94 #define F2FS_MOUNT_INLINE_XATTR 0x00000040
95 #define F2FS_MOUNT_INLINE_DATA 0x00000080
96 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100
97 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200
98 #define F2FS_MOUNT_NOBARRIER 0x00000400
99 #define F2FS_MOUNT_FASTBOOT 0x00000800
100 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000
101 #define F2FS_MOUNT_DATA_FLUSH 0x00002000
102 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000
103 #define F2FS_MOUNT_USRQUOTA 0x00008000
104 #define F2FS_MOUNT_GRPQUOTA 0x00010000
105 #define F2FS_MOUNT_PRJQUOTA 0x00020000
106 #define F2FS_MOUNT_QUOTA 0x00040000
107 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000
108 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000
109 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000
110 #define F2FS_MOUNT_NORECOVERY 0x00400000
111 #define F2FS_MOUNT_ATGC 0x00800000
112 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000
113 #define F2FS_MOUNT_GC_MERGE 0x02000000
114 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000
115 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000
116
117 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
118 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
119 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
120 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
121
122 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
123 typecheck(unsigned long long, b) && \
124 ((long long)((a) - (b)) > 0))
125
126 typedef u32 block_t; /*
127 * should not change u32, since it is the on-disk block
128 * address format, __le32.
129 */
130 typedef u32 nid_t;
131
132 #define COMPRESS_EXT_NUM 16
133
134 /*
135 * An implementation of an rwsem that is explicitly unfair to readers. This
136 * prevents priority inversion when a low-priority reader acquires the read lock
137 * while sleeping on the write lock but the write lock is needed by
138 * higher-priority clients.
139 */
140
141 struct f2fs_rwsem {
142 struct rw_semaphore internal_rwsem;
143 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
144 wait_queue_head_t read_waiters;
145 #endif
146 };
147
148 struct f2fs_mount_info {
149 unsigned int opt;
150 block_t root_reserved_blocks; /* root reserved blocks */
151 kuid_t s_resuid; /* reserved blocks for uid */
152 kgid_t s_resgid; /* reserved blocks for gid */
153 int active_logs; /* # of active logs */
154 int inline_xattr_size; /* inline xattr size */
155 #ifdef CONFIG_F2FS_FAULT_INJECTION
156 struct f2fs_fault_info fault_info; /* For fault injection */
157 #endif
158 #ifdef CONFIG_QUOTA
159 /* Names of quota files with journalled quota */
160 char *s_qf_names[MAXQUOTAS];
161 int s_jquota_fmt; /* Format of quota to use */
162 #endif
163 /* For which write hints are passed down to block layer */
164 int alloc_mode; /* segment allocation policy */
165 int fsync_mode; /* fsync policy */
166 int fs_mode; /* fs mode: LFS or ADAPTIVE */
167 int bggc_mode; /* bggc mode: off, on or sync */
168 int memory_mode; /* memory mode */
169 int errors; /* errors parameter */
170 int discard_unit; /*
171 * discard command's offset/size should
172 * be aligned to this unit: block,
173 * segment or section
174 */
175 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
176 block_t unusable_cap_perc; /* percentage for cap */
177 block_t unusable_cap; /* Amount of space allowed to be
178 * unusable when disabling checkpoint
179 */
180
181 /* For compression */
182 unsigned char compress_algorithm; /* algorithm type */
183 unsigned char compress_log_size; /* cluster log size */
184 unsigned char compress_level; /* compress level */
185 bool compress_chksum; /* compressed data chksum */
186 unsigned char compress_ext_cnt; /* extension count */
187 unsigned char nocompress_ext_cnt; /* nocompress extension count */
188 int compress_mode; /* compression mode */
189 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
190 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
191 };
192
193 #define F2FS_FEATURE_ENCRYPT 0x00000001
194 #define F2FS_FEATURE_BLKZONED 0x00000002
195 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004
196 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008
197 #define F2FS_FEATURE_PRJQUOTA 0x00000010
198 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020
199 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040
200 #define F2FS_FEATURE_QUOTA_INO 0x00000080
201 #define F2FS_FEATURE_INODE_CRTIME 0x00000100
202 #define F2FS_FEATURE_LOST_FOUND 0x00000200
203 #define F2FS_FEATURE_VERITY 0x00000400
204 #define F2FS_FEATURE_SB_CHKSUM 0x00000800
205 #define F2FS_FEATURE_CASEFOLD 0x00001000
206 #define F2FS_FEATURE_COMPRESSION 0x00002000
207 #define F2FS_FEATURE_RO 0x00004000
208
209 #define __F2FS_HAS_FEATURE(raw_super, mask) \
210 ((raw_super->feature & cpu_to_le32(mask)) != 0)
211 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
212
213 /*
214 * Default values for user and/or group using reserved blocks
215 */
216 #define F2FS_DEF_RESUID 0
217 #define F2FS_DEF_RESGID 0
218
219 /*
220 * For checkpoint manager
221 */
222 enum {
223 NAT_BITMAP,
224 SIT_BITMAP
225 };
226
227 #define CP_UMOUNT 0x00000001
228 #define CP_FASTBOOT 0x00000002
229 #define CP_SYNC 0x00000004
230 #define CP_RECOVERY 0x00000008
231 #define CP_DISCARD 0x00000010
232 #define CP_TRIMMED 0x00000020
233 #define CP_PAUSE 0x00000040
234 #define CP_RESIZE 0x00000080
235
236 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
237 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
238 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
239 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
240 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
241 #define DEF_CP_INTERVAL 60 /* 60 secs */
242 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
243 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
244 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
245 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
246
247 struct cp_control {
248 int reason;
249 __u64 trim_start;
250 __u64 trim_end;
251 __u64 trim_minlen;
252 };
253
254 /*
255 * indicate meta/data type
256 */
257 enum {
258 META_CP,
259 META_NAT,
260 META_SIT,
261 META_SSA,
262 META_MAX,
263 META_POR,
264 DATA_GENERIC, /* check range only */
265 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
266 DATA_GENERIC_ENHANCE_READ, /*
267 * strong check on range and segment
268 * bitmap but no warning due to race
269 * condition of read on truncated area
270 * by extent_cache
271 */
272 DATA_GENERIC_ENHANCE_UPDATE, /*
273 * strong check on range and segment
274 * bitmap for update case
275 */
276 META_GENERIC,
277 };
278
279 /* for the list of ino */
280 enum {
281 ORPHAN_INO, /* for orphan ino list */
282 APPEND_INO, /* for append ino list */
283 UPDATE_INO, /* for update ino list */
284 TRANS_DIR_INO, /* for transactions dir ino list */
285 XATTR_DIR_INO, /* for xattr updated dir ino list */
286 FLUSH_INO, /* for multiple device flushing */
287 MAX_INO_ENTRY, /* max. list */
288 };
289
290 struct ino_entry {
291 struct list_head list; /* list head */
292 nid_t ino; /* inode number */
293 unsigned int dirty_device; /* dirty device bitmap */
294 };
295
296 /* for the list of inodes to be GCed */
297 struct inode_entry {
298 struct list_head list; /* list head */
299 struct inode *inode; /* vfs inode pointer */
300 };
301
302 struct fsync_node_entry {
303 struct list_head list; /* list head */
304 struct page *page; /* warm node page pointer */
305 unsigned int seq_id; /* sequence id */
306 };
307
308 struct ckpt_req {
309 struct completion wait; /* completion for checkpoint done */
310 struct llist_node llnode; /* llist_node to be linked in wait queue */
311 int ret; /* return code of checkpoint */
312 ktime_t queue_time; /* request queued time */
313 };
314
315 struct ckpt_req_control {
316 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
317 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
318 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
319 atomic_t issued_ckpt; /* # of actually issued ckpts */
320 atomic_t total_ckpt; /* # of total ckpts */
321 atomic_t queued_ckpt; /* # of queued ckpts */
322 struct llist_head issue_list; /* list for command issue */
323 spinlock_t stat_lock; /* lock for below checkpoint time stats */
324 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
325 unsigned int peak_time; /* peak wait time in msec until now */
326 };
327
328 /* for the bitmap indicate blocks to be discarded */
329 struct discard_entry {
330 struct list_head list; /* list head */
331 block_t start_blkaddr; /* start blockaddr of current segment */
332 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
333 };
334
335 /* minimum discard granularity, unit: block count */
336 #define MIN_DISCARD_GRANULARITY 1
337 /* default discard granularity of inner discard thread, unit: block count */
338 #define DEFAULT_DISCARD_GRANULARITY 16
339 /* default maximum discard granularity of ordered discard, unit: block count */
340 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
341
342 /* max discard pend list number */
343 #define MAX_PLIST_NUM 512
344 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
345 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
346
347 enum {
348 D_PREP, /* initial */
349 D_PARTIAL, /* partially submitted */
350 D_SUBMIT, /* all submitted */
351 D_DONE, /* finished */
352 };
353
354 struct discard_info {
355 block_t lstart; /* logical start address */
356 block_t len; /* length */
357 block_t start; /* actual start address in dev */
358 };
359
360 struct discard_cmd {
361 struct rb_node rb_node; /* rb node located in rb-tree */
362 struct discard_info di; /* discard info */
363 struct list_head list; /* command list */
364 struct completion wait; /* compleation */
365 struct block_device *bdev; /* bdev */
366 unsigned short ref; /* reference count */
367 unsigned char state; /* state */
368 unsigned char queued; /* queued discard */
369 int error; /* bio error */
370 spinlock_t lock; /* for state/bio_ref updating */
371 unsigned short bio_ref; /* bio reference count */
372 };
373
374 enum {
375 DPOLICY_BG,
376 DPOLICY_FORCE,
377 DPOLICY_FSTRIM,
378 DPOLICY_UMOUNT,
379 MAX_DPOLICY,
380 };
381
382 struct discard_policy {
383 int type; /* type of discard */
384 unsigned int min_interval; /* used for candidates exist */
385 unsigned int mid_interval; /* used for device busy */
386 unsigned int max_interval; /* used for candidates not exist */
387 unsigned int max_requests; /* # of discards issued per round */
388 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
389 bool io_aware; /* issue discard in idle time */
390 bool sync; /* submit discard with REQ_SYNC flag */
391 bool ordered; /* issue discard by lba order */
392 bool timeout; /* discard timeout for put_super */
393 unsigned int granularity; /* discard granularity */
394 };
395
396 struct discard_cmd_control {
397 struct task_struct *f2fs_issue_discard; /* discard thread */
398 struct list_head entry_list; /* 4KB discard entry list */
399 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
400 struct list_head wait_list; /* store on-flushing entries */
401 struct list_head fstrim_list; /* in-flight discard from fstrim */
402 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
403 struct mutex cmd_lock;
404 unsigned int nr_discards; /* # of discards in the list */
405 unsigned int max_discards; /* max. discards to be issued */
406 unsigned int max_discard_request; /* max. discard request per round */
407 unsigned int min_discard_issue_time; /* min. interval between discard issue */
408 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
409 unsigned int max_discard_issue_time; /* max. interval between discard issue */
410 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
411 unsigned int discard_urgent_util; /* utilization which issue discard proactively */
412 unsigned int discard_granularity; /* discard granularity */
413 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */
414 unsigned int undiscard_blks; /* # of undiscard blocks */
415 unsigned int next_pos; /* next discard position */
416 atomic_t issued_discard; /* # of issued discard */
417 atomic_t queued_discard; /* # of queued discard */
418 atomic_t discard_cmd_cnt; /* # of cached cmd count */
419 struct rb_root_cached root; /* root of discard rb-tree */
420 bool rbtree_check; /* config for consistence check */
421 bool discard_wake; /* to wake up discard thread */
422 };
423
424 /* for the list of fsync inodes, used only during recovery */
425 struct fsync_inode_entry {
426 struct list_head list; /* list head */
427 struct inode *inode; /* vfs inode pointer */
428 block_t blkaddr; /* block address locating the last fsync */
429 block_t last_dentry; /* block address locating the last dentry */
430 };
431
432 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
433 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
434
435 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
436 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
437 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
438 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
439
440 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
441 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
442
update_nats_in_cursum(struct f2fs_journal * journal,int i)443 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
444 {
445 int before = nats_in_cursum(journal);
446
447 journal->n_nats = cpu_to_le16(before + i);
448 return before;
449 }
450
update_sits_in_cursum(struct f2fs_journal * journal,int i)451 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
452 {
453 int before = sits_in_cursum(journal);
454
455 journal->n_sits = cpu_to_le16(before + i);
456 return before;
457 }
458
__has_cursum_space(struct f2fs_journal * journal,int size,int type)459 static inline bool __has_cursum_space(struct f2fs_journal *journal,
460 int size, int type)
461 {
462 if (type == NAT_JOURNAL)
463 return size <= MAX_NAT_JENTRIES(journal);
464 return size <= MAX_SIT_JENTRIES(journal);
465 }
466
467 /* for inline stuff */
468 #define DEF_INLINE_RESERVED_SIZE 1
469 static inline int get_extra_isize(struct inode *inode);
470 static inline int get_inline_xattr_addrs(struct inode *inode);
471 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
472 (CUR_ADDRS_PER_INODE(inode) - \
473 get_inline_xattr_addrs(inode) - \
474 DEF_INLINE_RESERVED_SIZE))
475
476 /* for inline dir */
477 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
478 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
479 BITS_PER_BYTE + 1))
480 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
481 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
482 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
483 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
484 NR_INLINE_DENTRY(inode) + \
485 INLINE_DENTRY_BITMAP_SIZE(inode)))
486
487 /*
488 * For INODE and NODE manager
489 */
490 /* for directory operations */
491
492 struct f2fs_filename {
493 /*
494 * The filename the user specified. This is NULL for some
495 * filesystem-internal operations, e.g. converting an inline directory
496 * to a non-inline one, or roll-forward recovering an encrypted dentry.
497 */
498 const struct qstr *usr_fname;
499
500 /*
501 * The on-disk filename. For encrypted directories, this is encrypted.
502 * This may be NULL for lookups in an encrypted dir without the key.
503 */
504 struct fscrypt_str disk_name;
505
506 /* The dirhash of this filename */
507 f2fs_hash_t hash;
508
509 #ifdef CONFIG_FS_ENCRYPTION
510 /*
511 * For lookups in encrypted directories: either the buffer backing
512 * disk_name, or a buffer that holds the decoded no-key name.
513 */
514 struct fscrypt_str crypto_buf;
515 #endif
516 #if IS_ENABLED(CONFIG_UNICODE)
517 /*
518 * For casefolded directories: the casefolded name, but it's left NULL
519 * if the original name is not valid Unicode, if the original name is
520 * "." or "..", if the directory is both casefolded and encrypted and
521 * its encryption key is unavailable, or if the filesystem is doing an
522 * internal operation where usr_fname is also NULL. In all these cases
523 * we fall back to treating the name as an opaque byte sequence.
524 */
525 struct fscrypt_str cf_name;
526 #endif
527 };
528
529 struct f2fs_dentry_ptr {
530 struct inode *inode;
531 void *bitmap;
532 struct f2fs_dir_entry *dentry;
533 __u8 (*filename)[F2FS_SLOT_LEN];
534 int max;
535 int nr_bitmap;
536 };
537
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)538 static inline void make_dentry_ptr_block(struct inode *inode,
539 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
540 {
541 d->inode = inode;
542 d->max = NR_DENTRY_IN_BLOCK;
543 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
544 d->bitmap = t->dentry_bitmap;
545 d->dentry = t->dentry;
546 d->filename = t->filename;
547 }
548
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)549 static inline void make_dentry_ptr_inline(struct inode *inode,
550 struct f2fs_dentry_ptr *d, void *t)
551 {
552 int entry_cnt = NR_INLINE_DENTRY(inode);
553 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
554 int reserved_size = INLINE_RESERVED_SIZE(inode);
555
556 d->inode = inode;
557 d->max = entry_cnt;
558 d->nr_bitmap = bitmap_size;
559 d->bitmap = t;
560 d->dentry = t + bitmap_size + reserved_size;
561 d->filename = t + bitmap_size + reserved_size +
562 SIZE_OF_DIR_ENTRY * entry_cnt;
563 }
564
565 /*
566 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
567 * as its node offset to distinguish from index node blocks.
568 * But some bits are used to mark the node block.
569 */
570 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
571 >> OFFSET_BIT_SHIFT)
572 enum {
573 ALLOC_NODE, /* allocate a new node page if needed */
574 LOOKUP_NODE, /* look up a node without readahead */
575 LOOKUP_NODE_RA, /*
576 * look up a node with readahead called
577 * by get_data_block.
578 */
579 };
580
581 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
582
583 /* congestion wait timeout value, default: 20ms */
584 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
585
586 /* maximum retry quota flush count */
587 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
588
589 /* maximum retry of EIO'ed page */
590 #define MAX_RETRY_PAGE_EIO 100
591
592 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
593
594 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
595
596 /* dirty segments threshold for triggering CP */
597 #define DEFAULT_DIRTY_THRESHOLD 4
598
599 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
600 #define RECOVERY_MIN_RA_BLOCKS 1
601
602 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
603
604 /* for in-memory extent cache entry */
605 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
606
607 /* number of extent info in extent cache we try to shrink */
608 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128
609
610 /* number of age extent info in extent cache we try to shrink */
611 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
612 #define LAST_AGE_WEIGHT 30
613 #define SAME_AGE_REGION 1024
614
615 /*
616 * Define data block with age less than 1GB as hot data
617 * define data block with age less than 10GB but more than 1GB as warm data
618 */
619 #define DEF_HOT_DATA_AGE_THRESHOLD 262144
620 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440
621
622 /* extent cache type */
623 enum extent_type {
624 EX_READ,
625 EX_BLOCK_AGE,
626 NR_EXTENT_CACHES,
627 };
628
629 struct extent_info {
630 unsigned int fofs; /* start offset in a file */
631 unsigned int len; /* length of the extent */
632 union {
633 /* read extent_cache */
634 struct {
635 /* start block address of the extent */
636 block_t blk;
637 #ifdef CONFIG_F2FS_FS_COMPRESSION
638 /* physical extent length of compressed blocks */
639 unsigned int c_len;
640 #endif
641 };
642 /* block age extent_cache */
643 struct {
644 /* block age of the extent */
645 unsigned long long age;
646 /* last total blocks allocated */
647 unsigned long long last_blocks;
648 };
649 };
650 };
651
652 struct extent_node {
653 struct rb_node rb_node; /* rb node located in rb-tree */
654 struct extent_info ei; /* extent info */
655 struct list_head list; /* node in global extent list of sbi */
656 struct extent_tree *et; /* extent tree pointer */
657 };
658
659 struct extent_tree {
660 nid_t ino; /* inode number */
661 enum extent_type type; /* keep the extent tree type */
662 struct rb_root_cached root; /* root of extent info rb-tree */
663 struct extent_node *cached_en; /* recently accessed extent node */
664 struct list_head list; /* to be used by sbi->zombie_list */
665 rwlock_t lock; /* protect extent info rb-tree */
666 atomic_t node_cnt; /* # of extent node in rb-tree*/
667 bool largest_updated; /* largest extent updated */
668 struct extent_info largest; /* largest cached extent for EX_READ */
669 };
670
671 struct extent_tree_info {
672 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
673 struct mutex extent_tree_lock; /* locking extent radix tree */
674 struct list_head extent_list; /* lru list for shrinker */
675 spinlock_t extent_lock; /* locking extent lru list */
676 atomic_t total_ext_tree; /* extent tree count */
677 struct list_head zombie_list; /* extent zombie tree list */
678 atomic_t total_zombie_tree; /* extent zombie tree count */
679 atomic_t total_ext_node; /* extent info count */
680 };
681
682 /*
683 * State of block returned by f2fs_map_blocks.
684 */
685 #define F2FS_MAP_NEW (1U << 0)
686 #define F2FS_MAP_MAPPED (1U << 1)
687 #define F2FS_MAP_DELALLOC (1U << 2)
688 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
689 F2FS_MAP_DELALLOC)
690
691 struct f2fs_map_blocks {
692 struct block_device *m_bdev; /* for multi-device dio */
693 block_t m_pblk;
694 block_t m_lblk;
695 unsigned int m_len;
696 unsigned int m_flags;
697 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
698 pgoff_t *m_next_extent; /* point to next possible extent */
699 int m_seg_type;
700 bool m_may_create; /* indicate it is from write path */
701 bool m_multidev_dio; /* indicate it allows multi-device dio */
702 };
703
704 /* for flag in get_data_block */
705 enum {
706 F2FS_GET_BLOCK_DEFAULT,
707 F2FS_GET_BLOCK_FIEMAP,
708 F2FS_GET_BLOCK_BMAP,
709 F2FS_GET_BLOCK_DIO,
710 F2FS_GET_BLOCK_PRE_DIO,
711 F2FS_GET_BLOCK_PRE_AIO,
712 F2FS_GET_BLOCK_PRECACHE,
713 };
714
715 /*
716 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
717 */
718 #define FADVISE_COLD_BIT 0x01
719 #define FADVISE_LOST_PINO_BIT 0x02
720 #define FADVISE_ENCRYPT_BIT 0x04
721 #define FADVISE_ENC_NAME_BIT 0x08
722 #define FADVISE_KEEP_SIZE_BIT 0x10
723 #define FADVISE_HOT_BIT 0x20
724 #define FADVISE_VERITY_BIT 0x40
725 #define FADVISE_TRUNC_BIT 0x80
726
727 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
728
729 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
730 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
731 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
732
733 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
734 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
735 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
736
737 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
738 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
739
740 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
741 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
742
743 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
744 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
745
746 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
747 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
748 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
749
750 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
751 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
752
753 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
754 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
755 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
756
757 #define DEF_DIR_LEVEL 0
758
759 enum {
760 GC_FAILURE_PIN,
761 MAX_GC_FAILURE
762 };
763
764 /* used for f2fs_inode_info->flags */
765 enum {
766 FI_NEW_INODE, /* indicate newly allocated inode */
767 FI_DIRTY_INODE, /* indicate inode is dirty or not */
768 FI_AUTO_RECOVER, /* indicate inode is recoverable */
769 FI_DIRTY_DIR, /* indicate directory has dirty pages */
770 FI_INC_LINK, /* need to increment i_nlink */
771 FI_ACL_MODE, /* indicate acl mode */
772 FI_NO_ALLOC, /* should not allocate any blocks */
773 FI_FREE_NID, /* free allocated nide */
774 FI_NO_EXTENT, /* not to use the extent cache */
775 FI_INLINE_XATTR, /* used for inline xattr */
776 FI_INLINE_DATA, /* used for inline data*/
777 FI_INLINE_DENTRY, /* used for inline dentry */
778 FI_APPEND_WRITE, /* inode has appended data */
779 FI_UPDATE_WRITE, /* inode has in-place-update data */
780 FI_NEED_IPU, /* used for ipu per file */
781 FI_ATOMIC_FILE, /* indicate atomic file */
782 FI_DATA_EXIST, /* indicate data exists */
783 FI_SKIP_WRITES, /* should skip data page writeback */
784 FI_OPU_WRITE, /* used for opu per file */
785 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
786 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
787 FI_HOT_DATA, /* indicate file is hot */
788 FI_EXTRA_ATTR, /* indicate file has extra attribute */
789 FI_PROJ_INHERIT, /* indicate file inherits projectid */
790 FI_PIN_FILE, /* indicate file should not be gced */
791 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
792 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
793 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
794 FI_MMAP_FILE, /* indicate file was mmapped */
795 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
796 FI_COMPRESS_RELEASED, /* compressed blocks were released */
797 FI_ALIGNED_WRITE, /* enable aligned write */
798 FI_COW_FILE, /* indicate COW file */
799 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
800 FI_ATOMIC_DIRTIED, /* indicate atomic file is dirtied */
801 FI_ATOMIC_REPLACE, /* indicate atomic replace */
802 FI_OPENED_FILE, /* indicate file has been opened */
803 FI_MAX, /* max flag, never be used */
804 };
805
806 struct f2fs_inode_info {
807 struct inode vfs_inode; /* serve a vfs inode */
808 unsigned long i_flags; /* keep an inode flags for ioctl */
809 unsigned char i_advise; /* use to give file attribute hints */
810 unsigned char i_dir_level; /* use for dentry level for large dir */
811 unsigned int i_current_depth; /* only for directory depth */
812 /* for gc failure statistic */
813 unsigned int i_gc_failures[MAX_GC_FAILURE];
814 unsigned int i_pino; /* parent inode number */
815 umode_t i_acl_mode; /* keep file acl mode temporarily */
816
817 /* Use below internally in f2fs*/
818 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
819 struct f2fs_rwsem i_sem; /* protect fi info */
820 atomic_t dirty_pages; /* # of dirty pages */
821 f2fs_hash_t chash; /* hash value of given file name */
822 unsigned int clevel; /* maximum level of given file name */
823 struct task_struct *task; /* lookup and create consistency */
824 struct task_struct *cp_task; /* separate cp/wb IO stats*/
825 struct task_struct *wb_task; /* indicate inode is in context of writeback */
826 nid_t i_xattr_nid; /* node id that contains xattrs */
827 loff_t last_disk_size; /* lastly written file size */
828 spinlock_t i_size_lock; /* protect last_disk_size */
829
830 #ifdef CONFIG_QUOTA
831 struct dquot __rcu *i_dquot[MAXQUOTAS];
832
833 /* quota space reservation, managed internally by quota code */
834 qsize_t i_reserved_quota;
835 #endif
836 struct list_head dirty_list; /* dirty list for dirs and files */
837 struct list_head gdirty_list; /* linked in global dirty list */
838 struct task_struct *atomic_write_task; /* store atomic write task */
839 struct extent_tree *extent_tree[NR_EXTENT_CACHES];
840 /* cached extent_tree entry */
841 union {
842 struct inode *cow_inode; /* copy-on-write inode for atomic write */
843 struct inode *atomic_inode;
844 /* point to atomic_inode, available only for cow_inode */
845 };
846
847 /* avoid racing between foreground op and gc */
848 struct f2fs_rwsem i_gc_rwsem[2];
849 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
850
851 int i_extra_isize; /* size of extra space located in i_addr */
852 kprojid_t i_projid; /* id for project quota */
853 int i_inline_xattr_size; /* inline xattr size */
854 struct timespec64 i_crtime; /* inode creation time */
855 struct timespec64 i_disk_time[3];/* inode disk times */
856
857 /* for file compress */
858 atomic_t i_compr_blocks; /* # of compressed blocks */
859 unsigned char i_compress_algorithm; /* algorithm type */
860 unsigned char i_log_cluster_size; /* log of cluster size */
861 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
862 unsigned char i_compress_flag; /* compress flag */
863 unsigned int i_cluster_size; /* cluster size */
864
865 unsigned int atomic_write_cnt;
866 loff_t original_i_size; /* original i_size before atomic write */
867 };
868
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)869 static inline void get_read_extent_info(struct extent_info *ext,
870 struct f2fs_extent *i_ext)
871 {
872 ext->fofs = le32_to_cpu(i_ext->fofs);
873 ext->blk = le32_to_cpu(i_ext->blk);
874 ext->len = le32_to_cpu(i_ext->len);
875 }
876
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)877 static inline void set_raw_read_extent(struct extent_info *ext,
878 struct f2fs_extent *i_ext)
879 {
880 i_ext->fofs = cpu_to_le32(ext->fofs);
881 i_ext->blk = cpu_to_le32(ext->blk);
882 i_ext->len = cpu_to_le32(ext->len);
883 }
884
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)885 static inline bool __is_discard_mergeable(struct discard_info *back,
886 struct discard_info *front, unsigned int max_len)
887 {
888 return (back->lstart + back->len == front->lstart) &&
889 (back->len + front->len <= max_len);
890 }
891
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)892 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
893 struct discard_info *back, unsigned int max_len)
894 {
895 return __is_discard_mergeable(back, cur, max_len);
896 }
897
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)898 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
899 struct discard_info *front, unsigned int max_len)
900 {
901 return __is_discard_mergeable(cur, front, max_len);
902 }
903
904 /*
905 * For free nid management
906 */
907 enum nid_state {
908 FREE_NID, /* newly added to free nid list */
909 PREALLOC_NID, /* it is preallocated */
910 MAX_NID_STATE,
911 };
912
913 enum nat_state {
914 TOTAL_NAT,
915 DIRTY_NAT,
916 RECLAIMABLE_NAT,
917 MAX_NAT_STATE,
918 };
919
920 struct f2fs_nm_info {
921 block_t nat_blkaddr; /* base disk address of NAT */
922 nid_t max_nid; /* maximum possible node ids */
923 nid_t available_nids; /* # of available node ids */
924 nid_t next_scan_nid; /* the next nid to be scanned */
925 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
926 unsigned int ram_thresh; /* control the memory footprint */
927 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
928 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
929
930 /* NAT cache management */
931 struct radix_tree_root nat_root;/* root of the nat entry cache */
932 struct radix_tree_root nat_set_root;/* root of the nat set cache */
933 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
934 struct list_head nat_entries; /* cached nat entry list (clean) */
935 spinlock_t nat_list_lock; /* protect clean nat entry list */
936 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
937 unsigned int nat_blocks; /* # of nat blocks */
938
939 /* free node ids management */
940 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
941 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
942 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
943 spinlock_t nid_list_lock; /* protect nid lists ops */
944 struct mutex build_lock; /* lock for build free nids */
945 unsigned char **free_nid_bitmap;
946 unsigned char *nat_block_bitmap;
947 unsigned short *free_nid_count; /* free nid count of NAT block */
948
949 /* for checkpoint */
950 char *nat_bitmap; /* NAT bitmap pointer */
951
952 unsigned int nat_bits_blocks; /* # of nat bits blocks */
953 unsigned char *nat_bits; /* NAT bits blocks */
954 unsigned char *full_nat_bits; /* full NAT pages */
955 unsigned char *empty_nat_bits; /* empty NAT pages */
956 #ifdef CONFIG_F2FS_CHECK_FS
957 char *nat_bitmap_mir; /* NAT bitmap mirror */
958 #endif
959 int bitmap_size; /* bitmap size */
960 };
961
962 /*
963 * this structure is used as one of function parameters.
964 * all the information are dedicated to a given direct node block determined
965 * by the data offset in a file.
966 */
967 struct dnode_of_data {
968 struct inode *inode; /* vfs inode pointer */
969 struct page *inode_page; /* its inode page, NULL is possible */
970 struct page *node_page; /* cached direct node page */
971 nid_t nid; /* node id of the direct node block */
972 unsigned int ofs_in_node; /* data offset in the node page */
973 bool inode_page_locked; /* inode page is locked or not */
974 bool node_changed; /* is node block changed */
975 char cur_level; /* level of hole node page */
976 char max_level; /* level of current page located */
977 block_t data_blkaddr; /* block address of the node block */
978 };
979
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)980 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
981 struct page *ipage, struct page *npage, nid_t nid)
982 {
983 memset(dn, 0, sizeof(*dn));
984 dn->inode = inode;
985 dn->inode_page = ipage;
986 dn->node_page = npage;
987 dn->nid = nid;
988 }
989
990 /*
991 * For SIT manager
992 *
993 * By default, there are 6 active log areas across the whole main area.
994 * When considering hot and cold data separation to reduce cleaning overhead,
995 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
996 * respectively.
997 * In the current design, you should not change the numbers intentionally.
998 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
999 * logs individually according to the underlying devices. (default: 6)
1000 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1001 * data and 8 for node logs.
1002 */
1003 #define NR_CURSEG_DATA_TYPE (3)
1004 #define NR_CURSEG_NODE_TYPE (3)
1005 #define NR_CURSEG_INMEM_TYPE (2)
1006 #define NR_CURSEG_RO_TYPE (2)
1007 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1008 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1009
1010 enum {
1011 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1012 CURSEG_WARM_DATA, /* data blocks */
1013 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1014 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1015 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1016 CURSEG_COLD_NODE, /* indirect node blocks */
1017 NR_PERSISTENT_LOG, /* number of persistent log */
1018 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1019 /* pinned file that needs consecutive block address */
1020 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1021 NO_CHECK_TYPE, /* number of persistent & inmem log */
1022 };
1023
1024 struct flush_cmd {
1025 struct completion wait;
1026 struct llist_node llnode;
1027 nid_t ino;
1028 int ret;
1029 };
1030
1031 struct flush_cmd_control {
1032 struct task_struct *f2fs_issue_flush; /* flush thread */
1033 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1034 atomic_t issued_flush; /* # of issued flushes */
1035 atomic_t queued_flush; /* # of queued flushes */
1036 struct llist_head issue_list; /* list for command issue */
1037 struct llist_node *dispatch_list; /* list for command dispatch */
1038 };
1039
1040 struct f2fs_sm_info {
1041 struct sit_info *sit_info; /* whole segment information */
1042 struct free_segmap_info *free_info; /* free segment information */
1043 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1044 struct curseg_info *curseg_array; /* active segment information */
1045
1046 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1047
1048 block_t seg0_blkaddr; /* block address of 0'th segment */
1049 block_t main_blkaddr; /* start block address of main area */
1050 block_t ssa_blkaddr; /* start block address of SSA area */
1051
1052 unsigned int segment_count; /* total # of segments */
1053 unsigned int main_segments; /* # of segments in main area */
1054 unsigned int reserved_segments; /* # of reserved segments */
1055 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1056 unsigned int ovp_segments; /* # of overprovision segments */
1057
1058 /* a threshold to reclaim prefree segments */
1059 unsigned int rec_prefree_segments;
1060
1061 struct list_head sit_entry_set; /* sit entry set list */
1062
1063 unsigned int ipu_policy; /* in-place-update policy */
1064 unsigned int min_ipu_util; /* in-place-update threshold */
1065 unsigned int min_fsync_blocks; /* threshold for fsync */
1066 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1067 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1068 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1069
1070 /* for flush command control */
1071 struct flush_cmd_control *fcc_info;
1072
1073 /* for discard command control */
1074 struct discard_cmd_control *dcc_info;
1075 };
1076
1077 /*
1078 * For superblock
1079 */
1080 /*
1081 * COUNT_TYPE for monitoring
1082 *
1083 * f2fs monitors the number of several block types such as on-writeback,
1084 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1085 */
1086 #define WB_DATA_TYPE(p, f) \
1087 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1088 enum count_type {
1089 F2FS_DIRTY_DENTS,
1090 F2FS_DIRTY_DATA,
1091 F2FS_DIRTY_QDATA,
1092 F2FS_DIRTY_NODES,
1093 F2FS_DIRTY_META,
1094 F2FS_DIRTY_IMETA,
1095 F2FS_WB_CP_DATA,
1096 F2FS_WB_DATA,
1097 F2FS_RD_DATA,
1098 F2FS_RD_NODE,
1099 F2FS_RD_META,
1100 F2FS_DIO_WRITE,
1101 F2FS_DIO_READ,
1102 NR_COUNT_TYPE,
1103 };
1104
1105 /*
1106 * The below are the page types of bios used in submit_bio().
1107 * The available types are:
1108 * DATA User data pages. It operates as async mode.
1109 * NODE Node pages. It operates as async mode.
1110 * META FS metadata pages such as SIT, NAT, CP.
1111 * NR_PAGE_TYPE The number of page types.
1112 * META_FLUSH Make sure the previous pages are written
1113 * with waiting the bio's completion
1114 * ... Only can be used with META.
1115 */
1116 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1117 #define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE)
1118 enum page_type {
1119 DATA = 0,
1120 NODE = 1, /* should not change this */
1121 META,
1122 NR_PAGE_TYPE,
1123 META_FLUSH,
1124 IPU, /* the below types are used by tracepoints only. */
1125 OPU,
1126 };
1127
1128 enum temp_type {
1129 HOT = 0, /* must be zero for meta bio */
1130 WARM,
1131 COLD,
1132 NR_TEMP_TYPE,
1133 };
1134
1135 enum need_lock_type {
1136 LOCK_REQ = 0,
1137 LOCK_DONE,
1138 LOCK_RETRY,
1139 };
1140
1141 enum cp_reason_type {
1142 CP_NO_NEEDED,
1143 CP_NON_REGULAR,
1144 CP_COMPRESSED,
1145 CP_HARDLINK,
1146 CP_SB_NEED_CP,
1147 CP_WRONG_PINO,
1148 CP_NO_SPC_ROLL,
1149 CP_NODE_NEED_CP,
1150 CP_FASTBOOT_MODE,
1151 CP_SPEC_LOG_NUM,
1152 CP_RECOVER_DIR,
1153 CP_XATTR_DIR,
1154 };
1155
1156 enum iostat_type {
1157 /* WRITE IO */
1158 APP_DIRECT_IO, /* app direct write IOs */
1159 APP_BUFFERED_IO, /* app buffered write IOs */
1160 APP_WRITE_IO, /* app write IOs */
1161 APP_MAPPED_IO, /* app mapped IOs */
1162 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1163 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1164 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1165 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1166 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1167 FS_META_IO, /* meta IOs from kworker/reclaimer */
1168 FS_GC_DATA_IO, /* data IOs from forground gc */
1169 FS_GC_NODE_IO, /* node IOs from forground gc */
1170 FS_CP_DATA_IO, /* data IOs from checkpoint */
1171 FS_CP_NODE_IO, /* node IOs from checkpoint */
1172 FS_CP_META_IO, /* meta IOs from checkpoint */
1173
1174 /* READ IO */
1175 APP_DIRECT_READ_IO, /* app direct read IOs */
1176 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1177 APP_READ_IO, /* app read IOs */
1178 APP_MAPPED_READ_IO, /* app mapped read IOs */
1179 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1180 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1181 FS_DATA_READ_IO, /* data read IOs */
1182 FS_GDATA_READ_IO, /* data read IOs from background gc */
1183 FS_CDATA_READ_IO, /* compressed data read IOs */
1184 FS_NODE_READ_IO, /* node read IOs */
1185 FS_META_READ_IO, /* meta read IOs */
1186
1187 /* other */
1188 FS_DISCARD_IO, /* discard */
1189 FS_FLUSH_IO, /* flush */
1190 FS_ZONE_RESET_IO, /* zone reset */
1191 NR_IO_TYPE,
1192 };
1193
1194 struct f2fs_io_info {
1195 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1196 nid_t ino; /* inode number */
1197 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1198 enum temp_type temp; /* contains HOT/WARM/COLD */
1199 enum req_op op; /* contains REQ_OP_ */
1200 blk_opf_t op_flags; /* req_flag_bits */
1201 block_t new_blkaddr; /* new block address to be written */
1202 block_t old_blkaddr; /* old block address before Cow */
1203 struct page *page; /* page to be written */
1204 struct page *encrypted_page; /* encrypted page */
1205 struct page *compressed_page; /* compressed page */
1206 struct list_head list; /* serialize IOs */
1207 unsigned int compr_blocks; /* # of compressed block addresses */
1208 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */
1209 unsigned int version:8; /* version of the node */
1210 unsigned int submitted:1; /* indicate IO submission */
1211 unsigned int in_list:1; /* indicate fio is in io_list */
1212 unsigned int is_por:1; /* indicate IO is from recovery or not */
1213 unsigned int encrypted:1; /* indicate file is encrypted */
1214 unsigned int meta_gc:1; /* require meta inode GC */
1215 enum iostat_type io_type; /* io type */
1216 struct writeback_control *io_wbc; /* writeback control */
1217 struct bio **bio; /* bio for ipu */
1218 sector_t *last_block; /* last block number in bio */
1219 };
1220
1221 struct bio_entry {
1222 struct bio *bio;
1223 struct list_head list;
1224 };
1225
1226 #define is_read_io(rw) ((rw) == READ)
1227 struct f2fs_bio_info {
1228 struct f2fs_sb_info *sbi; /* f2fs superblock */
1229 struct bio *bio; /* bios to merge */
1230 sector_t last_block_in_bio; /* last block number */
1231 struct f2fs_io_info fio; /* store buffered io info. */
1232 #ifdef CONFIG_BLK_DEV_ZONED
1233 struct completion zone_wait; /* condition value for the previous open zone to close */
1234 struct bio *zone_pending_bio; /* pending bio for the previous zone */
1235 void *bi_private; /* previous bi_private for pending bio */
1236 #endif
1237 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1238 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1239 struct list_head io_list; /* track fios */
1240 struct list_head bio_list; /* bio entry list head */
1241 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1242 };
1243
1244 #define FDEV(i) (sbi->devs[i])
1245 #define RDEV(i) (raw_super->devs[i])
1246 struct f2fs_dev_info {
1247 struct block_device *bdev;
1248 char path[MAX_PATH_LEN];
1249 unsigned int total_segments;
1250 block_t start_blk;
1251 block_t end_blk;
1252 #ifdef CONFIG_BLK_DEV_ZONED
1253 unsigned int nr_blkz; /* Total number of zones */
1254 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1255 #endif
1256 };
1257
1258 enum inode_type {
1259 DIR_INODE, /* for dirty dir inode */
1260 FILE_INODE, /* for dirty regular/symlink inode */
1261 DIRTY_META, /* for all dirtied inode metadata */
1262 NR_INODE_TYPE,
1263 };
1264
1265 /* for inner inode cache management */
1266 struct inode_management {
1267 struct radix_tree_root ino_root; /* ino entry array */
1268 spinlock_t ino_lock; /* for ino entry lock */
1269 struct list_head ino_list; /* inode list head */
1270 unsigned long ino_num; /* number of entries */
1271 };
1272
1273 /* for GC_AT */
1274 struct atgc_management {
1275 bool atgc_enabled; /* ATGC is enabled or not */
1276 struct rb_root_cached root; /* root of victim rb-tree */
1277 struct list_head victim_list; /* linked with all victim entries */
1278 unsigned int victim_count; /* victim count in rb-tree */
1279 unsigned int candidate_ratio; /* candidate ratio */
1280 unsigned int max_candidate_count; /* max candidate count */
1281 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1282 unsigned long long age_threshold; /* age threshold */
1283 };
1284
1285 struct f2fs_gc_control {
1286 unsigned int victim_segno; /* target victim segment number */
1287 int init_gc_type; /* FG_GC or BG_GC */
1288 bool no_bg_gc; /* check the space and stop bg_gc */
1289 bool should_migrate_blocks; /* should migrate blocks */
1290 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1291 unsigned int nr_free_secs; /* # of free sections to do GC */
1292 };
1293
1294 /*
1295 * For s_flag in struct f2fs_sb_info
1296 * Modification on enum should be synchronized with s_flag array
1297 */
1298 enum {
1299 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1300 SBI_IS_CLOSE, /* specify unmounting */
1301 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1302 SBI_POR_DOING, /* recovery is doing or not */
1303 SBI_NEED_SB_WRITE, /* need to recover superblock */
1304 SBI_NEED_CP, /* need to checkpoint */
1305 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1306 SBI_IS_RECOVERED, /* recovered orphan/data */
1307 SBI_CP_DISABLED, /* CP was disabled last mount */
1308 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1309 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1310 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1311 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1312 SBI_IS_RESIZEFS, /* resizefs is in process */
1313 SBI_IS_FREEZING, /* freezefs is in process */
1314 SBI_IS_WRITABLE, /* remove ro mountoption transiently */
1315 MAX_SBI_FLAG,
1316 };
1317
1318 enum {
1319 CP_TIME,
1320 REQ_TIME,
1321 DISCARD_TIME,
1322 GC_TIME,
1323 DISABLE_TIME,
1324 UMOUNT_DISCARD_TIMEOUT,
1325 MAX_TIME,
1326 };
1327
1328 /* Note that you need to keep synchronization with this gc_mode_names array */
1329 enum {
1330 GC_NORMAL,
1331 GC_IDLE_CB,
1332 GC_IDLE_GREEDY,
1333 GC_IDLE_AT,
1334 GC_URGENT_HIGH,
1335 GC_URGENT_LOW,
1336 GC_URGENT_MID,
1337 MAX_GC_MODE,
1338 };
1339
1340 enum {
1341 BGGC_MODE_ON, /* background gc is on */
1342 BGGC_MODE_OFF, /* background gc is off */
1343 BGGC_MODE_SYNC, /*
1344 * background gc is on, migrating blocks
1345 * like foreground gc
1346 */
1347 };
1348
1349 enum {
1350 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1351 FS_MODE_LFS, /* use lfs allocation only */
1352 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1353 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1354 };
1355
1356 enum {
1357 ALLOC_MODE_DEFAULT, /* stay default */
1358 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1359 };
1360
1361 enum fsync_mode {
1362 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1363 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1364 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1365 };
1366
1367 enum {
1368 COMPR_MODE_FS, /*
1369 * automatically compress compression
1370 * enabled files
1371 */
1372 COMPR_MODE_USER, /*
1373 * automatical compression is disabled.
1374 * user can control the file compression
1375 * using ioctls
1376 */
1377 };
1378
1379 enum {
1380 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1381 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1382 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1383 };
1384
1385 enum {
1386 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1387 MEMORY_MODE_LOW, /* memory mode for low memry devices */
1388 };
1389
1390 enum errors_option {
1391 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */
1392 MOUNT_ERRORS_CONTINUE, /* continue on errors */
1393 MOUNT_ERRORS_PANIC, /* panic on errors */
1394 };
1395
1396 enum {
1397 BACKGROUND,
1398 FOREGROUND,
1399 MAX_CALL_TYPE,
1400 TOTAL_CALL = FOREGROUND,
1401 };
1402
1403 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1404 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1405 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1406
1407 /*
1408 * Layout of f2fs page.private:
1409 *
1410 * Layout A: lowest bit should be 1
1411 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1412 * bit 0 PAGE_PRIVATE_NOT_POINTER
1413 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION
1414 * bit 2 PAGE_PRIVATE_INLINE_INODE
1415 * bit 3 PAGE_PRIVATE_REF_RESOURCE
1416 * bit 4 PAGE_PRIVATE_ATOMIC_WRITE
1417 * bit 5- f2fs private data
1418 *
1419 * Layout B: lowest bit should be 0
1420 * page.private is a wrapped pointer.
1421 */
1422 enum {
1423 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1424 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1425 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1426 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1427 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */
1428 PAGE_PRIVATE_MAX
1429 };
1430
1431 /* For compression */
1432 enum compress_algorithm_type {
1433 COMPRESS_LZO,
1434 COMPRESS_LZ4,
1435 COMPRESS_ZSTD,
1436 COMPRESS_LZORLE,
1437 COMPRESS_MAX,
1438 };
1439
1440 enum compress_flag {
1441 COMPRESS_CHKSUM,
1442 COMPRESS_MAX_FLAG,
1443 };
1444
1445 #define COMPRESS_WATERMARK 20
1446 #define COMPRESS_PERCENT 20
1447
1448 #define COMPRESS_DATA_RESERVED_SIZE 4
1449 struct compress_data {
1450 __le32 clen; /* compressed data size */
1451 __le32 chksum; /* compressed data chksum */
1452 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1453 u8 cdata[]; /* compressed data */
1454 };
1455
1456 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1457
1458 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1459
1460 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
1461
1462 #define COMPRESS_LEVEL_OFFSET 8
1463
1464 /* compress context */
1465 struct compress_ctx {
1466 struct inode *inode; /* inode the context belong to */
1467 pgoff_t cluster_idx; /* cluster index number */
1468 unsigned int cluster_size; /* page count in cluster */
1469 unsigned int log_cluster_size; /* log of cluster size */
1470 struct page **rpages; /* pages store raw data in cluster */
1471 unsigned int nr_rpages; /* total page number in rpages */
1472 struct page **cpages; /* pages store compressed data in cluster */
1473 unsigned int nr_cpages; /* total page number in cpages */
1474 unsigned int valid_nr_cpages; /* valid page number in cpages */
1475 void *rbuf; /* virtual mapped address on rpages */
1476 struct compress_data *cbuf; /* virtual mapped address on cpages */
1477 size_t rlen; /* valid data length in rbuf */
1478 size_t clen; /* valid data length in cbuf */
1479 void *private; /* payload buffer for specified compression algorithm */
1480 void *private2; /* extra payload buffer */
1481 };
1482
1483 /* compress context for write IO path */
1484 struct compress_io_ctx {
1485 u32 magic; /* magic number to indicate page is compressed */
1486 struct inode *inode; /* inode the context belong to */
1487 struct page **rpages; /* pages store raw data in cluster */
1488 unsigned int nr_rpages; /* total page number in rpages */
1489 atomic_t pending_pages; /* in-flight compressed page count */
1490 };
1491
1492 /* Context for decompressing one cluster on the read IO path */
1493 struct decompress_io_ctx {
1494 u32 magic; /* magic number to indicate page is compressed */
1495 struct inode *inode; /* inode the context belong to */
1496 pgoff_t cluster_idx; /* cluster index number */
1497 unsigned int cluster_size; /* page count in cluster */
1498 unsigned int log_cluster_size; /* log of cluster size */
1499 struct page **rpages; /* pages store raw data in cluster */
1500 unsigned int nr_rpages; /* total page number in rpages */
1501 struct page **cpages; /* pages store compressed data in cluster */
1502 unsigned int nr_cpages; /* total page number in cpages */
1503 struct page **tpages; /* temp pages to pad holes in cluster */
1504 void *rbuf; /* virtual mapped address on rpages */
1505 struct compress_data *cbuf; /* virtual mapped address on cpages */
1506 size_t rlen; /* valid data length in rbuf */
1507 size_t clen; /* valid data length in cbuf */
1508
1509 /*
1510 * The number of compressed pages remaining to be read in this cluster.
1511 * This is initially nr_cpages. It is decremented by 1 each time a page
1512 * has been read (or failed to be read). When it reaches 0, the cluster
1513 * is decompressed (or an error is reported).
1514 *
1515 * If an error occurs before all the pages have been submitted for I/O,
1516 * then this will never reach 0. In this case the I/O submitter is
1517 * responsible for calling f2fs_decompress_end_io() instead.
1518 */
1519 atomic_t remaining_pages;
1520
1521 /*
1522 * Number of references to this decompress_io_ctx.
1523 *
1524 * One reference is held for I/O completion. This reference is dropped
1525 * after the pagecache pages are updated and unlocked -- either after
1526 * decompression (and verity if enabled), or after an error.
1527 *
1528 * In addition, each compressed page holds a reference while it is in a
1529 * bio. These references are necessary prevent compressed pages from
1530 * being freed while they are still in a bio.
1531 */
1532 refcount_t refcnt;
1533
1534 bool failed; /* IO error occurred before decompression? */
1535 bool need_verity; /* need fs-verity verification after decompression? */
1536 void *private; /* payload buffer for specified decompression algorithm */
1537 void *private2; /* extra payload buffer */
1538 struct work_struct verity_work; /* work to verify the decompressed pages */
1539 struct work_struct free_work; /* work for late free this structure itself */
1540 };
1541
1542 #define NULL_CLUSTER ((unsigned int)(~0))
1543 #define MIN_COMPRESS_LOG_SIZE 2
1544 #define MAX_COMPRESS_LOG_SIZE 8
1545 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1546
1547 struct f2fs_sb_info {
1548 struct super_block *sb; /* pointer to VFS super block */
1549 struct proc_dir_entry *s_proc; /* proc entry */
1550 struct f2fs_super_block *raw_super; /* raw super block pointer */
1551 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1552 int valid_super_block; /* valid super block no */
1553 unsigned long s_flag; /* flags for sbi */
1554 struct mutex writepages; /* mutex for writepages() */
1555
1556 #ifdef CONFIG_BLK_DEV_ZONED
1557 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1558 #endif
1559
1560 /* for node-related operations */
1561 struct f2fs_nm_info *nm_info; /* node manager */
1562 struct inode *node_inode; /* cache node blocks */
1563
1564 /* for segment-related operations */
1565 struct f2fs_sm_info *sm_info; /* segment manager */
1566
1567 /* for bio operations */
1568 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1569 /* keep migration IO order for LFS mode */
1570 struct f2fs_rwsem io_order_lock;
1571 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1572 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1573
1574 /* for checkpoint */
1575 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1576 int cur_cp_pack; /* remain current cp pack */
1577 spinlock_t cp_lock; /* for flag in ckpt */
1578 struct inode *meta_inode; /* cache meta blocks */
1579 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1580 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1581 struct f2fs_rwsem node_write; /* locking node writes */
1582 struct f2fs_rwsem node_change; /* locking node change */
1583 wait_queue_head_t cp_wait;
1584 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1585 long interval_time[MAX_TIME]; /* to store thresholds */
1586 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1587
1588 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1589
1590 spinlock_t fsync_node_lock; /* for node entry lock */
1591 struct list_head fsync_node_list; /* node list head */
1592 unsigned int fsync_seg_id; /* sequence id */
1593 unsigned int fsync_node_num; /* number of node entries */
1594
1595 /* for orphan inode, use 0'th array */
1596 unsigned int max_orphans; /* max orphan inodes */
1597
1598 /* for inode management */
1599 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1600 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1601 struct mutex flush_lock; /* for flush exclusion */
1602
1603 /* for extent tree cache */
1604 struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1605 atomic64_t allocated_data_blocks; /* for block age extent_cache */
1606
1607 /* The threshold used for hot and warm data seperation*/
1608 unsigned int hot_data_age_threshold;
1609 unsigned int warm_data_age_threshold;
1610 unsigned int last_age_weight;
1611
1612 /* basic filesystem units */
1613 unsigned int log_sectors_per_block; /* log2 sectors per block */
1614 unsigned int log_blocksize; /* log2 block size */
1615 unsigned int blocksize; /* block size */
1616 unsigned int root_ino_num; /* root inode number*/
1617 unsigned int node_ino_num; /* node inode number*/
1618 unsigned int meta_ino_num; /* meta inode number*/
1619 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1620 unsigned int blocks_per_seg; /* blocks per segment */
1621 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1622 unsigned int segs_per_sec; /* segments per section */
1623 unsigned int secs_per_zone; /* sections per zone */
1624 unsigned int total_sections; /* total section count */
1625 unsigned int total_node_count; /* total node block count */
1626 unsigned int total_valid_node_count; /* valid node block count */
1627 int dir_level; /* directory level */
1628 bool readdir_ra; /* readahead inode in readdir */
1629 u64 max_io_bytes; /* max io bytes to merge IOs */
1630
1631 block_t user_block_count; /* # of user blocks */
1632 block_t total_valid_block_count; /* # of valid blocks */
1633 block_t discard_blks; /* discard command candidats */
1634 block_t last_valid_block_count; /* for recovery */
1635 block_t reserved_blocks; /* configurable reserved blocks */
1636 block_t current_reserved_blocks; /* current reserved blocks */
1637
1638 /* Additional tracking for no checkpoint mode */
1639 block_t unusable_block_count; /* # of blocks saved by last cp */
1640
1641 unsigned int nquota_files; /* # of quota sysfile */
1642 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1643
1644 /* # of pages, see count_type */
1645 atomic_t nr_pages[NR_COUNT_TYPE];
1646 /* # of allocated blocks */
1647 struct percpu_counter alloc_valid_block_count;
1648 /* # of node block writes as roll forward recovery */
1649 struct percpu_counter rf_node_block_count;
1650
1651 /* writeback control */
1652 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1653
1654 /* valid inode count */
1655 struct percpu_counter total_valid_inode_count;
1656
1657 struct f2fs_mount_info mount_opt; /* mount options */
1658
1659 /* for cleaning operations */
1660 struct f2fs_rwsem gc_lock; /*
1661 * semaphore for GC, avoid
1662 * race between GC and GC or CP
1663 */
1664 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1665 struct atgc_management am; /* atgc management */
1666 unsigned int cur_victim_sec; /* current victim section num */
1667 unsigned int gc_mode; /* current GC state */
1668 unsigned int next_victim_seg[2]; /* next segment in victim section */
1669 spinlock_t gc_remaining_trials_lock;
1670 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1671 unsigned int gc_remaining_trials;
1672
1673 /* for skip statistic */
1674 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1675
1676 /* threshold for gc trials on pinned files */
1677 u64 gc_pin_file_threshold;
1678 struct f2fs_rwsem pin_sem;
1679
1680 /* maximum # of trials to find a victim segment for SSR and GC */
1681 unsigned int max_victim_search;
1682 /* migration granularity of garbage collection, unit: segment */
1683 unsigned int migration_granularity;
1684
1685 /*
1686 * for stat information.
1687 * one is for the LFS mode, and the other is for the SSR mode.
1688 */
1689 #ifdef CONFIG_F2FS_STAT_FS
1690 struct f2fs_stat_info *stat_info; /* FS status information */
1691 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1692 unsigned int segment_count[2]; /* # of allocated segments */
1693 unsigned int block_count[2]; /* # of allocated blocks */
1694 atomic_t inplace_count; /* # of inplace update */
1695 /* # of lookup extent cache */
1696 atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1697 /* # of hit rbtree extent node */
1698 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1699 /* # of hit cached extent node */
1700 atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1701 /* # of hit largest extent node in read extent cache */
1702 atomic64_t read_hit_largest;
1703 atomic_t inline_xattr; /* # of inline_xattr inodes */
1704 atomic_t inline_inode; /* # of inline_data inodes */
1705 atomic_t inline_dir; /* # of inline_dentry inodes */
1706 atomic_t compr_inode; /* # of compressed inodes */
1707 atomic64_t compr_blocks; /* # of compressed blocks */
1708 atomic_t swapfile_inode; /* # of swapfile inodes */
1709 atomic_t atomic_files; /* # of opened atomic file */
1710 atomic_t max_aw_cnt; /* max # of atomic writes */
1711 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1712 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1713 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1714 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */
1715 #endif
1716 spinlock_t stat_lock; /* lock for stat operations */
1717
1718 /* to attach REQ_META|REQ_FUA flags */
1719 unsigned int data_io_flag;
1720 unsigned int node_io_flag;
1721
1722 /* For sysfs support */
1723 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1724 struct completion s_kobj_unregister;
1725
1726 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1727 struct completion s_stat_kobj_unregister;
1728
1729 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1730 struct completion s_feature_list_kobj_unregister;
1731
1732 /* For shrinker support */
1733 struct list_head s_list;
1734 struct mutex umount_mutex;
1735 unsigned int shrinker_run_no;
1736
1737 /* For multi devices */
1738 int s_ndevs; /* number of devices */
1739 struct f2fs_dev_info *devs; /* for device list */
1740 unsigned int dirty_device; /* for checkpoint data flush */
1741 spinlock_t dev_lock; /* protect dirty_device */
1742 bool aligned_blksize; /* all devices has the same logical blksize */
1743
1744 /* For write statistics */
1745 u64 sectors_written_start;
1746 u64 kbytes_written;
1747
1748 /* Reference to checksum algorithm driver via cryptoapi */
1749 struct crypto_shash *s_chksum_driver;
1750
1751 /* Precomputed FS UUID checksum for seeding other checksums */
1752 __u32 s_chksum_seed;
1753
1754 struct workqueue_struct *post_read_wq; /* post read workqueue */
1755
1756 /*
1757 * If we are in irq context, let's update error information into
1758 * on-disk superblock in the work.
1759 */
1760 struct work_struct s_error_work;
1761 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1762 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */
1763 spinlock_t error_lock; /* protect errors/stop_reason array */
1764 bool error_dirty; /* errors of sb is dirty */
1765
1766 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1767 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1768
1769 /* For reclaimed segs statistics per each GC mode */
1770 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1771 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1772
1773 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1774
1775 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1776 int max_fragment_hole; /* max hole size for block fragmentation mode */
1777
1778 /* For atomic write statistics */
1779 atomic64_t current_atomic_write;
1780 s64 peak_atomic_write;
1781 u64 committed_atomic_block;
1782 u64 revoked_atomic_block;
1783
1784 #ifdef CONFIG_F2FS_FS_COMPRESSION
1785 struct kmem_cache *page_array_slab; /* page array entry */
1786 unsigned int page_array_slab_size; /* default page array slab size */
1787
1788 /* For runtime compression statistics */
1789 u64 compr_written_block;
1790 u64 compr_saved_block;
1791 u32 compr_new_inode;
1792
1793 /* For compressed block cache */
1794 struct inode *compress_inode; /* cache compressed blocks */
1795 unsigned int compress_percent; /* cache page percentage */
1796 unsigned int compress_watermark; /* cache page watermark */
1797 atomic_t compress_page_hit; /* cache hit count */
1798 #endif
1799
1800 #ifdef CONFIG_F2FS_IOSTAT
1801 /* For app/fs IO statistics */
1802 spinlock_t iostat_lock;
1803 unsigned long long iostat_count[NR_IO_TYPE];
1804 unsigned long long iostat_bytes[NR_IO_TYPE];
1805 unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1806 bool iostat_enable;
1807 unsigned long iostat_next_period;
1808 unsigned int iostat_period_ms;
1809
1810 /* For io latency related statistics info in one iostat period */
1811 spinlock_t iostat_lat_lock;
1812 struct iostat_lat_info *iostat_io_lat;
1813 #endif
1814 };
1815
1816 /* Definitions to access f2fs_sb_info */
1817 #define BLKS_PER_SEG(sbi) \
1818 ((sbi)->blocks_per_seg)
1819 #define BLKS_PER_SEC(sbi) \
1820 ((sbi)->segs_per_sec << (sbi)->log_blocks_per_seg)
1821 #define SEGS_PER_SEC(sbi) \
1822 ((sbi)->segs_per_sec)
1823
1824 __printf(3, 4)
1825 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1826
1827 #define f2fs_err(sbi, fmt, ...) \
1828 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1829 #define f2fs_warn(sbi, fmt, ...) \
1830 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1831 #define f2fs_notice(sbi, fmt, ...) \
1832 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1833 #define f2fs_info(sbi, fmt, ...) \
1834 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1835 #define f2fs_debug(sbi, fmt, ...) \
1836 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1837
1838 #define f2fs_err_ratelimited(sbi, fmt, ...) \
1839 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1840 #define f2fs_warn_ratelimited(sbi, fmt, ...) \
1841 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1842 #define f2fs_info_ratelimited(sbi, fmt, ...) \
1843 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1844
1845 #ifdef CONFIG_F2FS_FAULT_INJECTION
1846 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
1847 __builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1848 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1849 const char *func, const char *parent_func)
1850 {
1851 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1852
1853 if (!ffi->inject_rate)
1854 return false;
1855
1856 if (!IS_FAULT_SET(ffi, type))
1857 return false;
1858
1859 atomic_inc(&ffi->inject_ops);
1860 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1861 atomic_set(&ffi->inject_ops, 0);
1862 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1863 f2fs_fault_name[type], func, parent_func);
1864 return true;
1865 }
1866 return false;
1867 }
1868 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1869 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1870 {
1871 return false;
1872 }
1873 #endif
1874
1875 /*
1876 * Test if the mounted volume is a multi-device volume.
1877 * - For a single regular disk volume, sbi->s_ndevs is 0.
1878 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1879 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1880 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1881 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1882 {
1883 return sbi->s_ndevs > 1;
1884 }
1885
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1886 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1887 {
1888 unsigned long now = jiffies;
1889
1890 sbi->last_time[type] = now;
1891
1892 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1893 if (type == REQ_TIME) {
1894 sbi->last_time[DISCARD_TIME] = now;
1895 sbi->last_time[GC_TIME] = now;
1896 }
1897 }
1898
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1899 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1900 {
1901 unsigned long interval = sbi->interval_time[type] * HZ;
1902
1903 return time_after(jiffies, sbi->last_time[type] + interval);
1904 }
1905
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1906 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1907 int type)
1908 {
1909 unsigned long interval = sbi->interval_time[type] * HZ;
1910 unsigned int wait_ms = 0;
1911 long delta;
1912
1913 delta = (sbi->last_time[type] + interval) - jiffies;
1914 if (delta > 0)
1915 wait_ms = jiffies_to_msecs(delta);
1916
1917 return wait_ms;
1918 }
1919
1920 /*
1921 * Inline functions
1922 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1923 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1924 const void *address, unsigned int length)
1925 {
1926 struct {
1927 struct shash_desc shash;
1928 char ctx[4];
1929 } desc;
1930 int err;
1931
1932 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1933
1934 desc.shash.tfm = sbi->s_chksum_driver;
1935 *(u32 *)desc.ctx = crc;
1936
1937 err = crypto_shash_update(&desc.shash, address, length);
1938 BUG_ON(err);
1939
1940 return *(u32 *)desc.ctx;
1941 }
1942
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1943 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1944 unsigned int length)
1945 {
1946 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1947 }
1948
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1949 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1950 void *buf, size_t buf_size)
1951 {
1952 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1953 }
1954
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1955 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1956 const void *address, unsigned int length)
1957 {
1958 return __f2fs_crc32(sbi, crc, address, length);
1959 }
1960
F2FS_I(struct inode * inode)1961 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1962 {
1963 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1964 }
1965
F2FS_SB(struct super_block * sb)1966 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1967 {
1968 return sb->s_fs_info;
1969 }
1970
F2FS_I_SB(struct inode * inode)1971 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1972 {
1973 return F2FS_SB(inode->i_sb);
1974 }
1975
F2FS_M_SB(struct address_space * mapping)1976 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1977 {
1978 return F2FS_I_SB(mapping->host);
1979 }
1980
F2FS_P_SB(struct page * page)1981 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1982 {
1983 return F2FS_M_SB(page_file_mapping(page));
1984 }
1985
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1986 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1987 {
1988 return (struct f2fs_super_block *)(sbi->raw_super);
1989 }
1990
F2FS_CKPT(struct f2fs_sb_info * sbi)1991 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1992 {
1993 return (struct f2fs_checkpoint *)(sbi->ckpt);
1994 }
1995
F2FS_NODE(struct page * page)1996 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1997 {
1998 return (struct f2fs_node *)page_address(page);
1999 }
2000
F2FS_INODE(struct page * page)2001 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2002 {
2003 return &((struct f2fs_node *)page_address(page))->i;
2004 }
2005
NM_I(struct f2fs_sb_info * sbi)2006 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2007 {
2008 return (struct f2fs_nm_info *)(sbi->nm_info);
2009 }
2010
SM_I(struct f2fs_sb_info * sbi)2011 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2012 {
2013 return (struct f2fs_sm_info *)(sbi->sm_info);
2014 }
2015
SIT_I(struct f2fs_sb_info * sbi)2016 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2017 {
2018 return (struct sit_info *)(SM_I(sbi)->sit_info);
2019 }
2020
FREE_I(struct f2fs_sb_info * sbi)2021 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2022 {
2023 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2024 }
2025
DIRTY_I(struct f2fs_sb_info * sbi)2026 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2027 {
2028 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2029 }
2030
META_MAPPING(struct f2fs_sb_info * sbi)2031 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2032 {
2033 return sbi->meta_inode->i_mapping;
2034 }
2035
NODE_MAPPING(struct f2fs_sb_info * sbi)2036 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2037 {
2038 return sbi->node_inode->i_mapping;
2039 }
2040
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2041 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2042 {
2043 return test_bit(type, &sbi->s_flag);
2044 }
2045
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2046 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2047 {
2048 set_bit(type, &sbi->s_flag);
2049 }
2050
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2051 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2052 {
2053 clear_bit(type, &sbi->s_flag);
2054 }
2055
cur_cp_version(struct f2fs_checkpoint * cp)2056 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2057 {
2058 return le64_to_cpu(cp->checkpoint_ver);
2059 }
2060
f2fs_qf_ino(struct super_block * sb,int type)2061 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2062 {
2063 if (type < F2FS_MAX_QUOTAS)
2064 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2065 return 0;
2066 }
2067
cur_cp_crc(struct f2fs_checkpoint * cp)2068 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2069 {
2070 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2071 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2072 }
2073
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2074 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2075 {
2076 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2077
2078 return ckpt_flags & f;
2079 }
2080
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2081 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2082 {
2083 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2084 }
2085
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2086 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2087 {
2088 unsigned int ckpt_flags;
2089
2090 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2091 ckpt_flags |= f;
2092 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2093 }
2094
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2095 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2096 {
2097 unsigned long flags;
2098
2099 spin_lock_irqsave(&sbi->cp_lock, flags);
2100 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2101 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2102 }
2103
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2104 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2105 {
2106 unsigned int ckpt_flags;
2107
2108 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2109 ckpt_flags &= (~f);
2110 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2111 }
2112
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2113 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2114 {
2115 unsigned long flags;
2116
2117 spin_lock_irqsave(&sbi->cp_lock, flags);
2118 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2119 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2120 }
2121
2122 #define init_f2fs_rwsem(sem) \
2123 do { \
2124 static struct lock_class_key __key; \
2125 \
2126 __init_f2fs_rwsem((sem), #sem, &__key); \
2127 } while (0)
2128
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2129 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2130 const char *sem_name, struct lock_class_key *key)
2131 {
2132 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2133 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2134 init_waitqueue_head(&sem->read_waiters);
2135 #endif
2136 }
2137
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2138 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2139 {
2140 return rwsem_is_locked(&sem->internal_rwsem);
2141 }
2142
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2143 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2144 {
2145 return rwsem_is_contended(&sem->internal_rwsem);
2146 }
2147
f2fs_down_read(struct f2fs_rwsem * sem)2148 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2149 {
2150 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2151 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2152 #else
2153 down_read(&sem->internal_rwsem);
2154 #endif
2155 }
2156
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2157 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2158 {
2159 return down_read_trylock(&sem->internal_rwsem);
2160 }
2161
f2fs_up_read(struct f2fs_rwsem * sem)2162 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2163 {
2164 up_read(&sem->internal_rwsem);
2165 }
2166
f2fs_down_write(struct f2fs_rwsem * sem)2167 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2168 {
2169 down_write(&sem->internal_rwsem);
2170 }
2171
2172 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2173 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2174 {
2175 down_read_nested(&sem->internal_rwsem, subclass);
2176 }
2177
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2178 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2179 {
2180 down_write_nested(&sem->internal_rwsem, subclass);
2181 }
2182 #else
2183 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2184 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2185 #endif
2186
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2187 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2188 {
2189 return down_write_trylock(&sem->internal_rwsem);
2190 }
2191
f2fs_up_write(struct f2fs_rwsem * sem)2192 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2193 {
2194 up_write(&sem->internal_rwsem);
2195 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2196 wake_up_all(&sem->read_waiters);
2197 #endif
2198 }
2199
f2fs_lock_op(struct f2fs_sb_info * sbi)2200 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2201 {
2202 f2fs_down_read(&sbi->cp_rwsem);
2203 }
2204
f2fs_trylock_op(struct f2fs_sb_info * sbi)2205 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2206 {
2207 if (time_to_inject(sbi, FAULT_LOCK_OP))
2208 return 0;
2209 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2210 }
2211
f2fs_unlock_op(struct f2fs_sb_info * sbi)2212 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2213 {
2214 f2fs_up_read(&sbi->cp_rwsem);
2215 }
2216
f2fs_lock_all(struct f2fs_sb_info * sbi)2217 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2218 {
2219 f2fs_down_write(&sbi->cp_rwsem);
2220 }
2221
f2fs_unlock_all(struct f2fs_sb_info * sbi)2222 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2223 {
2224 f2fs_up_write(&sbi->cp_rwsem);
2225 }
2226
__get_cp_reason(struct f2fs_sb_info * sbi)2227 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2228 {
2229 int reason = CP_SYNC;
2230
2231 if (test_opt(sbi, FASTBOOT))
2232 reason = CP_FASTBOOT;
2233 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2234 reason = CP_UMOUNT;
2235 return reason;
2236 }
2237
__remain_node_summaries(int reason)2238 static inline bool __remain_node_summaries(int reason)
2239 {
2240 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2241 }
2242
__exist_node_summaries(struct f2fs_sb_info * sbi)2243 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2244 {
2245 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2246 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2247 }
2248
2249 /*
2250 * Check whether the inode has blocks or not
2251 */
F2FS_HAS_BLOCKS(struct inode * inode)2252 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2253 {
2254 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2255
2256 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2257 }
2258
f2fs_has_xattr_block(unsigned int ofs)2259 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2260 {
2261 return ofs == XATTR_NODE_OFFSET;
2262 }
2263
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2264 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2265 struct inode *inode, bool cap)
2266 {
2267 if (!inode)
2268 return true;
2269 if (!test_opt(sbi, RESERVE_ROOT))
2270 return false;
2271 if (IS_NOQUOTA(inode))
2272 return true;
2273 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2274 return true;
2275 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2276 in_group_p(F2FS_OPTION(sbi).s_resgid))
2277 return true;
2278 if (cap && capable(CAP_SYS_RESOURCE))
2279 return true;
2280 return false;
2281 }
2282
get_available_block_count(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2283 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2284 struct inode *inode, bool cap)
2285 {
2286 block_t avail_user_block_count;
2287
2288 avail_user_block_count = sbi->user_block_count -
2289 sbi->current_reserved_blocks;
2290
2291 if (!__allow_reserved_blocks(sbi, inode, cap))
2292 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2293
2294 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2295 if (avail_user_block_count > sbi->unusable_block_count)
2296 avail_user_block_count -= sbi->unusable_block_count;
2297 else
2298 avail_user_block_count = 0;
2299 }
2300
2301 return avail_user_block_count;
2302 }
2303
2304 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2305 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2306 struct inode *inode, blkcnt_t *count, bool partial)
2307 {
2308 long long diff = 0, release = 0;
2309 block_t avail_user_block_count;
2310 int ret;
2311
2312 ret = dquot_reserve_block(inode, *count);
2313 if (ret)
2314 return ret;
2315
2316 if (time_to_inject(sbi, FAULT_BLOCK)) {
2317 release = *count;
2318 goto release_quota;
2319 }
2320
2321 /*
2322 * let's increase this in prior to actual block count change in order
2323 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2324 */
2325 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2326
2327 spin_lock(&sbi->stat_lock);
2328
2329 avail_user_block_count = get_available_block_count(sbi, inode, true);
2330 diff = (long long)sbi->total_valid_block_count + *count -
2331 avail_user_block_count;
2332 if (unlikely(diff > 0)) {
2333 if (!partial) {
2334 spin_unlock(&sbi->stat_lock);
2335 release = *count;
2336 goto enospc;
2337 }
2338 if (diff > *count)
2339 diff = *count;
2340 *count -= diff;
2341 release = diff;
2342 if (!*count) {
2343 spin_unlock(&sbi->stat_lock);
2344 goto enospc;
2345 }
2346 }
2347 sbi->total_valid_block_count += (block_t)(*count);
2348
2349 spin_unlock(&sbi->stat_lock);
2350
2351 if (unlikely(release)) {
2352 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2353 dquot_release_reservation_block(inode, release);
2354 }
2355 f2fs_i_blocks_write(inode, *count, true, true);
2356 return 0;
2357
2358 enospc:
2359 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2360 release_quota:
2361 dquot_release_reservation_block(inode, release);
2362 return -ENOSPC;
2363 }
2364
2365 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2366 static inline bool page_private_##name(struct page *page) \
2367 { \
2368 return PagePrivate(page) && \
2369 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2370 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2371 }
2372
2373 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2374 static inline void set_page_private_##name(struct page *page) \
2375 { \
2376 if (!PagePrivate(page)) \
2377 attach_page_private(page, (void *)0); \
2378 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2379 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2380 }
2381
2382 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2383 static inline void clear_page_private_##name(struct page *page) \
2384 { \
2385 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2386 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2387 detach_page_private(page); \
2388 }
2389
2390 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2391 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2392 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2393 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2394
2395 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2396 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2397 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2398 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2399
2400 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2401 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2402 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2403 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2404
get_page_private_data(struct page * page)2405 static inline unsigned long get_page_private_data(struct page *page)
2406 {
2407 unsigned long data = page_private(page);
2408
2409 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2410 return 0;
2411 return data >> PAGE_PRIVATE_MAX;
2412 }
2413
set_page_private_data(struct page * page,unsigned long data)2414 static inline void set_page_private_data(struct page *page, unsigned long data)
2415 {
2416 if (!PagePrivate(page))
2417 attach_page_private(page, (void *)0);
2418 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2419 page_private(page) |= data << PAGE_PRIVATE_MAX;
2420 }
2421
clear_page_private_data(struct page * page)2422 static inline void clear_page_private_data(struct page *page)
2423 {
2424 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2425 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2426 detach_page_private(page);
2427 }
2428
clear_page_private_all(struct page * page)2429 static inline void clear_page_private_all(struct page *page)
2430 {
2431 clear_page_private_data(page);
2432 clear_page_private_reference(page);
2433 clear_page_private_gcing(page);
2434 clear_page_private_inline(page);
2435 clear_page_private_atomic(page);
2436
2437 f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2438 }
2439
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2440 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2441 struct inode *inode,
2442 block_t count)
2443 {
2444 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2445
2446 spin_lock(&sbi->stat_lock);
2447 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2448 sbi->total_valid_block_count -= (block_t)count;
2449 if (sbi->reserved_blocks &&
2450 sbi->current_reserved_blocks < sbi->reserved_blocks)
2451 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2452 sbi->current_reserved_blocks + count);
2453 spin_unlock(&sbi->stat_lock);
2454 if (unlikely(inode->i_blocks < sectors)) {
2455 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2456 inode->i_ino,
2457 (unsigned long long)inode->i_blocks,
2458 (unsigned long long)sectors);
2459 set_sbi_flag(sbi, SBI_NEED_FSCK);
2460 return;
2461 }
2462 f2fs_i_blocks_write(inode, count, false, true);
2463 }
2464
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2465 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2466 {
2467 atomic_inc(&sbi->nr_pages[count_type]);
2468
2469 if (count_type == F2FS_DIRTY_DENTS ||
2470 count_type == F2FS_DIRTY_NODES ||
2471 count_type == F2FS_DIRTY_META ||
2472 count_type == F2FS_DIRTY_QDATA ||
2473 count_type == F2FS_DIRTY_IMETA)
2474 set_sbi_flag(sbi, SBI_IS_DIRTY);
2475 }
2476
inode_inc_dirty_pages(struct inode * inode)2477 static inline void inode_inc_dirty_pages(struct inode *inode)
2478 {
2479 atomic_inc(&F2FS_I(inode)->dirty_pages);
2480 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2481 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2482 if (IS_NOQUOTA(inode))
2483 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2484 }
2485
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2486 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2487 {
2488 atomic_dec(&sbi->nr_pages[count_type]);
2489 }
2490
inode_dec_dirty_pages(struct inode * inode)2491 static inline void inode_dec_dirty_pages(struct inode *inode)
2492 {
2493 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2494 !S_ISLNK(inode->i_mode))
2495 return;
2496
2497 atomic_dec(&F2FS_I(inode)->dirty_pages);
2498 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2499 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2500 if (IS_NOQUOTA(inode))
2501 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2502 }
2503
inc_atomic_write_cnt(struct inode * inode)2504 static inline void inc_atomic_write_cnt(struct inode *inode)
2505 {
2506 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2507 struct f2fs_inode_info *fi = F2FS_I(inode);
2508 u64 current_write;
2509
2510 fi->atomic_write_cnt++;
2511 atomic64_inc(&sbi->current_atomic_write);
2512 current_write = atomic64_read(&sbi->current_atomic_write);
2513 if (current_write > sbi->peak_atomic_write)
2514 sbi->peak_atomic_write = current_write;
2515 }
2516
release_atomic_write_cnt(struct inode * inode)2517 static inline void release_atomic_write_cnt(struct inode *inode)
2518 {
2519 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2520 struct f2fs_inode_info *fi = F2FS_I(inode);
2521
2522 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2523 fi->atomic_write_cnt = 0;
2524 }
2525
get_pages(struct f2fs_sb_info * sbi,int count_type)2526 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2527 {
2528 return atomic_read(&sbi->nr_pages[count_type]);
2529 }
2530
get_dirty_pages(struct inode * inode)2531 static inline int get_dirty_pages(struct inode *inode)
2532 {
2533 return atomic_read(&F2FS_I(inode)->dirty_pages);
2534 }
2535
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2536 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2537 {
2538 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2539 BLKS_PER_SEC(sbi));
2540 }
2541
valid_user_blocks(struct f2fs_sb_info * sbi)2542 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2543 {
2544 return sbi->total_valid_block_count;
2545 }
2546
discard_blocks(struct f2fs_sb_info * sbi)2547 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2548 {
2549 return sbi->discard_blks;
2550 }
2551
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2552 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2553 {
2554 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2555
2556 /* return NAT or SIT bitmap */
2557 if (flag == NAT_BITMAP)
2558 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2559 else if (flag == SIT_BITMAP)
2560 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2561
2562 return 0;
2563 }
2564
__cp_payload(struct f2fs_sb_info * sbi)2565 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2566 {
2567 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2568 }
2569
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2570 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2571 {
2572 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2573 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2574 int offset;
2575
2576 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2577 offset = (flag == SIT_BITMAP) ?
2578 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2579 /*
2580 * if large_nat_bitmap feature is enabled, leave checksum
2581 * protection for all nat/sit bitmaps.
2582 */
2583 return tmp_ptr + offset + sizeof(__le32);
2584 }
2585
2586 if (__cp_payload(sbi) > 0) {
2587 if (flag == NAT_BITMAP)
2588 return tmp_ptr;
2589 else
2590 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2591 } else {
2592 offset = (flag == NAT_BITMAP) ?
2593 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2594 return tmp_ptr + offset;
2595 }
2596 }
2597
__start_cp_addr(struct f2fs_sb_info * sbi)2598 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2599 {
2600 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2601
2602 if (sbi->cur_cp_pack == 2)
2603 start_addr += BLKS_PER_SEG(sbi);
2604 return start_addr;
2605 }
2606
__start_cp_next_addr(struct f2fs_sb_info * sbi)2607 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2608 {
2609 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2610
2611 if (sbi->cur_cp_pack == 1)
2612 start_addr += BLKS_PER_SEG(sbi);
2613 return start_addr;
2614 }
2615
__set_cp_next_pack(struct f2fs_sb_info * sbi)2616 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2617 {
2618 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2619 }
2620
__start_sum_addr(struct f2fs_sb_info * sbi)2621 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2622 {
2623 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2624 }
2625
2626 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2627 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2628 struct inode *inode, bool is_inode)
2629 {
2630 block_t valid_block_count;
2631 unsigned int valid_node_count;
2632 unsigned int avail_user_block_count;
2633 int err;
2634
2635 if (is_inode) {
2636 if (inode) {
2637 err = dquot_alloc_inode(inode);
2638 if (err)
2639 return err;
2640 }
2641 } else {
2642 err = dquot_reserve_block(inode, 1);
2643 if (err)
2644 return err;
2645 }
2646
2647 if (time_to_inject(sbi, FAULT_BLOCK))
2648 goto enospc;
2649
2650 spin_lock(&sbi->stat_lock);
2651
2652 valid_block_count = sbi->total_valid_block_count + 1;
2653 avail_user_block_count = get_available_block_count(sbi, inode, false);
2654
2655 if (unlikely(valid_block_count > avail_user_block_count)) {
2656 spin_unlock(&sbi->stat_lock);
2657 goto enospc;
2658 }
2659
2660 valid_node_count = sbi->total_valid_node_count + 1;
2661 if (unlikely(valid_node_count > sbi->total_node_count)) {
2662 spin_unlock(&sbi->stat_lock);
2663 goto enospc;
2664 }
2665
2666 sbi->total_valid_node_count++;
2667 sbi->total_valid_block_count++;
2668 spin_unlock(&sbi->stat_lock);
2669
2670 if (inode) {
2671 if (is_inode)
2672 f2fs_mark_inode_dirty_sync(inode, true);
2673 else
2674 f2fs_i_blocks_write(inode, 1, true, true);
2675 }
2676
2677 percpu_counter_inc(&sbi->alloc_valid_block_count);
2678 return 0;
2679
2680 enospc:
2681 if (is_inode) {
2682 if (inode)
2683 dquot_free_inode(inode);
2684 } else {
2685 dquot_release_reservation_block(inode, 1);
2686 }
2687 return -ENOSPC;
2688 }
2689
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2690 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2691 struct inode *inode, bool is_inode)
2692 {
2693 spin_lock(&sbi->stat_lock);
2694
2695 if (unlikely(!sbi->total_valid_block_count ||
2696 !sbi->total_valid_node_count)) {
2697 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2698 sbi->total_valid_block_count,
2699 sbi->total_valid_node_count);
2700 set_sbi_flag(sbi, SBI_NEED_FSCK);
2701 } else {
2702 sbi->total_valid_block_count--;
2703 sbi->total_valid_node_count--;
2704 }
2705
2706 if (sbi->reserved_blocks &&
2707 sbi->current_reserved_blocks < sbi->reserved_blocks)
2708 sbi->current_reserved_blocks++;
2709
2710 spin_unlock(&sbi->stat_lock);
2711
2712 if (is_inode) {
2713 dquot_free_inode(inode);
2714 } else {
2715 if (unlikely(inode->i_blocks == 0)) {
2716 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2717 inode->i_ino,
2718 (unsigned long long)inode->i_blocks);
2719 set_sbi_flag(sbi, SBI_NEED_FSCK);
2720 return;
2721 }
2722 f2fs_i_blocks_write(inode, 1, false, true);
2723 }
2724 }
2725
valid_node_count(struct f2fs_sb_info * sbi)2726 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2727 {
2728 return sbi->total_valid_node_count;
2729 }
2730
inc_valid_inode_count(struct f2fs_sb_info * sbi)2731 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2732 {
2733 percpu_counter_inc(&sbi->total_valid_inode_count);
2734 }
2735
dec_valid_inode_count(struct f2fs_sb_info * sbi)2736 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2737 {
2738 percpu_counter_dec(&sbi->total_valid_inode_count);
2739 }
2740
valid_inode_count(struct f2fs_sb_info * sbi)2741 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2742 {
2743 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2744 }
2745
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2746 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2747 pgoff_t index, bool for_write)
2748 {
2749 struct page *page;
2750 unsigned int flags;
2751
2752 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2753 if (!for_write)
2754 page = find_get_page_flags(mapping, index,
2755 FGP_LOCK | FGP_ACCESSED);
2756 else
2757 page = find_lock_page(mapping, index);
2758 if (page)
2759 return page;
2760
2761 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2762 return NULL;
2763 }
2764
2765 if (!for_write)
2766 return grab_cache_page(mapping, index);
2767
2768 flags = memalloc_nofs_save();
2769 page = grab_cache_page_write_begin(mapping, index);
2770 memalloc_nofs_restore(flags);
2771
2772 return page;
2773 }
2774
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2775 static inline struct page *f2fs_pagecache_get_page(
2776 struct address_space *mapping, pgoff_t index,
2777 fgf_t fgp_flags, gfp_t gfp_mask)
2778 {
2779 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2780 return NULL;
2781
2782 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2783 }
2784
f2fs_put_page(struct page * page,int unlock)2785 static inline void f2fs_put_page(struct page *page, int unlock)
2786 {
2787 if (!page)
2788 return;
2789
2790 if (unlock) {
2791 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2792 unlock_page(page);
2793 }
2794 put_page(page);
2795 }
2796
f2fs_put_dnode(struct dnode_of_data * dn)2797 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2798 {
2799 if (dn->node_page)
2800 f2fs_put_page(dn->node_page, 1);
2801 if (dn->inode_page && dn->node_page != dn->inode_page)
2802 f2fs_put_page(dn->inode_page, 0);
2803 dn->node_page = NULL;
2804 dn->inode_page = NULL;
2805 }
2806
f2fs_kmem_cache_create(const char * name,size_t size)2807 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2808 size_t size)
2809 {
2810 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2811 }
2812
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2813 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2814 gfp_t flags)
2815 {
2816 void *entry;
2817
2818 entry = kmem_cache_alloc(cachep, flags);
2819 if (!entry)
2820 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2821 return entry;
2822 }
2823
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2824 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2825 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2826 {
2827 if (nofail)
2828 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2829
2830 if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2831 return NULL;
2832
2833 return kmem_cache_alloc(cachep, flags);
2834 }
2835
is_inflight_io(struct f2fs_sb_info * sbi,int type)2836 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2837 {
2838 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2839 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2840 get_pages(sbi, F2FS_WB_CP_DATA) ||
2841 get_pages(sbi, F2FS_DIO_READ) ||
2842 get_pages(sbi, F2FS_DIO_WRITE))
2843 return true;
2844
2845 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2846 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2847 return true;
2848
2849 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2850 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2851 return true;
2852 return false;
2853 }
2854
is_idle(struct f2fs_sb_info * sbi,int type)2855 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2856 {
2857 if (sbi->gc_mode == GC_URGENT_HIGH)
2858 return true;
2859
2860 if (is_inflight_io(sbi, type))
2861 return false;
2862
2863 if (sbi->gc_mode == GC_URGENT_MID)
2864 return true;
2865
2866 if (sbi->gc_mode == GC_URGENT_LOW &&
2867 (type == DISCARD_TIME || type == GC_TIME))
2868 return true;
2869
2870 return f2fs_time_over(sbi, type);
2871 }
2872
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2873 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2874 unsigned long index, void *item)
2875 {
2876 while (radix_tree_insert(root, index, item))
2877 cond_resched();
2878 }
2879
2880 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2881
IS_INODE(struct page * page)2882 static inline bool IS_INODE(struct page *page)
2883 {
2884 struct f2fs_node *p = F2FS_NODE(page);
2885
2886 return RAW_IS_INODE(p);
2887 }
2888
offset_in_addr(struct f2fs_inode * i)2889 static inline int offset_in_addr(struct f2fs_inode *i)
2890 {
2891 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2892 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2893 }
2894
blkaddr_in_node(struct f2fs_node * node)2895 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2896 {
2897 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2898 }
2899
2900 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2901 static inline block_t data_blkaddr(struct inode *inode,
2902 struct page *node_page, unsigned int offset)
2903 {
2904 struct f2fs_node *raw_node;
2905 __le32 *addr_array;
2906 int base = 0;
2907 bool is_inode = IS_INODE(node_page);
2908
2909 raw_node = F2FS_NODE(node_page);
2910
2911 if (is_inode) {
2912 if (!inode)
2913 /* from GC path only */
2914 base = offset_in_addr(&raw_node->i);
2915 else if (f2fs_has_extra_attr(inode))
2916 base = get_extra_isize(inode);
2917 }
2918
2919 addr_array = blkaddr_in_node(raw_node);
2920 return le32_to_cpu(addr_array[base + offset]);
2921 }
2922
f2fs_data_blkaddr(struct dnode_of_data * dn)2923 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2924 {
2925 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2926 }
2927
f2fs_test_bit(unsigned int nr,char * addr)2928 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2929 {
2930 int mask;
2931
2932 addr += (nr >> 3);
2933 mask = BIT(7 - (nr & 0x07));
2934 return mask & *addr;
2935 }
2936
f2fs_set_bit(unsigned int nr,char * addr)2937 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2938 {
2939 int mask;
2940
2941 addr += (nr >> 3);
2942 mask = BIT(7 - (nr & 0x07));
2943 *addr |= mask;
2944 }
2945
f2fs_clear_bit(unsigned int nr,char * addr)2946 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2947 {
2948 int mask;
2949
2950 addr += (nr >> 3);
2951 mask = BIT(7 - (nr & 0x07));
2952 *addr &= ~mask;
2953 }
2954
f2fs_test_and_set_bit(unsigned int nr,char * addr)2955 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2956 {
2957 int mask;
2958 int ret;
2959
2960 addr += (nr >> 3);
2961 mask = BIT(7 - (nr & 0x07));
2962 ret = mask & *addr;
2963 *addr |= mask;
2964 return ret;
2965 }
2966
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2967 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2968 {
2969 int mask;
2970 int ret;
2971
2972 addr += (nr >> 3);
2973 mask = BIT(7 - (nr & 0x07));
2974 ret = mask & *addr;
2975 *addr &= ~mask;
2976 return ret;
2977 }
2978
f2fs_change_bit(unsigned int nr,char * addr)2979 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2980 {
2981 int mask;
2982
2983 addr += (nr >> 3);
2984 mask = BIT(7 - (nr & 0x07));
2985 *addr ^= mask;
2986 }
2987
2988 /*
2989 * On-disk inode flags (f2fs_inode::i_flags)
2990 */
2991 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2992 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2993 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2994 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2995 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2996 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2997 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2998 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2999 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
3000 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
3001 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
3002
3003 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3004
3005 /* Flags that should be inherited by new inodes from their parent. */
3006 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3007 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3008 F2FS_CASEFOLD_FL)
3009
3010 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3011 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3012 F2FS_CASEFOLD_FL))
3013
3014 /* Flags that are appropriate for non-directories/regular files. */
3015 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3016
f2fs_mask_flags(umode_t mode,__u32 flags)3017 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3018 {
3019 if (S_ISDIR(mode))
3020 return flags;
3021 else if (S_ISREG(mode))
3022 return flags & F2FS_REG_FLMASK;
3023 else
3024 return flags & F2FS_OTHER_FLMASK;
3025 }
3026
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3027 static inline void __mark_inode_dirty_flag(struct inode *inode,
3028 int flag, bool set)
3029 {
3030 switch (flag) {
3031 case FI_INLINE_XATTR:
3032 case FI_INLINE_DATA:
3033 case FI_INLINE_DENTRY:
3034 case FI_NEW_INODE:
3035 if (set)
3036 return;
3037 fallthrough;
3038 case FI_DATA_EXIST:
3039 case FI_PIN_FILE:
3040 case FI_COMPRESS_RELEASED:
3041 f2fs_mark_inode_dirty_sync(inode, true);
3042 }
3043 }
3044
set_inode_flag(struct inode * inode,int flag)3045 static inline void set_inode_flag(struct inode *inode, int flag)
3046 {
3047 set_bit(flag, F2FS_I(inode)->flags);
3048 __mark_inode_dirty_flag(inode, flag, true);
3049 }
3050
is_inode_flag_set(struct inode * inode,int flag)3051 static inline int is_inode_flag_set(struct inode *inode, int flag)
3052 {
3053 return test_bit(flag, F2FS_I(inode)->flags);
3054 }
3055
clear_inode_flag(struct inode * inode,int flag)3056 static inline void clear_inode_flag(struct inode *inode, int flag)
3057 {
3058 clear_bit(flag, F2FS_I(inode)->flags);
3059 __mark_inode_dirty_flag(inode, flag, false);
3060 }
3061
f2fs_verity_in_progress(struct inode * inode)3062 static inline bool f2fs_verity_in_progress(struct inode *inode)
3063 {
3064 return IS_ENABLED(CONFIG_FS_VERITY) &&
3065 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3066 }
3067
set_acl_inode(struct inode * inode,umode_t mode)3068 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3069 {
3070 F2FS_I(inode)->i_acl_mode = mode;
3071 set_inode_flag(inode, FI_ACL_MODE);
3072 f2fs_mark_inode_dirty_sync(inode, false);
3073 }
3074
f2fs_i_links_write(struct inode * inode,bool inc)3075 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3076 {
3077 if (inc)
3078 inc_nlink(inode);
3079 else
3080 drop_nlink(inode);
3081 f2fs_mark_inode_dirty_sync(inode, true);
3082 }
3083
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3084 static inline void f2fs_i_blocks_write(struct inode *inode,
3085 block_t diff, bool add, bool claim)
3086 {
3087 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3088 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3089
3090 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3091 if (add) {
3092 if (claim)
3093 dquot_claim_block(inode, diff);
3094 else
3095 dquot_alloc_block_nofail(inode, diff);
3096 } else {
3097 dquot_free_block(inode, diff);
3098 }
3099
3100 f2fs_mark_inode_dirty_sync(inode, true);
3101 if (clean || recover)
3102 set_inode_flag(inode, FI_AUTO_RECOVER);
3103 }
3104
3105 static inline bool f2fs_is_atomic_file(struct inode *inode);
3106
f2fs_i_size_write(struct inode * inode,loff_t i_size)3107 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3108 {
3109 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3110 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3111
3112 if (i_size_read(inode) == i_size)
3113 return;
3114
3115 i_size_write(inode, i_size);
3116
3117 if (f2fs_is_atomic_file(inode))
3118 return;
3119
3120 f2fs_mark_inode_dirty_sync(inode, true);
3121 if (clean || recover)
3122 set_inode_flag(inode, FI_AUTO_RECOVER);
3123 }
3124
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3125 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3126 {
3127 F2FS_I(inode)->i_current_depth = depth;
3128 f2fs_mark_inode_dirty_sync(inode, true);
3129 }
3130
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3131 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3132 unsigned int count)
3133 {
3134 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3135 f2fs_mark_inode_dirty_sync(inode, true);
3136 }
3137
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3138 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3139 {
3140 F2FS_I(inode)->i_xattr_nid = xnid;
3141 f2fs_mark_inode_dirty_sync(inode, true);
3142 }
3143
f2fs_i_pino_write(struct inode * inode,nid_t pino)3144 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3145 {
3146 F2FS_I(inode)->i_pino = pino;
3147 f2fs_mark_inode_dirty_sync(inode, true);
3148 }
3149
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3150 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3151 {
3152 struct f2fs_inode_info *fi = F2FS_I(inode);
3153
3154 if (ri->i_inline & F2FS_INLINE_XATTR)
3155 set_bit(FI_INLINE_XATTR, fi->flags);
3156 if (ri->i_inline & F2FS_INLINE_DATA)
3157 set_bit(FI_INLINE_DATA, fi->flags);
3158 if (ri->i_inline & F2FS_INLINE_DENTRY)
3159 set_bit(FI_INLINE_DENTRY, fi->flags);
3160 if (ri->i_inline & F2FS_DATA_EXIST)
3161 set_bit(FI_DATA_EXIST, fi->flags);
3162 if (ri->i_inline & F2FS_EXTRA_ATTR)
3163 set_bit(FI_EXTRA_ATTR, fi->flags);
3164 if (ri->i_inline & F2FS_PIN_FILE)
3165 set_bit(FI_PIN_FILE, fi->flags);
3166 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3167 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3168 }
3169
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3170 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3171 {
3172 ri->i_inline = 0;
3173
3174 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3175 ri->i_inline |= F2FS_INLINE_XATTR;
3176 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3177 ri->i_inline |= F2FS_INLINE_DATA;
3178 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3179 ri->i_inline |= F2FS_INLINE_DENTRY;
3180 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3181 ri->i_inline |= F2FS_DATA_EXIST;
3182 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3183 ri->i_inline |= F2FS_EXTRA_ATTR;
3184 if (is_inode_flag_set(inode, FI_PIN_FILE))
3185 ri->i_inline |= F2FS_PIN_FILE;
3186 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3187 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3188 }
3189
f2fs_has_extra_attr(struct inode * inode)3190 static inline int f2fs_has_extra_attr(struct inode *inode)
3191 {
3192 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3193 }
3194
f2fs_has_inline_xattr(struct inode * inode)3195 static inline int f2fs_has_inline_xattr(struct inode *inode)
3196 {
3197 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3198 }
3199
f2fs_compressed_file(struct inode * inode)3200 static inline int f2fs_compressed_file(struct inode *inode)
3201 {
3202 return S_ISREG(inode->i_mode) &&
3203 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3204 }
3205
f2fs_need_compress_data(struct inode * inode)3206 static inline bool f2fs_need_compress_data(struct inode *inode)
3207 {
3208 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3209
3210 if (!f2fs_compressed_file(inode))
3211 return false;
3212
3213 if (compress_mode == COMPR_MODE_FS)
3214 return true;
3215 else if (compress_mode == COMPR_MODE_USER &&
3216 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3217 return true;
3218
3219 return false;
3220 }
3221
addrs_per_inode(struct inode * inode)3222 static inline unsigned int addrs_per_inode(struct inode *inode)
3223 {
3224 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3225 get_inline_xattr_addrs(inode);
3226
3227 if (!f2fs_compressed_file(inode))
3228 return addrs;
3229 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3230 }
3231
addrs_per_block(struct inode * inode)3232 static inline unsigned int addrs_per_block(struct inode *inode)
3233 {
3234 if (!f2fs_compressed_file(inode))
3235 return DEF_ADDRS_PER_BLOCK;
3236 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3237 }
3238
inline_xattr_addr(struct inode * inode,struct page * page)3239 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3240 {
3241 struct f2fs_inode *ri = F2FS_INODE(page);
3242
3243 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3244 get_inline_xattr_addrs(inode)]);
3245 }
3246
inline_xattr_size(struct inode * inode)3247 static inline int inline_xattr_size(struct inode *inode)
3248 {
3249 if (f2fs_has_inline_xattr(inode))
3250 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3251 return 0;
3252 }
3253
3254 /*
3255 * Notice: check inline_data flag without inode page lock is unsafe.
3256 * It could change at any time by f2fs_convert_inline_page().
3257 */
f2fs_has_inline_data(struct inode * inode)3258 static inline int f2fs_has_inline_data(struct inode *inode)
3259 {
3260 return is_inode_flag_set(inode, FI_INLINE_DATA);
3261 }
3262
f2fs_exist_data(struct inode * inode)3263 static inline int f2fs_exist_data(struct inode *inode)
3264 {
3265 return is_inode_flag_set(inode, FI_DATA_EXIST);
3266 }
3267
f2fs_is_mmap_file(struct inode * inode)3268 static inline int f2fs_is_mmap_file(struct inode *inode)
3269 {
3270 return is_inode_flag_set(inode, FI_MMAP_FILE);
3271 }
3272
f2fs_is_pinned_file(struct inode * inode)3273 static inline bool f2fs_is_pinned_file(struct inode *inode)
3274 {
3275 return is_inode_flag_set(inode, FI_PIN_FILE);
3276 }
3277
f2fs_is_atomic_file(struct inode * inode)3278 static inline bool f2fs_is_atomic_file(struct inode *inode)
3279 {
3280 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3281 }
3282
f2fs_is_cow_file(struct inode * inode)3283 static inline bool f2fs_is_cow_file(struct inode *inode)
3284 {
3285 return is_inode_flag_set(inode, FI_COW_FILE);
3286 }
3287
3288 static inline __le32 *get_dnode_addr(struct inode *inode,
3289 struct page *node_page);
inline_data_addr(struct inode * inode,struct page * page)3290 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3291 {
3292 __le32 *addr = get_dnode_addr(inode, page);
3293
3294 return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3295 }
3296
f2fs_has_inline_dentry(struct inode * inode)3297 static inline int f2fs_has_inline_dentry(struct inode *inode)
3298 {
3299 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3300 }
3301
is_file(struct inode * inode,int type)3302 static inline int is_file(struct inode *inode, int type)
3303 {
3304 return F2FS_I(inode)->i_advise & type;
3305 }
3306
set_file(struct inode * inode,int type)3307 static inline void set_file(struct inode *inode, int type)
3308 {
3309 if (is_file(inode, type))
3310 return;
3311 F2FS_I(inode)->i_advise |= type;
3312 f2fs_mark_inode_dirty_sync(inode, true);
3313 }
3314
clear_file(struct inode * inode,int type)3315 static inline void clear_file(struct inode *inode, int type)
3316 {
3317 if (!is_file(inode, type))
3318 return;
3319 F2FS_I(inode)->i_advise &= ~type;
3320 f2fs_mark_inode_dirty_sync(inode, true);
3321 }
3322
f2fs_is_time_consistent(struct inode * inode)3323 static inline bool f2fs_is_time_consistent(struct inode *inode)
3324 {
3325 struct timespec64 ctime = inode_get_ctime(inode);
3326
3327 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3328 return false;
3329 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ctime))
3330 return false;
3331 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3332 return false;
3333 return true;
3334 }
3335
f2fs_skip_inode_update(struct inode * inode,int dsync)3336 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3337 {
3338 bool ret;
3339
3340 if (dsync) {
3341 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3342
3343 spin_lock(&sbi->inode_lock[DIRTY_META]);
3344 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3345 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3346 return ret;
3347 }
3348 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3349 file_keep_isize(inode) ||
3350 i_size_read(inode) & ~PAGE_MASK)
3351 return false;
3352
3353 if (!f2fs_is_time_consistent(inode))
3354 return false;
3355
3356 spin_lock(&F2FS_I(inode)->i_size_lock);
3357 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3358 spin_unlock(&F2FS_I(inode)->i_size_lock);
3359
3360 return ret;
3361 }
3362
f2fs_readonly(struct super_block * sb)3363 static inline bool f2fs_readonly(struct super_block *sb)
3364 {
3365 return sb_rdonly(sb);
3366 }
3367
f2fs_cp_error(struct f2fs_sb_info * sbi)3368 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3369 {
3370 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3371 }
3372
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3373 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3374 size_t size, gfp_t flags)
3375 {
3376 if (time_to_inject(sbi, FAULT_KMALLOC))
3377 return NULL;
3378
3379 return kmalloc(size, flags);
3380 }
3381
f2fs_getname(struct f2fs_sb_info * sbi)3382 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3383 {
3384 if (time_to_inject(sbi, FAULT_KMALLOC))
3385 return NULL;
3386
3387 return __getname();
3388 }
3389
f2fs_putname(char * buf)3390 static inline void f2fs_putname(char *buf)
3391 {
3392 __putname(buf);
3393 }
3394
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3395 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3396 size_t size, gfp_t flags)
3397 {
3398 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3399 }
3400
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3401 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3402 size_t size, gfp_t flags)
3403 {
3404 if (time_to_inject(sbi, FAULT_KVMALLOC))
3405 return NULL;
3406
3407 return kvmalloc(size, flags);
3408 }
3409
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3410 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3411 size_t size, gfp_t flags)
3412 {
3413 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3414 }
3415
get_extra_isize(struct inode * inode)3416 static inline int get_extra_isize(struct inode *inode)
3417 {
3418 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3419 }
3420
get_inline_xattr_addrs(struct inode * inode)3421 static inline int get_inline_xattr_addrs(struct inode *inode)
3422 {
3423 return F2FS_I(inode)->i_inline_xattr_size;
3424 }
3425
get_dnode_addr(struct inode * inode,struct page * node_page)3426 static inline __le32 *get_dnode_addr(struct inode *inode,
3427 struct page *node_page)
3428 {
3429 int base = 0;
3430
3431 if (IS_INODE(node_page) && f2fs_has_extra_attr(inode))
3432 base = get_extra_isize(inode);
3433
3434 return blkaddr_in_node(F2FS_NODE(node_page)) + base;
3435 }
3436
3437 #define f2fs_get_inode_mode(i) \
3438 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3439 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3440
3441 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32))
3442
3443 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3444 (offsetof(struct f2fs_inode, i_extra_end) - \
3445 offsetof(struct f2fs_inode, i_extra_isize)) \
3446
3447 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3448 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3449 ((offsetof(typeof(*(f2fs_inode)), field) + \
3450 sizeof((f2fs_inode)->field)) \
3451 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3452
3453 #define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1)
3454
3455 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3456
3457 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3458 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3459 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3460 block_t blkaddr, int type)
3461 {
3462 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3463 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3464 blkaddr, type);
3465 }
3466
__is_valid_data_blkaddr(block_t blkaddr)3467 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3468 {
3469 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3470 blkaddr == COMPRESS_ADDR)
3471 return false;
3472 return true;
3473 }
3474
3475 /*
3476 * file.c
3477 */
3478 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3479 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3480 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3481 int f2fs_truncate(struct inode *inode);
3482 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3483 struct kstat *stat, u32 request_mask, unsigned int flags);
3484 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3485 struct iattr *attr);
3486 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3487 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3488 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3489 bool readonly, bool need_lock);
3490 int f2fs_precache_extents(struct inode *inode);
3491 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3492 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3493 struct dentry *dentry, struct fileattr *fa);
3494 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3495 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3496 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3497 int f2fs_pin_file_control(struct inode *inode, bool inc);
3498
3499 /*
3500 * inode.c
3501 */
3502 void f2fs_set_inode_flags(struct inode *inode);
3503 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3504 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3505 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3506 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3507 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3508 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3509 void f2fs_update_inode_page(struct inode *inode);
3510 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3511 void f2fs_evict_inode(struct inode *inode);
3512 void f2fs_handle_failed_inode(struct inode *inode);
3513
3514 /*
3515 * namei.c
3516 */
3517 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3518 bool hot, bool set);
3519 struct dentry *f2fs_get_parent(struct dentry *child);
3520 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3521 struct inode **new_inode);
3522
3523 /*
3524 * dir.c
3525 */
3526 int f2fs_init_casefolded_name(const struct inode *dir,
3527 struct f2fs_filename *fname);
3528 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3529 int lookup, struct f2fs_filename *fname);
3530 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3531 struct f2fs_filename *fname);
3532 void f2fs_free_filename(struct f2fs_filename *fname);
3533 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3534 const struct f2fs_filename *fname, int *max_slots);
3535 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3536 unsigned int start_pos, struct fscrypt_str *fstr);
3537 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3538 struct f2fs_dentry_ptr *d);
3539 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3540 const struct f2fs_filename *fname, struct page *dpage);
3541 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3542 unsigned int current_depth);
3543 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3544 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3545 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3546 const struct f2fs_filename *fname,
3547 struct page **res_page);
3548 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3549 const struct qstr *child, struct page **res_page);
3550 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3551 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3552 struct page **page);
3553 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3554 struct page *page, struct inode *inode);
3555 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3556 const struct f2fs_filename *fname);
3557 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3558 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3559 unsigned int bit_pos);
3560 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3561 struct inode *inode, nid_t ino, umode_t mode);
3562 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3563 struct inode *inode, nid_t ino, umode_t mode);
3564 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3565 struct inode *inode, nid_t ino, umode_t mode);
3566 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3567 struct inode *dir, struct inode *inode);
3568 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3569 struct f2fs_filename *fname);
3570 bool f2fs_empty_dir(struct inode *dir);
3571
f2fs_add_link(struct dentry * dentry,struct inode * inode)3572 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3573 {
3574 if (fscrypt_is_nokey_name(dentry))
3575 return -ENOKEY;
3576 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3577 inode, inode->i_ino, inode->i_mode);
3578 }
3579
3580 /*
3581 * super.c
3582 */
3583 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3584 void f2fs_inode_synced(struct inode *inode);
3585 int f2fs_dquot_initialize(struct inode *inode);
3586 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3587 int f2fs_quota_sync(struct super_block *sb, int type);
3588 loff_t max_file_blocks(struct inode *inode);
3589 void f2fs_quota_off_umount(struct super_block *sb);
3590 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3591 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
3592 bool irq_context);
3593 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3594 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3595 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3596 int f2fs_sync_fs(struct super_block *sb, int sync);
3597 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3598
3599 /*
3600 * hash.c
3601 */
3602 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3603
3604 /*
3605 * node.c
3606 */
3607 struct node_info;
3608
3609 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3610 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3611 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3612 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3613 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3614 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3615 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3616 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3617 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3618 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3619 struct node_info *ni, bool checkpoint_context);
3620 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3621 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3622 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3623 int f2fs_truncate_xattr_node(struct inode *inode);
3624 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3625 unsigned int seq_id);
3626 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3627 int f2fs_remove_inode_page(struct inode *inode);
3628 struct page *f2fs_new_inode_page(struct inode *inode);
3629 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3630 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3631 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3632 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3633 int f2fs_move_node_page(struct page *node_page, int gc_type);
3634 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3635 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3636 struct writeback_control *wbc, bool atomic,
3637 unsigned int *seq_id);
3638 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3639 struct writeback_control *wbc,
3640 bool do_balance, enum iostat_type io_type);
3641 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3642 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3643 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3644 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3645 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3646 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3647 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3648 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3649 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3650 unsigned int segno, struct f2fs_summary_block *sum);
3651 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3652 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3653 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3654 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3655 int __init f2fs_create_node_manager_caches(void);
3656 void f2fs_destroy_node_manager_caches(void);
3657
3658 /*
3659 * segment.c
3660 */
3661 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3662 int f2fs_commit_atomic_write(struct inode *inode);
3663 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3664 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3665 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3666 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3667 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3668 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3669 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3670 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3671 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3672 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3673 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3674 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3675 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3676 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3677 struct cp_control *cpc);
3678 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3679 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3680 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3681 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3682 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3683 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3684 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3685 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3686 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3687 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3688 unsigned int *newseg, bool new_sec, int dir);
3689 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3690 unsigned int start, unsigned int end);
3691 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3692 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3693 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3694 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3695 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3696 struct cp_control *cpc);
3697 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3698 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3699 block_t blk_addr);
3700 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3701 enum iostat_type io_type);
3702 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3703 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3704 struct f2fs_io_info *fio);
3705 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3706 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3707 block_t old_blkaddr, block_t new_blkaddr,
3708 bool recover_curseg, bool recover_newaddr,
3709 bool from_gc);
3710 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3711 block_t old_addr, block_t new_addr,
3712 unsigned char version, bool recover_curseg,
3713 bool recover_newaddr);
3714 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3715 block_t old_blkaddr, block_t *new_blkaddr,
3716 struct f2fs_summary *sum, int type,
3717 struct f2fs_io_info *fio);
3718 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3719 block_t blkaddr, unsigned int blkcnt);
3720 void f2fs_wait_on_page_writeback(struct page *page,
3721 enum page_type type, bool ordered, bool locked);
3722 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3723 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3724 block_t len);
3725 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3726 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3727 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3728 unsigned int val, int alloc);
3729 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3730 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3731 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3732 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3733 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3734 int __init f2fs_create_segment_manager_caches(void);
3735 void f2fs_destroy_segment_manager_caches(void);
3736 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3737 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3738 unsigned int segno);
3739 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3740 unsigned int segno);
3741
3742 #define DEF_FRAGMENT_SIZE 4
3743 #define MIN_FRAGMENT_SIZE 1
3744 #define MAX_FRAGMENT_SIZE 512
3745
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3746 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3747 {
3748 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3749 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3750 }
3751
3752 /*
3753 * checkpoint.c
3754 */
3755 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3756 unsigned char reason);
3757 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3758 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3759 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3760 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3761 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3762 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3763 block_t blkaddr, int type);
3764 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3765 int type, bool sync);
3766 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3767 unsigned int ra_blocks);
3768 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3769 long nr_to_write, enum iostat_type io_type);
3770 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3771 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3772 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3773 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3774 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3775 unsigned int devidx, int type);
3776 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3777 unsigned int devidx, int type);
3778 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3779 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3780 void f2fs_add_orphan_inode(struct inode *inode);
3781 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3782 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3783 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3784 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3785 void f2fs_remove_dirty_inode(struct inode *inode);
3786 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3787 bool from_cp);
3788 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3789 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3790 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3791 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3792 int __init f2fs_create_checkpoint_caches(void);
3793 void f2fs_destroy_checkpoint_caches(void);
3794 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3795 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3796 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3797 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3798
3799 /*
3800 * data.c
3801 */
3802 int __init f2fs_init_bioset(void);
3803 void f2fs_destroy_bioset(void);
3804 bool f2fs_is_cp_guaranteed(struct page *page);
3805 int f2fs_init_bio_entry_cache(void);
3806 void f2fs_destroy_bio_entry_cache(void);
3807 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3808 enum page_type type);
3809 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3810 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3811 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3812 struct inode *inode, struct page *page,
3813 nid_t ino, enum page_type type);
3814 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3815 struct bio **bio, struct page *page);
3816 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3817 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3818 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3819 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3820 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3821 block_t blk_addr, sector_t *sector);
3822 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3823 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3824 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3825 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3826 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3827 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3828 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3829 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3830 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3831 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3832 pgoff_t *next_pgofs);
3833 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3834 bool for_write);
3835 struct page *f2fs_get_new_data_page(struct inode *inode,
3836 struct page *ipage, pgoff_t index, bool new_i_size);
3837 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3838 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3839 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3840 u64 start, u64 len);
3841 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3842 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3843 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3844 int f2fs_write_single_data_page(struct page *page, int *submitted,
3845 struct bio **bio, sector_t *last_block,
3846 struct writeback_control *wbc,
3847 enum iostat_type io_type,
3848 int compr_blocks, bool allow_balance);
3849 void f2fs_write_failed(struct inode *inode, loff_t to);
3850 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3851 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3852 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3853 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3854 int f2fs_init_post_read_processing(void);
3855 void f2fs_destroy_post_read_processing(void);
3856 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3857 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3858 extern const struct iomap_ops f2fs_iomap_ops;
3859
3860 /*
3861 * gc.c
3862 */
3863 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3864 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3865 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3866 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3867 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3868 int f2fs_gc_range(struct f2fs_sb_info *sbi,
3869 unsigned int start_seg, unsigned int end_seg,
3870 bool dry_run, unsigned int dry_run_sections);
3871 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3872 int __init f2fs_create_garbage_collection_cache(void);
3873 void f2fs_destroy_garbage_collection_cache(void);
3874 /* victim selection function for cleaning and SSR */
3875 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3876 int gc_type, int type, char alloc_mode,
3877 unsigned long long age);
3878
3879 /*
3880 * recovery.c
3881 */
3882 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3883 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3884 int __init f2fs_create_recovery_cache(void);
3885 void f2fs_destroy_recovery_cache(void);
3886
3887 /*
3888 * debug.c
3889 */
3890 #ifdef CONFIG_F2FS_STAT_FS
3891 struct f2fs_stat_info {
3892 struct list_head stat_list;
3893 struct f2fs_sb_info *sbi;
3894 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3895 int main_area_segs, main_area_sections, main_area_zones;
3896 unsigned long long hit_cached[NR_EXTENT_CACHES];
3897 unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3898 unsigned long long total_ext[NR_EXTENT_CACHES];
3899 unsigned long long hit_total[NR_EXTENT_CACHES];
3900 int ext_tree[NR_EXTENT_CACHES];
3901 int zombie_tree[NR_EXTENT_CACHES];
3902 int ext_node[NR_EXTENT_CACHES];
3903 /* to count memory footprint */
3904 unsigned long long ext_mem[NR_EXTENT_CACHES];
3905 /* for read extent cache */
3906 unsigned long long hit_largest;
3907 /* for block age extent cache */
3908 unsigned long long allocated_data_blocks;
3909 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3910 int ndirty_data, ndirty_qdata;
3911 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3912 int nats, dirty_nats, sits, dirty_sits;
3913 int free_nids, avail_nids, alloc_nids;
3914 int total_count, utilization;
3915 int nr_wb_cp_data, nr_wb_data;
3916 int nr_rd_data, nr_rd_node, nr_rd_meta;
3917 int nr_dio_read, nr_dio_write;
3918 unsigned int io_skip_bggc, other_skip_bggc;
3919 int nr_flushing, nr_flushed, flush_list_empty;
3920 int nr_discarding, nr_discarded;
3921 int nr_discard_cmd;
3922 unsigned int undiscard_blks;
3923 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3924 unsigned int cur_ckpt_time, peak_ckpt_time;
3925 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3926 int compr_inode, swapfile_inode;
3927 unsigned long long compr_blocks;
3928 int aw_cnt, max_aw_cnt;
3929 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3930 unsigned int bimodal, avg_vblocks;
3931 int util_free, util_valid, util_invalid;
3932 int rsvd_segs, overp_segs;
3933 int dirty_count, node_pages, meta_pages, compress_pages;
3934 int compress_page_hit;
3935 int prefree_count, free_segs, free_secs;
3936 int cp_call_count[MAX_CALL_TYPE], cp_count;
3937 int gc_call_count[MAX_CALL_TYPE];
3938 int gc_segs[2][2];
3939 int gc_secs[2][2];
3940 int tot_blks, data_blks, node_blks;
3941 int bg_data_blks, bg_node_blks;
3942 int curseg[NR_CURSEG_TYPE];
3943 int cursec[NR_CURSEG_TYPE];
3944 int curzone[NR_CURSEG_TYPE];
3945 unsigned int dirty_seg[NR_CURSEG_TYPE];
3946 unsigned int full_seg[NR_CURSEG_TYPE];
3947 unsigned int valid_blks[NR_CURSEG_TYPE];
3948
3949 unsigned int meta_count[META_MAX];
3950 unsigned int segment_count[2];
3951 unsigned int block_count[2];
3952 unsigned int inplace_count;
3953 unsigned long long base_mem, cache_mem, page_mem;
3954 };
3955
F2FS_STAT(struct f2fs_sb_info * sbi)3956 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3957 {
3958 return (struct f2fs_stat_info *)sbi->stat_info;
3959 }
3960
3961 #define stat_inc_cp_call_count(sbi, foreground) \
3962 atomic_inc(&sbi->cp_call_count[(foreground)])
3963 #define stat_inc_cp_count(si) (F2FS_STAT(sbi)->cp_count++)
3964 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3965 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3966 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3967 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3968 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
3969 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3970 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3971 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
3972 #define stat_inc_inline_xattr(inode) \
3973 do { \
3974 if (f2fs_has_inline_xattr(inode)) \
3975 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3976 } while (0)
3977 #define stat_dec_inline_xattr(inode) \
3978 do { \
3979 if (f2fs_has_inline_xattr(inode)) \
3980 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3981 } while (0)
3982 #define stat_inc_inline_inode(inode) \
3983 do { \
3984 if (f2fs_has_inline_data(inode)) \
3985 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3986 } while (0)
3987 #define stat_dec_inline_inode(inode) \
3988 do { \
3989 if (f2fs_has_inline_data(inode)) \
3990 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3991 } while (0)
3992 #define stat_inc_inline_dir(inode) \
3993 do { \
3994 if (f2fs_has_inline_dentry(inode)) \
3995 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3996 } while (0)
3997 #define stat_dec_inline_dir(inode) \
3998 do { \
3999 if (f2fs_has_inline_dentry(inode)) \
4000 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
4001 } while (0)
4002 #define stat_inc_compr_inode(inode) \
4003 do { \
4004 if (f2fs_compressed_file(inode)) \
4005 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
4006 } while (0)
4007 #define stat_dec_compr_inode(inode) \
4008 do { \
4009 if (f2fs_compressed_file(inode)) \
4010 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
4011 } while (0)
4012 #define stat_add_compr_blocks(inode, blocks) \
4013 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4014 #define stat_sub_compr_blocks(inode, blocks) \
4015 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4016 #define stat_inc_swapfile_inode(inode) \
4017 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4018 #define stat_dec_swapfile_inode(inode) \
4019 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4020 #define stat_inc_atomic_inode(inode) \
4021 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4022 #define stat_dec_atomic_inode(inode) \
4023 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4024 #define stat_inc_meta_count(sbi, blkaddr) \
4025 do { \
4026 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
4027 atomic_inc(&(sbi)->meta_count[META_CP]); \
4028 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
4029 atomic_inc(&(sbi)->meta_count[META_SIT]); \
4030 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
4031 atomic_inc(&(sbi)->meta_count[META_NAT]); \
4032 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
4033 atomic_inc(&(sbi)->meta_count[META_SSA]); \
4034 } while (0)
4035 #define stat_inc_seg_type(sbi, curseg) \
4036 ((sbi)->segment_count[(curseg)->alloc_type]++)
4037 #define stat_inc_block_count(sbi, curseg) \
4038 ((sbi)->block_count[(curseg)->alloc_type]++)
4039 #define stat_inc_inplace_blocks(sbi) \
4040 (atomic_inc(&(sbi)->inplace_count))
4041 #define stat_update_max_atomic_write(inode) \
4042 do { \
4043 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
4044 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
4045 if (cur > max) \
4046 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
4047 } while (0)
4048 #define stat_inc_gc_call_count(sbi, foreground) \
4049 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4050 #define stat_inc_gc_sec_count(sbi, type, gc_type) \
4051 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4052 #define stat_inc_gc_seg_count(sbi, type, gc_type) \
4053 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4054
4055 #define stat_inc_tot_blk_count(si, blks) \
4056 ((si)->tot_blks += (blks))
4057
4058 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
4059 do { \
4060 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4061 stat_inc_tot_blk_count(si, blks); \
4062 si->data_blks += (blks); \
4063 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4064 } while (0)
4065
4066 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
4067 do { \
4068 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4069 stat_inc_tot_blk_count(si, blks); \
4070 si->node_blks += (blks); \
4071 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4072 } while (0)
4073
4074 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4075 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4076 void __init f2fs_create_root_stats(void);
4077 void f2fs_destroy_root_stats(void);
4078 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4079 #else
4080 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0)
4081 #define stat_inc_cp_count(sbi) do { } while (0)
4082 #define stat_io_skip_bggc_count(sbi) do { } while (0)
4083 #define stat_other_skip_bggc_count(sbi) do { } while (0)
4084 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
4085 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
4086 #define stat_inc_total_hit(sbi, type) do { } while (0)
4087 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
4088 #define stat_inc_largest_node_hit(sbi) do { } while (0)
4089 #define stat_inc_cached_node_hit(sbi, type) do { } while (0)
4090 #define stat_inc_inline_xattr(inode) do { } while (0)
4091 #define stat_dec_inline_xattr(inode) do { } while (0)
4092 #define stat_inc_inline_inode(inode) do { } while (0)
4093 #define stat_dec_inline_inode(inode) do { } while (0)
4094 #define stat_inc_inline_dir(inode) do { } while (0)
4095 #define stat_dec_inline_dir(inode) do { } while (0)
4096 #define stat_inc_compr_inode(inode) do { } while (0)
4097 #define stat_dec_compr_inode(inode) do { } while (0)
4098 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4099 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4100 #define stat_inc_swapfile_inode(inode) do { } while (0)
4101 #define stat_dec_swapfile_inode(inode) do { } while (0)
4102 #define stat_inc_atomic_inode(inode) do { } while (0)
4103 #define stat_dec_atomic_inode(inode) do { } while (0)
4104 #define stat_update_max_atomic_write(inode) do { } while (0)
4105 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4106 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4107 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4108 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4109 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0)
4110 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0)
4111 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0)
4112 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4113 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4114 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4115
f2fs_build_stats(struct f2fs_sb_info * sbi)4116 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4117 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4118 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4119 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4120 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4121 #endif
4122
4123 extern const struct file_operations f2fs_dir_operations;
4124 extern const struct file_operations f2fs_file_operations;
4125 extern const struct inode_operations f2fs_file_inode_operations;
4126 extern const struct address_space_operations f2fs_dblock_aops;
4127 extern const struct address_space_operations f2fs_node_aops;
4128 extern const struct address_space_operations f2fs_meta_aops;
4129 extern const struct inode_operations f2fs_dir_inode_operations;
4130 extern const struct inode_operations f2fs_symlink_inode_operations;
4131 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4132 extern const struct inode_operations f2fs_special_inode_operations;
4133 extern struct kmem_cache *f2fs_inode_entry_slab;
4134
4135 /*
4136 * inline.c
4137 */
4138 bool f2fs_may_inline_data(struct inode *inode);
4139 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage);
4140 bool f2fs_may_inline_dentry(struct inode *inode);
4141 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4142 void f2fs_truncate_inline_inode(struct inode *inode,
4143 struct page *ipage, u64 from);
4144 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4145 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4146 int f2fs_convert_inline_inode(struct inode *inode);
4147 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4148 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4149 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4150 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4151 const struct f2fs_filename *fname,
4152 struct page **res_page);
4153 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4154 struct page *ipage);
4155 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4156 struct inode *inode, nid_t ino, umode_t mode);
4157 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4158 struct page *page, struct inode *dir,
4159 struct inode *inode);
4160 bool f2fs_empty_inline_dir(struct inode *dir);
4161 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4162 struct fscrypt_str *fstr);
4163 int f2fs_inline_data_fiemap(struct inode *inode,
4164 struct fiemap_extent_info *fieinfo,
4165 __u64 start, __u64 len);
4166
4167 /*
4168 * shrinker.c
4169 */
4170 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4171 struct shrink_control *sc);
4172 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4173 struct shrink_control *sc);
4174 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4175 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4176
4177 /*
4178 * extent_cache.c
4179 */
4180 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage);
4181 void f2fs_init_extent_tree(struct inode *inode);
4182 void f2fs_drop_extent_tree(struct inode *inode);
4183 void f2fs_destroy_extent_node(struct inode *inode);
4184 void f2fs_destroy_extent_tree(struct inode *inode);
4185 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4186 int __init f2fs_create_extent_cache(void);
4187 void f2fs_destroy_extent_cache(void);
4188
4189 /* read extent cache ops */
4190 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4191 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4192 struct extent_info *ei);
4193 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4194 block_t *blkaddr);
4195 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4196 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4197 pgoff_t fofs, block_t blkaddr, unsigned int len);
4198 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4199 int nr_shrink);
4200
4201 /* block age extent cache ops */
4202 void f2fs_init_age_extent_tree(struct inode *inode);
4203 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4204 struct extent_info *ei);
4205 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4206 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4207 pgoff_t fofs, unsigned int len);
4208 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4209 int nr_shrink);
4210
4211 /*
4212 * sysfs.c
4213 */
4214 #define MIN_RA_MUL 2
4215 #define MAX_RA_MUL 256
4216
4217 int __init f2fs_init_sysfs(void);
4218 void f2fs_exit_sysfs(void);
4219 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4220 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4221
4222 /* verity.c */
4223 extern const struct fsverity_operations f2fs_verityops;
4224
4225 /*
4226 * crypto support
4227 */
f2fs_encrypted_file(struct inode * inode)4228 static inline bool f2fs_encrypted_file(struct inode *inode)
4229 {
4230 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4231 }
4232
f2fs_set_encrypted_inode(struct inode * inode)4233 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4234 {
4235 #ifdef CONFIG_FS_ENCRYPTION
4236 file_set_encrypt(inode);
4237 f2fs_set_inode_flags(inode);
4238 #endif
4239 }
4240
4241 /*
4242 * Returns true if the reads of the inode's data need to undergo some
4243 * postprocessing step, like decryption or authenticity verification.
4244 */
f2fs_post_read_required(struct inode * inode)4245 static inline bool f2fs_post_read_required(struct inode *inode)
4246 {
4247 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4248 f2fs_compressed_file(inode);
4249 }
4250
f2fs_used_in_atomic_write(struct inode * inode)4251 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4252 {
4253 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4254 }
4255
f2fs_meta_inode_gc_required(struct inode * inode)4256 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4257 {
4258 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4259 }
4260
4261 /*
4262 * compress.c
4263 */
4264 #ifdef CONFIG_F2FS_FS_COMPRESSION
4265 enum cluster_check_type {
4266 CLUSTER_IS_COMPR, /* check only if compressed cluster */
4267 CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4268 CLUSTER_RAW_BLKS /* return # of raw blocks in a cluster */
4269 };
4270 bool f2fs_is_compressed_page(struct page *page);
4271 struct page *f2fs_compress_control_page(struct page *page);
4272 int f2fs_prepare_compress_overwrite(struct inode *inode,
4273 struct page **pagep, pgoff_t index, void **fsdata);
4274 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4275 pgoff_t index, unsigned copied);
4276 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4277 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4278 bool f2fs_is_compress_backend_ready(struct inode *inode);
4279 bool f2fs_is_compress_level_valid(int alg, int lvl);
4280 int __init f2fs_init_compress_mempool(void);
4281 void f2fs_destroy_compress_mempool(void);
4282 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4283 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4284 block_t blkaddr, bool in_task);
4285 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4286 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4287 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4288 int index, int nr_pages, bool uptodate);
4289 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4290 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4291 int f2fs_write_multi_pages(struct compress_ctx *cc,
4292 int *submitted,
4293 struct writeback_control *wbc,
4294 enum iostat_type io_type);
4295 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4296 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4297 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4298 pgoff_t fofs, block_t blkaddr,
4299 unsigned int llen, unsigned int c_len);
4300 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4301 unsigned nr_pages, sector_t *last_block_in_bio,
4302 bool is_readahead, bool for_write);
4303 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4304 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4305 bool in_task);
4306 void f2fs_put_page_dic(struct page *page, bool in_task);
4307 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4308 unsigned int ofs_in_node);
4309 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4310 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4311 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4312 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4313 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4314 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4315 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4316 int __init f2fs_init_compress_cache(void);
4317 void f2fs_destroy_compress_cache(void);
4318 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4319 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4320 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4321 nid_t ino, block_t blkaddr);
4322 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4323 block_t blkaddr);
4324 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4325 #define inc_compr_inode_stat(inode) \
4326 do { \
4327 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4328 sbi->compr_new_inode++; \
4329 } while (0)
4330 #define add_compr_block_stat(inode, blocks) \
4331 do { \
4332 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4333 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4334 sbi->compr_written_block += blocks; \
4335 sbi->compr_saved_block += diff; \
4336 } while (0)
4337 #else
f2fs_is_compressed_page(struct page * page)4338 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4339 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4340 {
4341 if (!f2fs_compressed_file(inode))
4342 return true;
4343 /* not support compression */
4344 return false;
4345 }
f2fs_is_compress_level_valid(int alg,int lvl)4346 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_page(struct page * page)4347 static inline struct page *f2fs_compress_control_page(struct page *page)
4348 {
4349 WARN_ON_ONCE(1);
4350 return ERR_PTR(-EINVAL);
4351 }
f2fs_init_compress_mempool(void)4352 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4353 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4354 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4355 bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4356 static inline void f2fs_end_read_compressed_page(struct page *page,
4357 bool failed, block_t blkaddr, bool in_task)
4358 {
4359 WARN_ON_ONCE(1);
4360 }
f2fs_put_page_dic(struct page * page,bool in_task)4361 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4362 {
4363 WARN_ON_ONCE(1);
4364 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)4365 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4366 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4367 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4368 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4369 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4370 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4371 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4372 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4373 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4374 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4375 block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4376 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4377 struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4378 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4379 struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4380 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4381 nid_t ino) { }
4382 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)4383 static inline int f2fs_is_compressed_cluster(
4384 struct inode *inode,
4385 pgoff_t index) { return 0; }
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)4386 static inline bool f2fs_is_sparse_cluster(
4387 struct inode *inode,
4388 pgoff_t index) { return true; }
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4389 static inline void f2fs_update_read_extent_tree_range_compressed(
4390 struct inode *inode,
4391 pgoff_t fofs, block_t blkaddr,
4392 unsigned int llen, unsigned int c_len) { }
4393 #endif
4394
set_compress_context(struct inode * inode)4395 static inline int set_compress_context(struct inode *inode)
4396 {
4397 #ifdef CONFIG_F2FS_FS_COMPRESSION
4398 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4399
4400 F2FS_I(inode)->i_compress_algorithm =
4401 F2FS_OPTION(sbi).compress_algorithm;
4402 F2FS_I(inode)->i_log_cluster_size =
4403 F2FS_OPTION(sbi).compress_log_size;
4404 F2FS_I(inode)->i_compress_flag =
4405 F2FS_OPTION(sbi).compress_chksum ?
4406 BIT(COMPRESS_CHKSUM) : 0;
4407 F2FS_I(inode)->i_cluster_size =
4408 BIT(F2FS_I(inode)->i_log_cluster_size);
4409 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4410 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4411 F2FS_OPTION(sbi).compress_level)
4412 F2FS_I(inode)->i_compress_level =
4413 F2FS_OPTION(sbi).compress_level;
4414 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4415 set_inode_flag(inode, FI_COMPRESSED_FILE);
4416 stat_inc_compr_inode(inode);
4417 inc_compr_inode_stat(inode);
4418 f2fs_mark_inode_dirty_sync(inode, true);
4419 return 0;
4420 #else
4421 return -EOPNOTSUPP;
4422 #endif
4423 }
4424
f2fs_disable_compressed_file(struct inode * inode)4425 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4426 {
4427 struct f2fs_inode_info *fi = F2FS_I(inode);
4428
4429 f2fs_down_write(&F2FS_I(inode)->i_sem);
4430
4431 if (!f2fs_compressed_file(inode)) {
4432 f2fs_up_write(&F2FS_I(inode)->i_sem);
4433 return true;
4434 }
4435 if (f2fs_is_mmap_file(inode) ||
4436 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4437 f2fs_up_write(&F2FS_I(inode)->i_sem);
4438 return false;
4439 }
4440
4441 fi->i_flags &= ~F2FS_COMPR_FL;
4442 stat_dec_compr_inode(inode);
4443 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4444 f2fs_mark_inode_dirty_sync(inode, true);
4445
4446 f2fs_up_write(&F2FS_I(inode)->i_sem);
4447 return true;
4448 }
4449
4450 #define F2FS_FEATURE_FUNCS(name, flagname) \
4451 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4452 { \
4453 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4454 }
4455
4456 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4457 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4458 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4459 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4460 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4461 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4462 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4463 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4464 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4465 F2FS_FEATURE_FUNCS(verity, VERITY);
4466 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4467 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4468 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4469 F2FS_FEATURE_FUNCS(readonly, RO);
4470
4471 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4472 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4473 block_t blkaddr)
4474 {
4475 unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4476
4477 return test_bit(zno, FDEV(devi).blkz_seq);
4478 }
4479 #endif
4480
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4481 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4482 struct block_device *bdev)
4483 {
4484 int i;
4485
4486 if (!f2fs_is_multi_device(sbi))
4487 return 0;
4488
4489 for (i = 0; i < sbi->s_ndevs; i++)
4490 if (FDEV(i).bdev == bdev)
4491 return i;
4492
4493 WARN_ON(1);
4494 return -1;
4495 }
4496
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4497 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4498 {
4499 return f2fs_sb_has_blkzoned(sbi);
4500 }
4501
f2fs_bdev_support_discard(struct block_device * bdev)4502 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4503 {
4504 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4505 }
4506
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4507 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4508 {
4509 int i;
4510
4511 if (!f2fs_is_multi_device(sbi))
4512 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4513
4514 for (i = 0; i < sbi->s_ndevs; i++)
4515 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4516 return true;
4517 return false;
4518 }
4519
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4520 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4521 {
4522 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4523 f2fs_hw_should_discard(sbi);
4524 }
4525
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4526 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4527 {
4528 int i;
4529
4530 if (!f2fs_is_multi_device(sbi))
4531 return bdev_read_only(sbi->sb->s_bdev);
4532
4533 for (i = 0; i < sbi->s_ndevs; i++)
4534 if (bdev_read_only(FDEV(i).bdev))
4535 return true;
4536 return false;
4537 }
4538
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4539 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4540 {
4541 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4542 }
4543
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4544 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4545 {
4546 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4547 }
4548
f2fs_valid_pinned_area(struct f2fs_sb_info * sbi,block_t blkaddr)4549 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4550 block_t blkaddr)
4551 {
4552 if (f2fs_sb_has_blkzoned(sbi)) {
4553 int devi = f2fs_target_device_index(sbi, blkaddr);
4554
4555 return !bdev_is_zoned(FDEV(devi).bdev);
4556 }
4557 return true;
4558 }
4559
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4560 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4561 {
4562 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4563 }
4564
f2fs_may_compress(struct inode * inode)4565 static inline bool f2fs_may_compress(struct inode *inode)
4566 {
4567 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4568 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4569 f2fs_is_mmap_file(inode))
4570 return false;
4571 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4572 }
4573
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4574 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4575 u64 blocks, bool add)
4576 {
4577 struct f2fs_inode_info *fi = F2FS_I(inode);
4578 int diff = fi->i_cluster_size - blocks;
4579
4580 /* don't update i_compr_blocks if saved blocks were released */
4581 if (!add && !atomic_read(&fi->i_compr_blocks))
4582 return;
4583
4584 if (add) {
4585 atomic_add(diff, &fi->i_compr_blocks);
4586 stat_add_compr_blocks(inode, diff);
4587 } else {
4588 atomic_sub(diff, &fi->i_compr_blocks);
4589 stat_sub_compr_blocks(inode, diff);
4590 }
4591 f2fs_mark_inode_dirty_sync(inode, true);
4592 }
4593
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4594 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4595 int flag)
4596 {
4597 if (!f2fs_is_multi_device(sbi))
4598 return false;
4599 if (flag != F2FS_GET_BLOCK_DIO)
4600 return false;
4601 return sbi->aligned_blksize;
4602 }
4603
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4604 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4605 {
4606 return fsverity_active(inode) &&
4607 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4608 }
4609
4610 #ifdef CONFIG_F2FS_FAULT_INJECTION
4611 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4612 unsigned long type);
4613 #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type)4614 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4615 unsigned long rate, unsigned long type)
4616 {
4617 return 0;
4618 }
4619 #endif
4620
is_journalled_quota(struct f2fs_sb_info * sbi)4621 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4622 {
4623 #ifdef CONFIG_QUOTA
4624 if (f2fs_sb_has_quota_ino(sbi))
4625 return true;
4626 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4627 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4628 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4629 return true;
4630 #endif
4631 return false;
4632 }
4633
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4634 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4635 {
4636 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4637 }
4638
f2fs_io_schedule_timeout(long timeout)4639 static inline void f2fs_io_schedule_timeout(long timeout)
4640 {
4641 set_current_state(TASK_UNINTERRUPTIBLE);
4642 io_schedule_timeout(timeout);
4643 }
4644
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4645 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4646 enum page_type type)
4647 {
4648 if (unlikely(f2fs_cp_error(sbi)))
4649 return;
4650
4651 if (ofs == sbi->page_eio_ofs[type]) {
4652 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4653 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4654 } else {
4655 sbi->page_eio_ofs[type] = ofs;
4656 sbi->page_eio_cnt[type] = 0;
4657 }
4658 }
4659
f2fs_is_readonly(struct f2fs_sb_info * sbi)4660 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4661 {
4662 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4663 }
4664
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4665 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4666 block_t blkaddr, unsigned int cnt)
4667 {
4668 bool need_submit = false;
4669 int i = 0;
4670
4671 do {
4672 struct page *page;
4673
4674 page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4675 if (page) {
4676 if (PageWriteback(page))
4677 need_submit = true;
4678 f2fs_put_page(page, 0);
4679 }
4680 } while (++i < cnt && !need_submit);
4681
4682 if (need_submit)
4683 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4684 NULL, 0, DATA);
4685
4686 truncate_inode_pages_range(META_MAPPING(sbi),
4687 F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4688 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4689 }
4690
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr)4691 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4692 block_t blkaddr)
4693 {
4694 f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4695 f2fs_invalidate_compress_page(sbi, blkaddr);
4696 }
4697
4698 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4699 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4700
4701 #endif /* _LINUX_F2FS_H */
4702