1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
4  *
5  *  Copyright (C) 2011 Weinmann Medical GmbH
6  *  Author: Nikolaus Voss <n.voss@weinmann.de>
7  *
8  *  Evolved from original work by:
9  *  Copyright (C) 2004 Rick Bronson
10  *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
11  *
12  *  Borrowed heavily from original work by:
13  *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/completion.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/i2c.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/of.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 
30 #include "i2c-at91.h"
31 
at91_init_twi_bus_master(struct at91_twi_dev * dev)32 void at91_init_twi_bus_master(struct at91_twi_dev *dev)
33 {
34 	struct at91_twi_pdata *pdata = dev->pdata;
35 	u32 filtr = 0;
36 
37 	/* FIFO should be enabled immediately after the software reset */
38 	if (dev->fifo_size)
39 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
40 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
41 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
42 	at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
43 
44 	/* enable digital filter */
45 	if (pdata->has_dig_filtr && dev->enable_dig_filt)
46 		filtr |= AT91_TWI_FILTR_FILT;
47 
48 	/* enable advanced digital filter */
49 	if (pdata->has_adv_dig_filtr && dev->enable_dig_filt)
50 		filtr |= AT91_TWI_FILTR_FILT |
51 			 (AT91_TWI_FILTR_THRES(dev->filter_width) &
52 			 AT91_TWI_FILTR_THRES_MASK);
53 
54 	/* enable analog filter */
55 	if (pdata->has_ana_filtr && dev->enable_ana_filt)
56 		filtr |= AT91_TWI_FILTR_PADFEN;
57 
58 	if (filtr)
59 		at91_twi_write(dev, AT91_TWI_FILTR, filtr);
60 }
61 
62 /*
63  * Calculate symmetric clock as stated in datasheet:
64  * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
65  */
at91_calc_twi_clock(struct at91_twi_dev * dev)66 static void at91_calc_twi_clock(struct at91_twi_dev *dev)
67 {
68 	int ckdiv, cdiv, div, hold = 0, filter_width = 0;
69 	struct at91_twi_pdata *pdata = dev->pdata;
70 	int offset = pdata->clk_offset;
71 	int max_ckdiv = pdata->clk_max_div;
72 	struct i2c_timings timings, *t = &timings;
73 
74 	i2c_parse_fw_timings(dev->dev, t, true);
75 
76 	div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
77 				       2 * t->bus_freq_hz) - offset);
78 	ckdiv = fls(div >> 8);
79 	cdiv = div >> ckdiv;
80 
81 	if (ckdiv > max_ckdiv) {
82 		dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
83 			 ckdiv, max_ckdiv);
84 		ckdiv = max_ckdiv;
85 		cdiv = 255;
86 	}
87 
88 	if (pdata->has_hold_field) {
89 		/*
90 		 * hold time = HOLD + 3 x T_peripheral_clock
91 		 * Use clk rate in kHz to prevent overflows when computing
92 		 * hold.
93 		 */
94 		hold = DIV_ROUND_UP(t->sda_hold_ns
95 				    * (clk_get_rate(dev->clk) / 1000), 1000000);
96 		hold -= 3;
97 		if (hold < 0)
98 			hold = 0;
99 		if (hold > AT91_TWI_CWGR_HOLD_MAX) {
100 			dev_warn(dev->dev,
101 				 "HOLD field set to its maximum value (%d instead of %d)\n",
102 				 AT91_TWI_CWGR_HOLD_MAX, hold);
103 			hold = AT91_TWI_CWGR_HOLD_MAX;
104 		}
105 	}
106 
107 	if (pdata->has_adv_dig_filtr) {
108 		/*
109 		 * filter width = 0 to AT91_TWI_FILTR_THRES_MAX
110 		 * peripheral clocks
111 		 */
112 		filter_width = DIV_ROUND_UP(t->digital_filter_width_ns
113 				* (clk_get_rate(dev->clk) / 1000), 1000000);
114 		if (filter_width > AT91_TWI_FILTR_THRES_MAX) {
115 			dev_warn(dev->dev,
116 				"Filter threshold set to its maximum value (%d instead of %d)\n",
117 				AT91_TWI_FILTR_THRES_MAX, filter_width);
118 			filter_width = AT91_TWI_FILTR_THRES_MAX;
119 		}
120 	}
121 
122 	dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
123 			    | AT91_TWI_CWGR_HOLD(hold);
124 
125 	dev->filter_width = filter_width;
126 
127 	dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns), filter_width %d (%d ns)\n",
128 		cdiv, ckdiv, hold, t->sda_hold_ns, filter_width,
129 		t->digital_filter_width_ns);
130 }
131 
at91_twi_dma_cleanup(struct at91_twi_dev * dev)132 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
133 {
134 	struct at91_twi_dma *dma = &dev->dma;
135 
136 	at91_twi_irq_save(dev);
137 
138 	if (dma->xfer_in_progress) {
139 		if (dma->direction == DMA_FROM_DEVICE)
140 			dmaengine_terminate_sync(dma->chan_rx);
141 		else
142 			dmaengine_terminate_sync(dma->chan_tx);
143 		dma->xfer_in_progress = false;
144 	}
145 	if (dma->buf_mapped) {
146 		dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
147 				 dev->buf_len, dma->direction);
148 		dma->buf_mapped = false;
149 	}
150 
151 	at91_twi_irq_restore(dev);
152 }
153 
at91_twi_write_next_byte(struct at91_twi_dev * dev)154 static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
155 {
156 	if (!dev->buf_len)
157 		return;
158 
159 	/* 8bit write works with and without FIFO */
160 	writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
161 
162 	/* send stop when last byte has been written */
163 	if (--dev->buf_len == 0) {
164 		if (!dev->use_alt_cmd)
165 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
166 		at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY);
167 	}
168 
169 	dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
170 
171 	++dev->buf;
172 }
173 
at91_twi_write_data_dma_callback(void * data)174 static void at91_twi_write_data_dma_callback(void *data)
175 {
176 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
177 
178 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
179 			 dev->buf_len, DMA_TO_DEVICE);
180 
181 	/*
182 	 * When this callback is called, THR/TX FIFO is likely not to be empty
183 	 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
184 	 * Status Register to be sure that the STOP bit has been sent and the
185 	 * transfer is completed. The NACK interrupt has already been enabled,
186 	 * we just have to enable TXCOMP one.
187 	 */
188 	at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
189 	if (!dev->use_alt_cmd)
190 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
191 }
192 
at91_twi_write_data_dma(struct at91_twi_dev * dev)193 static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
194 {
195 	dma_addr_t dma_addr;
196 	struct dma_async_tx_descriptor *txdesc;
197 	struct at91_twi_dma *dma = &dev->dma;
198 	struct dma_chan *chan_tx = dma->chan_tx;
199 	unsigned int sg_len = 1;
200 
201 	if (!dev->buf_len)
202 		return;
203 
204 	dma->direction = DMA_TO_DEVICE;
205 
206 	at91_twi_irq_save(dev);
207 	dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
208 				  DMA_TO_DEVICE);
209 	if (dma_mapping_error(dev->dev, dma_addr)) {
210 		dev_err(dev->dev, "dma map failed\n");
211 		return;
212 	}
213 	dma->buf_mapped = true;
214 	at91_twi_irq_restore(dev);
215 
216 	if (dev->fifo_size) {
217 		size_t part1_len, part2_len;
218 		struct scatterlist *sg;
219 		unsigned fifo_mr;
220 
221 		sg_len = 0;
222 
223 		part1_len = dev->buf_len & ~0x3;
224 		if (part1_len) {
225 			sg = &dma->sg[sg_len++];
226 			sg_dma_len(sg) = part1_len;
227 			sg_dma_address(sg) = dma_addr;
228 		}
229 
230 		part2_len = dev->buf_len & 0x3;
231 		if (part2_len) {
232 			sg = &dma->sg[sg_len++];
233 			sg_dma_len(sg) = part2_len;
234 			sg_dma_address(sg) = dma_addr + part1_len;
235 		}
236 
237 		/*
238 		 * DMA controller is triggered when at least 4 data can be
239 		 * written into the TX FIFO
240 		 */
241 		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
242 		fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
243 		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
244 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
245 	} else {
246 		sg_dma_len(&dma->sg[0]) = dev->buf_len;
247 		sg_dma_address(&dma->sg[0]) = dma_addr;
248 	}
249 
250 	txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
251 					 DMA_MEM_TO_DEV,
252 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
253 	if (!txdesc) {
254 		dev_err(dev->dev, "dma prep slave sg failed\n");
255 		goto error;
256 	}
257 
258 	txdesc->callback = at91_twi_write_data_dma_callback;
259 	txdesc->callback_param = dev;
260 
261 	dma->xfer_in_progress = true;
262 	dmaengine_submit(txdesc);
263 	dma_async_issue_pending(chan_tx);
264 
265 	return;
266 
267 error:
268 	at91_twi_dma_cleanup(dev);
269 }
270 
at91_twi_read_next_byte(struct at91_twi_dev * dev)271 static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
272 {
273 	/*
274 	 * If we are in this case, it means there is garbage data in RHR, so
275 	 * delete them.
276 	 */
277 	if (!dev->buf_len) {
278 		at91_twi_read(dev, AT91_TWI_RHR);
279 		return;
280 	}
281 
282 	/* 8bit read works with and without FIFO */
283 	*dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
284 	--dev->buf_len;
285 
286 	/* return if aborting, we only needed to read RHR to clear RXRDY*/
287 	if (dev->recv_len_abort)
288 		return;
289 
290 	/* handle I2C_SMBUS_BLOCK_DATA */
291 	if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
292 		/* ensure length byte is a valid value */
293 		if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
294 			dev->msg->flags &= ~I2C_M_RECV_LEN;
295 			dev->buf_len += *dev->buf;
296 			dev->msg->len = dev->buf_len + 1;
297 			dev_dbg(dev->dev, "received block length %zu\n",
298 					 dev->buf_len);
299 		} else {
300 			/* abort and send the stop by reading one more byte */
301 			dev->recv_len_abort = true;
302 			dev->buf_len = 1;
303 		}
304 	}
305 
306 	/* send stop if second but last byte has been read */
307 	if (!dev->use_alt_cmd && dev->buf_len == 1)
308 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
309 
310 	dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
311 
312 	++dev->buf;
313 }
314 
at91_twi_read_data_dma_callback(void * data)315 static void at91_twi_read_data_dma_callback(void *data)
316 {
317 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
318 	unsigned ier = AT91_TWI_TXCOMP;
319 
320 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
321 			 dev->buf_len, DMA_FROM_DEVICE);
322 
323 	if (!dev->use_alt_cmd) {
324 		/* The last two bytes have to be read without using dma */
325 		dev->buf += dev->buf_len - 2;
326 		dev->buf_len = 2;
327 		ier |= AT91_TWI_RXRDY;
328 	}
329 	at91_twi_write(dev, AT91_TWI_IER, ier);
330 }
331 
at91_twi_read_data_dma(struct at91_twi_dev * dev)332 static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
333 {
334 	dma_addr_t dma_addr;
335 	struct dma_async_tx_descriptor *rxdesc;
336 	struct at91_twi_dma *dma = &dev->dma;
337 	struct dma_chan *chan_rx = dma->chan_rx;
338 	size_t buf_len;
339 
340 	buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
341 	dma->direction = DMA_FROM_DEVICE;
342 
343 	/* Keep in mind that we won't use dma to read the last two bytes */
344 	at91_twi_irq_save(dev);
345 	dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
346 	if (dma_mapping_error(dev->dev, dma_addr)) {
347 		dev_err(dev->dev, "dma map failed\n");
348 		return;
349 	}
350 	dma->buf_mapped = true;
351 	at91_twi_irq_restore(dev);
352 
353 	if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
354 		unsigned fifo_mr;
355 
356 		/*
357 		 * DMA controller is triggered when at least 4 data can be
358 		 * read from the RX FIFO
359 		 */
360 		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
361 		fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
362 		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
363 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
364 	}
365 
366 	sg_dma_len(&dma->sg[0]) = buf_len;
367 	sg_dma_address(&dma->sg[0]) = dma_addr;
368 
369 	rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
370 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
371 	if (!rxdesc) {
372 		dev_err(dev->dev, "dma prep slave sg failed\n");
373 		goto error;
374 	}
375 
376 	rxdesc->callback = at91_twi_read_data_dma_callback;
377 	rxdesc->callback_param = dev;
378 
379 	dma->xfer_in_progress = true;
380 	dmaengine_submit(rxdesc);
381 	dma_async_issue_pending(dma->chan_rx);
382 
383 	return;
384 
385 error:
386 	at91_twi_dma_cleanup(dev);
387 }
388 
atmel_twi_interrupt(int irq,void * dev_id)389 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
390 {
391 	struct at91_twi_dev *dev = dev_id;
392 	const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
393 	const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
394 
395 	if (!irqstatus)
396 		return IRQ_NONE;
397 	/*
398 	 * In reception, the behavior of the twi device (before sama5d2) is
399 	 * weird. There is some magic about RXRDY flag! When a data has been
400 	 * almost received, the reception of a new one is anticipated if there
401 	 * is no stop command to send. That is the reason why ask for sending
402 	 * the stop command not on the last data but on the second last one.
403 	 *
404 	 * Unfortunately, we could still have the RXRDY flag set even if the
405 	 * transfer is done and we have read the last data. It might happen
406 	 * when the i2c slave device sends too quickly data after receiving the
407 	 * ack from the master. The data has been almost received before having
408 	 * the order to send stop. In this case, sending the stop command could
409 	 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
410 	 * the RXRDY interrupt first in order to not keep garbage data in the
411 	 * Receive Holding Register for the next transfer.
412 	 */
413 	if (irqstatus & AT91_TWI_RXRDY) {
414 		/*
415 		 * Read all available bytes at once by polling RXRDY usable w/
416 		 * and w/o FIFO. With FIFO enabled we could also read RXFL and
417 		 * avoid polling RXRDY.
418 		 */
419 		do {
420 			at91_twi_read_next_byte(dev);
421 		} while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY);
422 	}
423 
424 	/*
425 	 * When a NACK condition is detected, the I2C controller sets the NACK,
426 	 * TXCOMP and TXRDY bits all together in the Status Register (SR).
427 	 *
428 	 * 1 - Handling NACK errors with CPU write transfer.
429 	 *
430 	 * In such case, we should not write the next byte into the Transmit
431 	 * Holding Register (THR) otherwise the I2C controller would start a new
432 	 * transfer and the I2C slave is likely to reply by another NACK.
433 	 *
434 	 * 2 - Handling NACK errors with DMA write transfer.
435 	 *
436 	 * By setting the TXRDY bit in the SR, the I2C controller also triggers
437 	 * the DMA controller to write the next data into the THR. Then the
438 	 * result depends on the hardware version of the I2C controller.
439 	 *
440 	 * 2a - Without support of the Alternative Command mode.
441 	 *
442 	 * This is the worst case: the DMA controller is triggered to write the
443 	 * next data into the THR, hence starting a new transfer: the I2C slave
444 	 * is likely to reply by another NACK.
445 	 * Concurrently, this interrupt handler is likely to be called to manage
446 	 * the first NACK before the I2C controller detects the second NACK and
447 	 * sets once again the NACK bit into the SR.
448 	 * When handling the first NACK, this interrupt handler disables the I2C
449 	 * controller interruptions, especially the NACK interrupt.
450 	 * Hence, the NACK bit is pending into the SR. This is why we should
451 	 * read the SR to clear all pending interrupts at the beginning of
452 	 * at91_do_twi_transfer() before actually starting a new transfer.
453 	 *
454 	 * 2b - With support of the Alternative Command mode.
455 	 *
456 	 * When a NACK condition is detected, the I2C controller also locks the
457 	 * THR (and sets the LOCK bit in the SR): even though the DMA controller
458 	 * is triggered by the TXRDY bit to write the next data into the THR,
459 	 * this data actually won't go on the I2C bus hence a second NACK is not
460 	 * generated.
461 	 */
462 	if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
463 		at91_disable_twi_interrupts(dev);
464 		complete(&dev->cmd_complete);
465 	} else if (irqstatus & AT91_TWI_TXRDY) {
466 		at91_twi_write_next_byte(dev);
467 	}
468 
469 	/* catch error flags */
470 	dev->transfer_status |= status;
471 
472 	return IRQ_HANDLED;
473 }
474 
at91_do_twi_transfer(struct at91_twi_dev * dev)475 static int at91_do_twi_transfer(struct at91_twi_dev *dev)
476 {
477 	int ret;
478 	unsigned long time_left;
479 	bool has_unre_flag = dev->pdata->has_unre_flag;
480 	bool has_alt_cmd = dev->pdata->has_alt_cmd;
481 
482 	/*
483 	 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
484 	 * read flag but shows the state of the transmission at the time the
485 	 * Status Register is read. According to the programmer datasheet,
486 	 * TXCOMP is set when both holding register and internal shifter are
487 	 * empty and STOP condition has been sent.
488 	 * Consequently, we should enable NACK interrupt rather than TXCOMP to
489 	 * detect transmission failure.
490 	 * Indeed let's take the case of an i2c write command using DMA.
491 	 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
492 	 * TXCOMP bits are set together into the Status Register.
493 	 * LOCK is a clear on write bit, which is set to prevent the DMA
494 	 * controller from sending new data on the i2c bus after a NACK
495 	 * condition has happened. Once locked, this i2c peripheral stops
496 	 * triggering the DMA controller for new data but it is more than
497 	 * likely that a new DMA transaction is already in progress, writing
498 	 * into the Transmit Holding Register. Since the peripheral is locked,
499 	 * these new data won't be sent to the i2c bus but they will remain
500 	 * into the Transmit Holding Register, so TXCOMP bit is cleared.
501 	 * Then when the interrupt handler is called, the Status Register is
502 	 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
503 	 * manage the error properly, without waiting for timeout.
504 	 * This case can be reproduced easyly when writing into an at24 eeprom.
505 	 *
506 	 * Besides, the TXCOMP bit is already set before the i2c transaction
507 	 * has been started. For read transactions, this bit is cleared when
508 	 * writing the START bit into the Control Register. So the
509 	 * corresponding interrupt can safely be enabled just after.
510 	 * However for write transactions managed by the CPU, we first write
511 	 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
512 	 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
513 	 * the interrupt handler would be called immediately and the i2c command
514 	 * would be reported as completed.
515 	 * Also when a write transaction is managed by the DMA controller,
516 	 * enabling the TXCOMP interrupt in this function may lead to a race
517 	 * condition since we don't know whether the TXCOMP interrupt is enabled
518 	 * before or after the DMA has started to write into THR. So the TXCOMP
519 	 * interrupt is enabled later by at91_twi_write_data_dma_callback().
520 	 * Immediately after in that DMA callback, if the alternative command
521 	 * mode is not used, we still need to send the STOP condition manually
522 	 * writing the corresponding bit into the Control Register.
523 	 */
524 
525 	dev_dbg(dev->dev, "transfer: %s %zu bytes.\n",
526 		(dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
527 
528 	reinit_completion(&dev->cmd_complete);
529 	dev->transfer_status = 0;
530 
531 	/* Clear pending interrupts, such as NACK. */
532 	at91_twi_read(dev, AT91_TWI_SR);
533 
534 	if (dev->fifo_size) {
535 		unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
536 
537 		/* Reset FIFO mode register */
538 		fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
539 			     AT91_TWI_FMR_RXRDYM_MASK);
540 		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
541 		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
542 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
543 
544 		/* Flush FIFOs */
545 		at91_twi_write(dev, AT91_TWI_CR,
546 			       AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
547 	}
548 
549 	if (!dev->buf_len) {
550 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
551 		at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
552 	} else if (dev->msg->flags & I2C_M_RD) {
553 		unsigned start_flags = AT91_TWI_START;
554 
555 		/* if only one byte is to be read, immediately stop transfer */
556 		if (!dev->use_alt_cmd && dev->buf_len <= 1 &&
557 		    !(dev->msg->flags & I2C_M_RECV_LEN))
558 			start_flags |= AT91_TWI_STOP;
559 		at91_twi_write(dev, AT91_TWI_CR, start_flags);
560 		/*
561 		 * When using dma without alternative command mode, the last
562 		 * byte has to be read manually in order to not send the stop
563 		 * command too late and then to receive extra data.
564 		 * In practice, there are some issues if you use the dma to
565 		 * read n-1 bytes because of latency.
566 		 * Reading n-2 bytes with dma and the two last ones manually
567 		 * seems to be the best solution.
568 		 */
569 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
570 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
571 			at91_twi_read_data_dma(dev);
572 		} else {
573 			at91_twi_write(dev, AT91_TWI_IER,
574 				       AT91_TWI_TXCOMP |
575 				       AT91_TWI_NACK |
576 				       AT91_TWI_RXRDY);
577 		}
578 	} else {
579 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
580 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
581 			at91_twi_write_data_dma(dev);
582 		} else {
583 			at91_twi_write_next_byte(dev);
584 			at91_twi_write(dev, AT91_TWI_IER,
585 				       AT91_TWI_TXCOMP | AT91_TWI_NACK |
586 				       (dev->buf_len ? AT91_TWI_TXRDY : 0));
587 		}
588 	}
589 
590 	time_left = wait_for_completion_timeout(&dev->cmd_complete,
591 					      dev->adapter.timeout);
592 	if (time_left == 0) {
593 		dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
594 		dev_err(dev->dev, "controller timed out\n");
595 		at91_init_twi_bus(dev);
596 		ret = -ETIMEDOUT;
597 		goto error;
598 	}
599 	if (dev->transfer_status & AT91_TWI_NACK) {
600 		dev_dbg(dev->dev, "received nack\n");
601 		ret = -EREMOTEIO;
602 		goto error;
603 	}
604 	if (dev->transfer_status & AT91_TWI_OVRE) {
605 		dev_err(dev->dev, "overrun while reading\n");
606 		ret = -EIO;
607 		goto error;
608 	}
609 	if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
610 		dev_err(dev->dev, "underrun while writing\n");
611 		ret = -EIO;
612 		goto error;
613 	}
614 	if ((has_alt_cmd || dev->fifo_size) &&
615 	    (dev->transfer_status & AT91_TWI_LOCK)) {
616 		dev_err(dev->dev, "tx locked\n");
617 		ret = -EIO;
618 		goto error;
619 	}
620 	if (dev->recv_len_abort) {
621 		dev_err(dev->dev, "invalid smbus block length recvd\n");
622 		ret = -EPROTO;
623 		goto error;
624 	}
625 
626 	dev_dbg(dev->dev, "transfer complete\n");
627 
628 	return 0;
629 
630 error:
631 	/* first stop DMA transfer if still in progress */
632 	at91_twi_dma_cleanup(dev);
633 	/* then flush THR/FIFO and unlock TX if locked */
634 	if ((has_alt_cmd || dev->fifo_size) &&
635 	    (dev->transfer_status & AT91_TWI_LOCK)) {
636 		dev_dbg(dev->dev, "unlock tx\n");
637 		at91_twi_write(dev, AT91_TWI_CR,
638 			       AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
639 	}
640 
641 	/*
642 	 * some faulty I2C slave devices might hold SDA down;
643 	 * we can send a bus clear command, hoping that the pins will be
644 	 * released
645 	 */
646 	i2c_recover_bus(&dev->adapter);
647 
648 	return ret;
649 }
650 
at91_twi_xfer(struct i2c_adapter * adap,struct i2c_msg * msg,int num)651 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
652 {
653 	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
654 	int ret;
655 	unsigned int_addr_flag = 0;
656 	struct i2c_msg *m_start = msg;
657 	bool is_read;
658 	u8 *dma_buf = NULL;
659 
660 	dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
661 
662 	ret = pm_runtime_get_sync(dev->dev);
663 	if (ret < 0)
664 		goto out;
665 
666 	if (num == 2) {
667 		int internal_address = 0;
668 		int i;
669 
670 		/* 1st msg is put into the internal address, start with 2nd */
671 		m_start = &msg[1];
672 		for (i = 0; i < msg->len; ++i) {
673 			const unsigned addr = msg->buf[msg->len - 1 - i];
674 
675 			internal_address |= addr << (8 * i);
676 			int_addr_flag += AT91_TWI_IADRSZ_1;
677 		}
678 		at91_twi_write(dev, AT91_TWI_IADR, internal_address);
679 	}
680 
681 	dev->use_alt_cmd = false;
682 	is_read = (m_start->flags & I2C_M_RD);
683 	if (dev->pdata->has_alt_cmd) {
684 		if (m_start->len > 0 &&
685 		    m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) {
686 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
687 			at91_twi_write(dev, AT91_TWI_ACR,
688 				       AT91_TWI_ACR_DATAL(m_start->len) |
689 				       ((is_read) ? AT91_TWI_ACR_DIR : 0));
690 			dev->use_alt_cmd = true;
691 		} else {
692 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
693 		}
694 	}
695 
696 	at91_twi_write(dev, AT91_TWI_MMR,
697 		       (m_start->addr << 16) |
698 		       int_addr_flag |
699 		       ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
700 
701 	dev->buf_len = m_start->len;
702 	dev->buf = m_start->buf;
703 	dev->msg = m_start;
704 	dev->recv_len_abort = false;
705 
706 	if (dev->use_dma) {
707 		dma_buf = i2c_get_dma_safe_msg_buf(m_start, 1);
708 		if (!dma_buf) {
709 			ret = -ENOMEM;
710 			goto out;
711 		}
712 		dev->buf = dma_buf;
713 	}
714 
715 	ret = at91_do_twi_transfer(dev);
716 	i2c_put_dma_safe_msg_buf(dma_buf, m_start, !ret);
717 
718 	ret = (ret < 0) ? ret : num;
719 out:
720 	pm_runtime_mark_last_busy(dev->dev);
721 	pm_runtime_put_autosuspend(dev->dev);
722 
723 	return ret;
724 }
725 
726 /*
727  * The hardware can handle at most two messages concatenated by a
728  * repeated start via it's internal address feature.
729  */
730 static const struct i2c_adapter_quirks at91_twi_quirks = {
731 	.flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
732 	.max_comb_1st_msg_len = 3,
733 };
734 
at91_twi_func(struct i2c_adapter * adapter)735 static u32 at91_twi_func(struct i2c_adapter *adapter)
736 {
737 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
738 		| I2C_FUNC_SMBUS_READ_BLOCK_DATA;
739 }
740 
741 static const struct i2c_algorithm at91_twi_algorithm = {
742 	.master_xfer	= at91_twi_xfer,
743 	.functionality	= at91_twi_func,
744 };
745 
at91_twi_configure_dma(struct at91_twi_dev * dev,u32 phy_addr)746 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
747 {
748 	int ret = 0;
749 	struct dma_slave_config slave_config;
750 	struct at91_twi_dma *dma = &dev->dma;
751 	enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
752 
753 	/*
754 	 * The actual width of the access will be chosen in
755 	 * dmaengine_prep_slave_sg():
756 	 * for each buffer in the scatter-gather list, if its size is aligned
757 	 * to addr_width then addr_width accesses will be performed to transfer
758 	 * the buffer. On the other hand, if the buffer size is not aligned to
759 	 * addr_width then the buffer is transferred using single byte accesses.
760 	 * Please refer to the Atmel eXtended DMA controller driver.
761 	 * When FIFOs are used, the TXRDYM threshold can always be set to
762 	 * trigger the XDMAC when at least 4 data can be written into the TX
763 	 * FIFO, even if single byte accesses are performed.
764 	 * However the RXRDYM threshold must be set to fit the access width,
765 	 * deduced from buffer length, so the XDMAC is triggered properly to
766 	 * read data from the RX FIFO.
767 	 */
768 	if (dev->fifo_size)
769 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
770 
771 	memset(&slave_config, 0, sizeof(slave_config));
772 	slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
773 	slave_config.src_addr_width = addr_width;
774 	slave_config.src_maxburst = 1;
775 	slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
776 	slave_config.dst_addr_width = addr_width;
777 	slave_config.dst_maxburst = 1;
778 	slave_config.device_fc = false;
779 
780 	dma->chan_tx = dma_request_chan(dev->dev, "tx");
781 	if (IS_ERR(dma->chan_tx)) {
782 		ret = PTR_ERR(dma->chan_tx);
783 		dma->chan_tx = NULL;
784 		goto error;
785 	}
786 
787 	dma->chan_rx = dma_request_chan(dev->dev, "rx");
788 	if (IS_ERR(dma->chan_rx)) {
789 		ret = PTR_ERR(dma->chan_rx);
790 		dma->chan_rx = NULL;
791 		goto error;
792 	}
793 
794 	slave_config.direction = DMA_MEM_TO_DEV;
795 	if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
796 		dev_err(dev->dev, "failed to configure tx channel\n");
797 		ret = -EINVAL;
798 		goto error;
799 	}
800 
801 	slave_config.direction = DMA_DEV_TO_MEM;
802 	if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
803 		dev_err(dev->dev, "failed to configure rx channel\n");
804 		ret = -EINVAL;
805 		goto error;
806 	}
807 
808 	sg_init_table(dma->sg, 2);
809 	dma->buf_mapped = false;
810 	dma->xfer_in_progress = false;
811 	dev->use_dma = true;
812 
813 	dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
814 		 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
815 
816 	return ret;
817 
818 error:
819 	if (ret != -EPROBE_DEFER)
820 		dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n");
821 	if (dma->chan_rx)
822 		dma_release_channel(dma->chan_rx);
823 	if (dma->chan_tx)
824 		dma_release_channel(dma->chan_tx);
825 	return ret;
826 }
827 
at91_init_twi_recovery_gpio(struct platform_device * pdev,struct at91_twi_dev * dev)828 static int at91_init_twi_recovery_gpio(struct platform_device *pdev,
829 				       struct at91_twi_dev *dev)
830 {
831 	struct i2c_bus_recovery_info *rinfo = &dev->rinfo;
832 
833 	rinfo->pinctrl = devm_pinctrl_get(&pdev->dev);
834 	if (!rinfo->pinctrl) {
835 		dev_info(dev->dev, "pinctrl unavailable, bus recovery not supported\n");
836 		return 0;
837 	}
838 	if (IS_ERR(rinfo->pinctrl)) {
839 		dev_info(dev->dev, "can't get pinctrl, bus recovery not supported\n");
840 		return PTR_ERR(rinfo->pinctrl);
841 	}
842 	dev->adapter.bus_recovery_info = rinfo;
843 
844 	return 0;
845 }
846 
at91_twi_recover_bus_cmd(struct i2c_adapter * adap)847 static int at91_twi_recover_bus_cmd(struct i2c_adapter *adap)
848 {
849 	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
850 
851 	dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
852 	if (!(dev->transfer_status & AT91_TWI_SDA)) {
853 		dev_dbg(dev->dev, "SDA is down; sending bus clear command\n");
854 		if (dev->use_alt_cmd) {
855 			unsigned int acr;
856 
857 			acr = at91_twi_read(dev, AT91_TWI_ACR);
858 			acr &= ~AT91_TWI_ACR_DATAL_MASK;
859 			at91_twi_write(dev, AT91_TWI_ACR, acr);
860 		}
861 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_CLEAR);
862 	}
863 
864 	return 0;
865 }
866 
at91_init_twi_recovery_info(struct platform_device * pdev,struct at91_twi_dev * dev)867 static int at91_init_twi_recovery_info(struct platform_device *pdev,
868 				       struct at91_twi_dev *dev)
869 {
870 	struct i2c_bus_recovery_info *rinfo = &dev->rinfo;
871 	bool has_clear_cmd = dev->pdata->has_clear_cmd;
872 
873 	if (!has_clear_cmd)
874 		return at91_init_twi_recovery_gpio(pdev, dev);
875 
876 	rinfo->recover_bus = at91_twi_recover_bus_cmd;
877 	dev->adapter.bus_recovery_info = rinfo;
878 
879 	return 0;
880 }
881 
at91_twi_probe_master(struct platform_device * pdev,u32 phy_addr,struct at91_twi_dev * dev)882 int at91_twi_probe_master(struct platform_device *pdev,
883 			  u32 phy_addr, struct at91_twi_dev *dev)
884 {
885 	int rc;
886 
887 	init_completion(&dev->cmd_complete);
888 
889 	rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
890 			      dev_name(dev->dev), dev);
891 	if (rc) {
892 		dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
893 		return rc;
894 	}
895 
896 	if (dev->dev->of_node) {
897 		rc = at91_twi_configure_dma(dev, phy_addr);
898 		if (rc == -EPROBE_DEFER)
899 			return rc;
900 	}
901 
902 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
903 				  &dev->fifo_size)) {
904 		dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
905 	}
906 
907 	dev->enable_dig_filt = of_property_read_bool(pdev->dev.of_node,
908 						     "i2c-digital-filter");
909 
910 	dev->enable_ana_filt = of_property_read_bool(pdev->dev.of_node,
911 						     "i2c-analog-filter");
912 	at91_calc_twi_clock(dev);
913 
914 	rc = at91_init_twi_recovery_info(pdev, dev);
915 	if (rc == -EPROBE_DEFER)
916 		return rc;
917 
918 	dev->adapter.algo = &at91_twi_algorithm;
919 	dev->adapter.quirks = &at91_twi_quirks;
920 
921 	return 0;
922 }
923