xref: /openbmc/linux/drivers/net/ieee802154/at86rf230.c (revision 1ac731c529cd4d6adbce134754b51ff7d822b145)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AT86RF230/RF231 driver
4  *
5  * Copyright (C) 2009-2012 Siemens AG
6  *
7  * Written by:
8  * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
9  * Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
10  * Alexander Aring <aar@pengutronix.de>
11  */
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/hrtimer.h>
15 #include <linux/jiffies.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/gpio.h>
19 #include <linux/delay.h>
20 #include <linux/property.h>
21 #include <linux/spi/spi.h>
22 #include <linux/regmap.h>
23 #include <linux/skbuff.h>
24 #include <linux/of_gpio.h>
25 #include <linux/ieee802154.h>
26 
27 #include <net/mac802154.h>
28 #include <net/cfg802154.h>
29 
30 #include "at86rf230.h"
31 
32 struct at86rf230_local;
33 /* at86rf2xx chip depend data.
34  * All timings are in us.
35  */
36 struct at86rf2xx_chip_data {
37 	u16 t_sleep_cycle;
38 	u16 t_channel_switch;
39 	u16 t_reset_to_off;
40 	u16 t_off_to_aack;
41 	u16 t_off_to_tx_on;
42 	u16 t_off_to_sleep;
43 	u16 t_sleep_to_off;
44 	u16 t_frame;
45 	u16 t_p_ack;
46 	int rssi_base_val;
47 
48 	int (*set_channel)(struct at86rf230_local *, u8, u8);
49 	int (*set_txpower)(struct at86rf230_local *, s32);
50 };
51 
52 #define AT86RF2XX_MAX_BUF		(127 + 3)
53 /* tx retries to access the TX_ON state
54  * if it's above then force change will be started.
55  *
56  * We assume the max_frame_retries (7) value of 802.15.4 here.
57  */
58 #define AT86RF2XX_MAX_TX_RETRIES	7
59 /* We use the recommended 5 minutes timeout to recalibrate */
60 #define AT86RF2XX_CAL_LOOP_TIMEOUT	(5 * 60 * HZ)
61 
62 struct at86rf230_state_change {
63 	struct at86rf230_local *lp;
64 	int irq;
65 
66 	struct hrtimer timer;
67 	struct spi_message msg;
68 	struct spi_transfer trx;
69 	u8 buf[AT86RF2XX_MAX_BUF];
70 
71 	void (*complete)(void *context);
72 	u8 from_state;
73 	u8 to_state;
74 	int trac;
75 
76 	bool free;
77 };
78 
79 struct at86rf230_local {
80 	struct spi_device *spi;
81 
82 	struct ieee802154_hw *hw;
83 	struct at86rf2xx_chip_data *data;
84 	struct regmap *regmap;
85 	struct gpio_desc *slp_tr;
86 	bool sleep;
87 
88 	struct completion state_complete;
89 	struct at86rf230_state_change state;
90 
91 	unsigned long cal_timeout;
92 	bool is_tx;
93 	bool is_tx_from_off;
94 	bool was_tx;
95 	u8 tx_retry;
96 	struct sk_buff *tx_skb;
97 	struct at86rf230_state_change tx;
98 };
99 
100 #define AT86RF2XX_NUMREGS 0x3F
101 
102 static void
103 at86rf230_async_state_change(struct at86rf230_local *lp,
104 			     struct at86rf230_state_change *ctx,
105 			     const u8 state, void (*complete)(void *context));
106 
107 static inline void
at86rf230_sleep(struct at86rf230_local * lp)108 at86rf230_sleep(struct at86rf230_local *lp)
109 {
110 	if (lp->slp_tr) {
111 		gpiod_set_value(lp->slp_tr, 1);
112 		usleep_range(lp->data->t_off_to_sleep,
113 			     lp->data->t_off_to_sleep + 10);
114 		lp->sleep = true;
115 	}
116 }
117 
118 static inline void
at86rf230_awake(struct at86rf230_local * lp)119 at86rf230_awake(struct at86rf230_local *lp)
120 {
121 	if (lp->slp_tr) {
122 		gpiod_set_value(lp->slp_tr, 0);
123 		usleep_range(lp->data->t_sleep_to_off,
124 			     lp->data->t_sleep_to_off + 100);
125 		lp->sleep = false;
126 	}
127 }
128 
129 static inline int
__at86rf230_write(struct at86rf230_local * lp,unsigned int addr,unsigned int data)130 __at86rf230_write(struct at86rf230_local *lp,
131 		  unsigned int addr, unsigned int data)
132 {
133 	bool sleep = lp->sleep;
134 	int ret;
135 
136 	/* awake for register setting if sleep */
137 	if (sleep)
138 		at86rf230_awake(lp);
139 
140 	ret = regmap_write(lp->regmap, addr, data);
141 
142 	/* sleep again if was sleeping */
143 	if (sleep)
144 		at86rf230_sleep(lp);
145 
146 	return ret;
147 }
148 
149 static inline int
__at86rf230_read(struct at86rf230_local * lp,unsigned int addr,unsigned int * data)150 __at86rf230_read(struct at86rf230_local *lp,
151 		 unsigned int addr, unsigned int *data)
152 {
153 	bool sleep = lp->sleep;
154 	int ret;
155 
156 	/* awake for register setting if sleep */
157 	if (sleep)
158 		at86rf230_awake(lp);
159 
160 	ret = regmap_read(lp->regmap, addr, data);
161 
162 	/* sleep again if was sleeping */
163 	if (sleep)
164 		at86rf230_sleep(lp);
165 
166 	return ret;
167 }
168 
169 static inline int
at86rf230_read_subreg(struct at86rf230_local * lp,unsigned int addr,unsigned int mask,unsigned int shift,unsigned int * data)170 at86rf230_read_subreg(struct at86rf230_local *lp,
171 		      unsigned int addr, unsigned int mask,
172 		      unsigned int shift, unsigned int *data)
173 {
174 	int rc;
175 
176 	rc = __at86rf230_read(lp, addr, data);
177 	if (!rc)
178 		*data = (*data & mask) >> shift;
179 
180 	return rc;
181 }
182 
183 static inline int
at86rf230_write_subreg(struct at86rf230_local * lp,unsigned int addr,unsigned int mask,unsigned int shift,unsigned int data)184 at86rf230_write_subreg(struct at86rf230_local *lp,
185 		       unsigned int addr, unsigned int mask,
186 		       unsigned int shift, unsigned int data)
187 {
188 	bool sleep = lp->sleep;
189 	int ret;
190 
191 	/* awake for register setting if sleep */
192 	if (sleep)
193 		at86rf230_awake(lp);
194 
195 	ret = regmap_update_bits(lp->regmap, addr, mask, data << shift);
196 
197 	/* sleep again if was sleeping */
198 	if (sleep)
199 		at86rf230_sleep(lp);
200 
201 	return ret;
202 }
203 
204 static inline void
at86rf230_slp_tr_rising_edge(struct at86rf230_local * lp)205 at86rf230_slp_tr_rising_edge(struct at86rf230_local *lp)
206 {
207 	gpiod_set_value(lp->slp_tr, 1);
208 	udelay(1);
209 	gpiod_set_value(lp->slp_tr, 0);
210 }
211 
212 static bool
at86rf230_reg_writeable(struct device * dev,unsigned int reg)213 at86rf230_reg_writeable(struct device *dev, unsigned int reg)
214 {
215 	switch (reg) {
216 	case RG_TRX_STATE:
217 	case RG_TRX_CTRL_0:
218 	case RG_TRX_CTRL_1:
219 	case RG_PHY_TX_PWR:
220 	case RG_PHY_ED_LEVEL:
221 	case RG_PHY_CC_CCA:
222 	case RG_CCA_THRES:
223 	case RG_RX_CTRL:
224 	case RG_SFD_VALUE:
225 	case RG_TRX_CTRL_2:
226 	case RG_ANT_DIV:
227 	case RG_IRQ_MASK:
228 	case RG_VREG_CTRL:
229 	case RG_BATMON:
230 	case RG_XOSC_CTRL:
231 	case RG_RX_SYN:
232 	case RG_XAH_CTRL_1:
233 	case RG_FTN_CTRL:
234 	case RG_PLL_CF:
235 	case RG_PLL_DCU:
236 	case RG_SHORT_ADDR_0:
237 	case RG_SHORT_ADDR_1:
238 	case RG_PAN_ID_0:
239 	case RG_PAN_ID_1:
240 	case RG_IEEE_ADDR_0:
241 	case RG_IEEE_ADDR_1:
242 	case RG_IEEE_ADDR_2:
243 	case RG_IEEE_ADDR_3:
244 	case RG_IEEE_ADDR_4:
245 	case RG_IEEE_ADDR_5:
246 	case RG_IEEE_ADDR_6:
247 	case RG_IEEE_ADDR_7:
248 	case RG_XAH_CTRL_0:
249 	case RG_CSMA_SEED_0:
250 	case RG_CSMA_SEED_1:
251 	case RG_CSMA_BE:
252 		return true;
253 	default:
254 		return false;
255 	}
256 }
257 
258 static bool
at86rf230_reg_readable(struct device * dev,unsigned int reg)259 at86rf230_reg_readable(struct device *dev, unsigned int reg)
260 {
261 	bool rc;
262 
263 	/* all writeable are also readable */
264 	rc = at86rf230_reg_writeable(dev, reg);
265 	if (rc)
266 		return rc;
267 
268 	/* readonly regs */
269 	switch (reg) {
270 	case RG_TRX_STATUS:
271 	case RG_PHY_RSSI:
272 	case RG_IRQ_STATUS:
273 	case RG_PART_NUM:
274 	case RG_VERSION_NUM:
275 	case RG_MAN_ID_1:
276 	case RG_MAN_ID_0:
277 		return true;
278 	default:
279 		return false;
280 	}
281 }
282 
283 static bool
at86rf230_reg_volatile(struct device * dev,unsigned int reg)284 at86rf230_reg_volatile(struct device *dev, unsigned int reg)
285 {
286 	/* can be changed during runtime */
287 	switch (reg) {
288 	case RG_TRX_STATUS:
289 	case RG_TRX_STATE:
290 	case RG_PHY_RSSI:
291 	case RG_PHY_ED_LEVEL:
292 	case RG_IRQ_STATUS:
293 	case RG_VREG_CTRL:
294 	case RG_PLL_CF:
295 	case RG_PLL_DCU:
296 		return true;
297 	default:
298 		return false;
299 	}
300 }
301 
302 static bool
at86rf230_reg_precious(struct device * dev,unsigned int reg)303 at86rf230_reg_precious(struct device *dev, unsigned int reg)
304 {
305 	/* don't clear irq line on read */
306 	switch (reg) {
307 	case RG_IRQ_STATUS:
308 		return true;
309 	default:
310 		return false;
311 	}
312 }
313 
314 static const struct regmap_config at86rf230_regmap_spi_config = {
315 	.reg_bits = 8,
316 	.val_bits = 8,
317 	.write_flag_mask = CMD_REG | CMD_WRITE,
318 	.read_flag_mask = CMD_REG,
319 	.cache_type = REGCACHE_RBTREE,
320 	.max_register = AT86RF2XX_NUMREGS,
321 	.writeable_reg = at86rf230_reg_writeable,
322 	.readable_reg = at86rf230_reg_readable,
323 	.volatile_reg = at86rf230_reg_volatile,
324 	.precious_reg = at86rf230_reg_precious,
325 };
326 
327 static void
at86rf230_async_error_recover_complete(void * context)328 at86rf230_async_error_recover_complete(void *context)
329 {
330 	struct at86rf230_state_change *ctx = context;
331 	struct at86rf230_local *lp = ctx->lp;
332 
333 	if (ctx->free)
334 		kfree(ctx);
335 
336 	if (lp->was_tx) {
337 		lp->was_tx = 0;
338 		ieee802154_xmit_hw_error(lp->hw, lp->tx_skb);
339 	}
340 }
341 
342 static void
at86rf230_async_error_recover(void * context)343 at86rf230_async_error_recover(void *context)
344 {
345 	struct at86rf230_state_change *ctx = context;
346 	struct at86rf230_local *lp = ctx->lp;
347 
348 	if (lp->is_tx) {
349 		lp->was_tx = 1;
350 		lp->is_tx = 0;
351 	}
352 
353 	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
354 				     at86rf230_async_error_recover_complete);
355 }
356 
357 static inline void
at86rf230_async_error(struct at86rf230_local * lp,struct at86rf230_state_change * ctx,int rc)358 at86rf230_async_error(struct at86rf230_local *lp,
359 		      struct at86rf230_state_change *ctx, int rc)
360 {
361 	dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
362 
363 	at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
364 				     at86rf230_async_error_recover);
365 }
366 
367 /* Generic function to get some register value in async mode */
368 static void
at86rf230_async_read_reg(struct at86rf230_local * lp,u8 reg,struct at86rf230_state_change * ctx,void (* complete)(void * context))369 at86rf230_async_read_reg(struct at86rf230_local *lp, u8 reg,
370 			 struct at86rf230_state_change *ctx,
371 			 void (*complete)(void *context))
372 {
373 	int rc;
374 
375 	u8 *tx_buf = ctx->buf;
376 
377 	tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
378 	ctx->msg.complete = complete;
379 	rc = spi_async(lp->spi, &ctx->msg);
380 	if (rc)
381 		at86rf230_async_error(lp, ctx, rc);
382 }
383 
384 static void
at86rf230_async_write_reg(struct at86rf230_local * lp,u8 reg,u8 val,struct at86rf230_state_change * ctx,void (* complete)(void * context))385 at86rf230_async_write_reg(struct at86rf230_local *lp, u8 reg, u8 val,
386 			  struct at86rf230_state_change *ctx,
387 			  void (*complete)(void *context))
388 {
389 	int rc;
390 
391 	ctx->buf[0] = (reg & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
392 	ctx->buf[1] = val;
393 	ctx->msg.complete = complete;
394 	rc = spi_async(lp->spi, &ctx->msg);
395 	if (rc)
396 		at86rf230_async_error(lp, ctx, rc);
397 }
398 
399 static void
at86rf230_async_state_assert(void * context)400 at86rf230_async_state_assert(void *context)
401 {
402 	struct at86rf230_state_change *ctx = context;
403 	struct at86rf230_local *lp = ctx->lp;
404 	const u8 *buf = ctx->buf;
405 	const u8 trx_state = buf[1] & TRX_STATE_MASK;
406 
407 	/* Assert state change */
408 	if (trx_state != ctx->to_state) {
409 		/* Special handling if transceiver state is in
410 		 * STATE_BUSY_RX_AACK and a SHR was detected.
411 		 */
412 		if  (trx_state == STATE_BUSY_RX_AACK) {
413 			/* Undocumented race condition. If we send a state
414 			 * change to STATE_RX_AACK_ON the transceiver could
415 			 * change his state automatically to STATE_BUSY_RX_AACK
416 			 * if a SHR was detected. This is not an error, but we
417 			 * can't assert this.
418 			 */
419 			if (ctx->to_state == STATE_RX_AACK_ON)
420 				goto done;
421 
422 			/* If we change to STATE_TX_ON without forcing and
423 			 * transceiver state is STATE_BUSY_RX_AACK, we wait
424 			 * 'tFrame + tPAck' receiving time. In this time the
425 			 * PDU should be received. If the transceiver is still
426 			 * in STATE_BUSY_RX_AACK, we run a force state change
427 			 * to STATE_TX_ON. This is a timeout handling, if the
428 			 * transceiver stucks in STATE_BUSY_RX_AACK.
429 			 *
430 			 * Additional we do several retries to try to get into
431 			 * TX_ON state without forcing. If the retries are
432 			 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we
433 			 * will do a force change.
434 			 */
435 			if (ctx->to_state == STATE_TX_ON ||
436 			    ctx->to_state == STATE_TRX_OFF) {
437 				u8 state = ctx->to_state;
438 
439 				if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES)
440 					state = STATE_FORCE_TRX_OFF;
441 				lp->tx_retry++;
442 
443 				at86rf230_async_state_change(lp, ctx, state,
444 							     ctx->complete);
445 				return;
446 			}
447 		}
448 
449 		dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n",
450 			 ctx->from_state, ctx->to_state, trx_state);
451 	}
452 
453 done:
454 	if (ctx->complete)
455 		ctx->complete(context);
456 }
457 
at86rf230_async_state_timer(struct hrtimer * timer)458 static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer)
459 {
460 	struct at86rf230_state_change *ctx =
461 		container_of(timer, struct at86rf230_state_change, timer);
462 	struct at86rf230_local *lp = ctx->lp;
463 
464 	at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
465 				 at86rf230_async_state_assert);
466 
467 	return HRTIMER_NORESTART;
468 }
469 
470 /* Do state change timing delay. */
471 static void
at86rf230_async_state_delay(void * context)472 at86rf230_async_state_delay(void *context)
473 {
474 	struct at86rf230_state_change *ctx = context;
475 	struct at86rf230_local *lp = ctx->lp;
476 	struct at86rf2xx_chip_data *c = lp->data;
477 	bool force = false;
478 	ktime_t tim;
479 
480 	/* The force state changes are will show as normal states in the
481 	 * state status subregister. We change the to_state to the
482 	 * corresponding one and remember if it was a force change, this
483 	 * differs if we do a state change from STATE_BUSY_RX_AACK.
484 	 */
485 	switch (ctx->to_state) {
486 	case STATE_FORCE_TX_ON:
487 		ctx->to_state = STATE_TX_ON;
488 		force = true;
489 		break;
490 	case STATE_FORCE_TRX_OFF:
491 		ctx->to_state = STATE_TRX_OFF;
492 		force = true;
493 		break;
494 	default:
495 		break;
496 	}
497 
498 	switch (ctx->from_state) {
499 	case STATE_TRX_OFF:
500 		switch (ctx->to_state) {
501 		case STATE_RX_AACK_ON:
502 			tim = c->t_off_to_aack * NSEC_PER_USEC;
503 			/* state change from TRX_OFF to RX_AACK_ON to do a
504 			 * calibration, we need to reset the timeout for the
505 			 * next one.
506 			 */
507 			lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
508 			goto change;
509 		case STATE_TX_ARET_ON:
510 		case STATE_TX_ON:
511 			tim = c->t_off_to_tx_on * NSEC_PER_USEC;
512 			/* state change from TRX_OFF to TX_ON or ARET_ON to do
513 			 * a calibration, we need to reset the timeout for the
514 			 * next one.
515 			 */
516 			lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
517 			goto change;
518 		default:
519 			break;
520 		}
521 		break;
522 	case STATE_BUSY_RX_AACK:
523 		switch (ctx->to_state) {
524 		case STATE_TRX_OFF:
525 		case STATE_TX_ON:
526 			/* Wait for worst case receiving time if we
527 			 * didn't make a force change from BUSY_RX_AACK
528 			 * to TX_ON or TRX_OFF.
529 			 */
530 			if (!force) {
531 				tim = (c->t_frame + c->t_p_ack) * NSEC_PER_USEC;
532 				goto change;
533 			}
534 			break;
535 		default:
536 			break;
537 		}
538 		break;
539 	/* Default value, means RESET state */
540 	case STATE_P_ON:
541 		switch (ctx->to_state) {
542 		case STATE_TRX_OFF:
543 			tim = c->t_reset_to_off * NSEC_PER_USEC;
544 			goto change;
545 		default:
546 			break;
547 		}
548 		break;
549 	default:
550 		break;
551 	}
552 
553 	/* Default delay is 1us in the most cases */
554 	udelay(1);
555 	at86rf230_async_state_timer(&ctx->timer);
556 	return;
557 
558 change:
559 	hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL);
560 }
561 
562 static void
at86rf230_async_state_change_start(void * context)563 at86rf230_async_state_change_start(void *context)
564 {
565 	struct at86rf230_state_change *ctx = context;
566 	struct at86rf230_local *lp = ctx->lp;
567 	u8 *buf = ctx->buf;
568 	const u8 trx_state = buf[1] & TRX_STATE_MASK;
569 
570 	/* Check for "possible" STATE_TRANSITION_IN_PROGRESS */
571 	if (trx_state == STATE_TRANSITION_IN_PROGRESS) {
572 		udelay(1);
573 		at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
574 					 at86rf230_async_state_change_start);
575 		return;
576 	}
577 
578 	/* Check if we already are in the state which we change in */
579 	if (trx_state == ctx->to_state) {
580 		if (ctx->complete)
581 			ctx->complete(context);
582 		return;
583 	}
584 
585 	/* Set current state to the context of state change */
586 	ctx->from_state = trx_state;
587 
588 	/* Going into the next step for a state change which do a timing
589 	 * relevant delay.
590 	 */
591 	at86rf230_async_write_reg(lp, RG_TRX_STATE, ctx->to_state, ctx,
592 				  at86rf230_async_state_delay);
593 }
594 
595 static void
at86rf230_async_state_change(struct at86rf230_local * lp,struct at86rf230_state_change * ctx,const u8 state,void (* complete)(void * context))596 at86rf230_async_state_change(struct at86rf230_local *lp,
597 			     struct at86rf230_state_change *ctx,
598 			     const u8 state, void (*complete)(void *context))
599 {
600 	/* Initialization for the state change context */
601 	ctx->to_state = state;
602 	ctx->complete = complete;
603 	at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
604 				 at86rf230_async_state_change_start);
605 }
606 
607 static void
at86rf230_sync_state_change_complete(void * context)608 at86rf230_sync_state_change_complete(void *context)
609 {
610 	struct at86rf230_state_change *ctx = context;
611 	struct at86rf230_local *lp = ctx->lp;
612 
613 	complete(&lp->state_complete);
614 }
615 
616 /* This function do a sync framework above the async state change.
617  * Some callbacks of the IEEE 802.15.4 driver interface need to be
618  * handled synchronously.
619  */
620 static int
at86rf230_sync_state_change(struct at86rf230_local * lp,unsigned int state)621 at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state)
622 {
623 	unsigned long rc;
624 
625 	at86rf230_async_state_change(lp, &lp->state, state,
626 				     at86rf230_sync_state_change_complete);
627 
628 	rc = wait_for_completion_timeout(&lp->state_complete,
629 					 msecs_to_jiffies(100));
630 	if (!rc) {
631 		at86rf230_async_error(lp, &lp->state, -ETIMEDOUT);
632 		return -ETIMEDOUT;
633 	}
634 
635 	return 0;
636 }
637 
638 static void
at86rf230_tx_complete(void * context)639 at86rf230_tx_complete(void *context)
640 {
641 	struct at86rf230_state_change *ctx = context;
642 	struct at86rf230_local *lp = ctx->lp;
643 
644 	if (ctx->trac == IEEE802154_SUCCESS)
645 		ieee802154_xmit_complete(lp->hw, lp->tx_skb, false);
646 	else
647 		ieee802154_xmit_error(lp->hw, lp->tx_skb, ctx->trac);
648 
649 	kfree(ctx);
650 }
651 
652 static void
at86rf230_tx_on(void * context)653 at86rf230_tx_on(void *context)
654 {
655 	struct at86rf230_state_change *ctx = context;
656 	struct at86rf230_local *lp = ctx->lp;
657 
658 	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
659 				     at86rf230_tx_complete);
660 }
661 
662 static void
at86rf230_tx_trac_check(void * context)663 at86rf230_tx_trac_check(void *context)
664 {
665 	struct at86rf230_state_change *ctx = context;
666 	struct at86rf230_local *lp = ctx->lp;
667 	u8 trac = TRAC_MASK(ctx->buf[1]);
668 
669 	switch (trac) {
670 	case TRAC_SUCCESS:
671 	case TRAC_SUCCESS_DATA_PENDING:
672 		ctx->trac = IEEE802154_SUCCESS;
673 		break;
674 	case TRAC_CHANNEL_ACCESS_FAILURE:
675 		ctx->trac = IEEE802154_CHANNEL_ACCESS_FAILURE;
676 		break;
677 	case TRAC_NO_ACK:
678 		ctx->trac = IEEE802154_NO_ACK;
679 		break;
680 	default:
681 		ctx->trac = IEEE802154_SYSTEM_ERROR;
682 	}
683 
684 	at86rf230_async_state_change(lp, ctx, STATE_TX_ON, at86rf230_tx_on);
685 }
686 
687 static void
at86rf230_rx_read_frame_complete(void * context)688 at86rf230_rx_read_frame_complete(void *context)
689 {
690 	struct at86rf230_state_change *ctx = context;
691 	struct at86rf230_local *lp = ctx->lp;
692 	const u8 *buf = ctx->buf;
693 	struct sk_buff *skb;
694 	u8 len, lqi;
695 
696 	len = buf[1];
697 	if (!ieee802154_is_valid_psdu_len(len)) {
698 		dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
699 		len = IEEE802154_MTU;
700 	}
701 	lqi = buf[2 + len];
702 
703 	skb = dev_alloc_skb(IEEE802154_MTU);
704 	if (!skb) {
705 		dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n");
706 		kfree(ctx);
707 		return;
708 	}
709 
710 	skb_put_data(skb, buf + 2, len);
711 	ieee802154_rx_irqsafe(lp->hw, skb, lqi);
712 	kfree(ctx);
713 }
714 
715 static void
at86rf230_rx_trac_check(void * context)716 at86rf230_rx_trac_check(void *context)
717 {
718 	struct at86rf230_state_change *ctx = context;
719 	struct at86rf230_local *lp = ctx->lp;
720 	u8 *buf = ctx->buf;
721 	int rc;
722 
723 	buf[0] = CMD_FB;
724 	ctx->trx.len = AT86RF2XX_MAX_BUF;
725 	ctx->msg.complete = at86rf230_rx_read_frame_complete;
726 	rc = spi_async(lp->spi, &ctx->msg);
727 	if (rc) {
728 		ctx->trx.len = 2;
729 		at86rf230_async_error(lp, ctx, rc);
730 	}
731 }
732 
733 static void
at86rf230_irq_trx_end(void * context)734 at86rf230_irq_trx_end(void *context)
735 {
736 	struct at86rf230_state_change *ctx = context;
737 	struct at86rf230_local *lp = ctx->lp;
738 
739 	if (lp->is_tx) {
740 		lp->is_tx = 0;
741 		at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
742 					 at86rf230_tx_trac_check);
743 	} else {
744 		at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
745 					 at86rf230_rx_trac_check);
746 	}
747 }
748 
749 static void
at86rf230_irq_status(void * context)750 at86rf230_irq_status(void *context)
751 {
752 	struct at86rf230_state_change *ctx = context;
753 	struct at86rf230_local *lp = ctx->lp;
754 	const u8 *buf = ctx->buf;
755 	u8 irq = buf[1];
756 
757 	enable_irq(lp->spi->irq);
758 
759 	if (irq & IRQ_TRX_END) {
760 		at86rf230_irq_trx_end(ctx);
761 	} else {
762 		dev_err(&lp->spi->dev, "not supported irq %02x received\n",
763 			irq);
764 		kfree(ctx);
765 	}
766 }
767 
768 static void
at86rf230_setup_spi_messages(struct at86rf230_local * lp,struct at86rf230_state_change * state)769 at86rf230_setup_spi_messages(struct at86rf230_local *lp,
770 			     struct at86rf230_state_change *state)
771 {
772 	state->lp = lp;
773 	state->irq = lp->spi->irq;
774 	spi_message_init(&state->msg);
775 	state->msg.context = state;
776 	state->trx.len = 2;
777 	state->trx.tx_buf = state->buf;
778 	state->trx.rx_buf = state->buf;
779 	spi_message_add_tail(&state->trx, &state->msg);
780 	hrtimer_init(&state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
781 	state->timer.function = at86rf230_async_state_timer;
782 }
783 
at86rf230_isr(int irq,void * data)784 static irqreturn_t at86rf230_isr(int irq, void *data)
785 {
786 	struct at86rf230_local *lp = data;
787 	struct at86rf230_state_change *ctx;
788 	int rc;
789 
790 	disable_irq_nosync(irq);
791 
792 	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
793 	if (!ctx) {
794 		enable_irq(irq);
795 		return IRQ_NONE;
796 	}
797 
798 	at86rf230_setup_spi_messages(lp, ctx);
799 	/* tell on error handling to free ctx */
800 	ctx->free = true;
801 
802 	ctx->buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG;
803 	ctx->msg.complete = at86rf230_irq_status;
804 	rc = spi_async(lp->spi, &ctx->msg);
805 	if (rc) {
806 		at86rf230_async_error(lp, ctx, rc);
807 		enable_irq(irq);
808 		return IRQ_NONE;
809 	}
810 
811 	return IRQ_HANDLED;
812 }
813 
814 static void
at86rf230_write_frame_complete(void * context)815 at86rf230_write_frame_complete(void *context)
816 {
817 	struct at86rf230_state_change *ctx = context;
818 	struct at86rf230_local *lp = ctx->lp;
819 
820 	ctx->trx.len = 2;
821 
822 	if (lp->slp_tr)
823 		at86rf230_slp_tr_rising_edge(lp);
824 	else
825 		at86rf230_async_write_reg(lp, RG_TRX_STATE, STATE_BUSY_TX, ctx,
826 					  NULL);
827 }
828 
829 static void
at86rf230_write_frame(void * context)830 at86rf230_write_frame(void *context)
831 {
832 	struct at86rf230_state_change *ctx = context;
833 	struct at86rf230_local *lp = ctx->lp;
834 	struct sk_buff *skb = lp->tx_skb;
835 	u8 *buf = ctx->buf;
836 	int rc;
837 
838 	lp->is_tx = 1;
839 
840 	buf[0] = CMD_FB | CMD_WRITE;
841 	buf[1] = skb->len + 2;
842 	memcpy(buf + 2, skb->data, skb->len);
843 	ctx->trx.len = skb->len + 2;
844 	ctx->msg.complete = at86rf230_write_frame_complete;
845 	rc = spi_async(lp->spi, &ctx->msg);
846 	if (rc) {
847 		ctx->trx.len = 2;
848 		at86rf230_async_error(lp, ctx, rc);
849 	}
850 }
851 
852 static void
at86rf230_xmit_tx_on(void * context)853 at86rf230_xmit_tx_on(void *context)
854 {
855 	struct at86rf230_state_change *ctx = context;
856 	struct at86rf230_local *lp = ctx->lp;
857 
858 	at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
859 				     at86rf230_write_frame);
860 }
861 
862 static void
at86rf230_xmit_start(void * context)863 at86rf230_xmit_start(void *context)
864 {
865 	struct at86rf230_state_change *ctx = context;
866 	struct at86rf230_local *lp = ctx->lp;
867 
868 	/* check if we change from off state */
869 	if (lp->is_tx_from_off)
870 		at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
871 					     at86rf230_write_frame);
872 	else
873 		at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
874 					     at86rf230_xmit_tx_on);
875 }
876 
877 static int
at86rf230_xmit(struct ieee802154_hw * hw,struct sk_buff * skb)878 at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
879 {
880 	struct at86rf230_local *lp = hw->priv;
881 	struct at86rf230_state_change *ctx = &lp->tx;
882 
883 	lp->tx_skb = skb;
884 	lp->tx_retry = 0;
885 
886 	/* After 5 minutes in PLL and the same frequency we run again the
887 	 * calibration loops which is recommended by at86rf2xx datasheets.
888 	 *
889 	 * The calibration is initiate by a state change from TRX_OFF
890 	 * to TX_ON, the lp->cal_timeout should be reinit by state_delay
891 	 * function then to start in the next 5 minutes.
892 	 */
893 	if (time_is_before_jiffies(lp->cal_timeout)) {
894 		lp->is_tx_from_off = true;
895 		at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF,
896 					     at86rf230_xmit_start);
897 	} else {
898 		lp->is_tx_from_off = false;
899 		at86rf230_xmit_start(ctx);
900 	}
901 
902 	return 0;
903 }
904 
905 static int
at86rf230_ed(struct ieee802154_hw * hw,u8 * level)906 at86rf230_ed(struct ieee802154_hw *hw, u8 *level)
907 {
908 	WARN_ON(!level);
909 	*level = 0xbe;
910 	return 0;
911 }
912 
913 static int
at86rf230_start(struct ieee802154_hw * hw)914 at86rf230_start(struct ieee802154_hw *hw)
915 {
916 	struct at86rf230_local *lp = hw->priv;
917 
918 	at86rf230_awake(lp);
919 	enable_irq(lp->spi->irq);
920 
921 	return at86rf230_sync_state_change(lp, STATE_RX_AACK_ON);
922 }
923 
924 static void
at86rf230_stop(struct ieee802154_hw * hw)925 at86rf230_stop(struct ieee802154_hw *hw)
926 {
927 	struct at86rf230_local *lp = hw->priv;
928 	u8 csma_seed[2];
929 
930 	at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
931 
932 	disable_irq(lp->spi->irq);
933 
934 	/* It's recommended to set random new csma_seeds before sleep state.
935 	 * Makes only sense in the stop callback, not doing this inside of
936 	 * at86rf230_sleep, this is also used when we don't transmit afterwards
937 	 * when calling start callback again.
938 	 */
939 	get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
940 	at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
941 	at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
942 
943 	at86rf230_sleep(lp);
944 }
945 
946 static int
at86rf23x_set_channel(struct at86rf230_local * lp,u8 page,u8 channel)947 at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
948 {
949 	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
950 }
951 
952 #define AT86RF2XX_MAX_ED_LEVELS 0xF
953 static const s32 at86rf233_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = {
954 	-9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000, -7800, -7600,
955 	-7400, -7200, -7000, -6800, -6600, -6400,
956 };
957 
958 static const s32 at86rf231_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = {
959 	-9100, -8900, -8700, -8500, -8300, -8100, -7900, -7700, -7500, -7300,
960 	-7100, -6900, -6700, -6500, -6300, -6100,
961 };
962 
963 static const s32 at86rf212_ed_levels_100[AT86RF2XX_MAX_ED_LEVELS + 1] = {
964 	-10000, -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200,
965 	-8000, -7800, -7600, -7400, -7200, -7000,
966 };
967 
968 static const s32 at86rf212_ed_levels_98[AT86RF2XX_MAX_ED_LEVELS + 1] = {
969 	-9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000,
970 	-7800, -7600, -7400, -7200, -7000, -6800,
971 };
972 
973 static inline int
at86rf212_update_cca_ed_level(struct at86rf230_local * lp,int rssi_base_val)974 at86rf212_update_cca_ed_level(struct at86rf230_local *lp, int rssi_base_val)
975 {
976 	unsigned int cca_ed_thres;
977 	int rc;
978 
979 	rc = at86rf230_read_subreg(lp, SR_CCA_ED_THRES, &cca_ed_thres);
980 	if (rc < 0)
981 		return rc;
982 
983 	switch (rssi_base_val) {
984 	case -98:
985 		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_98;
986 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_98);
987 		lp->hw->phy->cca_ed_level = at86rf212_ed_levels_98[cca_ed_thres];
988 		break;
989 	case -100:
990 		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100;
991 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100);
992 		lp->hw->phy->cca_ed_level = at86rf212_ed_levels_100[cca_ed_thres];
993 		break;
994 	default:
995 		WARN_ON(1);
996 	}
997 
998 	return 0;
999 }
1000 
1001 static int
at86rf212_set_channel(struct at86rf230_local * lp,u8 page,u8 channel)1002 at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1003 {
1004 	int rc;
1005 
1006 	if (channel == 0)
1007 		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
1008 	else
1009 		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
1010 	if (rc < 0)
1011 		return rc;
1012 
1013 	if (page == 0) {
1014 		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
1015 		lp->data->rssi_base_val = -100;
1016 	} else {
1017 		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
1018 		lp->data->rssi_base_val = -98;
1019 	}
1020 	if (rc < 0)
1021 		return rc;
1022 
1023 	rc = at86rf212_update_cca_ed_level(lp, lp->data->rssi_base_val);
1024 	if (rc < 0)
1025 		return rc;
1026 
1027 	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1028 }
1029 
1030 static int
at86rf230_channel(struct ieee802154_hw * hw,u8 page,u8 channel)1031 at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
1032 {
1033 	struct at86rf230_local *lp = hw->priv;
1034 	int rc;
1035 
1036 	rc = lp->data->set_channel(lp, page, channel);
1037 	/* Wait for PLL */
1038 	usleep_range(lp->data->t_channel_switch,
1039 		     lp->data->t_channel_switch + 10);
1040 
1041 	lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
1042 	return rc;
1043 }
1044 
1045 static int
at86rf230_set_hw_addr_filt(struct ieee802154_hw * hw,struct ieee802154_hw_addr_filt * filt,unsigned long changed)1046 at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw,
1047 			   struct ieee802154_hw_addr_filt *filt,
1048 			   unsigned long changed)
1049 {
1050 	struct at86rf230_local *lp = hw->priv;
1051 
1052 	if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
1053 		u16 addr = le16_to_cpu(filt->short_addr);
1054 
1055 		dev_vdbg(&lp->spi->dev, "%s called for saddr\n", __func__);
1056 		__at86rf230_write(lp, RG_SHORT_ADDR_0, addr);
1057 		__at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8);
1058 	}
1059 
1060 	if (changed & IEEE802154_AFILT_PANID_CHANGED) {
1061 		u16 pan = le16_to_cpu(filt->pan_id);
1062 
1063 		dev_vdbg(&lp->spi->dev, "%s called for pan id\n", __func__);
1064 		__at86rf230_write(lp, RG_PAN_ID_0, pan);
1065 		__at86rf230_write(lp, RG_PAN_ID_1, pan >> 8);
1066 	}
1067 
1068 	if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
1069 		u8 i, addr[8];
1070 
1071 		memcpy(addr, &filt->ieee_addr, 8);
1072 		dev_vdbg(&lp->spi->dev, "%s called for IEEE addr\n", __func__);
1073 		for (i = 0; i < 8; i++)
1074 			__at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]);
1075 	}
1076 
1077 	if (changed & IEEE802154_AFILT_PANC_CHANGED) {
1078 		dev_vdbg(&lp->spi->dev, "%s called for panc change\n", __func__);
1079 		if (filt->pan_coord)
1080 			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
1081 		else
1082 			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 #define AT86RF23X_MAX_TX_POWERS 0xF
1089 static const s32 at86rf233_powers[AT86RF23X_MAX_TX_POWERS + 1] = {
1090 	400, 370, 340, 300, 250, 200, 100, 0, -100, -200, -300, -400, -600,
1091 	-800, -1200, -1700,
1092 };
1093 
1094 static const s32 at86rf231_powers[AT86RF23X_MAX_TX_POWERS + 1] = {
1095 	300, 280, 230, 180, 130, 70, 0, -100, -200, -300, -400, -500, -700,
1096 	-900, -1200, -1700,
1097 };
1098 
1099 #define AT86RF212_MAX_TX_POWERS 0x1F
1100 static const s32 at86rf212_powers[AT86RF212_MAX_TX_POWERS + 1] = {
1101 	500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700,
1102 	-800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700,
1103 	-1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600,
1104 };
1105 
1106 static int
at86rf23x_set_txpower(struct at86rf230_local * lp,s32 mbm)1107 at86rf23x_set_txpower(struct at86rf230_local *lp, s32 mbm)
1108 {
1109 	u32 i;
1110 
1111 	for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
1112 		if (lp->hw->phy->supported.tx_powers[i] == mbm)
1113 			return at86rf230_write_subreg(lp, SR_TX_PWR_23X, i);
1114 	}
1115 
1116 	return -EINVAL;
1117 }
1118 
1119 static int
at86rf212_set_txpower(struct at86rf230_local * lp,s32 mbm)1120 at86rf212_set_txpower(struct at86rf230_local *lp, s32 mbm)
1121 {
1122 	u32 i;
1123 
1124 	for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
1125 		if (lp->hw->phy->supported.tx_powers[i] == mbm)
1126 			return at86rf230_write_subreg(lp, SR_TX_PWR_212, i);
1127 	}
1128 
1129 	return -EINVAL;
1130 }
1131 
1132 static int
at86rf230_set_txpower(struct ieee802154_hw * hw,s32 mbm)1133 at86rf230_set_txpower(struct ieee802154_hw *hw, s32 mbm)
1134 {
1135 	struct at86rf230_local *lp = hw->priv;
1136 
1137 	return lp->data->set_txpower(lp, mbm);
1138 }
1139 
1140 static int
at86rf230_set_lbt(struct ieee802154_hw * hw,bool on)1141 at86rf230_set_lbt(struct ieee802154_hw *hw, bool on)
1142 {
1143 	struct at86rf230_local *lp = hw->priv;
1144 
1145 	return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
1146 }
1147 
1148 static int
at86rf230_set_cca_mode(struct ieee802154_hw * hw,const struct wpan_phy_cca * cca)1149 at86rf230_set_cca_mode(struct ieee802154_hw *hw,
1150 		       const struct wpan_phy_cca *cca)
1151 {
1152 	struct at86rf230_local *lp = hw->priv;
1153 	u8 val;
1154 
1155 	/* mapping 802.15.4 to driver spec */
1156 	switch (cca->mode) {
1157 	case NL802154_CCA_ENERGY:
1158 		val = 1;
1159 		break;
1160 	case NL802154_CCA_CARRIER:
1161 		val = 2;
1162 		break;
1163 	case NL802154_CCA_ENERGY_CARRIER:
1164 		switch (cca->opt) {
1165 		case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
1166 			val = 3;
1167 			break;
1168 		case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
1169 			val = 0;
1170 			break;
1171 		default:
1172 			return -EINVAL;
1173 		}
1174 		break;
1175 	default:
1176 		return -EINVAL;
1177 	}
1178 
1179 	return at86rf230_write_subreg(lp, SR_CCA_MODE, val);
1180 }
1181 
1182 static int
at86rf230_set_cca_ed_level(struct ieee802154_hw * hw,s32 mbm)1183 at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
1184 {
1185 	struct at86rf230_local *lp = hw->priv;
1186 	u32 i;
1187 
1188 	for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
1189 		if (hw->phy->supported.cca_ed_levels[i] == mbm)
1190 			return at86rf230_write_subreg(lp, SR_CCA_ED_THRES, i);
1191 	}
1192 
1193 	return -EINVAL;
1194 }
1195 
1196 static int
at86rf230_set_csma_params(struct ieee802154_hw * hw,u8 min_be,u8 max_be,u8 retries)1197 at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
1198 			  u8 retries)
1199 {
1200 	struct at86rf230_local *lp = hw->priv;
1201 	int rc;
1202 
1203 	rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
1204 	if (rc)
1205 		return rc;
1206 
1207 	rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
1208 	if (rc)
1209 		return rc;
1210 
1211 	return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries);
1212 }
1213 
1214 static int
at86rf230_set_frame_retries(struct ieee802154_hw * hw,s8 retries)1215 at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
1216 {
1217 	struct at86rf230_local *lp = hw->priv;
1218 
1219 	return at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
1220 }
1221 
1222 static int
at86rf230_set_promiscuous_mode(struct ieee802154_hw * hw,const bool on)1223 at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
1224 {
1225 	struct at86rf230_local *lp = hw->priv;
1226 	int rc;
1227 
1228 	if (on) {
1229 		rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1);
1230 		if (rc < 0)
1231 			return rc;
1232 
1233 		rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1);
1234 		if (rc < 0)
1235 			return rc;
1236 	} else {
1237 		rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0);
1238 		if (rc < 0)
1239 			return rc;
1240 
1241 		rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0);
1242 		if (rc < 0)
1243 			return rc;
1244 	}
1245 
1246 	return 0;
1247 }
1248 
1249 static const struct ieee802154_ops at86rf230_ops = {
1250 	.owner = THIS_MODULE,
1251 	.xmit_async = at86rf230_xmit,
1252 	.ed = at86rf230_ed,
1253 	.set_channel = at86rf230_channel,
1254 	.start = at86rf230_start,
1255 	.stop = at86rf230_stop,
1256 	.set_hw_addr_filt = at86rf230_set_hw_addr_filt,
1257 	.set_txpower = at86rf230_set_txpower,
1258 	.set_lbt = at86rf230_set_lbt,
1259 	.set_cca_mode = at86rf230_set_cca_mode,
1260 	.set_cca_ed_level = at86rf230_set_cca_ed_level,
1261 	.set_csma_params = at86rf230_set_csma_params,
1262 	.set_frame_retries = at86rf230_set_frame_retries,
1263 	.set_promiscuous_mode = at86rf230_set_promiscuous_mode,
1264 };
1265 
1266 static struct at86rf2xx_chip_data at86rf233_data = {
1267 	.t_sleep_cycle = 330,
1268 	.t_channel_switch = 11,
1269 	.t_reset_to_off = 26,
1270 	.t_off_to_aack = 80,
1271 	.t_off_to_tx_on = 80,
1272 	.t_off_to_sleep = 35,
1273 	.t_sleep_to_off = 1000,
1274 	.t_frame = 4096,
1275 	.t_p_ack = 545,
1276 	.rssi_base_val = -94,
1277 	.set_channel = at86rf23x_set_channel,
1278 	.set_txpower = at86rf23x_set_txpower,
1279 };
1280 
1281 static struct at86rf2xx_chip_data at86rf231_data = {
1282 	.t_sleep_cycle = 330,
1283 	.t_channel_switch = 24,
1284 	.t_reset_to_off = 37,
1285 	.t_off_to_aack = 110,
1286 	.t_off_to_tx_on = 110,
1287 	.t_off_to_sleep = 35,
1288 	.t_sleep_to_off = 1000,
1289 	.t_frame = 4096,
1290 	.t_p_ack = 545,
1291 	.rssi_base_val = -91,
1292 	.set_channel = at86rf23x_set_channel,
1293 	.set_txpower = at86rf23x_set_txpower,
1294 };
1295 
1296 static struct at86rf2xx_chip_data at86rf212_data = {
1297 	.t_sleep_cycle = 330,
1298 	.t_channel_switch = 11,
1299 	.t_reset_to_off = 26,
1300 	.t_off_to_aack = 200,
1301 	.t_off_to_tx_on = 200,
1302 	.t_off_to_sleep = 35,
1303 	.t_sleep_to_off = 1000,
1304 	.t_frame = 4096,
1305 	.t_p_ack = 545,
1306 	.rssi_base_val = -100,
1307 	.set_channel = at86rf212_set_channel,
1308 	.set_txpower = at86rf212_set_txpower,
1309 };
1310 
at86rf230_hw_init(struct at86rf230_local * lp,u8 xtal_trim)1311 static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim)
1312 {
1313 	int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH;
1314 	unsigned int dvdd;
1315 	u8 csma_seed[2];
1316 
1317 	rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
1318 	if (rc)
1319 		return rc;
1320 
1321 	irq_type = irq_get_trigger_type(lp->spi->irq);
1322 	if (irq_type == IRQ_TYPE_EDGE_FALLING ||
1323 	    irq_type == IRQ_TYPE_LEVEL_LOW)
1324 		irq_pol = IRQ_ACTIVE_LOW;
1325 
1326 	rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol);
1327 	if (rc)
1328 		return rc;
1329 
1330 	rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
1331 	if (rc)
1332 		return rc;
1333 
1334 	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
1335 	if (rc)
1336 		return rc;
1337 
1338 	/* reset values differs in at86rf231 and at86rf233 */
1339 	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0);
1340 	if (rc)
1341 		return rc;
1342 
1343 	get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
1344 	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
1345 	if (rc)
1346 		return rc;
1347 	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
1348 	if (rc)
1349 		return rc;
1350 
1351 	/* CLKM changes are applied immediately */
1352 	rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
1353 	if (rc)
1354 		return rc;
1355 
1356 	/* Turn CLKM Off */
1357 	rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
1358 	if (rc)
1359 		return rc;
1360 	/* Wait the next SLEEP cycle */
1361 	usleep_range(lp->data->t_sleep_cycle,
1362 		     lp->data->t_sleep_cycle + 100);
1363 
1364 	/* xtal_trim value is calculated by:
1365 	 * CL = 0.5 * (CX + CTRIM + CPAR)
1366 	 *
1367 	 * whereas:
1368 	 * CL = capacitor of used crystal
1369 	 * CX = connected capacitors at xtal pins
1370 	 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF,
1371 	 *	  but this is different on each board setup. You need to fine
1372 	 *	  tuning this value via CTRIM.
1373 	 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is
1374 	 *	   0 pF upto 4.5 pF.
1375 	 *
1376 	 * Examples:
1377 	 * atben transceiver:
1378 	 *
1379 	 * CL = 8 pF
1380 	 * CX = 12 pF
1381 	 * CPAR = 3 pF (We assume the magic constant from datasheet)
1382 	 * CTRIM = 0.9 pF
1383 	 *
1384 	 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF
1385 	 *
1386 	 * xtal_trim = 0x3
1387 	 *
1388 	 * openlabs transceiver:
1389 	 *
1390 	 * CL = 16 pF
1391 	 * CX = 22 pF
1392 	 * CPAR = 3 pF (We assume the magic constant from datasheet)
1393 	 * CTRIM = 4.5 pF
1394 	 *
1395 	 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF
1396 	 *
1397 	 * xtal_trim = 0xf
1398 	 */
1399 	rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim);
1400 	if (rc)
1401 		return rc;
1402 
1403 	rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd);
1404 	if (rc)
1405 		return rc;
1406 	if (!dvdd) {
1407 		dev_err(&lp->spi->dev, "DVDD error\n");
1408 		return -EINVAL;
1409 	}
1410 
1411 	/* Force setting slotted operation bit to 0. Sometimes the atben
1412 	 * sets this bit and I don't know why. We set this always force
1413 	 * to zero while probing.
1414 	 */
1415 	return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0);
1416 }
1417 
1418 static int
at86rf230_detect_device(struct at86rf230_local * lp)1419 at86rf230_detect_device(struct at86rf230_local *lp)
1420 {
1421 	unsigned int part, version, val;
1422 	u16 man_id = 0;
1423 	const char *chip;
1424 	int rc;
1425 
1426 	rc = __at86rf230_read(lp, RG_MAN_ID_0, &val);
1427 	if (rc)
1428 		return rc;
1429 	man_id |= val;
1430 
1431 	rc = __at86rf230_read(lp, RG_MAN_ID_1, &val);
1432 	if (rc)
1433 		return rc;
1434 	man_id |= (val << 8);
1435 
1436 	rc = __at86rf230_read(lp, RG_PART_NUM, &part);
1437 	if (rc)
1438 		return rc;
1439 
1440 	rc = __at86rf230_read(lp, RG_VERSION_NUM, &version);
1441 	if (rc)
1442 		return rc;
1443 
1444 	if (man_id != 0x001f) {
1445 		dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
1446 			man_id >> 8, man_id & 0xFF);
1447 		return -EINVAL;
1448 	}
1449 
1450 	lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
1451 			IEEE802154_HW_CSMA_PARAMS |
1452 			IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT |
1453 			IEEE802154_HW_PROMISCUOUS;
1454 
1455 	lp->hw->phy->flags = WPAN_PHY_FLAG_TXPOWER |
1456 			     WPAN_PHY_FLAG_CCA_ED_LEVEL |
1457 			     WPAN_PHY_FLAG_CCA_MODE;
1458 
1459 	lp->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
1460 		BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
1461 	lp->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
1462 		BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
1463 
1464 	lp->hw->phy->cca.mode = NL802154_CCA_ENERGY;
1465 
1466 	switch (part) {
1467 	case 2:
1468 		chip = "at86rf230";
1469 		rc = -ENOTSUPP;
1470 		goto not_supp;
1471 	case 3:
1472 		chip = "at86rf231";
1473 		lp->data = &at86rf231_data;
1474 		lp->hw->phy->supported.channels[0] = 0x7FFF800;
1475 		lp->hw->phy->current_channel = 11;
1476 		lp->hw->phy->supported.tx_powers = at86rf231_powers;
1477 		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf231_powers);
1478 		lp->hw->phy->supported.cca_ed_levels = at86rf231_ed_levels;
1479 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf231_ed_levels);
1480 		break;
1481 	case 7:
1482 		chip = "at86rf212";
1483 		lp->data = &at86rf212_data;
1484 		lp->hw->flags |= IEEE802154_HW_LBT;
1485 		lp->hw->phy->supported.channels[0] = 0x00007FF;
1486 		lp->hw->phy->supported.channels[2] = 0x00007FF;
1487 		lp->hw->phy->current_channel = 5;
1488 		lp->hw->phy->supported.lbt = NL802154_SUPPORTED_BOOL_BOTH;
1489 		lp->hw->phy->supported.tx_powers = at86rf212_powers;
1490 		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf212_powers);
1491 		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100;
1492 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100);
1493 		break;
1494 	case 11:
1495 		chip = "at86rf233";
1496 		lp->data = &at86rf233_data;
1497 		lp->hw->phy->supported.channels[0] = 0x7FFF800;
1498 		lp->hw->phy->current_channel = 13;
1499 		lp->hw->phy->supported.tx_powers = at86rf233_powers;
1500 		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf233_powers);
1501 		lp->hw->phy->supported.cca_ed_levels = at86rf233_ed_levels;
1502 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf233_ed_levels);
1503 		break;
1504 	default:
1505 		chip = "unknown";
1506 		rc = -ENOTSUPP;
1507 		goto not_supp;
1508 	}
1509 
1510 	lp->hw->phy->cca_ed_level = lp->hw->phy->supported.cca_ed_levels[7];
1511 	lp->hw->phy->transmit_power = lp->hw->phy->supported.tx_powers[0];
1512 
1513 not_supp:
1514 	dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version);
1515 
1516 	return rc;
1517 }
1518 
at86rf230_probe(struct spi_device * spi)1519 static int at86rf230_probe(struct spi_device *spi)
1520 {
1521 	struct ieee802154_hw *hw;
1522 	struct at86rf230_local *lp;
1523 	struct gpio_desc *slp_tr;
1524 	struct gpio_desc *rstn;
1525 	unsigned int status;
1526 	int rc, irq_type;
1527 	u8 xtal_trim;
1528 
1529 	if (!spi->irq) {
1530 		dev_err(&spi->dev, "no IRQ specified\n");
1531 		return -EINVAL;
1532 	}
1533 
1534 	rc = device_property_read_u8(&spi->dev, "xtal-trim", &xtal_trim);
1535 	if (rc < 0) {
1536 		if (rc != -EINVAL) {
1537 			dev_err(&spi->dev,
1538 				"failed to parse xtal-trim: %d\n", rc);
1539 			return rc;
1540 		}
1541 		xtal_trim = 0;
1542 	}
1543 
1544 	rstn = devm_gpiod_get_optional(&spi->dev, "reset", GPIOD_OUT_LOW);
1545 	rc = PTR_ERR_OR_ZERO(rstn);
1546 	if (rc)
1547 		return rc;
1548 
1549 	gpiod_set_consumer_name(rstn, "rstn");
1550 
1551 	slp_tr = devm_gpiod_get_optional(&spi->dev, "sleep", GPIOD_OUT_LOW);
1552 	rc = PTR_ERR_OR_ZERO(slp_tr);
1553 	if (rc)
1554 		return rc;
1555 
1556 	gpiod_set_consumer_name(slp_tr, "slp_tr");
1557 
1558 	/* Reset */
1559 	if (rstn) {
1560 		udelay(1);
1561 		gpiod_set_value_cansleep(rstn, 1);
1562 		udelay(1);
1563 		gpiod_set_value_cansleep(rstn, 0);
1564 		usleep_range(120, 240);
1565 	}
1566 
1567 	hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops);
1568 	if (!hw)
1569 		return -ENOMEM;
1570 
1571 	lp = hw->priv;
1572 	lp->hw = hw;
1573 	lp->spi = spi;
1574 	lp->slp_tr = slp_tr;
1575 	hw->parent = &spi->dev;
1576 	ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1577 
1578 	lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config);
1579 	if (IS_ERR(lp->regmap)) {
1580 		rc = PTR_ERR(lp->regmap);
1581 		dev_err(&spi->dev, "Failed to allocate register map: %d\n",
1582 			rc);
1583 		goto free_dev;
1584 	}
1585 
1586 	at86rf230_setup_spi_messages(lp, &lp->state);
1587 	at86rf230_setup_spi_messages(lp, &lp->tx);
1588 
1589 	rc = at86rf230_detect_device(lp);
1590 	if (rc < 0)
1591 		goto free_dev;
1592 
1593 	init_completion(&lp->state_complete);
1594 
1595 	spi_set_drvdata(spi, lp);
1596 
1597 	rc = at86rf230_hw_init(lp, xtal_trim);
1598 	if (rc)
1599 		goto free_dev;
1600 
1601 	/* Read irq status register to reset irq line */
1602 	rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
1603 	if (rc)
1604 		goto free_dev;
1605 
1606 	irq_type = irq_get_trigger_type(spi->irq);
1607 	if (!irq_type)
1608 		irq_type = IRQF_TRIGGER_HIGH;
1609 
1610 	rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr,
1611 			      IRQF_SHARED | irq_type, dev_name(&spi->dev), lp);
1612 	if (rc)
1613 		goto free_dev;
1614 
1615 	/* disable_irq by default and wait for starting hardware */
1616 	disable_irq(spi->irq);
1617 
1618 	/* going into sleep by default */
1619 	at86rf230_sleep(lp);
1620 
1621 	rc = ieee802154_register_hw(lp->hw);
1622 	if (rc)
1623 		goto free_dev;
1624 
1625 	return rc;
1626 
1627 free_dev:
1628 	ieee802154_free_hw(lp->hw);
1629 
1630 	return rc;
1631 }
1632 
at86rf230_remove(struct spi_device * spi)1633 static void at86rf230_remove(struct spi_device *spi)
1634 {
1635 	struct at86rf230_local *lp = spi_get_drvdata(spi);
1636 
1637 	/* mask all at86rf230 irq's */
1638 	at86rf230_write_subreg(lp, SR_IRQ_MASK, 0);
1639 	ieee802154_unregister_hw(lp->hw);
1640 	ieee802154_free_hw(lp->hw);
1641 	dev_dbg(&spi->dev, "unregistered at86rf230\n");
1642 }
1643 
1644 static const struct of_device_id at86rf230_of_match[] = {
1645 	{ .compatible = "atmel,at86rf230", },
1646 	{ .compatible = "atmel,at86rf231", },
1647 	{ .compatible = "atmel,at86rf233", },
1648 	{ .compatible = "atmel,at86rf212", },
1649 	{ },
1650 };
1651 MODULE_DEVICE_TABLE(of, at86rf230_of_match);
1652 
1653 static const struct spi_device_id at86rf230_device_id[] = {
1654 	{ .name = "at86rf230", },
1655 	{ .name = "at86rf231", },
1656 	{ .name = "at86rf233", },
1657 	{ .name = "at86rf212", },
1658 	{ },
1659 };
1660 MODULE_DEVICE_TABLE(spi, at86rf230_device_id);
1661 
1662 static struct spi_driver at86rf230_driver = {
1663 	.id_table = at86rf230_device_id,
1664 	.driver = {
1665 		.of_match_table = at86rf230_of_match,
1666 		.name	= "at86rf230",
1667 	},
1668 	.probe      = at86rf230_probe,
1669 	.remove     = at86rf230_remove,
1670 };
1671 
1672 module_spi_driver(at86rf230_driver);
1673 
1674 MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
1675 MODULE_LICENSE("GPL v2");
1676