1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 driver for LSI L64781 COFDM demodulator
4
5 Copyright (C) 2001 Holger Waechtler for Convergence Integrated Media GmbH
6 Marko Kohtala <marko.kohtala@luukku.com>
7
8
9 */
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/string.h>
15 #include <linux/slab.h>
16 #include <media/dvb_frontend.h>
17 #include "l64781.h"
18
19
20 struct l64781_state {
21 struct i2c_adapter* i2c;
22 const struct l64781_config* config;
23 struct dvb_frontend frontend;
24
25 /* private demodulator data */
26 unsigned int first:1;
27 };
28
29 #define dprintk(args...) \
30 do { \
31 if (debug) printk(KERN_DEBUG "l64781: " args); \
32 } while (0)
33
34 static int debug;
35
36 module_param(debug, int, 0644);
37 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
38
39
l64781_writereg(struct l64781_state * state,u8 reg,u8 data)40 static int l64781_writereg (struct l64781_state* state, u8 reg, u8 data)
41 {
42 int ret;
43 u8 buf [] = { reg, data };
44 struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
45
46 if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
47 dprintk ("%s: write_reg error (reg == %02x) = %02x!\n",
48 __func__, reg, ret);
49
50 return (ret != 1) ? -1 : 0;
51 }
52
l64781_readreg(struct l64781_state * state,u8 reg)53 static int l64781_readreg (struct l64781_state* state, u8 reg)
54 {
55 int ret;
56 u8 b0 [] = { reg };
57 u8 b1 [] = { 0 };
58 struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
59 { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } };
60
61 ret = i2c_transfer(state->i2c, msg, 2);
62
63 if (ret != 2) return ret;
64
65 return b1[0];
66 }
67
apply_tps(struct l64781_state * state)68 static void apply_tps (struct l64781_state* state)
69 {
70 l64781_writereg (state, 0x2a, 0x00);
71 l64781_writereg (state, 0x2a, 0x01);
72
73 /* This here is a little bit questionable because it enables
74 the automatic update of TPS registers. I think we'd need to
75 handle the IRQ from FE to update some other registers as
76 well, or at least implement some magic to tuning to correct
77 to the TPS received from transmission. */
78 l64781_writereg (state, 0x2a, 0x02);
79 }
80
81
reset_afc(struct l64781_state * state)82 static void reset_afc (struct l64781_state* state)
83 {
84 /* Set AFC stall for the AFC_INIT_FRQ setting, TIM_STALL for
85 timing offset */
86 l64781_writereg (state, 0x07, 0x9e); /* stall AFC */
87 l64781_writereg (state, 0x08, 0); /* AFC INIT FREQ */
88 l64781_writereg (state, 0x09, 0);
89 l64781_writereg (state, 0x0a, 0);
90 l64781_writereg (state, 0x07, 0x8e);
91 l64781_writereg (state, 0x0e, 0); /* AGC gain to zero in beginning */
92 l64781_writereg (state, 0x11, 0x80); /* stall TIM */
93 l64781_writereg (state, 0x10, 0); /* TIM_OFFSET_LSB */
94 l64781_writereg (state, 0x12, 0);
95 l64781_writereg (state, 0x13, 0);
96 l64781_writereg (state, 0x11, 0x00);
97 }
98
reset_and_configure(struct l64781_state * state)99 static int reset_and_configure (struct l64781_state* state)
100 {
101 u8 buf [] = { 0x06 };
102 struct i2c_msg msg = { .addr = 0x00, .flags = 0, .buf = buf, .len = 1 };
103 // NOTE: this is correct in writing to address 0x00
104
105 return (i2c_transfer(state->i2c, &msg, 1) == 1) ? 0 : -ENODEV;
106 }
107
apply_frontend_param(struct dvb_frontend * fe)108 static int apply_frontend_param(struct dvb_frontend *fe)
109 {
110 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
111 struct l64781_state* state = fe->demodulator_priv;
112 /* The coderates for FEC_NONE, FEC_4_5 and FEC_FEC_6_7 are arbitrary */
113 static const u8 fec_tab[] = { 7, 0, 1, 2, 9, 3, 10, 4 };
114 /* QPSK, QAM_16, QAM_64 */
115 static const u8 qam_tab [] = { 2, 4, 0, 6 };
116 static const u8 guard_tab [] = { 1, 2, 4, 8 };
117 /* The Grundig 29504-401.04 Tuner comes with 18.432MHz crystal. */
118 static const u32 ppm = 8000;
119 u32 ddfs_offset_fixed;
120 /* u32 ddfs_offset_variable = 0x6000-((1000000UL+ppm)/ */
121 /* bw_tab[p->bandWidth]<<10)/15625; */
122 u32 init_freq;
123 u32 spi_bias;
124 u8 val0x04;
125 u8 val0x05;
126 u8 val0x06;
127 int bw;
128
129 switch (p->bandwidth_hz) {
130 case 8000000:
131 bw = 8;
132 break;
133 case 7000000:
134 bw = 7;
135 break;
136 case 6000000:
137 bw = 6;
138 break;
139 default:
140 return -EINVAL;
141 }
142
143 if (fe->ops.tuner_ops.set_params) {
144 fe->ops.tuner_ops.set_params(fe);
145 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
146 }
147
148 if (p->inversion != INVERSION_ON &&
149 p->inversion != INVERSION_OFF)
150 return -EINVAL;
151
152 if (p->code_rate_HP != FEC_1_2 && p->code_rate_HP != FEC_2_3 &&
153 p->code_rate_HP != FEC_3_4 && p->code_rate_HP != FEC_5_6 &&
154 p->code_rate_HP != FEC_7_8)
155 return -EINVAL;
156
157 if (p->hierarchy != HIERARCHY_NONE &&
158 (p->code_rate_LP != FEC_1_2 && p->code_rate_LP != FEC_2_3 &&
159 p->code_rate_LP != FEC_3_4 && p->code_rate_LP != FEC_5_6 &&
160 p->code_rate_LP != FEC_7_8))
161 return -EINVAL;
162
163 if (p->modulation != QPSK && p->modulation != QAM_16 &&
164 p->modulation != QAM_64)
165 return -EINVAL;
166
167 if (p->transmission_mode != TRANSMISSION_MODE_2K &&
168 p->transmission_mode != TRANSMISSION_MODE_8K)
169 return -EINVAL;
170
171 if ((int)p->guard_interval < GUARD_INTERVAL_1_32 ||
172 p->guard_interval > GUARD_INTERVAL_1_4)
173 return -EINVAL;
174
175 if ((int)p->hierarchy < HIERARCHY_NONE ||
176 p->hierarchy > HIERARCHY_4)
177 return -EINVAL;
178
179 ddfs_offset_fixed = 0x4000-(ppm<<16)/bw/1000000;
180
181 /* This works up to 20000 ppm, it overflows if too large ppm! */
182 init_freq = (((8UL<<25) + (8UL<<19) / 25*ppm / (15625/25)) /
183 bw & 0xFFFFFF);
184
185 /* SPI bias calculation is slightly modified to fit in 32bit */
186 /* will work for high ppm only... */
187 spi_bias = 378 * (1 << 10);
188 spi_bias *= 16;
189 spi_bias *= bw;
190 spi_bias *= qam_tab[p->modulation];
191 spi_bias /= p->code_rate_HP + 1;
192 spi_bias /= (guard_tab[p->guard_interval] + 32);
193 spi_bias *= 1000;
194 spi_bias /= 1000 + ppm/1000;
195 spi_bias *= p->code_rate_HP;
196
197 val0x04 = (p->transmission_mode << 2) | p->guard_interval;
198 val0x05 = fec_tab[p->code_rate_HP];
199
200 if (p->hierarchy != HIERARCHY_NONE)
201 val0x05 |= (p->code_rate_LP - FEC_1_2) << 3;
202
203 val0x06 = (p->hierarchy << 2) | p->modulation;
204
205 l64781_writereg (state, 0x04, val0x04);
206 l64781_writereg (state, 0x05, val0x05);
207 l64781_writereg (state, 0x06, val0x06);
208
209 reset_afc (state);
210
211 /* Technical manual section 2.6.1, TIM_IIR_GAIN optimal values */
212 l64781_writereg (state, 0x15,
213 p->transmission_mode == TRANSMISSION_MODE_2K ? 1 : 3);
214 l64781_writereg (state, 0x16, init_freq & 0xff);
215 l64781_writereg (state, 0x17, (init_freq >> 8) & 0xff);
216 l64781_writereg (state, 0x18, (init_freq >> 16) & 0xff);
217
218 l64781_writereg (state, 0x1b, spi_bias & 0xff);
219 l64781_writereg (state, 0x1c, (spi_bias >> 8) & 0xff);
220 l64781_writereg (state, 0x1d, ((spi_bias >> 16) & 0x7f) |
221 (p->inversion == INVERSION_ON ? 0x80 : 0x00));
222
223 l64781_writereg (state, 0x22, ddfs_offset_fixed & 0xff);
224 l64781_writereg (state, 0x23, (ddfs_offset_fixed >> 8) & 0x3f);
225
226 l64781_readreg (state, 0x00); /* clear interrupt registers... */
227 l64781_readreg (state, 0x01); /* dto. */
228
229 apply_tps (state);
230
231 return 0;
232 }
233
get_frontend(struct dvb_frontend * fe,struct dtv_frontend_properties * p)234 static int get_frontend(struct dvb_frontend *fe,
235 struct dtv_frontend_properties *p)
236 {
237 struct l64781_state* state = fe->demodulator_priv;
238 int tmp;
239
240
241 tmp = l64781_readreg(state, 0x04);
242 switch(tmp & 3) {
243 case 0:
244 p->guard_interval = GUARD_INTERVAL_1_32;
245 break;
246 case 1:
247 p->guard_interval = GUARD_INTERVAL_1_16;
248 break;
249 case 2:
250 p->guard_interval = GUARD_INTERVAL_1_8;
251 break;
252 case 3:
253 p->guard_interval = GUARD_INTERVAL_1_4;
254 break;
255 }
256 switch((tmp >> 2) & 3) {
257 case 0:
258 p->transmission_mode = TRANSMISSION_MODE_2K;
259 break;
260 case 1:
261 p->transmission_mode = TRANSMISSION_MODE_8K;
262 break;
263 default:
264 printk(KERN_WARNING "Unexpected value for transmission_mode\n");
265 }
266
267 tmp = l64781_readreg(state, 0x05);
268 switch(tmp & 7) {
269 case 0:
270 p->code_rate_HP = FEC_1_2;
271 break;
272 case 1:
273 p->code_rate_HP = FEC_2_3;
274 break;
275 case 2:
276 p->code_rate_HP = FEC_3_4;
277 break;
278 case 3:
279 p->code_rate_HP = FEC_5_6;
280 break;
281 case 4:
282 p->code_rate_HP = FEC_7_8;
283 break;
284 default:
285 printk("Unexpected value for code_rate_HP\n");
286 }
287 switch((tmp >> 3) & 7) {
288 case 0:
289 p->code_rate_LP = FEC_1_2;
290 break;
291 case 1:
292 p->code_rate_LP = FEC_2_3;
293 break;
294 case 2:
295 p->code_rate_LP = FEC_3_4;
296 break;
297 case 3:
298 p->code_rate_LP = FEC_5_6;
299 break;
300 case 4:
301 p->code_rate_LP = FEC_7_8;
302 break;
303 default:
304 printk("Unexpected value for code_rate_LP\n");
305 }
306
307 tmp = l64781_readreg(state, 0x06);
308 switch(tmp & 3) {
309 case 0:
310 p->modulation = QPSK;
311 break;
312 case 1:
313 p->modulation = QAM_16;
314 break;
315 case 2:
316 p->modulation = QAM_64;
317 break;
318 default:
319 printk(KERN_WARNING "Unexpected value for modulation\n");
320 }
321 switch((tmp >> 2) & 7) {
322 case 0:
323 p->hierarchy = HIERARCHY_NONE;
324 break;
325 case 1:
326 p->hierarchy = HIERARCHY_1;
327 break;
328 case 2:
329 p->hierarchy = HIERARCHY_2;
330 break;
331 case 3:
332 p->hierarchy = HIERARCHY_4;
333 break;
334 default:
335 printk("Unexpected value for hierarchy\n");
336 }
337
338
339 tmp = l64781_readreg (state, 0x1d);
340 p->inversion = (tmp & 0x80) ? INVERSION_ON : INVERSION_OFF;
341
342 tmp = (int) (l64781_readreg (state, 0x08) |
343 (l64781_readreg (state, 0x09) << 8) |
344 (l64781_readreg (state, 0x0a) << 16));
345 p->frequency += tmp;
346
347 return 0;
348 }
349
l64781_read_status(struct dvb_frontend * fe,enum fe_status * status)350 static int l64781_read_status(struct dvb_frontend *fe, enum fe_status *status)
351 {
352 struct l64781_state* state = fe->demodulator_priv;
353 int sync = l64781_readreg (state, 0x32);
354 int gain = l64781_readreg (state, 0x0e);
355
356 l64781_readreg (state, 0x00); /* clear interrupt registers... */
357 l64781_readreg (state, 0x01); /* dto. */
358
359 *status = 0;
360
361 if (gain > 5)
362 *status |= FE_HAS_SIGNAL;
363
364 if (sync & 0x02) /* VCXO locked, this criteria should be ok */
365 *status |= FE_HAS_CARRIER;
366
367 if (sync & 0x20)
368 *status |= FE_HAS_VITERBI;
369
370 if (sync & 0x40)
371 *status |= FE_HAS_SYNC;
372
373 if (sync == 0x7f)
374 *status |= FE_HAS_LOCK;
375
376 return 0;
377 }
378
l64781_read_ber(struct dvb_frontend * fe,u32 * ber)379 static int l64781_read_ber(struct dvb_frontend* fe, u32* ber)
380 {
381 struct l64781_state* state = fe->demodulator_priv;
382
383 /* XXX FIXME: set up counting period (reg 0x26...0x28)
384 */
385 *ber = l64781_readreg (state, 0x39)
386 | (l64781_readreg (state, 0x3a) << 8);
387
388 return 0;
389 }
390
l64781_read_signal_strength(struct dvb_frontend * fe,u16 * signal_strength)391 static int l64781_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
392 {
393 struct l64781_state* state = fe->demodulator_priv;
394
395 u8 gain = l64781_readreg (state, 0x0e);
396 *signal_strength = (gain << 8) | gain;
397
398 return 0;
399 }
400
l64781_read_snr(struct dvb_frontend * fe,u16 * snr)401 static int l64781_read_snr(struct dvb_frontend* fe, u16* snr)
402 {
403 struct l64781_state* state = fe->demodulator_priv;
404
405 u8 avg_quality = 0xff - l64781_readreg (state, 0x33);
406 *snr = (avg_quality << 8) | avg_quality; /* not exact, but...*/
407
408 return 0;
409 }
410
l64781_read_ucblocks(struct dvb_frontend * fe,u32 * ucblocks)411 static int l64781_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
412 {
413 struct l64781_state* state = fe->demodulator_priv;
414
415 *ucblocks = l64781_readreg (state, 0x37)
416 | (l64781_readreg (state, 0x38) << 8);
417
418 return 0;
419 }
420
l64781_sleep(struct dvb_frontend * fe)421 static int l64781_sleep(struct dvb_frontend* fe)
422 {
423 struct l64781_state* state = fe->demodulator_priv;
424
425 /* Power down */
426 return l64781_writereg (state, 0x3e, 0x5a);
427 }
428
l64781_init(struct dvb_frontend * fe)429 static int l64781_init(struct dvb_frontend* fe)
430 {
431 struct l64781_state* state = fe->demodulator_priv;
432
433 reset_and_configure (state);
434
435 /* Power up */
436 l64781_writereg (state, 0x3e, 0xa5);
437
438 /* Reset hard */
439 l64781_writereg (state, 0x2a, 0x04);
440 l64781_writereg (state, 0x2a, 0x00);
441
442 /* Set tuner specific things */
443 /* AFC_POL, set also in reset_afc */
444 l64781_writereg (state, 0x07, 0x8e);
445
446 /* Use internal ADC */
447 l64781_writereg (state, 0x0b, 0x81);
448
449 /* AGC loop gain, and polarity is positive */
450 l64781_writereg (state, 0x0c, 0x84);
451
452 /* Internal ADC outputs two's complement */
453 l64781_writereg (state, 0x0d, 0x8c);
454
455 /* With ppm=8000, it seems the DTR_SENSITIVITY will result in
456 value of 2 with all possible bandwidths and guard
457 intervals, which is the initial value anyway. */
458 /*l64781_writereg (state, 0x19, 0x92);*/
459
460 /* Everything is two's complement, soft bit and CSI_OUT too */
461 l64781_writereg (state, 0x1e, 0x09);
462
463 /* delay a bit after first init attempt */
464 if (state->first) {
465 state->first = 0;
466 msleep(200);
467 }
468
469 return 0;
470 }
471
l64781_get_tune_settings(struct dvb_frontend * fe,struct dvb_frontend_tune_settings * fesettings)472 static int l64781_get_tune_settings(struct dvb_frontend* fe,
473 struct dvb_frontend_tune_settings* fesettings)
474 {
475 fesettings->min_delay_ms = 4000;
476 fesettings->step_size = 0;
477 fesettings->max_drift = 0;
478 return 0;
479 }
480
l64781_release(struct dvb_frontend * fe)481 static void l64781_release(struct dvb_frontend* fe)
482 {
483 struct l64781_state* state = fe->demodulator_priv;
484 kfree(state);
485 }
486
487 static const struct dvb_frontend_ops l64781_ops;
488
l64781_attach(const struct l64781_config * config,struct i2c_adapter * i2c)489 struct dvb_frontend* l64781_attach(const struct l64781_config* config,
490 struct i2c_adapter* i2c)
491 {
492 struct l64781_state* state = NULL;
493 int reg0x3e = -1;
494 u8 b0 [] = { 0x1a };
495 u8 b1 [] = { 0x00 };
496 struct i2c_msg msg [] = { { .addr = config->demod_address, .flags = 0, .buf = b0, .len = 1 },
497 { .addr = config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } };
498
499 /* allocate memory for the internal state */
500 state = kzalloc(sizeof(struct l64781_state), GFP_KERNEL);
501 if (state == NULL) goto error;
502
503 /* setup the state */
504 state->config = config;
505 state->i2c = i2c;
506 state->first = 1;
507
508 /*
509 * the L64781 won't show up before we send the reset_and_configure()
510 * broadcast. If nothing responds there is no L64781 on the bus...
511 */
512 if (reset_and_configure(state) < 0) {
513 dprintk("No response to reset and configure broadcast...\n");
514 goto error;
515 }
516
517 /* The chip always responds to reads */
518 if (i2c_transfer(state->i2c, msg, 2) != 2) {
519 dprintk("No response to read on I2C bus\n");
520 goto error;
521 }
522
523 /* Save current register contents for bailout */
524 reg0x3e = l64781_readreg(state, 0x3e);
525
526 /* Reading the POWER_DOWN register always returns 0 */
527 if (reg0x3e != 0) {
528 dprintk("Device doesn't look like L64781\n");
529 goto error;
530 }
531
532 /* Turn the chip off */
533 l64781_writereg (state, 0x3e, 0x5a);
534
535 /* Responds to all reads with 0 */
536 if (l64781_readreg(state, 0x1a) != 0) {
537 dprintk("Read 1 returned unexpected value\n");
538 goto error;
539 }
540
541 /* Turn the chip on */
542 l64781_writereg (state, 0x3e, 0xa5);
543
544 /* Responds with register default value */
545 if (l64781_readreg(state, 0x1a) != 0xa1) {
546 dprintk("Read 2 returned unexpected value\n");
547 goto error;
548 }
549
550 /* create dvb_frontend */
551 memcpy(&state->frontend.ops, &l64781_ops, sizeof(struct dvb_frontend_ops));
552 state->frontend.demodulator_priv = state;
553 return &state->frontend;
554
555 error:
556 if (reg0x3e >= 0)
557 l64781_writereg (state, 0x3e, reg0x3e); /* restore reg 0x3e */
558 kfree(state);
559 return NULL;
560 }
561
562 static const struct dvb_frontend_ops l64781_ops = {
563 .delsys = { SYS_DVBT },
564 .info = {
565 .name = "LSI L64781 DVB-T",
566 /* .frequency_min_hz = ???,*/
567 /* .frequency_max_hz = ???,*/
568 .frequency_stepsize_hz = 166666,
569 /* .symbol_rate_tolerance = ???,*/
570 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
571 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
572 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 |
573 FE_CAN_MUTE_TS
574 },
575
576 .release = l64781_release,
577
578 .init = l64781_init,
579 .sleep = l64781_sleep,
580
581 .set_frontend = apply_frontend_param,
582 .get_frontend = get_frontend,
583 .get_tune_settings = l64781_get_tune_settings,
584
585 .read_status = l64781_read_status,
586 .read_ber = l64781_read_ber,
587 .read_signal_strength = l64781_read_signal_strength,
588 .read_snr = l64781_read_snr,
589 .read_ucblocks = l64781_read_ucblocks,
590 };
591
592 MODULE_DESCRIPTION("LSI L64781 DVB-T Demodulator driver");
593 MODULE_AUTHOR("Holger Waechtler, Marko Kohtala");
594 MODULE_LICENSE("GPL");
595
596 EXPORT_SYMBOL_GPL(l64781_attach);
597