xref: /openbmc/linux/drivers/s390/crypto/ap_bus.c (revision ba2929159000dc7015cc01cdf7bb72542e19952a)
1  // SPDX-License-Identifier: GPL-2.0+
2  /*
3   * Copyright IBM Corp. 2006, 2023
4   * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5   *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6   *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7   *	      Felix Beck <felix.beck@de.ibm.com>
8   *	      Holger Dengler <hd@linux.vnet.ibm.com>
9   *	      Harald Freudenberger <freude@linux.ibm.com>
10   *
11   * Adjunct processor bus.
12   */
13  
14  #define KMSG_COMPONENT "ap"
15  #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16  
17  #include <linux/kernel_stat.h>
18  #include <linux/moduleparam.h>
19  #include <linux/init.h>
20  #include <linux/delay.h>
21  #include <linux/err.h>
22  #include <linux/freezer.h>
23  #include <linux/interrupt.h>
24  #include <linux/workqueue.h>
25  #include <linux/slab.h>
26  #include <linux/notifier.h>
27  #include <linux/kthread.h>
28  #include <linux/mutex.h>
29  #include <asm/airq.h>
30  #include <asm/tpi.h>
31  #include <linux/atomic.h>
32  #include <asm/isc.h>
33  #include <linux/hrtimer.h>
34  #include <linux/ktime.h>
35  #include <asm/facility.h>
36  #include <linux/crypto.h>
37  #include <linux/mod_devicetable.h>
38  #include <linux/debugfs.h>
39  #include <linux/ctype.h>
40  #include <linux/module.h>
41  
42  #include "ap_bus.h"
43  #include "ap_debug.h"
44  
45  /*
46   * Module parameters; note though this file itself isn't modular.
47   */
48  int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
49  static DEFINE_SPINLOCK(ap_domain_lock);
50  module_param_named(domain, ap_domain_index, int, 0440);
51  MODULE_PARM_DESC(domain, "domain index for ap devices");
52  EXPORT_SYMBOL(ap_domain_index);
53  
54  static int ap_thread_flag;
55  module_param_named(poll_thread, ap_thread_flag, int, 0440);
56  MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
57  
58  static char *apm_str;
59  module_param_named(apmask, apm_str, charp, 0440);
60  MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
61  
62  static char *aqm_str;
63  module_param_named(aqmask, aqm_str, charp, 0440);
64  MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
65  
66  static int ap_useirq = 1;
67  module_param_named(useirq, ap_useirq, int, 0440);
68  MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
69  
70  atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
71  EXPORT_SYMBOL(ap_max_msg_size);
72  
73  static struct device *ap_root_device;
74  
75  /* Hashtable of all queue devices on the AP bus */
76  DEFINE_HASHTABLE(ap_queues, 8);
77  /* lock used for the ap_queues hashtable */
78  DEFINE_SPINLOCK(ap_queues_lock);
79  
80  /* Default permissions (ioctl, card and domain masking) */
81  struct ap_perms ap_perms;
82  EXPORT_SYMBOL(ap_perms);
83  DEFINE_MUTEX(ap_perms_mutex);
84  EXPORT_SYMBOL(ap_perms_mutex);
85  
86  /* # of bus scans since init */
87  static atomic64_t ap_scan_bus_count;
88  
89  /* # of bindings complete since init */
90  static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
91  
92  /* completion for initial APQN bindings complete */
93  static DECLARE_COMPLETION(ap_init_apqn_bindings_complete);
94  
95  static struct ap_config_info *ap_qci_info;
96  static struct ap_config_info *ap_qci_info_old;
97  
98  /*
99   * AP bus related debug feature things.
100   */
101  debug_info_t *ap_dbf_info;
102  
103  /*
104   * Workqueue timer for bus rescan.
105   */
106  static struct timer_list ap_config_timer;
107  static int ap_config_time = AP_CONFIG_TIME;
108  static void ap_scan_bus(struct work_struct *);
109  static DECLARE_WORK(ap_scan_work, ap_scan_bus);
110  
111  /*
112   * Tasklet & timer for AP request polling and interrupts
113   */
114  static void ap_tasklet_fn(unsigned long);
115  static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
116  static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
117  static struct task_struct *ap_poll_kthread;
118  static DEFINE_MUTEX(ap_poll_thread_mutex);
119  static DEFINE_SPINLOCK(ap_poll_timer_lock);
120  static struct hrtimer ap_poll_timer;
121  /*
122   * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
123   * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
124   */
125  static unsigned long poll_high_timeout = 250000UL;
126  
127  /*
128   * Some state machine states only require a low frequency polling.
129   * We use 25 Hz frequency for these.
130   */
131  static unsigned long poll_low_timeout = 40000000UL;
132  
133  /* Maximum domain id, if not given via qci */
134  static int ap_max_domain_id = 15;
135  /* Maximum adapter id, if not given via qci */
136  static int ap_max_adapter_id = 63;
137  
138  static struct bus_type ap_bus_type;
139  
140  /* Adapter interrupt definitions */
141  static void ap_interrupt_handler(struct airq_struct *airq,
142  				 struct tpi_info *tpi_info);
143  
144  static bool ap_irq_flag;
145  
146  static struct airq_struct ap_airq = {
147  	.handler = ap_interrupt_handler,
148  	.isc = AP_ISC,
149  };
150  
151  /**
152   * ap_airq_ptr() - Get the address of the adapter interrupt indicator
153   *
154   * Returns the address of the local-summary-indicator of the adapter
155   * interrupt handler for AP, or NULL if adapter interrupts are not
156   * available.
157   */
ap_airq_ptr(void)158  void *ap_airq_ptr(void)
159  {
160  	if (ap_irq_flag)
161  		return ap_airq.lsi_ptr;
162  	return NULL;
163  }
164  
165  /**
166   * ap_interrupts_available(): Test if AP interrupts are available.
167   *
168   * Returns 1 if AP interrupts are available.
169   */
ap_interrupts_available(void)170  static int ap_interrupts_available(void)
171  {
172  	return test_facility(65);
173  }
174  
175  /**
176   * ap_qci_available(): Test if AP configuration
177   * information can be queried via QCI subfunction.
178   *
179   * Returns 1 if subfunction PQAP(QCI) is available.
180   */
ap_qci_available(void)181  static int ap_qci_available(void)
182  {
183  	return test_facility(12);
184  }
185  
186  /**
187   * ap_apft_available(): Test if AP facilities test (APFT)
188   * facility is available.
189   *
190   * Returns 1 if APFT is available.
191   */
ap_apft_available(void)192  static int ap_apft_available(void)
193  {
194  	return test_facility(15);
195  }
196  
197  /*
198   * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
199   *
200   * Returns 1 if the QACT subfunction is available.
201   */
ap_qact_available(void)202  static inline int ap_qact_available(void)
203  {
204  	if (ap_qci_info)
205  		return ap_qci_info->qact;
206  	return 0;
207  }
208  
209  /*
210   * ap_sb_available(): Test if the AP secure binding facility is available.
211   *
212   * Returns 1 if secure binding facility is available.
213   */
ap_sb_available(void)214  int ap_sb_available(void)
215  {
216  	if (ap_qci_info)
217  		return ap_qci_info->apsb;
218  	return 0;
219  }
220  
221  /*
222   * ap_is_se_guest(): Check for SE guest with AP pass-through support.
223   */
ap_is_se_guest(void)224  bool ap_is_se_guest(void)
225  {
226  	return is_prot_virt_guest() && ap_sb_available();
227  }
228  EXPORT_SYMBOL(ap_is_se_guest);
229  
230  /*
231   * ap_fetch_qci_info(): Fetch cryptographic config info
232   *
233   * Returns the ap configuration info fetched via PQAP(QCI).
234   * On success 0 is returned, on failure a negative errno
235   * is returned, e.g. if the PQAP(QCI) instruction is not
236   * available, the return value will be -EOPNOTSUPP.
237   */
ap_fetch_qci_info(struct ap_config_info * info)238  static inline int ap_fetch_qci_info(struct ap_config_info *info)
239  {
240  	if (!ap_qci_available())
241  		return -EOPNOTSUPP;
242  	if (!info)
243  		return -EINVAL;
244  	return ap_qci(info);
245  }
246  
247  /**
248   * ap_init_qci_info(): Allocate and query qci config info.
249   * Does also update the static variables ap_max_domain_id
250   * and ap_max_adapter_id if this info is available.
251   */
ap_init_qci_info(void)252  static void __init ap_init_qci_info(void)
253  {
254  	if (!ap_qci_available()) {
255  		AP_DBF_INFO("%s QCI not supported\n", __func__);
256  		return;
257  	}
258  
259  	ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
260  	if (!ap_qci_info)
261  		return;
262  	ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL);
263  	if (!ap_qci_info_old) {
264  		kfree(ap_qci_info);
265  		ap_qci_info = NULL;
266  		return;
267  	}
268  	if (ap_fetch_qci_info(ap_qci_info) != 0) {
269  		kfree(ap_qci_info);
270  		kfree(ap_qci_info_old);
271  		ap_qci_info = NULL;
272  		ap_qci_info_old = NULL;
273  		return;
274  	}
275  	AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
276  
277  	if (ap_qci_info->apxa) {
278  		if (ap_qci_info->na) {
279  			ap_max_adapter_id = ap_qci_info->na;
280  			AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
281  				    __func__, ap_max_adapter_id);
282  		}
283  		if (ap_qci_info->nd) {
284  			ap_max_domain_id = ap_qci_info->nd;
285  			AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
286  				    __func__, ap_max_domain_id);
287  		}
288  	}
289  
290  	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
291  }
292  
293  /*
294   * ap_test_config(): helper function to extract the nrth bit
295   *		     within the unsigned int array field.
296   */
ap_test_config(unsigned int * field,unsigned int nr)297  static inline int ap_test_config(unsigned int *field, unsigned int nr)
298  {
299  	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
300  }
301  
302  /*
303   * ap_test_config_card_id(): Test, whether an AP card ID is configured.
304   *
305   * Returns 0 if the card is not configured
306   *	   1 if the card is configured or
307   *	     if the configuration information is not available
308   */
ap_test_config_card_id(unsigned int id)309  static inline int ap_test_config_card_id(unsigned int id)
310  {
311  	if (id > ap_max_adapter_id)
312  		return 0;
313  	if (ap_qci_info)
314  		return ap_test_config(ap_qci_info->apm, id);
315  	return 1;
316  }
317  
318  /*
319   * ap_test_config_usage_domain(): Test, whether an AP usage domain
320   * is configured.
321   *
322   * Returns 0 if the usage domain is not configured
323   *	   1 if the usage domain is configured or
324   *	     if the configuration information is not available
325   */
ap_test_config_usage_domain(unsigned int domain)326  int ap_test_config_usage_domain(unsigned int domain)
327  {
328  	if (domain > ap_max_domain_id)
329  		return 0;
330  	if (ap_qci_info)
331  		return ap_test_config(ap_qci_info->aqm, domain);
332  	return 1;
333  }
334  EXPORT_SYMBOL(ap_test_config_usage_domain);
335  
336  /*
337   * ap_test_config_ctrl_domain(): Test, whether an AP control domain
338   * is configured.
339   * @domain AP control domain ID
340   *
341   * Returns 1 if the control domain is configured
342   *	   0 in all other cases
343   */
ap_test_config_ctrl_domain(unsigned int domain)344  int ap_test_config_ctrl_domain(unsigned int domain)
345  {
346  	if (!ap_qci_info || domain > ap_max_domain_id)
347  		return 0;
348  	return ap_test_config(ap_qci_info->adm, domain);
349  }
350  EXPORT_SYMBOL(ap_test_config_ctrl_domain);
351  
352  /*
353   * ap_queue_info(): Check and get AP queue info.
354   * Returns: 1 if APQN exists and info is filled,
355   *	    0 if APQN seems to exit but there is no info
356   *	      available (eg. caused by an asynch pending error)
357   *	   -1 invalid APQN, TAPQ error or AP queue status which
358   *	      indicates there is no APQN.
359   */
ap_queue_info(ap_qid_t qid,int * q_type,unsigned int * q_fac,int * q_depth,int * q_ml,bool * q_decfg,bool * q_cstop)360  static int ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac,
361  			 int *q_depth, int *q_ml, bool *q_decfg, bool *q_cstop)
362  {
363  	struct ap_queue_status status;
364  	struct ap_tapq_gr2 tapq_info;
365  
366  	tapq_info.value = 0;
367  
368  	/* make sure we don't run into a specifiation exception */
369  	if (AP_QID_CARD(qid) > ap_max_adapter_id ||
370  	    AP_QID_QUEUE(qid) > ap_max_domain_id)
371  		return -1;
372  
373  	/* call TAPQ on this APQN */
374  	status = ap_test_queue(qid, ap_apft_available(), &tapq_info);
375  
376  	/* handle pending async error with return 'no info available' */
377  	if (status.async)
378  		return 0;
379  
380  	switch (status.response_code) {
381  	case AP_RESPONSE_NORMAL:
382  	case AP_RESPONSE_RESET_IN_PROGRESS:
383  	case AP_RESPONSE_DECONFIGURED:
384  	case AP_RESPONSE_CHECKSTOPPED:
385  	case AP_RESPONSE_BUSY:
386  		/*
387  		 * According to the architecture in all these cases the
388  		 * info should be filled. All bits 0 is not possible as
389  		 * there is at least one of the mode bits set.
390  		 */
391  		if (WARN_ON_ONCE(!tapq_info.value))
392  			return 0;
393  		*q_type = tapq_info.at;
394  		*q_fac = tapq_info.fac;
395  		*q_depth = tapq_info.qd;
396  		*q_ml = tapq_info.ml;
397  		*q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
398  		*q_cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
399  		return 1;
400  	default:
401  		/*
402  		 * A response code which indicates, there is no info available.
403  		 */
404  		return -1;
405  	}
406  }
407  
ap_wait(enum ap_sm_wait wait)408  void ap_wait(enum ap_sm_wait wait)
409  {
410  	ktime_t hr_time;
411  
412  	switch (wait) {
413  	case AP_SM_WAIT_AGAIN:
414  	case AP_SM_WAIT_INTERRUPT:
415  		if (ap_irq_flag)
416  			break;
417  		if (ap_poll_kthread) {
418  			wake_up(&ap_poll_wait);
419  			break;
420  		}
421  		fallthrough;
422  	case AP_SM_WAIT_LOW_TIMEOUT:
423  	case AP_SM_WAIT_HIGH_TIMEOUT:
424  		spin_lock_bh(&ap_poll_timer_lock);
425  		if (!hrtimer_is_queued(&ap_poll_timer)) {
426  			hr_time =
427  				wait == AP_SM_WAIT_LOW_TIMEOUT ?
428  				poll_low_timeout : poll_high_timeout;
429  			hrtimer_forward_now(&ap_poll_timer, hr_time);
430  			hrtimer_restart(&ap_poll_timer);
431  		}
432  		spin_unlock_bh(&ap_poll_timer_lock);
433  		break;
434  	case AP_SM_WAIT_NONE:
435  	default:
436  		break;
437  	}
438  }
439  
440  /**
441   * ap_request_timeout(): Handling of request timeouts
442   * @t: timer making this callback
443   *
444   * Handles request timeouts.
445   */
ap_request_timeout(struct timer_list * t)446  void ap_request_timeout(struct timer_list *t)
447  {
448  	struct ap_queue *aq = from_timer(aq, t, timeout);
449  
450  	spin_lock_bh(&aq->lock);
451  	ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
452  	spin_unlock_bh(&aq->lock);
453  }
454  
455  /**
456   * ap_poll_timeout(): AP receive polling for finished AP requests.
457   * @unused: Unused pointer.
458   *
459   * Schedules the AP tasklet using a high resolution timer.
460   */
ap_poll_timeout(struct hrtimer * unused)461  static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
462  {
463  	tasklet_schedule(&ap_tasklet);
464  	return HRTIMER_NORESTART;
465  }
466  
467  /**
468   * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
469   * @airq: pointer to adapter interrupt descriptor
470   * @tpi_info: ignored
471   */
ap_interrupt_handler(struct airq_struct * airq,struct tpi_info * tpi_info)472  static void ap_interrupt_handler(struct airq_struct *airq,
473  				 struct tpi_info *tpi_info)
474  {
475  	inc_irq_stat(IRQIO_APB);
476  	tasklet_schedule(&ap_tasklet);
477  }
478  
479  /**
480   * ap_tasklet_fn(): Tasklet to poll all AP devices.
481   * @dummy: Unused variable
482   *
483   * Poll all AP devices on the bus.
484   */
ap_tasklet_fn(unsigned long dummy)485  static void ap_tasklet_fn(unsigned long dummy)
486  {
487  	int bkt;
488  	struct ap_queue *aq;
489  	enum ap_sm_wait wait = AP_SM_WAIT_NONE;
490  
491  	/* Reset the indicator if interrupts are used. Thus new interrupts can
492  	 * be received. Doing it in the beginning of the tasklet is therefore
493  	 * important that no requests on any AP get lost.
494  	 */
495  	if (ap_irq_flag)
496  		xchg(ap_airq.lsi_ptr, 0);
497  
498  	spin_lock_bh(&ap_queues_lock);
499  	hash_for_each(ap_queues, bkt, aq, hnode) {
500  		spin_lock_bh(&aq->lock);
501  		wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
502  		spin_unlock_bh(&aq->lock);
503  	}
504  	spin_unlock_bh(&ap_queues_lock);
505  
506  	ap_wait(wait);
507  }
508  
ap_pending_requests(void)509  static int ap_pending_requests(void)
510  {
511  	int bkt;
512  	struct ap_queue *aq;
513  
514  	spin_lock_bh(&ap_queues_lock);
515  	hash_for_each(ap_queues, bkt, aq, hnode) {
516  		if (aq->queue_count == 0)
517  			continue;
518  		spin_unlock_bh(&ap_queues_lock);
519  		return 1;
520  	}
521  	spin_unlock_bh(&ap_queues_lock);
522  	return 0;
523  }
524  
525  /**
526   * ap_poll_thread(): Thread that polls for finished requests.
527   * @data: Unused pointer
528   *
529   * AP bus poll thread. The purpose of this thread is to poll for
530   * finished requests in a loop if there is a "free" cpu - that is
531   * a cpu that doesn't have anything better to do. The polling stops
532   * as soon as there is another task or if all messages have been
533   * delivered.
534   */
ap_poll_thread(void * data)535  static int ap_poll_thread(void *data)
536  {
537  	DECLARE_WAITQUEUE(wait, current);
538  
539  	set_user_nice(current, MAX_NICE);
540  	set_freezable();
541  	while (!kthread_should_stop()) {
542  		add_wait_queue(&ap_poll_wait, &wait);
543  		set_current_state(TASK_INTERRUPTIBLE);
544  		if (!ap_pending_requests()) {
545  			schedule();
546  			try_to_freeze();
547  		}
548  		set_current_state(TASK_RUNNING);
549  		remove_wait_queue(&ap_poll_wait, &wait);
550  		if (need_resched()) {
551  			schedule();
552  			try_to_freeze();
553  			continue;
554  		}
555  		ap_tasklet_fn(0);
556  	}
557  
558  	return 0;
559  }
560  
ap_poll_thread_start(void)561  static int ap_poll_thread_start(void)
562  {
563  	int rc;
564  
565  	if (ap_irq_flag || ap_poll_kthread)
566  		return 0;
567  	mutex_lock(&ap_poll_thread_mutex);
568  	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
569  	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
570  	if (rc)
571  		ap_poll_kthread = NULL;
572  	mutex_unlock(&ap_poll_thread_mutex);
573  	return rc;
574  }
575  
ap_poll_thread_stop(void)576  static void ap_poll_thread_stop(void)
577  {
578  	if (!ap_poll_kthread)
579  		return;
580  	mutex_lock(&ap_poll_thread_mutex);
581  	kthread_stop(ap_poll_kthread);
582  	ap_poll_kthread = NULL;
583  	mutex_unlock(&ap_poll_thread_mutex);
584  }
585  
586  #define is_card_dev(x) ((x)->parent == ap_root_device)
587  #define is_queue_dev(x) ((x)->parent != ap_root_device)
588  
589  /**
590   * ap_bus_match()
591   * @dev: Pointer to device
592   * @drv: Pointer to device_driver
593   *
594   * AP bus driver registration/unregistration.
595   */
ap_bus_match(struct device * dev,struct device_driver * drv)596  static int ap_bus_match(struct device *dev, struct device_driver *drv)
597  {
598  	struct ap_driver *ap_drv = to_ap_drv(drv);
599  	struct ap_device_id *id;
600  
601  	/*
602  	 * Compare device type of the device with the list of
603  	 * supported types of the device_driver.
604  	 */
605  	for (id = ap_drv->ids; id->match_flags; id++) {
606  		if (is_card_dev(dev) &&
607  		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
608  		    id->dev_type == to_ap_dev(dev)->device_type)
609  			return 1;
610  		if (is_queue_dev(dev) &&
611  		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
612  		    id->dev_type == to_ap_dev(dev)->device_type)
613  			return 1;
614  	}
615  	return 0;
616  }
617  
618  /**
619   * ap_uevent(): Uevent function for AP devices.
620   * @dev: Pointer to device
621   * @env: Pointer to kobj_uevent_env
622   *
623   * It sets up a single environment variable DEV_TYPE which contains the
624   * hardware device type.
625   */
ap_uevent(const struct device * dev,struct kobj_uevent_env * env)626  static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env)
627  {
628  	int rc = 0;
629  	const struct ap_device *ap_dev = to_ap_dev(dev);
630  
631  	/* Uevents from ap bus core don't need extensions to the env */
632  	if (dev == ap_root_device)
633  		return 0;
634  
635  	if (is_card_dev(dev)) {
636  		struct ap_card *ac = to_ap_card(&ap_dev->device);
637  
638  		/* Set up DEV_TYPE environment variable. */
639  		rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
640  		if (rc)
641  			return rc;
642  		/* Add MODALIAS= */
643  		rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
644  		if (rc)
645  			return rc;
646  
647  		/* Add MODE=<accel|cca|ep11> */
648  		if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL))
649  			rc = add_uevent_var(env, "MODE=accel");
650  		else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO))
651  			rc = add_uevent_var(env, "MODE=cca");
652  		else if (ap_test_bit(&ac->functions, AP_FUNC_EP11))
653  			rc = add_uevent_var(env, "MODE=ep11");
654  		if (rc)
655  			return rc;
656  	} else {
657  		struct ap_queue *aq = to_ap_queue(&ap_dev->device);
658  
659  		/* Add MODE=<accel|cca|ep11> */
660  		if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL))
661  			rc = add_uevent_var(env, "MODE=accel");
662  		else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO))
663  			rc = add_uevent_var(env, "MODE=cca");
664  		else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11))
665  			rc = add_uevent_var(env, "MODE=ep11");
666  		if (rc)
667  			return rc;
668  	}
669  
670  	return 0;
671  }
672  
ap_send_init_scan_done_uevent(void)673  static void ap_send_init_scan_done_uevent(void)
674  {
675  	char *envp[] = { "INITSCAN=done", NULL };
676  
677  	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
678  }
679  
ap_send_bindings_complete_uevent(void)680  static void ap_send_bindings_complete_uevent(void)
681  {
682  	char buf[32];
683  	char *envp[] = { "BINDINGS=complete", buf, NULL };
684  
685  	snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
686  		 atomic64_inc_return(&ap_bindings_complete_count));
687  	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
688  }
689  
ap_send_config_uevent(struct ap_device * ap_dev,bool cfg)690  void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
691  {
692  	char buf[16];
693  	char *envp[] = { buf, NULL };
694  
695  	snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
696  
697  	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
698  }
699  EXPORT_SYMBOL(ap_send_config_uevent);
700  
ap_send_online_uevent(struct ap_device * ap_dev,int online)701  void ap_send_online_uevent(struct ap_device *ap_dev, int online)
702  {
703  	char buf[16];
704  	char *envp[] = { buf, NULL };
705  
706  	snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
707  
708  	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
709  }
710  EXPORT_SYMBOL(ap_send_online_uevent);
711  
ap_send_mask_changed_uevent(unsigned long * newapm,unsigned long * newaqm)712  static void ap_send_mask_changed_uevent(unsigned long *newapm,
713  					unsigned long *newaqm)
714  {
715  	char buf[100];
716  	char *envp[] = { buf, NULL };
717  
718  	if (newapm)
719  		snprintf(buf, sizeof(buf),
720  			 "APMASK=0x%016lx%016lx%016lx%016lx\n",
721  			 newapm[0], newapm[1], newapm[2], newapm[3]);
722  	else
723  		snprintf(buf, sizeof(buf),
724  			 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
725  			 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
726  
727  	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
728  }
729  
730  /*
731   * calc # of bound APQNs
732   */
733  
734  struct __ap_calc_ctrs {
735  	unsigned int apqns;
736  	unsigned int bound;
737  };
738  
__ap_calc_helper(struct device * dev,void * arg)739  static int __ap_calc_helper(struct device *dev, void *arg)
740  {
741  	struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
742  
743  	if (is_queue_dev(dev)) {
744  		pctrs->apqns++;
745  		if (dev->driver)
746  			pctrs->bound++;
747  	}
748  
749  	return 0;
750  }
751  
ap_calc_bound_apqns(unsigned int * apqns,unsigned int * bound)752  static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
753  {
754  	struct __ap_calc_ctrs ctrs;
755  
756  	memset(&ctrs, 0, sizeof(ctrs));
757  	bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
758  
759  	*apqns = ctrs.apqns;
760  	*bound = ctrs.bound;
761  }
762  
763  /*
764   * After initial ap bus scan do check if all existing APQNs are
765   * bound to device drivers.
766   */
ap_check_bindings_complete(void)767  static void ap_check_bindings_complete(void)
768  {
769  	unsigned int apqns, bound;
770  
771  	if (atomic64_read(&ap_scan_bus_count) >= 1) {
772  		ap_calc_bound_apqns(&apqns, &bound);
773  		if (bound == apqns) {
774  			if (!completion_done(&ap_init_apqn_bindings_complete)) {
775  				complete_all(&ap_init_apqn_bindings_complete);
776  				AP_DBF_INFO("%s complete\n", __func__);
777  			}
778  			ap_send_bindings_complete_uevent();
779  		}
780  	}
781  }
782  
783  /*
784   * Interface to wait for the AP bus to have done one initial ap bus
785   * scan and all detected APQNs have been bound to device drivers.
786   * If these both conditions are not fulfilled, this function blocks
787   * on a condition with wait_for_completion_interruptible_timeout().
788   * If these both conditions are fulfilled (before the timeout hits)
789   * the return value is 0. If the timeout (in jiffies) hits instead
790   * -ETIME is returned. On failures negative return values are
791   * returned to the caller.
792   */
ap_wait_init_apqn_bindings_complete(unsigned long timeout)793  int ap_wait_init_apqn_bindings_complete(unsigned long timeout)
794  {
795  	long l;
796  
797  	if (completion_done(&ap_init_apqn_bindings_complete))
798  		return 0;
799  
800  	if (timeout)
801  		l = wait_for_completion_interruptible_timeout(
802  			&ap_init_apqn_bindings_complete, timeout);
803  	else
804  		l = wait_for_completion_interruptible(
805  			&ap_init_apqn_bindings_complete);
806  	if (l < 0)
807  		return l == -ERESTARTSYS ? -EINTR : l;
808  	else if (l == 0 && timeout)
809  		return -ETIME;
810  
811  	return 0;
812  }
813  EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete);
814  
__ap_queue_devices_with_id_unregister(struct device * dev,void * data)815  static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
816  {
817  	if (is_queue_dev(dev) &&
818  	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
819  		device_unregister(dev);
820  	return 0;
821  }
822  
__ap_revise_reserved(struct device * dev,void * dummy)823  static int __ap_revise_reserved(struct device *dev, void *dummy)
824  {
825  	int rc, card, queue, devres, drvres;
826  
827  	if (is_queue_dev(dev)) {
828  		card = AP_QID_CARD(to_ap_queue(dev)->qid);
829  		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
830  		mutex_lock(&ap_perms_mutex);
831  		devres = test_bit_inv(card, ap_perms.apm) &&
832  			test_bit_inv(queue, ap_perms.aqm);
833  		mutex_unlock(&ap_perms_mutex);
834  		drvres = to_ap_drv(dev->driver)->flags
835  			& AP_DRIVER_FLAG_DEFAULT;
836  		if (!!devres != !!drvres) {
837  			AP_DBF_DBG("%s reprobing queue=%02x.%04x\n",
838  				   __func__, card, queue);
839  			rc = device_reprobe(dev);
840  			if (rc)
841  				AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
842  					    __func__, card, queue);
843  		}
844  	}
845  
846  	return 0;
847  }
848  
ap_bus_revise_bindings(void)849  static void ap_bus_revise_bindings(void)
850  {
851  	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
852  }
853  
854  /**
855   * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
856   *			default host driver or not.
857   * @card: the APID of the adapter card to check
858   * @queue: the APQI of the queue to check
859   *
860   * Note: the ap_perms_mutex must be locked by the caller of this function.
861   *
862   * Return: an int specifying whether the AP adapter is reserved for the host (1)
863   *	   or not (0).
864   */
ap_owned_by_def_drv(int card,int queue)865  int ap_owned_by_def_drv(int card, int queue)
866  {
867  	int rc = 0;
868  
869  	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
870  		return -EINVAL;
871  
872  	if (test_bit_inv(card, ap_perms.apm) &&
873  	    test_bit_inv(queue, ap_perms.aqm))
874  		rc = 1;
875  
876  	return rc;
877  }
878  EXPORT_SYMBOL(ap_owned_by_def_drv);
879  
880  /**
881   * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
882   *				       a set is reserved for the host drivers
883   *				       or not.
884   * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
885   * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
886   *
887   * Note: the ap_perms_mutex must be locked by the caller of this function.
888   *
889   * Return: an int specifying whether each APQN is reserved for the host (1) or
890   *	   not (0)
891   */
ap_apqn_in_matrix_owned_by_def_drv(unsigned long * apm,unsigned long * aqm)892  int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
893  				       unsigned long *aqm)
894  {
895  	int card, queue, rc = 0;
896  
897  	for (card = 0; !rc && card < AP_DEVICES; card++)
898  		if (test_bit_inv(card, apm) &&
899  		    test_bit_inv(card, ap_perms.apm))
900  			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
901  				if (test_bit_inv(queue, aqm) &&
902  				    test_bit_inv(queue, ap_perms.aqm))
903  					rc = 1;
904  
905  	return rc;
906  }
907  EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
908  
ap_device_probe(struct device * dev)909  static int ap_device_probe(struct device *dev)
910  {
911  	struct ap_device *ap_dev = to_ap_dev(dev);
912  	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
913  	int card, queue, devres, drvres, rc = -ENODEV;
914  
915  	if (!get_device(dev))
916  		return rc;
917  
918  	if (is_queue_dev(dev)) {
919  		/*
920  		 * If the apqn is marked as reserved/used by ap bus and
921  		 * default drivers, only probe with drivers with the default
922  		 * flag set. If it is not marked, only probe with drivers
923  		 * with the default flag not set.
924  		 */
925  		card = AP_QID_CARD(to_ap_queue(dev)->qid);
926  		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
927  		mutex_lock(&ap_perms_mutex);
928  		devres = test_bit_inv(card, ap_perms.apm) &&
929  			test_bit_inv(queue, ap_perms.aqm);
930  		mutex_unlock(&ap_perms_mutex);
931  		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
932  		if (!!devres != !!drvres)
933  			goto out;
934  	}
935  
936  	/* Add queue/card to list of active queues/cards */
937  	spin_lock_bh(&ap_queues_lock);
938  	if (is_queue_dev(dev))
939  		hash_add(ap_queues, &to_ap_queue(dev)->hnode,
940  			 to_ap_queue(dev)->qid);
941  	spin_unlock_bh(&ap_queues_lock);
942  
943  	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
944  
945  	if (rc) {
946  		spin_lock_bh(&ap_queues_lock);
947  		if (is_queue_dev(dev))
948  			hash_del(&to_ap_queue(dev)->hnode);
949  		spin_unlock_bh(&ap_queues_lock);
950  	} else {
951  		ap_check_bindings_complete();
952  	}
953  
954  out:
955  	if (rc)
956  		put_device(dev);
957  	return rc;
958  }
959  
ap_device_remove(struct device * dev)960  static void ap_device_remove(struct device *dev)
961  {
962  	struct ap_device *ap_dev = to_ap_dev(dev);
963  	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
964  
965  	/* prepare ap queue device removal */
966  	if (is_queue_dev(dev))
967  		ap_queue_prepare_remove(to_ap_queue(dev));
968  
969  	/* driver's chance to clean up gracefully */
970  	if (ap_drv->remove)
971  		ap_drv->remove(ap_dev);
972  
973  	/* now do the ap queue device remove */
974  	if (is_queue_dev(dev))
975  		ap_queue_remove(to_ap_queue(dev));
976  
977  	/* Remove queue/card from list of active queues/cards */
978  	spin_lock_bh(&ap_queues_lock);
979  	if (is_queue_dev(dev))
980  		hash_del(&to_ap_queue(dev)->hnode);
981  	spin_unlock_bh(&ap_queues_lock);
982  
983  	put_device(dev);
984  }
985  
ap_get_qdev(ap_qid_t qid)986  struct ap_queue *ap_get_qdev(ap_qid_t qid)
987  {
988  	int bkt;
989  	struct ap_queue *aq;
990  
991  	spin_lock_bh(&ap_queues_lock);
992  	hash_for_each(ap_queues, bkt, aq, hnode) {
993  		if (aq->qid == qid) {
994  			get_device(&aq->ap_dev.device);
995  			spin_unlock_bh(&ap_queues_lock);
996  			return aq;
997  		}
998  	}
999  	spin_unlock_bh(&ap_queues_lock);
1000  
1001  	return NULL;
1002  }
1003  EXPORT_SYMBOL(ap_get_qdev);
1004  
ap_driver_register(struct ap_driver * ap_drv,struct module * owner,char * name)1005  int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1006  		       char *name)
1007  {
1008  	struct device_driver *drv = &ap_drv->driver;
1009  
1010  	drv->bus = &ap_bus_type;
1011  	drv->owner = owner;
1012  	drv->name = name;
1013  	return driver_register(drv);
1014  }
1015  EXPORT_SYMBOL(ap_driver_register);
1016  
ap_driver_unregister(struct ap_driver * ap_drv)1017  void ap_driver_unregister(struct ap_driver *ap_drv)
1018  {
1019  	driver_unregister(&ap_drv->driver);
1020  }
1021  EXPORT_SYMBOL(ap_driver_unregister);
1022  
ap_bus_force_rescan(void)1023  void ap_bus_force_rescan(void)
1024  {
1025  	/* Only trigger AP bus scans after the initial scan is done */
1026  	if (atomic64_read(&ap_scan_bus_count) <= 0)
1027  		return;
1028  
1029  	/* processing a asynchronous bus rescan */
1030  	del_timer(&ap_config_timer);
1031  	queue_work(system_long_wq, &ap_scan_work);
1032  	flush_work(&ap_scan_work);
1033  }
1034  EXPORT_SYMBOL(ap_bus_force_rescan);
1035  
1036  /*
1037   * A config change has happened, force an ap bus rescan.
1038   */
ap_bus_cfg_chg(void)1039  void ap_bus_cfg_chg(void)
1040  {
1041  	AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
1042  
1043  	ap_bus_force_rescan();
1044  }
1045  
1046  /*
1047   * hex2bitmap() - parse hex mask string and set bitmap.
1048   * Valid strings are "0x012345678" with at least one valid hex number.
1049   * Rest of the bitmap to the right is padded with 0. No spaces allowed
1050   * within the string, the leading 0x may be omitted.
1051   * Returns the bitmask with exactly the bits set as given by the hex
1052   * string (both in big endian order).
1053   */
hex2bitmap(const char * str,unsigned long * bitmap,int bits)1054  static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1055  {
1056  	int i, n, b;
1057  
1058  	/* bits needs to be a multiple of 8 */
1059  	if (bits & 0x07)
1060  		return -EINVAL;
1061  
1062  	if (str[0] == '0' && str[1] == 'x')
1063  		str++;
1064  	if (*str == 'x')
1065  		str++;
1066  
1067  	for (i = 0; isxdigit(*str) && i < bits; str++) {
1068  		b = hex_to_bin(*str);
1069  		for (n = 0; n < 4; n++)
1070  			if (b & (0x08 >> n))
1071  				set_bit_inv(i + n, bitmap);
1072  		i += 4;
1073  	}
1074  
1075  	if (*str == '\n')
1076  		str++;
1077  	if (*str)
1078  		return -EINVAL;
1079  	return 0;
1080  }
1081  
1082  /*
1083   * modify_bitmap() - parse bitmask argument and modify an existing
1084   * bit mask accordingly. A concatenation (done with ',') of these
1085   * terms is recognized:
1086   *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1087   * <bitnr> may be any valid number (hex, decimal or octal) in the range
1088   * 0...bits-1; the leading + or - is required. Here are some examples:
1089   *   +0-15,+32,-128,-0xFF
1090   *   -0-255,+1-16,+0x128
1091   *   +1,+2,+3,+4,-5,-7-10
1092   * Returns the new bitmap after all changes have been applied. Every
1093   * positive value in the string will set a bit and every negative value
1094   * in the string will clear a bit. As a bit may be touched more than once,
1095   * the last 'operation' wins:
1096   * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1097   * cleared again. All other bits are unmodified.
1098   */
modify_bitmap(const char * str,unsigned long * bitmap,int bits)1099  static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1100  {
1101  	unsigned long a, i, z;
1102  	char *np, sign;
1103  
1104  	/* bits needs to be a multiple of 8 */
1105  	if (bits & 0x07)
1106  		return -EINVAL;
1107  
1108  	while (*str) {
1109  		sign = *str++;
1110  		if (sign != '+' && sign != '-')
1111  			return -EINVAL;
1112  		a = z = simple_strtoul(str, &np, 0);
1113  		if (str == np || a >= bits)
1114  			return -EINVAL;
1115  		str = np;
1116  		if (*str == '-') {
1117  			z = simple_strtoul(++str, &np, 0);
1118  			if (str == np || a > z || z >= bits)
1119  				return -EINVAL;
1120  			str = np;
1121  		}
1122  		for (i = a; i <= z; i++)
1123  			if (sign == '+')
1124  				set_bit_inv(i, bitmap);
1125  			else
1126  				clear_bit_inv(i, bitmap);
1127  		while (*str == ',' || *str == '\n')
1128  			str++;
1129  	}
1130  
1131  	return 0;
1132  }
1133  
ap_parse_bitmap_str(const char * str,unsigned long * bitmap,int bits,unsigned long * newmap)1134  static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1135  			       unsigned long *newmap)
1136  {
1137  	unsigned long size;
1138  	int rc;
1139  
1140  	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1141  	if (*str == '+' || *str == '-') {
1142  		memcpy(newmap, bitmap, size);
1143  		rc = modify_bitmap(str, newmap, bits);
1144  	} else {
1145  		memset(newmap, 0, size);
1146  		rc = hex2bitmap(str, newmap, bits);
1147  	}
1148  	return rc;
1149  }
1150  
ap_parse_mask_str(const char * str,unsigned long * bitmap,int bits,struct mutex * lock)1151  int ap_parse_mask_str(const char *str,
1152  		      unsigned long *bitmap, int bits,
1153  		      struct mutex *lock)
1154  {
1155  	unsigned long *newmap, size;
1156  	int rc;
1157  
1158  	/* bits needs to be a multiple of 8 */
1159  	if (bits & 0x07)
1160  		return -EINVAL;
1161  
1162  	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1163  	newmap = kmalloc(size, GFP_KERNEL);
1164  	if (!newmap)
1165  		return -ENOMEM;
1166  	if (mutex_lock_interruptible(lock)) {
1167  		kfree(newmap);
1168  		return -ERESTARTSYS;
1169  	}
1170  	rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1171  	if (rc == 0)
1172  		memcpy(bitmap, newmap, size);
1173  	mutex_unlock(lock);
1174  	kfree(newmap);
1175  	return rc;
1176  }
1177  EXPORT_SYMBOL(ap_parse_mask_str);
1178  
1179  /*
1180   * AP bus attributes.
1181   */
1182  
ap_domain_show(const struct bus_type * bus,char * buf)1183  static ssize_t ap_domain_show(const struct bus_type *bus, char *buf)
1184  {
1185  	return sysfs_emit(buf, "%d\n", ap_domain_index);
1186  }
1187  
ap_domain_store(const struct bus_type * bus,const char * buf,size_t count)1188  static ssize_t ap_domain_store(const struct bus_type *bus,
1189  			       const char *buf, size_t count)
1190  {
1191  	int domain;
1192  
1193  	if (sscanf(buf, "%i\n", &domain) != 1 ||
1194  	    domain < 0 || domain > ap_max_domain_id ||
1195  	    !test_bit_inv(domain, ap_perms.aqm))
1196  		return -EINVAL;
1197  
1198  	spin_lock_bh(&ap_domain_lock);
1199  	ap_domain_index = domain;
1200  	spin_unlock_bh(&ap_domain_lock);
1201  
1202  	AP_DBF_INFO("%s stored new default domain=%d\n",
1203  		    __func__, domain);
1204  
1205  	return count;
1206  }
1207  
1208  static BUS_ATTR_RW(ap_domain);
1209  
ap_control_domain_mask_show(const struct bus_type * bus,char * buf)1210  static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf)
1211  {
1212  	if (!ap_qci_info)	/* QCI not supported */
1213  		return sysfs_emit(buf, "not supported\n");
1214  
1215  	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1216  			  ap_qci_info->adm[0], ap_qci_info->adm[1],
1217  			  ap_qci_info->adm[2], ap_qci_info->adm[3],
1218  			  ap_qci_info->adm[4], ap_qci_info->adm[5],
1219  			  ap_qci_info->adm[6], ap_qci_info->adm[7]);
1220  }
1221  
1222  static BUS_ATTR_RO(ap_control_domain_mask);
1223  
ap_usage_domain_mask_show(const struct bus_type * bus,char * buf)1224  static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf)
1225  {
1226  	if (!ap_qci_info)	/* QCI not supported */
1227  		return sysfs_emit(buf, "not supported\n");
1228  
1229  	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1230  			  ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1231  			  ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1232  			  ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1233  			  ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1234  }
1235  
1236  static BUS_ATTR_RO(ap_usage_domain_mask);
1237  
ap_adapter_mask_show(const struct bus_type * bus,char * buf)1238  static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf)
1239  {
1240  	if (!ap_qci_info)	/* QCI not supported */
1241  		return sysfs_emit(buf, "not supported\n");
1242  
1243  	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1244  			  ap_qci_info->apm[0], ap_qci_info->apm[1],
1245  			  ap_qci_info->apm[2], ap_qci_info->apm[3],
1246  			  ap_qci_info->apm[4], ap_qci_info->apm[5],
1247  			  ap_qci_info->apm[6], ap_qci_info->apm[7]);
1248  }
1249  
1250  static BUS_ATTR_RO(ap_adapter_mask);
1251  
ap_interrupts_show(const struct bus_type * bus,char * buf)1252  static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf)
1253  {
1254  	return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0);
1255  }
1256  
1257  static BUS_ATTR_RO(ap_interrupts);
1258  
config_time_show(const struct bus_type * bus,char * buf)1259  static ssize_t config_time_show(const struct bus_type *bus, char *buf)
1260  {
1261  	return sysfs_emit(buf, "%d\n", ap_config_time);
1262  }
1263  
config_time_store(const struct bus_type * bus,const char * buf,size_t count)1264  static ssize_t config_time_store(const struct bus_type *bus,
1265  				 const char *buf, size_t count)
1266  {
1267  	int time;
1268  
1269  	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1270  		return -EINVAL;
1271  	ap_config_time = time;
1272  	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1273  	return count;
1274  }
1275  
1276  static BUS_ATTR_RW(config_time);
1277  
poll_thread_show(const struct bus_type * bus,char * buf)1278  static ssize_t poll_thread_show(const struct bus_type *bus, char *buf)
1279  {
1280  	return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0);
1281  }
1282  
poll_thread_store(const struct bus_type * bus,const char * buf,size_t count)1283  static ssize_t poll_thread_store(const struct bus_type *bus,
1284  				 const char *buf, size_t count)
1285  {
1286  	bool value;
1287  	int rc;
1288  
1289  	rc = kstrtobool(buf, &value);
1290  	if (rc)
1291  		return rc;
1292  
1293  	if (value) {
1294  		rc = ap_poll_thread_start();
1295  		if (rc)
1296  			count = rc;
1297  	} else {
1298  		ap_poll_thread_stop();
1299  	}
1300  	return count;
1301  }
1302  
1303  static BUS_ATTR_RW(poll_thread);
1304  
poll_timeout_show(const struct bus_type * bus,char * buf)1305  static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf)
1306  {
1307  	return sysfs_emit(buf, "%lu\n", poll_high_timeout);
1308  }
1309  
poll_timeout_store(const struct bus_type * bus,const char * buf,size_t count)1310  static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf,
1311  				  size_t count)
1312  {
1313  	unsigned long value;
1314  	ktime_t hr_time;
1315  	int rc;
1316  
1317  	rc = kstrtoul(buf, 0, &value);
1318  	if (rc)
1319  		return rc;
1320  
1321  	/* 120 seconds = maximum poll interval */
1322  	if (value > 120000000000UL)
1323  		return -EINVAL;
1324  	poll_high_timeout = value;
1325  	hr_time = poll_high_timeout;
1326  
1327  	spin_lock_bh(&ap_poll_timer_lock);
1328  	hrtimer_cancel(&ap_poll_timer);
1329  	hrtimer_set_expires(&ap_poll_timer, hr_time);
1330  	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1331  	spin_unlock_bh(&ap_poll_timer_lock);
1332  
1333  	return count;
1334  }
1335  
1336  static BUS_ATTR_RW(poll_timeout);
1337  
ap_max_domain_id_show(const struct bus_type * bus,char * buf)1338  static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf)
1339  {
1340  	return sysfs_emit(buf, "%d\n", ap_max_domain_id);
1341  }
1342  
1343  static BUS_ATTR_RO(ap_max_domain_id);
1344  
ap_max_adapter_id_show(const struct bus_type * bus,char * buf)1345  static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf)
1346  {
1347  	return sysfs_emit(buf, "%d\n", ap_max_adapter_id);
1348  }
1349  
1350  static BUS_ATTR_RO(ap_max_adapter_id);
1351  
apmask_show(const struct bus_type * bus,char * buf)1352  static ssize_t apmask_show(const struct bus_type *bus, char *buf)
1353  {
1354  	int rc;
1355  
1356  	if (mutex_lock_interruptible(&ap_perms_mutex))
1357  		return -ERESTARTSYS;
1358  	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1359  			ap_perms.apm[0], ap_perms.apm[1],
1360  			ap_perms.apm[2], ap_perms.apm[3]);
1361  	mutex_unlock(&ap_perms_mutex);
1362  
1363  	return rc;
1364  }
1365  
__verify_card_reservations(struct device_driver * drv,void * data)1366  static int __verify_card_reservations(struct device_driver *drv, void *data)
1367  {
1368  	int rc = 0;
1369  	struct ap_driver *ap_drv = to_ap_drv(drv);
1370  	unsigned long *newapm = (unsigned long *)data;
1371  
1372  	/*
1373  	 * increase the driver's module refcounter to be sure it is not
1374  	 * going away when we invoke the callback function.
1375  	 */
1376  	if (!try_module_get(drv->owner))
1377  		return 0;
1378  
1379  	if (ap_drv->in_use) {
1380  		rc = ap_drv->in_use(newapm, ap_perms.aqm);
1381  		if (rc)
1382  			rc = -EBUSY;
1383  	}
1384  
1385  	/* release the driver's module */
1386  	module_put(drv->owner);
1387  
1388  	return rc;
1389  }
1390  
apmask_commit(unsigned long * newapm)1391  static int apmask_commit(unsigned long *newapm)
1392  {
1393  	int rc;
1394  	unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1395  
1396  	/*
1397  	 * Check if any bits in the apmask have been set which will
1398  	 * result in queues being removed from non-default drivers
1399  	 */
1400  	if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1401  		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1402  				      __verify_card_reservations);
1403  		if (rc)
1404  			return rc;
1405  	}
1406  
1407  	memcpy(ap_perms.apm, newapm, APMASKSIZE);
1408  
1409  	return 0;
1410  }
1411  
apmask_store(const struct bus_type * bus,const char * buf,size_t count)1412  static ssize_t apmask_store(const struct bus_type *bus, const char *buf,
1413  			    size_t count)
1414  {
1415  	int rc, changes = 0;
1416  	DECLARE_BITMAP(newapm, AP_DEVICES);
1417  
1418  	if (mutex_lock_interruptible(&ap_perms_mutex))
1419  		return -ERESTARTSYS;
1420  
1421  	rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1422  	if (rc)
1423  		goto done;
1424  
1425  	changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1426  	if (changes)
1427  		rc = apmask_commit(newapm);
1428  
1429  done:
1430  	mutex_unlock(&ap_perms_mutex);
1431  	if (rc)
1432  		return rc;
1433  
1434  	if (changes) {
1435  		ap_bus_revise_bindings();
1436  		ap_send_mask_changed_uevent(newapm, NULL);
1437  	}
1438  
1439  	return count;
1440  }
1441  
1442  static BUS_ATTR_RW(apmask);
1443  
aqmask_show(const struct bus_type * bus,char * buf)1444  static ssize_t aqmask_show(const struct bus_type *bus, char *buf)
1445  {
1446  	int rc;
1447  
1448  	if (mutex_lock_interruptible(&ap_perms_mutex))
1449  		return -ERESTARTSYS;
1450  	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1451  			ap_perms.aqm[0], ap_perms.aqm[1],
1452  			ap_perms.aqm[2], ap_perms.aqm[3]);
1453  	mutex_unlock(&ap_perms_mutex);
1454  
1455  	return rc;
1456  }
1457  
__verify_queue_reservations(struct device_driver * drv,void * data)1458  static int __verify_queue_reservations(struct device_driver *drv, void *data)
1459  {
1460  	int rc = 0;
1461  	struct ap_driver *ap_drv = to_ap_drv(drv);
1462  	unsigned long *newaqm = (unsigned long *)data;
1463  
1464  	/*
1465  	 * increase the driver's module refcounter to be sure it is not
1466  	 * going away when we invoke the callback function.
1467  	 */
1468  	if (!try_module_get(drv->owner))
1469  		return 0;
1470  
1471  	if (ap_drv->in_use) {
1472  		rc = ap_drv->in_use(ap_perms.apm, newaqm);
1473  		if (rc)
1474  			rc = -EBUSY;
1475  	}
1476  
1477  	/* release the driver's module */
1478  	module_put(drv->owner);
1479  
1480  	return rc;
1481  }
1482  
aqmask_commit(unsigned long * newaqm)1483  static int aqmask_commit(unsigned long *newaqm)
1484  {
1485  	int rc;
1486  	unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1487  
1488  	/*
1489  	 * Check if any bits in the aqmask have been set which will
1490  	 * result in queues being removed from non-default drivers
1491  	 */
1492  	if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1493  		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1494  				      __verify_queue_reservations);
1495  		if (rc)
1496  			return rc;
1497  	}
1498  
1499  	memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1500  
1501  	return 0;
1502  }
1503  
aqmask_store(const struct bus_type * bus,const char * buf,size_t count)1504  static ssize_t aqmask_store(const struct bus_type *bus, const char *buf,
1505  			    size_t count)
1506  {
1507  	int rc, changes = 0;
1508  	DECLARE_BITMAP(newaqm, AP_DOMAINS);
1509  
1510  	if (mutex_lock_interruptible(&ap_perms_mutex))
1511  		return -ERESTARTSYS;
1512  
1513  	rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1514  	if (rc)
1515  		goto done;
1516  
1517  	changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1518  	if (changes)
1519  		rc = aqmask_commit(newaqm);
1520  
1521  done:
1522  	mutex_unlock(&ap_perms_mutex);
1523  	if (rc)
1524  		return rc;
1525  
1526  	if (changes) {
1527  		ap_bus_revise_bindings();
1528  		ap_send_mask_changed_uevent(NULL, newaqm);
1529  	}
1530  
1531  	return count;
1532  }
1533  
1534  static BUS_ATTR_RW(aqmask);
1535  
scans_show(const struct bus_type * bus,char * buf)1536  static ssize_t scans_show(const struct bus_type *bus, char *buf)
1537  {
1538  	return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count));
1539  }
1540  
scans_store(const struct bus_type * bus,const char * buf,size_t count)1541  static ssize_t scans_store(const struct bus_type *bus, const char *buf,
1542  			   size_t count)
1543  {
1544  	AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1545  
1546  	ap_bus_force_rescan();
1547  
1548  	return count;
1549  }
1550  
1551  static BUS_ATTR_RW(scans);
1552  
bindings_show(const struct bus_type * bus,char * buf)1553  static ssize_t bindings_show(const struct bus_type *bus, char *buf)
1554  {
1555  	int rc;
1556  	unsigned int apqns, n;
1557  
1558  	ap_calc_bound_apqns(&apqns, &n);
1559  	if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1560  		rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns);
1561  	else
1562  		rc = sysfs_emit(buf, "%u/%u\n", n, apqns);
1563  
1564  	return rc;
1565  }
1566  
1567  static BUS_ATTR_RO(bindings);
1568  
features_show(const struct bus_type * bus,char * buf)1569  static ssize_t features_show(const struct bus_type *bus, char *buf)
1570  {
1571  	int n = 0;
1572  
1573  	if (!ap_qci_info)	/* QCI not supported */
1574  		return sysfs_emit(buf, "-\n");
1575  
1576  	if (ap_qci_info->apsc)
1577  		n += sysfs_emit_at(buf, n, "APSC ");
1578  	if (ap_qci_info->apxa)
1579  		n += sysfs_emit_at(buf, n, "APXA ");
1580  	if (ap_qci_info->qact)
1581  		n += sysfs_emit_at(buf, n, "QACT ");
1582  	if (ap_qci_info->rc8a)
1583  		n += sysfs_emit_at(buf, n, "RC8A ");
1584  	if (ap_qci_info->apsb)
1585  		n += sysfs_emit_at(buf, n, "APSB ");
1586  
1587  	sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n");
1588  
1589  	return n;
1590  }
1591  
1592  static BUS_ATTR_RO(features);
1593  
1594  static struct attribute *ap_bus_attrs[] = {
1595  	&bus_attr_ap_domain.attr,
1596  	&bus_attr_ap_control_domain_mask.attr,
1597  	&bus_attr_ap_usage_domain_mask.attr,
1598  	&bus_attr_ap_adapter_mask.attr,
1599  	&bus_attr_config_time.attr,
1600  	&bus_attr_poll_thread.attr,
1601  	&bus_attr_ap_interrupts.attr,
1602  	&bus_attr_poll_timeout.attr,
1603  	&bus_attr_ap_max_domain_id.attr,
1604  	&bus_attr_ap_max_adapter_id.attr,
1605  	&bus_attr_apmask.attr,
1606  	&bus_attr_aqmask.attr,
1607  	&bus_attr_scans.attr,
1608  	&bus_attr_bindings.attr,
1609  	&bus_attr_features.attr,
1610  	NULL,
1611  };
1612  ATTRIBUTE_GROUPS(ap_bus);
1613  
1614  static struct bus_type ap_bus_type = {
1615  	.name = "ap",
1616  	.bus_groups = ap_bus_groups,
1617  	.match = &ap_bus_match,
1618  	.uevent = &ap_uevent,
1619  	.probe = ap_device_probe,
1620  	.remove = ap_device_remove,
1621  };
1622  
1623  /**
1624   * ap_select_domain(): Select an AP domain if possible and we haven't
1625   * already done so before.
1626   */
ap_select_domain(void)1627  static void ap_select_domain(void)
1628  {
1629  	struct ap_queue_status status;
1630  	int card, dom;
1631  
1632  	/*
1633  	 * Choose the default domain. Either the one specified with
1634  	 * the "domain=" parameter or the first domain with at least
1635  	 * one valid APQN.
1636  	 */
1637  	spin_lock_bh(&ap_domain_lock);
1638  	if (ap_domain_index >= 0) {
1639  		/* Domain has already been selected. */
1640  		goto out;
1641  	}
1642  	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1643  		if (!ap_test_config_usage_domain(dom) ||
1644  		    !test_bit_inv(dom, ap_perms.aqm))
1645  			continue;
1646  		for (card = 0; card <= ap_max_adapter_id; card++) {
1647  			if (!ap_test_config_card_id(card) ||
1648  			    !test_bit_inv(card, ap_perms.apm))
1649  				continue;
1650  			status = ap_test_queue(AP_MKQID(card, dom),
1651  					       ap_apft_available(),
1652  					       NULL);
1653  			if (status.response_code == AP_RESPONSE_NORMAL)
1654  				break;
1655  		}
1656  		if (card <= ap_max_adapter_id)
1657  			break;
1658  	}
1659  	if (dom <= ap_max_domain_id) {
1660  		ap_domain_index = dom;
1661  		AP_DBF_INFO("%s new default domain is %d\n",
1662  			    __func__, ap_domain_index);
1663  	}
1664  out:
1665  	spin_unlock_bh(&ap_domain_lock);
1666  }
1667  
1668  /*
1669   * This function checks the type and returns either 0 for not
1670   * supported or the highest compatible type value (which may
1671   * include the input type value).
1672   */
ap_get_compatible_type(ap_qid_t qid,int rawtype,unsigned int func)1673  static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1674  {
1675  	int comp_type = 0;
1676  
1677  	/* < CEX4 is not supported */
1678  	if (rawtype < AP_DEVICE_TYPE_CEX4) {
1679  		AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1680  			    __func__, AP_QID_CARD(qid),
1681  			    AP_QID_QUEUE(qid), rawtype);
1682  		return 0;
1683  	}
1684  	/* up to CEX8 known and fully supported */
1685  	if (rawtype <= AP_DEVICE_TYPE_CEX8)
1686  		return rawtype;
1687  	/*
1688  	 * unknown new type > CEX8, check for compatibility
1689  	 * to the highest known and supported type which is
1690  	 * currently CEX8 with the help of the QACT function.
1691  	 */
1692  	if (ap_qact_available()) {
1693  		struct ap_queue_status status;
1694  		union ap_qact_ap_info apinfo = {0};
1695  
1696  		apinfo.mode = (func >> 26) & 0x07;
1697  		apinfo.cat = AP_DEVICE_TYPE_CEX8;
1698  		status = ap_qact(qid, 0, &apinfo);
1699  		if (status.response_code == AP_RESPONSE_NORMAL &&
1700  		    apinfo.cat >= AP_DEVICE_TYPE_CEX4 &&
1701  		    apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1702  			comp_type = apinfo.cat;
1703  	}
1704  	if (!comp_type)
1705  		AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1706  			    __func__, AP_QID_CARD(qid),
1707  			    AP_QID_QUEUE(qid), rawtype);
1708  	else if (comp_type != rawtype)
1709  		AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1710  			    __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1711  			    rawtype, comp_type);
1712  	return comp_type;
1713  }
1714  
1715  /*
1716   * Helper function to be used with bus_find_dev
1717   * matches for the card device with the given id
1718   */
__match_card_device_with_id(struct device * dev,const void * data)1719  static int __match_card_device_with_id(struct device *dev, const void *data)
1720  {
1721  	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1722  }
1723  
1724  /*
1725   * Helper function to be used with bus_find_dev
1726   * matches for the queue device with a given qid
1727   */
__match_queue_device_with_qid(struct device * dev,const void * data)1728  static int __match_queue_device_with_qid(struct device *dev, const void *data)
1729  {
1730  	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1731  }
1732  
1733  /*
1734   * Helper function to be used with bus_find_dev
1735   * matches any queue device with given queue id
1736   */
__match_queue_device_with_queue_id(struct device * dev,const void * data)1737  static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1738  {
1739  	return is_queue_dev(dev) &&
1740  		AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1741  }
1742  
1743  /* Helper function for notify_config_changed */
__drv_notify_config_changed(struct device_driver * drv,void * data)1744  static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1745  {
1746  	struct ap_driver *ap_drv = to_ap_drv(drv);
1747  
1748  	if (try_module_get(drv->owner)) {
1749  		if (ap_drv->on_config_changed)
1750  			ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1751  		module_put(drv->owner);
1752  	}
1753  
1754  	return 0;
1755  }
1756  
1757  /* Notify all drivers about an qci config change */
notify_config_changed(void)1758  static inline void notify_config_changed(void)
1759  {
1760  	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1761  			 __drv_notify_config_changed);
1762  }
1763  
1764  /* Helper function for notify_scan_complete */
__drv_notify_scan_complete(struct device_driver * drv,void * data)1765  static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1766  {
1767  	struct ap_driver *ap_drv = to_ap_drv(drv);
1768  
1769  	if (try_module_get(drv->owner)) {
1770  		if (ap_drv->on_scan_complete)
1771  			ap_drv->on_scan_complete(ap_qci_info,
1772  						 ap_qci_info_old);
1773  		module_put(drv->owner);
1774  	}
1775  
1776  	return 0;
1777  }
1778  
1779  /* Notify all drivers about bus scan complete */
notify_scan_complete(void)1780  static inline void notify_scan_complete(void)
1781  {
1782  	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1783  			 __drv_notify_scan_complete);
1784  }
1785  
1786  /*
1787   * Helper function for ap_scan_bus().
1788   * Remove card device and associated queue devices.
1789   */
ap_scan_rm_card_dev_and_queue_devs(struct ap_card * ac)1790  static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1791  {
1792  	bus_for_each_dev(&ap_bus_type, NULL,
1793  			 (void *)(long)ac->id,
1794  			 __ap_queue_devices_with_id_unregister);
1795  	device_unregister(&ac->ap_dev.device);
1796  }
1797  
1798  /*
1799   * Helper function for ap_scan_bus().
1800   * Does the scan bus job for all the domains within
1801   * a valid adapter given by an ap_card ptr.
1802   */
ap_scan_domains(struct ap_card * ac)1803  static inline void ap_scan_domains(struct ap_card *ac)
1804  {
1805  	int rc, dom, depth, type, ml;
1806  	bool decfg, chkstop;
1807  	struct ap_queue *aq;
1808  	struct device *dev;
1809  	unsigned int func;
1810  	ap_qid_t qid;
1811  
1812  	/*
1813  	 * Go through the configuration for the domains and compare them
1814  	 * to the existing queue devices. Also take care of the config
1815  	 * and error state for the queue devices.
1816  	 */
1817  
1818  	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1819  		qid = AP_MKQID(ac->id, dom);
1820  		dev = bus_find_device(&ap_bus_type, NULL,
1821  				      (void *)(long)qid,
1822  				      __match_queue_device_with_qid);
1823  		aq = dev ? to_ap_queue(dev) : NULL;
1824  		if (!ap_test_config_usage_domain(dom)) {
1825  			if (dev) {
1826  				AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1827  					    __func__, ac->id, dom);
1828  				device_unregister(dev);
1829  			}
1830  			goto put_dev_and_continue;
1831  		}
1832  		/* domain is valid, get info from this APQN */
1833  		rc = ap_queue_info(qid, &type, &func, &depth,
1834  				   &ml, &decfg, &chkstop);
1835  		switch (rc) {
1836  		case -1:
1837  			if (dev) {
1838  				AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1839  					    __func__, ac->id, dom);
1840  				device_unregister(dev);
1841  			}
1842  			fallthrough;
1843  		case 0:
1844  			goto put_dev_and_continue;
1845  		default:
1846  			break;
1847  		}
1848  		/* if no queue device exists, create a new one */
1849  		if (!aq) {
1850  			aq = ap_queue_create(qid, ac->ap_dev.device_type);
1851  			if (!aq) {
1852  				AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1853  					    __func__, ac->id, dom);
1854  				continue;
1855  			}
1856  			aq->card = ac;
1857  			aq->config = !decfg;
1858  			aq->chkstop = chkstop;
1859  			dev = &aq->ap_dev.device;
1860  			dev->bus = &ap_bus_type;
1861  			dev->parent = &ac->ap_dev.device;
1862  			dev_set_name(dev, "%02x.%04x", ac->id, dom);
1863  			/* register queue device */
1864  			rc = device_register(dev);
1865  			if (rc) {
1866  				AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1867  					    __func__, ac->id, dom);
1868  				goto put_dev_and_continue;
1869  			}
1870  			/* get it and thus adjust reference counter */
1871  			get_device(dev);
1872  			if (decfg) {
1873  				AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1874  					    __func__, ac->id, dom);
1875  			} else if (chkstop) {
1876  				AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1877  					    __func__, ac->id, dom);
1878  			} else {
1879  				/* nudge the queue's state machine */
1880  				ap_queue_init_state(aq);
1881  				AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1882  					    __func__, ac->id, dom);
1883  			}
1884  			goto put_dev_and_continue;
1885  		}
1886  		/* handle state changes on already existing queue device */
1887  		spin_lock_bh(&aq->lock);
1888  		/* checkstop state */
1889  		if (chkstop && !aq->chkstop) {
1890  			/* checkstop on */
1891  			aq->chkstop = true;
1892  			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1893  				aq->dev_state = AP_DEV_STATE_ERROR;
1894  				aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1895  			}
1896  			spin_unlock_bh(&aq->lock);
1897  			AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n",
1898  				   __func__, ac->id, dom);
1899  			/* 'receive' pending messages with -EAGAIN */
1900  			ap_flush_queue(aq);
1901  			goto put_dev_and_continue;
1902  		} else if (!chkstop && aq->chkstop) {
1903  			/* checkstop off */
1904  			aq->chkstop = false;
1905  			if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1906  				_ap_queue_init_state(aq);
1907  			spin_unlock_bh(&aq->lock);
1908  			AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n",
1909  				   __func__, ac->id, dom);
1910  			goto put_dev_and_continue;
1911  		}
1912  		/* config state change */
1913  		if (decfg && aq->config) {
1914  			/* config off this queue device */
1915  			aq->config = false;
1916  			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1917  				aq->dev_state = AP_DEV_STATE_ERROR;
1918  				aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1919  			}
1920  			spin_unlock_bh(&aq->lock);
1921  			AP_DBF_DBG("%s(%d,%d) queue dev config off\n",
1922  				   __func__, ac->id, dom);
1923  			ap_send_config_uevent(&aq->ap_dev, aq->config);
1924  			/* 'receive' pending messages with -EAGAIN */
1925  			ap_flush_queue(aq);
1926  			goto put_dev_and_continue;
1927  		} else if (!decfg && !aq->config) {
1928  			/* config on this queue device */
1929  			aq->config = true;
1930  			if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1931  				_ap_queue_init_state(aq);
1932  			spin_unlock_bh(&aq->lock);
1933  			AP_DBF_DBG("%s(%d,%d) queue dev config on\n",
1934  				   __func__, ac->id, dom);
1935  			ap_send_config_uevent(&aq->ap_dev, aq->config);
1936  			goto put_dev_and_continue;
1937  		}
1938  		/* handle other error states */
1939  		if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1940  			spin_unlock_bh(&aq->lock);
1941  			/* 'receive' pending messages with -EAGAIN */
1942  			ap_flush_queue(aq);
1943  			/* re-init (with reset) the queue device */
1944  			ap_queue_init_state(aq);
1945  			AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1946  				    __func__, ac->id, dom);
1947  			goto put_dev_and_continue;
1948  		}
1949  		spin_unlock_bh(&aq->lock);
1950  put_dev_and_continue:
1951  		put_device(dev);
1952  	}
1953  }
1954  
1955  /*
1956   * Helper function for ap_scan_bus().
1957   * Does the scan bus job for the given adapter id.
1958   */
ap_scan_adapter(int ap)1959  static inline void ap_scan_adapter(int ap)
1960  {
1961  	int rc, dom, depth, type, comp_type, ml;
1962  	bool decfg, chkstop;
1963  	struct ap_card *ac;
1964  	struct device *dev;
1965  	unsigned int func;
1966  	ap_qid_t qid;
1967  
1968  	/* Is there currently a card device for this adapter ? */
1969  	dev = bus_find_device(&ap_bus_type, NULL,
1970  			      (void *)(long)ap,
1971  			      __match_card_device_with_id);
1972  	ac = dev ? to_ap_card(dev) : NULL;
1973  
1974  	/* Adapter not in configuration ? */
1975  	if (!ap_test_config_card_id(ap)) {
1976  		if (ac) {
1977  			AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1978  				    __func__, ap);
1979  			ap_scan_rm_card_dev_and_queue_devs(ac);
1980  			put_device(dev);
1981  		}
1982  		return;
1983  	}
1984  
1985  	/*
1986  	 * Adapter ap is valid in the current configuration. So do some checks:
1987  	 * If no card device exists, build one. If a card device exists, check
1988  	 * for type and functions changed. For all this we need to find a valid
1989  	 * APQN first.
1990  	 */
1991  
1992  	for (dom = 0; dom <= ap_max_domain_id; dom++)
1993  		if (ap_test_config_usage_domain(dom)) {
1994  			qid = AP_MKQID(ap, dom);
1995  			if (ap_queue_info(qid, &type, &func, &depth,
1996  					  &ml, &decfg, &chkstop) > 0)
1997  				break;
1998  		}
1999  	if (dom > ap_max_domain_id) {
2000  		/* Could not find one valid APQN for this adapter */
2001  		if (ac) {
2002  			AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
2003  				    __func__, ap);
2004  			ap_scan_rm_card_dev_and_queue_devs(ac);
2005  			put_device(dev);
2006  		} else {
2007  			AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
2008  				   __func__, ap);
2009  		}
2010  		return;
2011  	}
2012  	if (!type) {
2013  		/* No apdater type info available, an unusable adapter */
2014  		if (ac) {
2015  			AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
2016  				    __func__, ap);
2017  			ap_scan_rm_card_dev_and_queue_devs(ac);
2018  			put_device(dev);
2019  		} else {
2020  			AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
2021  				   __func__, ap);
2022  		}
2023  		return;
2024  	}
2025  	if (ac) {
2026  		/* Check APQN against existing card device for changes */
2027  		if (ac->raw_hwtype != type) {
2028  			AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
2029  				    __func__, ap, type);
2030  			ap_scan_rm_card_dev_and_queue_devs(ac);
2031  			put_device(dev);
2032  			ac = NULL;
2033  		} else if ((ac->functions & TAPQ_CARD_FUNC_CMP_MASK) !=
2034  			   (func & TAPQ_CARD_FUNC_CMP_MASK)) {
2035  			AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
2036  				    __func__, ap, func);
2037  			ap_scan_rm_card_dev_and_queue_devs(ac);
2038  			put_device(dev);
2039  			ac = NULL;
2040  		} else {
2041  			/* handle checkstop state change */
2042  			if (chkstop && !ac->chkstop) {
2043  				/* checkstop on */
2044  				ac->chkstop = true;
2045  				AP_DBF_INFO("%s(%d) card dev checkstop on\n",
2046  					    __func__, ap);
2047  			} else if (!chkstop && ac->chkstop) {
2048  				/* checkstop off */
2049  				ac->chkstop = false;
2050  				AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2051  					    __func__, ap);
2052  			}
2053  			/* handle config state change */
2054  			if (decfg && ac->config) {
2055  				ac->config = false;
2056  				AP_DBF_INFO("%s(%d) card dev config off\n",
2057  					    __func__, ap);
2058  				ap_send_config_uevent(&ac->ap_dev, ac->config);
2059  			} else if (!decfg && !ac->config) {
2060  				ac->config = true;
2061  				AP_DBF_INFO("%s(%d) card dev config on\n",
2062  					    __func__, ap);
2063  				ap_send_config_uevent(&ac->ap_dev, ac->config);
2064  			}
2065  		}
2066  	}
2067  
2068  	if (!ac) {
2069  		/* Build a new card device */
2070  		comp_type = ap_get_compatible_type(qid, type, func);
2071  		if (!comp_type) {
2072  			AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2073  				    __func__, ap, type);
2074  			return;
2075  		}
2076  		ac = ap_card_create(ap, depth, type, comp_type, func, ml);
2077  		if (!ac) {
2078  			AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2079  				    __func__, ap);
2080  			return;
2081  		}
2082  		ac->config = !decfg;
2083  		ac->chkstop = chkstop;
2084  		dev = &ac->ap_dev.device;
2085  		dev->bus = &ap_bus_type;
2086  		dev->parent = ap_root_device;
2087  		dev_set_name(dev, "card%02x", ap);
2088  		/* maybe enlarge ap_max_msg_size to support this card */
2089  		if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2090  			atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2091  			AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2092  				    __func__, ap,
2093  				    atomic_read(&ap_max_msg_size));
2094  		}
2095  		/* Register the new card device with AP bus */
2096  		rc = device_register(dev);
2097  		if (rc) {
2098  			AP_DBF_WARN("%s(%d) device_register() failed\n",
2099  				    __func__, ap);
2100  			put_device(dev);
2101  			return;
2102  		}
2103  		/* get it and thus adjust reference counter */
2104  		get_device(dev);
2105  		if (decfg)
2106  			AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2107  				    __func__, ap, type, func);
2108  		else if (chkstop)
2109  			AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2110  				    __func__, ap, type, func);
2111  		else
2112  			AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2113  				    __func__, ap, type, func);
2114  	}
2115  
2116  	/* Verify the domains and the queue devices for this card */
2117  	ap_scan_domains(ac);
2118  
2119  	/* release the card device */
2120  	put_device(&ac->ap_dev.device);
2121  }
2122  
2123  /**
2124   * ap_get_configuration - get the host AP configuration
2125   *
2126   * Stores the host AP configuration information returned from the previous call
2127   * to Query Configuration Information (QCI), then retrieves and stores the
2128   * current AP configuration returned from QCI.
2129   *
2130   * Return: true if the host AP configuration changed between calls to QCI;
2131   * otherwise, return false.
2132   */
ap_get_configuration(void)2133  static bool ap_get_configuration(void)
2134  {
2135  	if (!ap_qci_info)	/* QCI not supported */
2136  		return false;
2137  
2138  	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2139  	ap_fetch_qci_info(ap_qci_info);
2140  
2141  	return memcmp(ap_qci_info, ap_qci_info_old,
2142  		      sizeof(struct ap_config_info)) != 0;
2143  }
2144  
2145  /**
2146   * ap_scan_bus(): Scan the AP bus for new devices
2147   * Runs periodically, workqueue timer (ap_config_time)
2148   * @unused: Unused pointer.
2149   */
ap_scan_bus(struct work_struct * unused)2150  static void ap_scan_bus(struct work_struct *unused)
2151  {
2152  	int ap, config_changed = 0;
2153  
2154  	/* config change notify */
2155  	config_changed = ap_get_configuration();
2156  	if (config_changed)
2157  		notify_config_changed();
2158  	ap_select_domain();
2159  
2160  	AP_DBF_DBG("%s running\n", __func__);
2161  
2162  	/* loop over all possible adapters */
2163  	for (ap = 0; ap <= ap_max_adapter_id; ap++)
2164  		ap_scan_adapter(ap);
2165  
2166  	/* scan complete notify */
2167  	if (config_changed)
2168  		notify_scan_complete();
2169  
2170  	/* check if there is at least one queue available with default domain */
2171  	if (ap_domain_index >= 0) {
2172  		struct device *dev =
2173  			bus_find_device(&ap_bus_type, NULL,
2174  					(void *)(long)ap_domain_index,
2175  					__match_queue_device_with_queue_id);
2176  		if (dev)
2177  			put_device(dev);
2178  		else
2179  			AP_DBF_INFO("%s no queue device with default domain %d available\n",
2180  				    __func__, ap_domain_index);
2181  	}
2182  
2183  	if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2184  		AP_DBF_DBG("%s init scan complete\n", __func__);
2185  		ap_send_init_scan_done_uevent();
2186  		ap_check_bindings_complete();
2187  	}
2188  
2189  	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
2190  }
2191  
ap_config_timeout(struct timer_list * unused)2192  static void ap_config_timeout(struct timer_list *unused)
2193  {
2194  	queue_work(system_long_wq, &ap_scan_work);
2195  }
2196  
ap_debug_init(void)2197  static int __init ap_debug_init(void)
2198  {
2199  	ap_dbf_info = debug_register("ap", 2, 1,
2200  				     DBF_MAX_SPRINTF_ARGS * sizeof(long));
2201  	debug_register_view(ap_dbf_info, &debug_sprintf_view);
2202  	debug_set_level(ap_dbf_info, DBF_ERR);
2203  
2204  	return 0;
2205  }
2206  
ap_perms_init(void)2207  static void __init ap_perms_init(void)
2208  {
2209  	/* all resources usable if no kernel parameter string given */
2210  	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2211  	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2212  	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2213  
2214  	/* apm kernel parameter string */
2215  	if (apm_str) {
2216  		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2217  		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2218  				  &ap_perms_mutex);
2219  	}
2220  
2221  	/* aqm kernel parameter string */
2222  	if (aqm_str) {
2223  		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2224  		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2225  				  &ap_perms_mutex);
2226  	}
2227  }
2228  
2229  /**
2230   * ap_module_init(): The module initialization code.
2231   *
2232   * Initializes the module.
2233   */
ap_module_init(void)2234  static int __init ap_module_init(void)
2235  {
2236  	int rc;
2237  
2238  	rc = ap_debug_init();
2239  	if (rc)
2240  		return rc;
2241  
2242  	if (!ap_instructions_available()) {
2243  		pr_warn("The hardware system does not support AP instructions\n");
2244  		return -ENODEV;
2245  	}
2246  
2247  	/* init ap_queue hashtable */
2248  	hash_init(ap_queues);
2249  
2250  	/* set up the AP permissions (ioctls, ap and aq masks) */
2251  	ap_perms_init();
2252  
2253  	/* Get AP configuration data if available */
2254  	ap_init_qci_info();
2255  
2256  	/* check default domain setting */
2257  	if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2258  	    (ap_domain_index >= 0 &&
2259  	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2260  		pr_warn("%d is not a valid cryptographic domain\n",
2261  			ap_domain_index);
2262  		ap_domain_index = -1;
2263  	}
2264  
2265  	/* enable interrupts if available */
2266  	if (ap_interrupts_available() && ap_useirq) {
2267  		rc = register_adapter_interrupt(&ap_airq);
2268  		ap_irq_flag = (rc == 0);
2269  	}
2270  
2271  	/* Create /sys/bus/ap. */
2272  	rc = bus_register(&ap_bus_type);
2273  	if (rc)
2274  		goto out;
2275  
2276  	/* Create /sys/devices/ap. */
2277  	ap_root_device = root_device_register("ap");
2278  	rc = PTR_ERR_OR_ZERO(ap_root_device);
2279  	if (rc)
2280  		goto out_bus;
2281  	ap_root_device->bus = &ap_bus_type;
2282  
2283  	/* Setup the AP bus rescan timer. */
2284  	timer_setup(&ap_config_timer, ap_config_timeout, 0);
2285  
2286  	/*
2287  	 * Setup the high resolution poll timer.
2288  	 * If we are running under z/VM adjust polling to z/VM polling rate.
2289  	 */
2290  	if (MACHINE_IS_VM)
2291  		poll_high_timeout = 1500000;
2292  	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2293  	ap_poll_timer.function = ap_poll_timeout;
2294  
2295  	/* Start the low priority AP bus poll thread. */
2296  	if (ap_thread_flag) {
2297  		rc = ap_poll_thread_start();
2298  		if (rc)
2299  			goto out_work;
2300  	}
2301  
2302  	queue_work(system_long_wq, &ap_scan_work);
2303  
2304  	return 0;
2305  
2306  out_work:
2307  	hrtimer_cancel(&ap_poll_timer);
2308  	root_device_unregister(ap_root_device);
2309  out_bus:
2310  	bus_unregister(&ap_bus_type);
2311  out:
2312  	if (ap_irq_flag)
2313  		unregister_adapter_interrupt(&ap_airq);
2314  	kfree(ap_qci_info);
2315  	return rc;
2316  }
2317  device_initcall(ap_module_init);
2318