1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6 #define pr_fmt(fmt) "ACPI: " fmt
7
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23 #include <linux/dma-direct.h>
24
25 #include "internal.h"
26 #include "sleep.h"
27
28 #define ACPI_BUS_CLASS "system_bus"
29 #define ACPI_BUS_HID "LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME "System Bus"
31
32 #define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0))
33
34 static const char *dummy_hid = "device";
35
36 static LIST_HEAD(acpi_dep_list);
37 static DEFINE_MUTEX(acpi_dep_list_lock);
38 LIST_HEAD(acpi_bus_id_list);
39 static DEFINE_MUTEX(acpi_scan_lock);
40 static LIST_HEAD(acpi_scan_handlers_list);
41 DEFINE_MUTEX(acpi_device_lock);
42 LIST_HEAD(acpi_wakeup_device_list);
43 static DEFINE_MUTEX(acpi_hp_context_lock);
44
45 /*
46 * The UART device described by the SPCR table is the only object which needs
47 * special-casing. Everything else is covered by ACPI namespace paths in STAO
48 * table.
49 */
50 static u64 spcr_uart_addr;
51
acpi_scan_lock_acquire(void)52 void acpi_scan_lock_acquire(void)
53 {
54 mutex_lock(&acpi_scan_lock);
55 }
56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57
acpi_scan_lock_release(void)58 void acpi_scan_lock_release(void)
59 {
60 mutex_unlock(&acpi_scan_lock);
61 }
62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63
acpi_lock_hp_context(void)64 void acpi_lock_hp_context(void)
65 {
66 mutex_lock(&acpi_hp_context_lock);
67 }
68
acpi_unlock_hp_context(void)69 void acpi_unlock_hp_context(void)
70 {
71 mutex_unlock(&acpi_hp_context_lock);
72 }
73
acpi_initialize_hp_context(struct acpi_device * adev,struct acpi_hotplug_context * hp,int (* notify)(struct acpi_device *,u32),void (* uevent)(struct acpi_device *,u32))74 void acpi_initialize_hp_context(struct acpi_device *adev,
75 struct acpi_hotplug_context *hp,
76 int (*notify)(struct acpi_device *, u32),
77 void (*uevent)(struct acpi_device *, u32))
78 {
79 acpi_lock_hp_context();
80 hp->notify = notify;
81 hp->uevent = uevent;
82 acpi_set_hp_context(adev, hp);
83 acpi_unlock_hp_context();
84 }
85 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
86
acpi_scan_add_handler(struct acpi_scan_handler * handler)87 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
88 {
89 if (!handler)
90 return -EINVAL;
91
92 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
93 return 0;
94 }
95
acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler * handler,const char * hotplug_profile_name)96 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
97 const char *hotplug_profile_name)
98 {
99 int error;
100
101 error = acpi_scan_add_handler(handler);
102 if (error)
103 return error;
104
105 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
106 return 0;
107 }
108
acpi_scan_is_offline(struct acpi_device * adev,bool uevent)109 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
110 {
111 struct acpi_device_physical_node *pn;
112 bool offline = true;
113 char *envp[] = { "EVENT=offline", NULL };
114
115 /*
116 * acpi_container_offline() calls this for all of the container's
117 * children under the container's physical_node_lock lock.
118 */
119 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
120
121 list_for_each_entry(pn, &adev->physical_node_list, node)
122 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
123 if (uevent)
124 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
125
126 offline = false;
127 break;
128 }
129
130 mutex_unlock(&adev->physical_node_lock);
131 return offline;
132 }
133
acpi_bus_offline(acpi_handle handle,u32 lvl,void * data,void ** ret_p)134 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
135 void **ret_p)
136 {
137 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
138 struct acpi_device_physical_node *pn;
139 bool second_pass = (bool)data;
140 acpi_status status = AE_OK;
141
142 if (!device)
143 return AE_OK;
144
145 if (device->handler && !device->handler->hotplug.enabled) {
146 *ret_p = &device->dev;
147 return AE_SUPPORT;
148 }
149
150 mutex_lock(&device->physical_node_lock);
151
152 list_for_each_entry(pn, &device->physical_node_list, node) {
153 int ret;
154
155 if (second_pass) {
156 /* Skip devices offlined by the first pass. */
157 if (pn->put_online)
158 continue;
159 } else {
160 pn->put_online = false;
161 }
162 ret = device_offline(pn->dev);
163 if (ret >= 0) {
164 pn->put_online = !ret;
165 } else {
166 *ret_p = pn->dev;
167 if (second_pass) {
168 status = AE_ERROR;
169 break;
170 }
171 }
172 }
173
174 mutex_unlock(&device->physical_node_lock);
175
176 return status;
177 }
178
acpi_bus_online(acpi_handle handle,u32 lvl,void * data,void ** ret_p)179 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
180 void **ret_p)
181 {
182 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
183 struct acpi_device_physical_node *pn;
184
185 if (!device)
186 return AE_OK;
187
188 mutex_lock(&device->physical_node_lock);
189
190 list_for_each_entry(pn, &device->physical_node_list, node)
191 if (pn->put_online) {
192 device_online(pn->dev);
193 pn->put_online = false;
194 }
195
196 mutex_unlock(&device->physical_node_lock);
197
198 return AE_OK;
199 }
200
acpi_scan_try_to_offline(struct acpi_device * device)201 static int acpi_scan_try_to_offline(struct acpi_device *device)
202 {
203 acpi_handle handle = device->handle;
204 struct device *errdev = NULL;
205 acpi_status status;
206
207 /*
208 * Carry out two passes here and ignore errors in the first pass,
209 * because if the devices in question are memory blocks and
210 * CONFIG_MEMCG is set, one of the blocks may hold data structures
211 * that the other blocks depend on, but it is not known in advance which
212 * block holds them.
213 *
214 * If the first pass is successful, the second one isn't needed, though.
215 */
216 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
217 NULL, acpi_bus_offline, (void *)false,
218 (void **)&errdev);
219 if (status == AE_SUPPORT) {
220 dev_warn(errdev, "Offline disabled.\n");
221 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
222 acpi_bus_online, NULL, NULL, NULL);
223 return -EPERM;
224 }
225 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
226 if (errdev) {
227 errdev = NULL;
228 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
229 NULL, acpi_bus_offline, (void *)true,
230 (void **)&errdev);
231 if (!errdev)
232 acpi_bus_offline(handle, 0, (void *)true,
233 (void **)&errdev);
234
235 if (errdev) {
236 dev_warn(errdev, "Offline failed.\n");
237 acpi_bus_online(handle, 0, NULL, NULL);
238 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
239 ACPI_UINT32_MAX, acpi_bus_online,
240 NULL, NULL, NULL);
241 return -EBUSY;
242 }
243 }
244 return 0;
245 }
246
acpi_scan_hot_remove(struct acpi_device * device)247 static int acpi_scan_hot_remove(struct acpi_device *device)
248 {
249 acpi_handle handle = device->handle;
250 unsigned long long sta;
251 acpi_status status;
252
253 if (device->handler && device->handler->hotplug.demand_offline) {
254 if (!acpi_scan_is_offline(device, true))
255 return -EBUSY;
256 } else {
257 int error = acpi_scan_try_to_offline(device);
258 if (error)
259 return error;
260 }
261
262 acpi_handle_debug(handle, "Ejecting\n");
263
264 acpi_bus_trim(device);
265
266 acpi_evaluate_lck(handle, 0);
267 /*
268 * TBD: _EJD support.
269 */
270 status = acpi_evaluate_ej0(handle);
271 if (status == AE_NOT_FOUND)
272 return -ENODEV;
273 else if (ACPI_FAILURE(status))
274 return -EIO;
275
276 /*
277 * Verify if eject was indeed successful. If not, log an error
278 * message. No need to call _OST since _EJ0 call was made OK.
279 */
280 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
281 if (ACPI_FAILURE(status)) {
282 acpi_handle_warn(handle,
283 "Status check after eject failed (0x%x)\n", status);
284 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
285 acpi_handle_warn(handle,
286 "Eject incomplete - status 0x%llx\n", sta);
287 }
288
289 return 0;
290 }
291
acpi_scan_device_not_present(struct acpi_device * adev)292 static int acpi_scan_device_not_present(struct acpi_device *adev)
293 {
294 if (!acpi_device_enumerated(adev)) {
295 dev_warn(&adev->dev, "Still not present\n");
296 return -EALREADY;
297 }
298 acpi_bus_trim(adev);
299 return 0;
300 }
301
acpi_scan_device_check(struct acpi_device * adev)302 static int acpi_scan_device_check(struct acpi_device *adev)
303 {
304 int error;
305
306 acpi_bus_get_status(adev);
307 if (adev->status.present || adev->status.functional) {
308 /*
309 * This function is only called for device objects for which
310 * matching scan handlers exist. The only situation in which
311 * the scan handler is not attached to this device object yet
312 * is when the device has just appeared (either it wasn't
313 * present at all before or it was removed and then added
314 * again).
315 */
316 if (adev->handler) {
317 dev_dbg(&adev->dev, "Already enumerated\n");
318 return 0;
319 }
320 error = acpi_bus_scan(adev->handle);
321 if (error) {
322 dev_warn(&adev->dev, "Namespace scan failure\n");
323 return error;
324 }
325 } else {
326 error = acpi_scan_device_not_present(adev);
327 }
328 return error;
329 }
330
acpi_scan_bus_check(struct acpi_device * adev,void * not_used)331 static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
332 {
333 struct acpi_scan_handler *handler = adev->handler;
334 int error;
335
336 acpi_bus_get_status(adev);
337 if (!(adev->status.present || adev->status.functional)) {
338 acpi_scan_device_not_present(adev);
339 return 0;
340 }
341 if (handler && handler->hotplug.scan_dependent)
342 return handler->hotplug.scan_dependent(adev);
343
344 error = acpi_bus_scan(adev->handle);
345 if (error) {
346 dev_warn(&adev->dev, "Namespace scan failure\n");
347 return error;
348 }
349 return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
350 }
351
acpi_generic_hotplug_event(struct acpi_device * adev,u32 type)352 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
353 {
354 switch (type) {
355 case ACPI_NOTIFY_BUS_CHECK:
356 return acpi_scan_bus_check(adev, NULL);
357 case ACPI_NOTIFY_DEVICE_CHECK:
358 return acpi_scan_device_check(adev);
359 case ACPI_NOTIFY_EJECT_REQUEST:
360 case ACPI_OST_EC_OSPM_EJECT:
361 if (adev->handler && !adev->handler->hotplug.enabled) {
362 dev_info(&adev->dev, "Eject disabled\n");
363 return -EPERM;
364 }
365 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
366 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
367 return acpi_scan_hot_remove(adev);
368 }
369 return -EINVAL;
370 }
371
acpi_device_hotplug(struct acpi_device * adev,u32 src)372 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
373 {
374 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
375 int error = -ENODEV;
376
377 lock_device_hotplug();
378 mutex_lock(&acpi_scan_lock);
379
380 /*
381 * The device object's ACPI handle cannot become invalid as long as we
382 * are holding acpi_scan_lock, but it might have become invalid before
383 * that lock was acquired.
384 */
385 if (adev->handle == INVALID_ACPI_HANDLE)
386 goto err_out;
387
388 if (adev->flags.is_dock_station) {
389 error = dock_notify(adev, src);
390 } else if (adev->flags.hotplug_notify) {
391 error = acpi_generic_hotplug_event(adev, src);
392 } else {
393 int (*notify)(struct acpi_device *, u32);
394
395 acpi_lock_hp_context();
396 notify = adev->hp ? adev->hp->notify : NULL;
397 acpi_unlock_hp_context();
398 /*
399 * There may be additional notify handlers for device objects
400 * without the .event() callback, so ignore them here.
401 */
402 if (notify)
403 error = notify(adev, src);
404 else
405 goto out;
406 }
407 switch (error) {
408 case 0:
409 ost_code = ACPI_OST_SC_SUCCESS;
410 break;
411 case -EPERM:
412 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
413 break;
414 case -EBUSY:
415 ost_code = ACPI_OST_SC_DEVICE_BUSY;
416 break;
417 default:
418 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
419 break;
420 }
421
422 err_out:
423 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
424
425 out:
426 acpi_put_acpi_dev(adev);
427 mutex_unlock(&acpi_scan_lock);
428 unlock_device_hotplug();
429 }
430
acpi_free_power_resources_lists(struct acpi_device * device)431 static void acpi_free_power_resources_lists(struct acpi_device *device)
432 {
433 int i;
434
435 if (device->wakeup.flags.valid)
436 acpi_power_resources_list_free(&device->wakeup.resources);
437
438 if (!device->power.flags.power_resources)
439 return;
440
441 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
442 struct acpi_device_power_state *ps = &device->power.states[i];
443 acpi_power_resources_list_free(&ps->resources);
444 }
445 }
446
acpi_device_release(struct device * dev)447 static void acpi_device_release(struct device *dev)
448 {
449 struct acpi_device *acpi_dev = to_acpi_device(dev);
450
451 acpi_free_properties(acpi_dev);
452 acpi_free_pnp_ids(&acpi_dev->pnp);
453 acpi_free_power_resources_lists(acpi_dev);
454 kfree(acpi_dev);
455 }
456
acpi_device_del(struct acpi_device * device)457 static void acpi_device_del(struct acpi_device *device)
458 {
459 struct acpi_device_bus_id *acpi_device_bus_id;
460
461 mutex_lock(&acpi_device_lock);
462
463 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
464 if (!strcmp(acpi_device_bus_id->bus_id,
465 acpi_device_hid(device))) {
466 ida_free(&acpi_device_bus_id->instance_ida,
467 device->pnp.instance_no);
468 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
469 list_del(&acpi_device_bus_id->node);
470 kfree_const(acpi_device_bus_id->bus_id);
471 kfree(acpi_device_bus_id);
472 }
473 break;
474 }
475
476 list_del(&device->wakeup_list);
477
478 mutex_unlock(&acpi_device_lock);
479
480 acpi_power_add_remove_device(device, false);
481 acpi_device_remove_files(device);
482 if (device->remove)
483 device->remove(device);
484
485 device_del(&device->dev);
486 }
487
488 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
489
490 static LIST_HEAD(acpi_device_del_list);
491 static DEFINE_MUTEX(acpi_device_del_lock);
492
acpi_device_del_work_fn(struct work_struct * work_not_used)493 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
494 {
495 for (;;) {
496 struct acpi_device *adev;
497
498 mutex_lock(&acpi_device_del_lock);
499
500 if (list_empty(&acpi_device_del_list)) {
501 mutex_unlock(&acpi_device_del_lock);
502 break;
503 }
504 adev = list_first_entry(&acpi_device_del_list,
505 struct acpi_device, del_list);
506 list_del(&adev->del_list);
507
508 mutex_unlock(&acpi_device_del_lock);
509
510 blocking_notifier_call_chain(&acpi_reconfig_chain,
511 ACPI_RECONFIG_DEVICE_REMOVE, adev);
512
513 acpi_device_del(adev);
514 /*
515 * Drop references to all power resources that might have been
516 * used by the device.
517 */
518 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
519 acpi_dev_put(adev);
520 }
521 }
522
523 /**
524 * acpi_scan_drop_device - Drop an ACPI device object.
525 * @handle: Handle of an ACPI namespace node, not used.
526 * @context: Address of the ACPI device object to drop.
527 *
528 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
529 * namespace node the device object pointed to by @context is attached to.
530 *
531 * The unregistration is carried out asynchronously to avoid running
532 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
533 * ensure the correct ordering (the device objects must be unregistered in the
534 * same order in which the corresponding namespace nodes are deleted).
535 */
acpi_scan_drop_device(acpi_handle handle,void * context)536 static void acpi_scan_drop_device(acpi_handle handle, void *context)
537 {
538 static DECLARE_WORK(work, acpi_device_del_work_fn);
539 struct acpi_device *adev = context;
540
541 mutex_lock(&acpi_device_del_lock);
542
543 /*
544 * Use the ACPI hotplug workqueue which is ordered, so this work item
545 * won't run after any hotplug work items submitted subsequently. That
546 * prevents attempts to register device objects identical to those being
547 * deleted from happening concurrently (such attempts result from
548 * hotplug events handled via the ACPI hotplug workqueue). It also will
549 * run after all of the work items submitted previously, which helps
550 * those work items to ensure that they are not accessing stale device
551 * objects.
552 */
553 if (list_empty(&acpi_device_del_list))
554 acpi_queue_hotplug_work(&work);
555
556 list_add_tail(&adev->del_list, &acpi_device_del_list);
557 /* Make acpi_ns_validate_handle() return NULL for this handle. */
558 adev->handle = INVALID_ACPI_HANDLE;
559
560 mutex_unlock(&acpi_device_del_lock);
561 }
562
handle_to_device(acpi_handle handle,void (* callback)(void *))563 static struct acpi_device *handle_to_device(acpi_handle handle,
564 void (*callback)(void *))
565 {
566 struct acpi_device *adev = NULL;
567 acpi_status status;
568
569 status = acpi_get_data_full(handle, acpi_scan_drop_device,
570 (void **)&adev, callback);
571 if (ACPI_FAILURE(status) || !adev) {
572 acpi_handle_debug(handle, "No context!\n");
573 return NULL;
574 }
575 return adev;
576 }
577
578 /**
579 * acpi_fetch_acpi_dev - Retrieve ACPI device object.
580 * @handle: ACPI handle associated with the requested ACPI device object.
581 *
582 * Return a pointer to the ACPI device object associated with @handle, if
583 * present, or NULL otherwise.
584 */
acpi_fetch_acpi_dev(acpi_handle handle)585 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
586 {
587 return handle_to_device(handle, NULL);
588 }
589 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
590
get_acpi_device(void * dev)591 static void get_acpi_device(void *dev)
592 {
593 acpi_dev_get(dev);
594 }
595
596 /**
597 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
598 * @handle: ACPI handle associated with the requested ACPI device object.
599 *
600 * Return a pointer to the ACPI device object associated with @handle and bump
601 * up that object's reference counter (under the ACPI Namespace lock), if
602 * present, or return NULL otherwise.
603 *
604 * The ACPI device object reference acquired by this function needs to be
605 * dropped via acpi_dev_put().
606 */
acpi_get_acpi_dev(acpi_handle handle)607 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
608 {
609 return handle_to_device(handle, get_acpi_device);
610 }
611 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
612
acpi_device_bus_id_match(const char * dev_id)613 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
614 {
615 struct acpi_device_bus_id *acpi_device_bus_id;
616
617 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
618 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
619 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
620 return acpi_device_bus_id;
621 }
622 return NULL;
623 }
624
acpi_device_set_name(struct acpi_device * device,struct acpi_device_bus_id * acpi_device_bus_id)625 static int acpi_device_set_name(struct acpi_device *device,
626 struct acpi_device_bus_id *acpi_device_bus_id)
627 {
628 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
629 int result;
630
631 result = ida_alloc(instance_ida, GFP_KERNEL);
632 if (result < 0)
633 return result;
634
635 device->pnp.instance_no = result;
636 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
637 return 0;
638 }
639
acpi_tie_acpi_dev(struct acpi_device * adev)640 int acpi_tie_acpi_dev(struct acpi_device *adev)
641 {
642 acpi_handle handle = adev->handle;
643 acpi_status status;
644
645 if (!handle)
646 return 0;
647
648 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
649 if (ACPI_FAILURE(status)) {
650 acpi_handle_err(handle, "Unable to attach device data\n");
651 return -ENODEV;
652 }
653
654 return 0;
655 }
656
acpi_store_pld_crc(struct acpi_device * adev)657 static void acpi_store_pld_crc(struct acpi_device *adev)
658 {
659 struct acpi_pld_info *pld;
660 acpi_status status;
661
662 status = acpi_get_physical_device_location(adev->handle, &pld);
663 if (ACPI_FAILURE(status))
664 return;
665
666 adev->pld_crc = crc32(~0, pld, sizeof(*pld));
667 ACPI_FREE(pld);
668 }
669
acpi_device_add(struct acpi_device * device)670 int acpi_device_add(struct acpi_device *device)
671 {
672 struct acpi_device_bus_id *acpi_device_bus_id;
673 int result;
674
675 /*
676 * Linkage
677 * -------
678 * Link this device to its parent and siblings.
679 */
680 INIT_LIST_HEAD(&device->wakeup_list);
681 INIT_LIST_HEAD(&device->physical_node_list);
682 INIT_LIST_HEAD(&device->del_list);
683 mutex_init(&device->physical_node_lock);
684
685 mutex_lock(&acpi_device_lock);
686
687 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
688 if (acpi_device_bus_id) {
689 result = acpi_device_set_name(device, acpi_device_bus_id);
690 if (result)
691 goto err_unlock;
692 } else {
693 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
694 GFP_KERNEL);
695 if (!acpi_device_bus_id) {
696 result = -ENOMEM;
697 goto err_unlock;
698 }
699 acpi_device_bus_id->bus_id =
700 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
701 if (!acpi_device_bus_id->bus_id) {
702 kfree(acpi_device_bus_id);
703 result = -ENOMEM;
704 goto err_unlock;
705 }
706
707 ida_init(&acpi_device_bus_id->instance_ida);
708
709 result = acpi_device_set_name(device, acpi_device_bus_id);
710 if (result) {
711 kfree_const(acpi_device_bus_id->bus_id);
712 kfree(acpi_device_bus_id);
713 goto err_unlock;
714 }
715
716 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
717 }
718
719 if (device->wakeup.flags.valid)
720 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
721
722 acpi_store_pld_crc(device);
723
724 mutex_unlock(&acpi_device_lock);
725
726 result = device_add(&device->dev);
727 if (result) {
728 dev_err(&device->dev, "Error registering device\n");
729 goto err;
730 }
731
732 result = acpi_device_setup_files(device);
733 if (result)
734 pr_err("Error creating sysfs interface for device %s\n",
735 dev_name(&device->dev));
736
737 return 0;
738
739 err:
740 mutex_lock(&acpi_device_lock);
741
742 list_del(&device->wakeup_list);
743
744 err_unlock:
745 mutex_unlock(&acpi_device_lock);
746
747 acpi_detach_data(device->handle, acpi_scan_drop_device);
748
749 return result;
750 }
751
752 /* --------------------------------------------------------------------------
753 Device Enumeration
754 -------------------------------------------------------------------------- */
acpi_info_matches_ids(struct acpi_device_info * info,const char * const ids[])755 static bool acpi_info_matches_ids(struct acpi_device_info *info,
756 const char * const ids[])
757 {
758 struct acpi_pnp_device_id_list *cid_list = NULL;
759 int i, index;
760
761 if (!(info->valid & ACPI_VALID_HID))
762 return false;
763
764 index = match_string(ids, -1, info->hardware_id.string);
765 if (index >= 0)
766 return true;
767
768 if (info->valid & ACPI_VALID_CID)
769 cid_list = &info->compatible_id_list;
770
771 if (!cid_list)
772 return false;
773
774 for (i = 0; i < cid_list->count; i++) {
775 index = match_string(ids, -1, cid_list->ids[i].string);
776 if (index >= 0)
777 return true;
778 }
779
780 return false;
781 }
782
783 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
784 static const char * const acpi_ignore_dep_ids[] = {
785 "PNP0D80", /* Windows-compatible System Power Management Controller */
786 "INT33BD", /* Intel Baytrail Mailbox Device */
787 "LATT2021", /* Lattice FW Update Client Driver */
788 NULL
789 };
790
791 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
792 static const char * const acpi_honor_dep_ids[] = {
793 "INT3472", /* Camera sensor PMIC / clk and regulator info */
794 "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
795 "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
796 "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
797 NULL
798 };
799
acpi_find_parent_acpi_dev(acpi_handle handle)800 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
801 {
802 struct acpi_device *adev;
803
804 /*
805 * Fixed hardware devices do not appear in the namespace and do not
806 * have handles, but we fabricate acpi_devices for them, so we have
807 * to deal with them specially.
808 */
809 if (!handle)
810 return acpi_root;
811
812 do {
813 acpi_status status;
814
815 status = acpi_get_parent(handle, &handle);
816 if (ACPI_FAILURE(status)) {
817 if (status != AE_NULL_ENTRY)
818 return acpi_root;
819
820 return NULL;
821 }
822 adev = acpi_fetch_acpi_dev(handle);
823 } while (!adev);
824 return adev;
825 }
826
827 acpi_status
acpi_bus_get_ejd(acpi_handle handle,acpi_handle * ejd)828 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
829 {
830 acpi_status status;
831 acpi_handle tmp;
832 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
833 union acpi_object *obj;
834
835 status = acpi_get_handle(handle, "_EJD", &tmp);
836 if (ACPI_FAILURE(status))
837 return status;
838
839 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
840 if (ACPI_SUCCESS(status)) {
841 obj = buffer.pointer;
842 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
843 ejd);
844 kfree(buffer.pointer);
845 }
846 return status;
847 }
848 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
849
acpi_bus_extract_wakeup_device_power_package(struct acpi_device * dev)850 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
851 {
852 acpi_handle handle = dev->handle;
853 struct acpi_device_wakeup *wakeup = &dev->wakeup;
854 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
855 union acpi_object *package = NULL;
856 union acpi_object *element = NULL;
857 acpi_status status;
858 int err = -ENODATA;
859
860 INIT_LIST_HEAD(&wakeup->resources);
861
862 /* _PRW */
863 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
864 if (ACPI_FAILURE(status)) {
865 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
866 acpi_format_exception(status));
867 return err;
868 }
869
870 package = (union acpi_object *)buffer.pointer;
871
872 if (!package || package->package.count < 2)
873 goto out;
874
875 element = &(package->package.elements[0]);
876 if (!element)
877 goto out;
878
879 if (element->type == ACPI_TYPE_PACKAGE) {
880 if ((element->package.count < 2) ||
881 (element->package.elements[0].type !=
882 ACPI_TYPE_LOCAL_REFERENCE)
883 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
884 goto out;
885
886 wakeup->gpe_device =
887 element->package.elements[0].reference.handle;
888 wakeup->gpe_number =
889 (u32) element->package.elements[1].integer.value;
890 } else if (element->type == ACPI_TYPE_INTEGER) {
891 wakeup->gpe_device = NULL;
892 wakeup->gpe_number = element->integer.value;
893 } else {
894 goto out;
895 }
896
897 element = &(package->package.elements[1]);
898 if (element->type != ACPI_TYPE_INTEGER)
899 goto out;
900
901 wakeup->sleep_state = element->integer.value;
902
903 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
904 if (err)
905 goto out;
906
907 if (!list_empty(&wakeup->resources)) {
908 int sleep_state;
909
910 err = acpi_power_wakeup_list_init(&wakeup->resources,
911 &sleep_state);
912 if (err) {
913 acpi_handle_warn(handle, "Retrieving current states "
914 "of wakeup power resources failed\n");
915 acpi_power_resources_list_free(&wakeup->resources);
916 goto out;
917 }
918 if (sleep_state < wakeup->sleep_state) {
919 acpi_handle_warn(handle, "Overriding _PRW sleep state "
920 "(S%d) by S%d from power resources\n",
921 (int)wakeup->sleep_state, sleep_state);
922 wakeup->sleep_state = sleep_state;
923 }
924 }
925
926 out:
927 kfree(buffer.pointer);
928 return err;
929 }
930
931 /* Do not use a button for S5 wakeup */
932 #define ACPI_AVOID_WAKE_FROM_S5 BIT(0)
933
acpi_wakeup_gpe_init(struct acpi_device * device)934 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
935 {
936 static const struct acpi_device_id button_device_ids[] = {
937 {"PNP0C0C", 0}, /* Power button */
938 {"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5}, /* Lid */
939 {"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5}, /* Sleep button */
940 {"", 0},
941 };
942 struct acpi_device_wakeup *wakeup = &device->wakeup;
943 const struct acpi_device_id *match;
944 acpi_status status;
945
946 wakeup->flags.notifier_present = 0;
947
948 /* Power button, Lid switch always enable wakeup */
949 match = acpi_match_acpi_device(button_device_ids, device);
950 if (match) {
951 if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
952 wakeup->sleep_state == ACPI_STATE_S5)
953 wakeup->sleep_state = ACPI_STATE_S4;
954 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
955 device_set_wakeup_capable(&device->dev, true);
956 return true;
957 }
958
959 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
960 wakeup->gpe_number);
961 return ACPI_SUCCESS(status);
962 }
963
acpi_bus_get_wakeup_device_flags(struct acpi_device * device)964 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
965 {
966 int err;
967
968 /* Presence of _PRW indicates wake capable */
969 if (!acpi_has_method(device->handle, "_PRW"))
970 return;
971
972 err = acpi_bus_extract_wakeup_device_power_package(device);
973 if (err) {
974 dev_err(&device->dev, "Unable to extract wakeup power resources");
975 return;
976 }
977
978 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
979 device->wakeup.prepare_count = 0;
980 /*
981 * Call _PSW/_DSW object to disable its ability to wake the sleeping
982 * system for the ACPI device with the _PRW object.
983 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
984 * So it is necessary to call _DSW object first. Only when it is not
985 * present will the _PSW object used.
986 */
987 err = acpi_device_sleep_wake(device, 0, 0, 0);
988 if (err)
989 pr_debug("error in _DSW or _PSW evaluation\n");
990 }
991
acpi_bus_init_power_state(struct acpi_device * device,int state)992 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
993 {
994 struct acpi_device_power_state *ps = &device->power.states[state];
995 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
996 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
997 acpi_status status;
998
999 INIT_LIST_HEAD(&ps->resources);
1000
1001 /* Evaluate "_PRx" to get referenced power resources */
1002 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1003 if (ACPI_SUCCESS(status)) {
1004 union acpi_object *package = buffer.pointer;
1005
1006 if (buffer.length && package
1007 && package->type == ACPI_TYPE_PACKAGE
1008 && package->package.count)
1009 acpi_extract_power_resources(package, 0, &ps->resources);
1010
1011 ACPI_FREE(buffer.pointer);
1012 }
1013
1014 /* Evaluate "_PSx" to see if we can do explicit sets */
1015 pathname[2] = 'S';
1016 if (acpi_has_method(device->handle, pathname))
1017 ps->flags.explicit_set = 1;
1018
1019 /* State is valid if there are means to put the device into it. */
1020 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1021 ps->flags.valid = 1;
1022
1023 ps->power = -1; /* Unknown - driver assigned */
1024 ps->latency = -1; /* Unknown - driver assigned */
1025 }
1026
acpi_bus_get_power_flags(struct acpi_device * device)1027 static void acpi_bus_get_power_flags(struct acpi_device *device)
1028 {
1029 unsigned long long dsc = ACPI_STATE_D0;
1030 u32 i;
1031
1032 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1033 if (!acpi_has_method(device->handle, "_PS0") &&
1034 !acpi_has_method(device->handle, "_PR0"))
1035 return;
1036
1037 device->flags.power_manageable = 1;
1038
1039 /*
1040 * Power Management Flags
1041 */
1042 if (acpi_has_method(device->handle, "_PSC"))
1043 device->power.flags.explicit_get = 1;
1044
1045 if (acpi_has_method(device->handle, "_IRC"))
1046 device->power.flags.inrush_current = 1;
1047
1048 if (acpi_has_method(device->handle, "_DSW"))
1049 device->power.flags.dsw_present = 1;
1050
1051 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1052 device->power.state_for_enumeration = dsc;
1053
1054 /*
1055 * Enumerate supported power management states
1056 */
1057 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1058 acpi_bus_init_power_state(device, i);
1059
1060 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1061
1062 /* Set the defaults for D0 and D3hot (always supported). */
1063 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1064 device->power.states[ACPI_STATE_D0].power = 100;
1065 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1066
1067 /*
1068 * Use power resources only if the D0 list of them is populated, because
1069 * some platforms may provide _PR3 only to indicate D3cold support and
1070 * in those cases the power resources list returned by it may be bogus.
1071 */
1072 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1073 device->power.flags.power_resources = 1;
1074 /*
1075 * D3cold is supported if the D3hot list of power resources is
1076 * not empty.
1077 */
1078 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1079 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1080 }
1081
1082 if (acpi_bus_init_power(device))
1083 device->flags.power_manageable = 0;
1084 }
1085
acpi_bus_get_flags(struct acpi_device * device)1086 static void acpi_bus_get_flags(struct acpi_device *device)
1087 {
1088 /* Presence of _STA indicates 'dynamic_status' */
1089 if (acpi_has_method(device->handle, "_STA"))
1090 device->flags.dynamic_status = 1;
1091
1092 /* Presence of _RMV indicates 'removable' */
1093 if (acpi_has_method(device->handle, "_RMV"))
1094 device->flags.removable = 1;
1095
1096 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1097 if (acpi_has_method(device->handle, "_EJD") ||
1098 acpi_has_method(device->handle, "_EJ0"))
1099 device->flags.ejectable = 1;
1100 }
1101
acpi_device_get_busid(struct acpi_device * device)1102 static void acpi_device_get_busid(struct acpi_device *device)
1103 {
1104 char bus_id[5] = { '?', 0 };
1105 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1106 int i = 0;
1107
1108 /*
1109 * Bus ID
1110 * ------
1111 * The device's Bus ID is simply the object name.
1112 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1113 */
1114 if (!acpi_dev_parent(device)) {
1115 strcpy(device->pnp.bus_id, "ACPI");
1116 return;
1117 }
1118
1119 switch (device->device_type) {
1120 case ACPI_BUS_TYPE_POWER_BUTTON:
1121 strcpy(device->pnp.bus_id, "PWRF");
1122 break;
1123 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1124 strcpy(device->pnp.bus_id, "SLPF");
1125 break;
1126 case ACPI_BUS_TYPE_ECDT_EC:
1127 strcpy(device->pnp.bus_id, "ECDT");
1128 break;
1129 default:
1130 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1131 /* Clean up trailing underscores (if any) */
1132 for (i = 3; i > 1; i--) {
1133 if (bus_id[i] == '_')
1134 bus_id[i] = '\0';
1135 else
1136 break;
1137 }
1138 strcpy(device->pnp.bus_id, bus_id);
1139 break;
1140 }
1141 }
1142
1143 /*
1144 * acpi_ata_match - see if an acpi object is an ATA device
1145 *
1146 * If an acpi object has one of the ACPI ATA methods defined,
1147 * then we can safely call it an ATA device.
1148 */
acpi_ata_match(acpi_handle handle)1149 bool acpi_ata_match(acpi_handle handle)
1150 {
1151 return acpi_has_method(handle, "_GTF") ||
1152 acpi_has_method(handle, "_GTM") ||
1153 acpi_has_method(handle, "_STM") ||
1154 acpi_has_method(handle, "_SDD");
1155 }
1156
1157 /*
1158 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1159 *
1160 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1161 * then we can safely call it an ejectable drive bay
1162 */
acpi_bay_match(acpi_handle handle)1163 bool acpi_bay_match(acpi_handle handle)
1164 {
1165 acpi_handle phandle;
1166
1167 if (!acpi_has_method(handle, "_EJ0"))
1168 return false;
1169 if (acpi_ata_match(handle))
1170 return true;
1171 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1172 return false;
1173
1174 return acpi_ata_match(phandle);
1175 }
1176
acpi_device_is_battery(struct acpi_device * adev)1177 bool acpi_device_is_battery(struct acpi_device *adev)
1178 {
1179 struct acpi_hardware_id *hwid;
1180
1181 list_for_each_entry(hwid, &adev->pnp.ids, list)
1182 if (!strcmp("PNP0C0A", hwid->id))
1183 return true;
1184
1185 return false;
1186 }
1187
is_ejectable_bay(struct acpi_device * adev)1188 static bool is_ejectable_bay(struct acpi_device *adev)
1189 {
1190 acpi_handle handle = adev->handle;
1191
1192 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1193 return true;
1194
1195 return acpi_bay_match(handle);
1196 }
1197
1198 /*
1199 * acpi_dock_match - see if an acpi object has a _DCK method
1200 */
acpi_dock_match(acpi_handle handle)1201 bool acpi_dock_match(acpi_handle handle)
1202 {
1203 return acpi_has_method(handle, "_DCK");
1204 }
1205
1206 static acpi_status
acpi_backlight_cap_match(acpi_handle handle,u32 level,void * context,void ** return_value)1207 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1208 void **return_value)
1209 {
1210 long *cap = context;
1211
1212 if (acpi_has_method(handle, "_BCM") &&
1213 acpi_has_method(handle, "_BCL")) {
1214 acpi_handle_debug(handle, "Found generic backlight support\n");
1215 *cap |= ACPI_VIDEO_BACKLIGHT;
1216 /* We have backlight support, no need to scan further */
1217 return AE_CTRL_TERMINATE;
1218 }
1219 return 0;
1220 }
1221
1222 /* Returns true if the ACPI object is a video device which can be
1223 * handled by video.ko.
1224 * The device will get a Linux specific CID added in scan.c to
1225 * identify the device as an ACPI graphics device
1226 * Be aware that the graphics device may not be physically present
1227 * Use acpi_video_get_capabilities() to detect general ACPI video
1228 * capabilities of present cards
1229 */
acpi_is_video_device(acpi_handle handle)1230 long acpi_is_video_device(acpi_handle handle)
1231 {
1232 long video_caps = 0;
1233
1234 /* Is this device able to support video switching ? */
1235 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1236 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1237
1238 /* Is this device able to retrieve a video ROM ? */
1239 if (acpi_has_method(handle, "_ROM"))
1240 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1241
1242 /* Is this device able to configure which video head to be POSTed ? */
1243 if (acpi_has_method(handle, "_VPO") &&
1244 acpi_has_method(handle, "_GPD") &&
1245 acpi_has_method(handle, "_SPD"))
1246 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1247
1248 /* Only check for backlight functionality if one of the above hit. */
1249 if (video_caps)
1250 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1251 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1252 &video_caps, NULL);
1253
1254 return video_caps;
1255 }
1256 EXPORT_SYMBOL(acpi_is_video_device);
1257
acpi_device_hid(struct acpi_device * device)1258 const char *acpi_device_hid(struct acpi_device *device)
1259 {
1260 struct acpi_hardware_id *hid;
1261
1262 if (list_empty(&device->pnp.ids))
1263 return dummy_hid;
1264
1265 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1266 return hid->id;
1267 }
1268 EXPORT_SYMBOL(acpi_device_hid);
1269
acpi_add_id(struct acpi_device_pnp * pnp,const char * dev_id)1270 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1271 {
1272 struct acpi_hardware_id *id;
1273
1274 id = kmalloc(sizeof(*id), GFP_KERNEL);
1275 if (!id)
1276 return;
1277
1278 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1279 if (!id->id) {
1280 kfree(id);
1281 return;
1282 }
1283
1284 list_add_tail(&id->list, &pnp->ids);
1285 pnp->type.hardware_id = 1;
1286 }
1287
1288 /*
1289 * Old IBM workstations have a DSDT bug wherein the SMBus object
1290 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1291 * prefix. Work around this.
1292 */
acpi_ibm_smbus_match(acpi_handle handle)1293 static bool acpi_ibm_smbus_match(acpi_handle handle)
1294 {
1295 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1296 struct acpi_buffer path = { sizeof(node_name), node_name };
1297
1298 if (!dmi_name_in_vendors("IBM"))
1299 return false;
1300
1301 /* Look for SMBS object */
1302 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1303 strcmp("SMBS", path.pointer))
1304 return false;
1305
1306 /* Does it have the necessary (but misnamed) methods? */
1307 if (acpi_has_method(handle, "SBI") &&
1308 acpi_has_method(handle, "SBR") &&
1309 acpi_has_method(handle, "SBW"))
1310 return true;
1311
1312 return false;
1313 }
1314
acpi_object_is_system_bus(acpi_handle handle)1315 static bool acpi_object_is_system_bus(acpi_handle handle)
1316 {
1317 acpi_handle tmp;
1318
1319 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1320 tmp == handle)
1321 return true;
1322 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1323 tmp == handle)
1324 return true;
1325
1326 return false;
1327 }
1328
acpi_set_pnp_ids(acpi_handle handle,struct acpi_device_pnp * pnp,int device_type)1329 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1330 int device_type)
1331 {
1332 struct acpi_device_info *info = NULL;
1333 struct acpi_pnp_device_id_list *cid_list;
1334 int i;
1335
1336 switch (device_type) {
1337 case ACPI_BUS_TYPE_DEVICE:
1338 if (handle == ACPI_ROOT_OBJECT) {
1339 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1340 break;
1341 }
1342
1343 acpi_get_object_info(handle, &info);
1344 if (!info) {
1345 pr_err("%s: Error reading device info\n", __func__);
1346 return;
1347 }
1348
1349 if (info->valid & ACPI_VALID_HID) {
1350 acpi_add_id(pnp, info->hardware_id.string);
1351 pnp->type.platform_id = 1;
1352 }
1353 if (info->valid & ACPI_VALID_CID) {
1354 cid_list = &info->compatible_id_list;
1355 for (i = 0; i < cid_list->count; i++)
1356 acpi_add_id(pnp, cid_list->ids[i].string);
1357 }
1358 if (info->valid & ACPI_VALID_ADR) {
1359 pnp->bus_address = info->address;
1360 pnp->type.bus_address = 1;
1361 }
1362 if (info->valid & ACPI_VALID_UID)
1363 pnp->unique_id = kstrdup(info->unique_id.string,
1364 GFP_KERNEL);
1365 if (info->valid & ACPI_VALID_CLS)
1366 acpi_add_id(pnp, info->class_code.string);
1367
1368 kfree(info);
1369
1370 /*
1371 * Some devices don't reliably have _HIDs & _CIDs, so add
1372 * synthetic HIDs to make sure drivers can find them.
1373 */
1374 if (acpi_is_video_device(handle)) {
1375 acpi_add_id(pnp, ACPI_VIDEO_HID);
1376 pnp->type.backlight = 1;
1377 break;
1378 }
1379 if (acpi_bay_match(handle))
1380 acpi_add_id(pnp, ACPI_BAY_HID);
1381 else if (acpi_dock_match(handle))
1382 acpi_add_id(pnp, ACPI_DOCK_HID);
1383 else if (acpi_ibm_smbus_match(handle))
1384 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1385 else if (list_empty(&pnp->ids) &&
1386 acpi_object_is_system_bus(handle)) {
1387 /* \_SB, \_TZ, LNXSYBUS */
1388 acpi_add_id(pnp, ACPI_BUS_HID);
1389 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1390 strcpy(pnp->device_class, ACPI_BUS_CLASS);
1391 }
1392
1393 break;
1394 case ACPI_BUS_TYPE_POWER:
1395 acpi_add_id(pnp, ACPI_POWER_HID);
1396 break;
1397 case ACPI_BUS_TYPE_PROCESSOR:
1398 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1399 break;
1400 case ACPI_BUS_TYPE_THERMAL:
1401 acpi_add_id(pnp, ACPI_THERMAL_HID);
1402 break;
1403 case ACPI_BUS_TYPE_POWER_BUTTON:
1404 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1405 break;
1406 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1407 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1408 break;
1409 case ACPI_BUS_TYPE_ECDT_EC:
1410 acpi_add_id(pnp, ACPI_ECDT_HID);
1411 break;
1412 }
1413 }
1414
acpi_free_pnp_ids(struct acpi_device_pnp * pnp)1415 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1416 {
1417 struct acpi_hardware_id *id, *tmp;
1418
1419 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1420 kfree_const(id->id);
1421 kfree(id);
1422 }
1423 kfree(pnp->unique_id);
1424 }
1425
1426 /**
1427 * acpi_dma_supported - Check DMA support for the specified device.
1428 * @adev: The pointer to acpi device
1429 *
1430 * Return false if DMA is not supported. Otherwise, return true
1431 */
acpi_dma_supported(const struct acpi_device * adev)1432 bool acpi_dma_supported(const struct acpi_device *adev)
1433 {
1434 if (!adev)
1435 return false;
1436
1437 if (adev->flags.cca_seen)
1438 return true;
1439
1440 /*
1441 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1442 * DMA on "Intel platforms". Presumably that includes all x86 and
1443 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1444 */
1445 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1446 return true;
1447
1448 return false;
1449 }
1450
1451 /**
1452 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1453 * @adev: The pointer to acpi device
1454 *
1455 * Return enum dev_dma_attr.
1456 */
acpi_get_dma_attr(struct acpi_device * adev)1457 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1458 {
1459 if (!acpi_dma_supported(adev))
1460 return DEV_DMA_NOT_SUPPORTED;
1461
1462 if (adev->flags.coherent_dma)
1463 return DEV_DMA_COHERENT;
1464 else
1465 return DEV_DMA_NON_COHERENT;
1466 }
1467
1468 /**
1469 * acpi_dma_get_range() - Get device DMA parameters.
1470 *
1471 * @dev: device to configure
1472 * @map: pointer to DMA ranges result
1473 *
1474 * Evaluate DMA regions and return pointer to DMA regions on
1475 * parsing success; it does not update the passed in values on failure.
1476 *
1477 * Return 0 on success, < 0 on failure.
1478 */
acpi_dma_get_range(struct device * dev,const struct bus_dma_region ** map)1479 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1480 {
1481 struct acpi_device *adev;
1482 LIST_HEAD(list);
1483 struct resource_entry *rentry;
1484 int ret;
1485 struct device *dma_dev = dev;
1486 struct bus_dma_region *r;
1487
1488 /*
1489 * Walk the device tree chasing an ACPI companion with a _DMA
1490 * object while we go. Stop if we find a device with an ACPI
1491 * companion containing a _DMA method.
1492 */
1493 do {
1494 adev = ACPI_COMPANION(dma_dev);
1495 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1496 break;
1497
1498 dma_dev = dma_dev->parent;
1499 } while (dma_dev);
1500
1501 if (!dma_dev)
1502 return -ENODEV;
1503
1504 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1505 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1506 return -EINVAL;
1507 }
1508
1509 ret = acpi_dev_get_dma_resources(adev, &list);
1510 if (ret > 0) {
1511 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1512 if (!r) {
1513 ret = -ENOMEM;
1514 goto out;
1515 }
1516
1517 *map = r;
1518
1519 list_for_each_entry(rentry, &list, node) {
1520 if (rentry->res->start >= rentry->res->end) {
1521 kfree(*map);
1522 *map = NULL;
1523 ret = -EINVAL;
1524 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1525 goto out;
1526 }
1527
1528 r->cpu_start = rentry->res->start;
1529 r->dma_start = rentry->res->start - rentry->offset;
1530 r->size = resource_size(rentry->res);
1531 r->offset = rentry->offset;
1532 r++;
1533 }
1534 }
1535 out:
1536 acpi_dev_free_resource_list(&list);
1537
1538 return ret >= 0 ? 0 : ret;
1539 }
1540
1541 #ifdef CONFIG_IOMMU_API
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode,const struct iommu_ops * ops)1542 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1543 struct fwnode_handle *fwnode,
1544 const struct iommu_ops *ops)
1545 {
1546 int ret = iommu_fwspec_init(dev, fwnode, ops);
1547
1548 if (!ret)
1549 ret = iommu_fwspec_add_ids(dev, &id, 1);
1550
1551 return ret;
1552 }
1553
acpi_iommu_fwspec_ops(struct device * dev)1554 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1555 {
1556 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1557
1558 return fwspec ? fwspec->ops : NULL;
1559 }
1560
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1561 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1562 const u32 *id_in)
1563 {
1564 int err;
1565 const struct iommu_ops *ops;
1566
1567 /* Serialise to make dev->iommu stable under our potential fwspec */
1568 mutex_lock(&iommu_probe_device_lock);
1569 /*
1570 * If we already translated the fwspec there is nothing left to do,
1571 * return the iommu_ops.
1572 */
1573 ops = acpi_iommu_fwspec_ops(dev);
1574 if (ops) {
1575 mutex_unlock(&iommu_probe_device_lock);
1576 return ops;
1577 }
1578
1579 err = iort_iommu_configure_id(dev, id_in);
1580 if (err && err != -EPROBE_DEFER)
1581 err = viot_iommu_configure(dev);
1582 mutex_unlock(&iommu_probe_device_lock);
1583
1584 /*
1585 * If we have reason to believe the IOMMU driver missed the initial
1586 * iommu_probe_device() call for dev, replay it to get things in order.
1587 */
1588 if (!err && dev->bus)
1589 err = iommu_probe_device(dev);
1590
1591 /* Ignore all other errors apart from EPROBE_DEFER */
1592 if (err == -EPROBE_DEFER) {
1593 return ERR_PTR(err);
1594 } else if (err) {
1595 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1596 return NULL;
1597 }
1598 return acpi_iommu_fwspec_ops(dev);
1599 }
1600
1601 #else /* !CONFIG_IOMMU_API */
1602
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode,const struct iommu_ops * ops)1603 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1604 struct fwnode_handle *fwnode,
1605 const struct iommu_ops *ops)
1606 {
1607 return -ENODEV;
1608 }
1609
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1610 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1611 const u32 *id_in)
1612 {
1613 return NULL;
1614 }
1615
1616 #endif /* !CONFIG_IOMMU_API */
1617
1618 /**
1619 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1620 * @dev: The pointer to the device
1621 * @attr: device dma attributes
1622 * @input_id: input device id const value pointer
1623 */
acpi_dma_configure_id(struct device * dev,enum dev_dma_attr attr,const u32 * input_id)1624 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1625 const u32 *input_id)
1626 {
1627 const struct iommu_ops *iommu;
1628
1629 if (attr == DEV_DMA_NOT_SUPPORTED) {
1630 set_dma_ops(dev, &dma_dummy_ops);
1631 return 0;
1632 }
1633
1634 acpi_arch_dma_setup(dev);
1635
1636 iommu = acpi_iommu_configure_id(dev, input_id);
1637 if (PTR_ERR(iommu) == -EPROBE_DEFER)
1638 return -EPROBE_DEFER;
1639
1640 arch_setup_dma_ops(dev, 0, U64_MAX,
1641 iommu, attr == DEV_DMA_COHERENT);
1642
1643 return 0;
1644 }
1645 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1646
acpi_init_coherency(struct acpi_device * adev)1647 static void acpi_init_coherency(struct acpi_device *adev)
1648 {
1649 unsigned long long cca = 0;
1650 acpi_status status;
1651 struct acpi_device *parent = acpi_dev_parent(adev);
1652
1653 if (parent && parent->flags.cca_seen) {
1654 /*
1655 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1656 * already saw one.
1657 */
1658 adev->flags.cca_seen = 1;
1659 cca = parent->flags.coherent_dma;
1660 } else {
1661 status = acpi_evaluate_integer(adev->handle, "_CCA",
1662 NULL, &cca);
1663 if (ACPI_SUCCESS(status))
1664 adev->flags.cca_seen = 1;
1665 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1666 /*
1667 * If architecture does not specify that _CCA is
1668 * required for DMA-able devices (e.g. x86),
1669 * we default to _CCA=1.
1670 */
1671 cca = 1;
1672 else
1673 acpi_handle_debug(adev->handle,
1674 "ACPI device is missing _CCA.\n");
1675 }
1676
1677 adev->flags.coherent_dma = cca;
1678 }
1679
acpi_check_serial_bus_slave(struct acpi_resource * ares,void * data)1680 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1681 {
1682 bool *is_serial_bus_slave_p = data;
1683
1684 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1685 return 1;
1686
1687 *is_serial_bus_slave_p = true;
1688
1689 /* no need to do more checking */
1690 return -1;
1691 }
1692
acpi_is_indirect_io_slave(struct acpi_device * device)1693 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1694 {
1695 struct acpi_device *parent = acpi_dev_parent(device);
1696 static const struct acpi_device_id indirect_io_hosts[] = {
1697 {"HISI0191", 0},
1698 {}
1699 };
1700
1701 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1702 }
1703
acpi_device_enumeration_by_parent(struct acpi_device * device)1704 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1705 {
1706 struct list_head resource_list;
1707 bool is_serial_bus_slave = false;
1708 static const struct acpi_device_id ignore_serial_bus_ids[] = {
1709 /*
1710 * These devices have multiple SerialBus resources and a client
1711 * device must be instantiated for each of them, each with
1712 * its own device id.
1713 * Normally we only instantiate one client device for the first
1714 * resource, using the ACPI HID as id. These special cases are handled
1715 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1716 * knows which client device id to use for each resource.
1717 */
1718 {"BSG1160", },
1719 {"BSG2150", },
1720 {"CSC3551", },
1721 {"CSC3556", },
1722 {"INT33FE", },
1723 {"INT3515", },
1724 /* Non-conforming _HID for Cirrus Logic already released */
1725 {"CLSA0100", },
1726 {"CLSA0101", },
1727 /*
1728 * Some ACPI devs contain SerialBus resources even though they are not
1729 * attached to a serial bus at all.
1730 */
1731 {"MSHW0028", },
1732 /*
1733 * HIDs of device with an UartSerialBusV2 resource for which userspace
1734 * expects a regular tty cdev to be created (instead of the in kernel
1735 * serdev) and which have a kernel driver which expects a platform_dev
1736 * such as the rfkill-gpio driver.
1737 */
1738 {"BCM4752", },
1739 {"LNV4752", },
1740 {}
1741 };
1742
1743 if (acpi_is_indirect_io_slave(device))
1744 return true;
1745
1746 /* Macs use device properties in lieu of _CRS resources */
1747 if (x86_apple_machine &&
1748 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1749 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1750 fwnode_property_present(&device->fwnode, "baud")))
1751 return true;
1752
1753 if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1754 return false;
1755
1756 INIT_LIST_HEAD(&resource_list);
1757 acpi_dev_get_resources(device, &resource_list,
1758 acpi_check_serial_bus_slave,
1759 &is_serial_bus_slave);
1760 acpi_dev_free_resource_list(&resource_list);
1761
1762 return is_serial_bus_slave;
1763 }
1764
acpi_init_device_object(struct acpi_device * device,acpi_handle handle,int type,void (* release)(struct device *))1765 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1766 int type, void (*release)(struct device *))
1767 {
1768 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1769
1770 INIT_LIST_HEAD(&device->pnp.ids);
1771 device->device_type = type;
1772 device->handle = handle;
1773 device->dev.parent = parent ? &parent->dev : NULL;
1774 device->dev.release = release;
1775 device->dev.bus = &acpi_bus_type;
1776 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1777 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1778 acpi_device_get_busid(device);
1779 acpi_set_pnp_ids(handle, &device->pnp, type);
1780 acpi_init_properties(device);
1781 acpi_bus_get_flags(device);
1782 device->flags.match_driver = false;
1783 device->flags.initialized = true;
1784 device->flags.enumeration_by_parent =
1785 acpi_device_enumeration_by_parent(device);
1786 acpi_device_clear_enumerated(device);
1787 device_initialize(&device->dev);
1788 dev_set_uevent_suppress(&device->dev, true);
1789 acpi_init_coherency(device);
1790 }
1791
acpi_scan_dep_init(struct acpi_device * adev)1792 static void acpi_scan_dep_init(struct acpi_device *adev)
1793 {
1794 struct acpi_dep_data *dep;
1795
1796 list_for_each_entry(dep, &acpi_dep_list, node) {
1797 if (dep->consumer == adev->handle) {
1798 if (dep->honor_dep)
1799 adev->flags.honor_deps = 1;
1800
1801 if (!dep->met)
1802 adev->dep_unmet++;
1803 }
1804 }
1805 }
1806
acpi_device_add_finalize(struct acpi_device * device)1807 void acpi_device_add_finalize(struct acpi_device *device)
1808 {
1809 dev_set_uevent_suppress(&device->dev, false);
1810 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1811 }
1812
acpi_scan_init_status(struct acpi_device * adev)1813 static void acpi_scan_init_status(struct acpi_device *adev)
1814 {
1815 if (acpi_bus_get_status(adev))
1816 acpi_set_device_status(adev, 0);
1817 }
1818
acpi_add_single_object(struct acpi_device ** child,acpi_handle handle,int type,bool dep_init)1819 static int acpi_add_single_object(struct acpi_device **child,
1820 acpi_handle handle, int type, bool dep_init)
1821 {
1822 struct acpi_device *device;
1823 bool release_dep_lock = false;
1824 int result;
1825
1826 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1827 if (!device)
1828 return -ENOMEM;
1829
1830 acpi_init_device_object(device, handle, type, acpi_device_release);
1831 /*
1832 * Getting the status is delayed till here so that we can call
1833 * acpi_bus_get_status() and use its quirk handling. Note that
1834 * this must be done before the get power-/wakeup_dev-flags calls.
1835 */
1836 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1837 if (dep_init) {
1838 mutex_lock(&acpi_dep_list_lock);
1839 /*
1840 * Hold the lock until the acpi_tie_acpi_dev() call
1841 * below to prevent concurrent acpi_scan_clear_dep()
1842 * from deleting a dependency list entry without
1843 * updating dep_unmet for the device.
1844 */
1845 release_dep_lock = true;
1846 acpi_scan_dep_init(device);
1847 }
1848 acpi_scan_init_status(device);
1849 }
1850
1851 acpi_bus_get_power_flags(device);
1852 acpi_bus_get_wakeup_device_flags(device);
1853
1854 result = acpi_tie_acpi_dev(device);
1855
1856 if (release_dep_lock)
1857 mutex_unlock(&acpi_dep_list_lock);
1858
1859 if (!result)
1860 result = acpi_device_add(device);
1861
1862 if (result) {
1863 acpi_device_release(&device->dev);
1864 return result;
1865 }
1866
1867 acpi_power_add_remove_device(device, true);
1868 acpi_device_add_finalize(device);
1869
1870 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1871 dev_name(&device->dev), device->dev.parent ?
1872 dev_name(device->dev.parent) : "(null)");
1873
1874 *child = device;
1875 return 0;
1876 }
1877
acpi_get_resource_memory(struct acpi_resource * ares,void * context)1878 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1879 void *context)
1880 {
1881 struct resource *res = context;
1882
1883 if (acpi_dev_resource_memory(ares, res))
1884 return AE_CTRL_TERMINATE;
1885
1886 return AE_OK;
1887 }
1888
acpi_device_should_be_hidden(acpi_handle handle)1889 static bool acpi_device_should_be_hidden(acpi_handle handle)
1890 {
1891 acpi_status status;
1892 struct resource res;
1893
1894 /* Check if it should ignore the UART device */
1895 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1896 return false;
1897
1898 /*
1899 * The UART device described in SPCR table is assumed to have only one
1900 * memory resource present. So we only look for the first one here.
1901 */
1902 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1903 acpi_get_resource_memory, &res);
1904 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1905 return false;
1906
1907 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1908 &res.start);
1909
1910 return true;
1911 }
1912
acpi_device_is_present(const struct acpi_device * adev)1913 bool acpi_device_is_present(const struct acpi_device *adev)
1914 {
1915 return adev->status.present || adev->status.functional;
1916 }
1917
acpi_scan_handler_matching(struct acpi_scan_handler * handler,const char * idstr,const struct acpi_device_id ** matchid)1918 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1919 const char *idstr,
1920 const struct acpi_device_id **matchid)
1921 {
1922 const struct acpi_device_id *devid;
1923
1924 if (handler->match)
1925 return handler->match(idstr, matchid);
1926
1927 for (devid = handler->ids; devid->id[0]; devid++)
1928 if (!strcmp((char *)devid->id, idstr)) {
1929 if (matchid)
1930 *matchid = devid;
1931
1932 return true;
1933 }
1934
1935 return false;
1936 }
1937
acpi_scan_match_handler(const char * idstr,const struct acpi_device_id ** matchid)1938 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1939 const struct acpi_device_id **matchid)
1940 {
1941 struct acpi_scan_handler *handler;
1942
1943 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1944 if (acpi_scan_handler_matching(handler, idstr, matchid))
1945 return handler;
1946
1947 return NULL;
1948 }
1949
acpi_scan_hotplug_enabled(struct acpi_hotplug_profile * hotplug,bool val)1950 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1951 {
1952 if (!!hotplug->enabled == !!val)
1953 return;
1954
1955 mutex_lock(&acpi_scan_lock);
1956
1957 hotplug->enabled = val;
1958
1959 mutex_unlock(&acpi_scan_lock);
1960 }
1961
acpi_scan_init_hotplug(struct acpi_device * adev)1962 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1963 {
1964 struct acpi_hardware_id *hwid;
1965
1966 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1967 acpi_dock_add(adev);
1968 return;
1969 }
1970 list_for_each_entry(hwid, &adev->pnp.ids, list) {
1971 struct acpi_scan_handler *handler;
1972
1973 handler = acpi_scan_match_handler(hwid->id, NULL);
1974 if (handler) {
1975 adev->flags.hotplug_notify = true;
1976 break;
1977 }
1978 }
1979 }
1980
acpi_scan_check_dep(acpi_handle handle,bool check_dep)1981 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1982 {
1983 struct acpi_handle_list dep_devices;
1984 acpi_status status;
1985 u32 count;
1986 int i;
1987
1988 /*
1989 * Check for _HID here to avoid deferring the enumeration of:
1990 * 1. PCI devices.
1991 * 2. ACPI nodes describing USB ports.
1992 * Still, checking for _HID catches more then just these cases ...
1993 */
1994 if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1995 !acpi_has_method(handle, "_HID"))
1996 return 0;
1997
1998 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1999 if (ACPI_FAILURE(status)) {
2000 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2001 return 0;
2002 }
2003
2004 for (count = 0, i = 0; i < dep_devices.count; i++) {
2005 struct acpi_device_info *info;
2006 struct acpi_dep_data *dep;
2007 bool skip, honor_dep;
2008
2009 status = acpi_get_object_info(dep_devices.handles[i], &info);
2010 if (ACPI_FAILURE(status)) {
2011 acpi_handle_debug(handle, "Error reading _DEP device info\n");
2012 continue;
2013 }
2014
2015 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2016 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2017 kfree(info);
2018
2019 if (skip)
2020 continue;
2021
2022 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2023 if (!dep)
2024 continue;
2025
2026 count++;
2027
2028 dep->supplier = dep_devices.handles[i];
2029 dep->consumer = handle;
2030 dep->honor_dep = honor_dep;
2031
2032 mutex_lock(&acpi_dep_list_lock);
2033 list_add_tail(&dep->node , &acpi_dep_list);
2034 mutex_unlock(&acpi_dep_list_lock);
2035 }
2036
2037 return count;
2038 }
2039
acpi_bus_check_add(acpi_handle handle,bool check_dep,struct acpi_device ** adev_p)2040 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2041 struct acpi_device **adev_p)
2042 {
2043 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2044 acpi_object_type acpi_type;
2045 int type;
2046
2047 if (device)
2048 goto out;
2049
2050 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2051 return AE_OK;
2052
2053 switch (acpi_type) {
2054 case ACPI_TYPE_DEVICE:
2055 if (acpi_device_should_be_hidden(handle))
2056 return AE_OK;
2057
2058 /* Bail out if there are dependencies. */
2059 if (acpi_scan_check_dep(handle, check_dep) > 0)
2060 return AE_CTRL_DEPTH;
2061
2062 fallthrough;
2063 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2064 type = ACPI_BUS_TYPE_DEVICE;
2065 break;
2066
2067 case ACPI_TYPE_PROCESSOR:
2068 type = ACPI_BUS_TYPE_PROCESSOR;
2069 break;
2070
2071 case ACPI_TYPE_THERMAL:
2072 type = ACPI_BUS_TYPE_THERMAL;
2073 break;
2074
2075 case ACPI_TYPE_POWER:
2076 acpi_add_power_resource(handle);
2077 fallthrough;
2078 default:
2079 return AE_OK;
2080 }
2081
2082 /*
2083 * If check_dep is true at this point, the device has no dependencies,
2084 * or the creation of the device object would have been postponed above.
2085 */
2086 acpi_add_single_object(&device, handle, type, !check_dep);
2087 if (!device)
2088 return AE_CTRL_DEPTH;
2089
2090 acpi_scan_init_hotplug(device);
2091
2092 out:
2093 if (!*adev_p)
2094 *adev_p = device;
2095
2096 return AE_OK;
2097 }
2098
acpi_bus_check_add_1(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2099 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2100 void *not_used, void **ret_p)
2101 {
2102 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2103 }
2104
acpi_bus_check_add_2(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2105 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2106 void *not_used, void **ret_p)
2107 {
2108 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2109 }
2110
acpi_default_enumeration(struct acpi_device * device)2111 static void acpi_default_enumeration(struct acpi_device *device)
2112 {
2113 /*
2114 * Do not enumerate devices with enumeration_by_parent flag set as
2115 * they will be enumerated by their respective parents.
2116 */
2117 if (!device->flags.enumeration_by_parent) {
2118 acpi_create_platform_device(device, NULL);
2119 acpi_device_set_enumerated(device);
2120 } else {
2121 blocking_notifier_call_chain(&acpi_reconfig_chain,
2122 ACPI_RECONFIG_DEVICE_ADD, device);
2123 }
2124 }
2125
2126 static const struct acpi_device_id generic_device_ids[] = {
2127 {ACPI_DT_NAMESPACE_HID, },
2128 {"", },
2129 };
2130
acpi_generic_device_attach(struct acpi_device * adev,const struct acpi_device_id * not_used)2131 static int acpi_generic_device_attach(struct acpi_device *adev,
2132 const struct acpi_device_id *not_used)
2133 {
2134 /*
2135 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2136 * below can be unconditional.
2137 */
2138 if (adev->data.of_compatible)
2139 acpi_default_enumeration(adev);
2140
2141 return 1;
2142 }
2143
2144 static struct acpi_scan_handler generic_device_handler = {
2145 .ids = generic_device_ids,
2146 .attach = acpi_generic_device_attach,
2147 };
2148
acpi_scan_attach_handler(struct acpi_device * device)2149 static int acpi_scan_attach_handler(struct acpi_device *device)
2150 {
2151 struct acpi_hardware_id *hwid;
2152 int ret = 0;
2153
2154 list_for_each_entry(hwid, &device->pnp.ids, list) {
2155 const struct acpi_device_id *devid;
2156 struct acpi_scan_handler *handler;
2157
2158 handler = acpi_scan_match_handler(hwid->id, &devid);
2159 if (handler) {
2160 if (!handler->attach) {
2161 device->pnp.type.platform_id = 0;
2162 continue;
2163 }
2164 device->handler = handler;
2165 ret = handler->attach(device, devid);
2166 if (ret > 0)
2167 break;
2168
2169 device->handler = NULL;
2170 if (ret < 0)
2171 break;
2172 }
2173 }
2174
2175 return ret;
2176 }
2177
acpi_bus_attach(struct acpi_device * device,void * first_pass)2178 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2179 {
2180 bool skip = !first_pass && device->flags.visited;
2181 acpi_handle ejd;
2182 int ret;
2183
2184 if (skip)
2185 goto ok;
2186
2187 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2188 register_dock_dependent_device(device, ejd);
2189
2190 acpi_bus_get_status(device);
2191 /* Skip devices that are not ready for enumeration (e.g. not present) */
2192 if (!acpi_dev_ready_for_enumeration(device)) {
2193 device->flags.initialized = false;
2194 acpi_device_clear_enumerated(device);
2195 device->flags.power_manageable = 0;
2196 return 0;
2197 }
2198 if (device->handler)
2199 goto ok;
2200
2201 acpi_ec_register_opregions(device);
2202
2203 if (!device->flags.initialized) {
2204 device->flags.power_manageable =
2205 device->power.states[ACPI_STATE_D0].flags.valid;
2206 if (acpi_bus_init_power(device))
2207 device->flags.power_manageable = 0;
2208
2209 device->flags.initialized = true;
2210 } else if (device->flags.visited) {
2211 goto ok;
2212 }
2213
2214 ret = acpi_scan_attach_handler(device);
2215 if (ret < 0)
2216 return 0;
2217
2218 device->flags.match_driver = true;
2219 if (ret > 0 && !device->flags.enumeration_by_parent) {
2220 acpi_device_set_enumerated(device);
2221 goto ok;
2222 }
2223
2224 ret = device_attach(&device->dev);
2225 if (ret < 0)
2226 return 0;
2227
2228 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2229 acpi_default_enumeration(device);
2230 else
2231 acpi_device_set_enumerated(device);
2232
2233 ok:
2234 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2235
2236 if (!skip && device->handler && device->handler->hotplug.notify_online)
2237 device->handler->hotplug.notify_online(device);
2238
2239 return 0;
2240 }
2241
acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data * dep,void * data)2242 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2243 {
2244 struct acpi_device **adev_p = data;
2245 struct acpi_device *adev = *adev_p;
2246
2247 /*
2248 * If we're passed a 'previous' consumer device then we need to skip
2249 * any consumers until we meet the previous one, and then NULL @data
2250 * so the next one can be returned.
2251 */
2252 if (adev) {
2253 if (dep->consumer == adev->handle)
2254 *adev_p = NULL;
2255
2256 return 0;
2257 }
2258
2259 adev = acpi_get_acpi_dev(dep->consumer);
2260 if (adev) {
2261 *(struct acpi_device **)data = adev;
2262 return 1;
2263 }
2264 /* Continue parsing if the device object is not present. */
2265 return 0;
2266 }
2267
2268 struct acpi_scan_clear_dep_work {
2269 struct work_struct work;
2270 struct acpi_device *adev;
2271 };
2272
acpi_scan_clear_dep_fn(struct work_struct * work)2273 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2274 {
2275 struct acpi_scan_clear_dep_work *cdw;
2276
2277 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2278
2279 acpi_scan_lock_acquire();
2280 acpi_bus_attach(cdw->adev, (void *)true);
2281 acpi_scan_lock_release();
2282
2283 acpi_dev_put(cdw->adev);
2284 kfree(cdw);
2285 }
2286
acpi_scan_clear_dep_queue(struct acpi_device * adev)2287 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2288 {
2289 struct acpi_scan_clear_dep_work *cdw;
2290
2291 if (adev->dep_unmet)
2292 return false;
2293
2294 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2295 if (!cdw)
2296 return false;
2297
2298 cdw->adev = adev;
2299 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2300 /*
2301 * Since the work function may block on the lock until the entire
2302 * initial enumeration of devices is complete, put it into the unbound
2303 * workqueue.
2304 */
2305 queue_work(system_unbound_wq, &cdw->work);
2306
2307 return true;
2308 }
2309
acpi_scan_delete_dep_data(struct acpi_dep_data * dep)2310 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2311 {
2312 list_del(&dep->node);
2313 kfree(dep);
2314 }
2315
acpi_scan_clear_dep(struct acpi_dep_data * dep,void * data)2316 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2317 {
2318 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2319
2320 if (adev) {
2321 adev->dep_unmet--;
2322 if (!acpi_scan_clear_dep_queue(adev))
2323 acpi_dev_put(adev);
2324 }
2325
2326 if (dep->free_when_met)
2327 acpi_scan_delete_dep_data(dep);
2328 else
2329 dep->met = true;
2330
2331 return 0;
2332 }
2333
2334 /**
2335 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2336 * @handle: The ACPI handle of the supplier device
2337 * @callback: Pointer to the callback function to apply
2338 * @data: Pointer to some data to pass to the callback
2339 *
2340 * The return value of the callback determines this function's behaviour. If 0
2341 * is returned we continue to iterate over acpi_dep_list. If a positive value
2342 * is returned then the loop is broken but this function returns 0. If a
2343 * negative value is returned by the callback then the loop is broken and that
2344 * value is returned as the final error.
2345 */
acpi_walk_dep_device_list(acpi_handle handle,int (* callback)(struct acpi_dep_data *,void *),void * data)2346 static int acpi_walk_dep_device_list(acpi_handle handle,
2347 int (*callback)(struct acpi_dep_data *, void *),
2348 void *data)
2349 {
2350 struct acpi_dep_data *dep, *tmp;
2351 int ret = 0;
2352
2353 mutex_lock(&acpi_dep_list_lock);
2354 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2355 if (dep->supplier == handle) {
2356 ret = callback(dep, data);
2357 if (ret)
2358 break;
2359 }
2360 }
2361 mutex_unlock(&acpi_dep_list_lock);
2362
2363 return ret > 0 ? 0 : ret;
2364 }
2365
2366 /**
2367 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2368 * @supplier: Pointer to the supplier &struct acpi_device
2369 *
2370 * Clear dependencies on the given device.
2371 */
acpi_dev_clear_dependencies(struct acpi_device * supplier)2372 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2373 {
2374 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2375 }
2376 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2377
2378 /**
2379 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2380 * @device: Pointer to the &struct acpi_device to check
2381 *
2382 * Check if the device is present and has no unmet dependencies.
2383 *
2384 * Return true if the device is ready for enumeratino. Otherwise, return false.
2385 */
acpi_dev_ready_for_enumeration(const struct acpi_device * device)2386 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2387 {
2388 if (device->flags.honor_deps && device->dep_unmet)
2389 return false;
2390
2391 return acpi_device_is_present(device);
2392 }
2393 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2394
2395 /**
2396 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2397 * @supplier: Pointer to the dependee device
2398 * @start: Pointer to the current dependent device
2399 *
2400 * Returns the next &struct acpi_device which declares itself dependent on
2401 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2402 *
2403 * If the returned adev is not passed as @start to this function, the caller is
2404 * responsible for putting the reference to adev when it is no longer needed.
2405 */
acpi_dev_get_next_consumer_dev(struct acpi_device * supplier,struct acpi_device * start)2406 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2407 struct acpi_device *start)
2408 {
2409 struct acpi_device *adev = start;
2410
2411 acpi_walk_dep_device_list(supplier->handle,
2412 acpi_dev_get_next_consumer_dev_cb, &adev);
2413
2414 acpi_dev_put(start);
2415
2416 if (adev == start)
2417 return NULL;
2418
2419 return adev;
2420 }
2421 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2422
acpi_scan_postponed_branch(acpi_handle handle)2423 static void acpi_scan_postponed_branch(acpi_handle handle)
2424 {
2425 struct acpi_device *adev = NULL;
2426
2427 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2428 return;
2429
2430 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2431 acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2432 acpi_bus_attach(adev, NULL);
2433 }
2434
acpi_scan_postponed(void)2435 static void acpi_scan_postponed(void)
2436 {
2437 struct acpi_dep_data *dep, *tmp;
2438
2439 mutex_lock(&acpi_dep_list_lock);
2440
2441 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2442 acpi_handle handle = dep->consumer;
2443
2444 /*
2445 * In case there are multiple acpi_dep_list entries with the
2446 * same consumer, skip the current entry if the consumer device
2447 * object corresponding to it is present already.
2448 */
2449 if (!acpi_fetch_acpi_dev(handle)) {
2450 /*
2451 * Even though the lock is released here, tmp is
2452 * guaranteed to be valid, because none of the list
2453 * entries following dep is marked as "free when met"
2454 * and so they cannot be deleted.
2455 */
2456 mutex_unlock(&acpi_dep_list_lock);
2457
2458 acpi_scan_postponed_branch(handle);
2459
2460 mutex_lock(&acpi_dep_list_lock);
2461 }
2462
2463 if (dep->met)
2464 acpi_scan_delete_dep_data(dep);
2465 else
2466 dep->free_when_met = true;
2467 }
2468
2469 mutex_unlock(&acpi_dep_list_lock);
2470 }
2471
2472 /**
2473 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2474 * @handle: Root of the namespace scope to scan.
2475 *
2476 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2477 * found devices.
2478 *
2479 * If no devices were found, -ENODEV is returned, but it does not mean that
2480 * there has been a real error. There just have been no suitable ACPI objects
2481 * in the table trunk from which the kernel could create a device and add an
2482 * appropriate driver.
2483 *
2484 * Must be called under acpi_scan_lock.
2485 */
acpi_bus_scan(acpi_handle handle)2486 int acpi_bus_scan(acpi_handle handle)
2487 {
2488 struct acpi_device *device = NULL;
2489
2490 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2491
2492 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2493 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2494 acpi_bus_check_add_1, NULL, NULL,
2495 (void **)&device);
2496
2497 if (!device)
2498 return -ENODEV;
2499
2500 acpi_bus_attach(device, (void *)true);
2501
2502 /* Pass 2: Enumerate all of the remaining devices. */
2503
2504 acpi_scan_postponed();
2505
2506 return 0;
2507 }
2508 EXPORT_SYMBOL(acpi_bus_scan);
2509
acpi_bus_trim_one(struct acpi_device * adev,void * not_used)2510 static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
2511 {
2512 struct acpi_scan_handler *handler = adev->handler;
2513
2514 acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
2515
2516 adev->flags.match_driver = false;
2517 if (handler) {
2518 if (handler->detach)
2519 handler->detach(adev);
2520
2521 adev->handler = NULL;
2522 } else {
2523 device_release_driver(&adev->dev);
2524 }
2525 /*
2526 * Most likely, the device is going away, so put it into D3cold before
2527 * that.
2528 */
2529 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2530 adev->flags.initialized = false;
2531 acpi_device_clear_enumerated(adev);
2532
2533 return 0;
2534 }
2535
2536 /**
2537 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2538 * @adev: Root of the ACPI namespace scope to walk.
2539 *
2540 * Must be called under acpi_scan_lock.
2541 */
acpi_bus_trim(struct acpi_device * adev)2542 void acpi_bus_trim(struct acpi_device *adev)
2543 {
2544 acpi_bus_trim_one(adev, NULL);
2545 }
2546 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2547
acpi_bus_register_early_device(int type)2548 int acpi_bus_register_early_device(int type)
2549 {
2550 struct acpi_device *device = NULL;
2551 int result;
2552
2553 result = acpi_add_single_object(&device, NULL, type, false);
2554 if (result)
2555 return result;
2556
2557 device->flags.match_driver = true;
2558 return device_attach(&device->dev);
2559 }
2560 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2561
acpi_bus_scan_fixed(void)2562 static void acpi_bus_scan_fixed(void)
2563 {
2564 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2565 struct acpi_device *adev = NULL;
2566
2567 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2568 false);
2569 if (adev) {
2570 adev->flags.match_driver = true;
2571 if (device_attach(&adev->dev) >= 0)
2572 device_init_wakeup(&adev->dev, true);
2573 else
2574 dev_dbg(&adev->dev, "No driver\n");
2575 }
2576 }
2577
2578 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2579 struct acpi_device *adev = NULL;
2580
2581 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2582 false);
2583 if (adev) {
2584 adev->flags.match_driver = true;
2585 if (device_attach(&adev->dev) < 0)
2586 dev_dbg(&adev->dev, "No driver\n");
2587 }
2588 }
2589 }
2590
acpi_get_spcr_uart_addr(void)2591 static void __init acpi_get_spcr_uart_addr(void)
2592 {
2593 acpi_status status;
2594 struct acpi_table_spcr *spcr_ptr;
2595
2596 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2597 (struct acpi_table_header **)&spcr_ptr);
2598 if (ACPI_FAILURE(status)) {
2599 pr_warn("STAO table present, but SPCR is missing\n");
2600 return;
2601 }
2602
2603 spcr_uart_addr = spcr_ptr->serial_port.address;
2604 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2605 }
2606
2607 static bool acpi_scan_initialized;
2608
acpi_scan_init(void)2609 void __init acpi_scan_init(void)
2610 {
2611 acpi_status status;
2612 struct acpi_table_stao *stao_ptr;
2613
2614 acpi_pci_root_init();
2615 acpi_pci_link_init();
2616 acpi_processor_init();
2617 acpi_platform_init();
2618 acpi_lpss_init();
2619 acpi_apd_init();
2620 acpi_cmos_rtc_init();
2621 acpi_container_init();
2622 acpi_memory_hotplug_init();
2623 acpi_watchdog_init();
2624 acpi_pnp_init();
2625 acpi_int340x_thermal_init();
2626 acpi_init_lpit();
2627
2628 acpi_scan_add_handler(&generic_device_handler);
2629
2630 /*
2631 * If there is STAO table, check whether it needs to ignore the UART
2632 * device in SPCR table.
2633 */
2634 status = acpi_get_table(ACPI_SIG_STAO, 0,
2635 (struct acpi_table_header **)&stao_ptr);
2636 if (ACPI_SUCCESS(status)) {
2637 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2638 pr_info("STAO Name List not yet supported.\n");
2639
2640 if (stao_ptr->ignore_uart)
2641 acpi_get_spcr_uart_addr();
2642
2643 acpi_put_table((struct acpi_table_header *)stao_ptr);
2644 }
2645
2646 acpi_gpe_apply_masked_gpes();
2647 acpi_update_all_gpes();
2648
2649 /*
2650 * Although we call __add_memory() that is documented to require the
2651 * device_hotplug_lock, it is not necessary here because this is an
2652 * early code when userspace or any other code path cannot trigger
2653 * hotplug/hotunplug operations.
2654 */
2655 mutex_lock(&acpi_scan_lock);
2656 /*
2657 * Enumerate devices in the ACPI namespace.
2658 */
2659 if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2660 goto unlock;
2661
2662 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2663 if (!acpi_root)
2664 goto unlock;
2665
2666 /* Fixed feature devices do not exist on HW-reduced platform */
2667 if (!acpi_gbl_reduced_hardware)
2668 acpi_bus_scan_fixed();
2669
2670 acpi_turn_off_unused_power_resources();
2671
2672 acpi_scan_initialized = true;
2673
2674 unlock:
2675 mutex_unlock(&acpi_scan_lock);
2676 }
2677
2678 static struct acpi_probe_entry *ape;
2679 static int acpi_probe_count;
2680 static DEFINE_MUTEX(acpi_probe_mutex);
2681
acpi_match_madt(union acpi_subtable_headers * header,const unsigned long end)2682 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2683 const unsigned long end)
2684 {
2685 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2686 if (!ape->probe_subtbl(header, end))
2687 acpi_probe_count++;
2688
2689 return 0;
2690 }
2691
__acpi_probe_device_table(struct acpi_probe_entry * ap_head,int nr)2692 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2693 {
2694 int count = 0;
2695
2696 if (acpi_disabled)
2697 return 0;
2698
2699 mutex_lock(&acpi_probe_mutex);
2700 for (ape = ap_head; nr; ape++, nr--) {
2701 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2702 acpi_probe_count = 0;
2703 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2704 count += acpi_probe_count;
2705 } else {
2706 int res;
2707 res = acpi_table_parse(ape->id, ape->probe_table);
2708 if (!res)
2709 count++;
2710 }
2711 }
2712 mutex_unlock(&acpi_probe_mutex);
2713
2714 return count;
2715 }
2716
acpi_table_events_fn(struct work_struct * work)2717 static void acpi_table_events_fn(struct work_struct *work)
2718 {
2719 acpi_scan_lock_acquire();
2720 acpi_bus_scan(ACPI_ROOT_OBJECT);
2721 acpi_scan_lock_release();
2722
2723 kfree(work);
2724 }
2725
acpi_scan_table_notify(void)2726 void acpi_scan_table_notify(void)
2727 {
2728 struct work_struct *work;
2729
2730 if (!acpi_scan_initialized)
2731 return;
2732
2733 work = kmalloc(sizeof(*work), GFP_KERNEL);
2734 if (!work)
2735 return;
2736
2737 INIT_WORK(work, acpi_table_events_fn);
2738 schedule_work(work);
2739 }
2740
acpi_reconfig_notifier_register(struct notifier_block * nb)2741 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2742 {
2743 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2744 }
2745 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2746
acpi_reconfig_notifier_unregister(struct notifier_block * nb)2747 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2748 {
2749 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2750 }
2751 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2752