1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Intel 7300 class Memory Controllers kernel module (Clarksboro)
4 *
5 * Copyright (c) 2010 by:
6 * Mauro Carvalho Chehab
7 *
8 * Red Hat Inc. https://www.redhat.com
9 *
10 * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
11 * http://www.intel.com/Assets/PDF/datasheet/318082.pdf
12 *
13 * TODO: The chipset allow checking for PCI Express errors also. Currently,
14 * the driver covers only memory error errors
15 *
16 * This driver uses "csrows" EDAC attribute to represent DIMM slot#
17 */
18
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/pci.h>
22 #include <linux/pci_ids.h>
23 #include <linux/slab.h>
24 #include <linux/edac.h>
25 #include <linux/mmzone.h>
26
27 #include "edac_module.h"
28
29 /*
30 * Alter this version for the I7300 module when modifications are made
31 */
32 #define I7300_REVISION " Ver: 1.0.0"
33
34 #define EDAC_MOD_STR "i7300_edac"
35
36 #define i7300_printk(level, fmt, arg...) \
37 edac_printk(level, "i7300", fmt, ##arg)
38
39 #define i7300_mc_printk(mci, level, fmt, arg...) \
40 edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
41
42 /***********************************************
43 * i7300 Limit constants Structs and static vars
44 ***********************************************/
45
46 /*
47 * Memory topology is organized as:
48 * Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
49 * Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
50 * Each channel can have to 8 DIMM sets (called as SLOTS)
51 * Slots should generally be filled in pairs
52 * Except on Single Channel mode of operation
53 * just slot 0/channel0 filled on this mode
54 * On normal operation mode, the two channels on a branch should be
55 * filled together for the same SLOT#
56 * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
57 * channels on both branches should be filled
58 */
59
60 /* Limits for i7300 */
61 #define MAX_SLOTS 8
62 #define MAX_BRANCHES 2
63 #define MAX_CH_PER_BRANCH 2
64 #define MAX_CHANNELS (MAX_CH_PER_BRANCH * MAX_BRANCHES)
65 #define MAX_MIR 3
66
67 #define to_channel(ch, branch) ((((branch)) << 1) | (ch))
68
69 #define to_csrow(slot, ch, branch) \
70 (to_channel(ch, branch) | ((slot) << 2))
71
72 /* Device name and register DID (Device ID) */
73 struct i7300_dev_info {
74 const char *ctl_name; /* name for this device */
75 u16 fsb_mapping_errors; /* DID for the branchmap,control */
76 };
77
78 /* Table of devices attributes supported by this driver */
79 static const struct i7300_dev_info i7300_devs[] = {
80 {
81 .ctl_name = "I7300",
82 .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
83 },
84 };
85
86 struct i7300_dimm_info {
87 int megabytes; /* size, 0 means not present */
88 };
89
90 /* driver private data structure */
91 struct i7300_pvt {
92 struct pci_dev *pci_dev_16_0_fsb_ctlr; /* 16.0 */
93 struct pci_dev *pci_dev_16_1_fsb_addr_map; /* 16.1 */
94 struct pci_dev *pci_dev_16_2_fsb_err_regs; /* 16.2 */
95 struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES]; /* 21.0 and 22.0 */
96
97 u16 tolm; /* top of low memory */
98 u64 ambase; /* AMB BAR */
99
100 u32 mc_settings; /* Report several settings */
101 u32 mc_settings_a;
102
103 u16 mir[MAX_MIR]; /* Memory Interleave Reg*/
104
105 u16 mtr[MAX_SLOTS][MAX_BRANCHES]; /* Memory Technlogy Reg */
106 u16 ambpresent[MAX_CHANNELS]; /* AMB present regs */
107
108 /* DIMM information matrix, allocating architecture maximums */
109 struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
110
111 /* Temporary buffer for use when preparing error messages */
112 char *tmp_prt_buffer;
113 };
114
115 /* FIXME: Why do we need to have this static? */
116 static struct edac_pci_ctl_info *i7300_pci;
117
118 /***************************************************
119 * i7300 Register definitions for memory enumeration
120 ***************************************************/
121
122 /*
123 * Device 16,
124 * Function 0: System Address (not documented)
125 * Function 1: Memory Branch Map, Control, Errors Register
126 */
127
128 /* OFFSETS for Function 0 */
129 #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
130 #define MAXCH 0x56 /* Max Channel Number */
131 #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
132
133 /* OFFSETS for Function 1 */
134 #define MC_SETTINGS 0x40
135 #define IS_MIRRORED(mc) ((mc) & (1 << 16))
136 #define IS_ECC_ENABLED(mc) ((mc) & (1 << 5))
137 #define IS_RETRY_ENABLED(mc) ((mc) & (1 << 31))
138 #define IS_SCRBALGO_ENHANCED(mc) ((mc) & (1 << 8))
139
140 #define MC_SETTINGS_A 0x58
141 #define IS_SINGLE_MODE(mca) ((mca) & (1 << 14))
142
143 #define TOLM 0x6C
144
145 #define MIR0 0x80
146 #define MIR1 0x84
147 #define MIR2 0x88
148
149 /*
150 * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
151 * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
152 * seems that we cannot use this information directly for the same usage.
153 * Each memory slot may have up to 2 AMB interfaces, one for income and another
154 * for outcome interface to the next slot.
155 * For now, the driver just stores the AMB present registers, but rely only at
156 * the MTR info to detect memory.
157 * Datasheet is also not clear about how to map each AMBPRESENT registers to
158 * one of the 4 available channels.
159 */
160 #define AMBPRESENT_0 0x64
161 #define AMBPRESENT_1 0x66
162
163 static const u16 mtr_regs[MAX_SLOTS] = {
164 0x80, 0x84, 0x88, 0x8c,
165 0x82, 0x86, 0x8a, 0x8e
166 };
167
168 /*
169 * Defines to extract the vaious fields from the
170 * MTRx - Memory Technology Registers
171 */
172 #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 8))
173 #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 7))
174 #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
175 #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 5)) ? 8 : 4)
176 #define MTR_DIMM_RANKS(mtr) (((mtr) & (1 << 4)) ? 1 : 0)
177 #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
178 #define MTR_DRAM_BANKS_ADDR_BITS 2
179 #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
180 #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
181 #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
182
183 /************************************************
184 * i7300 Register definitions for error detection
185 ************************************************/
186
187 /*
188 * Device 16.1: FBD Error Registers
189 */
190 #define FERR_FAT_FBD 0x98
191 static const char *ferr_fat_fbd_name[] = {
192 [22] = "Non-Redundant Fast Reset Timeout",
193 [2] = ">Tmid Thermal event with intelligent throttling disabled",
194 [1] = "Memory or FBD configuration CRC read error",
195 [0] = "Memory Write error on non-redundant retry or "
196 "FBD configuration Write error on retry",
197 };
198 #define GET_FBD_FAT_IDX(fbderr) (((fbderr) >> 28) & 3)
199 #define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 22))
200
201 #define FERR_NF_FBD 0xa0
202 static const char *ferr_nf_fbd_name[] = {
203 [24] = "DIMM-Spare Copy Completed",
204 [23] = "DIMM-Spare Copy Initiated",
205 [22] = "Redundant Fast Reset Timeout",
206 [21] = "Memory Write error on redundant retry",
207 [18] = "SPD protocol Error",
208 [17] = "FBD Northbound parity error on FBD Sync Status",
209 [16] = "Correctable Patrol Data ECC",
210 [15] = "Correctable Resilver- or Spare-Copy Data ECC",
211 [14] = "Correctable Mirrored Demand Data ECC",
212 [13] = "Correctable Non-Mirrored Demand Data ECC",
213 [11] = "Memory or FBD configuration CRC read error",
214 [10] = "FBD Configuration Write error on first attempt",
215 [9] = "Memory Write error on first attempt",
216 [8] = "Non-Aliased Uncorrectable Patrol Data ECC",
217 [7] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
218 [6] = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
219 [5] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
220 [4] = "Aliased Uncorrectable Patrol Data ECC",
221 [3] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
222 [2] = "Aliased Uncorrectable Mirrored Demand Data ECC",
223 [1] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
224 [0] = "Uncorrectable Data ECC on Replay",
225 };
226 #define GET_FBD_NF_IDX(fbderr) (((fbderr) >> 28) & 3)
227 #define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
228 (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
229 (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
230 (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
231 (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
232 (1 << 1) | (1 << 0))
233
234 #define EMASK_FBD 0xa8
235 #define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
236 (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
237 (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
238 (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
239 (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
240 (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
241 (1 << 1) | (1 << 0))
242
243 /*
244 * Device 16.2: Global Error Registers
245 */
246
247 #define FERR_GLOBAL_HI 0x48
248 static const char *ferr_global_hi_name[] = {
249 [3] = "FSB 3 Fatal Error",
250 [2] = "FSB 2 Fatal Error",
251 [1] = "FSB 1 Fatal Error",
252 [0] = "FSB 0 Fatal Error",
253 };
254 #define ferr_global_hi_is_fatal(errno) 1
255
256 #define FERR_GLOBAL_LO 0x40
257 static const char *ferr_global_lo_name[] = {
258 [31] = "Internal MCH Fatal Error",
259 [30] = "Intel QuickData Technology Device Fatal Error",
260 [29] = "FSB1 Fatal Error",
261 [28] = "FSB0 Fatal Error",
262 [27] = "FBD Channel 3 Fatal Error",
263 [26] = "FBD Channel 2 Fatal Error",
264 [25] = "FBD Channel 1 Fatal Error",
265 [24] = "FBD Channel 0 Fatal Error",
266 [23] = "PCI Express Device 7Fatal Error",
267 [22] = "PCI Express Device 6 Fatal Error",
268 [21] = "PCI Express Device 5 Fatal Error",
269 [20] = "PCI Express Device 4 Fatal Error",
270 [19] = "PCI Express Device 3 Fatal Error",
271 [18] = "PCI Express Device 2 Fatal Error",
272 [17] = "PCI Express Device 1 Fatal Error",
273 [16] = "ESI Fatal Error",
274 [15] = "Internal MCH Non-Fatal Error",
275 [14] = "Intel QuickData Technology Device Non Fatal Error",
276 [13] = "FSB1 Non-Fatal Error",
277 [12] = "FSB 0 Non-Fatal Error",
278 [11] = "FBD Channel 3 Non-Fatal Error",
279 [10] = "FBD Channel 2 Non-Fatal Error",
280 [9] = "FBD Channel 1 Non-Fatal Error",
281 [8] = "FBD Channel 0 Non-Fatal Error",
282 [7] = "PCI Express Device 7 Non-Fatal Error",
283 [6] = "PCI Express Device 6 Non-Fatal Error",
284 [5] = "PCI Express Device 5 Non-Fatal Error",
285 [4] = "PCI Express Device 4 Non-Fatal Error",
286 [3] = "PCI Express Device 3 Non-Fatal Error",
287 [2] = "PCI Express Device 2 Non-Fatal Error",
288 [1] = "PCI Express Device 1 Non-Fatal Error",
289 [0] = "ESI Non-Fatal Error",
290 };
291 #define ferr_global_lo_is_fatal(errno) ((errno < 16) ? 0 : 1)
292
293 #define NRECMEMA 0xbe
294 #define NRECMEMA_BANK(v) (((v) >> 12) & 7)
295 #define NRECMEMA_RANK(v) (((v) >> 8) & 15)
296
297 #define NRECMEMB 0xc0
298 #define NRECMEMB_IS_WR(v) ((v) & (1 << 31))
299 #define NRECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
300 #define NRECMEMB_RAS(v) ((v) & 0xffff)
301
302 #define REDMEMA 0xdc
303
304 #define REDMEMB 0x7c
305
306 #define RECMEMA 0xe0
307 #define RECMEMA_BANK(v) (((v) >> 12) & 7)
308 #define RECMEMA_RANK(v) (((v) >> 8) & 15)
309
310 #define RECMEMB 0xe4
311 #define RECMEMB_IS_WR(v) ((v) & (1 << 31))
312 #define RECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
313 #define RECMEMB_RAS(v) ((v) & 0xffff)
314
315 /********************************************
316 * i7300 Functions related to error detection
317 ********************************************/
318
319 /**
320 * get_err_from_table() - Gets the error message from a table
321 * @table: table name (array of char *)
322 * @size: number of elements at the table
323 * @pos: position of the element to be returned
324 *
325 * This is a small routine that gets the pos-th element of a table. If the
326 * element doesn't exist (or it is empty), it returns "reserved".
327 * Instead of calling it directly, the better is to call via the macro
328 * GET_ERR_FROM_TABLE(), that automatically checks the table size via
329 * ARRAY_SIZE() macro
330 */
get_err_from_table(const char * table[],int size,int pos)331 static const char *get_err_from_table(const char *table[], int size, int pos)
332 {
333 if (unlikely(pos >= size))
334 return "Reserved";
335
336 if (unlikely(!table[pos]))
337 return "Reserved";
338
339 return table[pos];
340 }
341
342 #define GET_ERR_FROM_TABLE(table, pos) \
343 get_err_from_table(table, ARRAY_SIZE(table), pos)
344
345 /**
346 * i7300_process_error_global() - Retrieve the hardware error information from
347 * the hardware global error registers and
348 * sends it to dmesg
349 * @mci: struct mem_ctl_info pointer
350 */
i7300_process_error_global(struct mem_ctl_info * mci)351 static void i7300_process_error_global(struct mem_ctl_info *mci)
352 {
353 struct i7300_pvt *pvt;
354 u32 errnum, error_reg;
355 unsigned long errors;
356 const char *specific;
357 bool is_fatal;
358
359 pvt = mci->pvt_info;
360
361 /* read in the 1st FATAL error register */
362 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
363 FERR_GLOBAL_HI, &error_reg);
364 if (unlikely(error_reg)) {
365 errors = error_reg;
366 errnum = find_first_bit(&errors,
367 ARRAY_SIZE(ferr_global_hi_name));
368 specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
369 is_fatal = ferr_global_hi_is_fatal(errnum);
370
371 /* Clear the error bit */
372 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
373 FERR_GLOBAL_HI, error_reg);
374
375 goto error_global;
376 }
377
378 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
379 FERR_GLOBAL_LO, &error_reg);
380 if (unlikely(error_reg)) {
381 errors = error_reg;
382 errnum = find_first_bit(&errors,
383 ARRAY_SIZE(ferr_global_lo_name));
384 specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
385 is_fatal = ferr_global_lo_is_fatal(errnum);
386
387 /* Clear the error bit */
388 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
389 FERR_GLOBAL_LO, error_reg);
390
391 goto error_global;
392 }
393 return;
394
395 error_global:
396 i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
397 is_fatal ? "Fatal" : "NOT fatal", specific);
398 }
399
400 /**
401 * i7300_process_fbd_error() - Retrieve the hardware error information from
402 * the FBD error registers and sends it via
403 * EDAC error API calls
404 * @mci: struct mem_ctl_info pointer
405 */
i7300_process_fbd_error(struct mem_ctl_info * mci)406 static void i7300_process_fbd_error(struct mem_ctl_info *mci)
407 {
408 struct i7300_pvt *pvt;
409 u32 errnum, value, error_reg;
410 u16 val16;
411 unsigned branch, channel, bank, rank, cas, ras;
412 u32 syndrome;
413
414 unsigned long errors;
415 const char *specific;
416 bool is_wr;
417
418 pvt = mci->pvt_info;
419
420 /* read in the 1st FATAL error register */
421 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
422 FERR_FAT_FBD, &error_reg);
423 if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) {
424 errors = error_reg & FERR_FAT_FBD_ERR_MASK ;
425 errnum = find_first_bit(&errors,
426 ARRAY_SIZE(ferr_fat_fbd_name));
427 specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum);
428 branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
429
430 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
431 NRECMEMA, &val16);
432 bank = NRECMEMA_BANK(val16);
433 rank = NRECMEMA_RANK(val16);
434
435 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
436 NRECMEMB, &value);
437 is_wr = NRECMEMB_IS_WR(value);
438 cas = NRECMEMB_CAS(value);
439 ras = NRECMEMB_RAS(value);
440
441 /* Clean the error register */
442 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
443 FERR_FAT_FBD, error_reg);
444
445 snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
446 "Bank=%d RAS=%d CAS=%d Err=0x%lx (%s))",
447 bank, ras, cas, errors, specific);
448
449 edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
450 branch, -1, rank,
451 is_wr ? "Write error" : "Read error",
452 pvt->tmp_prt_buffer);
453
454 }
455
456 /* read in the 1st NON-FATAL error register */
457 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
458 FERR_NF_FBD, &error_reg);
459 if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) {
460 errors = error_reg & FERR_NF_FBD_ERR_MASK;
461 errnum = find_first_bit(&errors,
462 ARRAY_SIZE(ferr_nf_fbd_name));
463 specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum);
464 branch = (GET_FBD_NF_IDX(error_reg) == 2) ? 1 : 0;
465
466 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
467 REDMEMA, &syndrome);
468
469 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
470 RECMEMA, &val16);
471 bank = RECMEMA_BANK(val16);
472 rank = RECMEMA_RANK(val16);
473
474 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
475 RECMEMB, &value);
476 is_wr = RECMEMB_IS_WR(value);
477 cas = RECMEMB_CAS(value);
478 ras = RECMEMB_RAS(value);
479
480 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
481 REDMEMB, &value);
482 channel = (branch << 1);
483
484 /* Second channel ? */
485 channel += !!(value & BIT(17));
486
487 /* Clear the error bit */
488 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
489 FERR_NF_FBD, error_reg);
490
491 /* Form out message */
492 snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
493 "DRAM-Bank=%d RAS=%d CAS=%d, Err=0x%lx (%s))",
494 bank, ras, cas, errors, specific);
495
496 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0,
497 syndrome,
498 branch >> 1, channel % 2, rank,
499 is_wr ? "Write error" : "Read error",
500 pvt->tmp_prt_buffer);
501 }
502 return;
503 }
504
505 /**
506 * i7300_check_error() - Calls the error checking subroutines
507 * @mci: struct mem_ctl_info pointer
508 */
i7300_check_error(struct mem_ctl_info * mci)509 static void i7300_check_error(struct mem_ctl_info *mci)
510 {
511 i7300_process_error_global(mci);
512 i7300_process_fbd_error(mci);
513 };
514
515 /**
516 * i7300_clear_error() - Clears the error registers
517 * @mci: struct mem_ctl_info pointer
518 */
i7300_clear_error(struct mem_ctl_info * mci)519 static void i7300_clear_error(struct mem_ctl_info *mci)
520 {
521 struct i7300_pvt *pvt = mci->pvt_info;
522 u32 value;
523 /*
524 * All error values are RWC - we need to read and write 1 to the
525 * bit that we want to cleanup
526 */
527
528 /* Clear global error registers */
529 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
530 FERR_GLOBAL_HI, &value);
531 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
532 FERR_GLOBAL_HI, value);
533
534 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
535 FERR_GLOBAL_LO, &value);
536 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
537 FERR_GLOBAL_LO, value);
538
539 /* Clear FBD error registers */
540 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
541 FERR_FAT_FBD, &value);
542 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
543 FERR_FAT_FBD, value);
544
545 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
546 FERR_NF_FBD, &value);
547 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
548 FERR_NF_FBD, value);
549 }
550
551 /**
552 * i7300_enable_error_reporting() - Enable the memory reporting logic at the
553 * hardware
554 * @mci: struct mem_ctl_info pointer
555 */
i7300_enable_error_reporting(struct mem_ctl_info * mci)556 static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
557 {
558 struct i7300_pvt *pvt = mci->pvt_info;
559 u32 fbd_error_mask;
560
561 /* Read the FBD Error Mask Register */
562 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
563 EMASK_FBD, &fbd_error_mask);
564
565 /* Enable with a '0' */
566 fbd_error_mask &= ~(EMASK_FBD_ERR_MASK);
567
568 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
569 EMASK_FBD, fbd_error_mask);
570 }
571
572 /************************************************
573 * i7300 Functions related to memory enumberation
574 ************************************************/
575
576 /**
577 * decode_mtr() - Decodes the MTR descriptor, filling the edac structs
578 * @pvt: pointer to the private data struct used by i7300 driver
579 * @slot: DIMM slot (0 to 7)
580 * @ch: Channel number within the branch (0 or 1)
581 * @branch: Branch number (0 or 1)
582 * @dinfo: Pointer to DIMM info where dimm size is stored
583 * @dimm: Pointer to the struct dimm_info that corresponds to that element
584 */
decode_mtr(struct i7300_pvt * pvt,int slot,int ch,int branch,struct i7300_dimm_info * dinfo,struct dimm_info * dimm)585 static int decode_mtr(struct i7300_pvt *pvt,
586 int slot, int ch, int branch,
587 struct i7300_dimm_info *dinfo,
588 struct dimm_info *dimm)
589 {
590 int mtr, ans, addrBits, channel;
591
592 channel = to_channel(ch, branch);
593
594 mtr = pvt->mtr[slot][branch];
595 ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
596
597 edac_dbg(2, "\tMTR%d CH%d: DIMMs are %sPresent (mtr)\n",
598 slot, channel, ans ? "" : "NOT ");
599
600 /* Determine if there is a DIMM present in this DIMM slot */
601 if (!ans)
602 return 0;
603
604 /* Start with the number of bits for a Bank
605 * on the DRAM */
606 addrBits = MTR_DRAM_BANKS_ADDR_BITS;
607 /* Add thenumber of ROW bits */
608 addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
609 /* add the number of COLUMN bits */
610 addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
611 /* add the number of RANK bits */
612 addrBits += MTR_DIMM_RANKS(mtr);
613
614 addrBits += 6; /* add 64 bits per DIMM */
615 addrBits -= 20; /* divide by 2^^20 */
616 addrBits -= 3; /* 8 bits per bytes */
617
618 dinfo->megabytes = 1 << addrBits;
619
620 edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
621
622 edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
623 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
624
625 edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
626 edac_dbg(2, "\t\tNUMRANK: %s\n",
627 MTR_DIMM_RANKS(mtr) ? "double" : "single");
628 edac_dbg(2, "\t\tNUMROW: %s\n",
629 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
630 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
631 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
632 "65,536 - 16 rows");
633 edac_dbg(2, "\t\tNUMCOL: %s\n",
634 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
635 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
636 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
637 "reserved");
638 edac_dbg(2, "\t\tSIZE: %d MB\n", dinfo->megabytes);
639
640 /*
641 * The type of error detection actually depends of the
642 * mode of operation. When it is just one single memory chip, at
643 * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
644 * In normal or mirrored mode, it uses Lockstep mode,
645 * with the possibility of using an extended algorithm for x8 memories
646 * See datasheet Sections 7.3.6 to 7.3.8
647 */
648
649 dimm->nr_pages = MiB_TO_PAGES(dinfo->megabytes);
650 dimm->grain = 8;
651 dimm->mtype = MEM_FB_DDR2;
652 if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
653 dimm->edac_mode = EDAC_SECDED;
654 edac_dbg(2, "\t\tECC code is 8-byte-over-32-byte SECDED+ code\n");
655 } else {
656 edac_dbg(2, "\t\tECC code is on Lockstep mode\n");
657 if (MTR_DRAM_WIDTH(mtr) == 8)
658 dimm->edac_mode = EDAC_S8ECD8ED;
659 else
660 dimm->edac_mode = EDAC_S4ECD4ED;
661 }
662
663 /* ask what device type on this row */
664 if (MTR_DRAM_WIDTH(mtr) == 8) {
665 edac_dbg(2, "\t\tScrub algorithm for x8 is on %s mode\n",
666 IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
667 "enhanced" : "normal");
668
669 dimm->dtype = DEV_X8;
670 } else
671 dimm->dtype = DEV_X4;
672
673 return mtr;
674 }
675
676 /**
677 * print_dimm_size() - Prints dump of the memory organization
678 * @pvt: pointer to the private data struct used by i7300 driver
679 *
680 * Useful for debug. If debug is disabled, this routine do nothing
681 */
print_dimm_size(struct i7300_pvt * pvt)682 static void print_dimm_size(struct i7300_pvt *pvt)
683 {
684 #ifdef CONFIG_EDAC_DEBUG
685 struct i7300_dimm_info *dinfo;
686 char *p;
687 int space, n;
688 int channel, slot;
689
690 space = PAGE_SIZE;
691 p = pvt->tmp_prt_buffer;
692
693 n = snprintf(p, space, " ");
694 p += n;
695 space -= n;
696 for (channel = 0; channel < MAX_CHANNELS; channel++) {
697 n = snprintf(p, space, "channel %d | ", channel);
698 p += n;
699 space -= n;
700 }
701 edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
702 p = pvt->tmp_prt_buffer;
703 space = PAGE_SIZE;
704 n = snprintf(p, space, "-------------------------------"
705 "------------------------------");
706 p += n;
707 space -= n;
708 edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
709 p = pvt->tmp_prt_buffer;
710 space = PAGE_SIZE;
711
712 for (slot = 0; slot < MAX_SLOTS; slot++) {
713 n = snprintf(p, space, "csrow/SLOT %d ", slot);
714 p += n;
715 space -= n;
716
717 for (channel = 0; channel < MAX_CHANNELS; channel++) {
718 dinfo = &pvt->dimm_info[slot][channel];
719 n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
720 p += n;
721 space -= n;
722 }
723
724 edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
725 p = pvt->tmp_prt_buffer;
726 space = PAGE_SIZE;
727 }
728
729 n = snprintf(p, space, "-------------------------------"
730 "------------------------------");
731 p += n;
732 space -= n;
733 edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
734 p = pvt->tmp_prt_buffer;
735 space = PAGE_SIZE;
736 #endif
737 }
738
739 /**
740 * i7300_init_csrows() - Initialize the 'csrows' table within
741 * the mci control structure with the
742 * addressing of memory.
743 * @mci: struct mem_ctl_info pointer
744 */
i7300_init_csrows(struct mem_ctl_info * mci)745 static int i7300_init_csrows(struct mem_ctl_info *mci)
746 {
747 struct i7300_pvt *pvt;
748 struct i7300_dimm_info *dinfo;
749 int rc = -ENODEV;
750 int mtr;
751 int ch, branch, slot, channel, max_channel, max_branch;
752 struct dimm_info *dimm;
753
754 pvt = mci->pvt_info;
755
756 edac_dbg(2, "Memory Technology Registers:\n");
757
758 if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
759 max_branch = 1;
760 max_channel = 1;
761 } else {
762 max_branch = MAX_BRANCHES;
763 max_channel = MAX_CH_PER_BRANCH;
764 }
765
766 /* Get the AMB present registers for the four channels */
767 for (branch = 0; branch < max_branch; branch++) {
768 /* Read and dump branch 0's MTRs */
769 channel = to_channel(0, branch);
770 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
771 AMBPRESENT_0,
772 &pvt->ambpresent[channel]);
773 edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
774 channel, pvt->ambpresent[channel]);
775
776 if (max_channel == 1)
777 continue;
778
779 channel = to_channel(1, branch);
780 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
781 AMBPRESENT_1,
782 &pvt->ambpresent[channel]);
783 edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
784 channel, pvt->ambpresent[channel]);
785 }
786
787 /* Get the set of MTR[0-7] regs by each branch */
788 for (slot = 0; slot < MAX_SLOTS; slot++) {
789 int where = mtr_regs[slot];
790 for (branch = 0; branch < max_branch; branch++) {
791 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
792 where,
793 &pvt->mtr[slot][branch]);
794 for (ch = 0; ch < max_channel; ch++) {
795 int channel = to_channel(ch, branch);
796
797 dimm = edac_get_dimm(mci, branch, ch, slot);
798
799 dinfo = &pvt->dimm_info[slot][channel];
800
801 mtr = decode_mtr(pvt, slot, ch, branch,
802 dinfo, dimm);
803
804 /* if no DIMMS on this row, continue */
805 if (!MTR_DIMMS_PRESENT(mtr))
806 continue;
807
808 rc = 0;
809
810 }
811 }
812 }
813
814 return rc;
815 }
816
817 /**
818 * decode_mir() - Decodes Memory Interleave Register (MIR) info
819 * @mir_no: number of the MIR register to decode
820 * @mir: array with the MIR data cached on the driver
821 */
decode_mir(int mir_no,u16 mir[MAX_MIR])822 static void decode_mir(int mir_no, u16 mir[MAX_MIR])
823 {
824 if (mir[mir_no] & 3)
825 edac_dbg(2, "MIR%d: limit= 0x%x Branch(es) that participate: %s %s\n",
826 mir_no,
827 (mir[mir_no] >> 4) & 0xfff,
828 (mir[mir_no] & 1) ? "B0" : "",
829 (mir[mir_no] & 2) ? "B1" : "");
830 }
831
832 /**
833 * i7300_get_mc_regs() - Get the contents of the MC enumeration registers
834 * @mci: struct mem_ctl_info pointer
835 *
836 * Data read is cached internally for its usage when needed
837 */
i7300_get_mc_regs(struct mem_ctl_info * mci)838 static int i7300_get_mc_regs(struct mem_ctl_info *mci)
839 {
840 struct i7300_pvt *pvt;
841 u32 actual_tolm;
842 int i, rc;
843
844 pvt = mci->pvt_info;
845
846 pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
847 (u32 *) &pvt->ambase);
848
849 edac_dbg(2, "AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
850
851 /* Get the Branch Map regs */
852 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
853 pvt->tolm >>= 12;
854 edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
855 pvt->tolm, pvt->tolm);
856
857 actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
858 edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
859 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
860
861 /* Get memory controller settings */
862 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
863 &pvt->mc_settings);
864 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A,
865 &pvt->mc_settings_a);
866
867 if (IS_SINGLE_MODE(pvt->mc_settings_a))
868 edac_dbg(0, "Memory controller operating on single mode\n");
869 else
870 edac_dbg(0, "Memory controller operating on %smirrored mode\n",
871 IS_MIRRORED(pvt->mc_settings) ? "" : "non-");
872
873 edac_dbg(0, "Error detection is %s\n",
874 IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
875 edac_dbg(0, "Retry is %s\n",
876 IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
877
878 /* Get Memory Interleave Range registers */
879 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0,
880 &pvt->mir[0]);
881 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1,
882 &pvt->mir[1]);
883 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2,
884 &pvt->mir[2]);
885
886 /* Decode the MIR regs */
887 for (i = 0; i < MAX_MIR; i++)
888 decode_mir(i, pvt->mir);
889
890 rc = i7300_init_csrows(mci);
891 if (rc < 0)
892 return rc;
893
894 /* Go and determine the size of each DIMM and place in an
895 * orderly matrix */
896 print_dimm_size(pvt);
897
898 return 0;
899 }
900
901 /*************************************************
902 * i7300 Functions related to device probe/release
903 *************************************************/
904
905 /**
906 * i7300_put_devices() - Release the PCI devices
907 * @mci: struct mem_ctl_info pointer
908 */
i7300_put_devices(struct mem_ctl_info * mci)909 static void i7300_put_devices(struct mem_ctl_info *mci)
910 {
911 struct i7300_pvt *pvt;
912 int branch;
913
914 pvt = mci->pvt_info;
915
916 /* Decrement usage count for devices */
917 for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
918 pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
919 pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
920 pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
921 }
922
923 /**
924 * i7300_get_devices() - Find and perform 'get' operation on the MCH's
925 * device/functions we want to reference for this driver
926 * @mci: struct mem_ctl_info pointer
927 *
928 * Access and prepare the several devices for usage:
929 * I7300 devices used by this driver:
930 * Device 16, functions 0,1 and 2: PCI_DEVICE_ID_INTEL_I7300_MCH_ERR
931 * Device 21 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB0
932 * Device 22 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
933 */
i7300_get_devices(struct mem_ctl_info * mci)934 static int i7300_get_devices(struct mem_ctl_info *mci)
935 {
936 struct i7300_pvt *pvt;
937 struct pci_dev *pdev;
938
939 pvt = mci->pvt_info;
940
941 /* Attempt to 'get' the MCH register we want */
942 pdev = NULL;
943 while ((pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
944 PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
945 pdev))) {
946 /* Store device 16 funcs 1 and 2 */
947 switch (PCI_FUNC(pdev->devfn)) {
948 case 1:
949 if (!pvt->pci_dev_16_1_fsb_addr_map)
950 pvt->pci_dev_16_1_fsb_addr_map =
951 pci_dev_get(pdev);
952 break;
953 case 2:
954 if (!pvt->pci_dev_16_2_fsb_err_regs)
955 pvt->pci_dev_16_2_fsb_err_regs =
956 pci_dev_get(pdev);
957 break;
958 }
959 }
960
961 if (!pvt->pci_dev_16_1_fsb_addr_map ||
962 !pvt->pci_dev_16_2_fsb_err_regs) {
963 /* At least one device was not found */
964 i7300_printk(KERN_ERR,
965 "'system address,Process Bus' device not found:"
966 "vendor 0x%x device 0x%x ERR funcs (broken BIOS?)\n",
967 PCI_VENDOR_ID_INTEL,
968 PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
969 goto error;
970 }
971
972 edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n",
973 pci_name(pvt->pci_dev_16_0_fsb_ctlr),
974 pvt->pci_dev_16_0_fsb_ctlr->vendor,
975 pvt->pci_dev_16_0_fsb_ctlr->device);
976 edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
977 pci_name(pvt->pci_dev_16_1_fsb_addr_map),
978 pvt->pci_dev_16_1_fsb_addr_map->vendor,
979 pvt->pci_dev_16_1_fsb_addr_map->device);
980 edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n",
981 pci_name(pvt->pci_dev_16_2_fsb_err_regs),
982 pvt->pci_dev_16_2_fsb_err_regs->vendor,
983 pvt->pci_dev_16_2_fsb_err_regs->device);
984
985 pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
986 PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
987 NULL);
988 if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
989 i7300_printk(KERN_ERR,
990 "MC: 'BRANCH 0' device not found:"
991 "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
992 PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
993 goto error;
994 }
995
996 pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
997 PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
998 NULL);
999 if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
1000 i7300_printk(KERN_ERR,
1001 "MC: 'BRANCH 1' device not found:"
1002 "vendor 0x%x device 0x%x Func 0 "
1003 "(broken BIOS?)\n",
1004 PCI_VENDOR_ID_INTEL,
1005 PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
1006 goto error;
1007 }
1008
1009 return 0;
1010
1011 error:
1012 i7300_put_devices(mci);
1013 return -ENODEV;
1014 }
1015
1016 /**
1017 * i7300_init_one() - Probe for one instance of the device
1018 * @pdev: struct pci_dev pointer
1019 * @id: struct pci_device_id pointer - currently unused
1020 */
i7300_init_one(struct pci_dev * pdev,const struct pci_device_id * id)1021 static int i7300_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1022 {
1023 struct mem_ctl_info *mci;
1024 struct edac_mc_layer layers[3];
1025 struct i7300_pvt *pvt;
1026 int rc;
1027
1028 /* wake up device */
1029 rc = pci_enable_device(pdev);
1030 if (rc == -EIO)
1031 return rc;
1032
1033 edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1034 pdev->bus->number,
1035 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1036
1037 /* We only are looking for func 0 of the set */
1038 if (PCI_FUNC(pdev->devfn) != 0)
1039 return -ENODEV;
1040
1041 /* allocate a new MC control structure */
1042 layers[0].type = EDAC_MC_LAYER_BRANCH;
1043 layers[0].size = MAX_BRANCHES;
1044 layers[0].is_virt_csrow = false;
1045 layers[1].type = EDAC_MC_LAYER_CHANNEL;
1046 layers[1].size = MAX_CH_PER_BRANCH;
1047 layers[1].is_virt_csrow = true;
1048 layers[2].type = EDAC_MC_LAYER_SLOT;
1049 layers[2].size = MAX_SLOTS;
1050 layers[2].is_virt_csrow = true;
1051 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1052 if (mci == NULL)
1053 return -ENOMEM;
1054
1055 edac_dbg(0, "MC: mci = %p\n", mci);
1056
1057 mci->pdev = &pdev->dev; /* record ptr to the generic device */
1058
1059 pvt = mci->pvt_info;
1060 pvt->pci_dev_16_0_fsb_ctlr = pdev; /* Record this device in our private */
1061
1062 pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1063 if (!pvt->tmp_prt_buffer) {
1064 edac_mc_free(mci);
1065 return -ENOMEM;
1066 }
1067
1068 /* 'get' the pci devices we want to reserve for our use */
1069 if (i7300_get_devices(mci))
1070 goto fail0;
1071
1072 mci->mc_idx = 0;
1073 mci->mtype_cap = MEM_FLAG_FB_DDR2;
1074 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1075 mci->edac_cap = EDAC_FLAG_NONE;
1076 mci->mod_name = "i7300_edac.c";
1077 mci->ctl_name = i7300_devs[0].ctl_name;
1078 mci->dev_name = pci_name(pdev);
1079 mci->ctl_page_to_phys = NULL;
1080
1081 /* Set the function pointer to an actual operation function */
1082 mci->edac_check = i7300_check_error;
1083
1084 /* initialize the MC control structure 'csrows' table
1085 * with the mapping and control information */
1086 if (i7300_get_mc_regs(mci)) {
1087 edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i7300_init_csrows() returned nonzero value\n");
1088 mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1089 } else {
1090 edac_dbg(1, "MC: Enable error reporting now\n");
1091 i7300_enable_error_reporting(mci);
1092 }
1093
1094 /* add this new MC control structure to EDAC's list of MCs */
1095 if (edac_mc_add_mc(mci)) {
1096 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1097 /* FIXME: perhaps some code should go here that disables error
1098 * reporting if we just enabled it
1099 */
1100 goto fail1;
1101 }
1102
1103 i7300_clear_error(mci);
1104
1105 /* allocating generic PCI control info */
1106 i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1107 if (!i7300_pci) {
1108 printk(KERN_WARNING
1109 "%s(): Unable to create PCI control\n",
1110 __func__);
1111 printk(KERN_WARNING
1112 "%s(): PCI error report via EDAC not setup\n",
1113 __func__);
1114 }
1115
1116 return 0;
1117
1118 /* Error exit unwinding stack */
1119 fail1:
1120
1121 i7300_put_devices(mci);
1122
1123 fail0:
1124 kfree(pvt->tmp_prt_buffer);
1125 edac_mc_free(mci);
1126 return -ENODEV;
1127 }
1128
1129 /**
1130 * i7300_remove_one() - Remove the driver
1131 * @pdev: struct pci_dev pointer
1132 */
i7300_remove_one(struct pci_dev * pdev)1133 static void i7300_remove_one(struct pci_dev *pdev)
1134 {
1135 struct mem_ctl_info *mci;
1136 char *tmp;
1137
1138 edac_dbg(0, "\n");
1139
1140 if (i7300_pci)
1141 edac_pci_release_generic_ctl(i7300_pci);
1142
1143 mci = edac_mc_del_mc(&pdev->dev);
1144 if (!mci)
1145 return;
1146
1147 tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer;
1148
1149 /* retrieve references to resources, and free those resources */
1150 i7300_put_devices(mci);
1151
1152 kfree(tmp);
1153 edac_mc_free(mci);
1154 }
1155
1156 /*
1157 * pci_device_id: table for which devices we are looking for
1158 *
1159 * Has only 8086:360c PCI ID
1160 */
1161 static const struct pci_device_id i7300_pci_tbl[] = {
1162 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
1163 {0,} /* 0 terminated list. */
1164 };
1165
1166 MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
1167
1168 /*
1169 * i7300_driver: pci_driver structure for this module
1170 */
1171 static struct pci_driver i7300_driver = {
1172 .name = "i7300_edac",
1173 .probe = i7300_init_one,
1174 .remove = i7300_remove_one,
1175 .id_table = i7300_pci_tbl,
1176 };
1177
1178 /**
1179 * i7300_init() - Registers the driver
1180 */
i7300_init(void)1181 static int __init i7300_init(void)
1182 {
1183 int pci_rc;
1184
1185 edac_dbg(2, "\n");
1186
1187 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1188 opstate_init();
1189
1190 pci_rc = pci_register_driver(&i7300_driver);
1191
1192 return (pci_rc < 0) ? pci_rc : 0;
1193 }
1194
1195 /**
1196 * i7300_exit() - Unregisters the driver
1197 */
i7300_exit(void)1198 static void __exit i7300_exit(void)
1199 {
1200 edac_dbg(2, "\n");
1201 pci_unregister_driver(&i7300_driver);
1202 }
1203
1204 module_init(i7300_init);
1205 module_exit(i7300_exit);
1206
1207 MODULE_LICENSE("GPL");
1208 MODULE_AUTHOR("Mauro Carvalho Chehab");
1209 MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
1210 MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
1211 I7300_REVISION);
1212
1213 module_param(edac_op_state, int, 0444);
1214 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1215