xref: /openbmc/linux/drivers/media/i2c/adv7604.c (revision ecc23d0a422a3118fcf6e4f0a46e17a6c2047b02)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * adv7604 - Analog Devices ADV7604 video decoder driver
4   *
5   * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6   *
7   */
8  
9  /*
10   * References (c = chapter, p = page):
11   * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
12   *		Revision 2.5, June 2010
13   * REF_02 - Analog devices, Register map documentation, Documentation of
14   *		the register maps, Software manual, Rev. F, June 2010
15   * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
16   */
17  
18  #include <linux/delay.h>
19  #include <linux/gpio/consumer.h>
20  #include <linux/hdmi.h>
21  #include <linux/i2c.h>
22  #include <linux/kernel.h>
23  #include <linux/module.h>
24  #include <linux/of_graph.h>
25  #include <linux/slab.h>
26  #include <linux/v4l2-dv-timings.h>
27  #include <linux/videodev2.h>
28  #include <linux/workqueue.h>
29  #include <linux/regmap.h>
30  #include <linux/interrupt.h>
31  
32  #include <media/i2c/adv7604.h>
33  #include <media/cec.h>
34  #include <media/v4l2-ctrls.h>
35  #include <media/v4l2-device.h>
36  #include <media/v4l2-event.h>
37  #include <media/v4l2-dv-timings.h>
38  #include <media/v4l2-fwnode.h>
39  
40  static int debug;
41  module_param(debug, int, 0644);
42  MODULE_PARM_DESC(debug, "debug level (0-2)");
43  
44  MODULE_DESCRIPTION("Analog Devices ADV7604/10/11/12 video decoder driver");
45  MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
46  MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
47  MODULE_LICENSE("GPL");
48  
49  /* ADV7604 system clock frequency */
50  #define ADV76XX_FSC (28636360)
51  
52  #define ADV76XX_RGB_OUT					(1 << 1)
53  
54  #define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
55  #define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
56  #define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
57  
58  #define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
59  #define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
60  #define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
61  #define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
62  #define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
63  #define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)
64  
65  #define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
66  #define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
67  #define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
68  #define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
69  #define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
70  #define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
71  
72  #define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
73  
74  #define ADV76XX_MAX_ADDRS (3)
75  
76  #define ADV76XX_MAX_EDID_BLOCKS 4
77  
78  enum adv76xx_type {
79  	ADV7604,
80  	ADV7611, // including ADV7610
81  	ADV7612,
82  };
83  
84  struct adv76xx_reg_seq {
85  	unsigned int reg;
86  	u8 val;
87  };
88  
89  struct adv76xx_format_info {
90  	u32 code;
91  	u8 op_ch_sel;
92  	bool rgb_out;
93  	bool swap_cb_cr;
94  	u8 op_format_sel;
95  };
96  
97  struct adv76xx_cfg_read_infoframe {
98  	const char *desc;
99  	u8 present_mask;
100  	u8 head_addr;
101  	u8 payload_addr;
102  };
103  
104  struct adv76xx_chip_info {
105  	enum adv76xx_type type;
106  
107  	bool has_afe;
108  	unsigned int max_port;
109  	unsigned int num_dv_ports;
110  
111  	unsigned int edid_enable_reg;
112  	unsigned int edid_status_reg;
113  	unsigned int edid_segment_reg;
114  	unsigned int edid_segment_mask;
115  	unsigned int edid_spa_loc_reg;
116  	unsigned int edid_spa_loc_msb_mask;
117  	unsigned int edid_spa_port_b_reg;
118  	unsigned int lcf_reg;
119  
120  	unsigned int cable_det_mask;
121  	unsigned int tdms_lock_mask;
122  	unsigned int fmt_change_digital_mask;
123  	unsigned int cp_csc;
124  
125  	unsigned int cec_irq_status;
126  	unsigned int cec_rx_enable;
127  	unsigned int cec_rx_enable_mask;
128  	bool cec_irq_swap;
129  
130  	const struct adv76xx_format_info *formats;
131  	unsigned int nformats;
132  
133  	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
134  	void (*setup_irqs)(struct v4l2_subdev *sd);
135  	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
136  	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
137  
138  	/* 0 = AFE, 1 = HDMI */
139  	const struct adv76xx_reg_seq *recommended_settings[2];
140  	unsigned int num_recommended_settings[2];
141  
142  	unsigned long page_mask;
143  
144  	/* Masks for timings */
145  	unsigned int linewidth_mask;
146  	unsigned int field0_height_mask;
147  	unsigned int field1_height_mask;
148  	unsigned int hfrontporch_mask;
149  	unsigned int hsync_mask;
150  	unsigned int hbackporch_mask;
151  	unsigned int field0_vfrontporch_mask;
152  	unsigned int field1_vfrontporch_mask;
153  	unsigned int field0_vsync_mask;
154  	unsigned int field1_vsync_mask;
155  	unsigned int field0_vbackporch_mask;
156  	unsigned int field1_vbackporch_mask;
157  };
158  
159  /*
160   **********************************************************************
161   *
162   *  Arrays with configuration parameters for the ADV7604
163   *
164   **********************************************************************
165   */
166  
167  struct adv76xx_state {
168  	const struct adv76xx_chip_info *info;
169  	struct adv76xx_platform_data pdata;
170  
171  	struct gpio_desc *hpd_gpio[4];
172  	struct gpio_desc *reset_gpio;
173  
174  	struct v4l2_subdev sd;
175  	struct media_pad pads[ADV76XX_PAD_MAX];
176  	unsigned int source_pad;
177  
178  	struct v4l2_ctrl_handler hdl;
179  
180  	enum adv76xx_pad selected_input;
181  
182  	struct v4l2_dv_timings timings;
183  	const struct adv76xx_format_info *format;
184  
185  	struct {
186  		u8 edid[ADV76XX_MAX_EDID_BLOCKS * 128];
187  		u32 present;
188  		unsigned blocks;
189  	} edid;
190  	u16 spa_port_a[2];
191  	struct v4l2_fract aspect_ratio;
192  	u32 rgb_quantization_range;
193  	struct delayed_work delayed_work_enable_hotplug;
194  	bool restart_stdi_once;
195  
196  	/* CEC */
197  	struct cec_adapter *cec_adap;
198  	u8   cec_addr[ADV76XX_MAX_ADDRS];
199  	u8   cec_valid_addrs;
200  	bool cec_enabled_adap;
201  
202  	/* i2c clients */
203  	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
204  
205  	/* Regmaps */
206  	struct regmap *regmap[ADV76XX_PAGE_MAX];
207  
208  	/* controls */
209  	struct v4l2_ctrl *detect_tx_5v_ctrl;
210  	struct v4l2_ctrl *analog_sampling_phase_ctrl;
211  	struct v4l2_ctrl *free_run_color_manual_ctrl;
212  	struct v4l2_ctrl *free_run_color_ctrl;
213  	struct v4l2_ctrl *rgb_quantization_range_ctrl;
214  };
215  
adv76xx_has_afe(struct adv76xx_state * state)216  static bool adv76xx_has_afe(struct adv76xx_state *state)
217  {
218  	return state->info->has_afe;
219  }
220  
221  /* Unsupported timings. This device cannot support 720p30. */
222  static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
223  	V4L2_DV_BT_CEA_1280X720P30,
224  	{ }
225  };
226  
adv76xx_check_dv_timings(const struct v4l2_dv_timings * t,void * hdl)227  static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
228  {
229  	int i;
230  
231  	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
232  		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
233  			return false;
234  	return true;
235  }
236  
237  struct adv76xx_video_standards {
238  	struct v4l2_dv_timings timings;
239  	u8 vid_std;
240  	u8 v_freq;
241  };
242  
243  /* sorted by number of lines */
244  static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
245  	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
246  	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
247  	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
248  	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
249  	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
250  	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
251  	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
252  	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
253  	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
254  	/* TODO add 1920x1080P60_RB (CVT timing) */
255  	{ },
256  };
257  
258  /* sorted by number of lines */
259  static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
260  	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
261  	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
262  	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
263  	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
264  	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
265  	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
266  	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
267  	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
268  	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
269  	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
270  	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
271  	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
272  	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
273  	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
274  	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
275  	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
276  	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
277  	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
278  	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
279  	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
280  	/* TODO add 1600X1200P60_RB (not a DMT timing) */
281  	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
282  	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
283  	{ },
284  };
285  
286  /* sorted by number of lines */
287  static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
288  	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
289  	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
290  	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
291  	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
292  	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
293  	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
294  	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
295  	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
296  	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
297  	{ },
298  };
299  
300  /* sorted by number of lines */
301  static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
302  	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
303  	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
304  	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
305  	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
306  	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
307  	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
308  	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
309  	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
310  	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
311  	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
312  	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
313  	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
314  	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
315  	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
316  	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
317  	{ },
318  };
319  
320  static const struct v4l2_event adv76xx_ev_fmt = {
321  	.type = V4L2_EVENT_SOURCE_CHANGE,
322  	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
323  };
324  
325  /* ----------------------------------------------------------------------- */
326  
to_state(struct v4l2_subdev * sd)327  static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
328  {
329  	return container_of(sd, struct adv76xx_state, sd);
330  }
331  
htotal(const struct v4l2_bt_timings * t)332  static inline unsigned htotal(const struct v4l2_bt_timings *t)
333  {
334  	return V4L2_DV_BT_FRAME_WIDTH(t);
335  }
336  
vtotal(const struct v4l2_bt_timings * t)337  static inline unsigned vtotal(const struct v4l2_bt_timings *t)
338  {
339  	return V4L2_DV_BT_FRAME_HEIGHT(t);
340  }
341  
342  /* ----------------------------------------------------------------------- */
343  
adv76xx_read_check(struct adv76xx_state * state,int client_page,u8 reg)344  static int adv76xx_read_check(struct adv76xx_state *state,
345  			     int client_page, u8 reg)
346  {
347  	struct i2c_client *client = state->i2c_clients[client_page];
348  	int err;
349  	unsigned int val;
350  
351  	err = regmap_read(state->regmap[client_page], reg, &val);
352  
353  	if (err) {
354  		v4l_err(client, "error reading %02x, %02x\n",
355  				client->addr, reg);
356  		return err;
357  	}
358  	return val;
359  }
360  
361  /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
362   * size to one or more registers.
363   *
364   * A value of zero will be returned on success, a negative errno will
365   * be returned in error cases.
366   */
adv76xx_write_block(struct adv76xx_state * state,int client_page,unsigned int init_reg,const void * val,size_t val_len)367  static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
368  			      unsigned int init_reg, const void *val,
369  			      size_t val_len)
370  {
371  	struct regmap *regmap = state->regmap[client_page];
372  
373  	if (val_len > I2C_SMBUS_BLOCK_MAX)
374  		val_len = I2C_SMBUS_BLOCK_MAX;
375  
376  	return regmap_raw_write(regmap, init_reg, val, val_len);
377  }
378  
379  /* ----------------------------------------------------------------------- */
380  
io_read(struct v4l2_subdev * sd,u8 reg)381  static inline int io_read(struct v4l2_subdev *sd, u8 reg)
382  {
383  	struct adv76xx_state *state = to_state(sd);
384  
385  	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
386  }
387  
io_write(struct v4l2_subdev * sd,u8 reg,u8 val)388  static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
389  {
390  	struct adv76xx_state *state = to_state(sd);
391  
392  	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
393  }
394  
io_write_clr_set(struct v4l2_subdev * sd,u8 reg,u8 mask,u8 val)395  static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
396  				   u8 val)
397  {
398  	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
399  }
400  
avlink_read(struct v4l2_subdev * sd,u8 reg)401  static inline int __always_unused avlink_read(struct v4l2_subdev *sd, u8 reg)
402  {
403  	struct adv76xx_state *state = to_state(sd);
404  
405  	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
406  }
407  
avlink_write(struct v4l2_subdev * sd,u8 reg,u8 val)408  static inline int __always_unused avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
409  {
410  	struct adv76xx_state *state = to_state(sd);
411  
412  	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
413  }
414  
cec_read(struct v4l2_subdev * sd,u8 reg)415  static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
416  {
417  	struct adv76xx_state *state = to_state(sd);
418  
419  	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
420  }
421  
cec_write(struct v4l2_subdev * sd,u8 reg,u8 val)422  static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
423  {
424  	struct adv76xx_state *state = to_state(sd);
425  
426  	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
427  }
428  
cec_write_clr_set(struct v4l2_subdev * sd,u8 reg,u8 mask,u8 val)429  static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
430  				   u8 val)
431  {
432  	return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
433  }
434  
infoframe_read(struct v4l2_subdev * sd,u8 reg)435  static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
436  {
437  	struct adv76xx_state *state = to_state(sd);
438  
439  	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
440  }
441  
infoframe_write(struct v4l2_subdev * sd,u8 reg,u8 val)442  static inline int __always_unused infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
443  {
444  	struct adv76xx_state *state = to_state(sd);
445  
446  	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
447  }
448  
afe_read(struct v4l2_subdev * sd,u8 reg)449  static inline int __always_unused afe_read(struct v4l2_subdev *sd, u8 reg)
450  {
451  	struct adv76xx_state *state = to_state(sd);
452  
453  	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
454  }
455  
afe_write(struct v4l2_subdev * sd,u8 reg,u8 val)456  static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
457  {
458  	struct adv76xx_state *state = to_state(sd);
459  
460  	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
461  }
462  
rep_read(struct v4l2_subdev * sd,u8 reg)463  static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
464  {
465  	struct adv76xx_state *state = to_state(sd);
466  
467  	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
468  }
469  
rep_write(struct v4l2_subdev * sd,u8 reg,u8 val)470  static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
471  {
472  	struct adv76xx_state *state = to_state(sd);
473  
474  	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
475  }
476  
rep_write_clr_set(struct v4l2_subdev * sd,u8 reg,u8 mask,u8 val)477  static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
478  {
479  	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
480  }
481  
edid_read(struct v4l2_subdev * sd,u8 reg)482  static inline int __always_unused edid_read(struct v4l2_subdev *sd, u8 reg)
483  {
484  	struct adv76xx_state *state = to_state(sd);
485  
486  	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
487  }
488  
edid_write(struct v4l2_subdev * sd,u8 reg,u8 val)489  static inline int __always_unused edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
490  {
491  	struct adv76xx_state *state = to_state(sd);
492  
493  	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
494  }
495  
edid_write_block(struct v4l2_subdev * sd,unsigned int total_len,const u8 * val)496  static inline int edid_write_block(struct v4l2_subdev *sd,
497  					unsigned int total_len, const u8 *val)
498  {
499  	struct adv76xx_state *state = to_state(sd);
500  	int err = 0;
501  	int i = 0;
502  	int len = 0;
503  
504  	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
505  				__func__, total_len);
506  
507  	while (!err && i < total_len) {
508  		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
509  				I2C_SMBUS_BLOCK_MAX :
510  				(total_len - i);
511  
512  		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
513  				i, val + i, len);
514  		i += len;
515  	}
516  
517  	return err;
518  }
519  
adv76xx_set_hpd(struct adv76xx_state * state,unsigned int hpd)520  static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
521  {
522  	const struct adv76xx_chip_info *info = state->info;
523  	unsigned int i;
524  
525  	if (info->type == ADV7604) {
526  		for (i = 0; i < state->info->num_dv_ports; ++i)
527  			gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
528  	} else {
529  		for (i = 0; i < state->info->num_dv_ports; ++i)
530  			io_write_clr_set(&state->sd, 0x20, 0x80 >> i,
531  					 (!!(hpd & BIT(i))) << (7 - i));
532  	}
533  
534  	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
535  }
536  
adv76xx_delayed_work_enable_hotplug(struct work_struct * work)537  static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
538  {
539  	struct delayed_work *dwork = to_delayed_work(work);
540  	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
541  						delayed_work_enable_hotplug);
542  	struct v4l2_subdev *sd = &state->sd;
543  
544  	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
545  
546  	adv76xx_set_hpd(state, state->edid.present);
547  }
548  
hdmi_read(struct v4l2_subdev * sd,u8 reg)549  static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
550  {
551  	struct adv76xx_state *state = to_state(sd);
552  
553  	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
554  }
555  
hdmi_read16(struct v4l2_subdev * sd,u8 reg,u16 mask)556  static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
557  {
558  	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
559  }
560  
hdmi_write(struct v4l2_subdev * sd,u8 reg,u8 val)561  static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
562  {
563  	struct adv76xx_state *state = to_state(sd);
564  
565  	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
566  }
567  
hdmi_write_clr_set(struct v4l2_subdev * sd,u8 reg,u8 mask,u8 val)568  static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
569  {
570  	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
571  }
572  
test_write(struct v4l2_subdev * sd,u8 reg,u8 val)573  static inline int __always_unused test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
574  {
575  	struct adv76xx_state *state = to_state(sd);
576  
577  	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
578  }
579  
cp_read(struct v4l2_subdev * sd,u8 reg)580  static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
581  {
582  	struct adv76xx_state *state = to_state(sd);
583  
584  	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
585  }
586  
cp_read16(struct v4l2_subdev * sd,u8 reg,u16 mask)587  static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
588  {
589  	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
590  }
591  
cp_write(struct v4l2_subdev * sd,u8 reg,u8 val)592  static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
593  {
594  	struct adv76xx_state *state = to_state(sd);
595  
596  	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
597  }
598  
cp_write_clr_set(struct v4l2_subdev * sd,u8 reg,u8 mask,u8 val)599  static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
600  {
601  	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
602  }
603  
vdp_read(struct v4l2_subdev * sd,u8 reg)604  static inline int __always_unused vdp_read(struct v4l2_subdev *sd, u8 reg)
605  {
606  	struct adv76xx_state *state = to_state(sd);
607  
608  	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
609  }
610  
vdp_write(struct v4l2_subdev * sd,u8 reg,u8 val)611  static inline int __always_unused vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
612  {
613  	struct adv76xx_state *state = to_state(sd);
614  
615  	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
616  }
617  
618  #define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
619  #define ADV76XX_REG_SEQ_TERM		0xffff
620  
621  #ifdef CONFIG_VIDEO_ADV_DEBUG
adv76xx_read_reg(struct v4l2_subdev * sd,unsigned int reg)622  static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
623  {
624  	struct adv76xx_state *state = to_state(sd);
625  	unsigned int page = reg >> 8;
626  	unsigned int val;
627  	int err;
628  
629  	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
630  		return -EINVAL;
631  
632  	reg &= 0xff;
633  	err = regmap_read(state->regmap[page], reg, &val);
634  
635  	return err ? err : val;
636  }
637  #endif
638  
adv76xx_write_reg(struct v4l2_subdev * sd,unsigned int reg,u8 val)639  static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
640  {
641  	struct adv76xx_state *state = to_state(sd);
642  	unsigned int page = reg >> 8;
643  
644  	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
645  		return -EINVAL;
646  
647  	reg &= 0xff;
648  
649  	return regmap_write(state->regmap[page], reg, val);
650  }
651  
adv76xx_write_reg_seq(struct v4l2_subdev * sd,const struct adv76xx_reg_seq * reg_seq)652  static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
653  				  const struct adv76xx_reg_seq *reg_seq)
654  {
655  	unsigned int i;
656  
657  	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
658  		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
659  }
660  
661  /* -----------------------------------------------------------------------------
662   * Format helpers
663   */
664  
665  static const struct adv76xx_format_info adv7604_formats[] = {
666  	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
667  	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
668  	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
669  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
670  	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
671  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
672  	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
673  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
674  	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
675  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
676  	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
677  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
678  	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
679  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
680  	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
681  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
682  	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
683  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
684  	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
685  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
686  	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
687  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
688  	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
689  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
690  	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
691  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
692  	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
693  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
694  	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
695  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
696  	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
697  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
698  	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
699  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
700  	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
701  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
702  	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
703  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
704  };
705  
706  static const struct adv76xx_format_info adv7611_formats[] = {
707  	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
708  	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
709  	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
710  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
711  	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
712  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
713  	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
714  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
715  	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
716  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
717  	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
718  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
719  	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
720  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
721  	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
722  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
723  	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
724  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
725  	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
726  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
727  	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
728  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
729  	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
730  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
731  	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
732  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
733  };
734  
735  static const struct adv76xx_format_info adv7612_formats[] = {
736  	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
737  	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
738  	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
739  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
740  	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
741  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
742  	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
743  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
744  	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
745  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
746  	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
747  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
748  	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
749  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
750  };
751  
752  static const struct adv76xx_format_info *
adv76xx_format_info(struct adv76xx_state * state,u32 code)753  adv76xx_format_info(struct adv76xx_state *state, u32 code)
754  {
755  	unsigned int i;
756  
757  	for (i = 0; i < state->info->nformats; ++i) {
758  		if (state->info->formats[i].code == code)
759  			return &state->info->formats[i];
760  	}
761  
762  	return NULL;
763  }
764  
765  /* ----------------------------------------------------------------------- */
766  
is_analog_input(struct v4l2_subdev * sd)767  static inline bool is_analog_input(struct v4l2_subdev *sd)
768  {
769  	struct adv76xx_state *state = to_state(sd);
770  
771  	return state->selected_input == ADV7604_PAD_VGA_RGB ||
772  	       state->selected_input == ADV7604_PAD_VGA_COMP;
773  }
774  
is_digital_input(struct v4l2_subdev * sd)775  static inline bool is_digital_input(struct v4l2_subdev *sd)
776  {
777  	struct adv76xx_state *state = to_state(sd);
778  
779  	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
780  	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
781  	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
782  	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
783  }
784  
785  static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
786  	.type = V4L2_DV_BT_656_1120,
787  	/* keep this initialization for compatibility with GCC < 4.4.6 */
788  	.reserved = { 0 },
789  	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000,
790  		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
791  			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
792  		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
793  			V4L2_DV_BT_CAP_CUSTOM)
794  };
795  
796  static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
797  	.type = V4L2_DV_BT_656_1120,
798  	/* keep this initialization for compatibility with GCC < 4.4.6 */
799  	.reserved = { 0 },
800  	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000,
801  		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
802  			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
803  		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
804  			V4L2_DV_BT_CAP_CUSTOM)
805  };
806  
807  /*
808   * Return the DV timings capabilities for the requested sink pad. As a special
809   * case, pad value -1 returns the capabilities for the currently selected input.
810   */
811  static const struct v4l2_dv_timings_cap *
adv76xx_get_dv_timings_cap(struct v4l2_subdev * sd,int pad)812  adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
813  {
814  	if (pad == -1) {
815  		struct adv76xx_state *state = to_state(sd);
816  
817  		pad = state->selected_input;
818  	}
819  
820  	switch (pad) {
821  	case ADV76XX_PAD_HDMI_PORT_A:
822  	case ADV7604_PAD_HDMI_PORT_B:
823  	case ADV7604_PAD_HDMI_PORT_C:
824  	case ADV7604_PAD_HDMI_PORT_D:
825  		return &adv76xx_timings_cap_digital;
826  
827  	case ADV7604_PAD_VGA_RGB:
828  	case ADV7604_PAD_VGA_COMP:
829  	default:
830  		return &adv7604_timings_cap_analog;
831  	}
832  }
833  
834  
835  /* ----------------------------------------------------------------------- */
836  
837  #ifdef CONFIG_VIDEO_ADV_DEBUG
adv76xx_inv_register(struct v4l2_subdev * sd)838  static void adv76xx_inv_register(struct v4l2_subdev *sd)
839  {
840  	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
841  	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
842  	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
843  	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
844  	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
845  	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
846  	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
847  	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
848  	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
849  	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
850  	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
851  	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
852  	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
853  }
854  
adv76xx_g_register(struct v4l2_subdev * sd,struct v4l2_dbg_register * reg)855  static int adv76xx_g_register(struct v4l2_subdev *sd,
856  					struct v4l2_dbg_register *reg)
857  {
858  	int ret;
859  
860  	ret = adv76xx_read_reg(sd, reg->reg);
861  	if (ret < 0) {
862  		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
863  		adv76xx_inv_register(sd);
864  		return ret;
865  	}
866  
867  	reg->size = 1;
868  	reg->val = ret;
869  
870  	return 0;
871  }
872  
adv76xx_s_register(struct v4l2_subdev * sd,const struct v4l2_dbg_register * reg)873  static int adv76xx_s_register(struct v4l2_subdev *sd,
874  					const struct v4l2_dbg_register *reg)
875  {
876  	int ret;
877  
878  	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
879  	if (ret < 0) {
880  		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
881  		adv76xx_inv_register(sd);
882  		return ret;
883  	}
884  
885  	return 0;
886  }
887  #endif
888  
adv7604_read_cable_det(struct v4l2_subdev * sd)889  static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
890  {
891  	u8 value = io_read(sd, 0x6f);
892  
893  	return ((value & 0x10) >> 4)
894  	     | ((value & 0x08) >> 2)
895  	     | ((value & 0x04) << 0)
896  	     | ((value & 0x02) << 2);
897  }
898  
adv7611_read_cable_det(struct v4l2_subdev * sd)899  static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
900  {
901  	u8 value = io_read(sd, 0x6f);
902  
903  	return value & 1;
904  }
905  
adv7612_read_cable_det(struct v4l2_subdev * sd)906  static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
907  {
908  	/*  Reads CABLE_DET_A_RAW. For input B support, need to
909  	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
910  	 */
911  	u8 value = io_read(sd, 0x6f);
912  
913  	return value & 1;
914  }
915  
adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev * sd)916  static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
917  {
918  	struct adv76xx_state *state = to_state(sd);
919  	const struct adv76xx_chip_info *info = state->info;
920  	u16 cable_det = info->read_cable_det(sd);
921  
922  	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
923  }
924  
find_and_set_predefined_video_timings(struct v4l2_subdev * sd,u8 prim_mode,const struct adv76xx_video_standards * predef_vid_timings,const struct v4l2_dv_timings * timings)925  static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
926  		u8 prim_mode,
927  		const struct adv76xx_video_standards *predef_vid_timings,
928  		const struct v4l2_dv_timings *timings)
929  {
930  	int i;
931  
932  	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
933  		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
934  				is_digital_input(sd) ? 250000 : 1000000, false))
935  			continue;
936  		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
937  		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
938  				prim_mode); /* v_freq and prim mode */
939  		return 0;
940  	}
941  
942  	return -1;
943  }
944  
configure_predefined_video_timings(struct v4l2_subdev * sd,struct v4l2_dv_timings * timings)945  static int configure_predefined_video_timings(struct v4l2_subdev *sd,
946  		struct v4l2_dv_timings *timings)
947  {
948  	struct adv76xx_state *state = to_state(sd);
949  	int err;
950  
951  	v4l2_dbg(1, debug, sd, "%s", __func__);
952  
953  	if (adv76xx_has_afe(state)) {
954  		/* reset to default values */
955  		io_write(sd, 0x16, 0x43);
956  		io_write(sd, 0x17, 0x5a);
957  	}
958  	/* disable embedded syncs for auto graphics mode */
959  	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
960  	cp_write(sd, 0x8f, 0x00);
961  	cp_write(sd, 0x90, 0x00);
962  	cp_write(sd, 0xa2, 0x00);
963  	cp_write(sd, 0xa3, 0x00);
964  	cp_write(sd, 0xa4, 0x00);
965  	cp_write(sd, 0xa5, 0x00);
966  	cp_write(sd, 0xa6, 0x00);
967  	cp_write(sd, 0xa7, 0x00);
968  	cp_write(sd, 0xab, 0x00);
969  	cp_write(sd, 0xac, 0x00);
970  
971  	if (is_analog_input(sd)) {
972  		err = find_and_set_predefined_video_timings(sd,
973  				0x01, adv7604_prim_mode_comp, timings);
974  		if (err)
975  			err = find_and_set_predefined_video_timings(sd,
976  					0x02, adv7604_prim_mode_gr, timings);
977  	} else if (is_digital_input(sd)) {
978  		err = find_and_set_predefined_video_timings(sd,
979  				0x05, adv76xx_prim_mode_hdmi_comp, timings);
980  		if (err)
981  			err = find_and_set_predefined_video_timings(sd,
982  					0x06, adv76xx_prim_mode_hdmi_gr, timings);
983  	} else {
984  		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
985  				__func__, state->selected_input);
986  		err = -1;
987  	}
988  
989  
990  	return err;
991  }
992  
configure_custom_video_timings(struct v4l2_subdev * sd,const struct v4l2_bt_timings * bt)993  static void configure_custom_video_timings(struct v4l2_subdev *sd,
994  		const struct v4l2_bt_timings *bt)
995  {
996  	struct adv76xx_state *state = to_state(sd);
997  	u32 width = htotal(bt);
998  	u32 height = vtotal(bt);
999  	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
1000  	u16 cp_start_eav = width - bt->hfrontporch;
1001  	u16 cp_start_vbi = height - bt->vfrontporch;
1002  	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
1003  	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
1004  		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
1005  	const u8 pll[2] = {
1006  		0xc0 | ((width >> 8) & 0x1f),
1007  		width & 0xff
1008  	};
1009  
1010  	v4l2_dbg(2, debug, sd, "%s\n", __func__);
1011  
1012  	if (is_analog_input(sd)) {
1013  		/* auto graphics */
1014  		io_write(sd, 0x00, 0x07); /* video std */
1015  		io_write(sd, 0x01, 0x02); /* prim mode */
1016  		/* enable embedded syncs for auto graphics mode */
1017  		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
1018  
1019  		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1020  		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1021  		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
1022  		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1023  					0x16, pll, 2))
1024  			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1025  
1026  		/* active video - horizontal timing */
1027  		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1028  		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1029  				   ((cp_start_eav >> 8) & 0x0f));
1030  		cp_write(sd, 0xa4, cp_start_eav & 0xff);
1031  
1032  		/* active video - vertical timing */
1033  		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1034  		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1035  				   ((cp_end_vbi >> 8) & 0xf));
1036  		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1037  	} else if (is_digital_input(sd)) {
1038  		/* set default prim_mode/vid_std for HDMI
1039  		   according to [REF_03, c. 4.2] */
1040  		io_write(sd, 0x00, 0x02); /* video std */
1041  		io_write(sd, 0x01, 0x06); /* prim mode */
1042  	} else {
1043  		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1044  				__func__, state->selected_input);
1045  	}
1046  
1047  	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1048  	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1049  	cp_write(sd, 0xab, (height >> 4) & 0xff);
1050  	cp_write(sd, 0xac, (height & 0x0f) << 4);
1051  }
1052  
adv76xx_set_offset(struct v4l2_subdev * sd,bool auto_offset,u16 offset_a,u16 offset_b,u16 offset_c)1053  static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1054  {
1055  	struct adv76xx_state *state = to_state(sd);
1056  	u8 offset_buf[4];
1057  
1058  	if (auto_offset) {
1059  		offset_a = 0x3ff;
1060  		offset_b = 0x3ff;
1061  		offset_c = 0x3ff;
1062  	}
1063  
1064  	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1065  			__func__, auto_offset ? "Auto" : "Manual",
1066  			offset_a, offset_b, offset_c);
1067  
1068  	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1069  	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1070  	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1071  	offset_buf[3] = offset_c & 0x0ff;
1072  
1073  	/* Registers must be written in this order with no i2c access in between */
1074  	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1075  			0x77, offset_buf, 4))
1076  		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1077  }
1078  
adv76xx_set_gain(struct v4l2_subdev * sd,bool auto_gain,u16 gain_a,u16 gain_b,u16 gain_c)1079  static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1080  {
1081  	struct adv76xx_state *state = to_state(sd);
1082  	u8 gain_buf[4];
1083  	u8 gain_man = 1;
1084  	u8 agc_mode_man = 1;
1085  
1086  	if (auto_gain) {
1087  		gain_man = 0;
1088  		agc_mode_man = 0;
1089  		gain_a = 0x100;
1090  		gain_b = 0x100;
1091  		gain_c = 0x100;
1092  	}
1093  
1094  	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1095  			__func__, auto_gain ? "Auto" : "Manual",
1096  			gain_a, gain_b, gain_c);
1097  
1098  	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1099  	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1100  	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1101  	gain_buf[3] = ((gain_c & 0x0ff));
1102  
1103  	/* Registers must be written in this order with no i2c access in between */
1104  	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1105  			     0x73, gain_buf, 4))
1106  		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1107  }
1108  
set_rgb_quantization_range(struct v4l2_subdev * sd)1109  static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1110  {
1111  	struct adv76xx_state *state = to_state(sd);
1112  	bool rgb_output = io_read(sd, 0x02) & 0x02;
1113  	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1114  	u8 y = HDMI_COLORSPACE_RGB;
1115  
1116  	if (hdmi_signal && (io_read(sd, 0x60) & 1))
1117  		y = infoframe_read(sd, 0x01) >> 5;
1118  
1119  	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1120  			__func__, state->rgb_quantization_range,
1121  			rgb_output, hdmi_signal);
1122  
1123  	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1124  	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1125  	io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1126  
1127  	switch (state->rgb_quantization_range) {
1128  	case V4L2_DV_RGB_RANGE_AUTO:
1129  		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1130  			/* Receiving analog RGB signal
1131  			 * Set RGB full range (0-255) */
1132  			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1133  			break;
1134  		}
1135  
1136  		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1137  			/* Receiving analog YPbPr signal
1138  			 * Set automode */
1139  			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1140  			break;
1141  		}
1142  
1143  		if (hdmi_signal) {
1144  			/* Receiving HDMI signal
1145  			 * Set automode */
1146  			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1147  			break;
1148  		}
1149  
1150  		/* Receiving DVI-D signal
1151  		 * ADV7604 selects RGB limited range regardless of
1152  		 * input format (CE/IT) in automatic mode */
1153  		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1154  			/* RGB limited range (16-235) */
1155  			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1156  		} else {
1157  			/* RGB full range (0-255) */
1158  			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1159  
1160  			if (is_digital_input(sd) && rgb_output) {
1161  				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1162  			} else {
1163  				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1164  				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1165  			}
1166  		}
1167  		break;
1168  	case V4L2_DV_RGB_RANGE_LIMITED:
1169  		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1170  			/* YCrCb limited range (16-235) */
1171  			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1172  			break;
1173  		}
1174  
1175  		if (y != HDMI_COLORSPACE_RGB)
1176  			break;
1177  
1178  		/* RGB limited range (16-235) */
1179  		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1180  
1181  		break;
1182  	case V4L2_DV_RGB_RANGE_FULL:
1183  		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1184  			/* YCrCb full range (0-255) */
1185  			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1186  			break;
1187  		}
1188  
1189  		if (y != HDMI_COLORSPACE_RGB)
1190  			break;
1191  
1192  		/* RGB full range (0-255) */
1193  		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1194  
1195  		if (is_analog_input(sd) || hdmi_signal)
1196  			break;
1197  
1198  		/* Adjust gain/offset for DVI-D signals only */
1199  		if (rgb_output) {
1200  			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1201  		} else {
1202  			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1203  			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1204  		}
1205  		break;
1206  	}
1207  }
1208  
adv76xx_s_ctrl(struct v4l2_ctrl * ctrl)1209  static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1210  {
1211  	struct v4l2_subdev *sd =
1212  		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1213  
1214  	struct adv76xx_state *state = to_state(sd);
1215  
1216  	switch (ctrl->id) {
1217  	case V4L2_CID_BRIGHTNESS:
1218  		cp_write(sd, 0x3c, ctrl->val);
1219  		return 0;
1220  	case V4L2_CID_CONTRAST:
1221  		cp_write(sd, 0x3a, ctrl->val);
1222  		return 0;
1223  	case V4L2_CID_SATURATION:
1224  		cp_write(sd, 0x3b, ctrl->val);
1225  		return 0;
1226  	case V4L2_CID_HUE:
1227  		cp_write(sd, 0x3d, ctrl->val);
1228  		return 0;
1229  	case  V4L2_CID_DV_RX_RGB_RANGE:
1230  		state->rgb_quantization_range = ctrl->val;
1231  		set_rgb_quantization_range(sd);
1232  		return 0;
1233  	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1234  		if (!adv76xx_has_afe(state))
1235  			return -EINVAL;
1236  		/* Set the analog sampling phase. This is needed to find the
1237  		   best sampling phase for analog video: an application or
1238  		   driver has to try a number of phases and analyze the picture
1239  		   quality before settling on the best performing phase. */
1240  		afe_write(sd, 0xc8, ctrl->val);
1241  		return 0;
1242  	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1243  		/* Use the default blue color for free running mode,
1244  		   or supply your own. */
1245  		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1246  		return 0;
1247  	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1248  		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1249  		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1250  		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1251  		return 0;
1252  	}
1253  	return -EINVAL;
1254  }
1255  
adv76xx_g_volatile_ctrl(struct v4l2_ctrl * ctrl)1256  static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1257  {
1258  	struct v4l2_subdev *sd =
1259  		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1260  
1261  	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1262  		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1263  		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1264  			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1265  		return 0;
1266  	}
1267  	return -EINVAL;
1268  }
1269  
1270  /* ----------------------------------------------------------------------- */
1271  
no_power(struct v4l2_subdev * sd)1272  static inline bool no_power(struct v4l2_subdev *sd)
1273  {
1274  	/* Entire chip or CP powered off */
1275  	return io_read(sd, 0x0c) & 0x24;
1276  }
1277  
no_signal_tmds(struct v4l2_subdev * sd)1278  static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1279  {
1280  	struct adv76xx_state *state = to_state(sd);
1281  
1282  	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1283  }
1284  
no_lock_tmds(struct v4l2_subdev * sd)1285  static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1286  {
1287  	struct adv76xx_state *state = to_state(sd);
1288  	const struct adv76xx_chip_info *info = state->info;
1289  
1290  	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1291  }
1292  
is_hdmi(struct v4l2_subdev * sd)1293  static inline bool is_hdmi(struct v4l2_subdev *sd)
1294  {
1295  	return hdmi_read(sd, 0x05) & 0x80;
1296  }
1297  
no_lock_sspd(struct v4l2_subdev * sd)1298  static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1299  {
1300  	struct adv76xx_state *state = to_state(sd);
1301  
1302  	/*
1303  	 * Chips without a AFE don't expose registers for the SSPD, so just assume
1304  	 * that we have a lock.
1305  	 */
1306  	if (adv76xx_has_afe(state))
1307  		return false;
1308  
1309  	/* TODO channel 2 */
1310  	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1311  }
1312  
no_lock_stdi(struct v4l2_subdev * sd)1313  static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1314  {
1315  	/* TODO channel 2 */
1316  	return !(cp_read(sd, 0xb1) & 0x80);
1317  }
1318  
no_signal(struct v4l2_subdev * sd)1319  static inline bool no_signal(struct v4l2_subdev *sd)
1320  {
1321  	bool ret;
1322  
1323  	ret = no_power(sd);
1324  
1325  	ret |= no_lock_stdi(sd);
1326  	ret |= no_lock_sspd(sd);
1327  
1328  	if (is_digital_input(sd)) {
1329  		ret |= no_lock_tmds(sd);
1330  		ret |= no_signal_tmds(sd);
1331  	}
1332  
1333  	return ret;
1334  }
1335  
no_lock_cp(struct v4l2_subdev * sd)1336  static inline bool no_lock_cp(struct v4l2_subdev *sd)
1337  {
1338  	struct adv76xx_state *state = to_state(sd);
1339  
1340  	if (!adv76xx_has_afe(state))
1341  		return false;
1342  
1343  	/* CP has detected a non standard number of lines on the incoming
1344  	   video compared to what it is configured to receive by s_dv_timings */
1345  	return io_read(sd, 0x12) & 0x01;
1346  }
1347  
in_free_run(struct v4l2_subdev * sd)1348  static inline bool in_free_run(struct v4l2_subdev *sd)
1349  {
1350  	return cp_read(sd, 0xff) & 0x10;
1351  }
1352  
adv76xx_g_input_status(struct v4l2_subdev * sd,u32 * status)1353  static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1354  {
1355  	*status = 0;
1356  	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1357  	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1358  	if (!in_free_run(sd) && no_lock_cp(sd))
1359  		*status |= is_digital_input(sd) ?
1360  			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1361  
1362  	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1363  
1364  	return 0;
1365  }
1366  
1367  /* ----------------------------------------------------------------------- */
1368  
1369  struct stdi_readback {
1370  	u16 bl, lcf, lcvs;
1371  	u8 hs_pol, vs_pol;
1372  	bool interlaced;
1373  };
1374  
stdi2dv_timings(struct v4l2_subdev * sd,struct stdi_readback * stdi,struct v4l2_dv_timings * timings)1375  static int stdi2dv_timings(struct v4l2_subdev *sd,
1376  		struct stdi_readback *stdi,
1377  		struct v4l2_dv_timings *timings)
1378  {
1379  	struct adv76xx_state *state = to_state(sd);
1380  	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1381  	u32 pix_clk;
1382  	int i;
1383  
1384  	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1385  		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1386  
1387  		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1388  					   adv76xx_get_dv_timings_cap(sd, -1),
1389  					   adv76xx_check_dv_timings, NULL))
1390  			continue;
1391  		if (vtotal(bt) != stdi->lcf + 1)
1392  			continue;
1393  		if (bt->vsync != stdi->lcvs)
1394  			continue;
1395  
1396  		pix_clk = hfreq * htotal(bt);
1397  
1398  		if ((pix_clk < bt->pixelclock + 1000000) &&
1399  		    (pix_clk > bt->pixelclock - 1000000)) {
1400  			*timings = v4l2_dv_timings_presets[i];
1401  			return 0;
1402  		}
1403  	}
1404  
1405  	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1406  			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1407  			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1408  			false, adv76xx_get_dv_timings_cap(sd, -1), timings))
1409  		return 0;
1410  	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1411  			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1412  			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1413  			false, state->aspect_ratio,
1414  			adv76xx_get_dv_timings_cap(sd, -1), timings))
1415  		return 0;
1416  
1417  	v4l2_dbg(2, debug, sd,
1418  		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1419  		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
1420  		stdi->hs_pol, stdi->vs_pol);
1421  	return -1;
1422  }
1423  
1424  
read_stdi(struct v4l2_subdev * sd,struct stdi_readback * stdi)1425  static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1426  {
1427  	struct adv76xx_state *state = to_state(sd);
1428  	const struct adv76xx_chip_info *info = state->info;
1429  	u8 polarity;
1430  
1431  	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1432  		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1433  		return -1;
1434  	}
1435  
1436  	/* read STDI */
1437  	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1438  	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1439  	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1440  	stdi->interlaced = io_read(sd, 0x12) & 0x10;
1441  
1442  	if (adv76xx_has_afe(state)) {
1443  		/* read SSPD */
1444  		polarity = cp_read(sd, 0xb5);
1445  		if ((polarity & 0x03) == 0x01) {
1446  			stdi->hs_pol = polarity & 0x10
1447  				     ? (polarity & 0x08 ? '+' : '-') : 'x';
1448  			stdi->vs_pol = polarity & 0x40
1449  				     ? (polarity & 0x20 ? '+' : '-') : 'x';
1450  		} else {
1451  			stdi->hs_pol = 'x';
1452  			stdi->vs_pol = 'x';
1453  		}
1454  	} else {
1455  		polarity = hdmi_read(sd, 0x05);
1456  		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1457  		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1458  	}
1459  
1460  	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1461  		v4l2_dbg(2, debug, sd,
1462  			"%s: signal lost during readout of STDI/SSPD\n", __func__);
1463  		return -1;
1464  	}
1465  
1466  	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1467  		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1468  		memset(stdi, 0, sizeof(struct stdi_readback));
1469  		return -1;
1470  	}
1471  
1472  	v4l2_dbg(2, debug, sd,
1473  		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1474  		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
1475  		stdi->hs_pol, stdi->vs_pol,
1476  		stdi->interlaced ? "interlaced" : "progressive");
1477  
1478  	return 0;
1479  }
1480  
adv76xx_enum_dv_timings(struct v4l2_subdev * sd,struct v4l2_enum_dv_timings * timings)1481  static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1482  			struct v4l2_enum_dv_timings *timings)
1483  {
1484  	struct adv76xx_state *state = to_state(sd);
1485  
1486  	if (timings->pad >= state->source_pad)
1487  		return -EINVAL;
1488  
1489  	return v4l2_enum_dv_timings_cap(timings,
1490  		adv76xx_get_dv_timings_cap(sd, timings->pad),
1491  		adv76xx_check_dv_timings, NULL);
1492  }
1493  
adv76xx_dv_timings_cap(struct v4l2_subdev * sd,struct v4l2_dv_timings_cap * cap)1494  static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1495  			struct v4l2_dv_timings_cap *cap)
1496  {
1497  	struct adv76xx_state *state = to_state(sd);
1498  	unsigned int pad = cap->pad;
1499  
1500  	if (cap->pad >= state->source_pad)
1501  		return -EINVAL;
1502  
1503  	*cap = *adv76xx_get_dv_timings_cap(sd, pad);
1504  	cap->pad = pad;
1505  
1506  	return 0;
1507  }
1508  
1509  /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1510     if the format is listed in adv76xx_timings[] */
adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev * sd,struct v4l2_dv_timings * timings)1511  static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1512  		struct v4l2_dv_timings *timings)
1513  {
1514  	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1515  				 is_digital_input(sd) ? 250000 : 1000000,
1516  				 adv76xx_check_dv_timings, NULL);
1517  }
1518  
adv7604_read_hdmi_pixelclock(struct v4l2_subdev * sd)1519  static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1520  {
1521  	int a, b;
1522  
1523  	a = hdmi_read(sd, 0x06);
1524  	b = hdmi_read(sd, 0x3b);
1525  	if (a < 0 || b < 0)
1526  		return 0;
1527  
1528  	return a * 1000000 + ((b & 0x30) >> 4) * 250000;
1529  }
1530  
adv7611_read_hdmi_pixelclock(struct v4l2_subdev * sd)1531  static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1532  {
1533  	int a, b;
1534  
1535  	a = hdmi_read(sd, 0x51);
1536  	b = hdmi_read(sd, 0x52);
1537  	if (a < 0 || b < 0)
1538  		return 0;
1539  
1540  	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1541  }
1542  
adv76xx_read_hdmi_pixelclock(struct v4l2_subdev * sd)1543  static unsigned int adv76xx_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1544  {
1545  	struct adv76xx_state *state = to_state(sd);
1546  	const struct adv76xx_chip_info *info = state->info;
1547  	unsigned int freq, bits_per_channel, pixelrepetition;
1548  
1549  	freq = info->read_hdmi_pixelclock(sd);
1550  	if (is_hdmi(sd)) {
1551  		/* adjust for deep color mode and pixel repetition */
1552  		bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1553  		pixelrepetition = (hdmi_read(sd, 0x05) & 0x0f) + 1;
1554  
1555  		freq = freq * 8 / bits_per_channel / pixelrepetition;
1556  	}
1557  
1558  	return freq;
1559  }
1560  
adv76xx_query_dv_timings(struct v4l2_subdev * sd,struct v4l2_dv_timings * timings)1561  static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1562  			struct v4l2_dv_timings *timings)
1563  {
1564  	struct adv76xx_state *state = to_state(sd);
1565  	const struct adv76xx_chip_info *info = state->info;
1566  	struct v4l2_bt_timings *bt = &timings->bt;
1567  	struct stdi_readback stdi;
1568  
1569  	if (!timings)
1570  		return -EINVAL;
1571  
1572  	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1573  
1574  	if (no_signal(sd)) {
1575  		state->restart_stdi_once = true;
1576  		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1577  		return -ENOLINK;
1578  	}
1579  
1580  	/* read STDI */
1581  	if (read_stdi(sd, &stdi)) {
1582  		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1583  		return -ENOLINK;
1584  	}
1585  	bt->interlaced = stdi.interlaced ?
1586  		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1587  
1588  	if (is_digital_input(sd)) {
1589  		bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1590  		u8 vic = 0;
1591  		u32 w, h;
1592  
1593  		w = hdmi_read16(sd, 0x07, info->linewidth_mask);
1594  		h = hdmi_read16(sd, 0x09, info->field0_height_mask);
1595  
1596  		if (hdmi_signal && (io_read(sd, 0x60) & 1))
1597  			vic = infoframe_read(sd, 0x04);
1598  
1599  		if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
1600  		    bt->width == w && bt->height == h)
1601  			goto found;
1602  
1603  		timings->type = V4L2_DV_BT_656_1120;
1604  
1605  		bt->width = w;
1606  		bt->height = h;
1607  		bt->pixelclock = adv76xx_read_hdmi_pixelclock(sd);
1608  		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1609  		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1610  		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1611  		bt->vfrontporch = hdmi_read16(sd, 0x2a,
1612  			info->field0_vfrontporch_mask) / 2;
1613  		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1614  		bt->vbackporch = hdmi_read16(sd, 0x32,
1615  			info->field0_vbackporch_mask) / 2;
1616  		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1617  			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1618  		if (bt->interlaced == V4L2_DV_INTERLACED) {
1619  			bt->height += hdmi_read16(sd, 0x0b,
1620  				info->field1_height_mask);
1621  			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1622  				info->field1_vfrontporch_mask) / 2;
1623  			bt->il_vsync = hdmi_read16(sd, 0x30,
1624  				info->field1_vsync_mask) / 2;
1625  			bt->il_vbackporch = hdmi_read16(sd, 0x34,
1626  				info->field1_vbackporch_mask) / 2;
1627  		}
1628  		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1629  	} else {
1630  		/* find format
1631  		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1632  		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1633  		 */
1634  		if (!stdi2dv_timings(sd, &stdi, timings))
1635  			goto found;
1636  		stdi.lcvs += 1;
1637  		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1638  		if (!stdi2dv_timings(sd, &stdi, timings))
1639  			goto found;
1640  		stdi.lcvs -= 2;
1641  		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1642  		if (stdi2dv_timings(sd, &stdi, timings)) {
1643  			/*
1644  			 * The STDI block may measure wrong values, especially
1645  			 * for lcvs and lcf. If the driver can not find any
1646  			 * valid timing, the STDI block is restarted to measure
1647  			 * the video timings again. The function will return an
1648  			 * error, but the restart of STDI will generate a new
1649  			 * STDI interrupt and the format detection process will
1650  			 * restart.
1651  			 */
1652  			if (state->restart_stdi_once) {
1653  				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1654  				/* TODO restart STDI for Sync Channel 2 */
1655  				/* enter one-shot mode */
1656  				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1657  				/* trigger STDI restart */
1658  				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1659  				/* reset to continuous mode */
1660  				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1661  				state->restart_stdi_once = false;
1662  				return -ENOLINK;
1663  			}
1664  			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1665  			return -ERANGE;
1666  		}
1667  		state->restart_stdi_once = true;
1668  	}
1669  found:
1670  
1671  	if (no_signal(sd)) {
1672  		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1673  		memset(timings, 0, sizeof(struct v4l2_dv_timings));
1674  		return -ENOLINK;
1675  	}
1676  
1677  	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1678  			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1679  		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1680  				__func__, (u32)bt->pixelclock);
1681  		return -ERANGE;
1682  	}
1683  
1684  	if (debug > 1)
1685  		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1686  				      timings, true);
1687  
1688  	return 0;
1689  }
1690  
adv76xx_s_dv_timings(struct v4l2_subdev * sd,struct v4l2_dv_timings * timings)1691  static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1692  		struct v4l2_dv_timings *timings)
1693  {
1694  	struct adv76xx_state *state = to_state(sd);
1695  	struct v4l2_bt_timings *bt;
1696  	int err;
1697  
1698  	if (!timings)
1699  		return -EINVAL;
1700  
1701  	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1702  		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1703  		return 0;
1704  	}
1705  
1706  	bt = &timings->bt;
1707  
1708  	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1709  				   adv76xx_check_dv_timings, NULL))
1710  		return -ERANGE;
1711  
1712  	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1713  
1714  	state->timings = *timings;
1715  
1716  	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1717  
1718  	/* Use prim_mode and vid_std when available */
1719  	err = configure_predefined_video_timings(sd, timings);
1720  	if (err) {
1721  		/* custom settings when the video format
1722  		 does not have prim_mode/vid_std */
1723  		configure_custom_video_timings(sd, bt);
1724  	}
1725  
1726  	set_rgb_quantization_range(sd);
1727  
1728  	if (debug > 1)
1729  		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1730  				      timings, true);
1731  	return 0;
1732  }
1733  
adv76xx_g_dv_timings(struct v4l2_subdev * sd,struct v4l2_dv_timings * timings)1734  static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1735  		struct v4l2_dv_timings *timings)
1736  {
1737  	struct adv76xx_state *state = to_state(sd);
1738  
1739  	*timings = state->timings;
1740  	return 0;
1741  }
1742  
adv7604_set_termination(struct v4l2_subdev * sd,bool enable)1743  static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1744  {
1745  	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1746  }
1747  
adv7611_set_termination(struct v4l2_subdev * sd,bool enable)1748  static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1749  {
1750  	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1751  }
1752  
enable_input(struct v4l2_subdev * sd)1753  static void enable_input(struct v4l2_subdev *sd)
1754  {
1755  	struct adv76xx_state *state = to_state(sd);
1756  
1757  	if (is_analog_input(sd)) {
1758  		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1759  	} else if (is_digital_input(sd)) {
1760  		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1761  		state->info->set_termination(sd, true);
1762  		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1763  		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1764  	} else {
1765  		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1766  				__func__, state->selected_input);
1767  	}
1768  }
1769  
disable_input(struct v4l2_subdev * sd)1770  static void disable_input(struct v4l2_subdev *sd)
1771  {
1772  	struct adv76xx_state *state = to_state(sd);
1773  
1774  	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1775  	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1776  	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1777  	state->info->set_termination(sd, false);
1778  }
1779  
select_input(struct v4l2_subdev * sd)1780  static void select_input(struct v4l2_subdev *sd)
1781  {
1782  	struct adv76xx_state *state = to_state(sd);
1783  	const struct adv76xx_chip_info *info = state->info;
1784  
1785  	if (is_analog_input(sd)) {
1786  		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1787  
1788  		afe_write(sd, 0x00, 0x08); /* power up ADC */
1789  		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1790  		afe_write(sd, 0xc8, 0x00); /* phase control */
1791  	} else if (is_digital_input(sd)) {
1792  		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1793  
1794  		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1795  
1796  		if (adv76xx_has_afe(state)) {
1797  			afe_write(sd, 0x00, 0xff); /* power down ADC */
1798  			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1799  			afe_write(sd, 0xc8, 0x40); /* phase control */
1800  		}
1801  
1802  		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1803  		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1804  		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1805  	} else {
1806  		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1807  				__func__, state->selected_input);
1808  	}
1809  
1810  	/* Enable video adjustment (contrast, saturation, brightness and hue) */
1811  	cp_write_clr_set(sd, 0x3e, 0x80, 0x80);
1812  }
1813  
adv76xx_s_routing(struct v4l2_subdev * sd,u32 input,u32 output,u32 config)1814  static int adv76xx_s_routing(struct v4l2_subdev *sd,
1815  		u32 input, u32 output, u32 config)
1816  {
1817  	struct adv76xx_state *state = to_state(sd);
1818  
1819  	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1820  			__func__, input, state->selected_input);
1821  
1822  	if (input == state->selected_input)
1823  		return 0;
1824  
1825  	if (input > state->info->max_port)
1826  		return -EINVAL;
1827  
1828  	state->selected_input = input;
1829  
1830  	disable_input(sd);
1831  	select_input(sd);
1832  	enable_input(sd);
1833  
1834  	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1835  
1836  	return 0;
1837  }
1838  
adv76xx_enum_mbus_code(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_mbus_code_enum * code)1839  static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1840  				  struct v4l2_subdev_state *sd_state,
1841  				  struct v4l2_subdev_mbus_code_enum *code)
1842  {
1843  	struct adv76xx_state *state = to_state(sd);
1844  
1845  	if (code->index >= state->info->nformats)
1846  		return -EINVAL;
1847  
1848  	code->code = state->info->formats[code->index].code;
1849  
1850  	return 0;
1851  }
1852  
adv76xx_fill_format(struct adv76xx_state * state,struct v4l2_mbus_framefmt * format)1853  static void adv76xx_fill_format(struct adv76xx_state *state,
1854  				struct v4l2_mbus_framefmt *format)
1855  {
1856  	memset(format, 0, sizeof(*format));
1857  
1858  	format->width = state->timings.bt.width;
1859  	format->height = state->timings.bt.height;
1860  	format->field = V4L2_FIELD_NONE;
1861  	format->colorspace = V4L2_COLORSPACE_SRGB;
1862  
1863  	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1864  		format->colorspace = (state->timings.bt.height <= 576) ?
1865  			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1866  }
1867  
1868  /*
1869   * Compute the op_ch_sel value required to obtain on the bus the component order
1870   * corresponding to the selected format taking into account bus reordering
1871   * applied by the board at the output of the device.
1872   *
1873   * The following table gives the op_ch_value from the format component order
1874   * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1875   * adv76xx_bus_order value in row).
1876   *
1877   *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
1878   * ----------+-------------------------------------------------
1879   * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
1880   * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
1881   * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
1882   * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
1883   * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
1884   * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
1885   */
adv76xx_op_ch_sel(struct adv76xx_state * state)1886  static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1887  {
1888  #define _SEL(a,b,c,d,e,f)	{ \
1889  	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1890  	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1891  #define _BUS(x)			[ADV7604_BUS_ORDER_##x]
1892  
1893  	static const unsigned int op_ch_sel[6][6] = {
1894  		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1895  		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1896  		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1897  		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1898  		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1899  		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1900  	};
1901  
1902  	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1903  }
1904  
adv76xx_setup_format(struct adv76xx_state * state)1905  static void adv76xx_setup_format(struct adv76xx_state *state)
1906  {
1907  	struct v4l2_subdev *sd = &state->sd;
1908  
1909  	io_write_clr_set(sd, 0x02, 0x02,
1910  			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1911  	io_write(sd, 0x03, state->format->op_format_sel |
1912  		 state->pdata.op_format_mode_sel);
1913  	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1914  	io_write_clr_set(sd, 0x05, 0x01,
1915  			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1916  	set_rgb_quantization_range(sd);
1917  }
1918  
adv76xx_get_format(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)1919  static int adv76xx_get_format(struct v4l2_subdev *sd,
1920  			      struct v4l2_subdev_state *sd_state,
1921  			      struct v4l2_subdev_format *format)
1922  {
1923  	struct adv76xx_state *state = to_state(sd);
1924  
1925  	if (format->pad != state->source_pad)
1926  		return -EINVAL;
1927  
1928  	adv76xx_fill_format(state, &format->format);
1929  
1930  	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1931  		struct v4l2_mbus_framefmt *fmt;
1932  
1933  		fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
1934  		format->format.code = fmt->code;
1935  	} else {
1936  		format->format.code = state->format->code;
1937  	}
1938  
1939  	return 0;
1940  }
1941  
adv76xx_get_selection(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)1942  static int adv76xx_get_selection(struct v4l2_subdev *sd,
1943  				 struct v4l2_subdev_state *sd_state,
1944  				 struct v4l2_subdev_selection *sel)
1945  {
1946  	struct adv76xx_state *state = to_state(sd);
1947  
1948  	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1949  		return -EINVAL;
1950  	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1951  	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1952  		return -EINVAL;
1953  
1954  	sel->r.left	= 0;
1955  	sel->r.top	= 0;
1956  	sel->r.width	= state->timings.bt.width;
1957  	sel->r.height	= state->timings.bt.height;
1958  
1959  	return 0;
1960  }
1961  
adv76xx_set_format(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)1962  static int adv76xx_set_format(struct v4l2_subdev *sd,
1963  			      struct v4l2_subdev_state *sd_state,
1964  			      struct v4l2_subdev_format *format)
1965  {
1966  	struct adv76xx_state *state = to_state(sd);
1967  	const struct adv76xx_format_info *info;
1968  
1969  	if (format->pad != state->source_pad)
1970  		return -EINVAL;
1971  
1972  	info = adv76xx_format_info(state, format->format.code);
1973  	if (!info)
1974  		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1975  
1976  	adv76xx_fill_format(state, &format->format);
1977  	format->format.code = info->code;
1978  
1979  	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1980  		struct v4l2_mbus_framefmt *fmt;
1981  
1982  		fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
1983  		fmt->code = format->format.code;
1984  	} else {
1985  		state->format = info;
1986  		adv76xx_setup_format(state);
1987  	}
1988  
1989  	return 0;
1990  }
1991  
1992  #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
adv76xx_cec_tx_raw_status(struct v4l2_subdev * sd,u8 tx_raw_status)1993  static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1994  {
1995  	struct adv76xx_state *state = to_state(sd);
1996  
1997  	if ((cec_read(sd, 0x11) & 0x01) == 0) {
1998  		v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1999  		return;
2000  	}
2001  
2002  	if (tx_raw_status & 0x02) {
2003  		v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
2004  			 __func__);
2005  		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
2006  				  1, 0, 0, 0);
2007  		return;
2008  	}
2009  	if (tx_raw_status & 0x04) {
2010  		u8 status;
2011  		u8 nack_cnt;
2012  		u8 low_drive_cnt;
2013  
2014  		v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
2015  		/*
2016  		 * We set this status bit since this hardware performs
2017  		 * retransmissions.
2018  		 */
2019  		status = CEC_TX_STATUS_MAX_RETRIES;
2020  		nack_cnt = cec_read(sd, 0x14) & 0xf;
2021  		if (nack_cnt)
2022  			status |= CEC_TX_STATUS_NACK;
2023  		low_drive_cnt = cec_read(sd, 0x14) >> 4;
2024  		if (low_drive_cnt)
2025  			status |= CEC_TX_STATUS_LOW_DRIVE;
2026  		cec_transmit_done(state->cec_adap, status,
2027  				  0, nack_cnt, low_drive_cnt, 0);
2028  		return;
2029  	}
2030  	if (tx_raw_status & 0x01) {
2031  		v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
2032  		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
2033  		return;
2034  	}
2035  }
2036  
adv76xx_cec_isr(struct v4l2_subdev * sd,bool * handled)2037  static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2038  {
2039  	struct adv76xx_state *state = to_state(sd);
2040  	const struct adv76xx_chip_info *info = state->info;
2041  	u8 cec_irq;
2042  
2043  	/* cec controller */
2044  	cec_irq = io_read(sd, info->cec_irq_status) & 0x0f;
2045  	if (!cec_irq)
2046  		return;
2047  
2048  	v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2049  	adv76xx_cec_tx_raw_status(sd, cec_irq);
2050  	if (cec_irq & 0x08) {
2051  		struct cec_msg msg;
2052  
2053  		msg.len = cec_read(sd, 0x25) & 0x1f;
2054  		if (msg.len > CEC_MAX_MSG_SIZE)
2055  			msg.len = CEC_MAX_MSG_SIZE;
2056  
2057  		if (msg.len) {
2058  			u8 i;
2059  
2060  			for (i = 0; i < msg.len; i++)
2061  				msg.msg[i] = cec_read(sd, i + 0x15);
2062  			cec_write(sd, info->cec_rx_enable,
2063  				  info->cec_rx_enable_mask); /* re-enable rx */
2064  			cec_received_msg(state->cec_adap, &msg);
2065  		}
2066  	}
2067  
2068  	if (info->cec_irq_swap) {
2069  		/*
2070  		 * Note: the bit order is swapped between 0x4d and 0x4e
2071  		 * on adv7604
2072  		 */
2073  		cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2074  			  ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2075  	}
2076  	io_write(sd, info->cec_irq_status + 1, cec_irq);
2077  
2078  	if (handled)
2079  		*handled = true;
2080  }
2081  
adv76xx_cec_adap_enable(struct cec_adapter * adap,bool enable)2082  static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2083  {
2084  	struct adv76xx_state *state = cec_get_drvdata(adap);
2085  	const struct adv76xx_chip_info *info = state->info;
2086  	struct v4l2_subdev *sd = &state->sd;
2087  
2088  	if (!state->cec_enabled_adap && enable) {
2089  		cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2090  		cec_write(sd, 0x2c, 0x01);	/* cec soft reset */
2091  		cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2092  		/* enabled irqs: */
2093  		/* tx: ready */
2094  		/* tx: arbitration lost */
2095  		/* tx: retry timeout */
2096  		/* rx: ready */
2097  		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x0f);
2098  		cec_write(sd, info->cec_rx_enable, info->cec_rx_enable_mask);
2099  	} else if (state->cec_enabled_adap && !enable) {
2100  		/* disable cec interrupts */
2101  		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x00);
2102  		/* disable address mask 1-3 */
2103  		cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2104  		/* power down cec section */
2105  		cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2106  		state->cec_valid_addrs = 0;
2107  	}
2108  	state->cec_enabled_adap = enable;
2109  	adv76xx_s_detect_tx_5v_ctrl(sd);
2110  	return 0;
2111  }
2112  
adv76xx_cec_adap_log_addr(struct cec_adapter * adap,u8 addr)2113  static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2114  {
2115  	struct adv76xx_state *state = cec_get_drvdata(adap);
2116  	struct v4l2_subdev *sd = &state->sd;
2117  	unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2118  
2119  	if (!state->cec_enabled_adap)
2120  		return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2121  
2122  	if (addr == CEC_LOG_ADDR_INVALID) {
2123  		cec_write_clr_set(sd, 0x27, 0x70, 0);
2124  		state->cec_valid_addrs = 0;
2125  		return 0;
2126  	}
2127  
2128  	for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2129  		bool is_valid = state->cec_valid_addrs & (1 << i);
2130  
2131  		if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2132  			free_idx = i;
2133  		if (is_valid && state->cec_addr[i] == addr)
2134  			return 0;
2135  	}
2136  	if (i == ADV76XX_MAX_ADDRS) {
2137  		i = free_idx;
2138  		if (i == ADV76XX_MAX_ADDRS)
2139  			return -ENXIO;
2140  	}
2141  	state->cec_addr[i] = addr;
2142  	state->cec_valid_addrs |= 1 << i;
2143  
2144  	switch (i) {
2145  	case 0:
2146  		/* enable address mask 0 */
2147  		cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2148  		/* set address for mask 0 */
2149  		cec_write_clr_set(sd, 0x28, 0x0f, addr);
2150  		break;
2151  	case 1:
2152  		/* enable address mask 1 */
2153  		cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2154  		/* set address for mask 1 */
2155  		cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2156  		break;
2157  	case 2:
2158  		/* enable address mask 2 */
2159  		cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2160  		/* set address for mask 1 */
2161  		cec_write_clr_set(sd, 0x29, 0x0f, addr);
2162  		break;
2163  	}
2164  	return 0;
2165  }
2166  
adv76xx_cec_adap_transmit(struct cec_adapter * adap,u8 attempts,u32 signal_free_time,struct cec_msg * msg)2167  static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2168  				     u32 signal_free_time, struct cec_msg *msg)
2169  {
2170  	struct adv76xx_state *state = cec_get_drvdata(adap);
2171  	struct v4l2_subdev *sd = &state->sd;
2172  	u8 len = msg->len;
2173  	unsigned int i;
2174  
2175  	/*
2176  	 * The number of retries is the number of attempts - 1, but retry
2177  	 * at least once. It's not clear if a value of 0 is allowed, so
2178  	 * let's do at least one retry.
2179  	 */
2180  	cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2181  
2182  	if (len > 16) {
2183  		v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2184  		return -EINVAL;
2185  	}
2186  
2187  	/* write data */
2188  	for (i = 0; i < len; i++)
2189  		cec_write(sd, i, msg->msg[i]);
2190  
2191  	/* set length (data + header) */
2192  	cec_write(sd, 0x10, len);
2193  	/* start transmit, enable tx */
2194  	cec_write(sd, 0x11, 0x01);
2195  	return 0;
2196  }
2197  
2198  static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2199  	.adap_enable = adv76xx_cec_adap_enable,
2200  	.adap_log_addr = adv76xx_cec_adap_log_addr,
2201  	.adap_transmit = adv76xx_cec_adap_transmit,
2202  };
2203  #endif
2204  
adv76xx_isr(struct v4l2_subdev * sd,u32 status,bool * handled)2205  static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2206  {
2207  	struct adv76xx_state *state = to_state(sd);
2208  	const struct adv76xx_chip_info *info = state->info;
2209  	const u8 irq_reg_0x43 = io_read(sd, 0x43);
2210  	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2211  	const u8 irq_reg_0x70 = io_read(sd, 0x70);
2212  	u8 fmt_change_digital;
2213  	u8 fmt_change;
2214  	u8 tx_5v;
2215  
2216  	if (irq_reg_0x43)
2217  		io_write(sd, 0x44, irq_reg_0x43);
2218  	if (irq_reg_0x70)
2219  		io_write(sd, 0x71, irq_reg_0x70);
2220  	if (irq_reg_0x6b)
2221  		io_write(sd, 0x6c, irq_reg_0x6b);
2222  
2223  	v4l2_dbg(2, debug, sd, "%s: ", __func__);
2224  
2225  	/* format change */
2226  	fmt_change = irq_reg_0x43 & 0x98;
2227  	fmt_change_digital = is_digital_input(sd)
2228  			   ? irq_reg_0x6b & info->fmt_change_digital_mask
2229  			   : 0;
2230  
2231  	if (fmt_change || fmt_change_digital) {
2232  		v4l2_dbg(1, debug, sd,
2233  			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2234  			__func__, fmt_change, fmt_change_digital);
2235  
2236  		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2237  
2238  		if (handled)
2239  			*handled = true;
2240  	}
2241  	/* HDMI/DVI mode */
2242  	if (irq_reg_0x6b & 0x01) {
2243  		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2244  			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2245  		set_rgb_quantization_range(sd);
2246  		if (handled)
2247  			*handled = true;
2248  	}
2249  
2250  #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2251  	/* cec */
2252  	adv76xx_cec_isr(sd, handled);
2253  #endif
2254  
2255  	/* tx 5v detect */
2256  	tx_5v = irq_reg_0x70 & info->cable_det_mask;
2257  	if (tx_5v) {
2258  		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2259  		adv76xx_s_detect_tx_5v_ctrl(sd);
2260  		if (handled)
2261  			*handled = true;
2262  	}
2263  	return 0;
2264  }
2265  
adv76xx_irq_handler(int irq,void * dev_id)2266  static irqreturn_t adv76xx_irq_handler(int irq, void *dev_id)
2267  {
2268  	struct adv76xx_state *state = dev_id;
2269  	bool handled = false;
2270  
2271  	adv76xx_isr(&state->sd, 0, &handled);
2272  
2273  	return handled ? IRQ_HANDLED : IRQ_NONE;
2274  }
2275  
adv76xx_get_edid(struct v4l2_subdev * sd,struct v4l2_edid * edid)2276  static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2277  {
2278  	struct adv76xx_state *state = to_state(sd);
2279  	u8 *data = NULL;
2280  
2281  	memset(edid->reserved, 0, sizeof(edid->reserved));
2282  
2283  	switch (edid->pad) {
2284  	case ADV76XX_PAD_HDMI_PORT_A:
2285  	case ADV7604_PAD_HDMI_PORT_B:
2286  	case ADV7604_PAD_HDMI_PORT_C:
2287  	case ADV7604_PAD_HDMI_PORT_D:
2288  		if (state->edid.present & (1 << edid->pad))
2289  			data = state->edid.edid;
2290  		break;
2291  	default:
2292  		return -EINVAL;
2293  	}
2294  
2295  	if (edid->start_block == 0 && edid->blocks == 0) {
2296  		edid->blocks = data ? state->edid.blocks : 0;
2297  		return 0;
2298  	}
2299  
2300  	if (!data)
2301  		return -ENODATA;
2302  
2303  	if (edid->start_block >= state->edid.blocks)
2304  		return -EINVAL;
2305  
2306  	if (edid->start_block + edid->blocks > state->edid.blocks)
2307  		edid->blocks = state->edid.blocks - edid->start_block;
2308  
2309  	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2310  
2311  	return 0;
2312  }
2313  
adv76xx_set_edid(struct v4l2_subdev * sd,struct v4l2_edid * edid)2314  static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2315  {
2316  	struct adv76xx_state *state = to_state(sd);
2317  	const struct adv76xx_chip_info *info = state->info;
2318  	unsigned int spa_loc;
2319  	u16 pa, parent_pa;
2320  	int err;
2321  	int i;
2322  
2323  	memset(edid->reserved, 0, sizeof(edid->reserved));
2324  
2325  	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2326  		return -EINVAL;
2327  	if (edid->start_block != 0)
2328  		return -EINVAL;
2329  	if (edid->blocks == 0) {
2330  		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2331  		state->edid.present &= ~(1 << edid->pad);
2332  		adv76xx_set_hpd(state, state->edid.present);
2333  		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2334  
2335  		/* Fall back to a 16:9 aspect ratio */
2336  		state->aspect_ratio.numerator = 16;
2337  		state->aspect_ratio.denominator = 9;
2338  
2339  		if (!state->edid.present) {
2340  			state->edid.blocks = 0;
2341  			cec_phys_addr_invalidate(state->cec_adap);
2342  		}
2343  
2344  		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2345  				__func__, edid->pad, state->edid.present);
2346  		return 0;
2347  	}
2348  	if (edid->blocks > ADV76XX_MAX_EDID_BLOCKS) {
2349  		edid->blocks = ADV76XX_MAX_EDID_BLOCKS;
2350  		return -E2BIG;
2351  	}
2352  
2353  	pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2354  	err = v4l2_phys_addr_validate(pa, &parent_pa, NULL);
2355  	if (err)
2356  		return err;
2357  
2358  	if (!spa_loc) {
2359  		/*
2360  		 * There is no SPA, so just set spa_loc to 128 and pa to whatever
2361  		 * data is there.
2362  		 */
2363  		spa_loc = 128;
2364  		pa = (edid->edid[spa_loc] << 8) | edid->edid[spa_loc + 1];
2365  	}
2366  
2367  	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2368  			__func__, edid->pad, state->edid.present);
2369  
2370  	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2371  	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2372  	adv76xx_set_hpd(state, 0);
2373  	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2374  
2375  	switch (edid->pad) {
2376  	case ADV76XX_PAD_HDMI_PORT_A:
2377  		state->spa_port_a[0] = pa >> 8;
2378  		state->spa_port_a[1] = pa & 0xff;
2379  		break;
2380  	case ADV7604_PAD_HDMI_PORT_B:
2381  		rep_write(sd, info->edid_spa_port_b_reg, pa >> 8);
2382  		rep_write(sd, info->edid_spa_port_b_reg + 1, pa & 0xff);
2383  		break;
2384  	case ADV7604_PAD_HDMI_PORT_C:
2385  		rep_write(sd, info->edid_spa_port_b_reg + 2, pa >> 8);
2386  		rep_write(sd, info->edid_spa_port_b_reg + 3, pa & 0xff);
2387  		break;
2388  	case ADV7604_PAD_HDMI_PORT_D:
2389  		rep_write(sd, info->edid_spa_port_b_reg + 4, pa >> 8);
2390  		rep_write(sd, info->edid_spa_port_b_reg + 5, pa & 0xff);
2391  		break;
2392  	default:
2393  		return -EINVAL;
2394  	}
2395  
2396  	if (info->edid_spa_loc_reg) {
2397  		u8 mask = info->edid_spa_loc_msb_mask;
2398  
2399  		rep_write(sd, info->edid_spa_loc_reg, spa_loc & 0xff);
2400  		rep_write_clr_set(sd, info->edid_spa_loc_reg + 1,
2401  				  mask, (spa_loc & 0x100) ? mask : 0);
2402  	}
2403  
2404  	edid->edid[spa_loc] = state->spa_port_a[0];
2405  	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2406  
2407  	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2408  	state->edid.blocks = edid->blocks;
2409  	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2410  			edid->edid[0x16]);
2411  	state->edid.present |= 1 << edid->pad;
2412  
2413  	rep_write_clr_set(sd, info->edid_segment_reg,
2414  			  info->edid_segment_mask, 0);
2415  	err = edid_write_block(sd, 128 * min(edid->blocks, 2U), state->edid.edid);
2416  	if (err < 0) {
2417  		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2418  		return err;
2419  	}
2420  	if (edid->blocks > 2) {
2421  		rep_write_clr_set(sd, info->edid_segment_reg,
2422  				  info->edid_segment_mask,
2423  				  info->edid_segment_mask);
2424  		err = edid_write_block(sd, 128 * (edid->blocks - 2),
2425  				       state->edid.edid + 256);
2426  		if (err < 0) {
2427  			v4l2_err(sd, "error %d writing edid pad %d\n",
2428  				 err, edid->pad);
2429  			return err;
2430  		}
2431  	}
2432  
2433  	/* adv76xx calculates the checksums and enables I2C access to internal
2434  	   EDID RAM from DDC port. */
2435  	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2436  
2437  	for (i = 0; i < 1000; i++) {
2438  		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2439  			break;
2440  		mdelay(1);
2441  	}
2442  	if (i == 1000) {
2443  		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2444  		return -EIO;
2445  	}
2446  	cec_s_phys_addr(state->cec_adap, parent_pa, false);
2447  
2448  	/* enable hotplug after 100 ms */
2449  	schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2450  	return 0;
2451  }
2452  
2453  /*********** avi info frame CEA-861-E **************/
2454  
2455  static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2456  	{ "AVI", 0x01, 0xe0, 0x00 },
2457  	{ "Audio", 0x02, 0xe3, 0x1c },
2458  	{ "SDP", 0x04, 0xe6, 0x2a },
2459  	{ "Vendor", 0x10, 0xec, 0x54 }
2460  };
2461  
adv76xx_read_infoframe(struct v4l2_subdev * sd,int index,union hdmi_infoframe * frame)2462  static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2463  				  union hdmi_infoframe *frame)
2464  {
2465  	uint8_t buffer[32];
2466  	u8 len;
2467  	int i;
2468  
2469  	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2470  		v4l2_info(sd, "%s infoframe not received\n",
2471  			  adv76xx_cri[index].desc);
2472  		return -ENOENT;
2473  	}
2474  
2475  	for (i = 0; i < 3; i++)
2476  		buffer[i] = infoframe_read(sd,
2477  					   adv76xx_cri[index].head_addr + i);
2478  
2479  	len = buffer[2] + 1;
2480  
2481  	if (len + 3 > sizeof(buffer)) {
2482  		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2483  			 adv76xx_cri[index].desc, len);
2484  		return -ENOENT;
2485  	}
2486  
2487  	for (i = 0; i < len; i++)
2488  		buffer[i + 3] = infoframe_read(sd,
2489  				       adv76xx_cri[index].payload_addr + i);
2490  
2491  	if (hdmi_infoframe_unpack(frame, buffer, len + 3) < 0) {
2492  		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2493  			 adv76xx_cri[index].desc);
2494  		return -ENOENT;
2495  	}
2496  	return 0;
2497  }
2498  
adv76xx_log_infoframes(struct v4l2_subdev * sd)2499  static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2500  {
2501  	int i;
2502  
2503  	if (!is_hdmi(sd)) {
2504  		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2505  		return;
2506  	}
2507  
2508  	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2509  		union hdmi_infoframe frame;
2510  		struct i2c_client *client = v4l2_get_subdevdata(sd);
2511  
2512  		if (!adv76xx_read_infoframe(sd, i, &frame))
2513  			hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2514  	}
2515  }
2516  
adv76xx_log_status(struct v4l2_subdev * sd)2517  static int adv76xx_log_status(struct v4l2_subdev *sd)
2518  {
2519  	struct adv76xx_state *state = to_state(sd);
2520  	const struct adv76xx_chip_info *info = state->info;
2521  	struct v4l2_dv_timings timings;
2522  	struct stdi_readback stdi;
2523  	int ret;
2524  	u8 reg_io_0x02;
2525  	u8 edid_enabled;
2526  	u8 cable_det;
2527  	static const char * const csc_coeff_sel_rb[16] = {
2528  		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2529  		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2530  		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2531  		"reserved", "reserved", "reserved", "reserved", "manual"
2532  	};
2533  	static const char * const input_color_space_txt[16] = {
2534  		"RGB limited range (16-235)", "RGB full range (0-255)",
2535  		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2536  		"xvYCC Bt.601", "xvYCC Bt.709",
2537  		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2538  		"invalid", "invalid", "invalid", "invalid", "invalid",
2539  		"invalid", "invalid", "automatic"
2540  	};
2541  	static const char * const hdmi_color_space_txt[16] = {
2542  		"RGB limited range (16-235)", "RGB full range (0-255)",
2543  		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2544  		"xvYCC Bt.601", "xvYCC Bt.709",
2545  		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2546  		"sYCC", "opYCC 601", "opRGB", "invalid", "invalid",
2547  		"invalid", "invalid", "invalid"
2548  	};
2549  	static const char * const rgb_quantization_range_txt[] = {
2550  		"Automatic",
2551  		"RGB limited range (16-235)",
2552  		"RGB full range (0-255)",
2553  	};
2554  	static const char * const deep_color_mode_txt[4] = {
2555  		"8-bits per channel",
2556  		"10-bits per channel",
2557  		"12-bits per channel",
2558  		"16-bits per channel (not supported)"
2559  	};
2560  
2561  	v4l2_info(sd, "-----Chip status-----\n");
2562  	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2563  	edid_enabled = rep_read(sd, info->edid_status_reg);
2564  	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2565  			((edid_enabled & 0x01) ? "Yes" : "No"),
2566  			((edid_enabled & 0x02) ? "Yes" : "No"),
2567  			((edid_enabled & 0x04) ? "Yes" : "No"),
2568  			((edid_enabled & 0x08) ? "Yes" : "No"));
2569  	v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2570  			"enabled" : "disabled");
2571  	if (state->cec_enabled_adap) {
2572  		int i;
2573  
2574  		for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2575  			bool is_valid = state->cec_valid_addrs & (1 << i);
2576  
2577  			if (is_valid)
2578  				v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2579  					  state->cec_addr[i]);
2580  		}
2581  	}
2582  
2583  	v4l2_info(sd, "-----Signal status-----\n");
2584  	cable_det = info->read_cable_det(sd);
2585  	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2586  			((cable_det & 0x01) ? "Yes" : "No"),
2587  			((cable_det & 0x02) ? "Yes" : "No"),
2588  			((cable_det & 0x04) ? "Yes" : "No"),
2589  			((cable_det & 0x08) ? "Yes" : "No"));
2590  	v4l2_info(sd, "TMDS signal detected: %s\n",
2591  			no_signal_tmds(sd) ? "false" : "true");
2592  	v4l2_info(sd, "TMDS signal locked: %s\n",
2593  			no_lock_tmds(sd) ? "false" : "true");
2594  	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2595  	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2596  	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2597  	v4l2_info(sd, "CP free run: %s\n",
2598  			(in_free_run(sd)) ? "on" : "off");
2599  	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2600  			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2601  			(io_read(sd, 0x01) & 0x70) >> 4);
2602  
2603  	v4l2_info(sd, "-----Video Timings-----\n");
2604  	if (read_stdi(sd, &stdi))
2605  		v4l2_info(sd, "STDI: not locked\n");
2606  	else
2607  		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2608  				stdi.lcf, stdi.bl, stdi.lcvs,
2609  				stdi.interlaced ? "interlaced" : "progressive",
2610  				stdi.hs_pol, stdi.vs_pol);
2611  	if (adv76xx_query_dv_timings(sd, &timings))
2612  		v4l2_info(sd, "No video detected\n");
2613  	else
2614  		v4l2_print_dv_timings(sd->name, "Detected format: ",
2615  				      &timings, true);
2616  	v4l2_print_dv_timings(sd->name, "Configured format: ",
2617  			      &state->timings, true);
2618  
2619  	if (no_signal(sd))
2620  		return 0;
2621  
2622  	v4l2_info(sd, "-----Color space-----\n");
2623  	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2624  			rgb_quantization_range_txt[state->rgb_quantization_range]);
2625  
2626  	ret = io_read(sd, 0x02);
2627  	if (ret < 0) {
2628  		v4l2_info(sd, "Can't read Input/Output color space\n");
2629  	} else {
2630  		reg_io_0x02 = ret;
2631  
2632  		v4l2_info(sd, "Input color space: %s\n",
2633  				input_color_space_txt[reg_io_0x02 >> 4]);
2634  		v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2635  				(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2636  				(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2637  					"(16-235)" : "(0-255)",
2638  				(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2639  	}
2640  	v4l2_info(sd, "Color space conversion: %s\n",
2641  			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2642  
2643  	if (!is_digital_input(sd))
2644  		return 0;
2645  
2646  	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2647  	v4l2_info(sd, "Digital video port selected: %c\n",
2648  			(hdmi_read(sd, 0x00) & 0x03) + 'A');
2649  	v4l2_info(sd, "HDCP encrypted content: %s\n",
2650  			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2651  	v4l2_info(sd, "HDCP keys read: %s%s\n",
2652  			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2653  			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2654  	if (is_hdmi(sd)) {
2655  		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2656  		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2657  		bool audio_mute = io_read(sd, 0x65) & 0x40;
2658  
2659  		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2660  				audio_pll_locked ? "locked" : "not locked",
2661  				audio_sample_packet_detect ? "detected" : "not detected",
2662  				audio_mute ? "muted" : "enabled");
2663  		if (audio_pll_locked && audio_sample_packet_detect) {
2664  			v4l2_info(sd, "Audio format: %s\n",
2665  					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2666  		}
2667  		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2668  				(hdmi_read(sd, 0x5c) << 8) +
2669  				(hdmi_read(sd, 0x5d) & 0xf0));
2670  		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2671  				(hdmi_read(sd, 0x5e) << 8) +
2672  				hdmi_read(sd, 0x5f));
2673  		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2674  
2675  		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2676  		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2677  
2678  		adv76xx_log_infoframes(sd);
2679  	}
2680  
2681  	return 0;
2682  }
2683  
adv76xx_subscribe_event(struct v4l2_subdev * sd,struct v4l2_fh * fh,struct v4l2_event_subscription * sub)2684  static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2685  				   struct v4l2_fh *fh,
2686  				   struct v4l2_event_subscription *sub)
2687  {
2688  	switch (sub->type) {
2689  	case V4L2_EVENT_SOURCE_CHANGE:
2690  		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2691  	case V4L2_EVENT_CTRL:
2692  		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2693  	default:
2694  		return -EINVAL;
2695  	}
2696  }
2697  
adv76xx_registered(struct v4l2_subdev * sd)2698  static int adv76xx_registered(struct v4l2_subdev *sd)
2699  {
2700  	struct adv76xx_state *state = to_state(sd);
2701  	struct i2c_client *client = v4l2_get_subdevdata(sd);
2702  	int err;
2703  
2704  	err = cec_register_adapter(state->cec_adap, &client->dev);
2705  	if (err)
2706  		cec_delete_adapter(state->cec_adap);
2707  	return err;
2708  }
2709  
adv76xx_unregistered(struct v4l2_subdev * sd)2710  static void adv76xx_unregistered(struct v4l2_subdev *sd)
2711  {
2712  	struct adv76xx_state *state = to_state(sd);
2713  
2714  	cec_unregister_adapter(state->cec_adap);
2715  }
2716  
2717  /* ----------------------------------------------------------------------- */
2718  
2719  static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2720  	.s_ctrl = adv76xx_s_ctrl,
2721  	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2722  };
2723  
2724  static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2725  	.log_status = adv76xx_log_status,
2726  	.interrupt_service_routine = adv76xx_isr,
2727  	.subscribe_event = adv76xx_subscribe_event,
2728  	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2729  #ifdef CONFIG_VIDEO_ADV_DEBUG
2730  	.g_register = adv76xx_g_register,
2731  	.s_register = adv76xx_s_register,
2732  #endif
2733  };
2734  
2735  static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2736  	.s_routing = adv76xx_s_routing,
2737  	.g_input_status = adv76xx_g_input_status,
2738  	.s_dv_timings = adv76xx_s_dv_timings,
2739  	.g_dv_timings = adv76xx_g_dv_timings,
2740  	.query_dv_timings = adv76xx_query_dv_timings,
2741  };
2742  
2743  static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2744  	.enum_mbus_code = adv76xx_enum_mbus_code,
2745  	.get_selection = adv76xx_get_selection,
2746  	.get_fmt = adv76xx_get_format,
2747  	.set_fmt = adv76xx_set_format,
2748  	.get_edid = adv76xx_get_edid,
2749  	.set_edid = adv76xx_set_edid,
2750  	.dv_timings_cap = adv76xx_dv_timings_cap,
2751  	.enum_dv_timings = adv76xx_enum_dv_timings,
2752  };
2753  
2754  static const struct v4l2_subdev_ops adv76xx_ops = {
2755  	.core = &adv76xx_core_ops,
2756  	.video = &adv76xx_video_ops,
2757  	.pad = &adv76xx_pad_ops,
2758  };
2759  
2760  static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2761  	.registered = adv76xx_registered,
2762  	.unregistered = adv76xx_unregistered,
2763  };
2764  
2765  /* -------------------------- custom ctrls ---------------------------------- */
2766  
2767  static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2768  	.ops = &adv76xx_ctrl_ops,
2769  	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2770  	.name = "Analog Sampling Phase",
2771  	.type = V4L2_CTRL_TYPE_INTEGER,
2772  	.min = 0,
2773  	.max = 0x1f,
2774  	.step = 1,
2775  	.def = 0,
2776  };
2777  
2778  static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2779  	.ops = &adv76xx_ctrl_ops,
2780  	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2781  	.name = "Free Running Color, Manual",
2782  	.type = V4L2_CTRL_TYPE_BOOLEAN,
2783  	.min = false,
2784  	.max = true,
2785  	.step = 1,
2786  	.def = false,
2787  };
2788  
2789  static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2790  	.ops = &adv76xx_ctrl_ops,
2791  	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2792  	.name = "Free Running Color",
2793  	.type = V4L2_CTRL_TYPE_INTEGER,
2794  	.min = 0x0,
2795  	.max = 0xffffff,
2796  	.step = 0x1,
2797  	.def = 0x0,
2798  };
2799  
2800  /* ----------------------------------------------------------------------- */
2801  
2802  struct adv76xx_register_map {
2803  	const char *name;
2804  	u8 default_addr;
2805  };
2806  
2807  static const struct adv76xx_register_map adv76xx_default_addresses[] = {
2808  	[ADV76XX_PAGE_IO] = { "main", 0x4c },
2809  	[ADV7604_PAGE_AVLINK] = { "avlink", 0x42 },
2810  	[ADV76XX_PAGE_CEC] = { "cec", 0x40 },
2811  	[ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e },
2812  	[ADV7604_PAGE_ESDP] = { "esdp", 0x38 },
2813  	[ADV7604_PAGE_DPP] = { "dpp", 0x3c },
2814  	[ADV76XX_PAGE_AFE] = { "afe", 0x26 },
2815  	[ADV76XX_PAGE_REP] = { "rep", 0x32 },
2816  	[ADV76XX_PAGE_EDID] = { "edid", 0x36 },
2817  	[ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 },
2818  	[ADV76XX_PAGE_TEST] = { "test", 0x30 },
2819  	[ADV76XX_PAGE_CP] = { "cp", 0x22 },
2820  	[ADV7604_PAGE_VDP] = { "vdp", 0x24 },
2821  };
2822  
adv76xx_core_init(struct v4l2_subdev * sd)2823  static int adv76xx_core_init(struct v4l2_subdev *sd)
2824  {
2825  	struct adv76xx_state *state = to_state(sd);
2826  	const struct adv76xx_chip_info *info = state->info;
2827  	struct adv76xx_platform_data *pdata = &state->pdata;
2828  
2829  	hdmi_write(sd, 0x48,
2830  		(pdata->disable_pwrdnb ? 0x80 : 0) |
2831  		(pdata->disable_cable_det_rst ? 0x40 : 0));
2832  
2833  	disable_input(sd);
2834  
2835  	if (pdata->default_input >= 0 &&
2836  	    pdata->default_input < state->source_pad) {
2837  		state->selected_input = pdata->default_input;
2838  		select_input(sd);
2839  		enable_input(sd);
2840  	}
2841  
2842  	/* power */
2843  	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2844  	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2845  	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2846  
2847  	/* HPD */
2848  	if (info->type != ADV7604) {
2849  		/* Set manual HPD values to 0 */
2850  		io_write_clr_set(sd, 0x20, 0xc0, 0);
2851  		/*
2852  		 * Set HPA_DELAY to 200 ms and set automatic HPD control
2853  		 * to: internal EDID is active AND a cable is detected
2854  		 * AND the manual HPD control is set to 1.
2855  		 */
2856  		hdmi_write_clr_set(sd, 0x6c, 0xf6, 0x26);
2857  	}
2858  
2859  	/* video format */
2860  	io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2861  	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2862  			pdata->insert_av_codes << 2 |
2863  			pdata->replicate_av_codes << 1);
2864  	adv76xx_setup_format(state);
2865  
2866  	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2867  
2868  	/* VS, HS polarities */
2869  	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2870  		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2871  
2872  	/* Adjust drive strength */
2873  	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2874  				pdata->dr_str_clk << 2 |
2875  				pdata->dr_str_sync);
2876  
2877  	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2878  	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2879  	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2880  				      ADI recommended setting [REF_01, c. 2.3.3] */
2881  	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2882  				      ADI recommended setting [REF_01, c. 2.3.3] */
2883  	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2884  				     for digital formats */
2885  
2886  	/* HDMI audio */
2887  	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2888  	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2889  	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2890  
2891  	/* TODO from platform data */
2892  	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2893  
2894  	if (adv76xx_has_afe(state)) {
2895  		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2896  		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2897  	}
2898  
2899  	/* interrupts */
2900  	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2901  	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2902  	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2903  	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2904  	info->setup_irqs(sd);
2905  
2906  	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2907  }
2908  
adv7604_setup_irqs(struct v4l2_subdev * sd)2909  static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2910  {
2911  	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2912  }
2913  
adv7611_setup_irqs(struct v4l2_subdev * sd)2914  static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2915  {
2916  	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2917  }
2918  
adv7612_setup_irqs(struct v4l2_subdev * sd)2919  static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2920  {
2921  	io_write(sd, 0x41, 0xd0); /* disable INT2 */
2922  }
2923  
adv76xx_unregister_clients(struct adv76xx_state * state)2924  static void adv76xx_unregister_clients(struct adv76xx_state *state)
2925  {
2926  	unsigned int i;
2927  
2928  	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i)
2929  		i2c_unregister_device(state->i2c_clients[i]);
2930  }
2931  
adv76xx_dummy_client(struct v4l2_subdev * sd,unsigned int page)2932  static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2933  					       unsigned int page)
2934  {
2935  	struct i2c_client *client = v4l2_get_subdevdata(sd);
2936  	struct adv76xx_state *state = to_state(sd);
2937  	struct adv76xx_platform_data *pdata = &state->pdata;
2938  	unsigned int io_reg = 0xf2 + page;
2939  	struct i2c_client *new_client;
2940  
2941  	if (pdata && pdata->i2c_addresses[page])
2942  		new_client = i2c_new_dummy_device(client->adapter,
2943  					   pdata->i2c_addresses[page]);
2944  	else
2945  		new_client = i2c_new_ancillary_device(client,
2946  				adv76xx_default_addresses[page].name,
2947  				adv76xx_default_addresses[page].default_addr);
2948  
2949  	if (!IS_ERR(new_client))
2950  		io_write(sd, io_reg, new_client->addr << 1);
2951  
2952  	return new_client;
2953  }
2954  
2955  static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2956  	/* reset ADI recommended settings for HDMI: */
2957  	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2958  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2959  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2960  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2961  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2962  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2963  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2964  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2965  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2966  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2967  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2968  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2969  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2970  
2971  	/* set ADI recommended settings for digitizer */
2972  	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2973  	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2974  	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2975  	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2976  	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2977  	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2978  
2979  	{ ADV76XX_REG_SEQ_TERM, 0 },
2980  };
2981  
2982  static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2983  	/* set ADI recommended settings for HDMI: */
2984  	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2985  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2986  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2987  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2988  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2989  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2990  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2991  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2992  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2993  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2994  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2995  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2996  
2997  	/* reset ADI recommended settings for digitizer */
2998  	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2999  	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
3000  	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
3001  
3002  	{ ADV76XX_REG_SEQ_TERM, 0 },
3003  };
3004  
3005  static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
3006  	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
3007  	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
3008  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
3009  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
3010  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
3011  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
3012  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
3013  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
3014  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
3015  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
3016  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
3017  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
3018  
3019  	{ ADV76XX_REG_SEQ_TERM, 0 },
3020  };
3021  
3022  static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
3023  	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
3024  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
3025  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
3026  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
3027  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
3028  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
3029  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
3030  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
3031  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
3032  	{ ADV76XX_REG_SEQ_TERM, 0 },
3033  };
3034  
3035  static const struct adv76xx_chip_info adv76xx_chip_info[] = {
3036  	[ADV7604] = {
3037  		.type = ADV7604,
3038  		.has_afe = true,
3039  		.max_port = ADV7604_PAD_VGA_COMP,
3040  		.num_dv_ports = 4,
3041  		.edid_enable_reg = 0x77,
3042  		.edid_status_reg = 0x7d,
3043  		.edid_segment_reg = 0x77,
3044  		.edid_segment_mask = 0x10,
3045  		.edid_spa_loc_reg = 0x76,
3046  		.edid_spa_loc_msb_mask = 0x40,
3047  		.edid_spa_port_b_reg = 0x70,
3048  		.lcf_reg = 0xb3,
3049  		.tdms_lock_mask = 0xe0,
3050  		.cable_det_mask = 0x1e,
3051  		.fmt_change_digital_mask = 0xc1,
3052  		.cp_csc = 0xfc,
3053  		.cec_irq_status = 0x4d,
3054  		.cec_rx_enable = 0x26,
3055  		.cec_rx_enable_mask = 0x01,
3056  		.cec_irq_swap = true,
3057  		.formats = adv7604_formats,
3058  		.nformats = ARRAY_SIZE(adv7604_formats),
3059  		.set_termination = adv7604_set_termination,
3060  		.setup_irqs = adv7604_setup_irqs,
3061  		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
3062  		.read_cable_det = adv7604_read_cable_det,
3063  		.recommended_settings = {
3064  		    [0] = adv7604_recommended_settings_afe,
3065  		    [1] = adv7604_recommended_settings_hdmi,
3066  		},
3067  		.num_recommended_settings = {
3068  		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
3069  		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
3070  		},
3071  		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
3072  			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
3073  			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
3074  			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
3075  			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
3076  			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
3077  			BIT(ADV7604_PAGE_VDP),
3078  		.linewidth_mask = 0xfff,
3079  		.field0_height_mask = 0xfff,
3080  		.field1_height_mask = 0xfff,
3081  		.hfrontporch_mask = 0x3ff,
3082  		.hsync_mask = 0x3ff,
3083  		.hbackporch_mask = 0x3ff,
3084  		.field0_vfrontporch_mask = 0x1fff,
3085  		.field0_vsync_mask = 0x1fff,
3086  		.field0_vbackporch_mask = 0x1fff,
3087  		.field1_vfrontporch_mask = 0x1fff,
3088  		.field1_vsync_mask = 0x1fff,
3089  		.field1_vbackporch_mask = 0x1fff,
3090  	},
3091  	[ADV7611] = {
3092  		.type = ADV7611,
3093  		.has_afe = false,
3094  		.max_port = ADV76XX_PAD_HDMI_PORT_A,
3095  		.num_dv_ports = 1,
3096  		.edid_enable_reg = 0x74,
3097  		.edid_status_reg = 0x76,
3098  		.edid_segment_reg = 0x7a,
3099  		.edid_segment_mask = 0x01,
3100  		.lcf_reg = 0xa3,
3101  		.tdms_lock_mask = 0x43,
3102  		.cable_det_mask = 0x01,
3103  		.fmt_change_digital_mask = 0x03,
3104  		.cp_csc = 0xf4,
3105  		.cec_irq_status = 0x93,
3106  		.cec_rx_enable = 0x2c,
3107  		.cec_rx_enable_mask = 0x02,
3108  		.formats = adv7611_formats,
3109  		.nformats = ARRAY_SIZE(adv7611_formats),
3110  		.set_termination = adv7611_set_termination,
3111  		.setup_irqs = adv7611_setup_irqs,
3112  		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3113  		.read_cable_det = adv7611_read_cable_det,
3114  		.recommended_settings = {
3115  		    [1] = adv7611_recommended_settings_hdmi,
3116  		},
3117  		.num_recommended_settings = {
3118  		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
3119  		},
3120  		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3121  			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3122  			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3123  			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3124  		.linewidth_mask = 0x1fff,
3125  		.field0_height_mask = 0x1fff,
3126  		.field1_height_mask = 0x1fff,
3127  		.hfrontporch_mask = 0x1fff,
3128  		.hsync_mask = 0x1fff,
3129  		.hbackporch_mask = 0x1fff,
3130  		.field0_vfrontporch_mask = 0x3fff,
3131  		.field0_vsync_mask = 0x3fff,
3132  		.field0_vbackporch_mask = 0x3fff,
3133  		.field1_vfrontporch_mask = 0x3fff,
3134  		.field1_vsync_mask = 0x3fff,
3135  		.field1_vbackporch_mask = 0x3fff,
3136  	},
3137  	[ADV7612] = {
3138  		.type = ADV7612,
3139  		.has_afe = false,
3140  		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
3141  		.num_dv_ports = 1,			/* normally 2 */
3142  		.edid_enable_reg = 0x74,
3143  		.edid_status_reg = 0x76,
3144  		.edid_segment_reg = 0x7a,
3145  		.edid_segment_mask = 0x01,
3146  		.edid_spa_loc_reg = 0x70,
3147  		.edid_spa_loc_msb_mask = 0x01,
3148  		.edid_spa_port_b_reg = 0x52,
3149  		.lcf_reg = 0xa3,
3150  		.tdms_lock_mask = 0x43,
3151  		.cable_det_mask = 0x01,
3152  		.fmt_change_digital_mask = 0x03,
3153  		.cp_csc = 0xf4,
3154  		.cec_irq_status = 0x93,
3155  		.cec_rx_enable = 0x2c,
3156  		.cec_rx_enable_mask = 0x02,
3157  		.formats = adv7612_formats,
3158  		.nformats = ARRAY_SIZE(adv7612_formats),
3159  		.set_termination = adv7611_set_termination,
3160  		.setup_irqs = adv7612_setup_irqs,
3161  		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3162  		.read_cable_det = adv7612_read_cable_det,
3163  		.recommended_settings = {
3164  		    [1] = adv7612_recommended_settings_hdmi,
3165  		},
3166  		.num_recommended_settings = {
3167  		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3168  		},
3169  		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3170  			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3171  			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3172  			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3173  		.linewidth_mask = 0x1fff,
3174  		.field0_height_mask = 0x1fff,
3175  		.field1_height_mask = 0x1fff,
3176  		.hfrontporch_mask = 0x1fff,
3177  		.hsync_mask = 0x1fff,
3178  		.hbackporch_mask = 0x1fff,
3179  		.field0_vfrontporch_mask = 0x3fff,
3180  		.field0_vsync_mask = 0x3fff,
3181  		.field0_vbackporch_mask = 0x3fff,
3182  		.field1_vfrontporch_mask = 0x3fff,
3183  		.field1_vsync_mask = 0x3fff,
3184  		.field1_vbackporch_mask = 0x3fff,
3185  	},
3186  };
3187  
3188  static const struct i2c_device_id adv76xx_i2c_id[] = {
3189  	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3190  	{ "adv7610", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3191  	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3192  	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3193  	{ }
3194  };
3195  MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3196  
3197  static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3198  	{ .compatible = "adi,adv7610", .data = &adv76xx_chip_info[ADV7611] },
3199  	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3200  	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3201  	{ }
3202  };
3203  MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3204  
adv76xx_parse_dt(struct adv76xx_state * state)3205  static int adv76xx_parse_dt(struct adv76xx_state *state)
3206  {
3207  	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
3208  	struct device_node *endpoint;
3209  	struct device_node *np;
3210  	unsigned int flags;
3211  	int ret;
3212  	u32 v;
3213  
3214  	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3215  
3216  	/* Parse the endpoint. */
3217  	endpoint = of_graph_get_next_endpoint(np, NULL);
3218  	if (!endpoint)
3219  		return -EINVAL;
3220  
3221  	ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
3222  	of_node_put(endpoint);
3223  	if (ret)
3224  		return ret;
3225  
3226  	if (!of_property_read_u32(np, "default-input", &v))
3227  		state->pdata.default_input = v;
3228  	else
3229  		state->pdata.default_input = -1;
3230  
3231  	flags = bus_cfg.bus.parallel.flags;
3232  
3233  	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3234  		state->pdata.inv_hs_pol = 1;
3235  
3236  	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3237  		state->pdata.inv_vs_pol = 1;
3238  
3239  	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3240  		state->pdata.inv_llc_pol = 1;
3241  
3242  	if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3243  		state->pdata.insert_av_codes = 1;
3244  
3245  	/* Disable the interrupt for now as no DT-based board uses it. */
3246  	state->pdata.int1_config = ADV76XX_INT1_CONFIG_ACTIVE_HIGH;
3247  
3248  	/* Hardcode the remaining platform data fields. */
3249  	state->pdata.disable_pwrdnb = 0;
3250  	state->pdata.disable_cable_det_rst = 0;
3251  	state->pdata.blank_data = 1;
3252  	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3253  	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3254  	state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
3255  	state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
3256  	state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
3257  
3258  	return 0;
3259  }
3260  
3261  static const struct regmap_config adv76xx_regmap_cnf[] = {
3262  	{
3263  		.name			= "io",
3264  		.reg_bits		= 8,
3265  		.val_bits		= 8,
3266  
3267  		.max_register		= 0xff,
3268  		.cache_type		= REGCACHE_NONE,
3269  	},
3270  	{
3271  		.name			= "avlink",
3272  		.reg_bits		= 8,
3273  		.val_bits		= 8,
3274  
3275  		.max_register		= 0xff,
3276  		.cache_type		= REGCACHE_NONE,
3277  	},
3278  	{
3279  		.name			= "cec",
3280  		.reg_bits		= 8,
3281  		.val_bits		= 8,
3282  
3283  		.max_register		= 0xff,
3284  		.cache_type		= REGCACHE_NONE,
3285  	},
3286  	{
3287  		.name			= "infoframe",
3288  		.reg_bits		= 8,
3289  		.val_bits		= 8,
3290  
3291  		.max_register		= 0xff,
3292  		.cache_type		= REGCACHE_NONE,
3293  	},
3294  	{
3295  		.name			= "esdp",
3296  		.reg_bits		= 8,
3297  		.val_bits		= 8,
3298  
3299  		.max_register		= 0xff,
3300  		.cache_type		= REGCACHE_NONE,
3301  	},
3302  	{
3303  		.name			= "epp",
3304  		.reg_bits		= 8,
3305  		.val_bits		= 8,
3306  
3307  		.max_register		= 0xff,
3308  		.cache_type		= REGCACHE_NONE,
3309  	},
3310  	{
3311  		.name			= "afe",
3312  		.reg_bits		= 8,
3313  		.val_bits		= 8,
3314  
3315  		.max_register		= 0xff,
3316  		.cache_type		= REGCACHE_NONE,
3317  	},
3318  	{
3319  		.name			= "rep",
3320  		.reg_bits		= 8,
3321  		.val_bits		= 8,
3322  
3323  		.max_register		= 0xff,
3324  		.cache_type		= REGCACHE_NONE,
3325  	},
3326  	{
3327  		.name			= "edid",
3328  		.reg_bits		= 8,
3329  		.val_bits		= 8,
3330  
3331  		.max_register		= 0xff,
3332  		.cache_type		= REGCACHE_NONE,
3333  	},
3334  
3335  	{
3336  		.name			= "hdmi",
3337  		.reg_bits		= 8,
3338  		.val_bits		= 8,
3339  
3340  		.max_register		= 0xff,
3341  		.cache_type		= REGCACHE_NONE,
3342  	},
3343  	{
3344  		.name			= "test",
3345  		.reg_bits		= 8,
3346  		.val_bits		= 8,
3347  
3348  		.max_register		= 0xff,
3349  		.cache_type		= REGCACHE_NONE,
3350  	},
3351  	{
3352  		.name			= "cp",
3353  		.reg_bits		= 8,
3354  		.val_bits		= 8,
3355  
3356  		.max_register		= 0xff,
3357  		.cache_type		= REGCACHE_NONE,
3358  	},
3359  	{
3360  		.name			= "vdp",
3361  		.reg_bits		= 8,
3362  		.val_bits		= 8,
3363  
3364  		.max_register		= 0xff,
3365  		.cache_type		= REGCACHE_NONE,
3366  	},
3367  };
3368  
configure_regmap(struct adv76xx_state * state,int region)3369  static int configure_regmap(struct adv76xx_state *state, int region)
3370  {
3371  	int err;
3372  
3373  	if (!state->i2c_clients[region])
3374  		return -ENODEV;
3375  
3376  	state->regmap[region] =
3377  		devm_regmap_init_i2c(state->i2c_clients[region],
3378  				     &adv76xx_regmap_cnf[region]);
3379  
3380  	if (IS_ERR(state->regmap[region])) {
3381  		err = PTR_ERR(state->regmap[region]);
3382  		v4l_err(state->i2c_clients[region],
3383  			"Error initializing regmap %d with error %d\n",
3384  			region, err);
3385  		return -EINVAL;
3386  	}
3387  
3388  	return 0;
3389  }
3390  
configure_regmaps(struct adv76xx_state * state)3391  static int configure_regmaps(struct adv76xx_state *state)
3392  {
3393  	int i, err;
3394  
3395  	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3396  		err = configure_regmap(state, i);
3397  		if (err && (err != -ENODEV))
3398  			return err;
3399  	}
3400  	return 0;
3401  }
3402  
adv76xx_reset(struct adv76xx_state * state)3403  static void adv76xx_reset(struct adv76xx_state *state)
3404  {
3405  	if (state->reset_gpio) {
3406  		/* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3407  		gpiod_set_value_cansleep(state->reset_gpio, 0);
3408  		usleep_range(5000, 10000);
3409  		gpiod_set_value_cansleep(state->reset_gpio, 1);
3410  		/* It is recommended to wait 5 ms after the low pulse before */
3411  		/* an I2C write is performed to the ADV76XX. */
3412  		usleep_range(5000, 10000);
3413  	}
3414  }
3415  
adv76xx_probe(struct i2c_client * client)3416  static int adv76xx_probe(struct i2c_client *client)
3417  {
3418  	const struct i2c_device_id *id = i2c_client_get_device_id(client);
3419  	static const struct v4l2_dv_timings cea640x480 =
3420  		V4L2_DV_BT_CEA_640X480P59_94;
3421  	struct adv76xx_state *state;
3422  	struct v4l2_ctrl_handler *hdl;
3423  	struct v4l2_ctrl *ctrl;
3424  	struct v4l2_subdev *sd;
3425  	unsigned int i;
3426  	unsigned int val, val2;
3427  	int err;
3428  
3429  	/* Check if the adapter supports the needed features */
3430  	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3431  		return -EIO;
3432  	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3433  			client->addr << 1);
3434  
3435  	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3436  	if (!state)
3437  		return -ENOMEM;
3438  
3439  	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3440  
3441  	/* initialize variables */
3442  	state->restart_stdi_once = true;
3443  	state->selected_input = ~0;
3444  
3445  	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3446  		const struct of_device_id *oid;
3447  
3448  		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3449  		state->info = oid->data;
3450  
3451  		err = adv76xx_parse_dt(state);
3452  		if (err < 0) {
3453  			v4l_err(client, "DT parsing error\n");
3454  			return err;
3455  		}
3456  	} else if (client->dev.platform_data) {
3457  		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3458  
3459  		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3460  		state->pdata = *pdata;
3461  	} else {
3462  		v4l_err(client, "No platform data!\n");
3463  		return -ENODEV;
3464  	}
3465  
3466  	/* Request GPIOs. */
3467  	for (i = 0; i < state->info->num_dv_ports; ++i) {
3468  		state->hpd_gpio[i] =
3469  			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3470  						      GPIOD_OUT_LOW);
3471  		if (IS_ERR(state->hpd_gpio[i]))
3472  			return PTR_ERR(state->hpd_gpio[i]);
3473  
3474  		if (state->hpd_gpio[i])
3475  			v4l_info(client, "Handling HPD %u GPIO\n", i);
3476  	}
3477  	state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3478  								GPIOD_OUT_HIGH);
3479  	if (IS_ERR(state->reset_gpio))
3480  		return PTR_ERR(state->reset_gpio);
3481  
3482  	adv76xx_reset(state);
3483  
3484  	state->timings = cea640x480;
3485  	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3486  
3487  	sd = &state->sd;
3488  	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3489  	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3490  		id->name, i2c_adapter_id(client->adapter),
3491  		client->addr);
3492  	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3493  	sd->internal_ops = &adv76xx_int_ops;
3494  
3495  	/* Configure IO Regmap region */
3496  	err = configure_regmap(state, ADV76XX_PAGE_IO);
3497  
3498  	if (err) {
3499  		v4l2_err(sd, "Error configuring IO regmap region\n");
3500  		return -ENODEV;
3501  	}
3502  
3503  	/*
3504  	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3505  	 * identifies the revision, while on ADV7611 it identifies the model as
3506  	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3507  	 */
3508  	switch (state->info->type) {
3509  	case ADV7604:
3510  		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3511  		if (err) {
3512  			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3513  			return -ENODEV;
3514  		}
3515  		if (val != 0x68) {
3516  			v4l2_err(sd, "not an ADV7604 on address 0x%x\n",
3517  				 client->addr << 1);
3518  			return -ENODEV;
3519  		}
3520  		break;
3521  	case ADV7611:
3522  	case ADV7612:
3523  		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3524  				0xea,
3525  				&val);
3526  		if (err) {
3527  			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3528  			return -ENODEV;
3529  		}
3530  		val2 = val << 8;
3531  		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3532  			    0xeb,
3533  			    &val);
3534  		if (err) {
3535  			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3536  			return -ENODEV;
3537  		}
3538  		val |= val2;
3539  		if ((state->info->type == ADV7611 && val != 0x2051) ||
3540  			(state->info->type == ADV7612 && val != 0x2041)) {
3541  			v4l2_err(sd, "not an %s on address 0x%x\n",
3542  				 state->info->type == ADV7611 ? "ADV7610/11" : "ADV7612",
3543  				 client->addr << 1);
3544  			return -ENODEV;
3545  		}
3546  		break;
3547  	}
3548  
3549  	/* control handlers */
3550  	hdl = &state->hdl;
3551  	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3552  
3553  	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3554  			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3555  	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3556  			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3557  	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3558  			V4L2_CID_SATURATION, 0, 255, 1, 128);
3559  	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3560  			V4L2_CID_HUE, 0, 255, 1, 0);
3561  	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3562  			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3563  			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3564  	if (ctrl)
3565  		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3566  
3567  	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3568  			V4L2_CID_DV_RX_POWER_PRESENT, 0,
3569  			(1 << state->info->num_dv_ports) - 1, 0, 0);
3570  	state->rgb_quantization_range_ctrl =
3571  		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3572  			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3573  			0, V4L2_DV_RGB_RANGE_AUTO);
3574  
3575  	/* custom controls */
3576  	if (adv76xx_has_afe(state))
3577  		state->analog_sampling_phase_ctrl =
3578  			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3579  	state->free_run_color_manual_ctrl =
3580  		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3581  	state->free_run_color_ctrl =
3582  		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3583  
3584  	sd->ctrl_handler = hdl;
3585  	if (hdl->error) {
3586  		err = hdl->error;
3587  		goto err_hdl;
3588  	}
3589  	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3590  		err = -ENODEV;
3591  		goto err_hdl;
3592  	}
3593  
3594  	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3595  		struct i2c_client *dummy_client;
3596  
3597  		if (!(BIT(i) & state->info->page_mask))
3598  			continue;
3599  
3600  		dummy_client = adv76xx_dummy_client(sd, i);
3601  		if (IS_ERR(dummy_client)) {
3602  			err = PTR_ERR(dummy_client);
3603  			v4l2_err(sd, "failed to create i2c client %u\n", i);
3604  			goto err_i2c;
3605  		}
3606  
3607  		state->i2c_clients[i] = dummy_client;
3608  	}
3609  
3610  	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3611  			adv76xx_delayed_work_enable_hotplug);
3612  
3613  	state->source_pad = state->info->num_dv_ports
3614  			  + (state->info->has_afe ? 2 : 0);
3615  	for (i = 0; i < state->source_pad; ++i)
3616  		state->pads[i].flags = MEDIA_PAD_FL_SINK;
3617  	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3618  	sd->entity.function = MEDIA_ENT_F_DV_DECODER;
3619  
3620  	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3621  				state->pads);
3622  	if (err)
3623  		goto err_work_queues;
3624  
3625  	/* Configure regmaps */
3626  	err = configure_regmaps(state);
3627  	if (err)
3628  		goto err_entity;
3629  
3630  	err = adv76xx_core_init(sd);
3631  	if (err)
3632  		goto err_entity;
3633  
3634  	if (client->irq) {
3635  		err = devm_request_threaded_irq(&client->dev,
3636  						client->irq,
3637  						NULL, adv76xx_irq_handler,
3638  						IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
3639  						client->name, state);
3640  		if (err)
3641  			goto err_entity;
3642  	}
3643  
3644  #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3645  	state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3646  		state, dev_name(&client->dev),
3647  		CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
3648  	err = PTR_ERR_OR_ZERO(state->cec_adap);
3649  	if (err)
3650  		goto err_entity;
3651  #endif
3652  
3653  	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3654  			client->addr << 1, client->adapter->name);
3655  
3656  	err = v4l2_async_register_subdev(sd);
3657  	if (err)
3658  		goto err_entity;
3659  
3660  	return 0;
3661  
3662  err_entity:
3663  	media_entity_cleanup(&sd->entity);
3664  err_work_queues:
3665  	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3666  err_i2c:
3667  	adv76xx_unregister_clients(state);
3668  err_hdl:
3669  	v4l2_ctrl_handler_free(hdl);
3670  	return err;
3671  }
3672  
3673  /* ----------------------------------------------------------------------- */
3674  
adv76xx_remove(struct i2c_client * client)3675  static void adv76xx_remove(struct i2c_client *client)
3676  {
3677  	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3678  	struct adv76xx_state *state = to_state(sd);
3679  
3680  	/* disable interrupts */
3681  	io_write(sd, 0x40, 0);
3682  	io_write(sd, 0x41, 0);
3683  	io_write(sd, 0x46, 0);
3684  	io_write(sd, 0x6e, 0);
3685  	io_write(sd, 0x73, 0);
3686  
3687  	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
3688  	v4l2_async_unregister_subdev(sd);
3689  	media_entity_cleanup(&sd->entity);
3690  	adv76xx_unregister_clients(to_state(sd));
3691  	v4l2_ctrl_handler_free(sd->ctrl_handler);
3692  }
3693  
3694  /* ----------------------------------------------------------------------- */
3695  
3696  static struct i2c_driver adv76xx_driver = {
3697  	.driver = {
3698  		.name = "adv7604",
3699  		.of_match_table = of_match_ptr(adv76xx_of_id),
3700  	},
3701  	.probe = adv76xx_probe,
3702  	.remove = adv76xx_remove,
3703  	.id_table = adv76xx_i2c_id,
3704  };
3705  
3706  module_i2c_driver(adv76xx_driver);
3707