xref: /openbmc/linux/drivers/iio/common/inv_sensors/inv_sensors_timestamp.c (revision 278002edb19bce2c628fafb0af936e77000f3a5b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020 Invensense, Inc.
4  */
5 
6 #include <linux/errno.h>
7 #include <linux/kernel.h>
8 #include <linux/math64.h>
9 #include <linux/module.h>
10 
11 #include <linux/iio/common/inv_sensors_timestamp.h>
12 
13 /* compute jitter, min and max following jitter in per mille */
14 #define INV_SENSORS_TIMESTAMP_JITTER(_val, _jitter)		\
15 	(div_s64((_val) * (_jitter), 1000))
16 #define INV_SENSORS_TIMESTAMP_MIN(_val, _jitter)		\
17 	(((_val) * (1000 - (_jitter))) / 1000)
18 #define INV_SENSORS_TIMESTAMP_MAX(_val, _jitter)		\
19 	(((_val) * (1000 + (_jitter))) / 1000)
20 
21 /* Add a new value inside an accumulator and update the estimate value */
inv_update_acc(struct inv_sensors_timestamp_acc * acc,uint32_t val)22 static void inv_update_acc(struct inv_sensors_timestamp_acc *acc, uint32_t val)
23 {
24 	uint64_t sum = 0;
25 	size_t i;
26 
27 	acc->values[acc->idx++] = val;
28 	if (acc->idx >= ARRAY_SIZE(acc->values))
29 		acc->idx = 0;
30 
31 	/* compute the mean of all stored values, use 0 as empty slot */
32 	for (i = 0; i < ARRAY_SIZE(acc->values); ++i) {
33 		if (acc->values[i] == 0)
34 			break;
35 		sum += acc->values[i];
36 	}
37 
38 	acc->val = div_u64(sum, i);
39 }
40 
inv_sensors_timestamp_init(struct inv_sensors_timestamp * ts,const struct inv_sensors_timestamp_chip * chip)41 void inv_sensors_timestamp_init(struct inv_sensors_timestamp *ts,
42 				const struct inv_sensors_timestamp_chip *chip)
43 {
44 	memset(ts, 0, sizeof(*ts));
45 
46 	/* save chip parameters and compute min and max clock period */
47 	ts->chip = *chip;
48 	ts->min_period = INV_SENSORS_TIMESTAMP_MIN(chip->clock_period, chip->jitter);
49 	ts->max_period = INV_SENSORS_TIMESTAMP_MAX(chip->clock_period, chip->jitter);
50 
51 	/* current multiplier and period values after reset */
52 	ts->mult = chip->init_period / chip->clock_period;
53 	ts->period = chip->init_period;
54 
55 	/* use theoretical value for chip period */
56 	inv_update_acc(&ts->chip_period, chip->clock_period);
57 }
58 EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_init, IIO_INV_SENSORS_TIMESTAMP);
59 
inv_sensors_timestamp_update_odr(struct inv_sensors_timestamp * ts,uint32_t period,bool fifo)60 int inv_sensors_timestamp_update_odr(struct inv_sensors_timestamp *ts,
61 				     uint32_t period, bool fifo)
62 {
63 	uint32_t mult;
64 
65 	/* when FIFO is on, prevent odr change if one is already pending */
66 	if (fifo && ts->new_mult != 0)
67 		return -EAGAIN;
68 
69 	mult = period / ts->chip.clock_period;
70 	if (mult != ts->mult)
71 		ts->new_mult = mult;
72 
73 	/* When FIFO is off, directly apply the new ODR */
74 	if (!fifo)
75 		inv_sensors_timestamp_apply_odr(ts, 0, 0, 0);
76 
77 	return 0;
78 }
79 EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_update_odr, IIO_INV_SENSORS_TIMESTAMP);
80 
inv_validate_period(struct inv_sensors_timestamp * ts,uint32_t period,uint32_t mult)81 static bool inv_validate_period(struct inv_sensors_timestamp *ts, uint32_t period, uint32_t mult)
82 {
83 	uint32_t period_min, period_max;
84 
85 	/* check that period is acceptable */
86 	period_min = ts->min_period * mult;
87 	period_max = ts->max_period * mult;
88 	if (period > period_min && period < period_max)
89 		return true;
90 	else
91 		return false;
92 }
93 
inv_update_chip_period(struct inv_sensors_timestamp * ts,uint32_t mult,uint32_t period)94 static bool inv_update_chip_period(struct inv_sensors_timestamp *ts,
95 				    uint32_t mult, uint32_t period)
96 {
97 	uint32_t new_chip_period;
98 
99 	if (!inv_validate_period(ts, period, mult))
100 		return false;
101 
102 	/* update chip internal period estimation */
103 	new_chip_period = period / mult;
104 	inv_update_acc(&ts->chip_period, new_chip_period);
105 	ts->period = ts->mult * ts->chip_period.val;
106 
107 	return true;
108 }
109 
inv_align_timestamp_it(struct inv_sensors_timestamp * ts)110 static void inv_align_timestamp_it(struct inv_sensors_timestamp *ts)
111 {
112 	const int64_t period_min = ts->min_period * ts->mult;
113 	const int64_t period_max = ts->max_period * ts->mult;
114 	int64_t add_max, sub_max;
115 	int64_t delta, jitter;
116 	int64_t adjust;
117 
118 	/* delta time between last sample and last interrupt */
119 	delta = ts->it.lo - ts->timestamp;
120 
121 	/* adjust timestamp while respecting jitter */
122 	add_max = period_max - (int64_t)ts->period;
123 	sub_max = period_min - (int64_t)ts->period;
124 	jitter = INV_SENSORS_TIMESTAMP_JITTER((int64_t)ts->period, ts->chip.jitter);
125 	if (delta > jitter)
126 		adjust = add_max;
127 	else if (delta < -jitter)
128 		adjust = sub_max;
129 	else
130 		adjust = 0;
131 
132 	ts->timestamp += adjust;
133 }
134 
inv_sensors_timestamp_interrupt(struct inv_sensors_timestamp * ts,uint32_t fifo_period,size_t fifo_nb,size_t sensor_nb,int64_t timestamp)135 void inv_sensors_timestamp_interrupt(struct inv_sensors_timestamp *ts,
136 				      uint32_t fifo_period, size_t fifo_nb,
137 				      size_t sensor_nb, int64_t timestamp)
138 {
139 	struct inv_sensors_timestamp_interval *it;
140 	int64_t delta, interval;
141 	const uint32_t fifo_mult = fifo_period / ts->chip.clock_period;
142 	uint32_t period = ts->period;
143 	bool valid = false;
144 
145 	if (fifo_nb == 0)
146 		return;
147 
148 	/* update interrupt timestamp and compute chip and sensor periods */
149 	it = &ts->it;
150 	it->lo = it->up;
151 	it->up = timestamp;
152 	delta = it->up - it->lo;
153 	if (it->lo != 0) {
154 		/* compute period: delta time divided by number of samples */
155 		period = div_s64(delta, fifo_nb);
156 		valid = inv_update_chip_period(ts, fifo_mult, period);
157 	}
158 
159 	/* no previous data, compute theoritical value from interrupt */
160 	if (ts->timestamp == 0) {
161 		/* elapsed time: sensor period * sensor samples number */
162 		interval = (int64_t)ts->period * (int64_t)sensor_nb;
163 		ts->timestamp = it->up - interval;
164 		return;
165 	}
166 
167 	/* if interrupt interval is valid, sync with interrupt timestamp */
168 	if (valid)
169 		inv_align_timestamp_it(ts);
170 }
171 EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_interrupt, IIO_INV_SENSORS_TIMESTAMP);
172 
inv_sensors_timestamp_apply_odr(struct inv_sensors_timestamp * ts,uint32_t fifo_period,size_t fifo_nb,unsigned int fifo_no)173 void inv_sensors_timestamp_apply_odr(struct inv_sensors_timestamp *ts,
174 				     uint32_t fifo_period, size_t fifo_nb,
175 				     unsigned int fifo_no)
176 {
177 	int64_t interval;
178 	uint32_t fifo_mult;
179 
180 	if (ts->new_mult == 0)
181 		return;
182 
183 	/* update to new multiplier and update period */
184 	ts->mult = ts->new_mult;
185 	ts->new_mult = 0;
186 	ts->period = ts->mult * ts->chip_period.val;
187 
188 	/*
189 	 * After ODR change the time interval with the previous sample is
190 	 * undertermined (depends when the change occures). So we compute the
191 	 * timestamp from the current interrupt using the new FIFO period, the
192 	 * total number of samples and the current sample numero.
193 	 */
194 	if (ts->timestamp != 0) {
195 		/* compute measured fifo period */
196 		fifo_mult = fifo_period / ts->chip.clock_period;
197 		fifo_period = fifo_mult * ts->chip_period.val;
198 		/* computes time interval between interrupt and this sample */
199 		interval = (int64_t)(fifo_nb - fifo_no) * (int64_t)fifo_period;
200 		ts->timestamp = ts->it.up - interval;
201 	}
202 }
203 EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_apply_odr, IIO_INV_SENSORS_TIMESTAMP);
204 
205 MODULE_AUTHOR("InvenSense, Inc.");
206 MODULE_DESCRIPTION("InvenSense sensors timestamp module");
207 MODULE_LICENSE("GPL");
208