1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44
45 static struct dentry *debugfs_root;
46
47 /*
48 * struct regulator_map
49 *
50 * Used to provide symbolic supply names to devices.
51 */
52 struct regulator_map {
53 struct list_head list;
54 const char *dev_name; /* The dev_name() for the consumer */
55 const char *supply;
56 struct regulator_dev *regulator;
57 };
58
59 /*
60 * struct regulator_enable_gpio
61 *
62 * Management for shared enable GPIO pin
63 */
64 struct regulator_enable_gpio {
65 struct list_head list;
66 struct gpio_desc *gpiod;
67 u32 enable_count; /* a number of enabled shared GPIO */
68 u32 request_count; /* a number of requested shared GPIO */
69 };
70
71 /*
72 * struct regulator_supply_alias
73 *
74 * Used to map lookups for a supply onto an alternative device.
75 */
76 struct regulator_supply_alias {
77 struct list_head list;
78 struct device *src_dev;
79 const char *src_supply;
80 struct device *alias_dev;
81 const char *alias_supply;
82 };
83
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static int _notifier_call_chain(struct regulator_dev *rdev,
90 unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 int min_uV, int max_uV);
93 static int regulator_balance_voltage(struct regulator_dev *rdev,
94 suspend_state_t state);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96 struct device *dev,
97 const char *supply_name);
98 static void destroy_regulator(struct regulator *regulator);
99 static void _regulator_put(struct regulator *regulator);
100
rdev_get_name(struct regulator_dev * rdev)101 const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103 if (rdev->constraints && rdev->constraints->name)
104 return rdev->constraints->name;
105 else if (rdev->desc->name)
106 return rdev->desc->name;
107 else
108 return "";
109 }
110 EXPORT_SYMBOL_GPL(rdev_get_name);
111
have_full_constraints(void)112 static bool have_full_constraints(void)
113 {
114 return has_full_constraints || of_have_populated_dt();
115 }
116
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118 {
119 if (!rdev->constraints) {
120 rdev_err(rdev, "no constraints\n");
121 return false;
122 }
123
124 if (rdev->constraints->valid_ops_mask & ops)
125 return true;
126
127 return false;
128 }
129
130 /**
131 * regulator_lock_nested - lock a single regulator
132 * @rdev: regulator source
133 * @ww_ctx: w/w mutex acquire context
134 *
135 * This function can be called many times by one task on
136 * a single regulator and its mutex will be locked only
137 * once. If a task, which is calling this function is other
138 * than the one, which initially locked the mutex, it will
139 * wait on mutex.
140 */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)141 static inline int regulator_lock_nested(struct regulator_dev *rdev,
142 struct ww_acquire_ctx *ww_ctx)
143 {
144 bool lock = false;
145 int ret = 0;
146
147 mutex_lock(®ulator_nesting_mutex);
148
149 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150 if (rdev->mutex_owner == current)
151 rdev->ref_cnt++;
152 else
153 lock = true;
154
155 if (lock) {
156 mutex_unlock(®ulator_nesting_mutex);
157 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158 mutex_lock(®ulator_nesting_mutex);
159 }
160 } else {
161 lock = true;
162 }
163
164 if (lock && ret != -EDEADLK) {
165 rdev->ref_cnt++;
166 rdev->mutex_owner = current;
167 }
168
169 mutex_unlock(®ulator_nesting_mutex);
170
171 return ret;
172 }
173
174 /**
175 * regulator_lock - lock a single regulator
176 * @rdev: regulator source
177 *
178 * This function can be called many times by one task on
179 * a single regulator and its mutex will be locked only
180 * once. If a task, which is calling this function is other
181 * than the one, which initially locked the mutex, it will
182 * wait on mutex.
183 */
regulator_lock(struct regulator_dev * rdev)184 static void regulator_lock(struct regulator_dev *rdev)
185 {
186 regulator_lock_nested(rdev, NULL);
187 }
188
189 /**
190 * regulator_unlock - unlock a single regulator
191 * @rdev: regulator_source
192 *
193 * This function unlocks the mutex when the
194 * reference counter reaches 0.
195 */
regulator_unlock(struct regulator_dev * rdev)196 static void regulator_unlock(struct regulator_dev *rdev)
197 {
198 mutex_lock(®ulator_nesting_mutex);
199
200 if (--rdev->ref_cnt == 0) {
201 rdev->mutex_owner = NULL;
202 ww_mutex_unlock(&rdev->mutex);
203 }
204
205 WARN_ON_ONCE(rdev->ref_cnt < 0);
206
207 mutex_unlock(®ulator_nesting_mutex);
208 }
209
210 /**
211 * regulator_lock_two - lock two regulators
212 * @rdev1: first regulator
213 * @rdev2: second regulator
214 * @ww_ctx: w/w mutex acquire context
215 *
216 * Locks both rdevs using the regulator_ww_class.
217 */
regulator_lock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)218 static void regulator_lock_two(struct regulator_dev *rdev1,
219 struct regulator_dev *rdev2,
220 struct ww_acquire_ctx *ww_ctx)
221 {
222 struct regulator_dev *held, *contended;
223 int ret;
224
225 ww_acquire_init(ww_ctx, ®ulator_ww_class);
226
227 /* Try to just grab both of them */
228 ret = regulator_lock_nested(rdev1, ww_ctx);
229 WARN_ON(ret);
230 ret = regulator_lock_nested(rdev2, ww_ctx);
231 if (ret != -EDEADLOCK) {
232 WARN_ON(ret);
233 goto exit;
234 }
235
236 held = rdev1;
237 contended = rdev2;
238 while (true) {
239 regulator_unlock(held);
240
241 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
242 contended->ref_cnt++;
243 contended->mutex_owner = current;
244 swap(held, contended);
245 ret = regulator_lock_nested(contended, ww_ctx);
246
247 if (ret != -EDEADLOCK) {
248 WARN_ON(ret);
249 break;
250 }
251 }
252
253 exit:
254 ww_acquire_done(ww_ctx);
255 }
256
257 /**
258 * regulator_unlock_two - unlock two regulators
259 * @rdev1: first regulator
260 * @rdev2: second regulator
261 * @ww_ctx: w/w mutex acquire context
262 *
263 * The inverse of regulator_lock_two().
264 */
265
regulator_unlock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)266 static void regulator_unlock_two(struct regulator_dev *rdev1,
267 struct regulator_dev *rdev2,
268 struct ww_acquire_ctx *ww_ctx)
269 {
270 regulator_unlock(rdev2);
271 regulator_unlock(rdev1);
272 ww_acquire_fini(ww_ctx);
273 }
274
regulator_supply_is_couple(struct regulator_dev * rdev)275 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
276 {
277 struct regulator_dev *c_rdev;
278 int i;
279
280 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
281 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
282
283 if (rdev->supply->rdev == c_rdev)
284 return true;
285 }
286
287 return false;
288 }
289
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)290 static void regulator_unlock_recursive(struct regulator_dev *rdev,
291 unsigned int n_coupled)
292 {
293 struct regulator_dev *c_rdev, *supply_rdev;
294 int i, supply_n_coupled;
295
296 for (i = n_coupled; i > 0; i--) {
297 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
298
299 if (!c_rdev)
300 continue;
301
302 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
303 supply_rdev = c_rdev->supply->rdev;
304 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
305
306 regulator_unlock_recursive(supply_rdev,
307 supply_n_coupled);
308 }
309
310 regulator_unlock(c_rdev);
311 }
312 }
313
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)314 static int regulator_lock_recursive(struct regulator_dev *rdev,
315 struct regulator_dev **new_contended_rdev,
316 struct regulator_dev **old_contended_rdev,
317 struct ww_acquire_ctx *ww_ctx)
318 {
319 struct regulator_dev *c_rdev;
320 int i, err;
321
322 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
323 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
324
325 if (!c_rdev)
326 continue;
327
328 if (c_rdev != *old_contended_rdev) {
329 err = regulator_lock_nested(c_rdev, ww_ctx);
330 if (err) {
331 if (err == -EDEADLK) {
332 *new_contended_rdev = c_rdev;
333 goto err_unlock;
334 }
335
336 /* shouldn't happen */
337 WARN_ON_ONCE(err != -EALREADY);
338 }
339 } else {
340 *old_contended_rdev = NULL;
341 }
342
343 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
344 err = regulator_lock_recursive(c_rdev->supply->rdev,
345 new_contended_rdev,
346 old_contended_rdev,
347 ww_ctx);
348 if (err) {
349 regulator_unlock(c_rdev);
350 goto err_unlock;
351 }
352 }
353 }
354
355 return 0;
356
357 err_unlock:
358 regulator_unlock_recursive(rdev, i);
359
360 return err;
361 }
362
363 /**
364 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
365 * regulators
366 * @rdev: regulator source
367 * @ww_ctx: w/w mutex acquire context
368 *
369 * Unlock all regulators related with rdev by coupling or supplying.
370 */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)371 static void regulator_unlock_dependent(struct regulator_dev *rdev,
372 struct ww_acquire_ctx *ww_ctx)
373 {
374 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
375 ww_acquire_fini(ww_ctx);
376 }
377
378 /**
379 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
380 * @rdev: regulator source
381 * @ww_ctx: w/w mutex acquire context
382 *
383 * This function as a wrapper on regulator_lock_recursive(), which locks
384 * all regulators related with rdev by coupling or supplying.
385 */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)386 static void regulator_lock_dependent(struct regulator_dev *rdev,
387 struct ww_acquire_ctx *ww_ctx)
388 {
389 struct regulator_dev *new_contended_rdev = NULL;
390 struct regulator_dev *old_contended_rdev = NULL;
391 int err;
392
393 mutex_lock(®ulator_list_mutex);
394
395 ww_acquire_init(ww_ctx, ®ulator_ww_class);
396
397 do {
398 if (new_contended_rdev) {
399 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
400 old_contended_rdev = new_contended_rdev;
401 old_contended_rdev->ref_cnt++;
402 old_contended_rdev->mutex_owner = current;
403 }
404
405 err = regulator_lock_recursive(rdev,
406 &new_contended_rdev,
407 &old_contended_rdev,
408 ww_ctx);
409
410 if (old_contended_rdev)
411 regulator_unlock(old_contended_rdev);
412
413 } while (err == -EDEADLK);
414
415 ww_acquire_done(ww_ctx);
416
417 mutex_unlock(®ulator_list_mutex);
418 }
419
420 /**
421 * of_get_child_regulator - get a child regulator device node
422 * based on supply name
423 * @parent: Parent device node
424 * @prop_name: Combination regulator supply name and "-supply"
425 *
426 * Traverse all child nodes.
427 * Extract the child regulator device node corresponding to the supply name.
428 * returns the device node corresponding to the regulator if found, else
429 * returns NULL.
430 */
of_get_child_regulator(struct device_node * parent,const char * prop_name)431 static struct device_node *of_get_child_regulator(struct device_node *parent,
432 const char *prop_name)
433 {
434 struct device_node *regnode = NULL;
435 struct device_node *child = NULL;
436
437 for_each_child_of_node(parent, child) {
438 regnode = of_parse_phandle(child, prop_name, 0);
439
440 if (!regnode) {
441 regnode = of_get_child_regulator(child, prop_name);
442 if (regnode)
443 goto err_node_put;
444 } else {
445 goto err_node_put;
446 }
447 }
448 return NULL;
449
450 err_node_put:
451 of_node_put(child);
452 return regnode;
453 }
454
455 /**
456 * of_get_regulator - get a regulator device node based on supply name
457 * @dev: Device pointer for the consumer (of regulator) device
458 * @supply: regulator supply name
459 *
460 * Extract the regulator device node corresponding to the supply name.
461 * returns the device node corresponding to the regulator if found, else
462 * returns NULL.
463 */
of_get_regulator(struct device * dev,const char * supply)464 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
465 {
466 struct device_node *regnode = NULL;
467 char prop_name[64]; /* 64 is max size of property name */
468
469 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
470
471 snprintf(prop_name, 64, "%s-supply", supply);
472 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
473
474 if (!regnode) {
475 regnode = of_get_child_regulator(dev->of_node, prop_name);
476 if (regnode)
477 return regnode;
478
479 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
480 prop_name, dev->of_node);
481 return NULL;
482 }
483 return regnode;
484 }
485
486 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)487 int regulator_check_voltage(struct regulator_dev *rdev,
488 int *min_uV, int *max_uV)
489 {
490 BUG_ON(*min_uV > *max_uV);
491
492 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
493 rdev_err(rdev, "voltage operation not allowed\n");
494 return -EPERM;
495 }
496
497 if (*max_uV > rdev->constraints->max_uV)
498 *max_uV = rdev->constraints->max_uV;
499 if (*min_uV < rdev->constraints->min_uV)
500 *min_uV = rdev->constraints->min_uV;
501
502 if (*min_uV > *max_uV) {
503 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
504 *min_uV, *max_uV);
505 return -EINVAL;
506 }
507
508 return 0;
509 }
510
511 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)512 static int regulator_check_states(suspend_state_t state)
513 {
514 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
515 }
516
517 /* Make sure we select a voltage that suits the needs of all
518 * regulator consumers
519 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)520 int regulator_check_consumers(struct regulator_dev *rdev,
521 int *min_uV, int *max_uV,
522 suspend_state_t state)
523 {
524 struct regulator *regulator;
525 struct regulator_voltage *voltage;
526
527 list_for_each_entry(regulator, &rdev->consumer_list, list) {
528 voltage = ®ulator->voltage[state];
529 /*
530 * Assume consumers that didn't say anything are OK
531 * with anything in the constraint range.
532 */
533 if (!voltage->min_uV && !voltage->max_uV)
534 continue;
535
536 if (*max_uV > voltage->max_uV)
537 *max_uV = voltage->max_uV;
538 if (*min_uV < voltage->min_uV)
539 *min_uV = voltage->min_uV;
540 }
541
542 if (*min_uV > *max_uV) {
543 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
544 *min_uV, *max_uV);
545 return -EINVAL;
546 }
547
548 return 0;
549 }
550
551 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)552 static int regulator_check_current_limit(struct regulator_dev *rdev,
553 int *min_uA, int *max_uA)
554 {
555 BUG_ON(*min_uA > *max_uA);
556
557 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
558 rdev_err(rdev, "current operation not allowed\n");
559 return -EPERM;
560 }
561
562 if (*max_uA > rdev->constraints->max_uA)
563 *max_uA = rdev->constraints->max_uA;
564 if (*min_uA < rdev->constraints->min_uA)
565 *min_uA = rdev->constraints->min_uA;
566
567 if (*min_uA > *max_uA) {
568 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
569 *min_uA, *max_uA);
570 return -EINVAL;
571 }
572
573 return 0;
574 }
575
576 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)577 static int regulator_mode_constrain(struct regulator_dev *rdev,
578 unsigned int *mode)
579 {
580 switch (*mode) {
581 case REGULATOR_MODE_FAST:
582 case REGULATOR_MODE_NORMAL:
583 case REGULATOR_MODE_IDLE:
584 case REGULATOR_MODE_STANDBY:
585 break;
586 default:
587 rdev_err(rdev, "invalid mode %x specified\n", *mode);
588 return -EINVAL;
589 }
590
591 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
592 rdev_err(rdev, "mode operation not allowed\n");
593 return -EPERM;
594 }
595
596 /* The modes are bitmasks, the most power hungry modes having
597 * the lowest values. If the requested mode isn't supported
598 * try higher modes.
599 */
600 while (*mode) {
601 if (rdev->constraints->valid_modes_mask & *mode)
602 return 0;
603 *mode /= 2;
604 }
605
606 return -EINVAL;
607 }
608
609 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)610 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
611 {
612 if (rdev->constraints == NULL)
613 return NULL;
614
615 switch (state) {
616 case PM_SUSPEND_STANDBY:
617 return &rdev->constraints->state_standby;
618 case PM_SUSPEND_MEM:
619 return &rdev->constraints->state_mem;
620 case PM_SUSPEND_MAX:
621 return &rdev->constraints->state_disk;
622 default:
623 return NULL;
624 }
625 }
626
627 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)628 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
629 {
630 const struct regulator_state *rstate;
631
632 rstate = regulator_get_suspend_state(rdev, state);
633 if (rstate == NULL)
634 return NULL;
635
636 /* If we have no suspend mode configuration don't set anything;
637 * only warn if the driver implements set_suspend_voltage or
638 * set_suspend_mode callback.
639 */
640 if (rstate->enabled != ENABLE_IN_SUSPEND &&
641 rstate->enabled != DISABLE_IN_SUSPEND) {
642 if (rdev->desc->ops->set_suspend_voltage ||
643 rdev->desc->ops->set_suspend_mode)
644 rdev_warn(rdev, "No configuration\n");
645 return NULL;
646 }
647
648 return rstate;
649 }
650
microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)651 static ssize_t microvolts_show(struct device *dev,
652 struct device_attribute *attr, char *buf)
653 {
654 struct regulator_dev *rdev = dev_get_drvdata(dev);
655 int uV;
656
657 regulator_lock(rdev);
658 uV = regulator_get_voltage_rdev(rdev);
659 regulator_unlock(rdev);
660
661 if (uV < 0)
662 return uV;
663 return sprintf(buf, "%d\n", uV);
664 }
665 static DEVICE_ATTR_RO(microvolts);
666
microamps_show(struct device * dev,struct device_attribute * attr,char * buf)667 static ssize_t microamps_show(struct device *dev,
668 struct device_attribute *attr, char *buf)
669 {
670 struct regulator_dev *rdev = dev_get_drvdata(dev);
671
672 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
673 }
674 static DEVICE_ATTR_RO(microamps);
675
name_show(struct device * dev,struct device_attribute * attr,char * buf)676 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
677 char *buf)
678 {
679 struct regulator_dev *rdev = dev_get_drvdata(dev);
680
681 return sprintf(buf, "%s\n", rdev_get_name(rdev));
682 }
683 static DEVICE_ATTR_RO(name);
684
regulator_opmode_to_str(int mode)685 static const char *regulator_opmode_to_str(int mode)
686 {
687 switch (mode) {
688 case REGULATOR_MODE_FAST:
689 return "fast";
690 case REGULATOR_MODE_NORMAL:
691 return "normal";
692 case REGULATOR_MODE_IDLE:
693 return "idle";
694 case REGULATOR_MODE_STANDBY:
695 return "standby";
696 }
697 return "unknown";
698 }
699
regulator_print_opmode(char * buf,int mode)700 static ssize_t regulator_print_opmode(char *buf, int mode)
701 {
702 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
703 }
704
opmode_show(struct device * dev,struct device_attribute * attr,char * buf)705 static ssize_t opmode_show(struct device *dev,
706 struct device_attribute *attr, char *buf)
707 {
708 struct regulator_dev *rdev = dev_get_drvdata(dev);
709
710 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
711 }
712 static DEVICE_ATTR_RO(opmode);
713
regulator_print_state(char * buf,int state)714 static ssize_t regulator_print_state(char *buf, int state)
715 {
716 if (state > 0)
717 return sprintf(buf, "enabled\n");
718 else if (state == 0)
719 return sprintf(buf, "disabled\n");
720 else
721 return sprintf(buf, "unknown\n");
722 }
723
state_show(struct device * dev,struct device_attribute * attr,char * buf)724 static ssize_t state_show(struct device *dev,
725 struct device_attribute *attr, char *buf)
726 {
727 struct regulator_dev *rdev = dev_get_drvdata(dev);
728 ssize_t ret;
729
730 regulator_lock(rdev);
731 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
732 regulator_unlock(rdev);
733
734 return ret;
735 }
736 static DEVICE_ATTR_RO(state);
737
status_show(struct device * dev,struct device_attribute * attr,char * buf)738 static ssize_t status_show(struct device *dev,
739 struct device_attribute *attr, char *buf)
740 {
741 struct regulator_dev *rdev = dev_get_drvdata(dev);
742 int status;
743 char *label;
744
745 status = rdev->desc->ops->get_status(rdev);
746 if (status < 0)
747 return status;
748
749 switch (status) {
750 case REGULATOR_STATUS_OFF:
751 label = "off";
752 break;
753 case REGULATOR_STATUS_ON:
754 label = "on";
755 break;
756 case REGULATOR_STATUS_ERROR:
757 label = "error";
758 break;
759 case REGULATOR_STATUS_FAST:
760 label = "fast";
761 break;
762 case REGULATOR_STATUS_NORMAL:
763 label = "normal";
764 break;
765 case REGULATOR_STATUS_IDLE:
766 label = "idle";
767 break;
768 case REGULATOR_STATUS_STANDBY:
769 label = "standby";
770 break;
771 case REGULATOR_STATUS_BYPASS:
772 label = "bypass";
773 break;
774 case REGULATOR_STATUS_UNDEFINED:
775 label = "undefined";
776 break;
777 default:
778 return -ERANGE;
779 }
780
781 return sprintf(buf, "%s\n", label);
782 }
783 static DEVICE_ATTR_RO(status);
784
min_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)785 static ssize_t min_microamps_show(struct device *dev,
786 struct device_attribute *attr, char *buf)
787 {
788 struct regulator_dev *rdev = dev_get_drvdata(dev);
789
790 if (!rdev->constraints)
791 return sprintf(buf, "constraint not defined\n");
792
793 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
794 }
795 static DEVICE_ATTR_RO(min_microamps);
796
max_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)797 static ssize_t max_microamps_show(struct device *dev,
798 struct device_attribute *attr, char *buf)
799 {
800 struct regulator_dev *rdev = dev_get_drvdata(dev);
801
802 if (!rdev->constraints)
803 return sprintf(buf, "constraint not defined\n");
804
805 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
806 }
807 static DEVICE_ATTR_RO(max_microamps);
808
min_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)809 static ssize_t min_microvolts_show(struct device *dev,
810 struct device_attribute *attr, char *buf)
811 {
812 struct regulator_dev *rdev = dev_get_drvdata(dev);
813
814 if (!rdev->constraints)
815 return sprintf(buf, "constraint not defined\n");
816
817 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
818 }
819 static DEVICE_ATTR_RO(min_microvolts);
820
max_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)821 static ssize_t max_microvolts_show(struct device *dev,
822 struct device_attribute *attr, char *buf)
823 {
824 struct regulator_dev *rdev = dev_get_drvdata(dev);
825
826 if (!rdev->constraints)
827 return sprintf(buf, "constraint not defined\n");
828
829 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
830 }
831 static DEVICE_ATTR_RO(max_microvolts);
832
requested_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)833 static ssize_t requested_microamps_show(struct device *dev,
834 struct device_attribute *attr, char *buf)
835 {
836 struct regulator_dev *rdev = dev_get_drvdata(dev);
837 struct regulator *regulator;
838 int uA = 0;
839
840 regulator_lock(rdev);
841 list_for_each_entry(regulator, &rdev->consumer_list, list) {
842 if (regulator->enable_count)
843 uA += regulator->uA_load;
844 }
845 regulator_unlock(rdev);
846 return sprintf(buf, "%d\n", uA);
847 }
848 static DEVICE_ATTR_RO(requested_microamps);
849
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)850 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
851 char *buf)
852 {
853 struct regulator_dev *rdev = dev_get_drvdata(dev);
854 return sprintf(buf, "%d\n", rdev->use_count);
855 }
856 static DEVICE_ATTR_RO(num_users);
857
type_show(struct device * dev,struct device_attribute * attr,char * buf)858 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
859 char *buf)
860 {
861 struct regulator_dev *rdev = dev_get_drvdata(dev);
862
863 switch (rdev->desc->type) {
864 case REGULATOR_VOLTAGE:
865 return sprintf(buf, "voltage\n");
866 case REGULATOR_CURRENT:
867 return sprintf(buf, "current\n");
868 }
869 return sprintf(buf, "unknown\n");
870 }
871 static DEVICE_ATTR_RO(type);
872
suspend_mem_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)873 static ssize_t suspend_mem_microvolts_show(struct device *dev,
874 struct device_attribute *attr, char *buf)
875 {
876 struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
879 }
880 static DEVICE_ATTR_RO(suspend_mem_microvolts);
881
suspend_disk_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)882 static ssize_t suspend_disk_microvolts_show(struct device *dev,
883 struct device_attribute *attr, char *buf)
884 {
885 struct regulator_dev *rdev = dev_get_drvdata(dev);
886
887 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
888 }
889 static DEVICE_ATTR_RO(suspend_disk_microvolts);
890
suspend_standby_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)891 static ssize_t suspend_standby_microvolts_show(struct device *dev,
892 struct device_attribute *attr, char *buf)
893 {
894 struct regulator_dev *rdev = dev_get_drvdata(dev);
895
896 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
897 }
898 static DEVICE_ATTR_RO(suspend_standby_microvolts);
899
suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)900 static ssize_t suspend_mem_mode_show(struct device *dev,
901 struct device_attribute *attr, char *buf)
902 {
903 struct regulator_dev *rdev = dev_get_drvdata(dev);
904
905 return regulator_print_opmode(buf,
906 rdev->constraints->state_mem.mode);
907 }
908 static DEVICE_ATTR_RO(suspend_mem_mode);
909
suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)910 static ssize_t suspend_disk_mode_show(struct device *dev,
911 struct device_attribute *attr, char *buf)
912 {
913 struct regulator_dev *rdev = dev_get_drvdata(dev);
914
915 return regulator_print_opmode(buf,
916 rdev->constraints->state_disk.mode);
917 }
918 static DEVICE_ATTR_RO(suspend_disk_mode);
919
suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)920 static ssize_t suspend_standby_mode_show(struct device *dev,
921 struct device_attribute *attr, char *buf)
922 {
923 struct regulator_dev *rdev = dev_get_drvdata(dev);
924
925 return regulator_print_opmode(buf,
926 rdev->constraints->state_standby.mode);
927 }
928 static DEVICE_ATTR_RO(suspend_standby_mode);
929
suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)930 static ssize_t suspend_mem_state_show(struct device *dev,
931 struct device_attribute *attr, char *buf)
932 {
933 struct regulator_dev *rdev = dev_get_drvdata(dev);
934
935 return regulator_print_state(buf,
936 rdev->constraints->state_mem.enabled);
937 }
938 static DEVICE_ATTR_RO(suspend_mem_state);
939
suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)940 static ssize_t suspend_disk_state_show(struct device *dev,
941 struct device_attribute *attr, char *buf)
942 {
943 struct regulator_dev *rdev = dev_get_drvdata(dev);
944
945 return regulator_print_state(buf,
946 rdev->constraints->state_disk.enabled);
947 }
948 static DEVICE_ATTR_RO(suspend_disk_state);
949
suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)950 static ssize_t suspend_standby_state_show(struct device *dev,
951 struct device_attribute *attr, char *buf)
952 {
953 struct regulator_dev *rdev = dev_get_drvdata(dev);
954
955 return regulator_print_state(buf,
956 rdev->constraints->state_standby.enabled);
957 }
958 static DEVICE_ATTR_RO(suspend_standby_state);
959
bypass_show(struct device * dev,struct device_attribute * attr,char * buf)960 static ssize_t bypass_show(struct device *dev,
961 struct device_attribute *attr, char *buf)
962 {
963 struct regulator_dev *rdev = dev_get_drvdata(dev);
964 const char *report;
965 bool bypass;
966 int ret;
967
968 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
969
970 if (ret != 0)
971 report = "unknown";
972 else if (bypass)
973 report = "enabled";
974 else
975 report = "disabled";
976
977 return sprintf(buf, "%s\n", report);
978 }
979 static DEVICE_ATTR_RO(bypass);
980
981 #define REGULATOR_ERROR_ATTR(name, bit) \
982 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
983 char *buf) \
984 { \
985 int ret; \
986 unsigned int flags; \
987 struct regulator_dev *rdev = dev_get_drvdata(dev); \
988 ret = _regulator_get_error_flags(rdev, &flags); \
989 if (ret) \
990 return ret; \
991 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
992 } \
993 static DEVICE_ATTR_RO(name)
994
995 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
996 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
997 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
998 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
999 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1000 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1001 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1002 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1003 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1004
1005 /* Calculate the new optimum regulator operating mode based on the new total
1006 * consumer load. All locks held by caller
1007 */
drms_uA_update(struct regulator_dev * rdev)1008 static int drms_uA_update(struct regulator_dev *rdev)
1009 {
1010 struct regulator *sibling;
1011 int current_uA = 0, output_uV, input_uV, err;
1012 unsigned int mode;
1013
1014 /*
1015 * first check to see if we can set modes at all, otherwise just
1016 * tell the consumer everything is OK.
1017 */
1018 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019 rdev_dbg(rdev, "DRMS operation not allowed\n");
1020 return 0;
1021 }
1022
1023 if (!rdev->desc->ops->get_optimum_mode &&
1024 !rdev->desc->ops->set_load)
1025 return 0;
1026
1027 if (!rdev->desc->ops->set_mode &&
1028 !rdev->desc->ops->set_load)
1029 return -EINVAL;
1030
1031 /* calc total requested load */
1032 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033 if (sibling->enable_count)
1034 current_uA += sibling->uA_load;
1035 }
1036
1037 current_uA += rdev->constraints->system_load;
1038
1039 if (rdev->desc->ops->set_load) {
1040 /* set the optimum mode for our new total regulator load */
1041 err = rdev->desc->ops->set_load(rdev, current_uA);
1042 if (err < 0)
1043 rdev_err(rdev, "failed to set load %d: %pe\n",
1044 current_uA, ERR_PTR(err));
1045 } else {
1046 /*
1047 * Unfortunately in some cases the constraints->valid_ops has
1048 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1049 * That's not really legit but we won't consider it a fatal
1050 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1051 * wasn't set.
1052 */
1053 if (!rdev->constraints->valid_modes_mask) {
1054 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1055 return 0;
1056 }
1057
1058 /* get output voltage */
1059 output_uV = regulator_get_voltage_rdev(rdev);
1060
1061 /*
1062 * Don't return an error; if regulator driver cares about
1063 * output_uV then it's up to the driver to validate.
1064 */
1065 if (output_uV <= 0)
1066 rdev_dbg(rdev, "invalid output voltage found\n");
1067
1068 /* get input voltage */
1069 input_uV = 0;
1070 if (rdev->supply)
1071 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1072 if (input_uV <= 0)
1073 input_uV = rdev->constraints->input_uV;
1074
1075 /*
1076 * Don't return an error; if regulator driver cares about
1077 * input_uV then it's up to the driver to validate.
1078 */
1079 if (input_uV <= 0)
1080 rdev_dbg(rdev, "invalid input voltage found\n");
1081
1082 /* now get the optimum mode for our new total regulator load */
1083 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1084 output_uV, current_uA);
1085
1086 /* check the new mode is allowed */
1087 err = regulator_mode_constrain(rdev, &mode);
1088 if (err < 0) {
1089 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1090 current_uA, input_uV, output_uV, ERR_PTR(err));
1091 return err;
1092 }
1093
1094 err = rdev->desc->ops->set_mode(rdev, mode);
1095 if (err < 0)
1096 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1097 mode, ERR_PTR(err));
1098 }
1099
1100 return err;
1101 }
1102
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1103 static int __suspend_set_state(struct regulator_dev *rdev,
1104 const struct regulator_state *rstate)
1105 {
1106 int ret = 0;
1107
1108 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1109 rdev->desc->ops->set_suspend_enable)
1110 ret = rdev->desc->ops->set_suspend_enable(rdev);
1111 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1112 rdev->desc->ops->set_suspend_disable)
1113 ret = rdev->desc->ops->set_suspend_disable(rdev);
1114 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1115 ret = 0;
1116
1117 if (ret < 0) {
1118 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1119 return ret;
1120 }
1121
1122 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1123 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1124 if (ret < 0) {
1125 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1126 return ret;
1127 }
1128 }
1129
1130 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1131 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1132 if (ret < 0) {
1133 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1134 return ret;
1135 }
1136 }
1137
1138 return ret;
1139 }
1140
suspend_set_initial_state(struct regulator_dev * rdev)1141 static int suspend_set_initial_state(struct regulator_dev *rdev)
1142 {
1143 const struct regulator_state *rstate;
1144
1145 rstate = regulator_get_suspend_state_check(rdev,
1146 rdev->constraints->initial_state);
1147 if (!rstate)
1148 return 0;
1149
1150 return __suspend_set_state(rdev, rstate);
1151 }
1152
1153 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1154 static void print_constraints_debug(struct regulator_dev *rdev)
1155 {
1156 struct regulation_constraints *constraints = rdev->constraints;
1157 char buf[160] = "";
1158 size_t len = sizeof(buf) - 1;
1159 int count = 0;
1160 int ret;
1161
1162 if (constraints->min_uV && constraints->max_uV) {
1163 if (constraints->min_uV == constraints->max_uV)
1164 count += scnprintf(buf + count, len - count, "%d mV ",
1165 constraints->min_uV / 1000);
1166 else
1167 count += scnprintf(buf + count, len - count,
1168 "%d <--> %d mV ",
1169 constraints->min_uV / 1000,
1170 constraints->max_uV / 1000);
1171 }
1172
1173 if (!constraints->min_uV ||
1174 constraints->min_uV != constraints->max_uV) {
1175 ret = regulator_get_voltage_rdev(rdev);
1176 if (ret > 0)
1177 count += scnprintf(buf + count, len - count,
1178 "at %d mV ", ret / 1000);
1179 }
1180
1181 if (constraints->uV_offset)
1182 count += scnprintf(buf + count, len - count, "%dmV offset ",
1183 constraints->uV_offset / 1000);
1184
1185 if (constraints->min_uA && constraints->max_uA) {
1186 if (constraints->min_uA == constraints->max_uA)
1187 count += scnprintf(buf + count, len - count, "%d mA ",
1188 constraints->min_uA / 1000);
1189 else
1190 count += scnprintf(buf + count, len - count,
1191 "%d <--> %d mA ",
1192 constraints->min_uA / 1000,
1193 constraints->max_uA / 1000);
1194 }
1195
1196 if (!constraints->min_uA ||
1197 constraints->min_uA != constraints->max_uA) {
1198 ret = _regulator_get_current_limit(rdev);
1199 if (ret > 0)
1200 count += scnprintf(buf + count, len - count,
1201 "at %d mA ", ret / 1000);
1202 }
1203
1204 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1205 count += scnprintf(buf + count, len - count, "fast ");
1206 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1207 count += scnprintf(buf + count, len - count, "normal ");
1208 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1209 count += scnprintf(buf + count, len - count, "idle ");
1210 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1211 count += scnprintf(buf + count, len - count, "standby ");
1212
1213 if (!count)
1214 count = scnprintf(buf, len, "no parameters");
1215 else
1216 --count;
1217
1218 count += scnprintf(buf + count, len - count, ", %s",
1219 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1220
1221 rdev_dbg(rdev, "%s\n", buf);
1222 }
1223 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1224 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1225 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226
print_constraints(struct regulator_dev * rdev)1227 static void print_constraints(struct regulator_dev *rdev)
1228 {
1229 struct regulation_constraints *constraints = rdev->constraints;
1230
1231 print_constraints_debug(rdev);
1232
1233 if ((constraints->min_uV != constraints->max_uV) &&
1234 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1235 rdev_warn(rdev,
1236 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1237 }
1238
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1239 static int machine_constraints_voltage(struct regulator_dev *rdev,
1240 struct regulation_constraints *constraints)
1241 {
1242 const struct regulator_ops *ops = rdev->desc->ops;
1243 int ret;
1244
1245 /* do we need to apply the constraint voltage */
1246 if (rdev->constraints->apply_uV &&
1247 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1248 int target_min, target_max;
1249 int current_uV = regulator_get_voltage_rdev(rdev);
1250
1251 if (current_uV == -ENOTRECOVERABLE) {
1252 /* This regulator can't be read and must be initialized */
1253 rdev_info(rdev, "Setting %d-%duV\n",
1254 rdev->constraints->min_uV,
1255 rdev->constraints->max_uV);
1256 _regulator_do_set_voltage(rdev,
1257 rdev->constraints->min_uV,
1258 rdev->constraints->max_uV);
1259 current_uV = regulator_get_voltage_rdev(rdev);
1260 }
1261
1262 if (current_uV < 0) {
1263 if (current_uV != -EPROBE_DEFER)
1264 rdev_err(rdev,
1265 "failed to get the current voltage: %pe\n",
1266 ERR_PTR(current_uV));
1267 return current_uV;
1268 }
1269
1270 /*
1271 * If we're below the minimum voltage move up to the
1272 * minimum voltage, if we're above the maximum voltage
1273 * then move down to the maximum.
1274 */
1275 target_min = current_uV;
1276 target_max = current_uV;
1277
1278 if (current_uV < rdev->constraints->min_uV) {
1279 target_min = rdev->constraints->min_uV;
1280 target_max = rdev->constraints->min_uV;
1281 }
1282
1283 if (current_uV > rdev->constraints->max_uV) {
1284 target_min = rdev->constraints->max_uV;
1285 target_max = rdev->constraints->max_uV;
1286 }
1287
1288 if (target_min != current_uV || target_max != current_uV) {
1289 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1290 current_uV, target_min, target_max);
1291 ret = _regulator_do_set_voltage(
1292 rdev, target_min, target_max);
1293 if (ret < 0) {
1294 rdev_err(rdev,
1295 "failed to apply %d-%duV constraint: %pe\n",
1296 target_min, target_max, ERR_PTR(ret));
1297 return ret;
1298 }
1299 }
1300 }
1301
1302 /* constrain machine-level voltage specs to fit
1303 * the actual range supported by this regulator.
1304 */
1305 if (ops->list_voltage && rdev->desc->n_voltages) {
1306 int count = rdev->desc->n_voltages;
1307 int i;
1308 int min_uV = INT_MAX;
1309 int max_uV = INT_MIN;
1310 int cmin = constraints->min_uV;
1311 int cmax = constraints->max_uV;
1312
1313 /* it's safe to autoconfigure fixed-voltage supplies
1314 * and the constraints are used by list_voltage.
1315 */
1316 if (count == 1 && !cmin) {
1317 cmin = 1;
1318 cmax = INT_MAX;
1319 constraints->min_uV = cmin;
1320 constraints->max_uV = cmax;
1321 }
1322
1323 /* voltage constraints are optional */
1324 if ((cmin == 0) && (cmax == 0))
1325 return 0;
1326
1327 /* else require explicit machine-level constraints */
1328 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1329 rdev_err(rdev, "invalid voltage constraints\n");
1330 return -EINVAL;
1331 }
1332
1333 /* no need to loop voltages if range is continuous */
1334 if (rdev->desc->continuous_voltage_range)
1335 return 0;
1336
1337 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1338 for (i = 0; i < count; i++) {
1339 int value;
1340
1341 value = ops->list_voltage(rdev, i);
1342 if (value <= 0)
1343 continue;
1344
1345 /* maybe adjust [min_uV..max_uV] */
1346 if (value >= cmin && value < min_uV)
1347 min_uV = value;
1348 if (value <= cmax && value > max_uV)
1349 max_uV = value;
1350 }
1351
1352 /* final: [min_uV..max_uV] valid iff constraints valid */
1353 if (max_uV < min_uV) {
1354 rdev_err(rdev,
1355 "unsupportable voltage constraints %u-%uuV\n",
1356 min_uV, max_uV);
1357 return -EINVAL;
1358 }
1359
1360 /* use regulator's subset of machine constraints */
1361 if (constraints->min_uV < min_uV) {
1362 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1363 constraints->min_uV, min_uV);
1364 constraints->min_uV = min_uV;
1365 }
1366 if (constraints->max_uV > max_uV) {
1367 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1368 constraints->max_uV, max_uV);
1369 constraints->max_uV = max_uV;
1370 }
1371 }
1372
1373 return 0;
1374 }
1375
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1376 static int machine_constraints_current(struct regulator_dev *rdev,
1377 struct regulation_constraints *constraints)
1378 {
1379 const struct regulator_ops *ops = rdev->desc->ops;
1380 int ret;
1381
1382 if (!constraints->min_uA && !constraints->max_uA)
1383 return 0;
1384
1385 if (constraints->min_uA > constraints->max_uA) {
1386 rdev_err(rdev, "Invalid current constraints\n");
1387 return -EINVAL;
1388 }
1389
1390 if (!ops->set_current_limit || !ops->get_current_limit) {
1391 rdev_warn(rdev, "Operation of current configuration missing\n");
1392 return 0;
1393 }
1394
1395 /* Set regulator current in constraints range */
1396 ret = ops->set_current_limit(rdev, constraints->min_uA,
1397 constraints->max_uA);
1398 if (ret < 0) {
1399 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1400 return ret;
1401 }
1402
1403 return 0;
1404 }
1405
1406 static int _regulator_do_enable(struct regulator_dev *rdev);
1407
notif_set_limit(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),int limit,int severity)1408 static int notif_set_limit(struct regulator_dev *rdev,
1409 int (*set)(struct regulator_dev *, int, int, bool),
1410 int limit, int severity)
1411 {
1412 bool enable;
1413
1414 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1415 enable = false;
1416 limit = 0;
1417 } else {
1418 enable = true;
1419 }
1420
1421 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1422 limit = 0;
1423
1424 return set(rdev, limit, severity, enable);
1425 }
1426
handle_notify_limits(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),struct notification_limit * limits)1427 static int handle_notify_limits(struct regulator_dev *rdev,
1428 int (*set)(struct regulator_dev *, int, int, bool),
1429 struct notification_limit *limits)
1430 {
1431 int ret = 0;
1432
1433 if (!set)
1434 return -EOPNOTSUPP;
1435
1436 if (limits->prot)
1437 ret = notif_set_limit(rdev, set, limits->prot,
1438 REGULATOR_SEVERITY_PROT);
1439 if (ret)
1440 return ret;
1441
1442 if (limits->err)
1443 ret = notif_set_limit(rdev, set, limits->err,
1444 REGULATOR_SEVERITY_ERR);
1445 if (ret)
1446 return ret;
1447
1448 if (limits->warn)
1449 ret = notif_set_limit(rdev, set, limits->warn,
1450 REGULATOR_SEVERITY_WARN);
1451
1452 return ret;
1453 }
1454 /**
1455 * set_machine_constraints - sets regulator constraints
1456 * @rdev: regulator source
1457 *
1458 * Allows platform initialisation code to define and constrain
1459 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1460 * Constraints *must* be set by platform code in order for some
1461 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1462 * set_mode.
1463 */
set_machine_constraints(struct regulator_dev * rdev)1464 static int set_machine_constraints(struct regulator_dev *rdev)
1465 {
1466 int ret = 0;
1467 const struct regulator_ops *ops = rdev->desc->ops;
1468
1469 ret = machine_constraints_voltage(rdev, rdev->constraints);
1470 if (ret != 0)
1471 return ret;
1472
1473 ret = machine_constraints_current(rdev, rdev->constraints);
1474 if (ret != 0)
1475 return ret;
1476
1477 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1478 ret = ops->set_input_current_limit(rdev,
1479 rdev->constraints->ilim_uA);
1480 if (ret < 0) {
1481 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1482 return ret;
1483 }
1484 }
1485
1486 /* do we need to setup our suspend state */
1487 if (rdev->constraints->initial_state) {
1488 ret = suspend_set_initial_state(rdev);
1489 if (ret < 0) {
1490 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1491 return ret;
1492 }
1493 }
1494
1495 if (rdev->constraints->initial_mode) {
1496 if (!ops->set_mode) {
1497 rdev_err(rdev, "no set_mode operation\n");
1498 return -EINVAL;
1499 }
1500
1501 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1502 if (ret < 0) {
1503 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1504 return ret;
1505 }
1506 } else if (rdev->constraints->system_load) {
1507 /*
1508 * We'll only apply the initial system load if an
1509 * initial mode wasn't specified.
1510 */
1511 drms_uA_update(rdev);
1512 }
1513
1514 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1515 && ops->set_ramp_delay) {
1516 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1517 if (ret < 0) {
1518 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1519 return ret;
1520 }
1521 }
1522
1523 if (rdev->constraints->pull_down && ops->set_pull_down) {
1524 ret = ops->set_pull_down(rdev);
1525 if (ret < 0) {
1526 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1527 return ret;
1528 }
1529 }
1530
1531 if (rdev->constraints->soft_start && ops->set_soft_start) {
1532 ret = ops->set_soft_start(rdev);
1533 if (ret < 0) {
1534 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1535 return ret;
1536 }
1537 }
1538
1539 /*
1540 * Existing logic does not warn if over_current_protection is given as
1541 * a constraint but driver does not support that. I think we should
1542 * warn about this type of issues as it is possible someone changes
1543 * PMIC on board to another type - and the another PMIC's driver does
1544 * not support setting protection. Board composer may happily believe
1545 * the DT limits are respected - especially if the new PMIC HW also
1546 * supports protection but the driver does not. I won't change the logic
1547 * without hearing more experienced opinion on this though.
1548 *
1549 * If warning is seen as a good idea then we can merge handling the
1550 * over-curret protection and detection and get rid of this special
1551 * handling.
1552 */
1553 if (rdev->constraints->over_current_protection
1554 && ops->set_over_current_protection) {
1555 int lim = rdev->constraints->over_curr_limits.prot;
1556
1557 ret = ops->set_over_current_protection(rdev, lim,
1558 REGULATOR_SEVERITY_PROT,
1559 true);
1560 if (ret < 0) {
1561 rdev_err(rdev, "failed to set over current protection: %pe\n",
1562 ERR_PTR(ret));
1563 return ret;
1564 }
1565 }
1566
1567 if (rdev->constraints->over_current_detection)
1568 ret = handle_notify_limits(rdev,
1569 ops->set_over_current_protection,
1570 &rdev->constraints->over_curr_limits);
1571 if (ret) {
1572 if (ret != -EOPNOTSUPP) {
1573 rdev_err(rdev, "failed to set over current limits: %pe\n",
1574 ERR_PTR(ret));
1575 return ret;
1576 }
1577 rdev_warn(rdev,
1578 "IC does not support requested over-current limits\n");
1579 }
1580
1581 if (rdev->constraints->over_voltage_detection)
1582 ret = handle_notify_limits(rdev,
1583 ops->set_over_voltage_protection,
1584 &rdev->constraints->over_voltage_limits);
1585 if (ret) {
1586 if (ret != -EOPNOTSUPP) {
1587 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1588 ERR_PTR(ret));
1589 return ret;
1590 }
1591 rdev_warn(rdev,
1592 "IC does not support requested over voltage limits\n");
1593 }
1594
1595 if (rdev->constraints->under_voltage_detection)
1596 ret = handle_notify_limits(rdev,
1597 ops->set_under_voltage_protection,
1598 &rdev->constraints->under_voltage_limits);
1599 if (ret) {
1600 if (ret != -EOPNOTSUPP) {
1601 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1602 ERR_PTR(ret));
1603 return ret;
1604 }
1605 rdev_warn(rdev,
1606 "IC does not support requested under voltage limits\n");
1607 }
1608
1609 if (rdev->constraints->over_temp_detection)
1610 ret = handle_notify_limits(rdev,
1611 ops->set_thermal_protection,
1612 &rdev->constraints->temp_limits);
1613 if (ret) {
1614 if (ret != -EOPNOTSUPP) {
1615 rdev_err(rdev, "failed to set temperature limits %pe\n",
1616 ERR_PTR(ret));
1617 return ret;
1618 }
1619 rdev_warn(rdev,
1620 "IC does not support requested temperature limits\n");
1621 }
1622
1623 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1624 bool ad_state = (rdev->constraints->active_discharge ==
1625 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1626
1627 ret = ops->set_active_discharge(rdev, ad_state);
1628 if (ret < 0) {
1629 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1630 return ret;
1631 }
1632 }
1633
1634 /*
1635 * If there is no mechanism for controlling the regulator then
1636 * flag it as always_on so we don't end up duplicating checks
1637 * for this so much. Note that we could control the state of
1638 * a supply to control the output on a regulator that has no
1639 * direct control.
1640 */
1641 if (!rdev->ena_pin && !ops->enable) {
1642 if (rdev->supply_name && !rdev->supply)
1643 return -EPROBE_DEFER;
1644
1645 if (rdev->supply)
1646 rdev->constraints->always_on =
1647 rdev->supply->rdev->constraints->always_on;
1648 else
1649 rdev->constraints->always_on = true;
1650 }
1651
1652 /* If the constraints say the regulator should be on at this point
1653 * and we have control then make sure it is enabled.
1654 */
1655 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1656 /* If we want to enable this regulator, make sure that we know
1657 * the supplying regulator.
1658 */
1659 if (rdev->supply_name && !rdev->supply)
1660 return -EPROBE_DEFER;
1661
1662 /* If supplying regulator has already been enabled,
1663 * it's not intended to have use_count increment
1664 * when rdev is only boot-on.
1665 */
1666 if (rdev->supply &&
1667 (rdev->constraints->always_on ||
1668 !regulator_is_enabled(rdev->supply))) {
1669 ret = regulator_enable(rdev->supply);
1670 if (ret < 0) {
1671 _regulator_put(rdev->supply);
1672 rdev->supply = NULL;
1673 return ret;
1674 }
1675 }
1676
1677 ret = _regulator_do_enable(rdev);
1678 if (ret < 0 && ret != -EINVAL) {
1679 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1680 return ret;
1681 }
1682
1683 if (rdev->constraints->always_on)
1684 rdev->use_count++;
1685 } else if (rdev->desc->off_on_delay) {
1686 rdev->last_off = ktime_get();
1687 }
1688
1689 print_constraints(rdev);
1690 return 0;
1691 }
1692
1693 /**
1694 * set_supply - set regulator supply regulator
1695 * @rdev: regulator (locked)
1696 * @supply_rdev: supply regulator (locked))
1697 *
1698 * Called by platform initialisation code to set the supply regulator for this
1699 * regulator. This ensures that a regulators supply will also be enabled by the
1700 * core if it's child is enabled.
1701 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1702 static int set_supply(struct regulator_dev *rdev,
1703 struct regulator_dev *supply_rdev)
1704 {
1705 int err;
1706
1707 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1708
1709 if (!try_module_get(supply_rdev->owner))
1710 return -ENODEV;
1711
1712 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1713 if (rdev->supply == NULL) {
1714 module_put(supply_rdev->owner);
1715 err = -ENOMEM;
1716 return err;
1717 }
1718 supply_rdev->open_count++;
1719
1720 return 0;
1721 }
1722
1723 /**
1724 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1725 * @rdev: regulator source
1726 * @consumer_dev_name: dev_name() string for device supply applies to
1727 * @supply: symbolic name for supply
1728 *
1729 * Allows platform initialisation code to map physical regulator
1730 * sources to symbolic names for supplies for use by devices. Devices
1731 * should use these symbolic names to request regulators, avoiding the
1732 * need to provide board-specific regulator names as platform data.
1733 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1734 static int set_consumer_device_supply(struct regulator_dev *rdev,
1735 const char *consumer_dev_name,
1736 const char *supply)
1737 {
1738 struct regulator_map *node, *new_node;
1739 int has_dev;
1740
1741 if (supply == NULL)
1742 return -EINVAL;
1743
1744 if (consumer_dev_name != NULL)
1745 has_dev = 1;
1746 else
1747 has_dev = 0;
1748
1749 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1750 if (new_node == NULL)
1751 return -ENOMEM;
1752
1753 new_node->regulator = rdev;
1754 new_node->supply = supply;
1755
1756 if (has_dev) {
1757 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1758 if (new_node->dev_name == NULL) {
1759 kfree(new_node);
1760 return -ENOMEM;
1761 }
1762 }
1763
1764 mutex_lock(®ulator_list_mutex);
1765 list_for_each_entry(node, ®ulator_map_list, list) {
1766 if (node->dev_name && consumer_dev_name) {
1767 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1768 continue;
1769 } else if (node->dev_name || consumer_dev_name) {
1770 continue;
1771 }
1772
1773 if (strcmp(node->supply, supply) != 0)
1774 continue;
1775
1776 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1777 consumer_dev_name,
1778 dev_name(&node->regulator->dev),
1779 node->regulator->desc->name,
1780 supply,
1781 dev_name(&rdev->dev), rdev_get_name(rdev));
1782 goto fail;
1783 }
1784
1785 list_add(&new_node->list, ®ulator_map_list);
1786 mutex_unlock(®ulator_list_mutex);
1787
1788 return 0;
1789
1790 fail:
1791 mutex_unlock(®ulator_list_mutex);
1792 kfree(new_node->dev_name);
1793 kfree(new_node);
1794 return -EBUSY;
1795 }
1796
unset_regulator_supplies(struct regulator_dev * rdev)1797 static void unset_regulator_supplies(struct regulator_dev *rdev)
1798 {
1799 struct regulator_map *node, *n;
1800
1801 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1802 if (rdev == node->regulator) {
1803 list_del(&node->list);
1804 kfree(node->dev_name);
1805 kfree(node);
1806 }
1807 }
1808 }
1809
1810 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1811 static ssize_t constraint_flags_read_file(struct file *file,
1812 char __user *user_buf,
1813 size_t count, loff_t *ppos)
1814 {
1815 const struct regulator *regulator = file->private_data;
1816 const struct regulation_constraints *c = regulator->rdev->constraints;
1817 char *buf;
1818 ssize_t ret;
1819
1820 if (!c)
1821 return 0;
1822
1823 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1824 if (!buf)
1825 return -ENOMEM;
1826
1827 ret = snprintf(buf, PAGE_SIZE,
1828 "always_on: %u\n"
1829 "boot_on: %u\n"
1830 "apply_uV: %u\n"
1831 "ramp_disable: %u\n"
1832 "soft_start: %u\n"
1833 "pull_down: %u\n"
1834 "over_current_protection: %u\n",
1835 c->always_on,
1836 c->boot_on,
1837 c->apply_uV,
1838 c->ramp_disable,
1839 c->soft_start,
1840 c->pull_down,
1841 c->over_current_protection);
1842
1843 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1844 kfree(buf);
1845
1846 return ret;
1847 }
1848
1849 #endif
1850
1851 static const struct file_operations constraint_flags_fops = {
1852 #ifdef CONFIG_DEBUG_FS
1853 .open = simple_open,
1854 .read = constraint_flags_read_file,
1855 .llseek = default_llseek,
1856 #endif
1857 };
1858
1859 #define REG_STR_SIZE 64
1860
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1861 static struct regulator *create_regulator(struct regulator_dev *rdev,
1862 struct device *dev,
1863 const char *supply_name)
1864 {
1865 struct regulator *regulator;
1866 int err = 0;
1867
1868 lockdep_assert_held_once(&rdev->mutex.base);
1869
1870 if (dev) {
1871 char buf[REG_STR_SIZE];
1872 int size;
1873
1874 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1875 dev->kobj.name, supply_name);
1876 if (size >= REG_STR_SIZE)
1877 return NULL;
1878
1879 supply_name = kstrdup(buf, GFP_KERNEL);
1880 if (supply_name == NULL)
1881 return NULL;
1882 } else {
1883 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1884 if (supply_name == NULL)
1885 return NULL;
1886 }
1887
1888 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1889 if (regulator == NULL) {
1890 kfree_const(supply_name);
1891 return NULL;
1892 }
1893
1894 regulator->rdev = rdev;
1895 regulator->supply_name = supply_name;
1896
1897 list_add(®ulator->list, &rdev->consumer_list);
1898
1899 if (dev) {
1900 regulator->dev = dev;
1901
1902 /* Add a link to the device sysfs entry */
1903 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1904 supply_name);
1905 if (err) {
1906 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1907 dev->kobj.name, ERR_PTR(err));
1908 /* non-fatal */
1909 }
1910 }
1911
1912 if (err != -EEXIST) {
1913 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1914 if (IS_ERR(regulator->debugfs)) {
1915 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1916 regulator->debugfs = NULL;
1917 }
1918 }
1919
1920 if (regulator->debugfs) {
1921 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1922 ®ulator->uA_load);
1923 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1924 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1925 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1926 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1927 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1928 regulator, &constraint_flags_fops);
1929 }
1930
1931 /*
1932 * Check now if the regulator is an always on regulator - if
1933 * it is then we don't need to do nearly so much work for
1934 * enable/disable calls.
1935 */
1936 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1937 _regulator_is_enabled(rdev))
1938 regulator->always_on = true;
1939
1940 return regulator;
1941 }
1942
_regulator_get_enable_time(struct regulator_dev * rdev)1943 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1944 {
1945 if (rdev->constraints && rdev->constraints->enable_time)
1946 return rdev->constraints->enable_time;
1947 if (rdev->desc->ops->enable_time)
1948 return rdev->desc->ops->enable_time(rdev);
1949 return rdev->desc->enable_time;
1950 }
1951
regulator_find_supply_alias(struct device * dev,const char * supply)1952 static struct regulator_supply_alias *regulator_find_supply_alias(
1953 struct device *dev, const char *supply)
1954 {
1955 struct regulator_supply_alias *map;
1956
1957 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1958 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1959 return map;
1960
1961 return NULL;
1962 }
1963
regulator_supply_alias(struct device ** dev,const char ** supply)1964 static void regulator_supply_alias(struct device **dev, const char **supply)
1965 {
1966 struct regulator_supply_alias *map;
1967
1968 map = regulator_find_supply_alias(*dev, *supply);
1969 if (map) {
1970 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1971 *supply, map->alias_supply,
1972 dev_name(map->alias_dev));
1973 *dev = map->alias_dev;
1974 *supply = map->alias_supply;
1975 }
1976 }
1977
regulator_match(struct device * dev,const void * data)1978 static int regulator_match(struct device *dev, const void *data)
1979 {
1980 struct regulator_dev *r = dev_to_rdev(dev);
1981
1982 return strcmp(rdev_get_name(r), data) == 0;
1983 }
1984
regulator_lookup_by_name(const char * name)1985 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1986 {
1987 struct device *dev;
1988
1989 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1990
1991 return dev ? dev_to_rdev(dev) : NULL;
1992 }
1993
1994 /**
1995 * regulator_dev_lookup - lookup a regulator device.
1996 * @dev: device for regulator "consumer".
1997 * @supply: Supply name or regulator ID.
1998 *
1999 * If successful, returns a struct regulator_dev that corresponds to the name
2000 * @supply and with the embedded struct device refcount incremented by one.
2001 * The refcount must be dropped by calling put_device().
2002 * On failure one of the following ERR-PTR-encoded values is returned:
2003 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2004 * in the future.
2005 */
regulator_dev_lookup(struct device * dev,const char * supply)2006 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2007 const char *supply)
2008 {
2009 struct regulator_dev *r = NULL;
2010 struct device_node *node;
2011 struct regulator_map *map;
2012 const char *devname = NULL;
2013
2014 regulator_supply_alias(&dev, &supply);
2015
2016 /* first do a dt based lookup */
2017 if (dev && dev->of_node) {
2018 node = of_get_regulator(dev, supply);
2019 if (node) {
2020 r = of_find_regulator_by_node(node);
2021 of_node_put(node);
2022 if (r)
2023 return r;
2024
2025 /*
2026 * We have a node, but there is no device.
2027 * assume it has not registered yet.
2028 */
2029 return ERR_PTR(-EPROBE_DEFER);
2030 }
2031 }
2032
2033 /* if not found, try doing it non-dt way */
2034 if (dev)
2035 devname = dev_name(dev);
2036
2037 mutex_lock(®ulator_list_mutex);
2038 list_for_each_entry(map, ®ulator_map_list, list) {
2039 /* If the mapping has a device set up it must match */
2040 if (map->dev_name &&
2041 (!devname || strcmp(map->dev_name, devname)))
2042 continue;
2043
2044 if (strcmp(map->supply, supply) == 0 &&
2045 get_device(&map->regulator->dev)) {
2046 r = map->regulator;
2047 break;
2048 }
2049 }
2050 mutex_unlock(®ulator_list_mutex);
2051
2052 if (r)
2053 return r;
2054
2055 r = regulator_lookup_by_name(supply);
2056 if (r)
2057 return r;
2058
2059 return ERR_PTR(-ENODEV);
2060 }
2061
regulator_resolve_supply(struct regulator_dev * rdev)2062 static int regulator_resolve_supply(struct regulator_dev *rdev)
2063 {
2064 struct regulator_dev *r;
2065 struct device *dev = rdev->dev.parent;
2066 struct ww_acquire_ctx ww_ctx;
2067 int ret = 0;
2068
2069 /* No supply to resolve? */
2070 if (!rdev->supply_name)
2071 return 0;
2072
2073 /* Supply already resolved? (fast-path without locking contention) */
2074 if (rdev->supply)
2075 return 0;
2076
2077 r = regulator_dev_lookup(dev, rdev->supply_name);
2078 if (IS_ERR(r)) {
2079 ret = PTR_ERR(r);
2080
2081 /* Did the lookup explicitly defer for us? */
2082 if (ret == -EPROBE_DEFER)
2083 goto out;
2084
2085 if (have_full_constraints()) {
2086 r = dummy_regulator_rdev;
2087 get_device(&r->dev);
2088 } else {
2089 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2090 rdev->supply_name, rdev->desc->name);
2091 ret = -EPROBE_DEFER;
2092 goto out;
2093 }
2094 }
2095
2096 if (r == rdev) {
2097 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2098 rdev->desc->name, rdev->supply_name);
2099 if (!have_full_constraints()) {
2100 ret = -EINVAL;
2101 goto out;
2102 }
2103 r = dummy_regulator_rdev;
2104 get_device(&r->dev);
2105 }
2106
2107 /*
2108 * If the supply's parent device is not the same as the
2109 * regulator's parent device, then ensure the parent device
2110 * is bound before we resolve the supply, in case the parent
2111 * device get probe deferred and unregisters the supply.
2112 */
2113 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2114 if (!device_is_bound(r->dev.parent)) {
2115 put_device(&r->dev);
2116 ret = -EPROBE_DEFER;
2117 goto out;
2118 }
2119 }
2120
2121 /* Recursively resolve the supply of the supply */
2122 ret = regulator_resolve_supply(r);
2123 if (ret < 0) {
2124 put_device(&r->dev);
2125 goto out;
2126 }
2127
2128 /*
2129 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2130 * between rdev->supply null check and setting rdev->supply in
2131 * set_supply() from concurrent tasks.
2132 */
2133 regulator_lock_two(rdev, r, &ww_ctx);
2134
2135 /* Supply just resolved by a concurrent task? */
2136 if (rdev->supply) {
2137 regulator_unlock_two(rdev, r, &ww_ctx);
2138 put_device(&r->dev);
2139 goto out;
2140 }
2141
2142 ret = set_supply(rdev, r);
2143 if (ret < 0) {
2144 regulator_unlock_two(rdev, r, &ww_ctx);
2145 put_device(&r->dev);
2146 goto out;
2147 }
2148
2149 regulator_unlock_two(rdev, r, &ww_ctx);
2150
2151 /*
2152 * In set_machine_constraints() we may have turned this regulator on
2153 * but we couldn't propagate to the supply if it hadn't been resolved
2154 * yet. Do it now.
2155 */
2156 if (rdev->use_count) {
2157 ret = regulator_enable(rdev->supply);
2158 if (ret < 0) {
2159 _regulator_put(rdev->supply);
2160 rdev->supply = NULL;
2161 goto out;
2162 }
2163 }
2164
2165 out:
2166 return ret;
2167 }
2168
2169 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2170 struct regulator *_regulator_get(struct device *dev, const char *id,
2171 enum regulator_get_type get_type)
2172 {
2173 struct regulator_dev *rdev;
2174 struct regulator *regulator;
2175 struct device_link *link;
2176 int ret;
2177
2178 if (get_type >= MAX_GET_TYPE) {
2179 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2180 return ERR_PTR(-EINVAL);
2181 }
2182
2183 if (id == NULL) {
2184 pr_err("get() with no identifier\n");
2185 return ERR_PTR(-EINVAL);
2186 }
2187
2188 rdev = regulator_dev_lookup(dev, id);
2189 if (IS_ERR(rdev)) {
2190 ret = PTR_ERR(rdev);
2191
2192 /*
2193 * If regulator_dev_lookup() fails with error other
2194 * than -ENODEV our job here is done, we simply return it.
2195 */
2196 if (ret != -ENODEV)
2197 return ERR_PTR(ret);
2198
2199 if (!have_full_constraints()) {
2200 dev_warn(dev,
2201 "incomplete constraints, dummy supplies not allowed\n");
2202 return ERR_PTR(-ENODEV);
2203 }
2204
2205 switch (get_type) {
2206 case NORMAL_GET:
2207 /*
2208 * Assume that a regulator is physically present and
2209 * enabled, even if it isn't hooked up, and just
2210 * provide a dummy.
2211 */
2212 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2213 rdev = dummy_regulator_rdev;
2214 get_device(&rdev->dev);
2215 break;
2216
2217 case EXCLUSIVE_GET:
2218 dev_warn(dev,
2219 "dummy supplies not allowed for exclusive requests\n");
2220 fallthrough;
2221
2222 default:
2223 return ERR_PTR(-ENODEV);
2224 }
2225 }
2226
2227 if (rdev->exclusive) {
2228 regulator = ERR_PTR(-EPERM);
2229 put_device(&rdev->dev);
2230 return regulator;
2231 }
2232
2233 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2234 regulator = ERR_PTR(-EBUSY);
2235 put_device(&rdev->dev);
2236 return regulator;
2237 }
2238
2239 mutex_lock(®ulator_list_mutex);
2240 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2241 mutex_unlock(®ulator_list_mutex);
2242
2243 if (ret != 0) {
2244 regulator = ERR_PTR(-EPROBE_DEFER);
2245 put_device(&rdev->dev);
2246 return regulator;
2247 }
2248
2249 ret = regulator_resolve_supply(rdev);
2250 if (ret < 0) {
2251 regulator = ERR_PTR(ret);
2252 put_device(&rdev->dev);
2253 return regulator;
2254 }
2255
2256 if (!try_module_get(rdev->owner)) {
2257 regulator = ERR_PTR(-EPROBE_DEFER);
2258 put_device(&rdev->dev);
2259 return regulator;
2260 }
2261
2262 regulator_lock(rdev);
2263 regulator = create_regulator(rdev, dev, id);
2264 regulator_unlock(rdev);
2265 if (regulator == NULL) {
2266 regulator = ERR_PTR(-ENOMEM);
2267 module_put(rdev->owner);
2268 put_device(&rdev->dev);
2269 return regulator;
2270 }
2271
2272 rdev->open_count++;
2273 if (get_type == EXCLUSIVE_GET) {
2274 rdev->exclusive = 1;
2275
2276 ret = _regulator_is_enabled(rdev);
2277 if (ret > 0) {
2278 rdev->use_count = 1;
2279 regulator->enable_count = 1;
2280 } else {
2281 rdev->use_count = 0;
2282 regulator->enable_count = 0;
2283 }
2284 }
2285
2286 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2287 if (!IS_ERR_OR_NULL(link))
2288 regulator->device_link = true;
2289
2290 return regulator;
2291 }
2292
2293 /**
2294 * regulator_get - lookup and obtain a reference to a regulator.
2295 * @dev: device for regulator "consumer"
2296 * @id: Supply name or regulator ID.
2297 *
2298 * Returns a struct regulator corresponding to the regulator producer,
2299 * or IS_ERR() condition containing errno.
2300 *
2301 * Use of supply names configured via set_consumer_device_supply() is
2302 * strongly encouraged. It is recommended that the supply name used
2303 * should match the name used for the supply and/or the relevant
2304 * device pins in the datasheet.
2305 */
regulator_get(struct device * dev,const char * id)2306 struct regulator *regulator_get(struct device *dev, const char *id)
2307 {
2308 return _regulator_get(dev, id, NORMAL_GET);
2309 }
2310 EXPORT_SYMBOL_GPL(regulator_get);
2311
2312 /**
2313 * regulator_get_exclusive - obtain exclusive access to a regulator.
2314 * @dev: device for regulator "consumer"
2315 * @id: Supply name or regulator ID.
2316 *
2317 * Returns a struct regulator corresponding to the regulator producer,
2318 * or IS_ERR() condition containing errno. Other consumers will be
2319 * unable to obtain this regulator while this reference is held and the
2320 * use count for the regulator will be initialised to reflect the current
2321 * state of the regulator.
2322 *
2323 * This is intended for use by consumers which cannot tolerate shared
2324 * use of the regulator such as those which need to force the
2325 * regulator off for correct operation of the hardware they are
2326 * controlling.
2327 *
2328 * Use of supply names configured via set_consumer_device_supply() is
2329 * strongly encouraged. It is recommended that the supply name used
2330 * should match the name used for the supply and/or the relevant
2331 * device pins in the datasheet.
2332 */
regulator_get_exclusive(struct device * dev,const char * id)2333 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2334 {
2335 return _regulator_get(dev, id, EXCLUSIVE_GET);
2336 }
2337 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2338
2339 /**
2340 * regulator_get_optional - obtain optional access to a regulator.
2341 * @dev: device for regulator "consumer"
2342 * @id: Supply name or regulator ID.
2343 *
2344 * Returns a struct regulator corresponding to the regulator producer,
2345 * or IS_ERR() condition containing errno.
2346 *
2347 * This is intended for use by consumers for devices which can have
2348 * some supplies unconnected in normal use, such as some MMC devices.
2349 * It can allow the regulator core to provide stub supplies for other
2350 * supplies requested using normal regulator_get() calls without
2351 * disrupting the operation of drivers that can handle absent
2352 * supplies.
2353 *
2354 * Use of supply names configured via set_consumer_device_supply() is
2355 * strongly encouraged. It is recommended that the supply name used
2356 * should match the name used for the supply and/or the relevant
2357 * device pins in the datasheet.
2358 */
regulator_get_optional(struct device * dev,const char * id)2359 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2360 {
2361 return _regulator_get(dev, id, OPTIONAL_GET);
2362 }
2363 EXPORT_SYMBOL_GPL(regulator_get_optional);
2364
destroy_regulator(struct regulator * regulator)2365 static void destroy_regulator(struct regulator *regulator)
2366 {
2367 struct regulator_dev *rdev = regulator->rdev;
2368
2369 debugfs_remove_recursive(regulator->debugfs);
2370
2371 if (regulator->dev) {
2372 if (regulator->device_link)
2373 device_link_remove(regulator->dev, &rdev->dev);
2374
2375 /* remove any sysfs entries */
2376 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2377 }
2378
2379 regulator_lock(rdev);
2380 list_del(®ulator->list);
2381
2382 rdev->open_count--;
2383 rdev->exclusive = 0;
2384 regulator_unlock(rdev);
2385
2386 kfree_const(regulator->supply_name);
2387 kfree(regulator);
2388 }
2389
2390 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2391 static void _regulator_put(struct regulator *regulator)
2392 {
2393 struct regulator_dev *rdev;
2394
2395 if (IS_ERR_OR_NULL(regulator))
2396 return;
2397
2398 lockdep_assert_held_once(®ulator_list_mutex);
2399
2400 /* Docs say you must disable before calling regulator_put() */
2401 WARN_ON(regulator->enable_count);
2402
2403 rdev = regulator->rdev;
2404
2405 destroy_regulator(regulator);
2406
2407 module_put(rdev->owner);
2408 put_device(&rdev->dev);
2409 }
2410
2411 /**
2412 * regulator_put - "free" the regulator source
2413 * @regulator: regulator source
2414 *
2415 * Note: drivers must ensure that all regulator_enable calls made on this
2416 * regulator source are balanced by regulator_disable calls prior to calling
2417 * this function.
2418 */
regulator_put(struct regulator * regulator)2419 void regulator_put(struct regulator *regulator)
2420 {
2421 mutex_lock(®ulator_list_mutex);
2422 _regulator_put(regulator);
2423 mutex_unlock(®ulator_list_mutex);
2424 }
2425 EXPORT_SYMBOL_GPL(regulator_put);
2426
2427 /**
2428 * regulator_register_supply_alias - Provide device alias for supply lookup
2429 *
2430 * @dev: device that will be given as the regulator "consumer"
2431 * @id: Supply name or regulator ID
2432 * @alias_dev: device that should be used to lookup the supply
2433 * @alias_id: Supply name or regulator ID that should be used to lookup the
2434 * supply
2435 *
2436 * All lookups for id on dev will instead be conducted for alias_id on
2437 * alias_dev.
2438 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2439 int regulator_register_supply_alias(struct device *dev, const char *id,
2440 struct device *alias_dev,
2441 const char *alias_id)
2442 {
2443 struct regulator_supply_alias *map;
2444
2445 map = regulator_find_supply_alias(dev, id);
2446 if (map)
2447 return -EEXIST;
2448
2449 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2450 if (!map)
2451 return -ENOMEM;
2452
2453 map->src_dev = dev;
2454 map->src_supply = id;
2455 map->alias_dev = alias_dev;
2456 map->alias_supply = alias_id;
2457
2458 list_add(&map->list, ®ulator_supply_alias_list);
2459
2460 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2461 id, dev_name(dev), alias_id, dev_name(alias_dev));
2462
2463 return 0;
2464 }
2465 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2466
2467 /**
2468 * regulator_unregister_supply_alias - Remove device alias
2469 *
2470 * @dev: device that will be given as the regulator "consumer"
2471 * @id: Supply name or regulator ID
2472 *
2473 * Remove a lookup alias if one exists for id on dev.
2474 */
regulator_unregister_supply_alias(struct device * dev,const char * id)2475 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2476 {
2477 struct regulator_supply_alias *map;
2478
2479 map = regulator_find_supply_alias(dev, id);
2480 if (map) {
2481 list_del(&map->list);
2482 kfree(map);
2483 }
2484 }
2485 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2486
2487 /**
2488 * regulator_bulk_register_supply_alias - register multiple aliases
2489 *
2490 * @dev: device that will be given as the regulator "consumer"
2491 * @id: List of supply names or regulator IDs
2492 * @alias_dev: device that should be used to lookup the supply
2493 * @alias_id: List of supply names or regulator IDs that should be used to
2494 * lookup the supply
2495 * @num_id: Number of aliases to register
2496 *
2497 * @return 0 on success, an errno on failure.
2498 *
2499 * This helper function allows drivers to register several supply
2500 * aliases in one operation. If any of the aliases cannot be
2501 * registered any aliases that were registered will be removed
2502 * before returning to the caller.
2503 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2504 int regulator_bulk_register_supply_alias(struct device *dev,
2505 const char *const *id,
2506 struct device *alias_dev,
2507 const char *const *alias_id,
2508 int num_id)
2509 {
2510 int i;
2511 int ret;
2512
2513 for (i = 0; i < num_id; ++i) {
2514 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2515 alias_id[i]);
2516 if (ret < 0)
2517 goto err;
2518 }
2519
2520 return 0;
2521
2522 err:
2523 dev_err(dev,
2524 "Failed to create supply alias %s,%s -> %s,%s\n",
2525 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2526
2527 while (--i >= 0)
2528 regulator_unregister_supply_alias(dev, id[i]);
2529
2530 return ret;
2531 }
2532 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2533
2534 /**
2535 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2536 *
2537 * @dev: device that will be given as the regulator "consumer"
2538 * @id: List of supply names or regulator IDs
2539 * @num_id: Number of aliases to unregister
2540 *
2541 * This helper function allows drivers to unregister several supply
2542 * aliases in one operation.
2543 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2544 void regulator_bulk_unregister_supply_alias(struct device *dev,
2545 const char *const *id,
2546 int num_id)
2547 {
2548 int i;
2549
2550 for (i = 0; i < num_id; ++i)
2551 regulator_unregister_supply_alias(dev, id[i]);
2552 }
2553 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2554
2555
2556 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2557 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2558 const struct regulator_config *config)
2559 {
2560 struct regulator_enable_gpio *pin, *new_pin;
2561 struct gpio_desc *gpiod;
2562
2563 gpiod = config->ena_gpiod;
2564 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2565
2566 mutex_lock(®ulator_list_mutex);
2567
2568 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2569 if (pin->gpiod == gpiod) {
2570 rdev_dbg(rdev, "GPIO is already used\n");
2571 goto update_ena_gpio_to_rdev;
2572 }
2573 }
2574
2575 if (new_pin == NULL) {
2576 mutex_unlock(®ulator_list_mutex);
2577 return -ENOMEM;
2578 }
2579
2580 pin = new_pin;
2581 new_pin = NULL;
2582
2583 pin->gpiod = gpiod;
2584 list_add(&pin->list, ®ulator_ena_gpio_list);
2585
2586 update_ena_gpio_to_rdev:
2587 pin->request_count++;
2588 rdev->ena_pin = pin;
2589
2590 mutex_unlock(®ulator_list_mutex);
2591 kfree(new_pin);
2592
2593 return 0;
2594 }
2595
regulator_ena_gpio_free(struct regulator_dev * rdev)2596 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2597 {
2598 struct regulator_enable_gpio *pin, *n;
2599
2600 if (!rdev->ena_pin)
2601 return;
2602
2603 /* Free the GPIO only in case of no use */
2604 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2605 if (pin != rdev->ena_pin)
2606 continue;
2607
2608 if (--pin->request_count)
2609 break;
2610
2611 gpiod_put(pin->gpiod);
2612 list_del(&pin->list);
2613 kfree(pin);
2614 break;
2615 }
2616
2617 rdev->ena_pin = NULL;
2618 }
2619
2620 /**
2621 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2622 * @rdev: regulator_dev structure
2623 * @enable: enable GPIO at initial use?
2624 *
2625 * GPIO is enabled in case of initial use. (enable_count is 0)
2626 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2627 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2628 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2629 {
2630 struct regulator_enable_gpio *pin = rdev->ena_pin;
2631
2632 if (!pin)
2633 return -EINVAL;
2634
2635 if (enable) {
2636 /* Enable GPIO at initial use */
2637 if (pin->enable_count == 0)
2638 gpiod_set_value_cansleep(pin->gpiod, 1);
2639
2640 pin->enable_count++;
2641 } else {
2642 if (pin->enable_count > 1) {
2643 pin->enable_count--;
2644 return 0;
2645 }
2646
2647 /* Disable GPIO if not used */
2648 if (pin->enable_count <= 1) {
2649 gpiod_set_value_cansleep(pin->gpiod, 0);
2650 pin->enable_count = 0;
2651 }
2652 }
2653
2654 return 0;
2655 }
2656
2657 /**
2658 * _regulator_delay_helper - a delay helper function
2659 * @delay: time to delay in microseconds
2660 *
2661 * Delay for the requested amount of time as per the guidelines in:
2662 *
2663 * Documentation/timers/timers-howto.rst
2664 *
2665 * The assumption here is that these regulator operations will never used in
2666 * atomic context and therefore sleeping functions can be used.
2667 */
_regulator_delay_helper(unsigned int delay)2668 static void _regulator_delay_helper(unsigned int delay)
2669 {
2670 unsigned int ms = delay / 1000;
2671 unsigned int us = delay % 1000;
2672
2673 if (ms > 0) {
2674 /*
2675 * For small enough values, handle super-millisecond
2676 * delays in the usleep_range() call below.
2677 */
2678 if (ms < 20)
2679 us += ms * 1000;
2680 else
2681 msleep(ms);
2682 }
2683
2684 /*
2685 * Give the scheduler some room to coalesce with any other
2686 * wakeup sources. For delays shorter than 10 us, don't even
2687 * bother setting up high-resolution timers and just busy-
2688 * loop.
2689 */
2690 if (us >= 10)
2691 usleep_range(us, us + 100);
2692 else
2693 udelay(us);
2694 }
2695
2696 /**
2697 * _regulator_check_status_enabled
2698 *
2699 * A helper function to check if the regulator status can be interpreted
2700 * as 'regulator is enabled'.
2701 * @rdev: the regulator device to check
2702 *
2703 * Return:
2704 * * 1 - if status shows regulator is in enabled state
2705 * * 0 - if not enabled state
2706 * * Error Value - as received from ops->get_status()
2707 */
_regulator_check_status_enabled(struct regulator_dev * rdev)2708 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2709 {
2710 int ret = rdev->desc->ops->get_status(rdev);
2711
2712 if (ret < 0) {
2713 rdev_info(rdev, "get_status returned error: %d\n", ret);
2714 return ret;
2715 }
2716
2717 switch (ret) {
2718 case REGULATOR_STATUS_OFF:
2719 case REGULATOR_STATUS_ERROR:
2720 case REGULATOR_STATUS_UNDEFINED:
2721 return 0;
2722 default:
2723 return 1;
2724 }
2725 }
2726
_regulator_do_enable(struct regulator_dev * rdev)2727 static int _regulator_do_enable(struct regulator_dev *rdev)
2728 {
2729 int ret, delay;
2730
2731 /* Query before enabling in case configuration dependent. */
2732 ret = _regulator_get_enable_time(rdev);
2733 if (ret >= 0) {
2734 delay = ret;
2735 } else {
2736 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2737 delay = 0;
2738 }
2739
2740 trace_regulator_enable(rdev_get_name(rdev));
2741
2742 if (rdev->desc->off_on_delay) {
2743 /* if needed, keep a distance of off_on_delay from last time
2744 * this regulator was disabled.
2745 */
2746 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2747 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2748
2749 if (remaining > 0)
2750 _regulator_delay_helper(remaining);
2751 }
2752
2753 if (rdev->ena_pin) {
2754 if (!rdev->ena_gpio_state) {
2755 ret = regulator_ena_gpio_ctrl(rdev, true);
2756 if (ret < 0)
2757 return ret;
2758 rdev->ena_gpio_state = 1;
2759 }
2760 } else if (rdev->desc->ops->enable) {
2761 ret = rdev->desc->ops->enable(rdev);
2762 if (ret < 0)
2763 return ret;
2764 } else {
2765 return -EINVAL;
2766 }
2767
2768 /* Allow the regulator to ramp; it would be useful to extend
2769 * this for bulk operations so that the regulators can ramp
2770 * together.
2771 */
2772 trace_regulator_enable_delay(rdev_get_name(rdev));
2773
2774 /* If poll_enabled_time is set, poll upto the delay calculated
2775 * above, delaying poll_enabled_time uS to check if the regulator
2776 * actually got enabled.
2777 * If the regulator isn't enabled after our delay helper has expired,
2778 * return -ETIMEDOUT.
2779 */
2780 if (rdev->desc->poll_enabled_time) {
2781 int time_remaining = delay;
2782
2783 while (time_remaining > 0) {
2784 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2785
2786 if (rdev->desc->ops->get_status) {
2787 ret = _regulator_check_status_enabled(rdev);
2788 if (ret < 0)
2789 return ret;
2790 else if (ret)
2791 break;
2792 } else if (rdev->desc->ops->is_enabled(rdev))
2793 break;
2794
2795 time_remaining -= rdev->desc->poll_enabled_time;
2796 }
2797
2798 if (time_remaining <= 0) {
2799 rdev_err(rdev, "Enabled check timed out\n");
2800 return -ETIMEDOUT;
2801 }
2802 } else {
2803 _regulator_delay_helper(delay);
2804 }
2805
2806 trace_regulator_enable_complete(rdev_get_name(rdev));
2807
2808 return 0;
2809 }
2810
2811 /**
2812 * _regulator_handle_consumer_enable - handle that a consumer enabled
2813 * @regulator: regulator source
2814 *
2815 * Some things on a regulator consumer (like the contribution towards total
2816 * load on the regulator) only have an effect when the consumer wants the
2817 * regulator enabled. Explained in example with two consumers of the same
2818 * regulator:
2819 * consumer A: set_load(100); => total load = 0
2820 * consumer A: regulator_enable(); => total load = 100
2821 * consumer B: set_load(1000); => total load = 100
2822 * consumer B: regulator_enable(); => total load = 1100
2823 * consumer A: regulator_disable(); => total_load = 1000
2824 *
2825 * This function (together with _regulator_handle_consumer_disable) is
2826 * responsible for keeping track of the refcount for a given regulator consumer
2827 * and applying / unapplying these things.
2828 *
2829 * Returns 0 upon no error; -error upon error.
2830 */
_regulator_handle_consumer_enable(struct regulator * regulator)2831 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2832 {
2833 int ret;
2834 struct regulator_dev *rdev = regulator->rdev;
2835
2836 lockdep_assert_held_once(&rdev->mutex.base);
2837
2838 regulator->enable_count++;
2839 if (regulator->uA_load && regulator->enable_count == 1) {
2840 ret = drms_uA_update(rdev);
2841 if (ret)
2842 regulator->enable_count--;
2843 return ret;
2844 }
2845
2846 return 0;
2847 }
2848
2849 /**
2850 * _regulator_handle_consumer_disable - handle that a consumer disabled
2851 * @regulator: regulator source
2852 *
2853 * The opposite of _regulator_handle_consumer_enable().
2854 *
2855 * Returns 0 upon no error; -error upon error.
2856 */
_regulator_handle_consumer_disable(struct regulator * regulator)2857 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2858 {
2859 struct regulator_dev *rdev = regulator->rdev;
2860
2861 lockdep_assert_held_once(&rdev->mutex.base);
2862
2863 if (!regulator->enable_count) {
2864 rdev_err(rdev, "Underflow of regulator enable count\n");
2865 return -EINVAL;
2866 }
2867
2868 regulator->enable_count--;
2869 if (regulator->uA_load && regulator->enable_count == 0)
2870 return drms_uA_update(rdev);
2871
2872 return 0;
2873 }
2874
2875 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2876 static int _regulator_enable(struct regulator *regulator)
2877 {
2878 struct regulator_dev *rdev = regulator->rdev;
2879 int ret;
2880
2881 lockdep_assert_held_once(&rdev->mutex.base);
2882
2883 if (rdev->use_count == 0 && rdev->supply) {
2884 ret = _regulator_enable(rdev->supply);
2885 if (ret < 0)
2886 return ret;
2887 }
2888
2889 /* balance only if there are regulators coupled */
2890 if (rdev->coupling_desc.n_coupled > 1) {
2891 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2892 if (ret < 0)
2893 goto err_disable_supply;
2894 }
2895
2896 ret = _regulator_handle_consumer_enable(regulator);
2897 if (ret < 0)
2898 goto err_disable_supply;
2899
2900 if (rdev->use_count == 0) {
2901 /*
2902 * The regulator may already be enabled if it's not switchable
2903 * or was left on
2904 */
2905 ret = _regulator_is_enabled(rdev);
2906 if (ret == -EINVAL || ret == 0) {
2907 if (!regulator_ops_is_valid(rdev,
2908 REGULATOR_CHANGE_STATUS)) {
2909 ret = -EPERM;
2910 goto err_consumer_disable;
2911 }
2912
2913 ret = _regulator_do_enable(rdev);
2914 if (ret < 0)
2915 goto err_consumer_disable;
2916
2917 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2918 NULL);
2919 } else if (ret < 0) {
2920 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2921 goto err_consumer_disable;
2922 }
2923 /* Fallthrough on positive return values - already enabled */
2924 }
2925
2926 if (regulator->enable_count == 1)
2927 rdev->use_count++;
2928
2929 return 0;
2930
2931 err_consumer_disable:
2932 _regulator_handle_consumer_disable(regulator);
2933
2934 err_disable_supply:
2935 if (rdev->use_count == 0 && rdev->supply)
2936 _regulator_disable(rdev->supply);
2937
2938 return ret;
2939 }
2940
2941 /**
2942 * regulator_enable - enable regulator output
2943 * @regulator: regulator source
2944 *
2945 * Request that the regulator be enabled with the regulator output at
2946 * the predefined voltage or current value. Calls to regulator_enable()
2947 * must be balanced with calls to regulator_disable().
2948 *
2949 * NOTE: the output value can be set by other drivers, boot loader or may be
2950 * hardwired in the regulator.
2951 */
regulator_enable(struct regulator * regulator)2952 int regulator_enable(struct regulator *regulator)
2953 {
2954 struct regulator_dev *rdev = regulator->rdev;
2955 struct ww_acquire_ctx ww_ctx;
2956 int ret;
2957
2958 regulator_lock_dependent(rdev, &ww_ctx);
2959 ret = _regulator_enable(regulator);
2960 regulator_unlock_dependent(rdev, &ww_ctx);
2961
2962 return ret;
2963 }
2964 EXPORT_SYMBOL_GPL(regulator_enable);
2965
_regulator_do_disable(struct regulator_dev * rdev)2966 static int _regulator_do_disable(struct regulator_dev *rdev)
2967 {
2968 int ret;
2969
2970 trace_regulator_disable(rdev_get_name(rdev));
2971
2972 if (rdev->ena_pin) {
2973 if (rdev->ena_gpio_state) {
2974 ret = regulator_ena_gpio_ctrl(rdev, false);
2975 if (ret < 0)
2976 return ret;
2977 rdev->ena_gpio_state = 0;
2978 }
2979
2980 } else if (rdev->desc->ops->disable) {
2981 ret = rdev->desc->ops->disable(rdev);
2982 if (ret != 0)
2983 return ret;
2984 }
2985
2986 if (rdev->desc->off_on_delay)
2987 rdev->last_off = ktime_get_boottime();
2988
2989 trace_regulator_disable_complete(rdev_get_name(rdev));
2990
2991 return 0;
2992 }
2993
2994 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)2995 static int _regulator_disable(struct regulator *regulator)
2996 {
2997 struct regulator_dev *rdev = regulator->rdev;
2998 int ret = 0;
2999
3000 lockdep_assert_held_once(&rdev->mutex.base);
3001
3002 if (WARN(regulator->enable_count == 0,
3003 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3004 return -EIO;
3005
3006 if (regulator->enable_count == 1) {
3007 /* disabling last enable_count from this regulator */
3008 /* are we the last user and permitted to disable ? */
3009 if (rdev->use_count == 1 &&
3010 (rdev->constraints && !rdev->constraints->always_on)) {
3011
3012 /* we are last user */
3013 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3014 ret = _notifier_call_chain(rdev,
3015 REGULATOR_EVENT_PRE_DISABLE,
3016 NULL);
3017 if (ret & NOTIFY_STOP_MASK)
3018 return -EINVAL;
3019
3020 ret = _regulator_do_disable(rdev);
3021 if (ret < 0) {
3022 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3023 _notifier_call_chain(rdev,
3024 REGULATOR_EVENT_ABORT_DISABLE,
3025 NULL);
3026 return ret;
3027 }
3028 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3029 NULL);
3030 }
3031
3032 rdev->use_count = 0;
3033 } else if (rdev->use_count > 1) {
3034 rdev->use_count--;
3035 }
3036 }
3037
3038 if (ret == 0)
3039 ret = _regulator_handle_consumer_disable(regulator);
3040
3041 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3042 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3043
3044 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3045 ret = _regulator_disable(rdev->supply);
3046
3047 return ret;
3048 }
3049
3050 /**
3051 * regulator_disable - disable regulator output
3052 * @regulator: regulator source
3053 *
3054 * Disable the regulator output voltage or current. Calls to
3055 * regulator_enable() must be balanced with calls to
3056 * regulator_disable().
3057 *
3058 * NOTE: this will only disable the regulator output if no other consumer
3059 * devices have it enabled, the regulator device supports disabling and
3060 * machine constraints permit this operation.
3061 */
regulator_disable(struct regulator * regulator)3062 int regulator_disable(struct regulator *regulator)
3063 {
3064 struct regulator_dev *rdev = regulator->rdev;
3065 struct ww_acquire_ctx ww_ctx;
3066 int ret;
3067
3068 regulator_lock_dependent(rdev, &ww_ctx);
3069 ret = _regulator_disable(regulator);
3070 regulator_unlock_dependent(rdev, &ww_ctx);
3071
3072 return ret;
3073 }
3074 EXPORT_SYMBOL_GPL(regulator_disable);
3075
3076 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)3077 static int _regulator_force_disable(struct regulator_dev *rdev)
3078 {
3079 int ret = 0;
3080
3081 lockdep_assert_held_once(&rdev->mutex.base);
3082
3083 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3084 REGULATOR_EVENT_PRE_DISABLE, NULL);
3085 if (ret & NOTIFY_STOP_MASK)
3086 return -EINVAL;
3087
3088 ret = _regulator_do_disable(rdev);
3089 if (ret < 0) {
3090 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3091 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3092 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3093 return ret;
3094 }
3095
3096 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3097 REGULATOR_EVENT_DISABLE, NULL);
3098
3099 return 0;
3100 }
3101
3102 /**
3103 * regulator_force_disable - force disable regulator output
3104 * @regulator: regulator source
3105 *
3106 * Forcibly disable the regulator output voltage or current.
3107 * NOTE: this *will* disable the regulator output even if other consumer
3108 * devices have it enabled. This should be used for situations when device
3109 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3110 */
regulator_force_disable(struct regulator * regulator)3111 int regulator_force_disable(struct regulator *regulator)
3112 {
3113 struct regulator_dev *rdev = regulator->rdev;
3114 struct ww_acquire_ctx ww_ctx;
3115 int ret;
3116
3117 regulator_lock_dependent(rdev, &ww_ctx);
3118
3119 ret = _regulator_force_disable(regulator->rdev);
3120
3121 if (rdev->coupling_desc.n_coupled > 1)
3122 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3123
3124 if (regulator->uA_load) {
3125 regulator->uA_load = 0;
3126 ret = drms_uA_update(rdev);
3127 }
3128
3129 if (rdev->use_count != 0 && rdev->supply)
3130 _regulator_disable(rdev->supply);
3131
3132 regulator_unlock_dependent(rdev, &ww_ctx);
3133
3134 return ret;
3135 }
3136 EXPORT_SYMBOL_GPL(regulator_force_disable);
3137
regulator_disable_work(struct work_struct * work)3138 static void regulator_disable_work(struct work_struct *work)
3139 {
3140 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3141 disable_work.work);
3142 struct ww_acquire_ctx ww_ctx;
3143 int count, i, ret;
3144 struct regulator *regulator;
3145 int total_count = 0;
3146
3147 regulator_lock_dependent(rdev, &ww_ctx);
3148
3149 /*
3150 * Workqueue functions queue the new work instance while the previous
3151 * work instance is being processed. Cancel the queued work instance
3152 * as the work instance under processing does the job of the queued
3153 * work instance.
3154 */
3155 cancel_delayed_work(&rdev->disable_work);
3156
3157 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3158 count = regulator->deferred_disables;
3159
3160 if (!count)
3161 continue;
3162
3163 total_count += count;
3164 regulator->deferred_disables = 0;
3165
3166 for (i = 0; i < count; i++) {
3167 ret = _regulator_disable(regulator);
3168 if (ret != 0)
3169 rdev_err(rdev, "Deferred disable failed: %pe\n",
3170 ERR_PTR(ret));
3171 }
3172 }
3173 WARN_ON(!total_count);
3174
3175 if (rdev->coupling_desc.n_coupled > 1)
3176 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3177
3178 regulator_unlock_dependent(rdev, &ww_ctx);
3179 }
3180
3181 /**
3182 * regulator_disable_deferred - disable regulator output with delay
3183 * @regulator: regulator source
3184 * @ms: milliseconds until the regulator is disabled
3185 *
3186 * Execute regulator_disable() on the regulator after a delay. This
3187 * is intended for use with devices that require some time to quiesce.
3188 *
3189 * NOTE: this will only disable the regulator output if no other consumer
3190 * devices have it enabled, the regulator device supports disabling and
3191 * machine constraints permit this operation.
3192 */
regulator_disable_deferred(struct regulator * regulator,int ms)3193 int regulator_disable_deferred(struct regulator *regulator, int ms)
3194 {
3195 struct regulator_dev *rdev = regulator->rdev;
3196
3197 if (!ms)
3198 return regulator_disable(regulator);
3199
3200 regulator_lock(rdev);
3201 regulator->deferred_disables++;
3202 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3203 msecs_to_jiffies(ms));
3204 regulator_unlock(rdev);
3205
3206 return 0;
3207 }
3208 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3209
_regulator_is_enabled(struct regulator_dev * rdev)3210 static int _regulator_is_enabled(struct regulator_dev *rdev)
3211 {
3212 /* A GPIO control always takes precedence */
3213 if (rdev->ena_pin)
3214 return rdev->ena_gpio_state;
3215
3216 /* If we don't know then assume that the regulator is always on */
3217 if (!rdev->desc->ops->is_enabled)
3218 return 1;
3219
3220 return rdev->desc->ops->is_enabled(rdev);
3221 }
3222
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3223 static int _regulator_list_voltage(struct regulator_dev *rdev,
3224 unsigned selector, int lock)
3225 {
3226 const struct regulator_ops *ops = rdev->desc->ops;
3227 int ret;
3228
3229 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3230 return rdev->desc->fixed_uV;
3231
3232 if (ops->list_voltage) {
3233 if (selector >= rdev->desc->n_voltages)
3234 return -EINVAL;
3235 if (selector < rdev->desc->linear_min_sel)
3236 return 0;
3237 if (lock)
3238 regulator_lock(rdev);
3239 ret = ops->list_voltage(rdev, selector);
3240 if (lock)
3241 regulator_unlock(rdev);
3242 } else if (rdev->is_switch && rdev->supply) {
3243 ret = _regulator_list_voltage(rdev->supply->rdev,
3244 selector, lock);
3245 } else {
3246 return -EINVAL;
3247 }
3248
3249 if (ret > 0) {
3250 if (ret < rdev->constraints->min_uV)
3251 ret = 0;
3252 else if (ret > rdev->constraints->max_uV)
3253 ret = 0;
3254 }
3255
3256 return ret;
3257 }
3258
3259 /**
3260 * regulator_is_enabled - is the regulator output enabled
3261 * @regulator: regulator source
3262 *
3263 * Returns positive if the regulator driver backing the source/client
3264 * has requested that the device be enabled, zero if it hasn't, else a
3265 * negative errno code.
3266 *
3267 * Note that the device backing this regulator handle can have multiple
3268 * users, so it might be enabled even if regulator_enable() was never
3269 * called for this particular source.
3270 */
regulator_is_enabled(struct regulator * regulator)3271 int regulator_is_enabled(struct regulator *regulator)
3272 {
3273 int ret;
3274
3275 if (regulator->always_on)
3276 return 1;
3277
3278 regulator_lock(regulator->rdev);
3279 ret = _regulator_is_enabled(regulator->rdev);
3280 regulator_unlock(regulator->rdev);
3281
3282 return ret;
3283 }
3284 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3285
3286 /**
3287 * regulator_count_voltages - count regulator_list_voltage() selectors
3288 * @regulator: regulator source
3289 *
3290 * Returns number of selectors, or negative errno. Selectors are
3291 * numbered starting at zero, and typically correspond to bitfields
3292 * in hardware registers.
3293 */
regulator_count_voltages(struct regulator * regulator)3294 int regulator_count_voltages(struct regulator *regulator)
3295 {
3296 struct regulator_dev *rdev = regulator->rdev;
3297
3298 if (rdev->desc->n_voltages)
3299 return rdev->desc->n_voltages;
3300
3301 if (!rdev->is_switch || !rdev->supply)
3302 return -EINVAL;
3303
3304 return regulator_count_voltages(rdev->supply);
3305 }
3306 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3307
3308 /**
3309 * regulator_list_voltage - enumerate supported voltages
3310 * @regulator: regulator source
3311 * @selector: identify voltage to list
3312 * Context: can sleep
3313 *
3314 * Returns a voltage that can be passed to @regulator_set_voltage(),
3315 * zero if this selector code can't be used on this system, or a
3316 * negative errno.
3317 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3318 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3319 {
3320 return _regulator_list_voltage(regulator->rdev, selector, 1);
3321 }
3322 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3323
3324 /**
3325 * regulator_get_regmap - get the regulator's register map
3326 * @regulator: regulator source
3327 *
3328 * Returns the register map for the given regulator, or an ERR_PTR value
3329 * if the regulator doesn't use regmap.
3330 */
regulator_get_regmap(struct regulator * regulator)3331 struct regmap *regulator_get_regmap(struct regulator *regulator)
3332 {
3333 struct regmap *map = regulator->rdev->regmap;
3334
3335 return map ? map : ERR_PTR(-EOPNOTSUPP);
3336 }
3337 EXPORT_SYMBOL_GPL(regulator_get_regmap);
3338
3339 /**
3340 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3341 * @regulator: regulator source
3342 * @vsel_reg: voltage selector register, output parameter
3343 * @vsel_mask: mask for voltage selector bitfield, output parameter
3344 *
3345 * Returns the hardware register offset and bitmask used for setting the
3346 * regulator voltage. This might be useful when configuring voltage-scaling
3347 * hardware or firmware that can make I2C requests behind the kernel's back,
3348 * for example.
3349 *
3350 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3351 * and 0 is returned, otherwise a negative errno is returned.
3352 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3353 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3354 unsigned *vsel_reg,
3355 unsigned *vsel_mask)
3356 {
3357 struct regulator_dev *rdev = regulator->rdev;
3358 const struct regulator_ops *ops = rdev->desc->ops;
3359
3360 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3361 return -EOPNOTSUPP;
3362
3363 *vsel_reg = rdev->desc->vsel_reg;
3364 *vsel_mask = rdev->desc->vsel_mask;
3365
3366 return 0;
3367 }
3368 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3369
3370 /**
3371 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3372 * @regulator: regulator source
3373 * @selector: identify voltage to list
3374 *
3375 * Converts the selector to a hardware-specific voltage selector that can be
3376 * directly written to the regulator registers. The address of the voltage
3377 * register can be determined by calling @regulator_get_hardware_vsel_register.
3378 *
3379 * On error a negative errno is returned.
3380 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3381 int regulator_list_hardware_vsel(struct regulator *regulator,
3382 unsigned selector)
3383 {
3384 struct regulator_dev *rdev = regulator->rdev;
3385 const struct regulator_ops *ops = rdev->desc->ops;
3386
3387 if (selector >= rdev->desc->n_voltages)
3388 return -EINVAL;
3389 if (selector < rdev->desc->linear_min_sel)
3390 return 0;
3391 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3392 return -EOPNOTSUPP;
3393
3394 return selector;
3395 }
3396 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3397
3398 /**
3399 * regulator_get_linear_step - return the voltage step size between VSEL values
3400 * @regulator: regulator source
3401 *
3402 * Returns the voltage step size between VSEL values for linear
3403 * regulators, or return 0 if the regulator isn't a linear regulator.
3404 */
regulator_get_linear_step(struct regulator * regulator)3405 unsigned int regulator_get_linear_step(struct regulator *regulator)
3406 {
3407 struct regulator_dev *rdev = regulator->rdev;
3408
3409 return rdev->desc->uV_step;
3410 }
3411 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3412
3413 /**
3414 * regulator_is_supported_voltage - check if a voltage range can be supported
3415 *
3416 * @regulator: Regulator to check.
3417 * @min_uV: Minimum required voltage in uV.
3418 * @max_uV: Maximum required voltage in uV.
3419 *
3420 * Returns a boolean.
3421 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3422 int regulator_is_supported_voltage(struct regulator *regulator,
3423 int min_uV, int max_uV)
3424 {
3425 struct regulator_dev *rdev = regulator->rdev;
3426 int i, voltages, ret;
3427
3428 /* If we can't change voltage check the current voltage */
3429 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3430 ret = regulator_get_voltage(regulator);
3431 if (ret >= 0)
3432 return min_uV <= ret && ret <= max_uV;
3433 else
3434 return ret;
3435 }
3436
3437 /* Any voltage within constrains range is fine? */
3438 if (rdev->desc->continuous_voltage_range)
3439 return min_uV >= rdev->constraints->min_uV &&
3440 max_uV <= rdev->constraints->max_uV;
3441
3442 ret = regulator_count_voltages(regulator);
3443 if (ret < 0)
3444 return 0;
3445 voltages = ret;
3446
3447 for (i = 0; i < voltages; i++) {
3448 ret = regulator_list_voltage(regulator, i);
3449
3450 if (ret >= min_uV && ret <= max_uV)
3451 return 1;
3452 }
3453
3454 return 0;
3455 }
3456 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3457
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3458 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3459 int max_uV)
3460 {
3461 const struct regulator_desc *desc = rdev->desc;
3462
3463 if (desc->ops->map_voltage)
3464 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3465
3466 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3467 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3468
3469 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3470 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3471
3472 if (desc->ops->list_voltage ==
3473 regulator_list_voltage_pickable_linear_range)
3474 return regulator_map_voltage_pickable_linear_range(rdev,
3475 min_uV, max_uV);
3476
3477 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3478 }
3479
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3480 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3481 int min_uV, int max_uV,
3482 unsigned *selector)
3483 {
3484 struct pre_voltage_change_data data;
3485 int ret;
3486
3487 data.old_uV = regulator_get_voltage_rdev(rdev);
3488 data.min_uV = min_uV;
3489 data.max_uV = max_uV;
3490 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3491 &data);
3492 if (ret & NOTIFY_STOP_MASK)
3493 return -EINVAL;
3494
3495 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3496 if (ret >= 0)
3497 return ret;
3498
3499 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3500 (void *)data.old_uV);
3501
3502 return ret;
3503 }
3504
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3505 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3506 int uV, unsigned selector)
3507 {
3508 struct pre_voltage_change_data data;
3509 int ret;
3510
3511 data.old_uV = regulator_get_voltage_rdev(rdev);
3512 data.min_uV = uV;
3513 data.max_uV = uV;
3514 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3515 &data);
3516 if (ret & NOTIFY_STOP_MASK)
3517 return -EINVAL;
3518
3519 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3520 if (ret >= 0)
3521 return ret;
3522
3523 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3524 (void *)data.old_uV);
3525
3526 return ret;
3527 }
3528
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3529 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3530 int uV, int new_selector)
3531 {
3532 const struct regulator_ops *ops = rdev->desc->ops;
3533 int diff, old_sel, curr_sel, ret;
3534
3535 /* Stepping is only needed if the regulator is enabled. */
3536 if (!_regulator_is_enabled(rdev))
3537 goto final_set;
3538
3539 if (!ops->get_voltage_sel)
3540 return -EINVAL;
3541
3542 old_sel = ops->get_voltage_sel(rdev);
3543 if (old_sel < 0)
3544 return old_sel;
3545
3546 diff = new_selector - old_sel;
3547 if (diff == 0)
3548 return 0; /* No change needed. */
3549
3550 if (diff > 0) {
3551 /* Stepping up. */
3552 for (curr_sel = old_sel + rdev->desc->vsel_step;
3553 curr_sel < new_selector;
3554 curr_sel += rdev->desc->vsel_step) {
3555 /*
3556 * Call the callback directly instead of using
3557 * _regulator_call_set_voltage_sel() as we don't
3558 * want to notify anyone yet. Same in the branch
3559 * below.
3560 */
3561 ret = ops->set_voltage_sel(rdev, curr_sel);
3562 if (ret)
3563 goto try_revert;
3564 }
3565 } else {
3566 /* Stepping down. */
3567 for (curr_sel = old_sel - rdev->desc->vsel_step;
3568 curr_sel > new_selector;
3569 curr_sel -= rdev->desc->vsel_step) {
3570 ret = ops->set_voltage_sel(rdev, curr_sel);
3571 if (ret)
3572 goto try_revert;
3573 }
3574 }
3575
3576 final_set:
3577 /* The final selector will trigger the notifiers. */
3578 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3579
3580 try_revert:
3581 /*
3582 * At least try to return to the previous voltage if setting a new
3583 * one failed.
3584 */
3585 (void)ops->set_voltage_sel(rdev, old_sel);
3586 return ret;
3587 }
3588
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3589 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3590 int old_uV, int new_uV)
3591 {
3592 unsigned int ramp_delay = 0;
3593
3594 if (rdev->constraints->ramp_delay)
3595 ramp_delay = rdev->constraints->ramp_delay;
3596 else if (rdev->desc->ramp_delay)
3597 ramp_delay = rdev->desc->ramp_delay;
3598 else if (rdev->constraints->settling_time)
3599 return rdev->constraints->settling_time;
3600 else if (rdev->constraints->settling_time_up &&
3601 (new_uV > old_uV))
3602 return rdev->constraints->settling_time_up;
3603 else if (rdev->constraints->settling_time_down &&
3604 (new_uV < old_uV))
3605 return rdev->constraints->settling_time_down;
3606
3607 if (ramp_delay == 0)
3608 return 0;
3609
3610 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3611 }
3612
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3613 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3614 int min_uV, int max_uV)
3615 {
3616 int ret;
3617 int delay = 0;
3618 int best_val = 0;
3619 unsigned int selector;
3620 int old_selector = -1;
3621 const struct regulator_ops *ops = rdev->desc->ops;
3622 int old_uV = regulator_get_voltage_rdev(rdev);
3623
3624 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3625
3626 min_uV += rdev->constraints->uV_offset;
3627 max_uV += rdev->constraints->uV_offset;
3628
3629 /*
3630 * If we can't obtain the old selector there is not enough
3631 * info to call set_voltage_time_sel().
3632 */
3633 if (_regulator_is_enabled(rdev) &&
3634 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3635 old_selector = ops->get_voltage_sel(rdev);
3636 if (old_selector < 0)
3637 return old_selector;
3638 }
3639
3640 if (ops->set_voltage) {
3641 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3642 &selector);
3643
3644 if (ret >= 0) {
3645 if (ops->list_voltage)
3646 best_val = ops->list_voltage(rdev,
3647 selector);
3648 else
3649 best_val = regulator_get_voltage_rdev(rdev);
3650 }
3651
3652 } else if (ops->set_voltage_sel) {
3653 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3654 if (ret >= 0) {
3655 best_val = ops->list_voltage(rdev, ret);
3656 if (min_uV <= best_val && max_uV >= best_val) {
3657 selector = ret;
3658 if (old_selector == selector)
3659 ret = 0;
3660 else if (rdev->desc->vsel_step)
3661 ret = _regulator_set_voltage_sel_step(
3662 rdev, best_val, selector);
3663 else
3664 ret = _regulator_call_set_voltage_sel(
3665 rdev, best_val, selector);
3666 } else {
3667 ret = -EINVAL;
3668 }
3669 }
3670 } else {
3671 ret = -EINVAL;
3672 }
3673
3674 if (ret)
3675 goto out;
3676
3677 if (ops->set_voltage_time_sel) {
3678 /*
3679 * Call set_voltage_time_sel if successfully obtained
3680 * old_selector
3681 */
3682 if (old_selector >= 0 && old_selector != selector)
3683 delay = ops->set_voltage_time_sel(rdev, old_selector,
3684 selector);
3685 } else {
3686 if (old_uV != best_val) {
3687 if (ops->set_voltage_time)
3688 delay = ops->set_voltage_time(rdev, old_uV,
3689 best_val);
3690 else
3691 delay = _regulator_set_voltage_time(rdev,
3692 old_uV,
3693 best_val);
3694 }
3695 }
3696
3697 if (delay < 0) {
3698 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3699 delay = 0;
3700 }
3701
3702 /* Insert any necessary delays */
3703 _regulator_delay_helper(delay);
3704
3705 if (best_val >= 0) {
3706 unsigned long data = best_val;
3707
3708 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3709 (void *)data);
3710 }
3711
3712 out:
3713 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3714
3715 return ret;
3716 }
3717
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3718 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3719 int min_uV, int max_uV, suspend_state_t state)
3720 {
3721 struct regulator_state *rstate;
3722 int uV, sel;
3723
3724 rstate = regulator_get_suspend_state(rdev, state);
3725 if (rstate == NULL)
3726 return -EINVAL;
3727
3728 if (min_uV < rstate->min_uV)
3729 min_uV = rstate->min_uV;
3730 if (max_uV > rstate->max_uV)
3731 max_uV = rstate->max_uV;
3732
3733 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3734 if (sel < 0)
3735 return sel;
3736
3737 uV = rdev->desc->ops->list_voltage(rdev, sel);
3738 if (uV >= min_uV && uV <= max_uV)
3739 rstate->uV = uV;
3740
3741 return 0;
3742 }
3743
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3744 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3745 int min_uV, int max_uV,
3746 suspend_state_t state)
3747 {
3748 struct regulator_dev *rdev = regulator->rdev;
3749 struct regulator_voltage *voltage = ®ulator->voltage[state];
3750 int ret = 0;
3751 int old_min_uV, old_max_uV;
3752 int current_uV;
3753
3754 /* If we're setting the same range as last time the change
3755 * should be a noop (some cpufreq implementations use the same
3756 * voltage for multiple frequencies, for example).
3757 */
3758 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3759 goto out;
3760
3761 /* If we're trying to set a range that overlaps the current voltage,
3762 * return successfully even though the regulator does not support
3763 * changing the voltage.
3764 */
3765 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3766 current_uV = regulator_get_voltage_rdev(rdev);
3767 if (min_uV <= current_uV && current_uV <= max_uV) {
3768 voltage->min_uV = min_uV;
3769 voltage->max_uV = max_uV;
3770 goto out;
3771 }
3772 }
3773
3774 /* sanity check */
3775 if (!rdev->desc->ops->set_voltage &&
3776 !rdev->desc->ops->set_voltage_sel) {
3777 ret = -EINVAL;
3778 goto out;
3779 }
3780
3781 /* constraints check */
3782 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3783 if (ret < 0)
3784 goto out;
3785
3786 /* restore original values in case of error */
3787 old_min_uV = voltage->min_uV;
3788 old_max_uV = voltage->max_uV;
3789 voltage->min_uV = min_uV;
3790 voltage->max_uV = max_uV;
3791
3792 /* for not coupled regulators this will just set the voltage */
3793 ret = regulator_balance_voltage(rdev, state);
3794 if (ret < 0) {
3795 voltage->min_uV = old_min_uV;
3796 voltage->max_uV = old_max_uV;
3797 }
3798
3799 out:
3800 return ret;
3801 }
3802
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3803 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3804 int max_uV, suspend_state_t state)
3805 {
3806 int best_supply_uV = 0;
3807 int supply_change_uV = 0;
3808 int ret;
3809
3810 if (rdev->supply &&
3811 regulator_ops_is_valid(rdev->supply->rdev,
3812 REGULATOR_CHANGE_VOLTAGE) &&
3813 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3814 rdev->desc->ops->get_voltage_sel))) {
3815 int current_supply_uV;
3816 int selector;
3817
3818 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3819 if (selector < 0) {
3820 ret = selector;
3821 goto out;
3822 }
3823
3824 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3825 if (best_supply_uV < 0) {
3826 ret = best_supply_uV;
3827 goto out;
3828 }
3829
3830 best_supply_uV += rdev->desc->min_dropout_uV;
3831
3832 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3833 if (current_supply_uV < 0) {
3834 ret = current_supply_uV;
3835 goto out;
3836 }
3837
3838 supply_change_uV = best_supply_uV - current_supply_uV;
3839 }
3840
3841 if (supply_change_uV > 0) {
3842 ret = regulator_set_voltage_unlocked(rdev->supply,
3843 best_supply_uV, INT_MAX, state);
3844 if (ret) {
3845 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3846 ERR_PTR(ret));
3847 goto out;
3848 }
3849 }
3850
3851 if (state == PM_SUSPEND_ON)
3852 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3853 else
3854 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3855 max_uV, state);
3856 if (ret < 0)
3857 goto out;
3858
3859 if (supply_change_uV < 0) {
3860 ret = regulator_set_voltage_unlocked(rdev->supply,
3861 best_supply_uV, INT_MAX, state);
3862 if (ret)
3863 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3864 ERR_PTR(ret));
3865 /* No need to fail here */
3866 ret = 0;
3867 }
3868
3869 out:
3870 return ret;
3871 }
3872 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3873
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3874 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3875 int *current_uV, int *min_uV)
3876 {
3877 struct regulation_constraints *constraints = rdev->constraints;
3878
3879 /* Limit voltage change only if necessary */
3880 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3881 return 1;
3882
3883 if (*current_uV < 0) {
3884 *current_uV = regulator_get_voltage_rdev(rdev);
3885
3886 if (*current_uV < 0)
3887 return *current_uV;
3888 }
3889
3890 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3891 return 1;
3892
3893 /* Clamp target voltage within the given step */
3894 if (*current_uV < *min_uV)
3895 *min_uV = min(*current_uV + constraints->max_uV_step,
3896 *min_uV);
3897 else
3898 *min_uV = max(*current_uV - constraints->max_uV_step,
3899 *min_uV);
3900
3901 return 0;
3902 }
3903
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3904 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3905 int *current_uV,
3906 int *min_uV, int *max_uV,
3907 suspend_state_t state,
3908 int n_coupled)
3909 {
3910 struct coupling_desc *c_desc = &rdev->coupling_desc;
3911 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3912 struct regulation_constraints *constraints = rdev->constraints;
3913 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3914 int max_current_uV = 0, min_current_uV = INT_MAX;
3915 int highest_min_uV = 0, target_uV, possible_uV;
3916 int i, ret, max_spread;
3917 bool done;
3918
3919 *current_uV = -1;
3920
3921 /*
3922 * If there are no coupled regulators, simply set the voltage
3923 * demanded by consumers.
3924 */
3925 if (n_coupled == 1) {
3926 /*
3927 * If consumers don't provide any demands, set voltage
3928 * to min_uV
3929 */
3930 desired_min_uV = constraints->min_uV;
3931 desired_max_uV = constraints->max_uV;
3932
3933 ret = regulator_check_consumers(rdev,
3934 &desired_min_uV,
3935 &desired_max_uV, state);
3936 if (ret < 0)
3937 return ret;
3938
3939 possible_uV = desired_min_uV;
3940 done = true;
3941
3942 goto finish;
3943 }
3944
3945 /* Find highest min desired voltage */
3946 for (i = 0; i < n_coupled; i++) {
3947 int tmp_min = 0;
3948 int tmp_max = INT_MAX;
3949
3950 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3951
3952 ret = regulator_check_consumers(c_rdevs[i],
3953 &tmp_min,
3954 &tmp_max, state);
3955 if (ret < 0)
3956 return ret;
3957
3958 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3959 if (ret < 0)
3960 return ret;
3961
3962 highest_min_uV = max(highest_min_uV, tmp_min);
3963
3964 if (i == 0) {
3965 desired_min_uV = tmp_min;
3966 desired_max_uV = tmp_max;
3967 }
3968 }
3969
3970 max_spread = constraints->max_spread[0];
3971
3972 /*
3973 * Let target_uV be equal to the desired one if possible.
3974 * If not, set it to minimum voltage, allowed by other coupled
3975 * regulators.
3976 */
3977 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3978
3979 /*
3980 * Find min and max voltages, which currently aren't violating
3981 * max_spread.
3982 */
3983 for (i = 1; i < n_coupled; i++) {
3984 int tmp_act;
3985
3986 if (!_regulator_is_enabled(c_rdevs[i]))
3987 continue;
3988
3989 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3990 if (tmp_act < 0)
3991 return tmp_act;
3992
3993 min_current_uV = min(tmp_act, min_current_uV);
3994 max_current_uV = max(tmp_act, max_current_uV);
3995 }
3996
3997 /* There aren't any other regulators enabled */
3998 if (max_current_uV == 0) {
3999 possible_uV = target_uV;
4000 } else {
4001 /*
4002 * Correct target voltage, so as it currently isn't
4003 * violating max_spread
4004 */
4005 possible_uV = max(target_uV, max_current_uV - max_spread);
4006 possible_uV = min(possible_uV, min_current_uV + max_spread);
4007 }
4008
4009 if (possible_uV > desired_max_uV)
4010 return -EINVAL;
4011
4012 done = (possible_uV == target_uV);
4013 desired_min_uV = possible_uV;
4014
4015 finish:
4016 /* Apply max_uV_step constraint if necessary */
4017 if (state == PM_SUSPEND_ON) {
4018 ret = regulator_limit_voltage_step(rdev, current_uV,
4019 &desired_min_uV);
4020 if (ret < 0)
4021 return ret;
4022
4023 if (ret == 0)
4024 done = false;
4025 }
4026
4027 /* Set current_uV if wasn't done earlier in the code and if necessary */
4028 if (n_coupled > 1 && *current_uV == -1) {
4029
4030 if (_regulator_is_enabled(rdev)) {
4031 ret = regulator_get_voltage_rdev(rdev);
4032 if (ret < 0)
4033 return ret;
4034
4035 *current_uV = ret;
4036 } else {
4037 *current_uV = desired_min_uV;
4038 }
4039 }
4040
4041 *min_uV = desired_min_uV;
4042 *max_uV = desired_max_uV;
4043
4044 return done;
4045 }
4046
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)4047 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4048 suspend_state_t state, bool skip_coupled)
4049 {
4050 struct regulator_dev **c_rdevs;
4051 struct regulator_dev *best_rdev;
4052 struct coupling_desc *c_desc = &rdev->coupling_desc;
4053 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4054 unsigned int delta, best_delta;
4055 unsigned long c_rdev_done = 0;
4056 bool best_c_rdev_done;
4057
4058 c_rdevs = c_desc->coupled_rdevs;
4059 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4060
4061 /*
4062 * Find the best possible voltage change on each loop. Leave the loop
4063 * if there isn't any possible change.
4064 */
4065 do {
4066 best_c_rdev_done = false;
4067 best_delta = 0;
4068 best_min_uV = 0;
4069 best_max_uV = 0;
4070 best_c_rdev = 0;
4071 best_rdev = NULL;
4072
4073 /*
4074 * Find highest difference between optimal voltage
4075 * and current voltage.
4076 */
4077 for (i = 0; i < n_coupled; i++) {
4078 /*
4079 * optimal_uV is the best voltage that can be set for
4080 * i-th regulator at the moment without violating
4081 * max_spread constraint in order to balance
4082 * the coupled voltages.
4083 */
4084 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4085
4086 if (test_bit(i, &c_rdev_done))
4087 continue;
4088
4089 ret = regulator_get_optimal_voltage(c_rdevs[i],
4090 ¤t_uV,
4091 &optimal_uV,
4092 &optimal_max_uV,
4093 state, n_coupled);
4094 if (ret < 0)
4095 goto out;
4096
4097 delta = abs(optimal_uV - current_uV);
4098
4099 if (delta && best_delta <= delta) {
4100 best_c_rdev_done = ret;
4101 best_delta = delta;
4102 best_rdev = c_rdevs[i];
4103 best_min_uV = optimal_uV;
4104 best_max_uV = optimal_max_uV;
4105 best_c_rdev = i;
4106 }
4107 }
4108
4109 /* Nothing to change, return successfully */
4110 if (!best_rdev) {
4111 ret = 0;
4112 goto out;
4113 }
4114
4115 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4116 best_max_uV, state);
4117
4118 if (ret < 0)
4119 goto out;
4120
4121 if (best_c_rdev_done)
4122 set_bit(best_c_rdev, &c_rdev_done);
4123
4124 } while (n_coupled > 1);
4125
4126 out:
4127 return ret;
4128 }
4129
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)4130 static int regulator_balance_voltage(struct regulator_dev *rdev,
4131 suspend_state_t state)
4132 {
4133 struct coupling_desc *c_desc = &rdev->coupling_desc;
4134 struct regulator_coupler *coupler = c_desc->coupler;
4135 bool skip_coupled = false;
4136
4137 /*
4138 * If system is in a state other than PM_SUSPEND_ON, don't check
4139 * other coupled regulators.
4140 */
4141 if (state != PM_SUSPEND_ON)
4142 skip_coupled = true;
4143
4144 if (c_desc->n_resolved < c_desc->n_coupled) {
4145 rdev_err(rdev, "Not all coupled regulators registered\n");
4146 return -EPERM;
4147 }
4148
4149 /* Invoke custom balancer for customized couplers */
4150 if (coupler && coupler->balance_voltage)
4151 return coupler->balance_voltage(coupler, rdev, state);
4152
4153 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4154 }
4155
4156 /**
4157 * regulator_set_voltage - set regulator output voltage
4158 * @regulator: regulator source
4159 * @min_uV: Minimum required voltage in uV
4160 * @max_uV: Maximum acceptable voltage in uV
4161 *
4162 * Sets a voltage regulator to the desired output voltage. This can be set
4163 * during any regulator state. IOW, regulator can be disabled or enabled.
4164 *
4165 * If the regulator is enabled then the voltage will change to the new value
4166 * immediately otherwise if the regulator is disabled the regulator will
4167 * output at the new voltage when enabled.
4168 *
4169 * NOTE: If the regulator is shared between several devices then the lowest
4170 * request voltage that meets the system constraints will be used.
4171 * Regulator system constraints must be set for this regulator before
4172 * calling this function otherwise this call will fail.
4173 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4174 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4175 {
4176 struct ww_acquire_ctx ww_ctx;
4177 int ret;
4178
4179 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4180
4181 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4182 PM_SUSPEND_ON);
4183
4184 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4185
4186 return ret;
4187 }
4188 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4189
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4190 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4191 suspend_state_t state, bool en)
4192 {
4193 struct regulator_state *rstate;
4194
4195 rstate = regulator_get_suspend_state(rdev, state);
4196 if (rstate == NULL)
4197 return -EINVAL;
4198
4199 if (!rstate->changeable)
4200 return -EPERM;
4201
4202 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4203
4204 return 0;
4205 }
4206
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4207 int regulator_suspend_enable(struct regulator_dev *rdev,
4208 suspend_state_t state)
4209 {
4210 return regulator_suspend_toggle(rdev, state, true);
4211 }
4212 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4213
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4214 int regulator_suspend_disable(struct regulator_dev *rdev,
4215 suspend_state_t state)
4216 {
4217 struct regulator *regulator;
4218 struct regulator_voltage *voltage;
4219
4220 /*
4221 * if any consumer wants this regulator device keeping on in
4222 * suspend states, don't set it as disabled.
4223 */
4224 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4225 voltage = ®ulator->voltage[state];
4226 if (voltage->min_uV || voltage->max_uV)
4227 return 0;
4228 }
4229
4230 return regulator_suspend_toggle(rdev, state, false);
4231 }
4232 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4233
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4234 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4235 int min_uV, int max_uV,
4236 suspend_state_t state)
4237 {
4238 struct regulator_dev *rdev = regulator->rdev;
4239 struct regulator_state *rstate;
4240
4241 rstate = regulator_get_suspend_state(rdev, state);
4242 if (rstate == NULL)
4243 return -EINVAL;
4244
4245 if (rstate->min_uV == rstate->max_uV) {
4246 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4247 return -EPERM;
4248 }
4249
4250 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4251 }
4252
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4253 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4254 int max_uV, suspend_state_t state)
4255 {
4256 struct ww_acquire_ctx ww_ctx;
4257 int ret;
4258
4259 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4260 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4261 return -EINVAL;
4262
4263 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4264
4265 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4266 max_uV, state);
4267
4268 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4269
4270 return ret;
4271 }
4272 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4273
4274 /**
4275 * regulator_set_voltage_time - get raise/fall time
4276 * @regulator: regulator source
4277 * @old_uV: starting voltage in microvolts
4278 * @new_uV: target voltage in microvolts
4279 *
4280 * Provided with the starting and ending voltage, this function attempts to
4281 * calculate the time in microseconds required to rise or fall to this new
4282 * voltage.
4283 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4284 int regulator_set_voltage_time(struct regulator *regulator,
4285 int old_uV, int new_uV)
4286 {
4287 struct regulator_dev *rdev = regulator->rdev;
4288 const struct regulator_ops *ops = rdev->desc->ops;
4289 int old_sel = -1;
4290 int new_sel = -1;
4291 int voltage;
4292 int i;
4293
4294 if (ops->set_voltage_time)
4295 return ops->set_voltage_time(rdev, old_uV, new_uV);
4296 else if (!ops->set_voltage_time_sel)
4297 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4298
4299 /* Currently requires operations to do this */
4300 if (!ops->list_voltage || !rdev->desc->n_voltages)
4301 return -EINVAL;
4302
4303 for (i = 0; i < rdev->desc->n_voltages; i++) {
4304 /* We only look for exact voltage matches here */
4305 if (i < rdev->desc->linear_min_sel)
4306 continue;
4307
4308 if (old_sel >= 0 && new_sel >= 0)
4309 break;
4310
4311 voltage = regulator_list_voltage(regulator, i);
4312 if (voltage < 0)
4313 return -EINVAL;
4314 if (voltage == 0)
4315 continue;
4316 if (voltage == old_uV)
4317 old_sel = i;
4318 if (voltage == new_uV)
4319 new_sel = i;
4320 }
4321
4322 if (old_sel < 0 || new_sel < 0)
4323 return -EINVAL;
4324
4325 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4326 }
4327 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4328
4329 /**
4330 * regulator_set_voltage_time_sel - get raise/fall time
4331 * @rdev: regulator source device
4332 * @old_selector: selector for starting voltage
4333 * @new_selector: selector for target voltage
4334 *
4335 * Provided with the starting and target voltage selectors, this function
4336 * returns time in microseconds required to rise or fall to this new voltage
4337 *
4338 * Drivers providing ramp_delay in regulation_constraints can use this as their
4339 * set_voltage_time_sel() operation.
4340 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4341 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4342 unsigned int old_selector,
4343 unsigned int new_selector)
4344 {
4345 int old_volt, new_volt;
4346
4347 /* sanity check */
4348 if (!rdev->desc->ops->list_voltage)
4349 return -EINVAL;
4350
4351 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4352 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4353
4354 if (rdev->desc->ops->set_voltage_time)
4355 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4356 new_volt);
4357 else
4358 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4359 }
4360 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4361
regulator_sync_voltage_rdev(struct regulator_dev * rdev)4362 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4363 {
4364 int ret;
4365
4366 regulator_lock(rdev);
4367
4368 if (!rdev->desc->ops->set_voltage &&
4369 !rdev->desc->ops->set_voltage_sel) {
4370 ret = -EINVAL;
4371 goto out;
4372 }
4373
4374 /* balance only, if regulator is coupled */
4375 if (rdev->coupling_desc.n_coupled > 1)
4376 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4377 else
4378 ret = -EOPNOTSUPP;
4379
4380 out:
4381 regulator_unlock(rdev);
4382 return ret;
4383 }
4384
4385 /**
4386 * regulator_sync_voltage - re-apply last regulator output voltage
4387 * @regulator: regulator source
4388 *
4389 * Re-apply the last configured voltage. This is intended to be used
4390 * where some external control source the consumer is cooperating with
4391 * has caused the configured voltage to change.
4392 */
regulator_sync_voltage(struct regulator * regulator)4393 int regulator_sync_voltage(struct regulator *regulator)
4394 {
4395 struct regulator_dev *rdev = regulator->rdev;
4396 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4397 int ret, min_uV, max_uV;
4398
4399 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4400 return 0;
4401
4402 regulator_lock(rdev);
4403
4404 if (!rdev->desc->ops->set_voltage &&
4405 !rdev->desc->ops->set_voltage_sel) {
4406 ret = -EINVAL;
4407 goto out;
4408 }
4409
4410 /* This is only going to work if we've had a voltage configured. */
4411 if (!voltage->min_uV && !voltage->max_uV) {
4412 ret = -EINVAL;
4413 goto out;
4414 }
4415
4416 min_uV = voltage->min_uV;
4417 max_uV = voltage->max_uV;
4418
4419 /* This should be a paranoia check... */
4420 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4421 if (ret < 0)
4422 goto out;
4423
4424 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4425 if (ret < 0)
4426 goto out;
4427
4428 /* balance only, if regulator is coupled */
4429 if (rdev->coupling_desc.n_coupled > 1)
4430 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4431 else
4432 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4433
4434 out:
4435 regulator_unlock(rdev);
4436 return ret;
4437 }
4438 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4439
regulator_get_voltage_rdev(struct regulator_dev * rdev)4440 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4441 {
4442 int sel, ret;
4443 bool bypassed;
4444
4445 if (rdev->desc->ops->get_bypass) {
4446 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4447 if (ret < 0)
4448 return ret;
4449 if (bypassed) {
4450 /* if bypassed the regulator must have a supply */
4451 if (!rdev->supply) {
4452 rdev_err(rdev,
4453 "bypassed regulator has no supply!\n");
4454 return -EPROBE_DEFER;
4455 }
4456
4457 return regulator_get_voltage_rdev(rdev->supply->rdev);
4458 }
4459 }
4460
4461 if (rdev->desc->ops->get_voltage_sel) {
4462 sel = rdev->desc->ops->get_voltage_sel(rdev);
4463 if (sel < 0)
4464 return sel;
4465 ret = rdev->desc->ops->list_voltage(rdev, sel);
4466 } else if (rdev->desc->ops->get_voltage) {
4467 ret = rdev->desc->ops->get_voltage(rdev);
4468 } else if (rdev->desc->ops->list_voltage) {
4469 ret = rdev->desc->ops->list_voltage(rdev, 0);
4470 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4471 ret = rdev->desc->fixed_uV;
4472 } else if (rdev->supply) {
4473 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4474 } else if (rdev->supply_name) {
4475 return -EPROBE_DEFER;
4476 } else {
4477 return -EINVAL;
4478 }
4479
4480 if (ret < 0)
4481 return ret;
4482 return ret - rdev->constraints->uV_offset;
4483 }
4484 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4485
4486 /**
4487 * regulator_get_voltage - get regulator output voltage
4488 * @regulator: regulator source
4489 *
4490 * This returns the current regulator voltage in uV.
4491 *
4492 * NOTE: If the regulator is disabled it will return the voltage value. This
4493 * function should not be used to determine regulator state.
4494 */
regulator_get_voltage(struct regulator * regulator)4495 int regulator_get_voltage(struct regulator *regulator)
4496 {
4497 struct ww_acquire_ctx ww_ctx;
4498 int ret;
4499
4500 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4501 ret = regulator_get_voltage_rdev(regulator->rdev);
4502 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4503
4504 return ret;
4505 }
4506 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4507
4508 /**
4509 * regulator_set_current_limit - set regulator output current limit
4510 * @regulator: regulator source
4511 * @min_uA: Minimum supported current in uA
4512 * @max_uA: Maximum supported current in uA
4513 *
4514 * Sets current sink to the desired output current. This can be set during
4515 * any regulator state. IOW, regulator can be disabled or enabled.
4516 *
4517 * If the regulator is enabled then the current will change to the new value
4518 * immediately otherwise if the regulator is disabled the regulator will
4519 * output at the new current when enabled.
4520 *
4521 * NOTE: Regulator system constraints must be set for this regulator before
4522 * calling this function otherwise this call will fail.
4523 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4524 int regulator_set_current_limit(struct regulator *regulator,
4525 int min_uA, int max_uA)
4526 {
4527 struct regulator_dev *rdev = regulator->rdev;
4528 int ret;
4529
4530 regulator_lock(rdev);
4531
4532 /* sanity check */
4533 if (!rdev->desc->ops->set_current_limit) {
4534 ret = -EINVAL;
4535 goto out;
4536 }
4537
4538 /* constraints check */
4539 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4540 if (ret < 0)
4541 goto out;
4542
4543 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4544 out:
4545 regulator_unlock(rdev);
4546 return ret;
4547 }
4548 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4549
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4550 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4551 {
4552 /* sanity check */
4553 if (!rdev->desc->ops->get_current_limit)
4554 return -EINVAL;
4555
4556 return rdev->desc->ops->get_current_limit(rdev);
4557 }
4558
_regulator_get_current_limit(struct regulator_dev * rdev)4559 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4560 {
4561 int ret;
4562
4563 regulator_lock(rdev);
4564 ret = _regulator_get_current_limit_unlocked(rdev);
4565 regulator_unlock(rdev);
4566
4567 return ret;
4568 }
4569
4570 /**
4571 * regulator_get_current_limit - get regulator output current
4572 * @regulator: regulator source
4573 *
4574 * This returns the current supplied by the specified current sink in uA.
4575 *
4576 * NOTE: If the regulator is disabled it will return the current value. This
4577 * function should not be used to determine regulator state.
4578 */
regulator_get_current_limit(struct regulator * regulator)4579 int regulator_get_current_limit(struct regulator *regulator)
4580 {
4581 return _regulator_get_current_limit(regulator->rdev);
4582 }
4583 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4584
4585 /**
4586 * regulator_set_mode - set regulator operating mode
4587 * @regulator: regulator source
4588 * @mode: operating mode - one of the REGULATOR_MODE constants
4589 *
4590 * Set regulator operating mode to increase regulator efficiency or improve
4591 * regulation performance.
4592 *
4593 * NOTE: Regulator system constraints must be set for this regulator before
4594 * calling this function otherwise this call will fail.
4595 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4596 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4597 {
4598 struct regulator_dev *rdev = regulator->rdev;
4599 int ret;
4600 int regulator_curr_mode;
4601
4602 regulator_lock(rdev);
4603
4604 /* sanity check */
4605 if (!rdev->desc->ops->set_mode) {
4606 ret = -EINVAL;
4607 goto out;
4608 }
4609
4610 /* return if the same mode is requested */
4611 if (rdev->desc->ops->get_mode) {
4612 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4613 if (regulator_curr_mode == mode) {
4614 ret = 0;
4615 goto out;
4616 }
4617 }
4618
4619 /* constraints check */
4620 ret = regulator_mode_constrain(rdev, &mode);
4621 if (ret < 0)
4622 goto out;
4623
4624 ret = rdev->desc->ops->set_mode(rdev, mode);
4625 out:
4626 regulator_unlock(rdev);
4627 return ret;
4628 }
4629 EXPORT_SYMBOL_GPL(regulator_set_mode);
4630
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4631 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4632 {
4633 /* sanity check */
4634 if (!rdev->desc->ops->get_mode)
4635 return -EINVAL;
4636
4637 return rdev->desc->ops->get_mode(rdev);
4638 }
4639
_regulator_get_mode(struct regulator_dev * rdev)4640 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4641 {
4642 int ret;
4643
4644 regulator_lock(rdev);
4645 ret = _regulator_get_mode_unlocked(rdev);
4646 regulator_unlock(rdev);
4647
4648 return ret;
4649 }
4650
4651 /**
4652 * regulator_get_mode - get regulator operating mode
4653 * @regulator: regulator source
4654 *
4655 * Get the current regulator operating mode.
4656 */
regulator_get_mode(struct regulator * regulator)4657 unsigned int regulator_get_mode(struct regulator *regulator)
4658 {
4659 return _regulator_get_mode(regulator->rdev);
4660 }
4661 EXPORT_SYMBOL_GPL(regulator_get_mode);
4662
rdev_get_cached_err_flags(struct regulator_dev * rdev)4663 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4664 {
4665 int ret = 0;
4666
4667 if (rdev->use_cached_err) {
4668 spin_lock(&rdev->err_lock);
4669 ret = rdev->cached_err;
4670 spin_unlock(&rdev->err_lock);
4671 }
4672 return ret;
4673 }
4674
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4675 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4676 unsigned int *flags)
4677 {
4678 int cached_flags, ret = 0;
4679
4680 regulator_lock(rdev);
4681
4682 cached_flags = rdev_get_cached_err_flags(rdev);
4683
4684 if (rdev->desc->ops->get_error_flags)
4685 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4686 else if (!rdev->use_cached_err)
4687 ret = -EINVAL;
4688
4689 *flags |= cached_flags;
4690
4691 regulator_unlock(rdev);
4692
4693 return ret;
4694 }
4695
4696 /**
4697 * regulator_get_error_flags - get regulator error information
4698 * @regulator: regulator source
4699 * @flags: pointer to store error flags
4700 *
4701 * Get the current regulator error information.
4702 */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4703 int regulator_get_error_flags(struct regulator *regulator,
4704 unsigned int *flags)
4705 {
4706 return _regulator_get_error_flags(regulator->rdev, flags);
4707 }
4708 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4709
4710 /**
4711 * regulator_set_load - set regulator load
4712 * @regulator: regulator source
4713 * @uA_load: load current
4714 *
4715 * Notifies the regulator core of a new device load. This is then used by
4716 * DRMS (if enabled by constraints) to set the most efficient regulator
4717 * operating mode for the new regulator loading.
4718 *
4719 * Consumer devices notify their supply regulator of the maximum power
4720 * they will require (can be taken from device datasheet in the power
4721 * consumption tables) when they change operational status and hence power
4722 * state. Examples of operational state changes that can affect power
4723 * consumption are :-
4724 *
4725 * o Device is opened / closed.
4726 * o Device I/O is about to begin or has just finished.
4727 * o Device is idling in between work.
4728 *
4729 * This information is also exported via sysfs to userspace.
4730 *
4731 * DRMS will sum the total requested load on the regulator and change
4732 * to the most efficient operating mode if platform constraints allow.
4733 *
4734 * NOTE: when a regulator consumer requests to have a regulator
4735 * disabled then any load that consumer requested no longer counts
4736 * toward the total requested load. If the regulator is re-enabled
4737 * then the previously requested load will start counting again.
4738 *
4739 * If a regulator is an always-on regulator then an individual consumer's
4740 * load will still be removed if that consumer is fully disabled.
4741 *
4742 * On error a negative errno is returned.
4743 */
regulator_set_load(struct regulator * regulator,int uA_load)4744 int regulator_set_load(struct regulator *regulator, int uA_load)
4745 {
4746 struct regulator_dev *rdev = regulator->rdev;
4747 int old_uA_load;
4748 int ret = 0;
4749
4750 regulator_lock(rdev);
4751 old_uA_load = regulator->uA_load;
4752 regulator->uA_load = uA_load;
4753 if (regulator->enable_count && old_uA_load != uA_load) {
4754 ret = drms_uA_update(rdev);
4755 if (ret < 0)
4756 regulator->uA_load = old_uA_load;
4757 }
4758 regulator_unlock(rdev);
4759
4760 return ret;
4761 }
4762 EXPORT_SYMBOL_GPL(regulator_set_load);
4763
4764 /**
4765 * regulator_allow_bypass - allow the regulator to go into bypass mode
4766 *
4767 * @regulator: Regulator to configure
4768 * @enable: enable or disable bypass mode
4769 *
4770 * Allow the regulator to go into bypass mode if all other consumers
4771 * for the regulator also enable bypass mode and the machine
4772 * constraints allow this. Bypass mode means that the regulator is
4773 * simply passing the input directly to the output with no regulation.
4774 */
regulator_allow_bypass(struct regulator * regulator,bool enable)4775 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4776 {
4777 struct regulator_dev *rdev = regulator->rdev;
4778 const char *name = rdev_get_name(rdev);
4779 int ret = 0;
4780
4781 if (!rdev->desc->ops->set_bypass)
4782 return 0;
4783
4784 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4785 return 0;
4786
4787 regulator_lock(rdev);
4788
4789 if (enable && !regulator->bypass) {
4790 rdev->bypass_count++;
4791
4792 if (rdev->bypass_count == rdev->open_count) {
4793 trace_regulator_bypass_enable(name);
4794
4795 ret = rdev->desc->ops->set_bypass(rdev, enable);
4796 if (ret != 0)
4797 rdev->bypass_count--;
4798 else
4799 trace_regulator_bypass_enable_complete(name);
4800 }
4801
4802 } else if (!enable && regulator->bypass) {
4803 rdev->bypass_count--;
4804
4805 if (rdev->bypass_count != rdev->open_count) {
4806 trace_regulator_bypass_disable(name);
4807
4808 ret = rdev->desc->ops->set_bypass(rdev, enable);
4809 if (ret != 0)
4810 rdev->bypass_count++;
4811 else
4812 trace_regulator_bypass_disable_complete(name);
4813 }
4814 }
4815
4816 if (ret == 0)
4817 regulator->bypass = enable;
4818
4819 regulator_unlock(rdev);
4820
4821 return ret;
4822 }
4823 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4824
4825 /**
4826 * regulator_register_notifier - register regulator event notifier
4827 * @regulator: regulator source
4828 * @nb: notifier block
4829 *
4830 * Register notifier block to receive regulator events.
4831 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4832 int regulator_register_notifier(struct regulator *regulator,
4833 struct notifier_block *nb)
4834 {
4835 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4836 nb);
4837 }
4838 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4839
4840 /**
4841 * regulator_unregister_notifier - unregister regulator event notifier
4842 * @regulator: regulator source
4843 * @nb: notifier block
4844 *
4845 * Unregister regulator event notifier block.
4846 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)4847 int regulator_unregister_notifier(struct regulator *regulator,
4848 struct notifier_block *nb)
4849 {
4850 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4851 nb);
4852 }
4853 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4854
4855 /* notify regulator consumers and downstream regulator consumers.
4856 * Note mutex must be held by caller.
4857 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4858 static int _notifier_call_chain(struct regulator_dev *rdev,
4859 unsigned long event, void *data)
4860 {
4861 /* call rdev chain first */
4862 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4863 }
4864
_regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers,enum regulator_get_type get_type)4865 int _regulator_bulk_get(struct device *dev, int num_consumers,
4866 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4867 {
4868 int i;
4869 int ret;
4870
4871 for (i = 0; i < num_consumers; i++)
4872 consumers[i].consumer = NULL;
4873
4874 for (i = 0; i < num_consumers; i++) {
4875 consumers[i].consumer = _regulator_get(dev,
4876 consumers[i].supply, get_type);
4877 if (IS_ERR(consumers[i].consumer)) {
4878 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4879 "Failed to get supply '%s'",
4880 consumers[i].supply);
4881 consumers[i].consumer = NULL;
4882 goto err;
4883 }
4884
4885 if (consumers[i].init_load_uA > 0) {
4886 ret = regulator_set_load(consumers[i].consumer,
4887 consumers[i].init_load_uA);
4888 if (ret) {
4889 i++;
4890 goto err;
4891 }
4892 }
4893 }
4894
4895 return 0;
4896
4897 err:
4898 while (--i >= 0)
4899 regulator_put(consumers[i].consumer);
4900
4901 return ret;
4902 }
4903
4904 /**
4905 * regulator_bulk_get - get multiple regulator consumers
4906 *
4907 * @dev: Device to supply
4908 * @num_consumers: Number of consumers to register
4909 * @consumers: Configuration of consumers; clients are stored here.
4910 *
4911 * @return 0 on success, an errno on failure.
4912 *
4913 * This helper function allows drivers to get several regulator
4914 * consumers in one operation. If any of the regulators cannot be
4915 * acquired then any regulators that were allocated will be freed
4916 * before returning to the caller.
4917 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)4918 int regulator_bulk_get(struct device *dev, int num_consumers,
4919 struct regulator_bulk_data *consumers)
4920 {
4921 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4922 }
4923 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4924
regulator_bulk_enable_async(void * data,async_cookie_t cookie)4925 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4926 {
4927 struct regulator_bulk_data *bulk = data;
4928
4929 bulk->ret = regulator_enable(bulk->consumer);
4930 }
4931
4932 /**
4933 * regulator_bulk_enable - enable multiple regulator consumers
4934 *
4935 * @num_consumers: Number of consumers
4936 * @consumers: Consumer data; clients are stored here.
4937 * @return 0 on success, an errno on failure
4938 *
4939 * This convenience API allows consumers to enable multiple regulator
4940 * clients in a single API call. If any consumers cannot be enabled
4941 * then any others that were enabled will be disabled again prior to
4942 * return.
4943 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)4944 int regulator_bulk_enable(int num_consumers,
4945 struct regulator_bulk_data *consumers)
4946 {
4947 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4948 int i;
4949 int ret = 0;
4950
4951 for (i = 0; i < num_consumers; i++) {
4952 async_schedule_domain(regulator_bulk_enable_async,
4953 &consumers[i], &async_domain);
4954 }
4955
4956 async_synchronize_full_domain(&async_domain);
4957
4958 /* If any consumer failed we need to unwind any that succeeded */
4959 for (i = 0; i < num_consumers; i++) {
4960 if (consumers[i].ret != 0) {
4961 ret = consumers[i].ret;
4962 goto err;
4963 }
4964 }
4965
4966 return 0;
4967
4968 err:
4969 for (i = 0; i < num_consumers; i++) {
4970 if (consumers[i].ret < 0)
4971 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4972 ERR_PTR(consumers[i].ret));
4973 else
4974 regulator_disable(consumers[i].consumer);
4975 }
4976
4977 return ret;
4978 }
4979 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4980
4981 /**
4982 * regulator_bulk_disable - disable multiple regulator consumers
4983 *
4984 * @num_consumers: Number of consumers
4985 * @consumers: Consumer data; clients are stored here.
4986 * @return 0 on success, an errno on failure
4987 *
4988 * This convenience API allows consumers to disable multiple regulator
4989 * clients in a single API call. If any consumers cannot be disabled
4990 * then any others that were disabled will be enabled again prior to
4991 * return.
4992 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)4993 int regulator_bulk_disable(int num_consumers,
4994 struct regulator_bulk_data *consumers)
4995 {
4996 int i;
4997 int ret, r;
4998
4999 for (i = num_consumers - 1; i >= 0; --i) {
5000 ret = regulator_disable(consumers[i].consumer);
5001 if (ret != 0)
5002 goto err;
5003 }
5004
5005 return 0;
5006
5007 err:
5008 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5009 for (++i; i < num_consumers; ++i) {
5010 r = regulator_enable(consumers[i].consumer);
5011 if (r != 0)
5012 pr_err("Failed to re-enable %s: %pe\n",
5013 consumers[i].supply, ERR_PTR(r));
5014 }
5015
5016 return ret;
5017 }
5018 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5019
5020 /**
5021 * regulator_bulk_force_disable - force disable multiple regulator consumers
5022 *
5023 * @num_consumers: Number of consumers
5024 * @consumers: Consumer data; clients are stored here.
5025 * @return 0 on success, an errno on failure
5026 *
5027 * This convenience API allows consumers to forcibly disable multiple regulator
5028 * clients in a single API call.
5029 * NOTE: This should be used for situations when device damage will
5030 * likely occur if the regulators are not disabled (e.g. over temp).
5031 * Although regulator_force_disable function call for some consumers can
5032 * return error numbers, the function is called for all consumers.
5033 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)5034 int regulator_bulk_force_disable(int num_consumers,
5035 struct regulator_bulk_data *consumers)
5036 {
5037 int i;
5038 int ret = 0;
5039
5040 for (i = 0; i < num_consumers; i++) {
5041 consumers[i].ret =
5042 regulator_force_disable(consumers[i].consumer);
5043
5044 /* Store first error for reporting */
5045 if (consumers[i].ret && !ret)
5046 ret = consumers[i].ret;
5047 }
5048
5049 return ret;
5050 }
5051 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5052
5053 /**
5054 * regulator_bulk_free - free multiple regulator consumers
5055 *
5056 * @num_consumers: Number of consumers
5057 * @consumers: Consumer data; clients are stored here.
5058 *
5059 * This convenience API allows consumers to free multiple regulator
5060 * clients in a single API call.
5061 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)5062 void regulator_bulk_free(int num_consumers,
5063 struct regulator_bulk_data *consumers)
5064 {
5065 int i;
5066
5067 for (i = 0; i < num_consumers; i++) {
5068 regulator_put(consumers[i].consumer);
5069 consumers[i].consumer = NULL;
5070 }
5071 }
5072 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5073
5074 /**
5075 * regulator_notifier_call_chain - call regulator event notifier
5076 * @rdev: regulator source
5077 * @event: notifier block
5078 * @data: callback-specific data.
5079 *
5080 * Called by regulator drivers to notify clients a regulator event has
5081 * occurred.
5082 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5083 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5084 unsigned long event, void *data)
5085 {
5086 _notifier_call_chain(rdev, event, data);
5087 return NOTIFY_DONE;
5088
5089 }
5090 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5091
5092 /**
5093 * regulator_mode_to_status - convert a regulator mode into a status
5094 *
5095 * @mode: Mode to convert
5096 *
5097 * Convert a regulator mode into a status.
5098 */
regulator_mode_to_status(unsigned int mode)5099 int regulator_mode_to_status(unsigned int mode)
5100 {
5101 switch (mode) {
5102 case REGULATOR_MODE_FAST:
5103 return REGULATOR_STATUS_FAST;
5104 case REGULATOR_MODE_NORMAL:
5105 return REGULATOR_STATUS_NORMAL;
5106 case REGULATOR_MODE_IDLE:
5107 return REGULATOR_STATUS_IDLE;
5108 case REGULATOR_MODE_STANDBY:
5109 return REGULATOR_STATUS_STANDBY;
5110 default:
5111 return REGULATOR_STATUS_UNDEFINED;
5112 }
5113 }
5114 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5115
5116 static struct attribute *regulator_dev_attrs[] = {
5117 &dev_attr_name.attr,
5118 &dev_attr_num_users.attr,
5119 &dev_attr_type.attr,
5120 &dev_attr_microvolts.attr,
5121 &dev_attr_microamps.attr,
5122 &dev_attr_opmode.attr,
5123 &dev_attr_state.attr,
5124 &dev_attr_status.attr,
5125 &dev_attr_bypass.attr,
5126 &dev_attr_requested_microamps.attr,
5127 &dev_attr_min_microvolts.attr,
5128 &dev_attr_max_microvolts.attr,
5129 &dev_attr_min_microamps.attr,
5130 &dev_attr_max_microamps.attr,
5131 &dev_attr_under_voltage.attr,
5132 &dev_attr_over_current.attr,
5133 &dev_attr_regulation_out.attr,
5134 &dev_attr_fail.attr,
5135 &dev_attr_over_temp.attr,
5136 &dev_attr_under_voltage_warn.attr,
5137 &dev_attr_over_current_warn.attr,
5138 &dev_attr_over_voltage_warn.attr,
5139 &dev_attr_over_temp_warn.attr,
5140 &dev_attr_suspend_standby_state.attr,
5141 &dev_attr_suspend_mem_state.attr,
5142 &dev_attr_suspend_disk_state.attr,
5143 &dev_attr_suspend_standby_microvolts.attr,
5144 &dev_attr_suspend_mem_microvolts.attr,
5145 &dev_attr_suspend_disk_microvolts.attr,
5146 &dev_attr_suspend_standby_mode.attr,
5147 &dev_attr_suspend_mem_mode.attr,
5148 &dev_attr_suspend_disk_mode.attr,
5149 NULL
5150 };
5151
5152 /*
5153 * To avoid cluttering sysfs (and memory) with useless state, only
5154 * create attributes that can be meaningfully displayed.
5155 */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)5156 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5157 struct attribute *attr, int idx)
5158 {
5159 struct device *dev = kobj_to_dev(kobj);
5160 struct regulator_dev *rdev = dev_to_rdev(dev);
5161 const struct regulator_ops *ops = rdev->desc->ops;
5162 umode_t mode = attr->mode;
5163
5164 /* these three are always present */
5165 if (attr == &dev_attr_name.attr ||
5166 attr == &dev_attr_num_users.attr ||
5167 attr == &dev_attr_type.attr)
5168 return mode;
5169
5170 /* some attributes need specific methods to be displayed */
5171 if (attr == &dev_attr_microvolts.attr) {
5172 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5173 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5174 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5175 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5176 return mode;
5177 return 0;
5178 }
5179
5180 if (attr == &dev_attr_microamps.attr)
5181 return ops->get_current_limit ? mode : 0;
5182
5183 if (attr == &dev_attr_opmode.attr)
5184 return ops->get_mode ? mode : 0;
5185
5186 if (attr == &dev_attr_state.attr)
5187 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5188
5189 if (attr == &dev_attr_status.attr)
5190 return ops->get_status ? mode : 0;
5191
5192 if (attr == &dev_attr_bypass.attr)
5193 return ops->get_bypass ? mode : 0;
5194
5195 if (attr == &dev_attr_under_voltage.attr ||
5196 attr == &dev_attr_over_current.attr ||
5197 attr == &dev_attr_regulation_out.attr ||
5198 attr == &dev_attr_fail.attr ||
5199 attr == &dev_attr_over_temp.attr ||
5200 attr == &dev_attr_under_voltage_warn.attr ||
5201 attr == &dev_attr_over_current_warn.attr ||
5202 attr == &dev_attr_over_voltage_warn.attr ||
5203 attr == &dev_attr_over_temp_warn.attr)
5204 return ops->get_error_flags ? mode : 0;
5205
5206 /* constraints need specific supporting methods */
5207 if (attr == &dev_attr_min_microvolts.attr ||
5208 attr == &dev_attr_max_microvolts.attr)
5209 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5210
5211 if (attr == &dev_attr_min_microamps.attr ||
5212 attr == &dev_attr_max_microamps.attr)
5213 return ops->set_current_limit ? mode : 0;
5214
5215 if (attr == &dev_attr_suspend_standby_state.attr ||
5216 attr == &dev_attr_suspend_mem_state.attr ||
5217 attr == &dev_attr_suspend_disk_state.attr)
5218 return mode;
5219
5220 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5221 attr == &dev_attr_suspend_mem_microvolts.attr ||
5222 attr == &dev_attr_suspend_disk_microvolts.attr)
5223 return ops->set_suspend_voltage ? mode : 0;
5224
5225 if (attr == &dev_attr_suspend_standby_mode.attr ||
5226 attr == &dev_attr_suspend_mem_mode.attr ||
5227 attr == &dev_attr_suspend_disk_mode.attr)
5228 return ops->set_suspend_mode ? mode : 0;
5229
5230 return mode;
5231 }
5232
5233 static const struct attribute_group regulator_dev_group = {
5234 .attrs = regulator_dev_attrs,
5235 .is_visible = regulator_attr_is_visible,
5236 };
5237
5238 static const struct attribute_group *regulator_dev_groups[] = {
5239 ®ulator_dev_group,
5240 NULL
5241 };
5242
regulator_dev_release(struct device * dev)5243 static void regulator_dev_release(struct device *dev)
5244 {
5245 struct regulator_dev *rdev = dev_get_drvdata(dev);
5246
5247 debugfs_remove_recursive(rdev->debugfs);
5248 kfree(rdev->constraints);
5249 of_node_put(rdev->dev.of_node);
5250 kfree(rdev);
5251 }
5252
rdev_init_debugfs(struct regulator_dev * rdev)5253 static void rdev_init_debugfs(struct regulator_dev *rdev)
5254 {
5255 struct device *parent = rdev->dev.parent;
5256 const char *rname = rdev_get_name(rdev);
5257 char name[NAME_MAX];
5258
5259 /* Avoid duplicate debugfs directory names */
5260 if (parent && rname == rdev->desc->name) {
5261 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5262 rname);
5263 rname = name;
5264 }
5265
5266 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5267 if (IS_ERR(rdev->debugfs))
5268 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5269
5270 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5271 &rdev->use_count);
5272 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5273 &rdev->open_count);
5274 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5275 &rdev->bypass_count);
5276 }
5277
regulator_register_resolve_supply(struct device * dev,void * data)5278 static int regulator_register_resolve_supply(struct device *dev, void *data)
5279 {
5280 struct regulator_dev *rdev = dev_to_rdev(dev);
5281
5282 if (regulator_resolve_supply(rdev))
5283 rdev_dbg(rdev, "unable to resolve supply\n");
5284
5285 return 0;
5286 }
5287
regulator_coupler_register(struct regulator_coupler * coupler)5288 int regulator_coupler_register(struct regulator_coupler *coupler)
5289 {
5290 mutex_lock(®ulator_list_mutex);
5291 list_add_tail(&coupler->list, ®ulator_coupler_list);
5292 mutex_unlock(®ulator_list_mutex);
5293
5294 return 0;
5295 }
5296
5297 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5298 regulator_find_coupler(struct regulator_dev *rdev)
5299 {
5300 struct regulator_coupler *coupler;
5301 int err;
5302
5303 /*
5304 * Note that regulators are appended to the list and the generic
5305 * coupler is registered first, hence it will be attached at last
5306 * if nobody cared.
5307 */
5308 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5309 err = coupler->attach_regulator(coupler, rdev);
5310 if (!err) {
5311 if (!coupler->balance_voltage &&
5312 rdev->coupling_desc.n_coupled > 2)
5313 goto err_unsupported;
5314
5315 return coupler;
5316 }
5317
5318 if (err < 0)
5319 return ERR_PTR(err);
5320
5321 if (err == 1)
5322 continue;
5323
5324 break;
5325 }
5326
5327 return ERR_PTR(-EINVAL);
5328
5329 err_unsupported:
5330 if (coupler->detach_regulator)
5331 coupler->detach_regulator(coupler, rdev);
5332
5333 rdev_err(rdev,
5334 "Voltage balancing for multiple regulator couples is unimplemented\n");
5335
5336 return ERR_PTR(-EPERM);
5337 }
5338
regulator_resolve_coupling(struct regulator_dev * rdev)5339 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5340 {
5341 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5342 struct coupling_desc *c_desc = &rdev->coupling_desc;
5343 int n_coupled = c_desc->n_coupled;
5344 struct regulator_dev *c_rdev;
5345 int i;
5346
5347 for (i = 1; i < n_coupled; i++) {
5348 /* already resolved */
5349 if (c_desc->coupled_rdevs[i])
5350 continue;
5351
5352 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5353
5354 if (!c_rdev)
5355 continue;
5356
5357 if (c_rdev->coupling_desc.coupler != coupler) {
5358 rdev_err(rdev, "coupler mismatch with %s\n",
5359 rdev_get_name(c_rdev));
5360 return;
5361 }
5362
5363 c_desc->coupled_rdevs[i] = c_rdev;
5364 c_desc->n_resolved++;
5365
5366 regulator_resolve_coupling(c_rdev);
5367 }
5368 }
5369
regulator_remove_coupling(struct regulator_dev * rdev)5370 static void regulator_remove_coupling(struct regulator_dev *rdev)
5371 {
5372 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5373 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5374 struct regulator_dev *__c_rdev, *c_rdev;
5375 unsigned int __n_coupled, n_coupled;
5376 int i, k;
5377 int err;
5378
5379 n_coupled = c_desc->n_coupled;
5380
5381 for (i = 1; i < n_coupled; i++) {
5382 c_rdev = c_desc->coupled_rdevs[i];
5383
5384 if (!c_rdev)
5385 continue;
5386
5387 regulator_lock(c_rdev);
5388
5389 __c_desc = &c_rdev->coupling_desc;
5390 __n_coupled = __c_desc->n_coupled;
5391
5392 for (k = 1; k < __n_coupled; k++) {
5393 __c_rdev = __c_desc->coupled_rdevs[k];
5394
5395 if (__c_rdev == rdev) {
5396 __c_desc->coupled_rdevs[k] = NULL;
5397 __c_desc->n_resolved--;
5398 break;
5399 }
5400 }
5401
5402 regulator_unlock(c_rdev);
5403
5404 c_desc->coupled_rdevs[i] = NULL;
5405 c_desc->n_resolved--;
5406 }
5407
5408 if (coupler && coupler->detach_regulator) {
5409 err = coupler->detach_regulator(coupler, rdev);
5410 if (err)
5411 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5412 ERR_PTR(err));
5413 }
5414
5415 kfree(rdev->coupling_desc.coupled_rdevs);
5416 rdev->coupling_desc.coupled_rdevs = NULL;
5417 }
5418
regulator_init_coupling(struct regulator_dev * rdev)5419 static int regulator_init_coupling(struct regulator_dev *rdev)
5420 {
5421 struct regulator_dev **coupled;
5422 int err, n_phandles;
5423
5424 if (!IS_ENABLED(CONFIG_OF))
5425 n_phandles = 0;
5426 else
5427 n_phandles = of_get_n_coupled(rdev);
5428
5429 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5430 if (!coupled)
5431 return -ENOMEM;
5432
5433 rdev->coupling_desc.coupled_rdevs = coupled;
5434
5435 /*
5436 * Every regulator should always have coupling descriptor filled with
5437 * at least pointer to itself.
5438 */
5439 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5440 rdev->coupling_desc.n_coupled = n_phandles + 1;
5441 rdev->coupling_desc.n_resolved++;
5442
5443 /* regulator isn't coupled */
5444 if (n_phandles == 0)
5445 return 0;
5446
5447 if (!of_check_coupling_data(rdev))
5448 return -EPERM;
5449
5450 mutex_lock(®ulator_list_mutex);
5451 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5452 mutex_unlock(®ulator_list_mutex);
5453
5454 if (IS_ERR(rdev->coupling_desc.coupler)) {
5455 err = PTR_ERR(rdev->coupling_desc.coupler);
5456 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5457 return err;
5458 }
5459
5460 return 0;
5461 }
5462
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5463 static int generic_coupler_attach(struct regulator_coupler *coupler,
5464 struct regulator_dev *rdev)
5465 {
5466 if (rdev->coupling_desc.n_coupled > 2) {
5467 rdev_err(rdev,
5468 "Voltage balancing for multiple regulator couples is unimplemented\n");
5469 return -EPERM;
5470 }
5471
5472 if (!rdev->constraints->always_on) {
5473 rdev_err(rdev,
5474 "Coupling of a non always-on regulator is unimplemented\n");
5475 return -ENOTSUPP;
5476 }
5477
5478 return 0;
5479 }
5480
5481 static struct regulator_coupler generic_regulator_coupler = {
5482 .attach_regulator = generic_coupler_attach,
5483 };
5484
5485 /**
5486 * regulator_register - register regulator
5487 * @dev: the device that drive the regulator
5488 * @regulator_desc: regulator to register
5489 * @cfg: runtime configuration for regulator
5490 *
5491 * Called by regulator drivers to register a regulator.
5492 * Returns a valid pointer to struct regulator_dev on success
5493 * or an ERR_PTR() on error.
5494 */
5495 struct regulator_dev *
regulator_register(struct device * dev,const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5496 regulator_register(struct device *dev,
5497 const struct regulator_desc *regulator_desc,
5498 const struct regulator_config *cfg)
5499 {
5500 const struct regulator_init_data *init_data;
5501 struct regulator_config *config = NULL;
5502 static atomic_t regulator_no = ATOMIC_INIT(-1);
5503 struct regulator_dev *rdev;
5504 bool dangling_cfg_gpiod = false;
5505 bool dangling_of_gpiod = false;
5506 int ret, i;
5507 bool resolved_early = false;
5508
5509 if (cfg == NULL)
5510 return ERR_PTR(-EINVAL);
5511 if (cfg->ena_gpiod)
5512 dangling_cfg_gpiod = true;
5513 if (regulator_desc == NULL) {
5514 ret = -EINVAL;
5515 goto rinse;
5516 }
5517
5518 WARN_ON(!dev || !cfg->dev);
5519
5520 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5521 ret = -EINVAL;
5522 goto rinse;
5523 }
5524
5525 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5526 regulator_desc->type != REGULATOR_CURRENT) {
5527 ret = -EINVAL;
5528 goto rinse;
5529 }
5530
5531 /* Only one of each should be implemented */
5532 WARN_ON(regulator_desc->ops->get_voltage &&
5533 regulator_desc->ops->get_voltage_sel);
5534 WARN_ON(regulator_desc->ops->set_voltage &&
5535 regulator_desc->ops->set_voltage_sel);
5536
5537 /* If we're using selectors we must implement list_voltage. */
5538 if (regulator_desc->ops->get_voltage_sel &&
5539 !regulator_desc->ops->list_voltage) {
5540 ret = -EINVAL;
5541 goto rinse;
5542 }
5543 if (regulator_desc->ops->set_voltage_sel &&
5544 !regulator_desc->ops->list_voltage) {
5545 ret = -EINVAL;
5546 goto rinse;
5547 }
5548
5549 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5550 if (rdev == NULL) {
5551 ret = -ENOMEM;
5552 goto rinse;
5553 }
5554 device_initialize(&rdev->dev);
5555 dev_set_drvdata(&rdev->dev, rdev);
5556 rdev->dev.class = ®ulator_class;
5557 spin_lock_init(&rdev->err_lock);
5558
5559 /*
5560 * Duplicate the config so the driver could override it after
5561 * parsing init data.
5562 */
5563 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5564 if (config == NULL) {
5565 ret = -ENOMEM;
5566 goto clean;
5567 }
5568
5569 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5570 &rdev->dev.of_node);
5571
5572 /*
5573 * Sometimes not all resources are probed already so we need to take
5574 * that into account. This happens most the time if the ena_gpiod comes
5575 * from a gpio extender or something else.
5576 */
5577 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5578 ret = -EPROBE_DEFER;
5579 goto clean;
5580 }
5581
5582 /*
5583 * We need to keep track of any GPIO descriptor coming from the
5584 * device tree until we have handled it over to the core. If the
5585 * config that was passed in to this function DOES NOT contain
5586 * a descriptor, and the config after this call DOES contain
5587 * a descriptor, we definitely got one from parsing the device
5588 * tree.
5589 */
5590 if (!cfg->ena_gpiod && config->ena_gpiod)
5591 dangling_of_gpiod = true;
5592 if (!init_data) {
5593 init_data = config->init_data;
5594 rdev->dev.of_node = of_node_get(config->of_node);
5595 }
5596
5597 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5598 rdev->reg_data = config->driver_data;
5599 rdev->owner = regulator_desc->owner;
5600 rdev->desc = regulator_desc;
5601 if (config->regmap)
5602 rdev->regmap = config->regmap;
5603 else if (dev_get_regmap(dev, NULL))
5604 rdev->regmap = dev_get_regmap(dev, NULL);
5605 else if (dev->parent)
5606 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5607 INIT_LIST_HEAD(&rdev->consumer_list);
5608 INIT_LIST_HEAD(&rdev->list);
5609 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5610 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5611
5612 if (init_data && init_data->supply_regulator)
5613 rdev->supply_name = init_data->supply_regulator;
5614 else if (regulator_desc->supply_name)
5615 rdev->supply_name = regulator_desc->supply_name;
5616
5617 /* register with sysfs */
5618 rdev->dev.parent = config->dev;
5619 dev_set_name(&rdev->dev, "regulator.%lu",
5620 (unsigned long) atomic_inc_return(®ulator_no));
5621
5622 /* set regulator constraints */
5623 if (init_data)
5624 rdev->constraints = kmemdup(&init_data->constraints,
5625 sizeof(*rdev->constraints),
5626 GFP_KERNEL);
5627 else
5628 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5629 GFP_KERNEL);
5630 if (!rdev->constraints) {
5631 ret = -ENOMEM;
5632 goto wash;
5633 }
5634
5635 if ((rdev->supply_name && !rdev->supply) &&
5636 (rdev->constraints->always_on ||
5637 rdev->constraints->boot_on)) {
5638 ret = regulator_resolve_supply(rdev);
5639 if (ret)
5640 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5641 ERR_PTR(ret));
5642
5643 resolved_early = true;
5644 }
5645
5646 /* perform any regulator specific init */
5647 if (init_data && init_data->regulator_init) {
5648 ret = init_data->regulator_init(rdev->reg_data);
5649 if (ret < 0)
5650 goto wash;
5651 }
5652
5653 if (config->ena_gpiod) {
5654 ret = regulator_ena_gpio_request(rdev, config);
5655 if (ret != 0) {
5656 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5657 ERR_PTR(ret));
5658 goto wash;
5659 }
5660 /* The regulator core took over the GPIO descriptor */
5661 dangling_cfg_gpiod = false;
5662 dangling_of_gpiod = false;
5663 }
5664
5665 ret = set_machine_constraints(rdev);
5666 if (ret == -EPROBE_DEFER && !resolved_early) {
5667 /* Regulator might be in bypass mode and so needs its supply
5668 * to set the constraints
5669 */
5670 /* FIXME: this currently triggers a chicken-and-egg problem
5671 * when creating -SUPPLY symlink in sysfs to a regulator
5672 * that is just being created
5673 */
5674 rdev_dbg(rdev, "will resolve supply early: %s\n",
5675 rdev->supply_name);
5676 ret = regulator_resolve_supply(rdev);
5677 if (!ret)
5678 ret = set_machine_constraints(rdev);
5679 else
5680 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5681 ERR_PTR(ret));
5682 }
5683 if (ret < 0)
5684 goto wash;
5685
5686 ret = regulator_init_coupling(rdev);
5687 if (ret < 0)
5688 goto wash;
5689
5690 /* add consumers devices */
5691 if (init_data) {
5692 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5693 ret = set_consumer_device_supply(rdev,
5694 init_data->consumer_supplies[i].dev_name,
5695 init_data->consumer_supplies[i].supply);
5696 if (ret < 0) {
5697 dev_err(dev, "Failed to set supply %s\n",
5698 init_data->consumer_supplies[i].supply);
5699 goto unset_supplies;
5700 }
5701 }
5702 }
5703
5704 if (!rdev->desc->ops->get_voltage &&
5705 !rdev->desc->ops->list_voltage &&
5706 !rdev->desc->fixed_uV)
5707 rdev->is_switch = true;
5708
5709 ret = device_add(&rdev->dev);
5710 if (ret != 0)
5711 goto unset_supplies;
5712
5713 rdev_init_debugfs(rdev);
5714
5715 /* try to resolve regulators coupling since a new one was registered */
5716 mutex_lock(®ulator_list_mutex);
5717 regulator_resolve_coupling(rdev);
5718 mutex_unlock(®ulator_list_mutex);
5719
5720 /* try to resolve regulators supply since a new one was registered */
5721 class_for_each_device(®ulator_class, NULL, NULL,
5722 regulator_register_resolve_supply);
5723 kfree(config);
5724 return rdev;
5725
5726 unset_supplies:
5727 mutex_lock(®ulator_list_mutex);
5728 unset_regulator_supplies(rdev);
5729 regulator_remove_coupling(rdev);
5730 mutex_unlock(®ulator_list_mutex);
5731 wash:
5732 regulator_put(rdev->supply);
5733 kfree(rdev->coupling_desc.coupled_rdevs);
5734 mutex_lock(®ulator_list_mutex);
5735 regulator_ena_gpio_free(rdev);
5736 mutex_unlock(®ulator_list_mutex);
5737 clean:
5738 if (dangling_of_gpiod)
5739 gpiod_put(config->ena_gpiod);
5740 kfree(config);
5741 put_device(&rdev->dev);
5742 rinse:
5743 if (dangling_cfg_gpiod)
5744 gpiod_put(cfg->ena_gpiod);
5745 return ERR_PTR(ret);
5746 }
5747 EXPORT_SYMBOL_GPL(regulator_register);
5748
5749 /**
5750 * regulator_unregister - unregister regulator
5751 * @rdev: regulator to unregister
5752 *
5753 * Called by regulator drivers to unregister a regulator.
5754 */
regulator_unregister(struct regulator_dev * rdev)5755 void regulator_unregister(struct regulator_dev *rdev)
5756 {
5757 if (rdev == NULL)
5758 return;
5759
5760 if (rdev->supply) {
5761 while (rdev->use_count--)
5762 regulator_disable(rdev->supply);
5763 regulator_put(rdev->supply);
5764 }
5765
5766 flush_work(&rdev->disable_work.work);
5767
5768 mutex_lock(®ulator_list_mutex);
5769
5770 WARN_ON(rdev->open_count);
5771 regulator_remove_coupling(rdev);
5772 unset_regulator_supplies(rdev);
5773 list_del(&rdev->list);
5774 regulator_ena_gpio_free(rdev);
5775 device_unregister(&rdev->dev);
5776
5777 mutex_unlock(®ulator_list_mutex);
5778 }
5779 EXPORT_SYMBOL_GPL(regulator_unregister);
5780
5781 #ifdef CONFIG_SUSPEND
5782 /**
5783 * regulator_suspend - prepare regulators for system wide suspend
5784 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5785 *
5786 * Configure each regulator with it's suspend operating parameters for state.
5787 */
regulator_suspend(struct device * dev)5788 static int regulator_suspend(struct device *dev)
5789 {
5790 struct regulator_dev *rdev = dev_to_rdev(dev);
5791 suspend_state_t state = pm_suspend_target_state;
5792 int ret;
5793 const struct regulator_state *rstate;
5794
5795 rstate = regulator_get_suspend_state_check(rdev, state);
5796 if (!rstate)
5797 return 0;
5798
5799 regulator_lock(rdev);
5800 ret = __suspend_set_state(rdev, rstate);
5801 regulator_unlock(rdev);
5802
5803 return ret;
5804 }
5805
regulator_resume(struct device * dev)5806 static int regulator_resume(struct device *dev)
5807 {
5808 suspend_state_t state = pm_suspend_target_state;
5809 struct regulator_dev *rdev = dev_to_rdev(dev);
5810 struct regulator_state *rstate;
5811 int ret = 0;
5812
5813 rstate = regulator_get_suspend_state(rdev, state);
5814 if (rstate == NULL)
5815 return 0;
5816
5817 /* Avoid grabbing the lock if we don't need to */
5818 if (!rdev->desc->ops->resume)
5819 return 0;
5820
5821 regulator_lock(rdev);
5822
5823 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5824 rstate->enabled == DISABLE_IN_SUSPEND)
5825 ret = rdev->desc->ops->resume(rdev);
5826
5827 regulator_unlock(rdev);
5828
5829 return ret;
5830 }
5831 #else /* !CONFIG_SUSPEND */
5832
5833 #define regulator_suspend NULL
5834 #define regulator_resume NULL
5835
5836 #endif /* !CONFIG_SUSPEND */
5837
5838 #ifdef CONFIG_PM
5839 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5840 .suspend = regulator_suspend,
5841 .resume = regulator_resume,
5842 };
5843 #endif
5844
5845 struct class regulator_class = {
5846 .name = "regulator",
5847 .dev_release = regulator_dev_release,
5848 .dev_groups = regulator_dev_groups,
5849 #ifdef CONFIG_PM
5850 .pm = ®ulator_pm_ops,
5851 #endif
5852 };
5853 /**
5854 * regulator_has_full_constraints - the system has fully specified constraints
5855 *
5856 * Calling this function will cause the regulator API to disable all
5857 * regulators which have a zero use count and don't have an always_on
5858 * constraint in a late_initcall.
5859 *
5860 * The intention is that this will become the default behaviour in a
5861 * future kernel release so users are encouraged to use this facility
5862 * now.
5863 */
regulator_has_full_constraints(void)5864 void regulator_has_full_constraints(void)
5865 {
5866 has_full_constraints = 1;
5867 }
5868 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5869
5870 /**
5871 * rdev_get_drvdata - get rdev regulator driver data
5872 * @rdev: regulator
5873 *
5874 * Get rdev regulator driver private data. This call can be used in the
5875 * regulator driver context.
5876 */
rdev_get_drvdata(struct regulator_dev * rdev)5877 void *rdev_get_drvdata(struct regulator_dev *rdev)
5878 {
5879 return rdev->reg_data;
5880 }
5881 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5882
5883 /**
5884 * regulator_get_drvdata - get regulator driver data
5885 * @regulator: regulator
5886 *
5887 * Get regulator driver private data. This call can be used in the consumer
5888 * driver context when non API regulator specific functions need to be called.
5889 */
regulator_get_drvdata(struct regulator * regulator)5890 void *regulator_get_drvdata(struct regulator *regulator)
5891 {
5892 return regulator->rdev->reg_data;
5893 }
5894 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5895
5896 /**
5897 * regulator_set_drvdata - set regulator driver data
5898 * @regulator: regulator
5899 * @data: data
5900 */
regulator_set_drvdata(struct regulator * regulator,void * data)5901 void regulator_set_drvdata(struct regulator *regulator, void *data)
5902 {
5903 regulator->rdev->reg_data = data;
5904 }
5905 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5906
5907 /**
5908 * rdev_get_id - get regulator ID
5909 * @rdev: regulator
5910 */
rdev_get_id(struct regulator_dev * rdev)5911 int rdev_get_id(struct regulator_dev *rdev)
5912 {
5913 return rdev->desc->id;
5914 }
5915 EXPORT_SYMBOL_GPL(rdev_get_id);
5916
rdev_get_dev(struct regulator_dev * rdev)5917 struct device *rdev_get_dev(struct regulator_dev *rdev)
5918 {
5919 return &rdev->dev;
5920 }
5921 EXPORT_SYMBOL_GPL(rdev_get_dev);
5922
rdev_get_regmap(struct regulator_dev * rdev)5923 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5924 {
5925 return rdev->regmap;
5926 }
5927 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5928
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)5929 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5930 {
5931 return reg_init_data->driver_data;
5932 }
5933 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5934
5935 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)5936 static int supply_map_show(struct seq_file *sf, void *data)
5937 {
5938 struct regulator_map *map;
5939
5940 list_for_each_entry(map, ®ulator_map_list, list) {
5941 seq_printf(sf, "%s -> %s.%s\n",
5942 rdev_get_name(map->regulator), map->dev_name,
5943 map->supply);
5944 }
5945
5946 return 0;
5947 }
5948 DEFINE_SHOW_ATTRIBUTE(supply_map);
5949
5950 struct summary_data {
5951 struct seq_file *s;
5952 struct regulator_dev *parent;
5953 int level;
5954 };
5955
5956 static void regulator_summary_show_subtree(struct seq_file *s,
5957 struct regulator_dev *rdev,
5958 int level);
5959
regulator_summary_show_children(struct device * dev,void * data)5960 static int regulator_summary_show_children(struct device *dev, void *data)
5961 {
5962 struct regulator_dev *rdev = dev_to_rdev(dev);
5963 struct summary_data *summary_data = data;
5964
5965 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5966 regulator_summary_show_subtree(summary_data->s, rdev,
5967 summary_data->level + 1);
5968
5969 return 0;
5970 }
5971
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)5972 static void regulator_summary_show_subtree(struct seq_file *s,
5973 struct regulator_dev *rdev,
5974 int level)
5975 {
5976 struct regulation_constraints *c;
5977 struct regulator *consumer;
5978 struct summary_data summary_data;
5979 unsigned int opmode;
5980
5981 if (!rdev)
5982 return;
5983
5984 opmode = _regulator_get_mode_unlocked(rdev);
5985 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5986 level * 3 + 1, "",
5987 30 - level * 3, rdev_get_name(rdev),
5988 rdev->use_count, rdev->open_count, rdev->bypass_count,
5989 regulator_opmode_to_str(opmode));
5990
5991 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5992 seq_printf(s, "%5dmA ",
5993 _regulator_get_current_limit_unlocked(rdev) / 1000);
5994
5995 c = rdev->constraints;
5996 if (c) {
5997 switch (rdev->desc->type) {
5998 case REGULATOR_VOLTAGE:
5999 seq_printf(s, "%5dmV %5dmV ",
6000 c->min_uV / 1000, c->max_uV / 1000);
6001 break;
6002 case REGULATOR_CURRENT:
6003 seq_printf(s, "%5dmA %5dmA ",
6004 c->min_uA / 1000, c->max_uA / 1000);
6005 break;
6006 }
6007 }
6008
6009 seq_puts(s, "\n");
6010
6011 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6012 if (consumer->dev && consumer->dev->class == ®ulator_class)
6013 continue;
6014
6015 seq_printf(s, "%*s%-*s ",
6016 (level + 1) * 3 + 1, "",
6017 30 - (level + 1) * 3,
6018 consumer->supply_name ? consumer->supply_name :
6019 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6020
6021 switch (rdev->desc->type) {
6022 case REGULATOR_VOLTAGE:
6023 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6024 consumer->enable_count,
6025 consumer->uA_load / 1000,
6026 consumer->uA_load && !consumer->enable_count ?
6027 '*' : ' ',
6028 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6029 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6030 break;
6031 case REGULATOR_CURRENT:
6032 break;
6033 }
6034
6035 seq_puts(s, "\n");
6036 }
6037
6038 summary_data.s = s;
6039 summary_data.level = level;
6040 summary_data.parent = rdev;
6041
6042 class_for_each_device(®ulator_class, NULL, &summary_data,
6043 regulator_summary_show_children);
6044 }
6045
6046 struct summary_lock_data {
6047 struct ww_acquire_ctx *ww_ctx;
6048 struct regulator_dev **new_contended_rdev;
6049 struct regulator_dev **old_contended_rdev;
6050 };
6051
regulator_summary_lock_one(struct device * dev,void * data)6052 static int regulator_summary_lock_one(struct device *dev, void *data)
6053 {
6054 struct regulator_dev *rdev = dev_to_rdev(dev);
6055 struct summary_lock_data *lock_data = data;
6056 int ret = 0;
6057
6058 if (rdev != *lock_data->old_contended_rdev) {
6059 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6060
6061 if (ret == -EDEADLK)
6062 *lock_data->new_contended_rdev = rdev;
6063 else
6064 WARN_ON_ONCE(ret);
6065 } else {
6066 *lock_data->old_contended_rdev = NULL;
6067 }
6068
6069 return ret;
6070 }
6071
regulator_summary_unlock_one(struct device * dev,void * data)6072 static int regulator_summary_unlock_one(struct device *dev, void *data)
6073 {
6074 struct regulator_dev *rdev = dev_to_rdev(dev);
6075 struct summary_lock_data *lock_data = data;
6076
6077 if (lock_data) {
6078 if (rdev == *lock_data->new_contended_rdev)
6079 return -EDEADLK;
6080 }
6081
6082 regulator_unlock(rdev);
6083
6084 return 0;
6085 }
6086
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)6087 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6088 struct regulator_dev **new_contended_rdev,
6089 struct regulator_dev **old_contended_rdev)
6090 {
6091 struct summary_lock_data lock_data;
6092 int ret;
6093
6094 lock_data.ww_ctx = ww_ctx;
6095 lock_data.new_contended_rdev = new_contended_rdev;
6096 lock_data.old_contended_rdev = old_contended_rdev;
6097
6098 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6099 regulator_summary_lock_one);
6100 if (ret)
6101 class_for_each_device(®ulator_class, NULL, &lock_data,
6102 regulator_summary_unlock_one);
6103
6104 return ret;
6105 }
6106
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)6107 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6108 {
6109 struct regulator_dev *new_contended_rdev = NULL;
6110 struct regulator_dev *old_contended_rdev = NULL;
6111 int err;
6112
6113 mutex_lock(®ulator_list_mutex);
6114
6115 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6116
6117 do {
6118 if (new_contended_rdev) {
6119 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6120 old_contended_rdev = new_contended_rdev;
6121 old_contended_rdev->ref_cnt++;
6122 old_contended_rdev->mutex_owner = current;
6123 }
6124
6125 err = regulator_summary_lock_all(ww_ctx,
6126 &new_contended_rdev,
6127 &old_contended_rdev);
6128
6129 if (old_contended_rdev)
6130 regulator_unlock(old_contended_rdev);
6131
6132 } while (err == -EDEADLK);
6133
6134 ww_acquire_done(ww_ctx);
6135 }
6136
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)6137 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6138 {
6139 class_for_each_device(®ulator_class, NULL, NULL,
6140 regulator_summary_unlock_one);
6141 ww_acquire_fini(ww_ctx);
6142
6143 mutex_unlock(®ulator_list_mutex);
6144 }
6145
regulator_summary_show_roots(struct device * dev,void * data)6146 static int regulator_summary_show_roots(struct device *dev, void *data)
6147 {
6148 struct regulator_dev *rdev = dev_to_rdev(dev);
6149 struct seq_file *s = data;
6150
6151 if (!rdev->supply)
6152 regulator_summary_show_subtree(s, rdev, 0);
6153
6154 return 0;
6155 }
6156
regulator_summary_show(struct seq_file * s,void * data)6157 static int regulator_summary_show(struct seq_file *s, void *data)
6158 {
6159 struct ww_acquire_ctx ww_ctx;
6160
6161 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6162 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6163
6164 regulator_summary_lock(&ww_ctx);
6165
6166 class_for_each_device(®ulator_class, NULL, s,
6167 regulator_summary_show_roots);
6168
6169 regulator_summary_unlock(&ww_ctx);
6170
6171 return 0;
6172 }
6173 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6174 #endif /* CONFIG_DEBUG_FS */
6175
regulator_init(void)6176 static int __init regulator_init(void)
6177 {
6178 int ret;
6179
6180 ret = class_register(®ulator_class);
6181
6182 debugfs_root = debugfs_create_dir("regulator", NULL);
6183 if (IS_ERR(debugfs_root))
6184 pr_debug("regulator: Failed to create debugfs directory\n");
6185
6186 #ifdef CONFIG_DEBUG_FS
6187 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6188 &supply_map_fops);
6189
6190 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6191 NULL, ®ulator_summary_fops);
6192 #endif
6193 regulator_dummy_init();
6194
6195 regulator_coupler_register(&generic_regulator_coupler);
6196
6197 return ret;
6198 }
6199
6200 /* init early to allow our consumers to complete system booting */
6201 core_initcall(regulator_init);
6202
regulator_late_cleanup(struct device * dev,void * data)6203 static int regulator_late_cleanup(struct device *dev, void *data)
6204 {
6205 struct regulator_dev *rdev = dev_to_rdev(dev);
6206 struct regulation_constraints *c = rdev->constraints;
6207 int ret;
6208
6209 if (c && c->always_on)
6210 return 0;
6211
6212 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6213 return 0;
6214
6215 regulator_lock(rdev);
6216
6217 if (rdev->use_count)
6218 goto unlock;
6219
6220 /* If reading the status failed, assume that it's off. */
6221 if (_regulator_is_enabled(rdev) <= 0)
6222 goto unlock;
6223
6224 if (have_full_constraints()) {
6225 /* We log since this may kill the system if it goes
6226 * wrong.
6227 */
6228 rdev_info(rdev, "disabling\n");
6229 ret = _regulator_do_disable(rdev);
6230 if (ret != 0)
6231 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6232 } else {
6233 /* The intention is that in future we will
6234 * assume that full constraints are provided
6235 * so warn even if we aren't going to do
6236 * anything here.
6237 */
6238 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6239 }
6240
6241 unlock:
6242 regulator_unlock(rdev);
6243
6244 return 0;
6245 }
6246
regulator_init_complete_work_function(struct work_struct * work)6247 static void regulator_init_complete_work_function(struct work_struct *work)
6248 {
6249 /*
6250 * Regulators may had failed to resolve their input supplies
6251 * when were registered, either because the input supply was
6252 * not registered yet or because its parent device was not
6253 * bound yet. So attempt to resolve the input supplies for
6254 * pending regulators before trying to disable unused ones.
6255 */
6256 class_for_each_device(®ulator_class, NULL, NULL,
6257 regulator_register_resolve_supply);
6258
6259 /* If we have a full configuration then disable any regulators
6260 * we have permission to change the status for and which are
6261 * not in use or always_on. This is effectively the default
6262 * for DT and ACPI as they have full constraints.
6263 */
6264 class_for_each_device(®ulator_class, NULL, NULL,
6265 regulator_late_cleanup);
6266 }
6267
6268 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6269 regulator_init_complete_work_function);
6270
regulator_init_complete(void)6271 static int __init regulator_init_complete(void)
6272 {
6273 /*
6274 * Since DT doesn't provide an idiomatic mechanism for
6275 * enabling full constraints and since it's much more natural
6276 * with DT to provide them just assume that a DT enabled
6277 * system has full constraints.
6278 */
6279 if (of_have_populated_dt())
6280 has_full_constraints = true;
6281
6282 /*
6283 * We punt completion for an arbitrary amount of time since
6284 * systems like distros will load many drivers from userspace
6285 * so consumers might not always be ready yet, this is
6286 * particularly an issue with laptops where this might bounce
6287 * the display off then on. Ideally we'd get a notification
6288 * from userspace when this happens but we don't so just wait
6289 * a bit and hope we waited long enough. It'd be better if
6290 * we'd only do this on systems that need it, and a kernel
6291 * command line option might be useful.
6292 */
6293 schedule_delayed_work(®ulator_init_complete_work,
6294 msecs_to_jiffies(30000));
6295
6296 return 0;
6297 }
6298 late_initcall_sync(regulator_init_complete);
6299