xref: /openbmc/linux/drivers/dma/amba-pl08x.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Copyright (c) 2006 ARM Ltd.
4   * Copyright (c) 2010 ST-Ericsson SA
5   * Copyirght (c) 2017 Linaro Ltd.
6   *
7   * Author: Peter Pearse <peter.pearse@arm.com>
8   * Author: Linus Walleij <linus.walleij@linaro.org>
9   *
10   * Documentation: ARM DDI 0196G == PL080
11   * Documentation: ARM DDI 0218E == PL081
12   * Documentation: S3C6410 User's Manual == PL080S
13   *
14   * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
15   * channel.
16   *
17   * The PL080 has 8 channels available for simultaneous use, and the PL081
18   * has only two channels. So on these DMA controllers the number of channels
19   * and the number of incoming DMA signals are two totally different things.
20   * It is usually not possible to theoretically handle all physical signals,
21   * so a multiplexing scheme with possible denial of use is necessary.
22   *
23   * The PL080 has a dual bus master, PL081 has a single master.
24   *
25   * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
26   * It differs in following aspects:
27   * - CH_CONFIG register at different offset,
28   * - separate CH_CONTROL2 register for transfer size,
29   * - bigger maximum transfer size,
30   * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
31   * - no support for peripheral flow control.
32   *
33   * Memory to peripheral transfer may be visualized as
34   *	Get data from memory to DMAC
35   *	Until no data left
36   *		On burst request from peripheral
37   *			Destination burst from DMAC to peripheral
38   *			Clear burst request
39   *	Raise terminal count interrupt
40   *
41   * For peripherals with a FIFO:
42   * Source      burst size == half the depth of the peripheral FIFO
43   * Destination burst size == the depth of the peripheral FIFO
44   *
45   * (Bursts are irrelevant for mem to mem transfers - there are no burst
46   * signals, the DMA controller will simply facilitate its AHB master.)
47   *
48   * ASSUMES default (little) endianness for DMA transfers
49   *
50   * The PL08x has two flow control settings:
51   *  - DMAC flow control: the transfer size defines the number of transfers
52   *    which occur for the current LLI entry, and the DMAC raises TC at the
53   *    end of every LLI entry.  Observed behaviour shows the DMAC listening
54   *    to both the BREQ and SREQ signals (contrary to documented),
55   *    transferring data if either is active.  The LBREQ and LSREQ signals
56   *    are ignored.
57   *
58   *  - Peripheral flow control: the transfer size is ignored (and should be
59   *    zero).  The data is transferred from the current LLI entry, until
60   *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
61   *    will then move to the next LLI entry. Unsupported by PL080S.
62   */
63  #include <linux/amba/bus.h>
64  #include <linux/amba/pl08x.h>
65  #include <linux/debugfs.h>
66  #include <linux/delay.h>
67  #include <linux/device.h>
68  #include <linux/dmaengine.h>
69  #include <linux/dmapool.h>
70  #include <linux/dma-mapping.h>
71  #include <linux/export.h>
72  #include <linux/init.h>
73  #include <linux/interrupt.h>
74  #include <linux/module.h>
75  #include <linux/of.h>
76  #include <linux/of_dma.h>
77  #include <linux/pm_runtime.h>
78  #include <linux/seq_file.h>
79  #include <linux/slab.h>
80  #include <linux/amba/pl080.h>
81  
82  #include "dmaengine.h"
83  #include "virt-dma.h"
84  
85  #define DRIVER_NAME	"pl08xdmac"
86  
87  #define PL80X_DMA_BUSWIDTHS \
88  	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
89  	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
90  	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
91  	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
92  
93  static struct amba_driver pl08x_amba_driver;
94  struct pl08x_driver_data;
95  
96  /**
97   * struct vendor_data - vendor-specific config parameters for PL08x derivatives
98   * @config_offset: offset to the configuration register
99   * @channels: the number of channels available in this variant
100   * @signals: the number of request signals available from the hardware
101   * @dualmaster: whether this version supports dual AHB masters or not.
102   * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
103   *	channels have Nomadik security extension bits that need to be checked
104   *	for permission before use and some registers are missing
105   * @pl080s: whether this variant is a Samsung PL080S, which has separate
106   *	register and LLI word for transfer size.
107   * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
108   * @max_transfer_size: the maximum single element transfer size for this
109   *	PL08x variant.
110   */
111  struct vendor_data {
112  	u8 config_offset;
113  	u8 channels;
114  	u8 signals;
115  	bool dualmaster;
116  	bool nomadik;
117  	bool pl080s;
118  	bool ftdmac020;
119  	u32 max_transfer_size;
120  };
121  
122  /**
123   * struct pl08x_bus_data - information of source or destination
124   * busses for a transfer
125   * @addr: current address
126   * @maxwidth: the maximum width of a transfer on this bus
127   * @buswidth: the width of this bus in bytes: 1, 2 or 4
128   */
129  struct pl08x_bus_data {
130  	dma_addr_t addr;
131  	u8 maxwidth;
132  	u8 buswidth;
133  };
134  
135  #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
136  
137  /**
138   * struct pl08x_phy_chan - holder for the physical channels
139   * @id: physical index to this channel
140   * @base: memory base address for this physical channel
141   * @reg_config: configuration address for this physical channel
142   * @reg_control: control address for this physical channel
143   * @reg_src: transfer source address register
144   * @reg_dst: transfer destination address register
145   * @reg_lli: transfer LLI address register
146   * @reg_busy: if the variant has a special per-channel busy register,
147   * this contains a pointer to it
148   * @lock: a lock to use when altering an instance of this struct
149   * @serving: the virtual channel currently being served by this physical
150   * channel
151   * @locked: channel unavailable for the system, e.g. dedicated to secure
152   * world
153   * @ftdmac020: channel is on a FTDMAC020
154   * @pl080s: channel is on a PL08s
155   */
156  struct pl08x_phy_chan {
157  	unsigned int id;
158  	void __iomem *base;
159  	void __iomem *reg_config;
160  	void __iomem *reg_control;
161  	void __iomem *reg_src;
162  	void __iomem *reg_dst;
163  	void __iomem *reg_lli;
164  	void __iomem *reg_busy;
165  	spinlock_t lock;
166  	struct pl08x_dma_chan *serving;
167  	bool locked;
168  	bool ftdmac020;
169  	bool pl080s;
170  };
171  
172  /**
173   * struct pl08x_sg - structure containing data per sg
174   * @src_addr: src address of sg
175   * @dst_addr: dst address of sg
176   * @len: transfer len in bytes
177   * @node: node for txd's dsg_list
178   */
179  struct pl08x_sg {
180  	dma_addr_t src_addr;
181  	dma_addr_t dst_addr;
182  	size_t len;
183  	struct list_head node;
184  };
185  
186  /**
187   * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
188   * @vd: virtual DMA descriptor
189   * @dsg_list: list of children sg's
190   * @llis_bus: DMA memory address (physical) start for the LLIs
191   * @llis_va: virtual memory address start for the LLIs
192   * @cctl: control reg values for current txd
193   * @ccfg: config reg values for current txd
194   * @done: this marks completed descriptors, which should not have their
195   *   mux released.
196   * @cyclic: indicate cyclic transfers
197   */
198  struct pl08x_txd {
199  	struct virt_dma_desc vd;
200  	struct list_head dsg_list;
201  	dma_addr_t llis_bus;
202  	u32 *llis_va;
203  	/* Default cctl value for LLIs */
204  	u32 cctl;
205  	/*
206  	 * Settings to be put into the physical channel when we
207  	 * trigger this txd.  Other registers are in llis_va[0].
208  	 */
209  	u32 ccfg;
210  	bool done;
211  	bool cyclic;
212  };
213  
214  /**
215   * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel
216   * states
217   * @PL08X_CHAN_IDLE: the channel is idle
218   * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
219   * channel and is running a transfer on it
220   * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
221   * channel, but the transfer is currently paused
222   * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
223   * channel to become available (only pertains to memcpy channels)
224   */
225  enum pl08x_dma_chan_state {
226  	PL08X_CHAN_IDLE,
227  	PL08X_CHAN_RUNNING,
228  	PL08X_CHAN_PAUSED,
229  	PL08X_CHAN_WAITING,
230  };
231  
232  /**
233   * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
234   * @vc: wrapped virtual channel
235   * @phychan: the physical channel utilized by this channel, if there is one
236   * @name: name of channel
237   * @cd: channel platform data
238   * @cfg: slave configuration
239   * @at: active transaction on this channel
240   * @host: a pointer to the host (internal use)
241   * @state: whether the channel is idle, paused, running etc
242   * @slave: whether this channel is a device (slave) or for memcpy
243   * @signal: the physical DMA request signal which this channel is using
244   * @mux_use: count of descriptors using this DMA request signal setting
245   * @waiting_at: time in jiffies when this channel moved to waiting state
246   */
247  struct pl08x_dma_chan {
248  	struct virt_dma_chan vc;
249  	struct pl08x_phy_chan *phychan;
250  	const char *name;
251  	struct pl08x_channel_data *cd;
252  	struct dma_slave_config cfg;
253  	struct pl08x_txd *at;
254  	struct pl08x_driver_data *host;
255  	enum pl08x_dma_chan_state state;
256  	bool slave;
257  	int signal;
258  	unsigned mux_use;
259  	unsigned long waiting_at;
260  };
261  
262  /**
263   * struct pl08x_driver_data - the local state holder for the PL08x
264   * @slave: optional slave engine for this instance
265   * @memcpy: memcpy engine for this instance
266   * @has_slave: the PL08x has a slave engine (routed signals)
267   * @base: virtual memory base (remapped) for the PL08x
268   * @adev: the corresponding AMBA (PrimeCell) bus entry
269   * @vd: vendor data for this PL08x variant
270   * @pd: platform data passed in from the platform/machine
271   * @phy_chans: array of data for the physical channels
272   * @pool: a pool for the LLI descriptors
273   * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
274   * fetches
275   * @mem_buses: set to indicate memory transfers on AHB2.
276   * @lli_words: how many words are used in each LLI item for this variant
277   */
278  struct pl08x_driver_data {
279  	struct dma_device slave;
280  	struct dma_device memcpy;
281  	bool has_slave;
282  	void __iomem *base;
283  	struct amba_device *adev;
284  	const struct vendor_data *vd;
285  	struct pl08x_platform_data *pd;
286  	struct pl08x_phy_chan *phy_chans;
287  	struct dma_pool *pool;
288  	u8 lli_buses;
289  	u8 mem_buses;
290  	u8 lli_words;
291  };
292  
293  /*
294   * PL08X specific defines
295   */
296  
297  /* The order of words in an LLI. */
298  #define PL080_LLI_SRC		0
299  #define PL080_LLI_DST		1
300  #define PL080_LLI_LLI		2
301  #define PL080_LLI_CCTL		3
302  #define PL080S_LLI_CCTL2	4
303  
304  /* Total words in an LLI. */
305  #define PL080_LLI_WORDS		4
306  #define PL080S_LLI_WORDS	8
307  
308  /*
309   * Number of LLIs in each LLI buffer allocated for one transfer
310   * (maximum times we call dma_pool_alloc on this pool without freeing)
311   */
312  #define MAX_NUM_TSFR_LLIS	512
313  #define PL08X_ALIGN		8
314  
to_pl08x_chan(struct dma_chan * chan)315  static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
316  {
317  	return container_of(chan, struct pl08x_dma_chan, vc.chan);
318  }
319  
to_pl08x_txd(struct dma_async_tx_descriptor * tx)320  static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
321  {
322  	return container_of(tx, struct pl08x_txd, vd.tx);
323  }
324  
325  /*
326   * Mux handling.
327   *
328   * This gives us the DMA request input to the PL08x primecell which the
329   * peripheral described by the channel data will be routed to, possibly
330   * via a board/SoC specific external MUX.  One important point to note
331   * here is that this does not depend on the physical channel.
332   */
pl08x_request_mux(struct pl08x_dma_chan * plchan)333  static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
334  {
335  	const struct pl08x_platform_data *pd = plchan->host->pd;
336  	int ret;
337  
338  	if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
339  		ret = pd->get_xfer_signal(plchan->cd);
340  		if (ret < 0) {
341  			plchan->mux_use = 0;
342  			return ret;
343  		}
344  
345  		plchan->signal = ret;
346  	}
347  	return 0;
348  }
349  
pl08x_release_mux(struct pl08x_dma_chan * plchan)350  static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
351  {
352  	const struct pl08x_platform_data *pd = plchan->host->pd;
353  
354  	if (plchan->signal >= 0) {
355  		WARN_ON(plchan->mux_use == 0);
356  
357  		if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
358  			pd->put_xfer_signal(plchan->cd, plchan->signal);
359  			plchan->signal = -1;
360  		}
361  	}
362  }
363  
364  /*
365   * Physical channel handling
366   */
367  
368  /* Whether a certain channel is busy or not */
pl08x_phy_channel_busy(struct pl08x_phy_chan * ch)369  static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
370  {
371  	unsigned int val;
372  
373  	/* If we have a special busy register, take a shortcut */
374  	if (ch->reg_busy) {
375  		val = readl(ch->reg_busy);
376  		return !!(val & BIT(ch->id));
377  	}
378  	val = readl(ch->reg_config);
379  	return val & PL080_CONFIG_ACTIVE;
380  }
381  
382  /*
383   * pl08x_write_lli() - Write an LLI into the DMA controller.
384   *
385   * The PL08x derivatives support linked lists, but the first item of the
386   * list containing the source, destination, control word and next LLI is
387   * ignored. Instead the driver has to write those values directly into the
388   * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
389   * register need to be set up for the first transfer.
390   */
pl08x_write_lli(struct pl08x_driver_data * pl08x,struct pl08x_phy_chan * phychan,const u32 * lli,u32 ccfg)391  static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
392  		struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
393  {
394  	if (pl08x->vd->pl080s)
395  		dev_vdbg(&pl08x->adev->dev,
396  			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
397  			"clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
398  			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
399  			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
400  			lli[PL080S_LLI_CCTL2], ccfg);
401  	else
402  		dev_vdbg(&pl08x->adev->dev,
403  			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
404  			"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
405  			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
406  			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
407  
408  	writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src);
409  	writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst);
410  	writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli);
411  
412  	/*
413  	 * The FTMAC020 has a different layout in the CCTL word of the LLI
414  	 * and the CCTL register which is split in CSR and SIZE registers.
415  	 * Convert the LLI item CCTL into the proper values to write into
416  	 * the CSR and SIZE registers.
417  	 */
418  	if (phychan->ftdmac020) {
419  		u32 llictl = lli[PL080_LLI_CCTL];
420  		u32 val = 0;
421  
422  		/* Write the transfer size (12 bits) to the size register */
423  		writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK,
424  			       phychan->base + FTDMAC020_CH_SIZE);
425  		/*
426  		 * Then write the control bits 28..16 to the control register
427  		 * by shuffleing the bits around to where they are in the
428  		 * main register. The mapping is as follows:
429  		 * Bit 28: TC_MSK - mask on all except last LLI
430  		 * Bit 27..25: SRC_WIDTH
431  		 * Bit 24..22: DST_WIDTH
432  		 * Bit 21..20: SRCAD_CTRL
433  		 * Bit 19..17: DSTAD_CTRL
434  		 * Bit 17: SRC_SEL
435  		 * Bit 16: DST_SEL
436  		 */
437  		if (llictl & FTDMAC020_LLI_TC_MSK)
438  			val |= FTDMAC020_CH_CSR_TC_MSK;
439  		val |= ((llictl  & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
440  			(FTDMAC020_LLI_SRC_WIDTH_SHIFT -
441  			 FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT));
442  		val |= ((llictl  & FTDMAC020_LLI_DST_WIDTH_MSK) >>
443  			(FTDMAC020_LLI_DST_WIDTH_SHIFT -
444  			 FTDMAC020_CH_CSR_DST_WIDTH_SHIFT));
445  		val |= ((llictl  & FTDMAC020_LLI_SRCAD_CTL_MSK) >>
446  			(FTDMAC020_LLI_SRCAD_CTL_SHIFT -
447  			 FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT));
448  		val |= ((llictl  & FTDMAC020_LLI_DSTAD_CTL_MSK) >>
449  			(FTDMAC020_LLI_DSTAD_CTL_SHIFT -
450  			 FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT));
451  		if (llictl & FTDMAC020_LLI_SRC_SEL)
452  			val |= FTDMAC020_CH_CSR_SRC_SEL;
453  		if (llictl & FTDMAC020_LLI_DST_SEL)
454  			val |= FTDMAC020_CH_CSR_DST_SEL;
455  
456  		/*
457  		 * Set up the bits that exist in the CSR but are not
458  		 * part the LLI, i.e. only gets written to the control
459  		 * register right here.
460  		 *
461  		 * FIXME: do not just handle memcpy, also handle slave DMA.
462  		 */
463  		switch (pl08x->pd->memcpy_burst_size) {
464  		default:
465  		case PL08X_BURST_SZ_1:
466  			val |= PL080_BSIZE_1 <<
467  				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
468  			break;
469  		case PL08X_BURST_SZ_4:
470  			val |= PL080_BSIZE_4 <<
471  				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
472  			break;
473  		case PL08X_BURST_SZ_8:
474  			val |= PL080_BSIZE_8 <<
475  				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
476  			break;
477  		case PL08X_BURST_SZ_16:
478  			val |= PL080_BSIZE_16 <<
479  				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
480  			break;
481  		case PL08X_BURST_SZ_32:
482  			val |= PL080_BSIZE_32 <<
483  				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
484  			break;
485  		case PL08X_BURST_SZ_64:
486  			val |= PL080_BSIZE_64 <<
487  				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
488  			break;
489  		case PL08X_BURST_SZ_128:
490  			val |= PL080_BSIZE_128 <<
491  				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
492  			break;
493  		case PL08X_BURST_SZ_256:
494  			val |= PL080_BSIZE_256 <<
495  				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
496  			break;
497  		}
498  
499  		/* Protection flags */
500  		if (pl08x->pd->memcpy_prot_buff)
501  			val |= FTDMAC020_CH_CSR_PROT2;
502  		if (pl08x->pd->memcpy_prot_cache)
503  			val |= FTDMAC020_CH_CSR_PROT3;
504  		/* We are the kernel, so we are in privileged mode */
505  		val |= FTDMAC020_CH_CSR_PROT1;
506  
507  		writel_relaxed(val, phychan->reg_control);
508  	} else {
509  		/* Bits are just identical */
510  		writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control);
511  	}
512  
513  	/* Second control word on the PL080s */
514  	if (pl08x->vd->pl080s)
515  		writel_relaxed(lli[PL080S_LLI_CCTL2],
516  				phychan->base + PL080S_CH_CONTROL2);
517  
518  	writel(ccfg, phychan->reg_config);
519  }
520  
521  /*
522   * Set the initial DMA register values i.e. those for the first LLI
523   * The next LLI pointer and the configuration interrupt bit have
524   * been set when the LLIs were constructed.  Poke them into the hardware
525   * and start the transfer.
526   */
pl08x_start_next_txd(struct pl08x_dma_chan * plchan)527  static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
528  {
529  	struct pl08x_driver_data *pl08x = plchan->host;
530  	struct pl08x_phy_chan *phychan = plchan->phychan;
531  	struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
532  	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
533  	u32 val;
534  
535  	list_del(&txd->vd.node);
536  
537  	plchan->at = txd;
538  
539  	/* Wait for channel inactive */
540  	while (pl08x_phy_channel_busy(phychan))
541  		cpu_relax();
542  
543  	pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
544  
545  	/* Enable the DMA channel */
546  	/* Do not access config register until channel shows as disabled */
547  	while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id))
548  		cpu_relax();
549  
550  	/* Do not access config register until channel shows as inactive */
551  	if (phychan->ftdmac020) {
552  		val = readl(phychan->reg_config);
553  		while (val & FTDMAC020_CH_CFG_BUSY)
554  			val = readl(phychan->reg_config);
555  
556  		val = readl(phychan->reg_control);
557  		while (val & FTDMAC020_CH_CSR_EN)
558  			val = readl(phychan->reg_control);
559  
560  		writel(val | FTDMAC020_CH_CSR_EN,
561  		       phychan->reg_control);
562  	} else {
563  		val = readl(phychan->reg_config);
564  		while ((val & PL080_CONFIG_ACTIVE) ||
565  		       (val & PL080_CONFIG_ENABLE))
566  			val = readl(phychan->reg_config);
567  
568  		writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
569  	}
570  }
571  
572  /*
573   * Pause the channel by setting the HALT bit.
574   *
575   * For M->P transfers, pause the DMAC first and then stop the peripheral -
576   * the FIFO can only drain if the peripheral is still requesting data.
577   * (note: this can still timeout if the DMAC FIFO never drains of data.)
578   *
579   * For P->M transfers, disable the peripheral first to stop it filling
580   * the DMAC FIFO, and then pause the DMAC.
581   */
pl08x_pause_phy_chan(struct pl08x_phy_chan * ch)582  static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
583  {
584  	u32 val;
585  	int timeout;
586  
587  	if (ch->ftdmac020) {
588  		/* Use the enable bit on the FTDMAC020 */
589  		val = readl(ch->reg_control);
590  		val &= ~FTDMAC020_CH_CSR_EN;
591  		writel(val, ch->reg_control);
592  		return;
593  	}
594  
595  	/* Set the HALT bit and wait for the FIFO to drain */
596  	val = readl(ch->reg_config);
597  	val |= PL080_CONFIG_HALT;
598  	writel(val, ch->reg_config);
599  
600  	/* Wait for channel inactive */
601  	for (timeout = 1000; timeout; timeout--) {
602  		if (!pl08x_phy_channel_busy(ch))
603  			break;
604  		udelay(1);
605  	}
606  	if (pl08x_phy_channel_busy(ch))
607  		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
608  }
609  
pl08x_resume_phy_chan(struct pl08x_phy_chan * ch)610  static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
611  {
612  	u32 val;
613  
614  	/* Use the enable bit on the FTDMAC020 */
615  	if (ch->ftdmac020) {
616  		val = readl(ch->reg_control);
617  		val |= FTDMAC020_CH_CSR_EN;
618  		writel(val, ch->reg_control);
619  		return;
620  	}
621  
622  	/* Clear the HALT bit */
623  	val = readl(ch->reg_config);
624  	val &= ~PL080_CONFIG_HALT;
625  	writel(val, ch->reg_config);
626  }
627  
628  /*
629   * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
630   * clears any pending interrupt status.  This should not be used for
631   * an on-going transfer, but as a method of shutting down a channel
632   * (eg, when it's no longer used) or terminating a transfer.
633   */
pl08x_terminate_phy_chan(struct pl08x_driver_data * pl08x,struct pl08x_phy_chan * ch)634  static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
635  	struct pl08x_phy_chan *ch)
636  {
637  	u32 val;
638  
639  	/* The layout for the FTDMAC020 is different */
640  	if (ch->ftdmac020) {
641  		/* Disable all interrupts */
642  		val = readl(ch->reg_config);
643  		val |= (FTDMAC020_CH_CFG_INT_ABT_MASK |
644  			FTDMAC020_CH_CFG_INT_ERR_MASK |
645  			FTDMAC020_CH_CFG_INT_TC_MASK);
646  		writel(val, ch->reg_config);
647  
648  		/* Abort and disable channel */
649  		val = readl(ch->reg_control);
650  		val &= ~FTDMAC020_CH_CSR_EN;
651  		val |= FTDMAC020_CH_CSR_ABT;
652  		writel(val, ch->reg_control);
653  
654  		/* Clear ABT and ERR interrupt flags */
655  		writel(BIT(ch->id) | BIT(ch->id + 16),
656  		       pl08x->base + PL080_ERR_CLEAR);
657  		writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
658  
659  		return;
660  	}
661  
662  	val = readl(ch->reg_config);
663  	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
664  		 PL080_CONFIG_TC_IRQ_MASK);
665  	writel(val, ch->reg_config);
666  
667  	writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR);
668  	writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
669  }
670  
get_bytes_in_phy_channel(struct pl08x_phy_chan * ch)671  static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch)
672  {
673  	u32 val;
674  	u32 bytes;
675  
676  	if (ch->ftdmac020) {
677  		bytes = readl(ch->base + FTDMAC020_CH_SIZE);
678  
679  		val = readl(ch->reg_control);
680  		val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK;
681  		val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT;
682  	} else if (ch->pl080s) {
683  		val = readl(ch->base + PL080S_CH_CONTROL2);
684  		bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
685  
686  		val = readl(ch->reg_control);
687  		val &= PL080_CONTROL_SWIDTH_MASK;
688  		val >>= PL080_CONTROL_SWIDTH_SHIFT;
689  	} else {
690  		/* Plain PL08x */
691  		val = readl(ch->reg_control);
692  		bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
693  
694  		val &= PL080_CONTROL_SWIDTH_MASK;
695  		val >>= PL080_CONTROL_SWIDTH_SHIFT;
696  	}
697  
698  	switch (val) {
699  	case PL080_WIDTH_8BIT:
700  		break;
701  	case PL080_WIDTH_16BIT:
702  		bytes *= 2;
703  		break;
704  	case PL080_WIDTH_32BIT:
705  		bytes *= 4;
706  		break;
707  	}
708  	return bytes;
709  }
710  
get_bytes_in_lli(struct pl08x_phy_chan * ch,const u32 * llis_va)711  static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va)
712  {
713  	u32 val;
714  	u32 bytes;
715  
716  	if (ch->ftdmac020) {
717  		val = llis_va[PL080_LLI_CCTL];
718  		bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK;
719  
720  		val = llis_va[PL080_LLI_CCTL];
721  		val &= FTDMAC020_LLI_SRC_WIDTH_MSK;
722  		val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT;
723  	} else if (ch->pl080s) {
724  		val = llis_va[PL080S_LLI_CCTL2];
725  		bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
726  
727  		val = llis_va[PL080_LLI_CCTL];
728  		val &= PL080_CONTROL_SWIDTH_MASK;
729  		val >>= PL080_CONTROL_SWIDTH_SHIFT;
730  	} else {
731  		/* Plain PL08x */
732  		val = llis_va[PL080_LLI_CCTL];
733  		bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
734  
735  		val &= PL080_CONTROL_SWIDTH_MASK;
736  		val >>= PL080_CONTROL_SWIDTH_SHIFT;
737  	}
738  
739  	switch (val) {
740  	case PL080_WIDTH_8BIT:
741  		break;
742  	case PL080_WIDTH_16BIT:
743  		bytes *= 2;
744  		break;
745  	case PL080_WIDTH_32BIT:
746  		bytes *= 4;
747  		break;
748  	}
749  	return bytes;
750  }
751  
752  /* The channel should be paused when calling this */
pl08x_getbytes_chan(struct pl08x_dma_chan * plchan)753  static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
754  {
755  	struct pl08x_driver_data *pl08x = plchan->host;
756  	const u32 *llis_va, *llis_va_limit;
757  	struct pl08x_phy_chan *ch;
758  	dma_addr_t llis_bus;
759  	struct pl08x_txd *txd;
760  	u32 llis_max_words;
761  	size_t bytes;
762  	u32 clli;
763  
764  	ch = plchan->phychan;
765  	txd = plchan->at;
766  
767  	if (!ch || !txd)
768  		return 0;
769  
770  	/*
771  	 * Follow the LLIs to get the number of remaining
772  	 * bytes in the currently active transaction.
773  	 */
774  	clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2;
775  
776  	/* First get the remaining bytes in the active transfer */
777  	bytes = get_bytes_in_phy_channel(ch);
778  
779  	if (!clli)
780  		return bytes;
781  
782  	llis_va = txd->llis_va;
783  	llis_bus = txd->llis_bus;
784  
785  	llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
786  	BUG_ON(clli < llis_bus || clli >= llis_bus +
787  						sizeof(u32) * llis_max_words);
788  
789  	/*
790  	 * Locate the next LLI - as this is an array,
791  	 * it's simple maths to find.
792  	 */
793  	llis_va += (clli - llis_bus) / sizeof(u32);
794  
795  	llis_va_limit = llis_va + llis_max_words;
796  
797  	for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
798  		bytes += get_bytes_in_lli(ch, llis_va);
799  
800  		/*
801  		 * A LLI pointer going backward terminates the LLI list
802  		 */
803  		if (llis_va[PL080_LLI_LLI] <= clli)
804  			break;
805  	}
806  
807  	return bytes;
808  }
809  
810  /*
811   * Allocate a physical channel for a virtual channel
812   *
813   * Try to locate a physical channel to be used for this transfer. If all
814   * are taken return NULL and the requester will have to cope by using
815   * some fallback PIO mode or retrying later.
816   */
817  static struct pl08x_phy_chan *
pl08x_get_phy_channel(struct pl08x_driver_data * pl08x,struct pl08x_dma_chan * virt_chan)818  pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
819  		      struct pl08x_dma_chan *virt_chan)
820  {
821  	struct pl08x_phy_chan *ch = NULL;
822  	unsigned long flags;
823  	int i;
824  
825  	for (i = 0; i < pl08x->vd->channels; i++) {
826  		ch = &pl08x->phy_chans[i];
827  
828  		spin_lock_irqsave(&ch->lock, flags);
829  
830  		if (!ch->locked && !ch->serving) {
831  			ch->serving = virt_chan;
832  			spin_unlock_irqrestore(&ch->lock, flags);
833  			break;
834  		}
835  
836  		spin_unlock_irqrestore(&ch->lock, flags);
837  	}
838  
839  	if (i == pl08x->vd->channels) {
840  		/* No physical channel available, cope with it */
841  		return NULL;
842  	}
843  
844  	return ch;
845  }
846  
847  /* Mark the physical channel as free.  Note, this write is atomic. */
pl08x_put_phy_channel(struct pl08x_driver_data * pl08x,struct pl08x_phy_chan * ch)848  static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
849  					 struct pl08x_phy_chan *ch)
850  {
851  	ch->serving = NULL;
852  }
853  
854  /*
855   * Try to allocate a physical channel.  When successful, assign it to
856   * this virtual channel, and initiate the next descriptor.  The
857   * virtual channel lock must be held at this point.
858   */
pl08x_phy_alloc_and_start(struct pl08x_dma_chan * plchan)859  static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
860  {
861  	struct pl08x_driver_data *pl08x = plchan->host;
862  	struct pl08x_phy_chan *ch;
863  
864  	ch = pl08x_get_phy_channel(pl08x, plchan);
865  	if (!ch) {
866  		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
867  		plchan->state = PL08X_CHAN_WAITING;
868  		plchan->waiting_at = jiffies;
869  		return;
870  	}
871  
872  	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
873  		ch->id, plchan->name);
874  
875  	plchan->phychan = ch;
876  	plchan->state = PL08X_CHAN_RUNNING;
877  	pl08x_start_next_txd(plchan);
878  }
879  
pl08x_phy_reassign_start(struct pl08x_phy_chan * ch,struct pl08x_dma_chan * plchan)880  static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
881  	struct pl08x_dma_chan *plchan)
882  {
883  	struct pl08x_driver_data *pl08x = plchan->host;
884  
885  	dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
886  		ch->id, plchan->name);
887  
888  	/*
889  	 * We do this without taking the lock; we're really only concerned
890  	 * about whether this pointer is NULL or not, and we're guaranteed
891  	 * that this will only be called when it _already_ is non-NULL.
892  	 */
893  	ch->serving = plchan;
894  	plchan->phychan = ch;
895  	plchan->state = PL08X_CHAN_RUNNING;
896  	pl08x_start_next_txd(plchan);
897  }
898  
899  /*
900   * Free a physical DMA channel, potentially reallocating it to another
901   * virtual channel if we have any pending.
902   */
pl08x_phy_free(struct pl08x_dma_chan * plchan)903  static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
904  {
905  	struct pl08x_driver_data *pl08x = plchan->host;
906  	struct pl08x_dma_chan *p, *next;
907  	unsigned long waiting_at;
908   retry:
909  	next = NULL;
910  	waiting_at = jiffies;
911  
912  	/*
913  	 * Find a waiting virtual channel for the next transfer.
914  	 * To be fair, time when each channel reached waiting state is compared
915  	 * to select channel that is waiting for the longest time.
916  	 */
917  	list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
918  		if (p->state == PL08X_CHAN_WAITING &&
919  		    p->waiting_at <= waiting_at) {
920  			next = p;
921  			waiting_at = p->waiting_at;
922  		}
923  
924  	if (!next && pl08x->has_slave) {
925  		list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
926  			if (p->state == PL08X_CHAN_WAITING &&
927  			    p->waiting_at <= waiting_at) {
928  				next = p;
929  				waiting_at = p->waiting_at;
930  			}
931  	}
932  
933  	/* Ensure that the physical channel is stopped */
934  	pl08x_terminate_phy_chan(pl08x, plchan->phychan);
935  
936  	if (next) {
937  		bool success;
938  
939  		/*
940  		 * Eww.  We know this isn't going to deadlock
941  		 * but lockdep probably doesn't.
942  		 */
943  		spin_lock(&next->vc.lock);
944  		/* Re-check the state now that we have the lock */
945  		success = next->state == PL08X_CHAN_WAITING;
946  		if (success)
947  			pl08x_phy_reassign_start(plchan->phychan, next);
948  		spin_unlock(&next->vc.lock);
949  
950  		/* If the state changed, try to find another channel */
951  		if (!success)
952  			goto retry;
953  	} else {
954  		/* No more jobs, so free up the physical channel */
955  		pl08x_put_phy_channel(pl08x, plchan->phychan);
956  	}
957  
958  	plchan->phychan = NULL;
959  	plchan->state = PL08X_CHAN_IDLE;
960  }
961  
962  /*
963   * LLI handling
964   */
965  
966  static inline unsigned int
pl08x_get_bytes_for_lli(struct pl08x_driver_data * pl08x,u32 cctl,bool source)967  pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x,
968  			u32 cctl,
969  			bool source)
970  {
971  	u32 val;
972  
973  	if (pl08x->vd->ftdmac020) {
974  		if (source)
975  			val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
976  				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
977  		else
978  			val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
979  				FTDMAC020_LLI_DST_WIDTH_SHIFT;
980  	} else {
981  		if (source)
982  			val = (cctl & PL080_CONTROL_SWIDTH_MASK) >>
983  				PL080_CONTROL_SWIDTH_SHIFT;
984  		else
985  			val = (cctl & PL080_CONTROL_DWIDTH_MASK) >>
986  				PL080_CONTROL_DWIDTH_SHIFT;
987  	}
988  
989  	switch (val) {
990  	case PL080_WIDTH_8BIT:
991  		return 1;
992  	case PL080_WIDTH_16BIT:
993  		return 2;
994  	case PL080_WIDTH_32BIT:
995  		return 4;
996  	default:
997  		break;
998  	}
999  	BUG();
1000  	return 0;
1001  }
1002  
pl08x_lli_control_bits(struct pl08x_driver_data * pl08x,u32 cctl,u8 srcwidth,u8 dstwidth,size_t tsize)1003  static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x,
1004  					 u32 cctl,
1005  					 u8 srcwidth, u8 dstwidth,
1006  					 size_t tsize)
1007  {
1008  	u32 retbits = cctl;
1009  
1010  	/*
1011  	 * Remove all src, dst and transfer size bits, then set the
1012  	 * width and size according to the parameters. The bit offsets
1013  	 * are different in the FTDMAC020 so we need to accound for this.
1014  	 */
1015  	if (pl08x->vd->ftdmac020) {
1016  		retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK;
1017  		retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK;
1018  		retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1019  
1020  		switch (srcwidth) {
1021  		case 1:
1022  			retbits |= PL080_WIDTH_8BIT <<
1023  				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1024  			break;
1025  		case 2:
1026  			retbits |= PL080_WIDTH_16BIT <<
1027  				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1028  			break;
1029  		case 4:
1030  			retbits |= PL080_WIDTH_32BIT <<
1031  				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1032  			break;
1033  		default:
1034  			BUG();
1035  			break;
1036  		}
1037  
1038  		switch (dstwidth) {
1039  		case 1:
1040  			retbits |= PL080_WIDTH_8BIT <<
1041  				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1042  			break;
1043  		case 2:
1044  			retbits |= PL080_WIDTH_16BIT <<
1045  				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1046  			break;
1047  		case 4:
1048  			retbits |= PL080_WIDTH_32BIT <<
1049  				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1050  			break;
1051  		default:
1052  			BUG();
1053  			break;
1054  		}
1055  
1056  		tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1057  		retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT;
1058  	} else {
1059  		retbits &= ~PL080_CONTROL_DWIDTH_MASK;
1060  		retbits &= ~PL080_CONTROL_SWIDTH_MASK;
1061  		retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
1062  
1063  		switch (srcwidth) {
1064  		case 1:
1065  			retbits |= PL080_WIDTH_8BIT <<
1066  				PL080_CONTROL_SWIDTH_SHIFT;
1067  			break;
1068  		case 2:
1069  			retbits |= PL080_WIDTH_16BIT <<
1070  				PL080_CONTROL_SWIDTH_SHIFT;
1071  			break;
1072  		case 4:
1073  			retbits |= PL080_WIDTH_32BIT <<
1074  				PL080_CONTROL_SWIDTH_SHIFT;
1075  			break;
1076  		default:
1077  			BUG();
1078  			break;
1079  		}
1080  
1081  		switch (dstwidth) {
1082  		case 1:
1083  			retbits |= PL080_WIDTH_8BIT <<
1084  				PL080_CONTROL_DWIDTH_SHIFT;
1085  			break;
1086  		case 2:
1087  			retbits |= PL080_WIDTH_16BIT <<
1088  				PL080_CONTROL_DWIDTH_SHIFT;
1089  			break;
1090  		case 4:
1091  			retbits |= PL080_WIDTH_32BIT <<
1092  				PL080_CONTROL_DWIDTH_SHIFT;
1093  			break;
1094  		default:
1095  			BUG();
1096  			break;
1097  		}
1098  
1099  		tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
1100  		retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
1101  	}
1102  
1103  	return retbits;
1104  }
1105  
1106  struct pl08x_lli_build_data {
1107  	struct pl08x_txd *txd;
1108  	struct pl08x_bus_data srcbus;
1109  	struct pl08x_bus_data dstbus;
1110  	size_t remainder;
1111  	u32 lli_bus;
1112  };
1113  
1114  /*
1115   * Autoselect a master bus to use for the transfer. Slave will be the chosen as
1116   * victim in case src & dest are not similarly aligned. i.e. If after aligning
1117   * masters address with width requirements of transfer (by sending few byte by
1118   * byte data), slave is still not aligned, then its width will be reduced to
1119   * BYTE.
1120   * - prefers the destination bus if both available
1121   * - prefers bus with fixed address (i.e. peripheral)
1122   */
pl08x_choose_master_bus(struct pl08x_driver_data * pl08x,struct pl08x_lli_build_data * bd,struct pl08x_bus_data ** mbus,struct pl08x_bus_data ** sbus,u32 cctl)1123  static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x,
1124  				    struct pl08x_lli_build_data *bd,
1125  				    struct pl08x_bus_data **mbus,
1126  				    struct pl08x_bus_data **sbus,
1127  				    u32 cctl)
1128  {
1129  	bool dst_incr;
1130  	bool src_incr;
1131  
1132  	/*
1133  	 * The FTDMAC020 only supports memory-to-memory transfer, so
1134  	 * source and destination always increase.
1135  	 */
1136  	if (pl08x->vd->ftdmac020) {
1137  		dst_incr = true;
1138  		src_incr = true;
1139  	} else {
1140  		dst_incr = !!(cctl & PL080_CONTROL_DST_INCR);
1141  		src_incr = !!(cctl & PL080_CONTROL_SRC_INCR);
1142  	}
1143  
1144  	/*
1145  	 * If either bus is not advancing, i.e. it is a peripheral, that
1146  	 * one becomes master
1147  	 */
1148  	if (!dst_incr) {
1149  		*mbus = &bd->dstbus;
1150  		*sbus = &bd->srcbus;
1151  	} else if (!src_incr) {
1152  		*mbus = &bd->srcbus;
1153  		*sbus = &bd->dstbus;
1154  	} else {
1155  		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
1156  			*mbus = &bd->dstbus;
1157  			*sbus = &bd->srcbus;
1158  		} else {
1159  			*mbus = &bd->srcbus;
1160  			*sbus = &bd->dstbus;
1161  		}
1162  	}
1163  }
1164  
1165  /*
1166   * Fills in one LLI for a certain transfer descriptor and advance the counter
1167   */
pl08x_fill_lli_for_desc(struct pl08x_driver_data * pl08x,struct pl08x_lli_build_data * bd,int num_llis,int len,u32 cctl,u32 cctl2)1168  static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
1169  				    struct pl08x_lli_build_data *bd,
1170  				    int num_llis, int len, u32 cctl, u32 cctl2)
1171  {
1172  	u32 offset = num_llis * pl08x->lli_words;
1173  	u32 *llis_va = bd->txd->llis_va + offset;
1174  	dma_addr_t llis_bus = bd->txd->llis_bus;
1175  
1176  	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
1177  
1178  	/* Advance the offset to next LLI. */
1179  	offset += pl08x->lli_words;
1180  
1181  	llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
1182  	llis_va[PL080_LLI_DST] = bd->dstbus.addr;
1183  	llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
1184  	llis_va[PL080_LLI_LLI] |= bd->lli_bus;
1185  	llis_va[PL080_LLI_CCTL] = cctl;
1186  	if (pl08x->vd->pl080s)
1187  		llis_va[PL080S_LLI_CCTL2] = cctl2;
1188  
1189  	if (pl08x->vd->ftdmac020) {
1190  		/* FIXME: only memcpy so far so both increase */
1191  		bd->srcbus.addr += len;
1192  		bd->dstbus.addr += len;
1193  	} else {
1194  		if (cctl & PL080_CONTROL_SRC_INCR)
1195  			bd->srcbus.addr += len;
1196  		if (cctl & PL080_CONTROL_DST_INCR)
1197  			bd->dstbus.addr += len;
1198  	}
1199  
1200  	BUG_ON(bd->remainder < len);
1201  
1202  	bd->remainder -= len;
1203  }
1204  
prep_byte_width_lli(struct pl08x_driver_data * pl08x,struct pl08x_lli_build_data * bd,u32 * cctl,u32 len,int num_llis,size_t * total_bytes)1205  static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
1206  			struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
1207  			int num_llis, size_t *total_bytes)
1208  {
1209  	*cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len);
1210  	pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
1211  	(*total_bytes) += len;
1212  }
1213  
1214  #if 1
pl08x_dump_lli(struct pl08x_driver_data * pl08x,const u32 * llis_va,int num_llis)1215  static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1216  			   const u32 *llis_va, int num_llis)
1217  {
1218  	int i;
1219  
1220  	if (pl08x->vd->pl080s) {
1221  		dev_vdbg(&pl08x->adev->dev,
1222  			"%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
1223  			"lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
1224  		for (i = 0; i < num_llis; i++) {
1225  			dev_vdbg(&pl08x->adev->dev,
1226  				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
1227  				i, llis_va, llis_va[PL080_LLI_SRC],
1228  				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1229  				llis_va[PL080_LLI_CCTL],
1230  				llis_va[PL080S_LLI_CCTL2]);
1231  			llis_va += pl08x->lli_words;
1232  		}
1233  	} else {
1234  		dev_vdbg(&pl08x->adev->dev,
1235  			"%-3s %-9s  %-10s %-10s %-10s %s\n",
1236  			"lli", "", "csrc", "cdst", "clli", "cctl");
1237  		for (i = 0; i < num_llis; i++) {
1238  			dev_vdbg(&pl08x->adev->dev,
1239  				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1240  				i, llis_va, llis_va[PL080_LLI_SRC],
1241  				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1242  				llis_va[PL080_LLI_CCTL]);
1243  			llis_va += pl08x->lli_words;
1244  		}
1245  	}
1246  }
1247  #else
pl08x_dump_lli(struct pl08x_driver_data * pl08x,const u32 * llis_va,int num_llis)1248  static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1249  				  const u32 *llis_va, int num_llis) {}
1250  #endif
1251  
1252  /*
1253   * This fills in the table of LLIs for the transfer descriptor
1254   * Note that we assume we never have to change the burst sizes
1255   * Return 0 for error
1256   */
pl08x_fill_llis_for_desc(struct pl08x_driver_data * pl08x,struct pl08x_txd * txd)1257  static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
1258  			      struct pl08x_txd *txd)
1259  {
1260  	struct pl08x_bus_data *mbus, *sbus;
1261  	struct pl08x_lli_build_data bd;
1262  	int num_llis = 0;
1263  	u32 cctl, early_bytes = 0;
1264  	size_t max_bytes_per_lli, total_bytes;
1265  	u32 *llis_va, *last_lli;
1266  	struct pl08x_sg *dsg;
1267  
1268  	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
1269  	if (!txd->llis_va) {
1270  		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
1271  		return 0;
1272  	}
1273  
1274  	bd.txd = txd;
1275  	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
1276  	cctl = txd->cctl;
1277  
1278  	/* Find maximum width of the source bus */
1279  	bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true);
1280  
1281  	/* Find maximum width of the destination bus */
1282  	bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false);
1283  
1284  	list_for_each_entry(dsg, &txd->dsg_list, node) {
1285  		total_bytes = 0;
1286  		cctl = txd->cctl;
1287  
1288  		bd.srcbus.addr = dsg->src_addr;
1289  		bd.dstbus.addr = dsg->dst_addr;
1290  		bd.remainder = dsg->len;
1291  		bd.srcbus.buswidth = bd.srcbus.maxwidth;
1292  		bd.dstbus.buswidth = bd.dstbus.maxwidth;
1293  
1294  		pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl);
1295  
1296  		dev_vdbg(&pl08x->adev->dev,
1297  			"src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
1298  			(u64)bd.srcbus.addr,
1299  			cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
1300  			bd.srcbus.buswidth,
1301  			(u64)bd.dstbus.addr,
1302  			cctl & PL080_CONTROL_DST_INCR ? "+" : "",
1303  			bd.dstbus.buswidth,
1304  			bd.remainder);
1305  		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
1306  			mbus == &bd.srcbus ? "src" : "dst",
1307  			sbus == &bd.srcbus ? "src" : "dst");
1308  
1309  		/*
1310  		 * Zero length is only allowed if all these requirements are
1311  		 * met:
1312  		 * - flow controller is peripheral.
1313  		 * - src.addr is aligned to src.width
1314  		 * - dst.addr is aligned to dst.width
1315  		 *
1316  		 * sg_len == 1 should be true, as there can be two cases here:
1317  		 *
1318  		 * - Memory addresses are contiguous and are not scattered.
1319  		 *   Here, Only one sg will be passed by user driver, with
1320  		 *   memory address and zero length. We pass this to controller
1321  		 *   and after the transfer it will receive the last burst
1322  		 *   request from peripheral and so transfer finishes.
1323  		 *
1324  		 * - Memory addresses are scattered and are not contiguous.
1325  		 *   Here, Obviously as DMA controller doesn't know when a lli's
1326  		 *   transfer gets over, it can't load next lli. So in this
1327  		 *   case, there has to be an assumption that only one lli is
1328  		 *   supported. Thus, we can't have scattered addresses.
1329  		 */
1330  		if (!bd.remainder) {
1331  			u32 fc;
1332  
1333  			/* FTDMAC020 only does memory-to-memory */
1334  			if (pl08x->vd->ftdmac020)
1335  				fc = PL080_FLOW_MEM2MEM;
1336  			else
1337  				fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1338  					PL080_CONFIG_FLOW_CONTROL_SHIFT;
1339  			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1340  					(fc <= PL080_FLOW_SRC2DST_SRC))) {
1341  				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1342  					__func__);
1343  				return 0;
1344  			}
1345  
1346  			if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1347  				!IS_BUS_ALIGNED(&bd.dstbus)) {
1348  				dev_err(&pl08x->adev->dev,
1349  					"%s src & dst address must be aligned to src"
1350  					" & dst width if peripheral is flow controller",
1351  					__func__);
1352  				return 0;
1353  			}
1354  
1355  			cctl = pl08x_lli_control_bits(pl08x, cctl,
1356  					bd.srcbus.buswidth, bd.dstbus.buswidth,
1357  					0);
1358  			pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1359  					0, cctl, 0);
1360  			break;
1361  		}
1362  
1363  		/*
1364  		 * Send byte by byte for following cases
1365  		 * - Less than a bus width available
1366  		 * - until master bus is aligned
1367  		 */
1368  		if (bd.remainder < mbus->buswidth)
1369  			early_bytes = bd.remainder;
1370  		else if (!IS_BUS_ALIGNED(mbus)) {
1371  			early_bytes = mbus->buswidth -
1372  				(mbus->addr & (mbus->buswidth - 1));
1373  			if ((bd.remainder - early_bytes) < mbus->buswidth)
1374  				early_bytes = bd.remainder;
1375  		}
1376  
1377  		if (early_bytes) {
1378  			dev_vdbg(&pl08x->adev->dev,
1379  				"%s byte width LLIs (remain 0x%08zx)\n",
1380  				__func__, bd.remainder);
1381  			prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1382  				num_llis++, &total_bytes);
1383  		}
1384  
1385  		if (bd.remainder) {
1386  			/*
1387  			 * Master now aligned
1388  			 * - if slave is not then we must set its width down
1389  			 */
1390  			if (!IS_BUS_ALIGNED(sbus)) {
1391  				dev_dbg(&pl08x->adev->dev,
1392  					"%s set down bus width to one byte\n",
1393  					__func__);
1394  
1395  				sbus->buswidth = 1;
1396  			}
1397  
1398  			/*
1399  			 * Bytes transferred = tsize * src width, not
1400  			 * MIN(buswidths)
1401  			 */
1402  			max_bytes_per_lli = bd.srcbus.buswidth *
1403  						pl08x->vd->max_transfer_size;
1404  			dev_vdbg(&pl08x->adev->dev,
1405  				"%s max bytes per lli = %zu\n",
1406  				__func__, max_bytes_per_lli);
1407  
1408  			/*
1409  			 * Make largest possible LLIs until less than one bus
1410  			 * width left
1411  			 */
1412  			while (bd.remainder > (mbus->buswidth - 1)) {
1413  				size_t lli_len, tsize, width;
1414  
1415  				/*
1416  				 * If enough left try to send max possible,
1417  				 * otherwise try to send the remainder
1418  				 */
1419  				lli_len = min(bd.remainder, max_bytes_per_lli);
1420  
1421  				/*
1422  				 * Check against maximum bus alignment:
1423  				 * Calculate actual transfer size in relation to
1424  				 * bus width an get a maximum remainder of the
1425  				 * highest bus width - 1
1426  				 */
1427  				width = max(mbus->buswidth, sbus->buswidth);
1428  				lli_len = (lli_len / width) * width;
1429  				tsize = lli_len / bd.srcbus.buswidth;
1430  
1431  				dev_vdbg(&pl08x->adev->dev,
1432  					"%s fill lli with single lli chunk of "
1433  					"size 0x%08zx (remainder 0x%08zx)\n",
1434  					__func__, lli_len, bd.remainder);
1435  
1436  				cctl = pl08x_lli_control_bits(pl08x, cctl,
1437  					bd.srcbus.buswidth, bd.dstbus.buswidth,
1438  					tsize);
1439  				pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1440  						lli_len, cctl, tsize);
1441  				total_bytes += lli_len;
1442  			}
1443  
1444  			/*
1445  			 * Send any odd bytes
1446  			 */
1447  			if (bd.remainder) {
1448  				dev_vdbg(&pl08x->adev->dev,
1449  					"%s align with boundary, send odd bytes (remain %zu)\n",
1450  					__func__, bd.remainder);
1451  				prep_byte_width_lli(pl08x, &bd, &cctl,
1452  					bd.remainder, num_llis++, &total_bytes);
1453  			}
1454  		}
1455  
1456  		if (total_bytes != dsg->len) {
1457  			dev_err(&pl08x->adev->dev,
1458  				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1459  				__func__, total_bytes, dsg->len);
1460  			return 0;
1461  		}
1462  
1463  		if (num_llis >= MAX_NUM_TSFR_LLIS) {
1464  			dev_err(&pl08x->adev->dev,
1465  				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1466  				__func__, MAX_NUM_TSFR_LLIS);
1467  			return 0;
1468  		}
1469  	}
1470  
1471  	llis_va = txd->llis_va;
1472  	last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1473  
1474  	if (txd->cyclic) {
1475  		/* Link back to the first LLI. */
1476  		last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1477  	} else {
1478  		/* The final LLI terminates the LLI. */
1479  		last_lli[PL080_LLI_LLI] = 0;
1480  		/* The final LLI element shall also fire an interrupt. */
1481  		if (pl08x->vd->ftdmac020)
1482  			last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK;
1483  		else
1484  			last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1485  	}
1486  
1487  	pl08x_dump_lli(pl08x, llis_va, num_llis);
1488  
1489  	return num_llis;
1490  }
1491  
pl08x_free_txd(struct pl08x_driver_data * pl08x,struct pl08x_txd * txd)1492  static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1493  			   struct pl08x_txd *txd)
1494  {
1495  	struct pl08x_sg *dsg, *_dsg;
1496  
1497  	if (txd->llis_va)
1498  		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1499  
1500  	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1501  		list_del(&dsg->node);
1502  		kfree(dsg);
1503  	}
1504  
1505  	kfree(txd);
1506  }
1507  
pl08x_desc_free(struct virt_dma_desc * vd)1508  static void pl08x_desc_free(struct virt_dma_desc *vd)
1509  {
1510  	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1511  	struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1512  
1513  	dma_descriptor_unmap(&vd->tx);
1514  	if (!txd->done)
1515  		pl08x_release_mux(plchan);
1516  
1517  	pl08x_free_txd(plchan->host, txd);
1518  }
1519  
pl08x_free_txd_list(struct pl08x_driver_data * pl08x,struct pl08x_dma_chan * plchan)1520  static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1521  				struct pl08x_dma_chan *plchan)
1522  {
1523  	LIST_HEAD(head);
1524  
1525  	vchan_get_all_descriptors(&plchan->vc, &head);
1526  	vchan_dma_desc_free_list(&plchan->vc, &head);
1527  }
1528  
1529  /*
1530   * The DMA ENGINE API
1531   */
pl08x_free_chan_resources(struct dma_chan * chan)1532  static void pl08x_free_chan_resources(struct dma_chan *chan)
1533  {
1534  	/* Ensure all queued descriptors are freed */
1535  	vchan_free_chan_resources(to_virt_chan(chan));
1536  }
1537  
1538  /*
1539   * Code accessing dma_async_is_complete() in a tight loop may give problems.
1540   * If slaves are relying on interrupts to signal completion this function
1541   * must not be called with interrupts disabled.
1542   */
pl08x_dma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1543  static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1544  		dma_cookie_t cookie, struct dma_tx_state *txstate)
1545  {
1546  	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1547  	struct virt_dma_desc *vd;
1548  	unsigned long flags;
1549  	enum dma_status ret;
1550  	size_t bytes = 0;
1551  
1552  	ret = dma_cookie_status(chan, cookie, txstate);
1553  	if (ret == DMA_COMPLETE)
1554  		return ret;
1555  
1556  	/*
1557  	 * There's no point calculating the residue if there's
1558  	 * no txstate to store the value.
1559  	 */
1560  	if (!txstate) {
1561  		if (plchan->state == PL08X_CHAN_PAUSED)
1562  			ret = DMA_PAUSED;
1563  		return ret;
1564  	}
1565  
1566  	spin_lock_irqsave(&plchan->vc.lock, flags);
1567  	ret = dma_cookie_status(chan, cookie, txstate);
1568  	if (ret != DMA_COMPLETE) {
1569  		vd = vchan_find_desc(&plchan->vc, cookie);
1570  		if (vd) {
1571  			/* On the issued list, so hasn't been processed yet */
1572  			struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1573  			struct pl08x_sg *dsg;
1574  
1575  			list_for_each_entry(dsg, &txd->dsg_list, node)
1576  				bytes += dsg->len;
1577  		} else {
1578  			bytes = pl08x_getbytes_chan(plchan);
1579  		}
1580  	}
1581  	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1582  
1583  	/*
1584  	 * This cookie not complete yet
1585  	 * Get number of bytes left in the active transactions and queue
1586  	 */
1587  	dma_set_residue(txstate, bytes);
1588  
1589  	if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1590  		ret = DMA_PAUSED;
1591  
1592  	/* Whether waiting or running, we're in progress */
1593  	return ret;
1594  }
1595  
1596  /* PrimeCell DMA extension */
1597  struct burst_table {
1598  	u32 burstwords;
1599  	u32 reg;
1600  };
1601  
1602  static const struct burst_table burst_sizes[] = {
1603  	{
1604  		.burstwords = 256,
1605  		.reg = PL080_BSIZE_256,
1606  	},
1607  	{
1608  		.burstwords = 128,
1609  		.reg = PL080_BSIZE_128,
1610  	},
1611  	{
1612  		.burstwords = 64,
1613  		.reg = PL080_BSIZE_64,
1614  	},
1615  	{
1616  		.burstwords = 32,
1617  		.reg = PL080_BSIZE_32,
1618  	},
1619  	{
1620  		.burstwords = 16,
1621  		.reg = PL080_BSIZE_16,
1622  	},
1623  	{
1624  		.burstwords = 8,
1625  		.reg = PL080_BSIZE_8,
1626  	},
1627  	{
1628  		.burstwords = 4,
1629  		.reg = PL080_BSIZE_4,
1630  	},
1631  	{
1632  		.burstwords = 0,
1633  		.reg = PL080_BSIZE_1,
1634  	},
1635  };
1636  
1637  /*
1638   * Given the source and destination available bus masks, select which
1639   * will be routed to each port.  We try to have source and destination
1640   * on separate ports, but always respect the allowable settings.
1641   */
pl08x_select_bus(bool ftdmac020,u8 src,u8 dst)1642  static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst)
1643  {
1644  	u32 cctl = 0;
1645  	u32 dst_ahb2;
1646  	u32 src_ahb2;
1647  
1648  	/* The FTDMAC020 use different bits to indicate src/dst bus */
1649  	if (ftdmac020) {
1650  		dst_ahb2 = FTDMAC020_LLI_DST_SEL;
1651  		src_ahb2 = FTDMAC020_LLI_SRC_SEL;
1652  	} else {
1653  		dst_ahb2 = PL080_CONTROL_DST_AHB2;
1654  		src_ahb2 = PL080_CONTROL_SRC_AHB2;
1655  	}
1656  
1657  	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1658  		cctl |= dst_ahb2;
1659  	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1660  		cctl |= src_ahb2;
1661  
1662  	return cctl;
1663  }
1664  
pl08x_cctl(u32 cctl)1665  static u32 pl08x_cctl(u32 cctl)
1666  {
1667  	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1668  		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1669  		  PL080_CONTROL_PROT_MASK);
1670  
1671  	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1672  	return cctl | PL080_CONTROL_PROT_SYS;
1673  }
1674  
pl08x_width(enum dma_slave_buswidth width)1675  static u32 pl08x_width(enum dma_slave_buswidth width)
1676  {
1677  	switch (width) {
1678  	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1679  		return PL080_WIDTH_8BIT;
1680  	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1681  		return PL080_WIDTH_16BIT;
1682  	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1683  		return PL080_WIDTH_32BIT;
1684  	default:
1685  		return ~0;
1686  	}
1687  }
1688  
pl08x_burst(u32 maxburst)1689  static u32 pl08x_burst(u32 maxburst)
1690  {
1691  	int i;
1692  
1693  	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1694  		if (burst_sizes[i].burstwords <= maxburst)
1695  			break;
1696  
1697  	return burst_sizes[i].reg;
1698  }
1699  
pl08x_get_cctl(struct pl08x_dma_chan * plchan,enum dma_slave_buswidth addr_width,u32 maxburst)1700  static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1701  	enum dma_slave_buswidth addr_width, u32 maxburst)
1702  {
1703  	u32 width, burst, cctl = 0;
1704  
1705  	width = pl08x_width(addr_width);
1706  	if (width == ~0)
1707  		return ~0;
1708  
1709  	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1710  	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1711  
1712  	/*
1713  	 * If this channel will only request single transfers, set this
1714  	 * down to ONE element.  Also select one element if no maxburst
1715  	 * is specified.
1716  	 */
1717  	if (plchan->cd->single)
1718  		maxburst = 1;
1719  
1720  	burst = pl08x_burst(maxburst);
1721  	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1722  	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1723  
1724  	return pl08x_cctl(cctl);
1725  }
1726  
1727  /*
1728   * Slave transactions callback to the slave device to allow
1729   * synchronization of slave DMA signals with the DMAC enable
1730   */
pl08x_issue_pending(struct dma_chan * chan)1731  static void pl08x_issue_pending(struct dma_chan *chan)
1732  {
1733  	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1734  	unsigned long flags;
1735  
1736  	spin_lock_irqsave(&plchan->vc.lock, flags);
1737  	if (vchan_issue_pending(&plchan->vc)) {
1738  		if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1739  			pl08x_phy_alloc_and_start(plchan);
1740  	}
1741  	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1742  }
1743  
pl08x_get_txd(struct pl08x_dma_chan * plchan)1744  static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1745  {
1746  	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1747  
1748  	if (txd)
1749  		INIT_LIST_HEAD(&txd->dsg_list);
1750  	return txd;
1751  }
1752  
pl08x_memcpy_cctl(struct pl08x_driver_data * pl08x)1753  static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x)
1754  {
1755  	u32 cctl = 0;
1756  
1757  	/* Conjure cctl */
1758  	switch (pl08x->pd->memcpy_burst_size) {
1759  	default:
1760  		dev_err(&pl08x->adev->dev,
1761  			"illegal burst size for memcpy, set to 1\n");
1762  		fallthrough;
1763  	case PL08X_BURST_SZ_1:
1764  		cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
1765  			PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
1766  		break;
1767  	case PL08X_BURST_SZ_4:
1768  		cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
1769  			PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
1770  		break;
1771  	case PL08X_BURST_SZ_8:
1772  		cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
1773  			PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
1774  		break;
1775  	case PL08X_BURST_SZ_16:
1776  		cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
1777  			PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
1778  		break;
1779  	case PL08X_BURST_SZ_32:
1780  		cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
1781  			PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
1782  		break;
1783  	case PL08X_BURST_SZ_64:
1784  		cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
1785  			PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
1786  		break;
1787  	case PL08X_BURST_SZ_128:
1788  		cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
1789  			PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
1790  		break;
1791  	case PL08X_BURST_SZ_256:
1792  		cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
1793  			PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
1794  		break;
1795  	}
1796  
1797  	switch (pl08x->pd->memcpy_bus_width) {
1798  	default:
1799  		dev_err(&pl08x->adev->dev,
1800  			"illegal bus width for memcpy, set to 8 bits\n");
1801  		fallthrough;
1802  	case PL08X_BUS_WIDTH_8_BITS:
1803  		cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
1804  			PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
1805  		break;
1806  	case PL08X_BUS_WIDTH_16_BITS:
1807  		cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
1808  			PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
1809  		break;
1810  	case PL08X_BUS_WIDTH_32_BITS:
1811  		cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
1812  			PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
1813  		break;
1814  	}
1815  
1816  	/* Protection flags */
1817  	if (pl08x->pd->memcpy_prot_buff)
1818  		cctl |= PL080_CONTROL_PROT_BUFF;
1819  	if (pl08x->pd->memcpy_prot_cache)
1820  		cctl |= PL080_CONTROL_PROT_CACHE;
1821  
1822  	/* We are the kernel, so we are in privileged mode */
1823  	cctl |= PL080_CONTROL_PROT_SYS;
1824  
1825  	/* Both to be incremented or the code will break */
1826  	cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1827  
1828  	if (pl08x->vd->dualmaster)
1829  		cctl |= pl08x_select_bus(false,
1830  					 pl08x->mem_buses,
1831  					 pl08x->mem_buses);
1832  
1833  	return cctl;
1834  }
1835  
pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data * pl08x)1836  static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x)
1837  {
1838  	u32 cctl = 0;
1839  
1840  	/* Conjure cctl */
1841  	switch (pl08x->pd->memcpy_bus_width) {
1842  	default:
1843  		dev_err(&pl08x->adev->dev,
1844  			"illegal bus width for memcpy, set to 8 bits\n");
1845  		fallthrough;
1846  	case PL08X_BUS_WIDTH_8_BITS:
1847  		cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1848  			PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1849  		break;
1850  	case PL08X_BUS_WIDTH_16_BITS:
1851  		cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1852  			PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1853  		break;
1854  	case PL08X_BUS_WIDTH_32_BITS:
1855  		cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1856  			PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1857  		break;
1858  	}
1859  
1860  	/*
1861  	 * By default mask the TC IRQ on all LLIs, it will be unmasked on
1862  	 * the last LLI item by other code.
1863  	 */
1864  	cctl |= FTDMAC020_LLI_TC_MSK;
1865  
1866  	/*
1867  	 * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
1868  	 * and FTDMAC020_LLI_DSTAD_CTL as zero
1869  	 */
1870  	if (pl08x->vd->dualmaster)
1871  		cctl |= pl08x_select_bus(true,
1872  					 pl08x->mem_buses,
1873  					 pl08x->mem_buses);
1874  
1875  	return cctl;
1876  }
1877  
1878  /*
1879   * Initialize a descriptor to be used by memcpy submit
1880   */
pl08x_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1881  static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1882  		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1883  		size_t len, unsigned long flags)
1884  {
1885  	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1886  	struct pl08x_driver_data *pl08x = plchan->host;
1887  	struct pl08x_txd *txd;
1888  	struct pl08x_sg *dsg;
1889  	int ret;
1890  
1891  	txd = pl08x_get_txd(plchan);
1892  	if (!txd) {
1893  		dev_err(&pl08x->adev->dev,
1894  			"%s no memory for descriptor\n", __func__);
1895  		return NULL;
1896  	}
1897  
1898  	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1899  	if (!dsg) {
1900  		pl08x_free_txd(pl08x, txd);
1901  		return NULL;
1902  	}
1903  	list_add_tail(&dsg->node, &txd->dsg_list);
1904  
1905  	dsg->src_addr = src;
1906  	dsg->dst_addr = dest;
1907  	dsg->len = len;
1908  	if (pl08x->vd->ftdmac020) {
1909  		/* Writing CCFG zero ENABLES all interrupts */
1910  		txd->ccfg = 0;
1911  		txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x);
1912  	} else {
1913  		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1914  			PL080_CONFIG_TC_IRQ_MASK |
1915  			PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1916  		txd->cctl = pl08x_memcpy_cctl(pl08x);
1917  	}
1918  
1919  	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1920  	if (!ret) {
1921  		pl08x_free_txd(pl08x, txd);
1922  		return NULL;
1923  	}
1924  
1925  	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1926  }
1927  
pl08x_init_txd(struct dma_chan * chan,enum dma_transfer_direction direction,dma_addr_t * slave_addr)1928  static struct pl08x_txd *pl08x_init_txd(
1929  		struct dma_chan *chan,
1930  		enum dma_transfer_direction direction,
1931  		dma_addr_t *slave_addr)
1932  {
1933  	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1934  	struct pl08x_driver_data *pl08x = plchan->host;
1935  	struct pl08x_txd *txd;
1936  	enum dma_slave_buswidth addr_width;
1937  	int ret, tmp;
1938  	u8 src_buses, dst_buses;
1939  	u32 maxburst, cctl;
1940  
1941  	txd = pl08x_get_txd(plchan);
1942  	if (!txd) {
1943  		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1944  		return NULL;
1945  	}
1946  
1947  	/*
1948  	 * Set up addresses, the PrimeCell configured address
1949  	 * will take precedence since this may configure the
1950  	 * channel target address dynamically at runtime.
1951  	 */
1952  	if (direction == DMA_MEM_TO_DEV) {
1953  		cctl = PL080_CONTROL_SRC_INCR;
1954  		*slave_addr = plchan->cfg.dst_addr;
1955  		addr_width = plchan->cfg.dst_addr_width;
1956  		maxburst = plchan->cfg.dst_maxburst;
1957  		src_buses = pl08x->mem_buses;
1958  		dst_buses = plchan->cd->periph_buses;
1959  	} else if (direction == DMA_DEV_TO_MEM) {
1960  		cctl = PL080_CONTROL_DST_INCR;
1961  		*slave_addr = plchan->cfg.src_addr;
1962  		addr_width = plchan->cfg.src_addr_width;
1963  		maxburst = plchan->cfg.src_maxburst;
1964  		src_buses = plchan->cd->periph_buses;
1965  		dst_buses = pl08x->mem_buses;
1966  	} else {
1967  		pl08x_free_txd(pl08x, txd);
1968  		dev_err(&pl08x->adev->dev,
1969  			"%s direction unsupported\n", __func__);
1970  		return NULL;
1971  	}
1972  
1973  	cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1974  	if (cctl == ~0) {
1975  		pl08x_free_txd(pl08x, txd);
1976  		dev_err(&pl08x->adev->dev,
1977  			"DMA slave configuration botched?\n");
1978  		return NULL;
1979  	}
1980  
1981  	txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses);
1982  
1983  	if (plchan->cfg.device_fc)
1984  		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1985  			PL080_FLOW_PER2MEM_PER;
1986  	else
1987  		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1988  			PL080_FLOW_PER2MEM;
1989  
1990  	txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1991  		PL080_CONFIG_TC_IRQ_MASK |
1992  		tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1993  
1994  	ret = pl08x_request_mux(plchan);
1995  	if (ret < 0) {
1996  		pl08x_free_txd(pl08x, txd);
1997  		dev_dbg(&pl08x->adev->dev,
1998  			"unable to mux for transfer on %s due to platform restrictions\n",
1999  			plchan->name);
2000  		return NULL;
2001  	}
2002  
2003  	dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
2004  		 plchan->signal, plchan->name);
2005  
2006  	/* Assign the flow control signal to this channel */
2007  	if (direction == DMA_MEM_TO_DEV)
2008  		txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
2009  	else
2010  		txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
2011  
2012  	return txd;
2013  }
2014  
pl08x_tx_add_sg(struct pl08x_txd * txd,enum dma_transfer_direction direction,dma_addr_t slave_addr,dma_addr_t buf_addr,unsigned int len)2015  static int pl08x_tx_add_sg(struct pl08x_txd *txd,
2016  			   enum dma_transfer_direction direction,
2017  			   dma_addr_t slave_addr,
2018  			   dma_addr_t buf_addr,
2019  			   unsigned int len)
2020  {
2021  	struct pl08x_sg *dsg;
2022  
2023  	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
2024  	if (!dsg)
2025  		return -ENOMEM;
2026  
2027  	list_add_tail(&dsg->node, &txd->dsg_list);
2028  
2029  	dsg->len = len;
2030  	if (direction == DMA_MEM_TO_DEV) {
2031  		dsg->src_addr = buf_addr;
2032  		dsg->dst_addr = slave_addr;
2033  	} else {
2034  		dsg->src_addr = slave_addr;
2035  		dsg->dst_addr = buf_addr;
2036  	}
2037  
2038  	return 0;
2039  }
2040  
pl08x_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)2041  static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
2042  		struct dma_chan *chan, struct scatterlist *sgl,
2043  		unsigned int sg_len, enum dma_transfer_direction direction,
2044  		unsigned long flags, void *context)
2045  {
2046  	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2047  	struct pl08x_driver_data *pl08x = plchan->host;
2048  	struct pl08x_txd *txd;
2049  	struct scatterlist *sg;
2050  	int ret, tmp;
2051  	dma_addr_t slave_addr;
2052  
2053  	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
2054  			__func__, sg_dma_len(sgl), plchan->name);
2055  
2056  	txd = pl08x_init_txd(chan, direction, &slave_addr);
2057  	if (!txd)
2058  		return NULL;
2059  
2060  	for_each_sg(sgl, sg, sg_len, tmp) {
2061  		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2062  				      sg_dma_address(sg),
2063  				      sg_dma_len(sg));
2064  		if (ret) {
2065  			pl08x_release_mux(plchan);
2066  			pl08x_free_txd(pl08x, txd);
2067  			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
2068  					__func__);
2069  			return NULL;
2070  		}
2071  	}
2072  
2073  	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2074  	if (!ret) {
2075  		pl08x_release_mux(plchan);
2076  		pl08x_free_txd(pl08x, txd);
2077  		return NULL;
2078  	}
2079  
2080  	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2081  }
2082  
pl08x_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)2083  static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
2084  		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2085  		size_t period_len, enum dma_transfer_direction direction,
2086  		unsigned long flags)
2087  {
2088  	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2089  	struct pl08x_driver_data *pl08x = plchan->host;
2090  	struct pl08x_txd *txd;
2091  	int ret, tmp;
2092  	dma_addr_t slave_addr;
2093  
2094  	dev_dbg(&pl08x->adev->dev,
2095  		"%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
2096  		__func__, period_len, buf_len,
2097  		direction == DMA_MEM_TO_DEV ? "to" : "from",
2098  		plchan->name);
2099  
2100  	txd = pl08x_init_txd(chan, direction, &slave_addr);
2101  	if (!txd)
2102  		return NULL;
2103  
2104  	txd->cyclic = true;
2105  	txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
2106  	for (tmp = 0; tmp < buf_len; tmp += period_len) {
2107  		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2108  				      buf_addr + tmp, period_len);
2109  		if (ret) {
2110  			pl08x_release_mux(plchan);
2111  			pl08x_free_txd(pl08x, txd);
2112  			return NULL;
2113  		}
2114  	}
2115  
2116  	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2117  	if (!ret) {
2118  		pl08x_release_mux(plchan);
2119  		pl08x_free_txd(pl08x, txd);
2120  		return NULL;
2121  	}
2122  
2123  	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2124  }
2125  
pl08x_config(struct dma_chan * chan,struct dma_slave_config * config)2126  static int pl08x_config(struct dma_chan *chan,
2127  			struct dma_slave_config *config)
2128  {
2129  	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2130  	struct pl08x_driver_data *pl08x = plchan->host;
2131  
2132  	if (!plchan->slave)
2133  		return -EINVAL;
2134  
2135  	/* Reject definitely invalid configurations */
2136  	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
2137  	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
2138  		return -EINVAL;
2139  
2140  	if (config->device_fc && pl08x->vd->pl080s) {
2141  		dev_err(&pl08x->adev->dev,
2142  			"%s: PL080S does not support peripheral flow control\n",
2143  			__func__);
2144  		return -EINVAL;
2145  	}
2146  
2147  	plchan->cfg = *config;
2148  
2149  	return 0;
2150  }
2151  
pl08x_terminate_all(struct dma_chan * chan)2152  static int pl08x_terminate_all(struct dma_chan *chan)
2153  {
2154  	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2155  	struct pl08x_driver_data *pl08x = plchan->host;
2156  	unsigned long flags;
2157  
2158  	spin_lock_irqsave(&plchan->vc.lock, flags);
2159  	if (!plchan->phychan && !plchan->at) {
2160  		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2161  		return 0;
2162  	}
2163  
2164  	plchan->state = PL08X_CHAN_IDLE;
2165  
2166  	if (plchan->phychan) {
2167  		/*
2168  		 * Mark physical channel as free and free any slave
2169  		 * signal
2170  		 */
2171  		pl08x_phy_free(plchan);
2172  	}
2173  	/* Dequeue jobs and free LLIs */
2174  	if (plchan->at) {
2175  		vchan_terminate_vdesc(&plchan->at->vd);
2176  		plchan->at = NULL;
2177  	}
2178  	/* Dequeue jobs not yet fired as well */
2179  	pl08x_free_txd_list(pl08x, plchan);
2180  
2181  	spin_unlock_irqrestore(&plchan->vc.lock, flags);
2182  
2183  	return 0;
2184  }
2185  
pl08x_synchronize(struct dma_chan * chan)2186  static void pl08x_synchronize(struct dma_chan *chan)
2187  {
2188  	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2189  
2190  	vchan_synchronize(&plchan->vc);
2191  }
2192  
pl08x_pause(struct dma_chan * chan)2193  static int pl08x_pause(struct dma_chan *chan)
2194  {
2195  	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2196  	unsigned long flags;
2197  
2198  	/*
2199  	 * Anything succeeds on channels with no physical allocation and
2200  	 * no queued transfers.
2201  	 */
2202  	spin_lock_irqsave(&plchan->vc.lock, flags);
2203  	if (!plchan->phychan && !plchan->at) {
2204  		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2205  		return 0;
2206  	}
2207  
2208  	pl08x_pause_phy_chan(plchan->phychan);
2209  	plchan->state = PL08X_CHAN_PAUSED;
2210  
2211  	spin_unlock_irqrestore(&plchan->vc.lock, flags);
2212  
2213  	return 0;
2214  }
2215  
pl08x_resume(struct dma_chan * chan)2216  static int pl08x_resume(struct dma_chan *chan)
2217  {
2218  	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2219  	unsigned long flags;
2220  
2221  	/*
2222  	 * Anything succeeds on channels with no physical allocation and
2223  	 * no queued transfers.
2224  	 */
2225  	spin_lock_irqsave(&plchan->vc.lock, flags);
2226  	if (!plchan->phychan && !plchan->at) {
2227  		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2228  		return 0;
2229  	}
2230  
2231  	pl08x_resume_phy_chan(plchan->phychan);
2232  	plchan->state = PL08X_CHAN_RUNNING;
2233  
2234  	spin_unlock_irqrestore(&plchan->vc.lock, flags);
2235  
2236  	return 0;
2237  }
2238  
pl08x_filter_id(struct dma_chan * chan,void * chan_id)2239  bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
2240  {
2241  	struct pl08x_dma_chan *plchan;
2242  	char *name = chan_id;
2243  
2244  	/* Reject channels for devices not bound to this driver */
2245  	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
2246  		return false;
2247  
2248  	plchan = to_pl08x_chan(chan);
2249  
2250  	/* Check that the channel is not taken! */
2251  	if (!strcmp(plchan->name, name))
2252  		return true;
2253  
2254  	return false;
2255  }
2256  EXPORT_SYMBOL_GPL(pl08x_filter_id);
2257  
pl08x_filter_fn(struct dma_chan * chan,void * chan_id)2258  static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
2259  {
2260  	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2261  
2262  	return plchan->cd == chan_id;
2263  }
2264  
2265  /*
2266   * Just check that the device is there and active
2267   * TODO: turn this bit on/off depending on the number of physical channels
2268   * actually used, if it is zero... well shut it off. That will save some
2269   * power. Cut the clock at the same time.
2270   */
pl08x_ensure_on(struct pl08x_driver_data * pl08x)2271  static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
2272  {
2273  	/* The Nomadik variant does not have the config register */
2274  	if (pl08x->vd->nomadik)
2275  		return;
2276  	/* The FTDMAC020 variant does this in another register */
2277  	if (pl08x->vd->ftdmac020) {
2278  		writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR);
2279  		return;
2280  	}
2281  	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
2282  }
2283  
pl08x_irq(int irq,void * dev)2284  static irqreturn_t pl08x_irq(int irq, void *dev)
2285  {
2286  	struct pl08x_driver_data *pl08x = dev;
2287  	u32 mask = 0, err, tc, i;
2288  
2289  	/* check & clear - ERR & TC interrupts */
2290  	err = readl(pl08x->base + PL080_ERR_STATUS);
2291  	if (err) {
2292  		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
2293  			__func__, err);
2294  		writel(err, pl08x->base + PL080_ERR_CLEAR);
2295  	}
2296  	tc = readl(pl08x->base + PL080_TC_STATUS);
2297  	if (tc)
2298  		writel(tc, pl08x->base + PL080_TC_CLEAR);
2299  
2300  	if (!err && !tc)
2301  		return IRQ_NONE;
2302  
2303  	for (i = 0; i < pl08x->vd->channels; i++) {
2304  		if ((BIT(i) & err) || (BIT(i) & tc)) {
2305  			/* Locate physical channel */
2306  			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
2307  			struct pl08x_dma_chan *plchan = phychan->serving;
2308  			struct pl08x_txd *tx;
2309  
2310  			if (!plchan) {
2311  				dev_err(&pl08x->adev->dev,
2312  					"%s Error TC interrupt on unused channel: 0x%08x\n",
2313  					__func__, i);
2314  				continue;
2315  			}
2316  
2317  			spin_lock(&plchan->vc.lock);
2318  			tx = plchan->at;
2319  			if (tx && tx->cyclic) {
2320  				vchan_cyclic_callback(&tx->vd);
2321  			} else if (tx) {
2322  				plchan->at = NULL;
2323  				/*
2324  				 * This descriptor is done, release its mux
2325  				 * reservation.
2326  				 */
2327  				pl08x_release_mux(plchan);
2328  				tx->done = true;
2329  				vchan_cookie_complete(&tx->vd);
2330  
2331  				/*
2332  				 * And start the next descriptor (if any),
2333  				 * otherwise free this channel.
2334  				 */
2335  				if (vchan_next_desc(&plchan->vc))
2336  					pl08x_start_next_txd(plchan);
2337  				else
2338  					pl08x_phy_free(plchan);
2339  			}
2340  			spin_unlock(&plchan->vc.lock);
2341  
2342  			mask |= BIT(i);
2343  		}
2344  	}
2345  
2346  	return mask ? IRQ_HANDLED : IRQ_NONE;
2347  }
2348  
pl08x_dma_slave_init(struct pl08x_dma_chan * chan)2349  static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
2350  {
2351  	chan->slave = true;
2352  	chan->name = chan->cd->bus_id;
2353  	chan->cfg.src_addr = chan->cd->addr;
2354  	chan->cfg.dst_addr = chan->cd->addr;
2355  }
2356  
2357  /*
2358   * Initialise the DMAC memcpy/slave channels.
2359   * Make a local wrapper to hold required data
2360   */
pl08x_dma_init_virtual_channels(struct pl08x_driver_data * pl08x,struct dma_device * dmadev,unsigned int channels,bool slave)2361  static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
2362  		struct dma_device *dmadev, unsigned int channels, bool slave)
2363  {
2364  	struct pl08x_dma_chan *chan;
2365  	int i;
2366  
2367  	INIT_LIST_HEAD(&dmadev->channels);
2368  
2369  	/*
2370  	 * Register as many memcpy as we have physical channels,
2371  	 * we won't always be able to use all but the code will have
2372  	 * to cope with that situation.
2373  	 */
2374  	for (i = 0; i < channels; i++) {
2375  		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
2376  		if (!chan)
2377  			return -ENOMEM;
2378  
2379  		chan->host = pl08x;
2380  		chan->state = PL08X_CHAN_IDLE;
2381  		chan->signal = -1;
2382  
2383  		if (slave) {
2384  			chan->cd = &pl08x->pd->slave_channels[i];
2385  			/*
2386  			 * Some implementations have muxed signals, whereas some
2387  			 * use a mux in front of the signals and need dynamic
2388  			 * assignment of signals.
2389  			 */
2390  			chan->signal = i;
2391  			pl08x_dma_slave_init(chan);
2392  		} else {
2393  			chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL);
2394  			if (!chan->cd) {
2395  				kfree(chan);
2396  				return -ENOMEM;
2397  			}
2398  			chan->cd->bus_id = "memcpy";
2399  			chan->cd->periph_buses = pl08x->pd->mem_buses;
2400  			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
2401  			if (!chan->name) {
2402  				kfree(chan->cd);
2403  				kfree(chan);
2404  				return -ENOMEM;
2405  			}
2406  		}
2407  		dev_dbg(&pl08x->adev->dev,
2408  			 "initialize virtual channel \"%s\"\n",
2409  			 chan->name);
2410  
2411  		chan->vc.desc_free = pl08x_desc_free;
2412  		vchan_init(&chan->vc, dmadev);
2413  	}
2414  	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
2415  		 i, slave ? "slave" : "memcpy");
2416  	return i;
2417  }
2418  
pl08x_free_virtual_channels(struct dma_device * dmadev)2419  static void pl08x_free_virtual_channels(struct dma_device *dmadev)
2420  {
2421  	struct pl08x_dma_chan *chan = NULL;
2422  	struct pl08x_dma_chan *next;
2423  
2424  	list_for_each_entry_safe(chan,
2425  				 next, &dmadev->channels, vc.chan.device_node) {
2426  		list_del(&chan->vc.chan.device_node);
2427  		kfree(chan);
2428  	}
2429  }
2430  
2431  #ifdef CONFIG_DEBUG_FS
pl08x_state_str(enum pl08x_dma_chan_state state)2432  static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
2433  {
2434  	switch (state) {
2435  	case PL08X_CHAN_IDLE:
2436  		return "idle";
2437  	case PL08X_CHAN_RUNNING:
2438  		return "running";
2439  	case PL08X_CHAN_PAUSED:
2440  		return "paused";
2441  	case PL08X_CHAN_WAITING:
2442  		return "waiting";
2443  	default:
2444  		break;
2445  	}
2446  	return "UNKNOWN STATE";
2447  }
2448  
pl08x_debugfs_show(struct seq_file * s,void * data)2449  static int pl08x_debugfs_show(struct seq_file *s, void *data)
2450  {
2451  	struct pl08x_driver_data *pl08x = s->private;
2452  	struct pl08x_dma_chan *chan;
2453  	struct pl08x_phy_chan *ch;
2454  	unsigned long flags;
2455  	int i;
2456  
2457  	seq_printf(s, "PL08x physical channels:\n");
2458  	seq_printf(s, "CHANNEL:\tUSER:\n");
2459  	seq_printf(s, "--------\t-----\n");
2460  	for (i = 0; i < pl08x->vd->channels; i++) {
2461  		struct pl08x_dma_chan *virt_chan;
2462  
2463  		ch = &pl08x->phy_chans[i];
2464  
2465  		spin_lock_irqsave(&ch->lock, flags);
2466  		virt_chan = ch->serving;
2467  
2468  		seq_printf(s, "%d\t\t%s%s\n",
2469  			   ch->id,
2470  			   virt_chan ? virt_chan->name : "(none)",
2471  			   ch->locked ? " LOCKED" : "");
2472  
2473  		spin_unlock_irqrestore(&ch->lock, flags);
2474  	}
2475  
2476  	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2477  	seq_printf(s, "CHANNEL:\tSTATE:\n");
2478  	seq_printf(s, "--------\t------\n");
2479  	list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2480  		seq_printf(s, "%s\t\t%s\n", chan->name,
2481  			   pl08x_state_str(chan->state));
2482  	}
2483  
2484  	if (pl08x->has_slave) {
2485  		seq_printf(s, "\nPL08x virtual slave channels:\n");
2486  		seq_printf(s, "CHANNEL:\tSTATE:\n");
2487  		seq_printf(s, "--------\t------\n");
2488  		list_for_each_entry(chan, &pl08x->slave.channels,
2489  				    vc.chan.device_node) {
2490  			seq_printf(s, "%s\t\t%s\n", chan->name,
2491  				   pl08x_state_str(chan->state));
2492  		}
2493  	}
2494  
2495  	return 0;
2496  }
2497  
2498  DEFINE_SHOW_ATTRIBUTE(pl08x_debugfs);
2499  
init_pl08x_debugfs(struct pl08x_driver_data * pl08x)2500  static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2501  {
2502  	/* Expose a simple debugfs interface to view all clocks */
2503  	debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
2504  			    NULL, pl08x, &pl08x_debugfs_fops);
2505  }
2506  
2507  #else
init_pl08x_debugfs(struct pl08x_driver_data * pl08x)2508  static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2509  {
2510  }
2511  #endif
2512  
2513  #ifdef CONFIG_OF
pl08x_find_chan_id(struct pl08x_driver_data * pl08x,u32 id)2514  static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2515  					 u32 id)
2516  {
2517  	struct pl08x_dma_chan *chan;
2518  
2519  	/* Trying to get a slave channel from something with no slave support */
2520  	if (!pl08x->has_slave)
2521  		return NULL;
2522  
2523  	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2524  		if (chan->signal == id)
2525  			return &chan->vc.chan;
2526  	}
2527  
2528  	return NULL;
2529  }
2530  
pl08x_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2531  static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2532  				       struct of_dma *ofdma)
2533  {
2534  	struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2535  	struct dma_chan *dma_chan;
2536  	struct pl08x_dma_chan *plchan;
2537  
2538  	if (!pl08x)
2539  		return NULL;
2540  
2541  	if (dma_spec->args_count != 2) {
2542  		dev_err(&pl08x->adev->dev,
2543  			"DMA channel translation requires two cells\n");
2544  		return NULL;
2545  	}
2546  
2547  	dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2548  	if (!dma_chan) {
2549  		dev_err(&pl08x->adev->dev,
2550  			"DMA slave channel not found\n");
2551  		return NULL;
2552  	}
2553  
2554  	plchan = to_pl08x_chan(dma_chan);
2555  	dev_dbg(&pl08x->adev->dev,
2556  		"translated channel for signal %d\n",
2557  		dma_spec->args[0]);
2558  
2559  	/* Augment channel data for applicable AHB buses */
2560  	plchan->cd->periph_buses = dma_spec->args[1];
2561  	return dma_get_slave_channel(dma_chan);
2562  }
2563  
pl08x_of_probe(struct amba_device * adev,struct pl08x_driver_data * pl08x,struct device_node * np)2564  static int pl08x_of_probe(struct amba_device *adev,
2565  			  struct pl08x_driver_data *pl08x,
2566  			  struct device_node *np)
2567  {
2568  	struct pl08x_platform_data *pd;
2569  	struct pl08x_channel_data *chanp = NULL;
2570  	u32 val;
2571  	int ret;
2572  	int i;
2573  
2574  	pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2575  	if (!pd)
2576  		return -ENOMEM;
2577  
2578  	/* Eligible bus masters for fetching LLIs */
2579  	if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2580  		pd->lli_buses |= PL08X_AHB1;
2581  	if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2582  		pd->lli_buses |= PL08X_AHB2;
2583  	if (!pd->lli_buses) {
2584  		dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2585  		pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2586  	}
2587  
2588  	/* Eligible bus masters for memory access */
2589  	if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2590  		pd->mem_buses |= PL08X_AHB1;
2591  	if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2592  		pd->mem_buses |= PL08X_AHB2;
2593  	if (!pd->mem_buses) {
2594  		dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2595  		pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2596  	}
2597  
2598  	/* Parse the memcpy channel properties */
2599  	ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2600  	if (ret) {
2601  		dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2602  		val = 1;
2603  	}
2604  	switch (val) {
2605  	default:
2606  		dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2607  		fallthrough;
2608  	case 1:
2609  		pd->memcpy_burst_size = PL08X_BURST_SZ_1;
2610  		break;
2611  	case 4:
2612  		pd->memcpy_burst_size = PL08X_BURST_SZ_4;
2613  		break;
2614  	case 8:
2615  		pd->memcpy_burst_size = PL08X_BURST_SZ_8;
2616  		break;
2617  	case 16:
2618  		pd->memcpy_burst_size = PL08X_BURST_SZ_16;
2619  		break;
2620  	case 32:
2621  		pd->memcpy_burst_size = PL08X_BURST_SZ_32;
2622  		break;
2623  	case 64:
2624  		pd->memcpy_burst_size = PL08X_BURST_SZ_64;
2625  		break;
2626  	case 128:
2627  		pd->memcpy_burst_size = PL08X_BURST_SZ_128;
2628  		break;
2629  	case 256:
2630  		pd->memcpy_burst_size = PL08X_BURST_SZ_256;
2631  		break;
2632  	}
2633  
2634  	ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2635  	if (ret) {
2636  		dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2637  		val = 8;
2638  	}
2639  	switch (val) {
2640  	default:
2641  		dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2642  		fallthrough;
2643  	case 8:
2644  		pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS;
2645  		break;
2646  	case 16:
2647  		pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS;
2648  		break;
2649  	case 32:
2650  		pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS;
2651  		break;
2652  	}
2653  
2654  	/*
2655  	 * Allocate channel data for all possible slave channels (one
2656  	 * for each possible signal), channels will then be allocated
2657  	 * for a device and have it's AHB interfaces set up at
2658  	 * translation time.
2659  	 */
2660  	if (pl08x->vd->signals) {
2661  		chanp = devm_kcalloc(&adev->dev,
2662  				     pl08x->vd->signals,
2663  				     sizeof(struct pl08x_channel_data),
2664  				     GFP_KERNEL);
2665  		if (!chanp)
2666  			return -ENOMEM;
2667  
2668  		pd->slave_channels = chanp;
2669  		for (i = 0; i < pl08x->vd->signals; i++) {
2670  			/*
2671  			 * chanp->periph_buses will be assigned at translation
2672  			 */
2673  			chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2674  			chanp++;
2675  		}
2676  		pd->num_slave_channels = pl08x->vd->signals;
2677  	}
2678  
2679  	pl08x->pd = pd;
2680  
2681  	return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2682  					  pl08x);
2683  }
2684  #else
pl08x_of_probe(struct amba_device * adev,struct pl08x_driver_data * pl08x,struct device_node * np)2685  static inline int pl08x_of_probe(struct amba_device *adev,
2686  				 struct pl08x_driver_data *pl08x,
2687  				 struct device_node *np)
2688  {
2689  	return -EINVAL;
2690  }
2691  #endif
2692  
pl08x_probe(struct amba_device * adev,const struct amba_id * id)2693  static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2694  {
2695  	struct pl08x_driver_data *pl08x;
2696  	struct vendor_data *vd = id->data;
2697  	struct device_node *np = adev->dev.of_node;
2698  	u32 tsfr_size;
2699  	int ret = 0;
2700  	int i;
2701  
2702  	ret = amba_request_regions(adev, NULL);
2703  	if (ret)
2704  		return ret;
2705  
2706  	/* Ensure that we can do DMA */
2707  	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2708  	if (ret)
2709  		goto out_no_pl08x;
2710  
2711  	/* Create the driver state holder */
2712  	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2713  	if (!pl08x) {
2714  		ret = -ENOMEM;
2715  		goto out_no_pl08x;
2716  	}
2717  
2718  	/* Assign useful pointers to the driver state */
2719  	pl08x->adev = adev;
2720  	pl08x->vd = vd;
2721  
2722  	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2723  	if (!pl08x->base) {
2724  		ret = -ENOMEM;
2725  		goto out_no_ioremap;
2726  	}
2727  
2728  	if (vd->ftdmac020) {
2729  		u32 val;
2730  
2731  		val = readl(pl08x->base + FTDMAC020_REVISION);
2732  		dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n",
2733  			 (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff);
2734  		val = readl(pl08x->base + FTDMAC020_FEATURE);
2735  		dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, "
2736  			 "%s built-in bridge, %s, %s linked lists\n",
2737  			 (val >> 12) & 0x0f,
2738  			 (val & BIT(10)) ? "no" : "has",
2739  			 (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0",
2740  			 (val & BIT(8)) ? "supports" : "does not support");
2741  
2742  		/* Vendor data from feature register */
2743  		if (!(val & BIT(8)))
2744  			dev_warn(&pl08x->adev->dev,
2745  				 "linked lists not supported, required\n");
2746  		vd->channels = (val >> 12) & 0x0f;
2747  		vd->dualmaster = !!(val & BIT(9));
2748  	}
2749  
2750  	/* Initialize memcpy engine */
2751  	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2752  	pl08x->memcpy.dev = &adev->dev;
2753  	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2754  	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2755  	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2756  	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2757  	pl08x->memcpy.device_config = pl08x_config;
2758  	pl08x->memcpy.device_pause = pl08x_pause;
2759  	pl08x->memcpy.device_resume = pl08x_resume;
2760  	pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2761  	pl08x->memcpy.device_synchronize = pl08x_synchronize;
2762  	pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2763  	pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2764  	pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2765  	pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2766  	if (vd->ftdmac020)
2767  		pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES;
2768  
2769  
2770  	/*
2771  	 * Initialize slave engine, if the block has no signals, that means
2772  	 * we have no slave support.
2773  	 */
2774  	if (vd->signals) {
2775  		pl08x->has_slave = true;
2776  		dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2777  		dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2778  		pl08x->slave.dev = &adev->dev;
2779  		pl08x->slave.device_free_chan_resources =
2780  			pl08x_free_chan_resources;
2781  		pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2782  		pl08x->slave.device_issue_pending = pl08x_issue_pending;
2783  		pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2784  		pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2785  		pl08x->slave.device_config = pl08x_config;
2786  		pl08x->slave.device_pause = pl08x_pause;
2787  		pl08x->slave.device_resume = pl08x_resume;
2788  		pl08x->slave.device_terminate_all = pl08x_terminate_all;
2789  		pl08x->slave.device_synchronize = pl08x_synchronize;
2790  		pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2791  		pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2792  		pl08x->slave.directions =
2793  			BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2794  		pl08x->slave.residue_granularity =
2795  			DMA_RESIDUE_GRANULARITY_SEGMENT;
2796  	}
2797  
2798  	/* Get the platform data */
2799  	pl08x->pd = dev_get_platdata(&adev->dev);
2800  	if (!pl08x->pd) {
2801  		if (np) {
2802  			ret = pl08x_of_probe(adev, pl08x, np);
2803  			if (ret)
2804  				goto out_no_platdata;
2805  		} else {
2806  			dev_err(&adev->dev, "no platform data supplied\n");
2807  			ret = -EINVAL;
2808  			goto out_no_platdata;
2809  		}
2810  	} else {
2811  		pl08x->slave.filter.map = pl08x->pd->slave_map;
2812  		pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
2813  		pl08x->slave.filter.fn = pl08x_filter_fn;
2814  	}
2815  
2816  	/* By default, AHB1 only.  If dualmaster, from platform */
2817  	pl08x->lli_buses = PL08X_AHB1;
2818  	pl08x->mem_buses = PL08X_AHB1;
2819  	if (pl08x->vd->dualmaster) {
2820  		pl08x->lli_buses = pl08x->pd->lli_buses;
2821  		pl08x->mem_buses = pl08x->pd->mem_buses;
2822  	}
2823  
2824  	if (vd->pl080s)
2825  		pl08x->lli_words = PL080S_LLI_WORDS;
2826  	else
2827  		pl08x->lli_words = PL080_LLI_WORDS;
2828  	tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2829  
2830  	/* A DMA memory pool for LLIs, align on 1-byte boundary */
2831  	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2832  						tsfr_size, PL08X_ALIGN, 0);
2833  	if (!pl08x->pool) {
2834  		ret = -ENOMEM;
2835  		goto out_no_lli_pool;
2836  	}
2837  
2838  	/* Turn on the PL08x */
2839  	pl08x_ensure_on(pl08x);
2840  
2841  	/* Clear any pending interrupts */
2842  	if (vd->ftdmac020)
2843  		/* This variant has error IRQs in bits 16-19 */
2844  		writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR);
2845  	else
2846  		writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2847  	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2848  
2849  	/* Attach the interrupt handler */
2850  	ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2851  	if (ret) {
2852  		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2853  			__func__, adev->irq[0]);
2854  		goto out_no_irq;
2855  	}
2856  
2857  	/* Initialize physical channels */
2858  	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2859  			GFP_KERNEL);
2860  	if (!pl08x->phy_chans) {
2861  		ret = -ENOMEM;
2862  		goto out_no_phychans;
2863  	}
2864  
2865  	for (i = 0; i < vd->channels; i++) {
2866  		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2867  
2868  		ch->id = i;
2869  		ch->base = pl08x->base + PL080_Cx_BASE(i);
2870  		if (vd->ftdmac020) {
2871  			/* FTDMA020 has a special channel busy register */
2872  			ch->reg_busy = ch->base + FTDMAC020_CH_BUSY;
2873  			ch->reg_config = ch->base + FTDMAC020_CH_CFG;
2874  			ch->reg_control = ch->base + FTDMAC020_CH_CSR;
2875  			ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR;
2876  			ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR;
2877  			ch->reg_lli = ch->base + FTDMAC020_CH_LLP;
2878  			ch->ftdmac020 = true;
2879  		} else {
2880  			ch->reg_config = ch->base + vd->config_offset;
2881  			ch->reg_control = ch->base + PL080_CH_CONTROL;
2882  			ch->reg_src = ch->base + PL080_CH_SRC_ADDR;
2883  			ch->reg_dst = ch->base + PL080_CH_DST_ADDR;
2884  			ch->reg_lli = ch->base + PL080_CH_LLI;
2885  		}
2886  		if (vd->pl080s)
2887  			ch->pl080s = true;
2888  
2889  		spin_lock_init(&ch->lock);
2890  
2891  		/*
2892  		 * Nomadik variants can have channels that are locked
2893  		 * down for the secure world only. Lock up these channels
2894  		 * by perpetually serving a dummy virtual channel.
2895  		 */
2896  		if (vd->nomadik) {
2897  			u32 val;
2898  
2899  			val = readl(ch->reg_config);
2900  			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2901  				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2902  				ch->locked = true;
2903  			}
2904  		}
2905  
2906  		dev_dbg(&adev->dev, "physical channel %d is %s\n",
2907  			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2908  	}
2909  
2910  	/* Register as many memcpy channels as there are physical channels */
2911  	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2912  					      pl08x->vd->channels, false);
2913  	if (ret <= 0) {
2914  		dev_warn(&pl08x->adev->dev,
2915  			 "%s failed to enumerate memcpy channels - %d\n",
2916  			 __func__, ret);
2917  		goto out_no_memcpy;
2918  	}
2919  
2920  	/* Register slave channels */
2921  	if (pl08x->has_slave) {
2922  		ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2923  					pl08x->pd->num_slave_channels, true);
2924  		if (ret < 0) {
2925  			dev_warn(&pl08x->adev->dev,
2926  				 "%s failed to enumerate slave channels - %d\n",
2927  				 __func__, ret);
2928  			goto out_no_slave;
2929  		}
2930  	}
2931  
2932  	ret = dma_async_device_register(&pl08x->memcpy);
2933  	if (ret) {
2934  		dev_warn(&pl08x->adev->dev,
2935  			"%s failed to register memcpy as an async device - %d\n",
2936  			__func__, ret);
2937  		goto out_no_memcpy_reg;
2938  	}
2939  
2940  	if (pl08x->has_slave) {
2941  		ret = dma_async_device_register(&pl08x->slave);
2942  		if (ret) {
2943  			dev_warn(&pl08x->adev->dev,
2944  			"%s failed to register slave as an async device - %d\n",
2945  			__func__, ret);
2946  			goto out_no_slave_reg;
2947  		}
2948  	}
2949  
2950  	amba_set_drvdata(adev, pl08x);
2951  	init_pl08x_debugfs(pl08x);
2952  	dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2953  		 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2954  		 (unsigned long long)adev->res.start, adev->irq[0]);
2955  
2956  	return 0;
2957  
2958  out_no_slave_reg:
2959  	dma_async_device_unregister(&pl08x->memcpy);
2960  out_no_memcpy_reg:
2961  	if (pl08x->has_slave)
2962  		pl08x_free_virtual_channels(&pl08x->slave);
2963  out_no_slave:
2964  	pl08x_free_virtual_channels(&pl08x->memcpy);
2965  out_no_memcpy:
2966  	kfree(pl08x->phy_chans);
2967  out_no_phychans:
2968  	free_irq(adev->irq[0], pl08x);
2969  out_no_irq:
2970  	dma_pool_destroy(pl08x->pool);
2971  out_no_lli_pool:
2972  out_no_platdata:
2973  	iounmap(pl08x->base);
2974  out_no_ioremap:
2975  	kfree(pl08x);
2976  out_no_pl08x:
2977  	amba_release_regions(adev);
2978  	return ret;
2979  }
2980  
2981  /* PL080 has 8 channels and the PL080 have just 2 */
2982  static struct vendor_data vendor_pl080 = {
2983  	.config_offset = PL080_CH_CONFIG,
2984  	.channels = 8,
2985  	.signals = 16,
2986  	.dualmaster = true,
2987  	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2988  };
2989  
2990  static struct vendor_data vendor_nomadik = {
2991  	.config_offset = PL080_CH_CONFIG,
2992  	.channels = 8,
2993  	.signals = 32,
2994  	.dualmaster = true,
2995  	.nomadik = true,
2996  	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2997  };
2998  
2999  static struct vendor_data vendor_pl080s = {
3000  	.config_offset = PL080S_CH_CONFIG,
3001  	.channels = 8,
3002  	.signals = 32,
3003  	.pl080s = true,
3004  	.max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
3005  };
3006  
3007  static struct vendor_data vendor_pl081 = {
3008  	.config_offset = PL080_CH_CONFIG,
3009  	.channels = 2,
3010  	.signals = 16,
3011  	.dualmaster = false,
3012  	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3013  };
3014  
3015  static struct vendor_data vendor_ftdmac020 = {
3016  	.config_offset = PL080_CH_CONFIG,
3017  	.ftdmac020 = true,
3018  	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3019  };
3020  
3021  static const struct amba_id pl08x_ids[] = {
3022  	/* Samsung PL080S variant */
3023  	{
3024  		.id	= 0x0a141080,
3025  		.mask	= 0xffffffff,
3026  		.data	= &vendor_pl080s,
3027  	},
3028  	/* PL080 */
3029  	{
3030  		.id	= 0x00041080,
3031  		.mask	= 0x000fffff,
3032  		.data	= &vendor_pl080,
3033  	},
3034  	/* PL081 */
3035  	{
3036  		.id	= 0x00041081,
3037  		.mask	= 0x000fffff,
3038  		.data	= &vendor_pl081,
3039  	},
3040  	/* Nomadik 8815 PL080 variant */
3041  	{
3042  		.id	= 0x00280080,
3043  		.mask	= 0x00ffffff,
3044  		.data	= &vendor_nomadik,
3045  	},
3046  	/* Faraday Technology FTDMAC020 */
3047  	{
3048  		.id	= 0x0003b080,
3049  		.mask	= 0x000fffff,
3050  		.data	= &vendor_ftdmac020,
3051  	},
3052  	{ 0, 0 },
3053  };
3054  
3055  MODULE_DEVICE_TABLE(amba, pl08x_ids);
3056  
3057  static struct amba_driver pl08x_amba_driver = {
3058  	.drv.name	= DRIVER_NAME,
3059  	.id_table	= pl08x_ids,
3060  	.probe		= pl08x_probe,
3061  };
3062  
pl08x_init(void)3063  static int __init pl08x_init(void)
3064  {
3065  	int retval;
3066  	retval = amba_driver_register(&pl08x_amba_driver);
3067  	if (retval)
3068  		printk(KERN_WARNING DRIVER_NAME
3069  		       "failed to register as an AMBA device (%d)\n",
3070  		       retval);
3071  	return retval;
3072  }
3073  subsys_initcall(pl08x_init);
3074