xref: /openbmc/linux/include/net/udp.h (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  /* SPDX-License-Identifier: GPL-2.0-or-later */
2  /*
3   * INET		An implementation of the TCP/IP protocol suite for the LINUX
4   *		operating system.  INET is implemented using the  BSD Socket
5   *		interface as the means of communication with the user level.
6   *
7   *		Definitions for the UDP module.
8   *
9   * Version:	@(#)udp.h	1.0.2	05/07/93
10   *
11   * Authors:	Ross Biro
12   *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13   *
14   * Fixes:
15   *		Alan Cox	: Turned on udp checksums. I don't want to
16   *				  chase 'memory corruption' bugs that aren't!
17   */
18  #ifndef _UDP_H
19  #define _UDP_H
20  
21  #include <linux/list.h>
22  #include <linux/bug.h>
23  #include <net/inet_sock.h>
24  #include <net/gso.h>
25  #include <net/sock.h>
26  #include <net/snmp.h>
27  #include <net/ip.h>
28  #include <linux/ipv6.h>
29  #include <linux/seq_file.h>
30  #include <linux/poll.h>
31  #include <linux/indirect_call_wrapper.h>
32  
33  /**
34   *	struct udp_skb_cb  -  UDP(-Lite) private variables
35   *
36   *	@header:      private variables used by IPv4/IPv6
37   *	@cscov:       checksum coverage length (UDP-Lite only)
38   *	@partial_cov: if set indicates partial csum coverage
39   */
40  struct udp_skb_cb {
41  	union {
42  		struct inet_skb_parm	h4;
43  #if IS_ENABLED(CONFIG_IPV6)
44  		struct inet6_skb_parm	h6;
45  #endif
46  	} header;
47  	__u16		cscov;
48  	__u8		partial_cov;
49  };
50  #define UDP_SKB_CB(__skb)	((struct udp_skb_cb *)((__skb)->cb))
51  
52  /**
53   *	struct udp_hslot - UDP hash slot
54   *
55   *	@head:	head of list of sockets
56   *	@count:	number of sockets in 'head' list
57   *	@lock:	spinlock protecting changes to head/count
58   */
59  struct udp_hslot {
60  	struct hlist_head	head;
61  	int			count;
62  	spinlock_t		lock;
63  } __attribute__((aligned(2 * sizeof(long))));
64  
65  /**
66   *	struct udp_table - UDP table
67   *
68   *	@hash:	hash table, sockets are hashed on (local port)
69   *	@hash2:	hash table, sockets are hashed on (local port, local address)
70   *	@mask:	number of slots in hash tables, minus 1
71   *	@log:	log2(number of slots in hash table)
72   */
73  struct udp_table {
74  	struct udp_hslot	*hash;
75  	struct udp_hslot	*hash2;
76  	unsigned int		mask;
77  	unsigned int		log;
78  };
79  extern struct udp_table udp_table;
80  void udp_table_init(struct udp_table *, const char *);
udp_hashslot(struct udp_table * table,struct net * net,unsigned int num)81  static inline struct udp_hslot *udp_hashslot(struct udp_table *table,
82  					     struct net *net, unsigned int num)
83  {
84  	return &table->hash[udp_hashfn(net, num, table->mask)];
85  }
86  /*
87   * For secondary hash, net_hash_mix() is performed before calling
88   * udp_hashslot2(), this explains difference with udp_hashslot()
89   */
udp_hashslot2(struct udp_table * table,unsigned int hash)90  static inline struct udp_hslot *udp_hashslot2(struct udp_table *table,
91  					      unsigned int hash)
92  {
93  	return &table->hash2[hash & table->mask];
94  }
95  
96  extern struct proto udp_prot;
97  
98  extern atomic_long_t udp_memory_allocated;
99  DECLARE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
100  
101  /* sysctl variables for udp */
102  extern long sysctl_udp_mem[3];
103  extern int sysctl_udp_rmem_min;
104  extern int sysctl_udp_wmem_min;
105  
106  struct sk_buff;
107  
108  /*
109   *	Generic checksumming routines for UDP(-Lite) v4 and v6
110   */
__udp_lib_checksum_complete(struct sk_buff * skb)111  static inline __sum16 __udp_lib_checksum_complete(struct sk_buff *skb)
112  {
113  	return (UDP_SKB_CB(skb)->cscov == skb->len ?
114  		__skb_checksum_complete(skb) :
115  		__skb_checksum_complete_head(skb, UDP_SKB_CB(skb)->cscov));
116  }
117  
udp_lib_checksum_complete(struct sk_buff * skb)118  static inline int udp_lib_checksum_complete(struct sk_buff *skb)
119  {
120  	return !skb_csum_unnecessary(skb) &&
121  		__udp_lib_checksum_complete(skb);
122  }
123  
124  /**
125   * 	udp_csum_outgoing  -  compute UDPv4/v6 checksum over fragments
126   * 	@sk: 	socket we are writing to
127   * 	@skb: 	sk_buff containing the filled-in UDP header
128   * 	        (checksum field must be zeroed out)
129   */
udp_csum_outgoing(struct sock * sk,struct sk_buff * skb)130  static inline __wsum udp_csum_outgoing(struct sock *sk, struct sk_buff *skb)
131  {
132  	__wsum csum = csum_partial(skb_transport_header(skb),
133  				   sizeof(struct udphdr), 0);
134  	skb_queue_walk(&sk->sk_write_queue, skb) {
135  		csum = csum_add(csum, skb->csum);
136  	}
137  	return csum;
138  }
139  
udp_csum(struct sk_buff * skb)140  static inline __wsum udp_csum(struct sk_buff *skb)
141  {
142  	__wsum csum = csum_partial(skb_transport_header(skb),
143  				   sizeof(struct udphdr), skb->csum);
144  
145  	for (skb = skb_shinfo(skb)->frag_list; skb; skb = skb->next) {
146  		csum = csum_add(csum, skb->csum);
147  	}
148  	return csum;
149  }
150  
udp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)151  static inline __sum16 udp_v4_check(int len, __be32 saddr,
152  				   __be32 daddr, __wsum base)
153  {
154  	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_UDP, base);
155  }
156  
157  void udp_set_csum(bool nocheck, struct sk_buff *skb,
158  		  __be32 saddr, __be32 daddr, int len);
159  
udp_csum_pull_header(struct sk_buff * skb)160  static inline void udp_csum_pull_header(struct sk_buff *skb)
161  {
162  	if (!skb->csum_valid && skb->ip_summed == CHECKSUM_NONE)
163  		skb->csum = csum_partial(skb->data, sizeof(struct udphdr),
164  					 skb->csum);
165  	skb_pull_rcsum(skb, sizeof(struct udphdr));
166  	UDP_SKB_CB(skb)->cscov -= sizeof(struct udphdr);
167  }
168  
169  typedef struct sock *(*udp_lookup_t)(const struct sk_buff *skb, __be16 sport,
170  				     __be16 dport);
171  
172  void udp_v6_early_demux(struct sk_buff *skb);
173  INDIRECT_CALLABLE_DECLARE(int udpv6_rcv(struct sk_buff *));
174  
175  struct sk_buff *__udp_gso_segment(struct sk_buff *gso_skb,
176  				  netdev_features_t features, bool is_ipv6);
177  
udp_lib_init_sock(struct sock * sk)178  static inline void udp_lib_init_sock(struct sock *sk)
179  {
180  	struct udp_sock *up = udp_sk(sk);
181  
182  	skb_queue_head_init(&up->reader_queue);
183  	up->forward_threshold = sk->sk_rcvbuf >> 2;
184  	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
185  }
186  
187  /* hash routines shared between UDPv4/6 and UDP-Litev4/6 */
udp_lib_hash(struct sock * sk)188  static inline int udp_lib_hash(struct sock *sk)
189  {
190  	BUG();
191  	return 0;
192  }
193  
194  void udp_lib_unhash(struct sock *sk);
195  void udp_lib_rehash(struct sock *sk, u16 new_hash);
196  
udp_lib_close(struct sock * sk,long timeout)197  static inline void udp_lib_close(struct sock *sk, long timeout)
198  {
199  	sk_common_release(sk);
200  }
201  
202  int udp_lib_get_port(struct sock *sk, unsigned short snum,
203  		     unsigned int hash2_nulladdr);
204  
205  u32 udp_flow_hashrnd(void);
206  
udp_flow_src_port(struct net * net,struct sk_buff * skb,int min,int max,bool use_eth)207  static inline __be16 udp_flow_src_port(struct net *net, struct sk_buff *skb,
208  				       int min, int max, bool use_eth)
209  {
210  	u32 hash;
211  
212  	if (min >= max) {
213  		/* Use default range */
214  		inet_get_local_port_range(net, &min, &max);
215  	}
216  
217  	hash = skb_get_hash(skb);
218  	if (unlikely(!hash)) {
219  		if (use_eth) {
220  			/* Can't find a normal hash, caller has indicated an
221  			 * Ethernet packet so use that to compute a hash.
222  			 */
223  			hash = jhash(skb->data, 2 * ETH_ALEN,
224  				     (__force u32) skb->protocol);
225  		} else {
226  			/* Can't derive any sort of hash for the packet, set
227  			 * to some consistent random value.
228  			 */
229  			hash = udp_flow_hashrnd();
230  		}
231  	}
232  
233  	/* Since this is being sent on the wire obfuscate hash a bit
234  	 * to minimize possbility that any useful information to an
235  	 * attacker is leaked. Only upper 16 bits are relevant in the
236  	 * computation for 16 bit port value.
237  	 */
238  	hash ^= hash << 16;
239  
240  	return htons((((u64) hash * (max - min)) >> 32) + min);
241  }
242  
udp_rqueue_get(struct sock * sk)243  static inline int udp_rqueue_get(struct sock *sk)
244  {
245  	return sk_rmem_alloc_get(sk) - READ_ONCE(udp_sk(sk)->forward_deficit);
246  }
247  
udp_sk_bound_dev_eq(struct net * net,int bound_dev_if,int dif,int sdif)248  static inline bool udp_sk_bound_dev_eq(struct net *net, int bound_dev_if,
249  				       int dif, int sdif)
250  {
251  #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
252  	return inet_bound_dev_eq(!!READ_ONCE(net->ipv4.sysctl_udp_l3mdev_accept),
253  				 bound_dev_if, dif, sdif);
254  #else
255  	return inet_bound_dev_eq(true, bound_dev_if, dif, sdif);
256  #endif
257  }
258  
259  /* net/ipv4/udp.c */
260  void udp_destruct_common(struct sock *sk);
261  void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len);
262  int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb);
263  void udp_skb_destructor(struct sock *sk, struct sk_buff *skb);
264  struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, int *off,
265  			       int *err);
skb_recv_udp(struct sock * sk,unsigned int flags,int * err)266  static inline struct sk_buff *skb_recv_udp(struct sock *sk, unsigned int flags,
267  					   int *err)
268  {
269  	int off = 0;
270  
271  	return __skb_recv_udp(sk, flags, &off, err);
272  }
273  
274  int udp_v4_early_demux(struct sk_buff *skb);
275  bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst);
276  int udp_err(struct sk_buff *, u32);
277  int udp_abort(struct sock *sk, int err);
278  int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len);
279  void udp_splice_eof(struct socket *sock);
280  int udp_push_pending_frames(struct sock *sk);
281  void udp_flush_pending_frames(struct sock *sk);
282  int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size);
283  void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst);
284  int udp_rcv(struct sk_buff *skb);
285  int udp_ioctl(struct sock *sk, int cmd, int *karg);
286  int udp_init_sock(struct sock *sk);
287  int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
288  int __udp_disconnect(struct sock *sk, int flags);
289  int udp_disconnect(struct sock *sk, int flags);
290  __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait);
291  struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
292  				       netdev_features_t features,
293  				       bool is_ipv6);
294  int udp_lib_getsockopt(struct sock *sk, int level, int optname,
295  		       char __user *optval, int __user *optlen);
296  int udp_lib_setsockopt(struct sock *sk, int level, int optname,
297  		       sockptr_t optval, unsigned int optlen,
298  		       int (*push_pending_frames)(struct sock *));
299  struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
300  			     __be32 daddr, __be16 dport, int dif);
301  struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
302  			       __be32 daddr, __be16 dport, int dif, int sdif,
303  			       struct udp_table *tbl, struct sk_buff *skb);
304  struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
305  				 __be16 sport, __be16 dport);
306  struct sock *udp6_lib_lookup(struct net *net,
307  			     const struct in6_addr *saddr, __be16 sport,
308  			     const struct in6_addr *daddr, __be16 dport,
309  			     int dif);
310  struct sock *__udp6_lib_lookup(struct net *net,
311  			       const struct in6_addr *saddr, __be16 sport,
312  			       const struct in6_addr *daddr, __be16 dport,
313  			       int dif, int sdif, struct udp_table *tbl,
314  			       struct sk_buff *skb);
315  struct sock *udp6_lib_lookup_skb(const struct sk_buff *skb,
316  				 __be16 sport, __be16 dport);
317  int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
318  
319  /* UDP uses skb->dev_scratch to cache as much information as possible and avoid
320   * possibly multiple cache miss on dequeue()
321   */
322  struct udp_dev_scratch {
323  	/* skb->truesize and the stateless bit are embedded in a single field;
324  	 * do not use a bitfield since the compiler emits better/smaller code
325  	 * this way
326  	 */
327  	u32 _tsize_state;
328  
329  #if BITS_PER_LONG == 64
330  	/* len and the bit needed to compute skb_csum_unnecessary
331  	 * will be on cold cache lines at recvmsg time.
332  	 * skb->len can be stored on 16 bits since the udp header has been
333  	 * already validated and pulled.
334  	 */
335  	u16 len;
336  	bool is_linear;
337  	bool csum_unnecessary;
338  #endif
339  };
340  
udp_skb_scratch(struct sk_buff * skb)341  static inline struct udp_dev_scratch *udp_skb_scratch(struct sk_buff *skb)
342  {
343  	return (struct udp_dev_scratch *)&skb->dev_scratch;
344  }
345  
346  #if BITS_PER_LONG == 64
udp_skb_len(struct sk_buff * skb)347  static inline unsigned int udp_skb_len(struct sk_buff *skb)
348  {
349  	return udp_skb_scratch(skb)->len;
350  }
351  
udp_skb_csum_unnecessary(struct sk_buff * skb)352  static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb)
353  {
354  	return udp_skb_scratch(skb)->csum_unnecessary;
355  }
356  
udp_skb_is_linear(struct sk_buff * skb)357  static inline bool udp_skb_is_linear(struct sk_buff *skb)
358  {
359  	return udp_skb_scratch(skb)->is_linear;
360  }
361  
362  #else
udp_skb_len(struct sk_buff * skb)363  static inline unsigned int udp_skb_len(struct sk_buff *skb)
364  {
365  	return skb->len;
366  }
367  
udp_skb_csum_unnecessary(struct sk_buff * skb)368  static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb)
369  {
370  	return skb_csum_unnecessary(skb);
371  }
372  
udp_skb_is_linear(struct sk_buff * skb)373  static inline bool udp_skb_is_linear(struct sk_buff *skb)
374  {
375  	return !skb_is_nonlinear(skb);
376  }
377  #endif
378  
copy_linear_skb(struct sk_buff * skb,int len,int off,struct iov_iter * to)379  static inline int copy_linear_skb(struct sk_buff *skb, int len, int off,
380  				  struct iov_iter *to)
381  {
382  	int n;
383  
384  	n = copy_to_iter(skb->data + off, len, to);
385  	if (n == len)
386  		return 0;
387  
388  	iov_iter_revert(to, n);
389  	return -EFAULT;
390  }
391  
392  /*
393   * 	SNMP statistics for UDP and UDP-Lite
394   */
395  #define UDP_INC_STATS(net, field, is_udplite)		      do { \
396  	if (is_udplite) SNMP_INC_STATS((net)->mib.udplite_statistics, field);       \
397  	else		SNMP_INC_STATS((net)->mib.udp_statistics, field);  }  while(0)
398  #define __UDP_INC_STATS(net, field, is_udplite) 	      do { \
399  	if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_statistics, field);         \
400  	else		__SNMP_INC_STATS((net)->mib.udp_statistics, field);    }  while(0)
401  
402  #define __UDP6_INC_STATS(net, field, is_udplite)	    do { \
403  	if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);\
404  	else		__SNMP_INC_STATS((net)->mib.udp_stats_in6, field);  \
405  } while(0)
406  #define UDP6_INC_STATS(net, field, __lite)		    do { \
407  	if (__lite) SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);  \
408  	else	    SNMP_INC_STATS((net)->mib.udp_stats_in6, field);      \
409  } while(0)
410  
411  #if IS_ENABLED(CONFIG_IPV6)
412  #define __UDPX_MIB(sk, ipv4)						\
413  ({									\
414  	ipv4 ? (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics :	\
415  				 sock_net(sk)->mib.udp_statistics) :	\
416  		(IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_stats_in6 :	\
417  				 sock_net(sk)->mib.udp_stats_in6);	\
418  })
419  #else
420  #define __UDPX_MIB(sk, ipv4)						\
421  ({									\
422  	IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics :		\
423  			 sock_net(sk)->mib.udp_statistics;		\
424  })
425  #endif
426  
427  #define __UDPX_INC_STATS(sk, field) \
428  	__SNMP_INC_STATS(__UDPX_MIB(sk, (sk)->sk_family == AF_INET), field)
429  
430  #ifdef CONFIG_PROC_FS
431  struct udp_seq_afinfo {
432  	sa_family_t			family;
433  	struct udp_table		*udp_table;
434  };
435  
436  struct udp_iter_state {
437  	struct seq_net_private  p;
438  	int			bucket;
439  };
440  
441  void *udp_seq_start(struct seq_file *seq, loff_t *pos);
442  void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
443  void udp_seq_stop(struct seq_file *seq, void *v);
444  
445  extern const struct seq_operations udp_seq_ops;
446  extern const struct seq_operations udp6_seq_ops;
447  
448  int udp4_proc_init(void);
449  void udp4_proc_exit(void);
450  #endif /* CONFIG_PROC_FS */
451  
452  int udpv4_offload_init(void);
453  
454  void udp_init(void);
455  
456  DECLARE_STATIC_KEY_FALSE(udp_encap_needed_key);
457  void udp_encap_enable(void);
458  void udp_encap_disable(void);
459  #if IS_ENABLED(CONFIG_IPV6)
460  DECLARE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
461  void udpv6_encap_enable(void);
462  #endif
463  
udp_rcv_segment(struct sock * sk,struct sk_buff * skb,bool ipv4)464  static inline struct sk_buff *udp_rcv_segment(struct sock *sk,
465  					      struct sk_buff *skb, bool ipv4)
466  {
467  	netdev_features_t features = NETIF_F_SG;
468  	struct sk_buff *segs;
469  
470  	/* Avoid csum recalculation by skb_segment unless userspace explicitly
471  	 * asks for the final checksum values
472  	 */
473  	if (!inet_get_convert_csum(sk))
474  		features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
475  
476  	/* UDP segmentation expects packets of type CHECKSUM_PARTIAL or
477  	 * CHECKSUM_NONE in __udp_gso_segment. UDP GRO indeed builds partial
478  	 * packets in udp_gro_complete_segment. As does UDP GSO, verified by
479  	 * udp_send_skb. But when those packets are looped in dev_loopback_xmit
480  	 * their ip_summed CHECKSUM_NONE is changed to CHECKSUM_UNNECESSARY.
481  	 * Reset in this specific case, where PARTIAL is both correct and
482  	 * required.
483  	 */
484  	if (skb->pkt_type == PACKET_LOOPBACK)
485  		skb->ip_summed = CHECKSUM_PARTIAL;
486  
487  	/* the GSO CB lays after the UDP one, no need to save and restore any
488  	 * CB fragment
489  	 */
490  	segs = __skb_gso_segment(skb, features, false);
491  	if (IS_ERR_OR_NULL(segs)) {
492  		int segs_nr = skb_shinfo(skb)->gso_segs;
493  
494  		atomic_add(segs_nr, &sk->sk_drops);
495  		SNMP_ADD_STATS(__UDPX_MIB(sk, ipv4), UDP_MIB_INERRORS, segs_nr);
496  		kfree_skb(skb);
497  		return NULL;
498  	}
499  
500  	consume_skb(skb);
501  	return segs;
502  }
503  
udp_post_segment_fix_csum(struct sk_buff * skb)504  static inline void udp_post_segment_fix_csum(struct sk_buff *skb)
505  {
506  	/* UDP-lite can't land here - no GRO */
507  	WARN_ON_ONCE(UDP_SKB_CB(skb)->partial_cov);
508  
509  	/* UDP packets generated with UDP_SEGMENT and traversing:
510  	 *
511  	 * UDP tunnel(xmit) -> veth (segmentation) -> veth (gro) -> UDP tunnel (rx)
512  	 *
513  	 * can reach an UDP socket with CHECKSUM_NONE, because
514  	 * __iptunnel_pull_header() converts CHECKSUM_PARTIAL into NONE.
515  	 * SKB_GSO_UDP_L4 or SKB_GSO_FRAGLIST packets with no UDP tunnel will
516  	 * have a valid checksum, as the GRO engine validates the UDP csum
517  	 * before the aggregation and nobody strips such info in between.
518  	 * Instead of adding another check in the tunnel fastpath, we can force
519  	 * a valid csum after the segmentation.
520  	 * Additionally fixup the UDP CB.
521  	 */
522  	UDP_SKB_CB(skb)->cscov = skb->len;
523  	if (skb->ip_summed == CHECKSUM_NONE && !skb->csum_valid)
524  		skb->csum_valid = 1;
525  }
526  
527  #ifdef CONFIG_BPF_SYSCALL
528  struct sk_psock;
529  int udp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
530  #endif
531  
532  #endif	/* _UDP_H */
533