1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 return -EFSCORRUPTED;
41 }
42 return 0;
43 }
44
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 struct sysinfo val;
50 unsigned long avail_ram;
51 unsigned long mem_size = 0;
52 bool res = false;
53
54 if (!nm_i)
55 return true;
56
57 si_meminfo(&val);
58
59 /* only uses low memory */
60 avail_ram = val.totalram - val.totalhigh;
61
62 /*
63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 */
65 if (type == FREE_NIDS) {
66 mem_size = (nm_i->nid_cnt[FREE_NID] *
67 sizeof(struct free_nid)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 } else if (type == NAT_ENTRIES) {
70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 if (excess_cached_nats(sbi))
74 res = false;
75 } else if (type == DIRTY_DENTS) {
76 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 return false;
78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 } else if (type == INO_ENTRIES) {
81 int i;
82
83 for (i = 0; i < MAX_INO_ENTRY; i++)
84 mem_size += sbi->im[i].ino_num *
85 sizeof(struct ino_entry);
86 mem_size >>= PAGE_SHIFT;
87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 enum extent_type etype = type == READ_EXTENT_CACHE ?
90 EX_READ : EX_BLOCK_AGE;
91 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93 mem_size = (atomic_read(&eti->total_ext_tree) *
94 sizeof(struct extent_tree) +
95 atomic_read(&eti->total_ext_node) *
96 sizeof(struct extent_node)) >> PAGE_SHIFT;
97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 } else if (type == DISCARD_CACHE) {
99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 } else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 unsigned long free_ram = val.freeram;
105
106 /*
107 * free memory is lower than watermark or cached page count
108 * exceed threshold, deny caching compress page.
109 */
110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 (COMPRESS_MAPPING(sbi)->nrpages <
112 free_ram * sbi->compress_percent / 100);
113 #else
114 res = false;
115 #endif
116 } else {
117 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 return true;
119 }
120 return res;
121 }
122
clear_node_page_dirty(struct page * page)123 static void clear_node_page_dirty(struct page *page)
124 {
125 if (PageDirty(page)) {
126 f2fs_clear_page_cache_dirty_tag(page);
127 clear_page_dirty_for_io(page);
128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 }
130 ClearPageUptodate(page);
131 }
132
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 struct page *src_page;
141 struct page *dst_page;
142 pgoff_t dst_off;
143 void *src_addr;
144 void *dst_addr;
145 struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149 /* get current nat block page with lock */
150 src_page = get_current_nat_page(sbi, nid);
151 if (IS_ERR(src_page))
152 return src_page;
153 dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 f2fs_bug_on(sbi, PageDirty(src_page));
155
156 src_addr = page_address(src_page);
157 dst_addr = page_address(dst_page);
158 memcpy(dst_addr, src_addr, PAGE_SIZE);
159 set_page_dirty(dst_page);
160 f2fs_put_page(src_page, 1);
161
162 set_to_next_nat(nm_i, nid);
163
164 return dst_page;
165 }
166
__alloc_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,bool no_fail)167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 nid_t nid, bool no_fail)
169 {
170 struct nat_entry *new;
171
172 new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 GFP_F2FS_ZERO, no_fail, sbi);
174 if (new) {
175 nat_set_nid(new, nid);
176 nat_reset_flag(new);
177 }
178 return new;
179 }
180
__free_nat_entry(struct nat_entry * e)181 static void __free_nat_entry(struct nat_entry *e)
182 {
183 kmem_cache_free(nat_entry_slab, e);
184 }
185
186 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190 if (no_fail)
191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 return NULL;
194
195 if (raw_ne)
196 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198 spin_lock(&nm_i->nat_list_lock);
199 list_add_tail(&ne->list, &nm_i->nat_entries);
200 spin_unlock(&nm_i->nat_list_lock);
201
202 nm_i->nat_cnt[TOTAL_NAT]++;
203 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 return ne;
205 }
206
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209 struct nat_entry *ne;
210
211 ne = radix_tree_lookup(&nm_i->nat_root, n);
212
213 /* for recent accessed nat entry, move it to tail of lru list */
214 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 spin_lock(&nm_i->nat_list_lock);
216 if (!list_empty(&ne->list))
217 list_move_tail(&ne->list, &nm_i->nat_entries);
218 spin_unlock(&nm_i->nat_list_lock);
219 }
220
221 return ne;
222 }
223
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 nm_i->nat_cnt[TOTAL_NAT]--;
234 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 __free_nat_entry(e);
236 }
237
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 struct nat_entry *ne)
240 {
241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 struct nat_entry_set *head;
243
244 head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 if (!head) {
246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 GFP_NOFS, true, NULL);
248
249 INIT_LIST_HEAD(&head->entry_list);
250 INIT_LIST_HEAD(&head->set_list);
251 head->set = set;
252 head->entry_cnt = 0;
253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 }
255 return head;
256 }
257
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 struct nat_entry *ne)
260 {
261 struct nat_entry_set *head;
262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263
264 if (!new_ne)
265 head = __grab_nat_entry_set(nm_i, ne);
266
267 /*
268 * update entry_cnt in below condition:
269 * 1. update NEW_ADDR to valid block address;
270 * 2. update old block address to new one;
271 */
272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 !get_nat_flag(ne, IS_DIRTY)))
274 head->entry_cnt++;
275
276 set_nat_flag(ne, IS_PREALLOC, new_ne);
277
278 if (get_nat_flag(ne, IS_DIRTY))
279 goto refresh_list;
280
281 nm_i->nat_cnt[DIRTY_NAT]++;
282 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285 spin_lock(&nm_i->nat_list_lock);
286 if (new_ne)
287 list_del_init(&ne->list);
288 else
289 list_move_tail(&ne->list, &head->entry_list);
290 spin_unlock(&nm_i->nat_list_lock);
291 }
292
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 struct nat_entry_set *set, struct nat_entry *ne)
295 {
296 spin_lock(&nm_i->nat_list_lock);
297 list_move_tail(&ne->list, &nm_i->nat_entries);
298 spin_unlock(&nm_i->nat_list_lock);
299
300 set_nat_flag(ne, IS_DIRTY, false);
301 set->entry_cnt--;
302 nm_i->nat_cnt[DIRTY_NAT]--;
303 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 start, nr);
311 }
312
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314 {
315 return NODE_MAPPING(sbi) == page->mapping &&
316 IS_DNODE(page) && is_cold_node(page);
317 }
318
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321 spin_lock_init(&sbi->fsync_node_lock);
322 INIT_LIST_HEAD(&sbi->fsync_node_list);
323 sbi->fsync_seg_id = 0;
324 sbi->fsync_node_num = 0;
325 }
326
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 struct page *page)
329 {
330 struct fsync_node_entry *fn;
331 unsigned long flags;
332 unsigned int seq_id;
333
334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 GFP_NOFS, true, NULL);
336
337 get_page(page);
338 fn->page = page;
339 INIT_LIST_HEAD(&fn->list);
340
341 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 list_add_tail(&fn->list, &sbi->fsync_node_list);
343 fn->seq_id = sbi->fsync_seg_id++;
344 seq_id = fn->seq_id;
345 sbi->fsync_node_num++;
346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347
348 return seq_id;
349 }
350
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353 struct fsync_node_entry *fn;
354 unsigned long flags;
355
356 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 if (fn->page == page) {
359 list_del(&fn->list);
360 sbi->fsync_node_num--;
361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 kmem_cache_free(fsync_node_entry_slab, fn);
363 put_page(page);
364 return;
365 }
366 }
367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 f2fs_bug_on(sbi, 1);
369 }
370
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373 unsigned long flags;
374
375 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 sbi->fsync_seg_id = 0;
377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382 struct f2fs_nm_info *nm_i = NM_I(sbi);
383 struct nat_entry *e;
384 bool need = false;
385
386 f2fs_down_read(&nm_i->nat_tree_lock);
387 e = __lookup_nat_cache(nm_i, nid);
388 if (e) {
389 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 !get_nat_flag(e, HAS_FSYNCED_INODE))
391 need = true;
392 }
393 f2fs_up_read(&nm_i->nat_tree_lock);
394 return need;
395 }
396
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399 struct f2fs_nm_info *nm_i = NM_I(sbi);
400 struct nat_entry *e;
401 bool is_cp = true;
402
403 f2fs_down_read(&nm_i->nat_tree_lock);
404 e = __lookup_nat_cache(nm_i, nid);
405 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 is_cp = false;
407 f2fs_up_read(&nm_i->nat_tree_lock);
408 return is_cp;
409 }
410
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413 struct f2fs_nm_info *nm_i = NM_I(sbi);
414 struct nat_entry *e;
415 bool need_update = true;
416
417 f2fs_down_read(&nm_i->nat_tree_lock);
418 e = __lookup_nat_cache(nm_i, ino);
419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 (get_nat_flag(e, IS_CHECKPOINTED) ||
421 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 need_update = false;
423 f2fs_up_read(&nm_i->nat_tree_lock);
424 return need_update;
425 }
426
427 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 struct f2fs_nat_entry *ne)
430 {
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *new, *e;
433
434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 return;
437
438 new = __alloc_nat_entry(sbi, nid, false);
439 if (!new)
440 return;
441
442 f2fs_down_write(&nm_i->nat_tree_lock);
443 e = __lookup_nat_cache(nm_i, nid);
444 if (!e)
445 e = __init_nat_entry(nm_i, new, ne, false);
446 else
447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 nat_get_blkaddr(e) !=
449 le32_to_cpu(ne->block_addr) ||
450 nat_get_version(e) != ne->version);
451 f2fs_up_write(&nm_i->nat_tree_lock);
452 if (e != new)
453 __free_nat_entry(new);
454 }
455
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 block_t new_blkaddr, bool fsync_done)
458 {
459 struct f2fs_nm_info *nm_i = NM_I(sbi);
460 struct nat_entry *e;
461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462
463 f2fs_down_write(&nm_i->nat_tree_lock);
464 e = __lookup_nat_cache(nm_i, ni->nid);
465 if (!e) {
466 e = __init_nat_entry(nm_i, new, NULL, true);
467 copy_node_info(&e->ni, ni);
468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 } else if (new_blkaddr == NEW_ADDR) {
470 /*
471 * when nid is reallocated,
472 * previous nat entry can be remained in nat cache.
473 * So, reinitialize it with new information.
474 */
475 copy_node_info(&e->ni, ni);
476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 }
478 /* let's free early to reduce memory consumption */
479 if (e != new)
480 __free_nat_entry(new);
481
482 /* sanity check */
483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 new_blkaddr == NULL_ADDR);
486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 new_blkaddr == NEW_ADDR);
488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 new_blkaddr == NEW_ADDR);
490
491 /* increment version no as node is removed */
492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 unsigned char version = nat_get_version(e);
494
495 nat_set_version(e, inc_node_version(version));
496 }
497
498 /* change address */
499 nat_set_blkaddr(e, new_blkaddr);
500 if (!__is_valid_data_blkaddr(new_blkaddr))
501 set_nat_flag(e, IS_CHECKPOINTED, false);
502 __set_nat_cache_dirty(nm_i, e);
503
504 /* update fsync_mark if its inode nat entry is still alive */
505 if (ni->nid != ni->ino)
506 e = __lookup_nat_cache(nm_i, ni->ino);
507 if (e) {
508 if (fsync_done && ni->nid == ni->ino)
509 set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 }
512 f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517 struct f2fs_nm_info *nm_i = NM_I(sbi);
518 int nr = nr_shrink;
519
520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 return 0;
522
523 spin_lock(&nm_i->nat_list_lock);
524 while (nr_shrink) {
525 struct nat_entry *ne;
526
527 if (list_empty(&nm_i->nat_entries))
528 break;
529
530 ne = list_first_entry(&nm_i->nat_entries,
531 struct nat_entry, list);
532 list_del(&ne->list);
533 spin_unlock(&nm_i->nat_list_lock);
534
535 __del_from_nat_cache(nm_i, ne);
536 nr_shrink--;
537
538 spin_lock(&nm_i->nat_list_lock);
539 }
540 spin_unlock(&nm_i->nat_list_lock);
541
542 f2fs_up_write(&nm_i->nat_tree_lock);
543 return nr - nr_shrink;
544 }
545
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni,bool checkpoint_context)546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 struct node_info *ni, bool checkpoint_context)
548 {
549 struct f2fs_nm_info *nm_i = NM_I(sbi);
550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 struct f2fs_journal *journal = curseg->journal;
552 nid_t start_nid = START_NID(nid);
553 struct f2fs_nat_block *nat_blk;
554 struct page *page = NULL;
555 struct f2fs_nat_entry ne;
556 struct nat_entry *e;
557 pgoff_t index;
558 block_t blkaddr;
559 int i;
560
561 ni->nid = nid;
562 retry:
563 /* Check nat cache */
564 f2fs_down_read(&nm_i->nat_tree_lock);
565 e = __lookup_nat_cache(nm_i, nid);
566 if (e) {
567 ni->ino = nat_get_ino(e);
568 ni->blk_addr = nat_get_blkaddr(e);
569 ni->version = nat_get_version(e);
570 f2fs_up_read(&nm_i->nat_tree_lock);
571 return 0;
572 }
573
574 /*
575 * Check current segment summary by trying to grab journal_rwsem first.
576 * This sem is on the critical path on the checkpoint requiring the above
577 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578 * while not bothering checkpoint.
579 */
580 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581 down_read(&curseg->journal_rwsem);
582 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583 !down_read_trylock(&curseg->journal_rwsem)) {
584 f2fs_up_read(&nm_i->nat_tree_lock);
585 goto retry;
586 }
587
588 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589 if (i >= 0) {
590 ne = nat_in_journal(journal, i);
591 node_info_from_raw_nat(ni, &ne);
592 }
593 up_read(&curseg->journal_rwsem);
594 if (i >= 0) {
595 f2fs_up_read(&nm_i->nat_tree_lock);
596 goto cache;
597 }
598
599 /* Fill node_info from nat page */
600 index = current_nat_addr(sbi, nid);
601 f2fs_up_read(&nm_i->nat_tree_lock);
602
603 page = f2fs_get_meta_page(sbi, index);
604 if (IS_ERR(page))
605 return PTR_ERR(page);
606
607 nat_blk = (struct f2fs_nat_block *)page_address(page);
608 ne = nat_blk->entries[nid - start_nid];
609 node_info_from_raw_nat(ni, &ne);
610 f2fs_put_page(page, 1);
611 cache:
612 blkaddr = le32_to_cpu(ne.block_addr);
613 if (__is_valid_data_blkaddr(blkaddr) &&
614 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615 return -EFAULT;
616
617 /* cache nat entry */
618 cache_nat_entry(sbi, nid, &ne);
619 return 0;
620 }
621
622 /*
623 * readahead MAX_RA_NODE number of node pages.
624 */
f2fs_ra_node_pages(struct page * parent,int start,int n)625 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626 {
627 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628 struct blk_plug plug;
629 int i, end;
630 nid_t nid;
631
632 blk_start_plug(&plug);
633
634 /* Then, try readahead for siblings of the desired node */
635 end = start + n;
636 end = min(end, NIDS_PER_BLOCK);
637 for (i = start; i < end; i++) {
638 nid = get_nid(parent, i, false);
639 f2fs_ra_node_page(sbi, nid);
640 }
641
642 blk_finish_plug(&plug);
643 }
644
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646 {
647 const long direct_index = ADDRS_PER_INODE(dn->inode);
648 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651 int cur_level = dn->cur_level;
652 int max_level = dn->max_level;
653 pgoff_t base = 0;
654
655 if (!dn->max_level)
656 return pgofs + 1;
657
658 while (max_level-- > cur_level)
659 skipped_unit *= NIDS_PER_BLOCK;
660
661 switch (dn->max_level) {
662 case 3:
663 base += 2 * indirect_blks;
664 fallthrough;
665 case 2:
666 base += 2 * direct_blks;
667 fallthrough;
668 case 1:
669 base += direct_index;
670 break;
671 default:
672 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673 }
674
675 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676 }
677
678 /*
679 * The maximum depth is four.
680 * Offset[0] will have raw inode offset.
681 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])682 static int get_node_path(struct inode *inode, long block,
683 int offset[4], unsigned int noffset[4])
684 {
685 const long direct_index = ADDRS_PER_INODE(inode);
686 const long direct_blks = ADDRS_PER_BLOCK(inode);
687 const long dptrs_per_blk = NIDS_PER_BLOCK;
688 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690 int n = 0;
691 int level = 0;
692
693 noffset[0] = 0;
694
695 if (block < direct_index) {
696 offset[n] = block;
697 goto got;
698 }
699 block -= direct_index;
700 if (block < direct_blks) {
701 offset[n++] = NODE_DIR1_BLOCK;
702 noffset[n] = 1;
703 offset[n] = block;
704 level = 1;
705 goto got;
706 }
707 block -= direct_blks;
708 if (block < direct_blks) {
709 offset[n++] = NODE_DIR2_BLOCK;
710 noffset[n] = 2;
711 offset[n] = block;
712 level = 1;
713 goto got;
714 }
715 block -= direct_blks;
716 if (block < indirect_blks) {
717 offset[n++] = NODE_IND1_BLOCK;
718 noffset[n] = 3;
719 offset[n++] = block / direct_blks;
720 noffset[n] = 4 + offset[n - 1];
721 offset[n] = block % direct_blks;
722 level = 2;
723 goto got;
724 }
725 block -= indirect_blks;
726 if (block < indirect_blks) {
727 offset[n++] = NODE_IND2_BLOCK;
728 noffset[n] = 4 + dptrs_per_blk;
729 offset[n++] = block / direct_blks;
730 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731 offset[n] = block % direct_blks;
732 level = 2;
733 goto got;
734 }
735 block -= indirect_blks;
736 if (block < dindirect_blks) {
737 offset[n++] = NODE_DIND_BLOCK;
738 noffset[n] = 5 + (dptrs_per_blk * 2);
739 offset[n++] = block / indirect_blks;
740 noffset[n] = 6 + (dptrs_per_blk * 2) +
741 offset[n - 1] * (dptrs_per_blk + 1);
742 offset[n++] = (block / direct_blks) % dptrs_per_blk;
743 noffset[n] = 7 + (dptrs_per_blk * 2) +
744 offset[n - 2] * (dptrs_per_blk + 1) +
745 offset[n - 1];
746 offset[n] = block % direct_blks;
747 level = 3;
748 goto got;
749 } else {
750 return -E2BIG;
751 }
752 got:
753 return level;
754 }
755
756 /*
757 * Caller should call f2fs_put_dnode(dn).
758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762 {
763 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764 struct page *npage[4];
765 struct page *parent = NULL;
766 int offset[4];
767 unsigned int noffset[4];
768 nid_t nids[4];
769 int level, i = 0;
770 int err = 0;
771
772 level = get_node_path(dn->inode, index, offset, noffset);
773 if (level < 0)
774 return level;
775
776 nids[0] = dn->inode->i_ino;
777 npage[0] = dn->inode_page;
778
779 if (!npage[0]) {
780 npage[0] = f2fs_get_node_page(sbi, nids[0]);
781 if (IS_ERR(npage[0]))
782 return PTR_ERR(npage[0]);
783 }
784
785 /* if inline_data is set, should not report any block indices */
786 if (f2fs_has_inline_data(dn->inode) && index) {
787 err = -ENOENT;
788 f2fs_put_page(npage[0], 1);
789 goto release_out;
790 }
791
792 parent = npage[0];
793 if (level != 0)
794 nids[1] = get_nid(parent, offset[0], true);
795 dn->inode_page = npage[0];
796 dn->inode_page_locked = true;
797
798 /* get indirect or direct nodes */
799 for (i = 1; i <= level; i++) {
800 bool done = false;
801
802 if (!nids[i] && mode == ALLOC_NODE) {
803 /* alloc new node */
804 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805 err = -ENOSPC;
806 goto release_pages;
807 }
808
809 dn->nid = nids[i];
810 npage[i] = f2fs_new_node_page(dn, noffset[i]);
811 if (IS_ERR(npage[i])) {
812 f2fs_alloc_nid_failed(sbi, nids[i]);
813 err = PTR_ERR(npage[i]);
814 goto release_pages;
815 }
816
817 set_nid(parent, offset[i - 1], nids[i], i == 1);
818 f2fs_alloc_nid_done(sbi, nids[i]);
819 done = true;
820 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822 if (IS_ERR(npage[i])) {
823 err = PTR_ERR(npage[i]);
824 goto release_pages;
825 }
826 done = true;
827 }
828 if (i == 1) {
829 dn->inode_page_locked = false;
830 unlock_page(parent);
831 } else {
832 f2fs_put_page(parent, 1);
833 }
834
835 if (!done) {
836 npage[i] = f2fs_get_node_page(sbi, nids[i]);
837 if (IS_ERR(npage[i])) {
838 err = PTR_ERR(npage[i]);
839 f2fs_put_page(npage[0], 0);
840 goto release_out;
841 }
842 }
843 if (i < level) {
844 parent = npage[i];
845 nids[i + 1] = get_nid(parent, offset[i], false);
846 }
847 }
848 dn->nid = nids[level];
849 dn->ofs_in_node = offset[level];
850 dn->node_page = npage[level];
851 dn->data_blkaddr = f2fs_data_blkaddr(dn);
852
853 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854 f2fs_sb_has_readonly(sbi)) {
855 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
856 unsigned int ofs_in_node = dn->ofs_in_node;
857 pgoff_t fofs = index;
858 unsigned int c_len;
859 block_t blkaddr;
860
861 /* should align fofs and ofs_in_node to cluster_size */
862 if (fofs % cluster_size) {
863 fofs = round_down(fofs, cluster_size);
864 ofs_in_node = round_down(ofs_in_node, cluster_size);
865 }
866
867 c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
868 if (!c_len)
869 goto out;
870
871 blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
872 if (blkaddr == COMPRESS_ADDR)
873 blkaddr = data_blkaddr(dn->inode, dn->node_page,
874 ofs_in_node + 1);
875
876 f2fs_update_read_extent_tree_range_compressed(dn->inode,
877 fofs, blkaddr, cluster_size, c_len);
878 }
879 out:
880 return 0;
881
882 release_pages:
883 f2fs_put_page(parent, 1);
884 if (i > 1)
885 f2fs_put_page(npage[0], 0);
886 release_out:
887 dn->inode_page = NULL;
888 dn->node_page = NULL;
889 if (err == -ENOENT) {
890 dn->cur_level = i;
891 dn->max_level = level;
892 dn->ofs_in_node = offset[level];
893 }
894 return err;
895 }
896
truncate_node(struct dnode_of_data * dn)897 static int truncate_node(struct dnode_of_data *dn)
898 {
899 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
900 struct node_info ni;
901 int err;
902 pgoff_t index;
903
904 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
905 if (err)
906 return err;
907
908 /* Deallocate node address */
909 f2fs_invalidate_blocks(sbi, ni.blk_addr);
910 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
911 set_node_addr(sbi, &ni, NULL_ADDR, false);
912
913 if (dn->nid == dn->inode->i_ino) {
914 f2fs_remove_orphan_inode(sbi, dn->nid);
915 dec_valid_inode_count(sbi);
916 f2fs_inode_synced(dn->inode);
917 }
918
919 clear_node_page_dirty(dn->node_page);
920 set_sbi_flag(sbi, SBI_IS_DIRTY);
921
922 index = dn->node_page->index;
923 f2fs_put_page(dn->node_page, 1);
924
925 invalidate_mapping_pages(NODE_MAPPING(sbi),
926 index, index);
927
928 dn->node_page = NULL;
929 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
930
931 return 0;
932 }
933
truncate_dnode(struct dnode_of_data * dn)934 static int truncate_dnode(struct dnode_of_data *dn)
935 {
936 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
937 struct page *page;
938 int err;
939
940 if (dn->nid == 0)
941 return 1;
942
943 /* get direct node */
944 page = f2fs_get_node_page(sbi, dn->nid);
945 if (PTR_ERR(page) == -ENOENT)
946 return 1;
947 else if (IS_ERR(page))
948 return PTR_ERR(page);
949
950 if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
951 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
952 dn->inode->i_ino, dn->nid, ino_of_node(page));
953 set_sbi_flag(sbi, SBI_NEED_FSCK);
954 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
955 f2fs_put_page(page, 1);
956 return -EFSCORRUPTED;
957 }
958
959 /* Make dnode_of_data for parameter */
960 dn->node_page = page;
961 dn->ofs_in_node = 0;
962 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
963 err = truncate_node(dn);
964 if (err) {
965 f2fs_put_page(page, 1);
966 return err;
967 }
968
969 return 1;
970 }
971
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)972 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
973 int ofs, int depth)
974 {
975 struct dnode_of_data rdn = *dn;
976 struct page *page;
977 struct f2fs_node *rn;
978 nid_t child_nid;
979 unsigned int child_nofs;
980 int freed = 0;
981 int i, ret;
982
983 if (dn->nid == 0)
984 return NIDS_PER_BLOCK + 1;
985
986 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
987
988 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
989 if (IS_ERR(page)) {
990 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
991 return PTR_ERR(page);
992 }
993
994 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
995
996 rn = F2FS_NODE(page);
997 if (depth < 3) {
998 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
999 child_nid = le32_to_cpu(rn->in.nid[i]);
1000 if (child_nid == 0)
1001 continue;
1002 rdn.nid = child_nid;
1003 ret = truncate_dnode(&rdn);
1004 if (ret < 0)
1005 goto out_err;
1006 if (set_nid(page, i, 0, false))
1007 dn->node_changed = true;
1008 }
1009 } else {
1010 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1011 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1012 child_nid = le32_to_cpu(rn->in.nid[i]);
1013 if (child_nid == 0) {
1014 child_nofs += NIDS_PER_BLOCK + 1;
1015 continue;
1016 }
1017 rdn.nid = child_nid;
1018 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1019 if (ret == (NIDS_PER_BLOCK + 1)) {
1020 if (set_nid(page, i, 0, false))
1021 dn->node_changed = true;
1022 child_nofs += ret;
1023 } else if (ret < 0 && ret != -ENOENT) {
1024 goto out_err;
1025 }
1026 }
1027 freed = child_nofs;
1028 }
1029
1030 if (!ofs) {
1031 /* remove current indirect node */
1032 dn->node_page = page;
1033 ret = truncate_node(dn);
1034 if (ret)
1035 goto out_err;
1036 freed++;
1037 } else {
1038 f2fs_put_page(page, 1);
1039 }
1040 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1041 return freed;
1042
1043 out_err:
1044 f2fs_put_page(page, 1);
1045 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1046 return ret;
1047 }
1048
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)1049 static int truncate_partial_nodes(struct dnode_of_data *dn,
1050 struct f2fs_inode *ri, int *offset, int depth)
1051 {
1052 struct page *pages[2];
1053 nid_t nid[3];
1054 nid_t child_nid;
1055 int err = 0;
1056 int i;
1057 int idx = depth - 2;
1058
1059 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1060 if (!nid[0])
1061 return 0;
1062
1063 /* get indirect nodes in the path */
1064 for (i = 0; i < idx + 1; i++) {
1065 /* reference count'll be increased */
1066 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1067 if (IS_ERR(pages[i])) {
1068 err = PTR_ERR(pages[i]);
1069 idx = i - 1;
1070 goto fail;
1071 }
1072 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1073 }
1074
1075 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1076
1077 /* free direct nodes linked to a partial indirect node */
1078 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1079 child_nid = get_nid(pages[idx], i, false);
1080 if (!child_nid)
1081 continue;
1082 dn->nid = child_nid;
1083 err = truncate_dnode(dn);
1084 if (err < 0)
1085 goto fail;
1086 if (set_nid(pages[idx], i, 0, false))
1087 dn->node_changed = true;
1088 }
1089
1090 if (offset[idx + 1] == 0) {
1091 dn->node_page = pages[idx];
1092 dn->nid = nid[idx];
1093 err = truncate_node(dn);
1094 if (err)
1095 goto fail;
1096 } else {
1097 f2fs_put_page(pages[idx], 1);
1098 }
1099 offset[idx]++;
1100 offset[idx + 1] = 0;
1101 idx--;
1102 fail:
1103 for (i = idx; i >= 0; i--)
1104 f2fs_put_page(pages[i], 1);
1105
1106 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1107
1108 return err;
1109 }
1110
1111 /*
1112 * All the block addresses of data and nodes should be nullified.
1113 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1114 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1115 {
1116 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1117 int err = 0, cont = 1;
1118 int level, offset[4], noffset[4];
1119 unsigned int nofs = 0;
1120 struct f2fs_inode *ri;
1121 struct dnode_of_data dn;
1122 struct page *page;
1123
1124 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1125
1126 level = get_node_path(inode, from, offset, noffset);
1127 if (level < 0) {
1128 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1129 return level;
1130 }
1131
1132 page = f2fs_get_node_page(sbi, inode->i_ino);
1133 if (IS_ERR(page)) {
1134 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1135 return PTR_ERR(page);
1136 }
1137
1138 set_new_dnode(&dn, inode, page, NULL, 0);
1139 unlock_page(page);
1140
1141 ri = F2FS_INODE(page);
1142 switch (level) {
1143 case 0:
1144 case 1:
1145 nofs = noffset[1];
1146 break;
1147 case 2:
1148 nofs = noffset[1];
1149 if (!offset[level - 1])
1150 goto skip_partial;
1151 err = truncate_partial_nodes(&dn, ri, offset, level);
1152 if (err < 0 && err != -ENOENT)
1153 goto fail;
1154 nofs += 1 + NIDS_PER_BLOCK;
1155 break;
1156 case 3:
1157 nofs = 5 + 2 * NIDS_PER_BLOCK;
1158 if (!offset[level - 1])
1159 goto skip_partial;
1160 err = truncate_partial_nodes(&dn, ri, offset, level);
1161 if (err < 0 && err != -ENOENT)
1162 goto fail;
1163 break;
1164 default:
1165 BUG();
1166 }
1167
1168 skip_partial:
1169 while (cont) {
1170 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1171 switch (offset[0]) {
1172 case NODE_DIR1_BLOCK:
1173 case NODE_DIR2_BLOCK:
1174 err = truncate_dnode(&dn);
1175 break;
1176
1177 case NODE_IND1_BLOCK:
1178 case NODE_IND2_BLOCK:
1179 err = truncate_nodes(&dn, nofs, offset[1], 2);
1180 break;
1181
1182 case NODE_DIND_BLOCK:
1183 err = truncate_nodes(&dn, nofs, offset[1], 3);
1184 cont = 0;
1185 break;
1186
1187 default:
1188 BUG();
1189 }
1190 if (err < 0 && err != -ENOENT)
1191 goto fail;
1192 if (offset[1] == 0 &&
1193 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1194 lock_page(page);
1195 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1196 f2fs_wait_on_page_writeback(page, NODE, true, true);
1197 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1198 set_page_dirty(page);
1199 unlock_page(page);
1200 }
1201 offset[1] = 0;
1202 offset[0]++;
1203 nofs += err;
1204 }
1205 fail:
1206 f2fs_put_page(page, 0);
1207 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1208 return err > 0 ? 0 : err;
1209 }
1210
1211 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1212 int f2fs_truncate_xattr_node(struct inode *inode)
1213 {
1214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1215 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1216 struct dnode_of_data dn;
1217 struct page *npage;
1218 int err;
1219
1220 if (!nid)
1221 return 0;
1222
1223 npage = f2fs_get_node_page(sbi, nid);
1224 if (IS_ERR(npage))
1225 return PTR_ERR(npage);
1226
1227 set_new_dnode(&dn, inode, NULL, npage, nid);
1228 err = truncate_node(&dn);
1229 if (err) {
1230 f2fs_put_page(npage, 1);
1231 return err;
1232 }
1233
1234 f2fs_i_xnid_write(inode, 0);
1235
1236 return 0;
1237 }
1238
1239 /*
1240 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1241 * f2fs_unlock_op().
1242 */
f2fs_remove_inode_page(struct inode * inode)1243 int f2fs_remove_inode_page(struct inode *inode)
1244 {
1245 struct dnode_of_data dn;
1246 int err;
1247
1248 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1249 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1250 if (err)
1251 return err;
1252
1253 err = f2fs_truncate_xattr_node(inode);
1254 if (err) {
1255 f2fs_put_dnode(&dn);
1256 return err;
1257 }
1258
1259 /* remove potential inline_data blocks */
1260 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1261 S_ISLNK(inode->i_mode))
1262 f2fs_truncate_data_blocks_range(&dn, 1);
1263
1264 /* 0 is possible, after f2fs_new_inode() has failed */
1265 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1266 f2fs_put_dnode(&dn);
1267 return -EIO;
1268 }
1269
1270 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1271 f2fs_warn(F2FS_I_SB(inode),
1272 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1273 inode->i_ino, (unsigned long long)inode->i_blocks);
1274 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1275 }
1276
1277 /* will put inode & node pages */
1278 err = truncate_node(&dn);
1279 if (err) {
1280 f2fs_put_dnode(&dn);
1281 return err;
1282 }
1283 return 0;
1284 }
1285
f2fs_new_inode_page(struct inode * inode)1286 struct page *f2fs_new_inode_page(struct inode *inode)
1287 {
1288 struct dnode_of_data dn;
1289
1290 /* allocate inode page for new inode */
1291 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1292
1293 /* caller should f2fs_put_page(page, 1); */
1294 return f2fs_new_node_page(&dn, 0);
1295 }
1296
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1297 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1298 {
1299 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1300 struct node_info new_ni;
1301 struct page *page;
1302 int err;
1303
1304 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1305 return ERR_PTR(-EPERM);
1306
1307 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1308 if (!page)
1309 return ERR_PTR(-ENOMEM);
1310
1311 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1312 goto fail;
1313
1314 #ifdef CONFIG_F2FS_CHECK_FS
1315 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1316 if (err) {
1317 dec_valid_node_count(sbi, dn->inode, !ofs);
1318 goto fail;
1319 }
1320 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1321 err = -EFSCORRUPTED;
1322 dec_valid_node_count(sbi, dn->inode, !ofs);
1323 set_sbi_flag(sbi, SBI_NEED_FSCK);
1324 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1325 goto fail;
1326 }
1327 #endif
1328 new_ni.nid = dn->nid;
1329 new_ni.ino = dn->inode->i_ino;
1330 new_ni.blk_addr = NULL_ADDR;
1331 new_ni.flag = 0;
1332 new_ni.version = 0;
1333 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1334
1335 f2fs_wait_on_page_writeback(page, NODE, true, true);
1336 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1337 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1338 if (!PageUptodate(page))
1339 SetPageUptodate(page);
1340 if (set_page_dirty(page))
1341 dn->node_changed = true;
1342
1343 if (f2fs_has_xattr_block(ofs))
1344 f2fs_i_xnid_write(dn->inode, dn->nid);
1345
1346 if (ofs == 0)
1347 inc_valid_inode_count(sbi);
1348 return page;
1349 fail:
1350 clear_node_page_dirty(page);
1351 f2fs_put_page(page, 1);
1352 return ERR_PTR(err);
1353 }
1354
1355 /*
1356 * Caller should do after getting the following values.
1357 * 0: f2fs_put_page(page, 0)
1358 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1359 */
read_node_page(struct page * page,blk_opf_t op_flags)1360 static int read_node_page(struct page *page, blk_opf_t op_flags)
1361 {
1362 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1363 struct node_info ni;
1364 struct f2fs_io_info fio = {
1365 .sbi = sbi,
1366 .type = NODE,
1367 .op = REQ_OP_READ,
1368 .op_flags = op_flags,
1369 .page = page,
1370 .encrypted_page = NULL,
1371 };
1372 int err;
1373
1374 if (PageUptodate(page)) {
1375 if (!f2fs_inode_chksum_verify(sbi, page)) {
1376 ClearPageUptodate(page);
1377 return -EFSBADCRC;
1378 }
1379 return LOCKED_PAGE;
1380 }
1381
1382 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1383 if (err)
1384 return err;
1385
1386 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1387 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1388 ClearPageUptodate(page);
1389 return -ENOENT;
1390 }
1391
1392 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1393
1394 err = f2fs_submit_page_bio(&fio);
1395
1396 if (!err)
1397 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1398
1399 return err;
1400 }
1401
1402 /*
1403 * Readahead a node page
1404 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1405 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1406 {
1407 struct page *apage;
1408 int err;
1409
1410 if (!nid)
1411 return;
1412 if (f2fs_check_nid_range(sbi, nid))
1413 return;
1414
1415 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1416 if (apage)
1417 return;
1418
1419 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1420 if (!apage)
1421 return;
1422
1423 err = read_node_page(apage, REQ_RAHEAD);
1424 f2fs_put_page(apage, err ? 1 : 0);
1425 }
1426
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1427 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1428 struct page *parent, int start)
1429 {
1430 struct page *page;
1431 int err;
1432
1433 if (!nid)
1434 return ERR_PTR(-ENOENT);
1435 if (f2fs_check_nid_range(sbi, nid))
1436 return ERR_PTR(-EINVAL);
1437 repeat:
1438 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1439 if (!page)
1440 return ERR_PTR(-ENOMEM);
1441
1442 err = read_node_page(page, 0);
1443 if (err < 0) {
1444 goto out_put_err;
1445 } else if (err == LOCKED_PAGE) {
1446 err = 0;
1447 goto page_hit;
1448 }
1449
1450 if (parent)
1451 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1452
1453 lock_page(page);
1454
1455 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1456 f2fs_put_page(page, 1);
1457 goto repeat;
1458 }
1459
1460 if (unlikely(!PageUptodate(page))) {
1461 err = -EIO;
1462 goto out_err;
1463 }
1464
1465 if (!f2fs_inode_chksum_verify(sbi, page)) {
1466 err = -EFSBADCRC;
1467 goto out_err;
1468 }
1469 page_hit:
1470 if (likely(nid == nid_of_node(page)))
1471 return page;
1472
1473 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1474 nid, nid_of_node(page), ino_of_node(page),
1475 ofs_of_node(page), cpver_of_node(page),
1476 next_blkaddr_of_node(page));
1477 set_sbi_flag(sbi, SBI_NEED_FSCK);
1478 f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1479 err = -EFSCORRUPTED;
1480 out_err:
1481 ClearPageUptodate(page);
1482 out_put_err:
1483 /* ENOENT comes from read_node_page which is not an error. */
1484 if (err != -ENOENT)
1485 f2fs_handle_page_eio(sbi, page->index, NODE);
1486 f2fs_put_page(page, 1);
1487 return ERR_PTR(err);
1488 }
1489
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1490 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1491 {
1492 return __get_node_page(sbi, nid, NULL, 0);
1493 }
1494
f2fs_get_node_page_ra(struct page * parent,int start)1495 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1496 {
1497 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1498 nid_t nid = get_nid(parent, start, false);
1499
1500 return __get_node_page(sbi, nid, parent, start);
1501 }
1502
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1503 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1504 {
1505 struct inode *inode;
1506 struct page *page;
1507 int ret;
1508
1509 /* should flush inline_data before evict_inode */
1510 inode = ilookup(sbi->sb, ino);
1511 if (!inode)
1512 return;
1513
1514 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1515 FGP_LOCK|FGP_NOWAIT, 0);
1516 if (!page)
1517 goto iput_out;
1518
1519 if (!PageUptodate(page))
1520 goto page_out;
1521
1522 if (!PageDirty(page))
1523 goto page_out;
1524
1525 if (!clear_page_dirty_for_io(page))
1526 goto page_out;
1527
1528 ret = f2fs_write_inline_data(inode, page);
1529 inode_dec_dirty_pages(inode);
1530 f2fs_remove_dirty_inode(inode);
1531 if (ret)
1532 set_page_dirty(page);
1533 page_out:
1534 f2fs_put_page(page, 1);
1535 iput_out:
1536 iput(inode);
1537 }
1538
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1539 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1540 {
1541 pgoff_t index;
1542 struct folio_batch fbatch;
1543 struct page *last_page = NULL;
1544 int nr_folios;
1545
1546 folio_batch_init(&fbatch);
1547 index = 0;
1548
1549 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1550 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1551 &fbatch))) {
1552 int i;
1553
1554 for (i = 0; i < nr_folios; i++) {
1555 struct page *page = &fbatch.folios[i]->page;
1556
1557 if (unlikely(f2fs_cp_error(sbi))) {
1558 f2fs_put_page(last_page, 0);
1559 folio_batch_release(&fbatch);
1560 return ERR_PTR(-EIO);
1561 }
1562
1563 if (!IS_DNODE(page) || !is_cold_node(page))
1564 continue;
1565 if (ino_of_node(page) != ino)
1566 continue;
1567
1568 lock_page(page);
1569
1570 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1571 continue_unlock:
1572 unlock_page(page);
1573 continue;
1574 }
1575 if (ino_of_node(page) != ino)
1576 goto continue_unlock;
1577
1578 if (!PageDirty(page)) {
1579 /* someone wrote it for us */
1580 goto continue_unlock;
1581 }
1582
1583 if (last_page)
1584 f2fs_put_page(last_page, 0);
1585
1586 get_page(page);
1587 last_page = page;
1588 unlock_page(page);
1589 }
1590 folio_batch_release(&fbatch);
1591 cond_resched();
1592 }
1593 return last_page;
1594 }
1595
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1596 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1597 struct writeback_control *wbc, bool do_balance,
1598 enum iostat_type io_type, unsigned int *seq_id)
1599 {
1600 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1601 nid_t nid;
1602 struct node_info ni;
1603 struct f2fs_io_info fio = {
1604 .sbi = sbi,
1605 .ino = ino_of_node(page),
1606 .type = NODE,
1607 .op = REQ_OP_WRITE,
1608 .op_flags = wbc_to_write_flags(wbc),
1609 .page = page,
1610 .encrypted_page = NULL,
1611 .submitted = 0,
1612 .io_type = io_type,
1613 .io_wbc = wbc,
1614 };
1615 unsigned int seq;
1616
1617 trace_f2fs_writepage(page, NODE);
1618
1619 if (unlikely(f2fs_cp_error(sbi))) {
1620 /* keep node pages in remount-ro mode */
1621 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1622 goto redirty_out;
1623 ClearPageUptodate(page);
1624 dec_page_count(sbi, F2FS_DIRTY_NODES);
1625 unlock_page(page);
1626 return 0;
1627 }
1628
1629 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1630 goto redirty_out;
1631
1632 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1633 wbc->sync_mode == WB_SYNC_NONE &&
1634 IS_DNODE(page) && is_cold_node(page))
1635 goto redirty_out;
1636
1637 /* get old block addr of this node page */
1638 nid = nid_of_node(page);
1639 f2fs_bug_on(sbi, page->index != nid);
1640
1641 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1642 goto redirty_out;
1643
1644 if (wbc->for_reclaim) {
1645 if (!f2fs_down_read_trylock(&sbi->node_write))
1646 goto redirty_out;
1647 } else {
1648 f2fs_down_read(&sbi->node_write);
1649 }
1650
1651 /* This page is already truncated */
1652 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1653 ClearPageUptodate(page);
1654 dec_page_count(sbi, F2FS_DIRTY_NODES);
1655 f2fs_up_read(&sbi->node_write);
1656 unlock_page(page);
1657 return 0;
1658 }
1659
1660 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1661 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1662 DATA_GENERIC_ENHANCE)) {
1663 f2fs_up_read(&sbi->node_write);
1664 goto redirty_out;
1665 }
1666
1667 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1668 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1669
1670 /* should add to global list before clearing PAGECACHE status */
1671 if (f2fs_in_warm_node_list(sbi, page)) {
1672 seq = f2fs_add_fsync_node_entry(sbi, page);
1673 if (seq_id)
1674 *seq_id = seq;
1675 }
1676
1677 set_page_writeback(page);
1678
1679 fio.old_blkaddr = ni.blk_addr;
1680 f2fs_do_write_node_page(nid, &fio);
1681 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1682 dec_page_count(sbi, F2FS_DIRTY_NODES);
1683 f2fs_up_read(&sbi->node_write);
1684
1685 if (wbc->for_reclaim) {
1686 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1687 submitted = NULL;
1688 }
1689
1690 unlock_page(page);
1691
1692 if (unlikely(f2fs_cp_error(sbi))) {
1693 f2fs_submit_merged_write(sbi, NODE);
1694 submitted = NULL;
1695 }
1696 if (submitted)
1697 *submitted = fio.submitted;
1698
1699 if (do_balance)
1700 f2fs_balance_fs(sbi, false);
1701 return 0;
1702
1703 redirty_out:
1704 redirty_page_for_writepage(wbc, page);
1705 return AOP_WRITEPAGE_ACTIVATE;
1706 }
1707
f2fs_move_node_page(struct page * node_page,int gc_type)1708 int f2fs_move_node_page(struct page *node_page, int gc_type)
1709 {
1710 int err = 0;
1711
1712 if (gc_type == FG_GC) {
1713 struct writeback_control wbc = {
1714 .sync_mode = WB_SYNC_ALL,
1715 .nr_to_write = 1,
1716 .for_reclaim = 0,
1717 };
1718
1719 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1720
1721 set_page_dirty(node_page);
1722
1723 if (!clear_page_dirty_for_io(node_page)) {
1724 err = -EAGAIN;
1725 goto out_page;
1726 }
1727
1728 if (__write_node_page(node_page, false, NULL,
1729 &wbc, false, FS_GC_NODE_IO, NULL)) {
1730 err = -EAGAIN;
1731 unlock_page(node_page);
1732 }
1733 goto release_page;
1734 } else {
1735 /* set page dirty and write it */
1736 if (!PageWriteback(node_page))
1737 set_page_dirty(node_page);
1738 }
1739 out_page:
1740 unlock_page(node_page);
1741 release_page:
1742 f2fs_put_page(node_page, 0);
1743 return err;
1744 }
1745
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1746 static int f2fs_write_node_page(struct page *page,
1747 struct writeback_control *wbc)
1748 {
1749 return __write_node_page(page, false, NULL, wbc, false,
1750 FS_NODE_IO, NULL);
1751 }
1752
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1753 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1754 struct writeback_control *wbc, bool atomic,
1755 unsigned int *seq_id)
1756 {
1757 pgoff_t index;
1758 struct folio_batch fbatch;
1759 int ret = 0;
1760 struct page *last_page = NULL;
1761 bool marked = false;
1762 nid_t ino = inode->i_ino;
1763 int nr_folios;
1764 int nwritten = 0;
1765
1766 if (atomic) {
1767 last_page = last_fsync_dnode(sbi, ino);
1768 if (IS_ERR_OR_NULL(last_page))
1769 return PTR_ERR_OR_ZERO(last_page);
1770 }
1771 retry:
1772 folio_batch_init(&fbatch);
1773 index = 0;
1774
1775 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1776 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1777 &fbatch))) {
1778 int i;
1779
1780 for (i = 0; i < nr_folios; i++) {
1781 struct page *page = &fbatch.folios[i]->page;
1782 bool submitted = false;
1783
1784 if (unlikely(f2fs_cp_error(sbi))) {
1785 f2fs_put_page(last_page, 0);
1786 folio_batch_release(&fbatch);
1787 ret = -EIO;
1788 goto out;
1789 }
1790
1791 if (!IS_DNODE(page) || !is_cold_node(page))
1792 continue;
1793 if (ino_of_node(page) != ino)
1794 continue;
1795
1796 lock_page(page);
1797
1798 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1799 continue_unlock:
1800 unlock_page(page);
1801 continue;
1802 }
1803 if (ino_of_node(page) != ino)
1804 goto continue_unlock;
1805
1806 if (!PageDirty(page) && page != last_page) {
1807 /* someone wrote it for us */
1808 goto continue_unlock;
1809 }
1810
1811 f2fs_wait_on_page_writeback(page, NODE, true, true);
1812
1813 set_fsync_mark(page, 0);
1814 set_dentry_mark(page, 0);
1815
1816 if (!atomic || page == last_page) {
1817 set_fsync_mark(page, 1);
1818 percpu_counter_inc(&sbi->rf_node_block_count);
1819 if (IS_INODE(page)) {
1820 if (is_inode_flag_set(inode,
1821 FI_DIRTY_INODE))
1822 f2fs_update_inode(inode, page);
1823 set_dentry_mark(page,
1824 f2fs_need_dentry_mark(sbi, ino));
1825 }
1826 /* may be written by other thread */
1827 if (!PageDirty(page))
1828 set_page_dirty(page);
1829 }
1830
1831 if (!clear_page_dirty_for_io(page))
1832 goto continue_unlock;
1833
1834 ret = __write_node_page(page, atomic &&
1835 page == last_page,
1836 &submitted, wbc, true,
1837 FS_NODE_IO, seq_id);
1838 if (ret) {
1839 unlock_page(page);
1840 f2fs_put_page(last_page, 0);
1841 break;
1842 } else if (submitted) {
1843 nwritten++;
1844 }
1845
1846 if (page == last_page) {
1847 f2fs_put_page(page, 0);
1848 marked = true;
1849 break;
1850 }
1851 }
1852 folio_batch_release(&fbatch);
1853 cond_resched();
1854
1855 if (ret || marked)
1856 break;
1857 }
1858 if (!ret && atomic && !marked) {
1859 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1860 ino, last_page->index);
1861 lock_page(last_page);
1862 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1863 set_page_dirty(last_page);
1864 unlock_page(last_page);
1865 goto retry;
1866 }
1867 out:
1868 if (nwritten)
1869 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1870 return ret ? -EIO : 0;
1871 }
1872
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1873 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1874 {
1875 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1876 bool clean;
1877
1878 if (inode->i_ino != ino)
1879 return 0;
1880
1881 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1882 return 0;
1883
1884 spin_lock(&sbi->inode_lock[DIRTY_META]);
1885 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1886 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1887
1888 if (clean)
1889 return 0;
1890
1891 inode = igrab(inode);
1892 if (!inode)
1893 return 0;
1894 return 1;
1895 }
1896
flush_dirty_inode(struct page * page)1897 static bool flush_dirty_inode(struct page *page)
1898 {
1899 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1900 struct inode *inode;
1901 nid_t ino = ino_of_node(page);
1902
1903 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1904 if (!inode)
1905 return false;
1906
1907 f2fs_update_inode(inode, page);
1908 unlock_page(page);
1909
1910 iput(inode);
1911 return true;
1912 }
1913
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1914 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1915 {
1916 pgoff_t index = 0;
1917 struct folio_batch fbatch;
1918 int nr_folios;
1919
1920 folio_batch_init(&fbatch);
1921
1922 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1923 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1924 &fbatch))) {
1925 int i;
1926
1927 for (i = 0; i < nr_folios; i++) {
1928 struct page *page = &fbatch.folios[i]->page;
1929
1930 if (!IS_DNODE(page))
1931 continue;
1932
1933 lock_page(page);
1934
1935 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1936 continue_unlock:
1937 unlock_page(page);
1938 continue;
1939 }
1940
1941 if (!PageDirty(page)) {
1942 /* someone wrote it for us */
1943 goto continue_unlock;
1944 }
1945
1946 /* flush inline_data, if it's async context. */
1947 if (page_private_inline(page)) {
1948 clear_page_private_inline(page);
1949 unlock_page(page);
1950 flush_inline_data(sbi, ino_of_node(page));
1951 continue;
1952 }
1953 unlock_page(page);
1954 }
1955 folio_batch_release(&fbatch);
1956 cond_resched();
1957 }
1958 }
1959
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1960 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1961 struct writeback_control *wbc,
1962 bool do_balance, enum iostat_type io_type)
1963 {
1964 pgoff_t index;
1965 struct folio_batch fbatch;
1966 int step = 0;
1967 int nwritten = 0;
1968 int ret = 0;
1969 int nr_folios, done = 0;
1970
1971 folio_batch_init(&fbatch);
1972
1973 next_step:
1974 index = 0;
1975
1976 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
1977 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1978 &fbatch))) {
1979 int i;
1980
1981 for (i = 0; i < nr_folios; i++) {
1982 struct page *page = &fbatch.folios[i]->page;
1983 bool submitted = false;
1984
1985 /* give a priority to WB_SYNC threads */
1986 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1987 wbc->sync_mode == WB_SYNC_NONE) {
1988 done = 1;
1989 break;
1990 }
1991
1992 /*
1993 * flushing sequence with step:
1994 * 0. indirect nodes
1995 * 1. dentry dnodes
1996 * 2. file dnodes
1997 */
1998 if (step == 0 && IS_DNODE(page))
1999 continue;
2000 if (step == 1 && (!IS_DNODE(page) ||
2001 is_cold_node(page)))
2002 continue;
2003 if (step == 2 && (!IS_DNODE(page) ||
2004 !is_cold_node(page)))
2005 continue;
2006 lock_node:
2007 if (wbc->sync_mode == WB_SYNC_ALL)
2008 lock_page(page);
2009 else if (!trylock_page(page))
2010 continue;
2011
2012 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2013 continue_unlock:
2014 unlock_page(page);
2015 continue;
2016 }
2017
2018 if (!PageDirty(page)) {
2019 /* someone wrote it for us */
2020 goto continue_unlock;
2021 }
2022
2023 /* flush inline_data/inode, if it's async context. */
2024 if (!do_balance)
2025 goto write_node;
2026
2027 /* flush inline_data */
2028 if (page_private_inline(page)) {
2029 clear_page_private_inline(page);
2030 unlock_page(page);
2031 flush_inline_data(sbi, ino_of_node(page));
2032 goto lock_node;
2033 }
2034
2035 /* flush dirty inode */
2036 if (IS_INODE(page) && flush_dirty_inode(page))
2037 goto lock_node;
2038 write_node:
2039 f2fs_wait_on_page_writeback(page, NODE, true, true);
2040
2041 if (!clear_page_dirty_for_io(page))
2042 goto continue_unlock;
2043
2044 set_fsync_mark(page, 0);
2045 set_dentry_mark(page, 0);
2046
2047 ret = __write_node_page(page, false, &submitted,
2048 wbc, do_balance, io_type, NULL);
2049 if (ret)
2050 unlock_page(page);
2051 else if (submitted)
2052 nwritten++;
2053
2054 if (--wbc->nr_to_write == 0)
2055 break;
2056 }
2057 folio_batch_release(&fbatch);
2058 cond_resched();
2059
2060 if (wbc->nr_to_write == 0) {
2061 step = 2;
2062 break;
2063 }
2064 }
2065
2066 if (step < 2) {
2067 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2068 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2069 goto out;
2070 step++;
2071 goto next_step;
2072 }
2073 out:
2074 if (nwritten)
2075 f2fs_submit_merged_write(sbi, NODE);
2076
2077 if (unlikely(f2fs_cp_error(sbi)))
2078 return -EIO;
2079 return ret;
2080 }
2081
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2082 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2083 unsigned int seq_id)
2084 {
2085 struct fsync_node_entry *fn;
2086 struct page *page;
2087 struct list_head *head = &sbi->fsync_node_list;
2088 unsigned long flags;
2089 unsigned int cur_seq_id = 0;
2090
2091 while (seq_id && cur_seq_id < seq_id) {
2092 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2093 if (list_empty(head)) {
2094 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2095 break;
2096 }
2097 fn = list_first_entry(head, struct fsync_node_entry, list);
2098 if (fn->seq_id > seq_id) {
2099 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2100 break;
2101 }
2102 cur_seq_id = fn->seq_id;
2103 page = fn->page;
2104 get_page(page);
2105 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2106
2107 f2fs_wait_on_page_writeback(page, NODE, true, false);
2108
2109 put_page(page);
2110 }
2111
2112 return filemap_check_errors(NODE_MAPPING(sbi));
2113 }
2114
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2115 static int f2fs_write_node_pages(struct address_space *mapping,
2116 struct writeback_control *wbc)
2117 {
2118 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2119 struct blk_plug plug;
2120 long diff;
2121
2122 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2123 goto skip_write;
2124
2125 /* balancing f2fs's metadata in background */
2126 f2fs_balance_fs_bg(sbi, true);
2127
2128 /* collect a number of dirty node pages and write together */
2129 if (wbc->sync_mode != WB_SYNC_ALL &&
2130 get_pages(sbi, F2FS_DIRTY_NODES) <
2131 nr_pages_to_skip(sbi, NODE))
2132 goto skip_write;
2133
2134 if (wbc->sync_mode == WB_SYNC_ALL)
2135 atomic_inc(&sbi->wb_sync_req[NODE]);
2136 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2137 /* to avoid potential deadlock */
2138 if (current->plug)
2139 blk_finish_plug(current->plug);
2140 goto skip_write;
2141 }
2142
2143 trace_f2fs_writepages(mapping->host, wbc, NODE);
2144
2145 diff = nr_pages_to_write(sbi, NODE, wbc);
2146 blk_start_plug(&plug);
2147 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2148 blk_finish_plug(&plug);
2149 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2150
2151 if (wbc->sync_mode == WB_SYNC_ALL)
2152 atomic_dec(&sbi->wb_sync_req[NODE]);
2153 return 0;
2154
2155 skip_write:
2156 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2157 trace_f2fs_writepages(mapping->host, wbc, NODE);
2158 return 0;
2159 }
2160
f2fs_dirty_node_folio(struct address_space * mapping,struct folio * folio)2161 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2162 struct folio *folio)
2163 {
2164 trace_f2fs_set_page_dirty(&folio->page, NODE);
2165
2166 if (!folio_test_uptodate(folio))
2167 folio_mark_uptodate(folio);
2168 #ifdef CONFIG_F2FS_CHECK_FS
2169 if (IS_INODE(&folio->page))
2170 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2171 #endif
2172 if (filemap_dirty_folio(mapping, folio)) {
2173 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2174 set_page_private_reference(&folio->page);
2175 return true;
2176 }
2177 return false;
2178 }
2179
2180 /*
2181 * Structure of the f2fs node operations
2182 */
2183 const struct address_space_operations f2fs_node_aops = {
2184 .writepage = f2fs_write_node_page,
2185 .writepages = f2fs_write_node_pages,
2186 .dirty_folio = f2fs_dirty_node_folio,
2187 .invalidate_folio = f2fs_invalidate_folio,
2188 .release_folio = f2fs_release_folio,
2189 .migrate_folio = filemap_migrate_folio,
2190 };
2191
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2192 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2193 nid_t n)
2194 {
2195 return radix_tree_lookup(&nm_i->free_nid_root, n);
2196 }
2197
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2198 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2199 struct free_nid *i)
2200 {
2201 struct f2fs_nm_info *nm_i = NM_I(sbi);
2202 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2203
2204 if (err)
2205 return err;
2206
2207 nm_i->nid_cnt[FREE_NID]++;
2208 list_add_tail(&i->list, &nm_i->free_nid_list);
2209 return 0;
2210 }
2211
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2212 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2213 struct free_nid *i, enum nid_state state)
2214 {
2215 struct f2fs_nm_info *nm_i = NM_I(sbi);
2216
2217 f2fs_bug_on(sbi, state != i->state);
2218 nm_i->nid_cnt[state]--;
2219 if (state == FREE_NID)
2220 list_del(&i->list);
2221 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2222 }
2223
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2224 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2225 enum nid_state org_state, enum nid_state dst_state)
2226 {
2227 struct f2fs_nm_info *nm_i = NM_I(sbi);
2228
2229 f2fs_bug_on(sbi, org_state != i->state);
2230 i->state = dst_state;
2231 nm_i->nid_cnt[org_state]--;
2232 nm_i->nid_cnt[dst_state]++;
2233
2234 switch (dst_state) {
2235 case PREALLOC_NID:
2236 list_del(&i->list);
2237 break;
2238 case FREE_NID:
2239 list_add_tail(&i->list, &nm_i->free_nid_list);
2240 break;
2241 default:
2242 BUG_ON(1);
2243 }
2244 }
2245
f2fs_nat_bitmap_enabled(struct f2fs_sb_info * sbi)2246 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2247 {
2248 struct f2fs_nm_info *nm_i = NM_I(sbi);
2249 unsigned int i;
2250 bool ret = true;
2251
2252 f2fs_down_read(&nm_i->nat_tree_lock);
2253 for (i = 0; i < nm_i->nat_blocks; i++) {
2254 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2255 ret = false;
2256 break;
2257 }
2258 }
2259 f2fs_up_read(&nm_i->nat_tree_lock);
2260
2261 return ret;
2262 }
2263
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2264 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2265 bool set, bool build)
2266 {
2267 struct f2fs_nm_info *nm_i = NM_I(sbi);
2268 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2269 unsigned int nid_ofs = nid - START_NID(nid);
2270
2271 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2272 return;
2273
2274 if (set) {
2275 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2276 return;
2277 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2278 nm_i->free_nid_count[nat_ofs]++;
2279 } else {
2280 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2281 return;
2282 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2283 if (!build)
2284 nm_i->free_nid_count[nat_ofs]--;
2285 }
2286 }
2287
2288 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2289 static bool add_free_nid(struct f2fs_sb_info *sbi,
2290 nid_t nid, bool build, bool update)
2291 {
2292 struct f2fs_nm_info *nm_i = NM_I(sbi);
2293 struct free_nid *i, *e;
2294 struct nat_entry *ne;
2295 int err = -EINVAL;
2296 bool ret = false;
2297
2298 /* 0 nid should not be used */
2299 if (unlikely(nid == 0))
2300 return false;
2301
2302 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2303 return false;
2304
2305 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2306 i->nid = nid;
2307 i->state = FREE_NID;
2308
2309 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2310
2311 spin_lock(&nm_i->nid_list_lock);
2312
2313 if (build) {
2314 /*
2315 * Thread A Thread B
2316 * - f2fs_create
2317 * - f2fs_new_inode
2318 * - f2fs_alloc_nid
2319 * - __insert_nid_to_list(PREALLOC_NID)
2320 * - f2fs_balance_fs_bg
2321 * - f2fs_build_free_nids
2322 * - __f2fs_build_free_nids
2323 * - scan_nat_page
2324 * - add_free_nid
2325 * - __lookup_nat_cache
2326 * - f2fs_add_link
2327 * - f2fs_init_inode_metadata
2328 * - f2fs_new_inode_page
2329 * - f2fs_new_node_page
2330 * - set_node_addr
2331 * - f2fs_alloc_nid_done
2332 * - __remove_nid_from_list(PREALLOC_NID)
2333 * - __insert_nid_to_list(FREE_NID)
2334 */
2335 ne = __lookup_nat_cache(nm_i, nid);
2336 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2337 nat_get_blkaddr(ne) != NULL_ADDR))
2338 goto err_out;
2339
2340 e = __lookup_free_nid_list(nm_i, nid);
2341 if (e) {
2342 if (e->state == FREE_NID)
2343 ret = true;
2344 goto err_out;
2345 }
2346 }
2347 ret = true;
2348 err = __insert_free_nid(sbi, i);
2349 err_out:
2350 if (update) {
2351 update_free_nid_bitmap(sbi, nid, ret, build);
2352 if (!build)
2353 nm_i->available_nids++;
2354 }
2355 spin_unlock(&nm_i->nid_list_lock);
2356 radix_tree_preload_end();
2357
2358 if (err)
2359 kmem_cache_free(free_nid_slab, i);
2360 return ret;
2361 }
2362
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2363 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2364 {
2365 struct f2fs_nm_info *nm_i = NM_I(sbi);
2366 struct free_nid *i;
2367 bool need_free = false;
2368
2369 spin_lock(&nm_i->nid_list_lock);
2370 i = __lookup_free_nid_list(nm_i, nid);
2371 if (i && i->state == FREE_NID) {
2372 __remove_free_nid(sbi, i, FREE_NID);
2373 need_free = true;
2374 }
2375 spin_unlock(&nm_i->nid_list_lock);
2376
2377 if (need_free)
2378 kmem_cache_free(free_nid_slab, i);
2379 }
2380
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2381 static int scan_nat_page(struct f2fs_sb_info *sbi,
2382 struct page *nat_page, nid_t start_nid)
2383 {
2384 struct f2fs_nm_info *nm_i = NM_I(sbi);
2385 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2386 block_t blk_addr;
2387 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2388 int i;
2389
2390 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2391
2392 i = start_nid % NAT_ENTRY_PER_BLOCK;
2393
2394 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2395 if (unlikely(start_nid >= nm_i->max_nid))
2396 break;
2397
2398 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2399
2400 if (blk_addr == NEW_ADDR)
2401 return -EFSCORRUPTED;
2402
2403 if (blk_addr == NULL_ADDR) {
2404 add_free_nid(sbi, start_nid, true, true);
2405 } else {
2406 spin_lock(&NM_I(sbi)->nid_list_lock);
2407 update_free_nid_bitmap(sbi, start_nid, false, true);
2408 spin_unlock(&NM_I(sbi)->nid_list_lock);
2409 }
2410 }
2411
2412 return 0;
2413 }
2414
scan_curseg_cache(struct f2fs_sb_info * sbi)2415 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2416 {
2417 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2418 struct f2fs_journal *journal = curseg->journal;
2419 int i;
2420
2421 down_read(&curseg->journal_rwsem);
2422 for (i = 0; i < nats_in_cursum(journal); i++) {
2423 block_t addr;
2424 nid_t nid;
2425
2426 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2427 nid = le32_to_cpu(nid_in_journal(journal, i));
2428 if (addr == NULL_ADDR)
2429 add_free_nid(sbi, nid, true, false);
2430 else
2431 remove_free_nid(sbi, nid);
2432 }
2433 up_read(&curseg->journal_rwsem);
2434 }
2435
scan_free_nid_bits(struct f2fs_sb_info * sbi)2436 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2437 {
2438 struct f2fs_nm_info *nm_i = NM_I(sbi);
2439 unsigned int i, idx;
2440 nid_t nid;
2441
2442 f2fs_down_read(&nm_i->nat_tree_lock);
2443
2444 for (i = 0; i < nm_i->nat_blocks; i++) {
2445 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2446 continue;
2447 if (!nm_i->free_nid_count[i])
2448 continue;
2449 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2450 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2451 NAT_ENTRY_PER_BLOCK, idx);
2452 if (idx >= NAT_ENTRY_PER_BLOCK)
2453 break;
2454
2455 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2456 add_free_nid(sbi, nid, true, false);
2457
2458 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2459 goto out;
2460 }
2461 }
2462 out:
2463 scan_curseg_cache(sbi);
2464
2465 f2fs_up_read(&nm_i->nat_tree_lock);
2466 }
2467
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2468 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2469 bool sync, bool mount)
2470 {
2471 struct f2fs_nm_info *nm_i = NM_I(sbi);
2472 int i = 0, ret;
2473 nid_t nid = nm_i->next_scan_nid;
2474
2475 if (unlikely(nid >= nm_i->max_nid))
2476 nid = 0;
2477
2478 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2479 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2480
2481 /* Enough entries */
2482 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2483 return 0;
2484
2485 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2486 return 0;
2487
2488 if (!mount) {
2489 /* try to find free nids in free_nid_bitmap */
2490 scan_free_nid_bits(sbi);
2491
2492 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2493 return 0;
2494 }
2495
2496 /* readahead nat pages to be scanned */
2497 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2498 META_NAT, true);
2499
2500 f2fs_down_read(&nm_i->nat_tree_lock);
2501
2502 while (1) {
2503 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2504 nm_i->nat_block_bitmap)) {
2505 struct page *page = get_current_nat_page(sbi, nid);
2506
2507 if (IS_ERR(page)) {
2508 ret = PTR_ERR(page);
2509 } else {
2510 ret = scan_nat_page(sbi, page, nid);
2511 f2fs_put_page(page, 1);
2512 }
2513
2514 if (ret) {
2515 f2fs_up_read(&nm_i->nat_tree_lock);
2516
2517 if (ret == -EFSCORRUPTED) {
2518 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2519 set_sbi_flag(sbi, SBI_NEED_FSCK);
2520 f2fs_handle_error(sbi,
2521 ERROR_INCONSISTENT_NAT);
2522 }
2523
2524 return ret;
2525 }
2526 }
2527
2528 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2529 if (unlikely(nid >= nm_i->max_nid))
2530 nid = 0;
2531
2532 if (++i >= FREE_NID_PAGES)
2533 break;
2534 }
2535
2536 /* go to the next free nat pages to find free nids abundantly */
2537 nm_i->next_scan_nid = nid;
2538
2539 /* find free nids from current sum_pages */
2540 scan_curseg_cache(sbi);
2541
2542 f2fs_up_read(&nm_i->nat_tree_lock);
2543
2544 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2545 nm_i->ra_nid_pages, META_NAT, false);
2546
2547 return 0;
2548 }
2549
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2550 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2551 {
2552 int ret;
2553
2554 mutex_lock(&NM_I(sbi)->build_lock);
2555 ret = __f2fs_build_free_nids(sbi, sync, mount);
2556 mutex_unlock(&NM_I(sbi)->build_lock);
2557
2558 return ret;
2559 }
2560
2561 /*
2562 * If this function returns success, caller can obtain a new nid
2563 * from second parameter of this function.
2564 * The returned nid could be used ino as well as nid when inode is created.
2565 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2566 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2567 {
2568 struct f2fs_nm_info *nm_i = NM_I(sbi);
2569 struct free_nid *i = NULL;
2570 retry:
2571 if (time_to_inject(sbi, FAULT_ALLOC_NID))
2572 return false;
2573
2574 spin_lock(&nm_i->nid_list_lock);
2575
2576 if (unlikely(nm_i->available_nids == 0)) {
2577 spin_unlock(&nm_i->nid_list_lock);
2578 return false;
2579 }
2580
2581 /* We should not use stale free nids created by f2fs_build_free_nids */
2582 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2583 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2584 i = list_first_entry(&nm_i->free_nid_list,
2585 struct free_nid, list);
2586 *nid = i->nid;
2587
2588 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2589 nm_i->available_nids--;
2590
2591 update_free_nid_bitmap(sbi, *nid, false, false);
2592
2593 spin_unlock(&nm_i->nid_list_lock);
2594 return true;
2595 }
2596 spin_unlock(&nm_i->nid_list_lock);
2597
2598 /* Let's scan nat pages and its caches to get free nids */
2599 if (!f2fs_build_free_nids(sbi, true, false))
2600 goto retry;
2601 return false;
2602 }
2603
2604 /*
2605 * f2fs_alloc_nid() should be called prior to this function.
2606 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2607 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2608 {
2609 struct f2fs_nm_info *nm_i = NM_I(sbi);
2610 struct free_nid *i;
2611
2612 spin_lock(&nm_i->nid_list_lock);
2613 i = __lookup_free_nid_list(nm_i, nid);
2614 f2fs_bug_on(sbi, !i);
2615 __remove_free_nid(sbi, i, PREALLOC_NID);
2616 spin_unlock(&nm_i->nid_list_lock);
2617
2618 kmem_cache_free(free_nid_slab, i);
2619 }
2620
2621 /*
2622 * f2fs_alloc_nid() should be called prior to this function.
2623 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2624 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2625 {
2626 struct f2fs_nm_info *nm_i = NM_I(sbi);
2627 struct free_nid *i;
2628 bool need_free = false;
2629
2630 if (!nid)
2631 return;
2632
2633 spin_lock(&nm_i->nid_list_lock);
2634 i = __lookup_free_nid_list(nm_i, nid);
2635 f2fs_bug_on(sbi, !i);
2636
2637 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2638 __remove_free_nid(sbi, i, PREALLOC_NID);
2639 need_free = true;
2640 } else {
2641 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2642 }
2643
2644 nm_i->available_nids++;
2645
2646 update_free_nid_bitmap(sbi, nid, true, false);
2647
2648 spin_unlock(&nm_i->nid_list_lock);
2649
2650 if (need_free)
2651 kmem_cache_free(free_nid_slab, i);
2652 }
2653
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2654 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2655 {
2656 struct f2fs_nm_info *nm_i = NM_I(sbi);
2657 int nr = nr_shrink;
2658
2659 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2660 return 0;
2661
2662 if (!mutex_trylock(&nm_i->build_lock))
2663 return 0;
2664
2665 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2666 struct free_nid *i, *next;
2667 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2668
2669 spin_lock(&nm_i->nid_list_lock);
2670 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2671 if (!nr_shrink || !batch ||
2672 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2673 break;
2674 __remove_free_nid(sbi, i, FREE_NID);
2675 kmem_cache_free(free_nid_slab, i);
2676 nr_shrink--;
2677 batch--;
2678 }
2679 spin_unlock(&nm_i->nid_list_lock);
2680 }
2681
2682 mutex_unlock(&nm_i->build_lock);
2683
2684 return nr - nr_shrink;
2685 }
2686
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2687 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2688 {
2689 void *src_addr, *dst_addr;
2690 size_t inline_size;
2691 struct page *ipage;
2692 struct f2fs_inode *ri;
2693
2694 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2695 if (IS_ERR(ipage))
2696 return PTR_ERR(ipage);
2697
2698 ri = F2FS_INODE(page);
2699 if (ri->i_inline & F2FS_INLINE_XATTR) {
2700 if (!f2fs_has_inline_xattr(inode)) {
2701 set_inode_flag(inode, FI_INLINE_XATTR);
2702 stat_inc_inline_xattr(inode);
2703 }
2704 } else {
2705 if (f2fs_has_inline_xattr(inode)) {
2706 stat_dec_inline_xattr(inode);
2707 clear_inode_flag(inode, FI_INLINE_XATTR);
2708 }
2709 goto update_inode;
2710 }
2711
2712 dst_addr = inline_xattr_addr(inode, ipage);
2713 src_addr = inline_xattr_addr(inode, page);
2714 inline_size = inline_xattr_size(inode);
2715
2716 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2717 memcpy(dst_addr, src_addr, inline_size);
2718 update_inode:
2719 f2fs_update_inode(inode, ipage);
2720 f2fs_put_page(ipage, 1);
2721 return 0;
2722 }
2723
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2724 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2725 {
2726 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2727 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2728 nid_t new_xnid;
2729 struct dnode_of_data dn;
2730 struct node_info ni;
2731 struct page *xpage;
2732 int err;
2733
2734 if (!prev_xnid)
2735 goto recover_xnid;
2736
2737 /* 1: invalidate the previous xattr nid */
2738 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2739 if (err)
2740 return err;
2741
2742 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2743 dec_valid_node_count(sbi, inode, false);
2744 set_node_addr(sbi, &ni, NULL_ADDR, false);
2745
2746 recover_xnid:
2747 /* 2: update xattr nid in inode */
2748 if (!f2fs_alloc_nid(sbi, &new_xnid))
2749 return -ENOSPC;
2750
2751 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2752 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2753 if (IS_ERR(xpage)) {
2754 f2fs_alloc_nid_failed(sbi, new_xnid);
2755 return PTR_ERR(xpage);
2756 }
2757
2758 f2fs_alloc_nid_done(sbi, new_xnid);
2759 f2fs_update_inode_page(inode);
2760
2761 /* 3: update and set xattr node page dirty */
2762 if (page) {
2763 memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2764 VALID_XATTR_BLOCK_SIZE);
2765 set_page_dirty(xpage);
2766 }
2767 f2fs_put_page(xpage, 1);
2768
2769 return 0;
2770 }
2771
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2772 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2773 {
2774 struct f2fs_inode *src, *dst;
2775 nid_t ino = ino_of_node(page);
2776 struct node_info old_ni, new_ni;
2777 struct page *ipage;
2778 int err;
2779
2780 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2781 if (err)
2782 return err;
2783
2784 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2785 return -EINVAL;
2786 retry:
2787 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2788 if (!ipage) {
2789 memalloc_retry_wait(GFP_NOFS);
2790 goto retry;
2791 }
2792
2793 /* Should not use this inode from free nid list */
2794 remove_free_nid(sbi, ino);
2795
2796 if (!PageUptodate(ipage))
2797 SetPageUptodate(ipage);
2798 fill_node_footer(ipage, ino, ino, 0, true);
2799 set_cold_node(ipage, false);
2800
2801 src = F2FS_INODE(page);
2802 dst = F2FS_INODE(ipage);
2803
2804 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2805 dst->i_size = 0;
2806 dst->i_blocks = cpu_to_le64(1);
2807 dst->i_links = cpu_to_le32(1);
2808 dst->i_xattr_nid = 0;
2809 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2810 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2811 dst->i_extra_isize = src->i_extra_isize;
2812
2813 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2814 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2815 i_inline_xattr_size))
2816 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2817
2818 if (f2fs_sb_has_project_quota(sbi) &&
2819 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2820 i_projid))
2821 dst->i_projid = src->i_projid;
2822
2823 if (f2fs_sb_has_inode_crtime(sbi) &&
2824 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2825 i_crtime_nsec)) {
2826 dst->i_crtime = src->i_crtime;
2827 dst->i_crtime_nsec = src->i_crtime_nsec;
2828 }
2829 }
2830
2831 new_ni = old_ni;
2832 new_ni.ino = ino;
2833
2834 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2835 WARN_ON(1);
2836 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2837 inc_valid_inode_count(sbi);
2838 set_page_dirty(ipage);
2839 f2fs_put_page(ipage, 1);
2840 return 0;
2841 }
2842
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2843 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2844 unsigned int segno, struct f2fs_summary_block *sum)
2845 {
2846 struct f2fs_node *rn;
2847 struct f2fs_summary *sum_entry;
2848 block_t addr;
2849 int i, idx, last_offset, nrpages;
2850
2851 /* scan the node segment */
2852 last_offset = BLKS_PER_SEG(sbi);
2853 addr = START_BLOCK(sbi, segno);
2854 sum_entry = &sum->entries[0];
2855
2856 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2857 nrpages = bio_max_segs(last_offset - i);
2858
2859 /* readahead node pages */
2860 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2861
2862 for (idx = addr; idx < addr + nrpages; idx++) {
2863 struct page *page = f2fs_get_tmp_page(sbi, idx);
2864
2865 if (IS_ERR(page))
2866 return PTR_ERR(page);
2867
2868 rn = F2FS_NODE(page);
2869 sum_entry->nid = rn->footer.nid;
2870 sum_entry->version = 0;
2871 sum_entry->ofs_in_node = 0;
2872 sum_entry++;
2873 f2fs_put_page(page, 1);
2874 }
2875
2876 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2877 addr + nrpages);
2878 }
2879 return 0;
2880 }
2881
remove_nats_in_journal(struct f2fs_sb_info * sbi)2882 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2883 {
2884 struct f2fs_nm_info *nm_i = NM_I(sbi);
2885 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2886 struct f2fs_journal *journal = curseg->journal;
2887 int i;
2888
2889 down_write(&curseg->journal_rwsem);
2890 for (i = 0; i < nats_in_cursum(journal); i++) {
2891 struct nat_entry *ne;
2892 struct f2fs_nat_entry raw_ne;
2893 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2894
2895 if (f2fs_check_nid_range(sbi, nid))
2896 continue;
2897
2898 raw_ne = nat_in_journal(journal, i);
2899
2900 ne = __lookup_nat_cache(nm_i, nid);
2901 if (!ne) {
2902 ne = __alloc_nat_entry(sbi, nid, true);
2903 __init_nat_entry(nm_i, ne, &raw_ne, true);
2904 }
2905
2906 /*
2907 * if a free nat in journal has not been used after last
2908 * checkpoint, we should remove it from available nids,
2909 * since later we will add it again.
2910 */
2911 if (!get_nat_flag(ne, IS_DIRTY) &&
2912 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2913 spin_lock(&nm_i->nid_list_lock);
2914 nm_i->available_nids--;
2915 spin_unlock(&nm_i->nid_list_lock);
2916 }
2917
2918 __set_nat_cache_dirty(nm_i, ne);
2919 }
2920 update_nats_in_cursum(journal, -i);
2921 up_write(&curseg->journal_rwsem);
2922 }
2923
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2924 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2925 struct list_head *head, int max)
2926 {
2927 struct nat_entry_set *cur;
2928
2929 if (nes->entry_cnt >= max)
2930 goto add_out;
2931
2932 list_for_each_entry(cur, head, set_list) {
2933 if (cur->entry_cnt >= nes->entry_cnt) {
2934 list_add(&nes->set_list, cur->set_list.prev);
2935 return;
2936 }
2937 }
2938 add_out:
2939 list_add_tail(&nes->set_list, head);
2940 }
2941
__update_nat_bits(struct f2fs_nm_info * nm_i,unsigned int nat_ofs,unsigned int valid)2942 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2943 unsigned int valid)
2944 {
2945 if (valid == 0) {
2946 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2947 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2948 return;
2949 }
2950
2951 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2952 if (valid == NAT_ENTRY_PER_BLOCK)
2953 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2954 else
2955 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2956 }
2957
update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2958 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2959 struct page *page)
2960 {
2961 struct f2fs_nm_info *nm_i = NM_I(sbi);
2962 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2963 struct f2fs_nat_block *nat_blk = page_address(page);
2964 int valid = 0;
2965 int i = 0;
2966
2967 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2968 return;
2969
2970 if (nat_index == 0) {
2971 valid = 1;
2972 i = 1;
2973 }
2974 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2975 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2976 valid++;
2977 }
2978
2979 __update_nat_bits(nm_i, nat_index, valid);
2980 }
2981
f2fs_enable_nat_bits(struct f2fs_sb_info * sbi)2982 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2983 {
2984 struct f2fs_nm_info *nm_i = NM_I(sbi);
2985 unsigned int nat_ofs;
2986
2987 f2fs_down_read(&nm_i->nat_tree_lock);
2988
2989 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2990 unsigned int valid = 0, nid_ofs = 0;
2991
2992 /* handle nid zero due to it should never be used */
2993 if (unlikely(nat_ofs == 0)) {
2994 valid = 1;
2995 nid_ofs = 1;
2996 }
2997
2998 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2999 if (!test_bit_le(nid_ofs,
3000 nm_i->free_nid_bitmap[nat_ofs]))
3001 valid++;
3002 }
3003
3004 __update_nat_bits(nm_i, nat_ofs, valid);
3005 }
3006
3007 f2fs_up_read(&nm_i->nat_tree_lock);
3008 }
3009
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)3010 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3011 struct nat_entry_set *set, struct cp_control *cpc)
3012 {
3013 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3014 struct f2fs_journal *journal = curseg->journal;
3015 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3016 bool to_journal = true;
3017 struct f2fs_nat_block *nat_blk;
3018 struct nat_entry *ne, *cur;
3019 struct page *page = NULL;
3020
3021 /*
3022 * there are two steps to flush nat entries:
3023 * #1, flush nat entries to journal in current hot data summary block.
3024 * #2, flush nat entries to nat page.
3025 */
3026 if ((cpc->reason & CP_UMOUNT) ||
3027 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3028 to_journal = false;
3029
3030 if (to_journal) {
3031 down_write(&curseg->journal_rwsem);
3032 } else {
3033 page = get_next_nat_page(sbi, start_nid);
3034 if (IS_ERR(page))
3035 return PTR_ERR(page);
3036
3037 nat_blk = page_address(page);
3038 f2fs_bug_on(sbi, !nat_blk);
3039 }
3040
3041 /* flush dirty nats in nat entry set */
3042 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3043 struct f2fs_nat_entry *raw_ne;
3044 nid_t nid = nat_get_nid(ne);
3045 int offset;
3046
3047 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3048
3049 if (to_journal) {
3050 offset = f2fs_lookup_journal_in_cursum(journal,
3051 NAT_JOURNAL, nid, 1);
3052 f2fs_bug_on(sbi, offset < 0);
3053 raw_ne = &nat_in_journal(journal, offset);
3054 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3055 } else {
3056 raw_ne = &nat_blk->entries[nid - start_nid];
3057 }
3058 raw_nat_from_node_info(raw_ne, &ne->ni);
3059 nat_reset_flag(ne);
3060 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3061 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3062 add_free_nid(sbi, nid, false, true);
3063 } else {
3064 spin_lock(&NM_I(sbi)->nid_list_lock);
3065 update_free_nid_bitmap(sbi, nid, false, false);
3066 spin_unlock(&NM_I(sbi)->nid_list_lock);
3067 }
3068 }
3069
3070 if (to_journal) {
3071 up_write(&curseg->journal_rwsem);
3072 } else {
3073 update_nat_bits(sbi, start_nid, page);
3074 f2fs_put_page(page, 1);
3075 }
3076
3077 /* Allow dirty nats by node block allocation in write_begin */
3078 if (!set->entry_cnt) {
3079 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3080 kmem_cache_free(nat_entry_set_slab, set);
3081 }
3082 return 0;
3083 }
3084
3085 /*
3086 * This function is called during the checkpointing process.
3087 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3088 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3089 {
3090 struct f2fs_nm_info *nm_i = NM_I(sbi);
3091 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3092 struct f2fs_journal *journal = curseg->journal;
3093 struct nat_entry_set *setvec[NAT_VEC_SIZE];
3094 struct nat_entry_set *set, *tmp;
3095 unsigned int found;
3096 nid_t set_idx = 0;
3097 LIST_HEAD(sets);
3098 int err = 0;
3099
3100 /*
3101 * during unmount, let's flush nat_bits before checking
3102 * nat_cnt[DIRTY_NAT].
3103 */
3104 if (cpc->reason & CP_UMOUNT) {
3105 f2fs_down_write(&nm_i->nat_tree_lock);
3106 remove_nats_in_journal(sbi);
3107 f2fs_up_write(&nm_i->nat_tree_lock);
3108 }
3109
3110 if (!nm_i->nat_cnt[DIRTY_NAT])
3111 return 0;
3112
3113 f2fs_down_write(&nm_i->nat_tree_lock);
3114
3115 /*
3116 * if there are no enough space in journal to store dirty nat
3117 * entries, remove all entries from journal and merge them
3118 * into nat entry set.
3119 */
3120 if (cpc->reason & CP_UMOUNT ||
3121 !__has_cursum_space(journal,
3122 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3123 remove_nats_in_journal(sbi);
3124
3125 while ((found = __gang_lookup_nat_set(nm_i,
3126 set_idx, NAT_VEC_SIZE, setvec))) {
3127 unsigned idx;
3128
3129 set_idx = setvec[found - 1]->set + 1;
3130 for (idx = 0; idx < found; idx++)
3131 __adjust_nat_entry_set(setvec[idx], &sets,
3132 MAX_NAT_JENTRIES(journal));
3133 }
3134
3135 /* flush dirty nats in nat entry set */
3136 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3137 err = __flush_nat_entry_set(sbi, set, cpc);
3138 if (err)
3139 break;
3140 }
3141
3142 f2fs_up_write(&nm_i->nat_tree_lock);
3143 /* Allow dirty nats by node block allocation in write_begin */
3144
3145 return err;
3146 }
3147
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3148 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3149 {
3150 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3151 struct f2fs_nm_info *nm_i = NM_I(sbi);
3152 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3153 unsigned int i;
3154 __u64 cp_ver = cur_cp_version(ckpt);
3155 block_t nat_bits_addr;
3156
3157 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3158 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3159 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3160 if (!nm_i->nat_bits)
3161 return -ENOMEM;
3162
3163 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3164 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3165
3166 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3167 return 0;
3168
3169 nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3170 nm_i->nat_bits_blocks;
3171 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3172 struct page *page;
3173
3174 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3175 if (IS_ERR(page))
3176 return PTR_ERR(page);
3177
3178 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3179 page_address(page), F2FS_BLKSIZE);
3180 f2fs_put_page(page, 1);
3181 }
3182
3183 cp_ver |= (cur_cp_crc(ckpt) << 32);
3184 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3185 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3186 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3187 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3188 return 0;
3189 }
3190
3191 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3192 return 0;
3193 }
3194
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3195 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3196 {
3197 struct f2fs_nm_info *nm_i = NM_I(sbi);
3198 unsigned int i = 0;
3199 nid_t nid, last_nid;
3200
3201 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3202 return;
3203
3204 for (i = 0; i < nm_i->nat_blocks; i++) {
3205 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3206 if (i >= nm_i->nat_blocks)
3207 break;
3208
3209 __set_bit_le(i, nm_i->nat_block_bitmap);
3210
3211 nid = i * NAT_ENTRY_PER_BLOCK;
3212 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3213
3214 spin_lock(&NM_I(sbi)->nid_list_lock);
3215 for (; nid < last_nid; nid++)
3216 update_free_nid_bitmap(sbi, nid, true, true);
3217 spin_unlock(&NM_I(sbi)->nid_list_lock);
3218 }
3219
3220 for (i = 0; i < nm_i->nat_blocks; i++) {
3221 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3222 if (i >= nm_i->nat_blocks)
3223 break;
3224
3225 __set_bit_le(i, nm_i->nat_block_bitmap);
3226 }
3227 }
3228
init_node_manager(struct f2fs_sb_info * sbi)3229 static int init_node_manager(struct f2fs_sb_info *sbi)
3230 {
3231 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3232 struct f2fs_nm_info *nm_i = NM_I(sbi);
3233 unsigned char *version_bitmap;
3234 unsigned int nat_segs;
3235 int err;
3236
3237 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3238
3239 /* segment_count_nat includes pair segment so divide to 2. */
3240 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3241 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3242 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3243
3244 /* not used nids: 0, node, meta, (and root counted as valid node) */
3245 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3246 F2FS_RESERVED_NODE_NUM;
3247 nm_i->nid_cnt[FREE_NID] = 0;
3248 nm_i->nid_cnt[PREALLOC_NID] = 0;
3249 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3250 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3251 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3252 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3253
3254 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3255 INIT_LIST_HEAD(&nm_i->free_nid_list);
3256 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3257 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3258 INIT_LIST_HEAD(&nm_i->nat_entries);
3259 spin_lock_init(&nm_i->nat_list_lock);
3260
3261 mutex_init(&nm_i->build_lock);
3262 spin_lock_init(&nm_i->nid_list_lock);
3263 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3264
3265 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3266 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3267 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3268 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3269 GFP_KERNEL);
3270 if (!nm_i->nat_bitmap)
3271 return -ENOMEM;
3272
3273 err = __get_nat_bitmaps(sbi);
3274 if (err)
3275 return err;
3276
3277 #ifdef CONFIG_F2FS_CHECK_FS
3278 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3279 GFP_KERNEL);
3280 if (!nm_i->nat_bitmap_mir)
3281 return -ENOMEM;
3282 #endif
3283
3284 return 0;
3285 }
3286
init_free_nid_cache(struct f2fs_sb_info * sbi)3287 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3288 {
3289 struct f2fs_nm_info *nm_i = NM_I(sbi);
3290 int i;
3291
3292 nm_i->free_nid_bitmap =
3293 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3294 nm_i->nat_blocks),
3295 GFP_KERNEL);
3296 if (!nm_i->free_nid_bitmap)
3297 return -ENOMEM;
3298
3299 for (i = 0; i < nm_i->nat_blocks; i++) {
3300 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3301 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3302 if (!nm_i->free_nid_bitmap[i])
3303 return -ENOMEM;
3304 }
3305
3306 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3307 GFP_KERNEL);
3308 if (!nm_i->nat_block_bitmap)
3309 return -ENOMEM;
3310
3311 nm_i->free_nid_count =
3312 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3313 nm_i->nat_blocks),
3314 GFP_KERNEL);
3315 if (!nm_i->free_nid_count)
3316 return -ENOMEM;
3317 return 0;
3318 }
3319
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3320 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3321 {
3322 int err;
3323
3324 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3325 GFP_KERNEL);
3326 if (!sbi->nm_info)
3327 return -ENOMEM;
3328
3329 err = init_node_manager(sbi);
3330 if (err)
3331 return err;
3332
3333 err = init_free_nid_cache(sbi);
3334 if (err)
3335 return err;
3336
3337 /* load free nid status from nat_bits table */
3338 load_free_nid_bitmap(sbi);
3339
3340 return f2fs_build_free_nids(sbi, true, true);
3341 }
3342
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3343 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3344 {
3345 struct f2fs_nm_info *nm_i = NM_I(sbi);
3346 struct free_nid *i, *next_i;
3347 void *vec[NAT_VEC_SIZE];
3348 struct nat_entry **natvec = (struct nat_entry **)vec;
3349 struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3350 nid_t nid = 0;
3351 unsigned int found;
3352
3353 if (!nm_i)
3354 return;
3355
3356 /* destroy free nid list */
3357 spin_lock(&nm_i->nid_list_lock);
3358 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3359 __remove_free_nid(sbi, i, FREE_NID);
3360 spin_unlock(&nm_i->nid_list_lock);
3361 kmem_cache_free(free_nid_slab, i);
3362 spin_lock(&nm_i->nid_list_lock);
3363 }
3364 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3365 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3366 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3367 spin_unlock(&nm_i->nid_list_lock);
3368
3369 /* destroy nat cache */
3370 f2fs_down_write(&nm_i->nat_tree_lock);
3371 while ((found = __gang_lookup_nat_cache(nm_i,
3372 nid, NAT_VEC_SIZE, natvec))) {
3373 unsigned idx;
3374
3375 nid = nat_get_nid(natvec[found - 1]) + 1;
3376 for (idx = 0; idx < found; idx++) {
3377 spin_lock(&nm_i->nat_list_lock);
3378 list_del(&natvec[idx]->list);
3379 spin_unlock(&nm_i->nat_list_lock);
3380
3381 __del_from_nat_cache(nm_i, natvec[idx]);
3382 }
3383 }
3384 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3385
3386 /* destroy nat set cache */
3387 nid = 0;
3388 memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3389 while ((found = __gang_lookup_nat_set(nm_i,
3390 nid, NAT_VEC_SIZE, setvec))) {
3391 unsigned idx;
3392
3393 nid = setvec[found - 1]->set + 1;
3394 for (idx = 0; idx < found; idx++) {
3395 /* entry_cnt is not zero, when cp_error was occurred */
3396 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3397 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3398 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3399 }
3400 }
3401 f2fs_up_write(&nm_i->nat_tree_lock);
3402
3403 kvfree(nm_i->nat_block_bitmap);
3404 if (nm_i->free_nid_bitmap) {
3405 int i;
3406
3407 for (i = 0; i < nm_i->nat_blocks; i++)
3408 kvfree(nm_i->free_nid_bitmap[i]);
3409 kvfree(nm_i->free_nid_bitmap);
3410 }
3411 kvfree(nm_i->free_nid_count);
3412
3413 kvfree(nm_i->nat_bitmap);
3414 kvfree(nm_i->nat_bits);
3415 #ifdef CONFIG_F2FS_CHECK_FS
3416 kvfree(nm_i->nat_bitmap_mir);
3417 #endif
3418 sbi->nm_info = NULL;
3419 kfree(nm_i);
3420 }
3421
f2fs_create_node_manager_caches(void)3422 int __init f2fs_create_node_manager_caches(void)
3423 {
3424 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3425 sizeof(struct nat_entry));
3426 if (!nat_entry_slab)
3427 goto fail;
3428
3429 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3430 sizeof(struct free_nid));
3431 if (!free_nid_slab)
3432 goto destroy_nat_entry;
3433
3434 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3435 sizeof(struct nat_entry_set));
3436 if (!nat_entry_set_slab)
3437 goto destroy_free_nid;
3438
3439 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3440 sizeof(struct fsync_node_entry));
3441 if (!fsync_node_entry_slab)
3442 goto destroy_nat_entry_set;
3443 return 0;
3444
3445 destroy_nat_entry_set:
3446 kmem_cache_destroy(nat_entry_set_slab);
3447 destroy_free_nid:
3448 kmem_cache_destroy(free_nid_slab);
3449 destroy_nat_entry:
3450 kmem_cache_destroy(nat_entry_slab);
3451 fail:
3452 return -ENOMEM;
3453 }
3454
f2fs_destroy_node_manager_caches(void)3455 void f2fs_destroy_node_manager_caches(void)
3456 {
3457 kmem_cache_destroy(fsync_node_entry_slab);
3458 kmem_cache_destroy(nat_entry_set_slab);
3459 kmem_cache_destroy(free_nid_slab);
3460 kmem_cache_destroy(nat_entry_slab);
3461 }
3462