1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44
45 static struct dentry *debugfs_root;
46
47 /*
48 * struct regulator_map
49 *
50 * Used to provide symbolic supply names to devices.
51 */
52 struct regulator_map {
53 struct list_head list;
54 const char *dev_name; /* The dev_name() for the consumer */
55 const char *supply;
56 struct regulator_dev *regulator;
57 };
58
59 /*
60 * struct regulator_enable_gpio
61 *
62 * Management for shared enable GPIO pin
63 */
64 struct regulator_enable_gpio {
65 struct list_head list;
66 struct gpio_desc *gpiod;
67 u32 enable_count; /* a number of enabled shared GPIO */
68 u32 request_count; /* a number of requested shared GPIO */
69 };
70
71 /*
72 * struct regulator_supply_alias
73 *
74 * Used to map lookups for a supply onto an alternative device.
75 */
76 struct regulator_supply_alias {
77 struct list_head list;
78 struct device *src_dev;
79 const char *src_supply;
80 struct device *alias_dev;
81 const char *alias_supply;
82 };
83
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static int _notifier_call_chain(struct regulator_dev *rdev,
90 unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 int min_uV, int max_uV);
93 static int regulator_balance_voltage(struct regulator_dev *rdev,
94 suspend_state_t state);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96 struct device *dev,
97 const char *supply_name);
98 static void destroy_regulator(struct regulator *regulator);
99 static void _regulator_put(struct regulator *regulator);
100
rdev_get_name(struct regulator_dev * rdev)101 const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103 if (rdev->constraints && rdev->constraints->name)
104 return rdev->constraints->name;
105 else if (rdev->desc->name)
106 return rdev->desc->name;
107 else
108 return "";
109 }
110 EXPORT_SYMBOL_GPL(rdev_get_name);
111
have_full_constraints(void)112 static bool have_full_constraints(void)
113 {
114 return has_full_constraints || of_have_populated_dt();
115 }
116
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118 {
119 if (!rdev->constraints) {
120 rdev_err(rdev, "no constraints\n");
121 return false;
122 }
123
124 if (rdev->constraints->valid_ops_mask & ops)
125 return true;
126
127 return false;
128 }
129
130 /**
131 * regulator_lock_nested - lock a single regulator
132 * @rdev: regulator source
133 * @ww_ctx: w/w mutex acquire context
134 *
135 * This function can be called many times by one task on
136 * a single regulator and its mutex will be locked only
137 * once. If a task, which is calling this function is other
138 * than the one, which initially locked the mutex, it will
139 * wait on mutex.
140 */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)141 static inline int regulator_lock_nested(struct regulator_dev *rdev,
142 struct ww_acquire_ctx *ww_ctx)
143 {
144 bool lock = false;
145 int ret = 0;
146
147 mutex_lock(®ulator_nesting_mutex);
148
149 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150 if (rdev->mutex_owner == current)
151 rdev->ref_cnt++;
152 else
153 lock = true;
154
155 if (lock) {
156 mutex_unlock(®ulator_nesting_mutex);
157 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158 mutex_lock(®ulator_nesting_mutex);
159 }
160 } else {
161 lock = true;
162 }
163
164 if (lock && ret != -EDEADLK) {
165 rdev->ref_cnt++;
166 rdev->mutex_owner = current;
167 }
168
169 mutex_unlock(®ulator_nesting_mutex);
170
171 return ret;
172 }
173
174 /**
175 * regulator_lock - lock a single regulator
176 * @rdev: regulator source
177 *
178 * This function can be called many times by one task on
179 * a single regulator and its mutex will be locked only
180 * once. If a task, which is calling this function is other
181 * than the one, which initially locked the mutex, it will
182 * wait on mutex.
183 */
regulator_lock(struct regulator_dev * rdev)184 static void regulator_lock(struct regulator_dev *rdev)
185 {
186 regulator_lock_nested(rdev, NULL);
187 }
188
189 /**
190 * regulator_unlock - unlock a single regulator
191 * @rdev: regulator_source
192 *
193 * This function unlocks the mutex when the
194 * reference counter reaches 0.
195 */
regulator_unlock(struct regulator_dev * rdev)196 static void regulator_unlock(struct regulator_dev *rdev)
197 {
198 mutex_lock(®ulator_nesting_mutex);
199
200 if (--rdev->ref_cnt == 0) {
201 rdev->mutex_owner = NULL;
202 ww_mutex_unlock(&rdev->mutex);
203 }
204
205 WARN_ON_ONCE(rdev->ref_cnt < 0);
206
207 mutex_unlock(®ulator_nesting_mutex);
208 }
209
210 /**
211 * regulator_lock_two - lock two regulators
212 * @rdev1: first regulator
213 * @rdev2: second regulator
214 * @ww_ctx: w/w mutex acquire context
215 *
216 * Locks both rdevs using the regulator_ww_class.
217 */
regulator_lock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)218 static void regulator_lock_two(struct regulator_dev *rdev1,
219 struct regulator_dev *rdev2,
220 struct ww_acquire_ctx *ww_ctx)
221 {
222 struct regulator_dev *held, *contended;
223 int ret;
224
225 ww_acquire_init(ww_ctx, ®ulator_ww_class);
226
227 /* Try to just grab both of them */
228 ret = regulator_lock_nested(rdev1, ww_ctx);
229 WARN_ON(ret);
230 ret = regulator_lock_nested(rdev2, ww_ctx);
231 if (ret != -EDEADLOCK) {
232 WARN_ON(ret);
233 goto exit;
234 }
235
236 held = rdev1;
237 contended = rdev2;
238 while (true) {
239 regulator_unlock(held);
240
241 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
242 contended->ref_cnt++;
243 contended->mutex_owner = current;
244 swap(held, contended);
245 ret = regulator_lock_nested(contended, ww_ctx);
246
247 if (ret != -EDEADLOCK) {
248 WARN_ON(ret);
249 break;
250 }
251 }
252
253 exit:
254 ww_acquire_done(ww_ctx);
255 }
256
257 /**
258 * regulator_unlock_two - unlock two regulators
259 * @rdev1: first regulator
260 * @rdev2: second regulator
261 * @ww_ctx: w/w mutex acquire context
262 *
263 * The inverse of regulator_lock_two().
264 */
265
regulator_unlock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)266 static void regulator_unlock_two(struct regulator_dev *rdev1,
267 struct regulator_dev *rdev2,
268 struct ww_acquire_ctx *ww_ctx)
269 {
270 regulator_unlock(rdev2);
271 regulator_unlock(rdev1);
272 ww_acquire_fini(ww_ctx);
273 }
274
regulator_supply_is_couple(struct regulator_dev * rdev)275 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
276 {
277 struct regulator_dev *c_rdev;
278 int i;
279
280 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
281 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
282
283 if (rdev->supply->rdev == c_rdev)
284 return true;
285 }
286
287 return false;
288 }
289
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)290 static void regulator_unlock_recursive(struct regulator_dev *rdev,
291 unsigned int n_coupled)
292 {
293 struct regulator_dev *c_rdev, *supply_rdev;
294 int i, supply_n_coupled;
295
296 for (i = n_coupled; i > 0; i--) {
297 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
298
299 if (!c_rdev)
300 continue;
301
302 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
303 supply_rdev = c_rdev->supply->rdev;
304 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
305
306 regulator_unlock_recursive(supply_rdev,
307 supply_n_coupled);
308 }
309
310 regulator_unlock(c_rdev);
311 }
312 }
313
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)314 static int regulator_lock_recursive(struct regulator_dev *rdev,
315 struct regulator_dev **new_contended_rdev,
316 struct regulator_dev **old_contended_rdev,
317 struct ww_acquire_ctx *ww_ctx)
318 {
319 struct regulator_dev *c_rdev;
320 int i, err;
321
322 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
323 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
324
325 if (!c_rdev)
326 continue;
327
328 if (c_rdev != *old_contended_rdev) {
329 err = regulator_lock_nested(c_rdev, ww_ctx);
330 if (err) {
331 if (err == -EDEADLK) {
332 *new_contended_rdev = c_rdev;
333 goto err_unlock;
334 }
335
336 /* shouldn't happen */
337 WARN_ON_ONCE(err != -EALREADY);
338 }
339 } else {
340 *old_contended_rdev = NULL;
341 }
342
343 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
344 err = regulator_lock_recursive(c_rdev->supply->rdev,
345 new_contended_rdev,
346 old_contended_rdev,
347 ww_ctx);
348 if (err) {
349 regulator_unlock(c_rdev);
350 goto err_unlock;
351 }
352 }
353 }
354
355 return 0;
356
357 err_unlock:
358 regulator_unlock_recursive(rdev, i);
359
360 return err;
361 }
362
363 /**
364 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
365 * regulators
366 * @rdev: regulator source
367 * @ww_ctx: w/w mutex acquire context
368 *
369 * Unlock all regulators related with rdev by coupling or supplying.
370 */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)371 static void regulator_unlock_dependent(struct regulator_dev *rdev,
372 struct ww_acquire_ctx *ww_ctx)
373 {
374 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
375 ww_acquire_fini(ww_ctx);
376 }
377
378 /**
379 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
380 * @rdev: regulator source
381 * @ww_ctx: w/w mutex acquire context
382 *
383 * This function as a wrapper on regulator_lock_recursive(), which locks
384 * all regulators related with rdev by coupling or supplying.
385 */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)386 static void regulator_lock_dependent(struct regulator_dev *rdev,
387 struct ww_acquire_ctx *ww_ctx)
388 {
389 struct regulator_dev *new_contended_rdev = NULL;
390 struct regulator_dev *old_contended_rdev = NULL;
391 int err;
392
393 mutex_lock(®ulator_list_mutex);
394
395 ww_acquire_init(ww_ctx, ®ulator_ww_class);
396
397 do {
398 if (new_contended_rdev) {
399 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
400 old_contended_rdev = new_contended_rdev;
401 old_contended_rdev->ref_cnt++;
402 old_contended_rdev->mutex_owner = current;
403 }
404
405 err = regulator_lock_recursive(rdev,
406 &new_contended_rdev,
407 &old_contended_rdev,
408 ww_ctx);
409
410 if (old_contended_rdev)
411 regulator_unlock(old_contended_rdev);
412
413 } while (err == -EDEADLK);
414
415 ww_acquire_done(ww_ctx);
416
417 mutex_unlock(®ulator_list_mutex);
418 }
419
420 /**
421 * of_get_child_regulator - get a child regulator device node
422 * based on supply name
423 * @parent: Parent device node
424 * @prop_name: Combination regulator supply name and "-supply"
425 *
426 * Traverse all child nodes.
427 * Extract the child regulator device node corresponding to the supply name.
428 * returns the device node corresponding to the regulator if found, else
429 * returns NULL.
430 */
of_get_child_regulator(struct device_node * parent,const char * prop_name)431 static struct device_node *of_get_child_regulator(struct device_node *parent,
432 const char *prop_name)
433 {
434 struct device_node *regnode = NULL;
435 struct device_node *child = NULL;
436
437 for_each_child_of_node(parent, child) {
438 regnode = of_parse_phandle(child, prop_name, 0);
439
440 if (!regnode) {
441 regnode = of_get_child_regulator(child, prop_name);
442 if (regnode)
443 goto err_node_put;
444 } else {
445 goto err_node_put;
446 }
447 }
448 return NULL;
449
450 err_node_put:
451 of_node_put(child);
452 return regnode;
453 }
454
455 /**
456 * of_get_regulator - get a regulator device node based on supply name
457 * @dev: Device pointer for the consumer (of regulator) device
458 * @supply: regulator supply name
459 *
460 * Extract the regulator device node corresponding to the supply name.
461 * returns the device node corresponding to the regulator if found, else
462 * returns NULL.
463 */
of_get_regulator(struct device * dev,const char * supply)464 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
465 {
466 struct device_node *regnode = NULL;
467 char prop_name[64]; /* 64 is max size of property name */
468
469 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
470
471 snprintf(prop_name, 64, "%s-supply", supply);
472 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
473
474 if (!regnode) {
475 regnode = of_get_child_regulator(dev->of_node, prop_name);
476 if (regnode)
477 return regnode;
478
479 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
480 prop_name, dev->of_node);
481 return NULL;
482 }
483 return regnode;
484 }
485
486 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)487 int regulator_check_voltage(struct regulator_dev *rdev,
488 int *min_uV, int *max_uV)
489 {
490 BUG_ON(*min_uV > *max_uV);
491
492 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
493 rdev_err(rdev, "voltage operation not allowed\n");
494 return -EPERM;
495 }
496
497 if (*max_uV > rdev->constraints->max_uV)
498 *max_uV = rdev->constraints->max_uV;
499 if (*min_uV < rdev->constraints->min_uV)
500 *min_uV = rdev->constraints->min_uV;
501
502 if (*min_uV > *max_uV) {
503 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
504 *min_uV, *max_uV);
505 return -EINVAL;
506 }
507
508 return 0;
509 }
510
511 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)512 static int regulator_check_states(suspend_state_t state)
513 {
514 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
515 }
516
517 /* Make sure we select a voltage that suits the needs of all
518 * regulator consumers
519 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)520 int regulator_check_consumers(struct regulator_dev *rdev,
521 int *min_uV, int *max_uV,
522 suspend_state_t state)
523 {
524 struct regulator *regulator;
525 struct regulator_voltage *voltage;
526
527 list_for_each_entry(regulator, &rdev->consumer_list, list) {
528 voltage = ®ulator->voltage[state];
529 /*
530 * Assume consumers that didn't say anything are OK
531 * with anything in the constraint range.
532 */
533 if (!voltage->min_uV && !voltage->max_uV)
534 continue;
535
536 if (*max_uV > voltage->max_uV)
537 *max_uV = voltage->max_uV;
538 if (*min_uV < voltage->min_uV)
539 *min_uV = voltage->min_uV;
540 }
541
542 if (*min_uV > *max_uV) {
543 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
544 *min_uV, *max_uV);
545 return -EINVAL;
546 }
547
548 return 0;
549 }
550
551 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)552 static int regulator_check_current_limit(struct regulator_dev *rdev,
553 int *min_uA, int *max_uA)
554 {
555 BUG_ON(*min_uA > *max_uA);
556
557 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
558 rdev_err(rdev, "current operation not allowed\n");
559 return -EPERM;
560 }
561
562 if (*max_uA > rdev->constraints->max_uA)
563 *max_uA = rdev->constraints->max_uA;
564 if (*min_uA < rdev->constraints->min_uA)
565 *min_uA = rdev->constraints->min_uA;
566
567 if (*min_uA > *max_uA) {
568 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
569 *min_uA, *max_uA);
570 return -EINVAL;
571 }
572
573 return 0;
574 }
575
576 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)577 static int regulator_mode_constrain(struct regulator_dev *rdev,
578 unsigned int *mode)
579 {
580 switch (*mode) {
581 case REGULATOR_MODE_FAST:
582 case REGULATOR_MODE_NORMAL:
583 case REGULATOR_MODE_IDLE:
584 case REGULATOR_MODE_STANDBY:
585 break;
586 default:
587 rdev_err(rdev, "invalid mode %x specified\n", *mode);
588 return -EINVAL;
589 }
590
591 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
592 rdev_err(rdev, "mode operation not allowed\n");
593 return -EPERM;
594 }
595
596 /* The modes are bitmasks, the most power hungry modes having
597 * the lowest values. If the requested mode isn't supported
598 * try higher modes.
599 */
600 while (*mode) {
601 if (rdev->constraints->valid_modes_mask & *mode)
602 return 0;
603 *mode /= 2;
604 }
605
606 return -EINVAL;
607 }
608
609 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)610 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
611 {
612 if (rdev->constraints == NULL)
613 return NULL;
614
615 switch (state) {
616 case PM_SUSPEND_STANDBY:
617 return &rdev->constraints->state_standby;
618 case PM_SUSPEND_MEM:
619 return &rdev->constraints->state_mem;
620 case PM_SUSPEND_MAX:
621 return &rdev->constraints->state_disk;
622 default:
623 return NULL;
624 }
625 }
626
627 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)628 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
629 {
630 const struct regulator_state *rstate;
631
632 rstate = regulator_get_suspend_state(rdev, state);
633 if (rstate == NULL)
634 return NULL;
635
636 /* If we have no suspend mode configuration don't set anything;
637 * only warn if the driver implements set_suspend_voltage or
638 * set_suspend_mode callback.
639 */
640 if (rstate->enabled != ENABLE_IN_SUSPEND &&
641 rstate->enabled != DISABLE_IN_SUSPEND) {
642 if (rdev->desc->ops->set_suspend_voltage ||
643 rdev->desc->ops->set_suspend_mode)
644 rdev_warn(rdev, "No configuration\n");
645 return NULL;
646 }
647
648 return rstate;
649 }
650
microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)651 static ssize_t microvolts_show(struct device *dev,
652 struct device_attribute *attr, char *buf)
653 {
654 struct regulator_dev *rdev = dev_get_drvdata(dev);
655 int uV;
656
657 regulator_lock(rdev);
658 uV = regulator_get_voltage_rdev(rdev);
659 regulator_unlock(rdev);
660
661 if (uV < 0)
662 return uV;
663 return sprintf(buf, "%d\n", uV);
664 }
665 static DEVICE_ATTR_RO(microvolts);
666
microamps_show(struct device * dev,struct device_attribute * attr,char * buf)667 static ssize_t microamps_show(struct device *dev,
668 struct device_attribute *attr, char *buf)
669 {
670 struct regulator_dev *rdev = dev_get_drvdata(dev);
671
672 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
673 }
674 static DEVICE_ATTR_RO(microamps);
675
name_show(struct device * dev,struct device_attribute * attr,char * buf)676 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
677 char *buf)
678 {
679 struct regulator_dev *rdev = dev_get_drvdata(dev);
680
681 return sprintf(buf, "%s\n", rdev_get_name(rdev));
682 }
683 static DEVICE_ATTR_RO(name);
684
regulator_opmode_to_str(int mode)685 static const char *regulator_opmode_to_str(int mode)
686 {
687 switch (mode) {
688 case REGULATOR_MODE_FAST:
689 return "fast";
690 case REGULATOR_MODE_NORMAL:
691 return "normal";
692 case REGULATOR_MODE_IDLE:
693 return "idle";
694 case REGULATOR_MODE_STANDBY:
695 return "standby";
696 }
697 return "unknown";
698 }
699
regulator_print_opmode(char * buf,int mode)700 static ssize_t regulator_print_opmode(char *buf, int mode)
701 {
702 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
703 }
704
opmode_show(struct device * dev,struct device_attribute * attr,char * buf)705 static ssize_t opmode_show(struct device *dev,
706 struct device_attribute *attr, char *buf)
707 {
708 struct regulator_dev *rdev = dev_get_drvdata(dev);
709
710 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
711 }
712 static DEVICE_ATTR_RO(opmode);
713
regulator_print_state(char * buf,int state)714 static ssize_t regulator_print_state(char *buf, int state)
715 {
716 if (state > 0)
717 return sprintf(buf, "enabled\n");
718 else if (state == 0)
719 return sprintf(buf, "disabled\n");
720 else
721 return sprintf(buf, "unknown\n");
722 }
723
state_show(struct device * dev,struct device_attribute * attr,char * buf)724 static ssize_t state_show(struct device *dev,
725 struct device_attribute *attr, char *buf)
726 {
727 struct regulator_dev *rdev = dev_get_drvdata(dev);
728 ssize_t ret;
729
730 regulator_lock(rdev);
731 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
732 regulator_unlock(rdev);
733
734 return ret;
735 }
736 static DEVICE_ATTR_RO(state);
737
status_show(struct device * dev,struct device_attribute * attr,char * buf)738 static ssize_t status_show(struct device *dev,
739 struct device_attribute *attr, char *buf)
740 {
741 struct regulator_dev *rdev = dev_get_drvdata(dev);
742 int status;
743 char *label;
744
745 status = rdev->desc->ops->get_status(rdev);
746 if (status < 0)
747 return status;
748
749 switch (status) {
750 case REGULATOR_STATUS_OFF:
751 label = "off";
752 break;
753 case REGULATOR_STATUS_ON:
754 label = "on";
755 break;
756 case REGULATOR_STATUS_ERROR:
757 label = "error";
758 break;
759 case REGULATOR_STATUS_FAST:
760 label = "fast";
761 break;
762 case REGULATOR_STATUS_NORMAL:
763 label = "normal";
764 break;
765 case REGULATOR_STATUS_IDLE:
766 label = "idle";
767 break;
768 case REGULATOR_STATUS_STANDBY:
769 label = "standby";
770 break;
771 case REGULATOR_STATUS_BYPASS:
772 label = "bypass";
773 break;
774 case REGULATOR_STATUS_UNDEFINED:
775 label = "undefined";
776 break;
777 default:
778 return -ERANGE;
779 }
780
781 return sprintf(buf, "%s\n", label);
782 }
783 static DEVICE_ATTR_RO(status);
784
min_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)785 static ssize_t min_microamps_show(struct device *dev,
786 struct device_attribute *attr, char *buf)
787 {
788 struct regulator_dev *rdev = dev_get_drvdata(dev);
789
790 if (!rdev->constraints)
791 return sprintf(buf, "constraint not defined\n");
792
793 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
794 }
795 static DEVICE_ATTR_RO(min_microamps);
796
max_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)797 static ssize_t max_microamps_show(struct device *dev,
798 struct device_attribute *attr, char *buf)
799 {
800 struct regulator_dev *rdev = dev_get_drvdata(dev);
801
802 if (!rdev->constraints)
803 return sprintf(buf, "constraint not defined\n");
804
805 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
806 }
807 static DEVICE_ATTR_RO(max_microamps);
808
min_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)809 static ssize_t min_microvolts_show(struct device *dev,
810 struct device_attribute *attr, char *buf)
811 {
812 struct regulator_dev *rdev = dev_get_drvdata(dev);
813
814 if (!rdev->constraints)
815 return sprintf(buf, "constraint not defined\n");
816
817 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
818 }
819 static DEVICE_ATTR_RO(min_microvolts);
820
max_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)821 static ssize_t max_microvolts_show(struct device *dev,
822 struct device_attribute *attr, char *buf)
823 {
824 struct regulator_dev *rdev = dev_get_drvdata(dev);
825
826 if (!rdev->constraints)
827 return sprintf(buf, "constraint not defined\n");
828
829 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
830 }
831 static DEVICE_ATTR_RO(max_microvolts);
832
requested_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)833 static ssize_t requested_microamps_show(struct device *dev,
834 struct device_attribute *attr, char *buf)
835 {
836 struct regulator_dev *rdev = dev_get_drvdata(dev);
837 struct regulator *regulator;
838 int uA = 0;
839
840 regulator_lock(rdev);
841 list_for_each_entry(regulator, &rdev->consumer_list, list) {
842 if (regulator->enable_count)
843 uA += regulator->uA_load;
844 }
845 regulator_unlock(rdev);
846 return sprintf(buf, "%d\n", uA);
847 }
848 static DEVICE_ATTR_RO(requested_microamps);
849
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)850 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
851 char *buf)
852 {
853 struct regulator_dev *rdev = dev_get_drvdata(dev);
854 return sprintf(buf, "%d\n", rdev->use_count);
855 }
856 static DEVICE_ATTR_RO(num_users);
857
type_show(struct device * dev,struct device_attribute * attr,char * buf)858 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
859 char *buf)
860 {
861 struct regulator_dev *rdev = dev_get_drvdata(dev);
862
863 switch (rdev->desc->type) {
864 case REGULATOR_VOLTAGE:
865 return sprintf(buf, "voltage\n");
866 case REGULATOR_CURRENT:
867 return sprintf(buf, "current\n");
868 }
869 return sprintf(buf, "unknown\n");
870 }
871 static DEVICE_ATTR_RO(type);
872
suspend_mem_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)873 static ssize_t suspend_mem_microvolts_show(struct device *dev,
874 struct device_attribute *attr, char *buf)
875 {
876 struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
879 }
880 static DEVICE_ATTR_RO(suspend_mem_microvolts);
881
suspend_disk_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)882 static ssize_t suspend_disk_microvolts_show(struct device *dev,
883 struct device_attribute *attr, char *buf)
884 {
885 struct regulator_dev *rdev = dev_get_drvdata(dev);
886
887 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
888 }
889 static DEVICE_ATTR_RO(suspend_disk_microvolts);
890
suspend_standby_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)891 static ssize_t suspend_standby_microvolts_show(struct device *dev,
892 struct device_attribute *attr, char *buf)
893 {
894 struct regulator_dev *rdev = dev_get_drvdata(dev);
895
896 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
897 }
898 static DEVICE_ATTR_RO(suspend_standby_microvolts);
899
suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)900 static ssize_t suspend_mem_mode_show(struct device *dev,
901 struct device_attribute *attr, char *buf)
902 {
903 struct regulator_dev *rdev = dev_get_drvdata(dev);
904
905 return regulator_print_opmode(buf,
906 rdev->constraints->state_mem.mode);
907 }
908 static DEVICE_ATTR_RO(suspend_mem_mode);
909
suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)910 static ssize_t suspend_disk_mode_show(struct device *dev,
911 struct device_attribute *attr, char *buf)
912 {
913 struct regulator_dev *rdev = dev_get_drvdata(dev);
914
915 return regulator_print_opmode(buf,
916 rdev->constraints->state_disk.mode);
917 }
918 static DEVICE_ATTR_RO(suspend_disk_mode);
919
suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)920 static ssize_t suspend_standby_mode_show(struct device *dev,
921 struct device_attribute *attr, char *buf)
922 {
923 struct regulator_dev *rdev = dev_get_drvdata(dev);
924
925 return regulator_print_opmode(buf,
926 rdev->constraints->state_standby.mode);
927 }
928 static DEVICE_ATTR_RO(suspend_standby_mode);
929
suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)930 static ssize_t suspend_mem_state_show(struct device *dev,
931 struct device_attribute *attr, char *buf)
932 {
933 struct regulator_dev *rdev = dev_get_drvdata(dev);
934
935 return regulator_print_state(buf,
936 rdev->constraints->state_mem.enabled);
937 }
938 static DEVICE_ATTR_RO(suspend_mem_state);
939
suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)940 static ssize_t suspend_disk_state_show(struct device *dev,
941 struct device_attribute *attr, char *buf)
942 {
943 struct regulator_dev *rdev = dev_get_drvdata(dev);
944
945 return regulator_print_state(buf,
946 rdev->constraints->state_disk.enabled);
947 }
948 static DEVICE_ATTR_RO(suspend_disk_state);
949
suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)950 static ssize_t suspend_standby_state_show(struct device *dev,
951 struct device_attribute *attr, char *buf)
952 {
953 struct regulator_dev *rdev = dev_get_drvdata(dev);
954
955 return regulator_print_state(buf,
956 rdev->constraints->state_standby.enabled);
957 }
958 static DEVICE_ATTR_RO(suspend_standby_state);
959
bypass_show(struct device * dev,struct device_attribute * attr,char * buf)960 static ssize_t bypass_show(struct device *dev,
961 struct device_attribute *attr, char *buf)
962 {
963 struct regulator_dev *rdev = dev_get_drvdata(dev);
964 const char *report;
965 bool bypass;
966 int ret;
967
968 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
969
970 if (ret != 0)
971 report = "unknown";
972 else if (bypass)
973 report = "enabled";
974 else
975 report = "disabled";
976
977 return sprintf(buf, "%s\n", report);
978 }
979 static DEVICE_ATTR_RO(bypass);
980
981 #define REGULATOR_ERROR_ATTR(name, bit) \
982 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
983 char *buf) \
984 { \
985 int ret; \
986 unsigned int flags; \
987 struct regulator_dev *rdev = dev_get_drvdata(dev); \
988 ret = _regulator_get_error_flags(rdev, &flags); \
989 if (ret) \
990 return ret; \
991 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
992 } \
993 static DEVICE_ATTR_RO(name)
994
995 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
996 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
997 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
998 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
999 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1000 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1001 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1002 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1003 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1004
1005 /* Calculate the new optimum regulator operating mode based on the new total
1006 * consumer load. All locks held by caller
1007 */
drms_uA_update(struct regulator_dev * rdev)1008 static int drms_uA_update(struct regulator_dev *rdev)
1009 {
1010 struct regulator *sibling;
1011 int current_uA = 0, output_uV, input_uV, err;
1012 unsigned int mode;
1013
1014 /*
1015 * first check to see if we can set modes at all, otherwise just
1016 * tell the consumer everything is OK.
1017 */
1018 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019 rdev_dbg(rdev, "DRMS operation not allowed\n");
1020 return 0;
1021 }
1022
1023 if (!rdev->desc->ops->get_optimum_mode &&
1024 !rdev->desc->ops->set_load)
1025 return 0;
1026
1027 if (!rdev->desc->ops->set_mode &&
1028 !rdev->desc->ops->set_load)
1029 return -EINVAL;
1030
1031 /* calc total requested load */
1032 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033 if (sibling->enable_count)
1034 current_uA += sibling->uA_load;
1035 }
1036
1037 current_uA += rdev->constraints->system_load;
1038
1039 if (rdev->desc->ops->set_load) {
1040 /* set the optimum mode for our new total regulator load */
1041 err = rdev->desc->ops->set_load(rdev, current_uA);
1042 if (err < 0)
1043 rdev_err(rdev, "failed to set load %d: %pe\n",
1044 current_uA, ERR_PTR(err));
1045 } else {
1046 /*
1047 * Unfortunately in some cases the constraints->valid_ops has
1048 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1049 * That's not really legit but we won't consider it a fatal
1050 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1051 * wasn't set.
1052 */
1053 if (!rdev->constraints->valid_modes_mask) {
1054 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1055 return 0;
1056 }
1057
1058 /* get output voltage */
1059 output_uV = regulator_get_voltage_rdev(rdev);
1060
1061 /*
1062 * Don't return an error; if regulator driver cares about
1063 * output_uV then it's up to the driver to validate.
1064 */
1065 if (output_uV <= 0)
1066 rdev_dbg(rdev, "invalid output voltage found\n");
1067
1068 /* get input voltage */
1069 input_uV = 0;
1070 if (rdev->supply)
1071 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1072 if (input_uV <= 0)
1073 input_uV = rdev->constraints->input_uV;
1074
1075 /*
1076 * Don't return an error; if regulator driver cares about
1077 * input_uV then it's up to the driver to validate.
1078 */
1079 if (input_uV <= 0)
1080 rdev_dbg(rdev, "invalid input voltage found\n");
1081
1082 /* now get the optimum mode for our new total regulator load */
1083 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1084 output_uV, current_uA);
1085
1086 /* check the new mode is allowed */
1087 err = regulator_mode_constrain(rdev, &mode);
1088 if (err < 0) {
1089 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1090 current_uA, input_uV, output_uV, ERR_PTR(err));
1091 return err;
1092 }
1093
1094 err = rdev->desc->ops->set_mode(rdev, mode);
1095 if (err < 0)
1096 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1097 mode, ERR_PTR(err));
1098 }
1099
1100 return err;
1101 }
1102
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1103 static int __suspend_set_state(struct regulator_dev *rdev,
1104 const struct regulator_state *rstate)
1105 {
1106 int ret = 0;
1107
1108 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1109 rdev->desc->ops->set_suspend_enable)
1110 ret = rdev->desc->ops->set_suspend_enable(rdev);
1111 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1112 rdev->desc->ops->set_suspend_disable)
1113 ret = rdev->desc->ops->set_suspend_disable(rdev);
1114 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1115 ret = 0;
1116
1117 if (ret < 0) {
1118 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1119 return ret;
1120 }
1121
1122 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1123 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1124 if (ret < 0) {
1125 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1126 return ret;
1127 }
1128 }
1129
1130 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1131 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1132 if (ret < 0) {
1133 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1134 return ret;
1135 }
1136 }
1137
1138 return ret;
1139 }
1140
suspend_set_initial_state(struct regulator_dev * rdev)1141 static int suspend_set_initial_state(struct regulator_dev *rdev)
1142 {
1143 const struct regulator_state *rstate;
1144
1145 rstate = regulator_get_suspend_state_check(rdev,
1146 rdev->constraints->initial_state);
1147 if (!rstate)
1148 return 0;
1149
1150 return __suspend_set_state(rdev, rstate);
1151 }
1152
1153 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1154 static void print_constraints_debug(struct regulator_dev *rdev)
1155 {
1156 struct regulation_constraints *constraints = rdev->constraints;
1157 char buf[160] = "";
1158 size_t len = sizeof(buf) - 1;
1159 int count = 0;
1160 int ret;
1161
1162 if (constraints->min_uV && constraints->max_uV) {
1163 if (constraints->min_uV == constraints->max_uV)
1164 count += scnprintf(buf + count, len - count, "%d mV ",
1165 constraints->min_uV / 1000);
1166 else
1167 count += scnprintf(buf + count, len - count,
1168 "%d <--> %d mV ",
1169 constraints->min_uV / 1000,
1170 constraints->max_uV / 1000);
1171 }
1172
1173 if (!constraints->min_uV ||
1174 constraints->min_uV != constraints->max_uV) {
1175 ret = regulator_get_voltage_rdev(rdev);
1176 if (ret > 0)
1177 count += scnprintf(buf + count, len - count,
1178 "at %d mV ", ret / 1000);
1179 }
1180
1181 if (constraints->uV_offset)
1182 count += scnprintf(buf + count, len - count, "%dmV offset ",
1183 constraints->uV_offset / 1000);
1184
1185 if (constraints->min_uA && constraints->max_uA) {
1186 if (constraints->min_uA == constraints->max_uA)
1187 count += scnprintf(buf + count, len - count, "%d mA ",
1188 constraints->min_uA / 1000);
1189 else
1190 count += scnprintf(buf + count, len - count,
1191 "%d <--> %d mA ",
1192 constraints->min_uA / 1000,
1193 constraints->max_uA / 1000);
1194 }
1195
1196 if (!constraints->min_uA ||
1197 constraints->min_uA != constraints->max_uA) {
1198 ret = _regulator_get_current_limit(rdev);
1199 if (ret > 0)
1200 count += scnprintf(buf + count, len - count,
1201 "at %d mA ", ret / 1000);
1202 }
1203
1204 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1205 count += scnprintf(buf + count, len - count, "fast ");
1206 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1207 count += scnprintf(buf + count, len - count, "normal ");
1208 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1209 count += scnprintf(buf + count, len - count, "idle ");
1210 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1211 count += scnprintf(buf + count, len - count, "standby ");
1212
1213 if (!count)
1214 count = scnprintf(buf, len, "no parameters");
1215 else
1216 --count;
1217
1218 count += scnprintf(buf + count, len - count, ", %s",
1219 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1220
1221 rdev_dbg(rdev, "%s\n", buf);
1222 }
1223 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1224 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1225 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226
print_constraints(struct regulator_dev * rdev)1227 static void print_constraints(struct regulator_dev *rdev)
1228 {
1229 struct regulation_constraints *constraints = rdev->constraints;
1230
1231 print_constraints_debug(rdev);
1232
1233 if ((constraints->min_uV != constraints->max_uV) &&
1234 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1235 rdev_warn(rdev,
1236 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1237 }
1238
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1239 static int machine_constraints_voltage(struct regulator_dev *rdev,
1240 struct regulation_constraints *constraints)
1241 {
1242 const struct regulator_ops *ops = rdev->desc->ops;
1243 int ret;
1244
1245 /* do we need to apply the constraint voltage */
1246 if (rdev->constraints->apply_uV &&
1247 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1248 int target_min, target_max;
1249 int current_uV = regulator_get_voltage_rdev(rdev);
1250
1251 if (current_uV == -ENOTRECOVERABLE) {
1252 /* This regulator can't be read and must be initialized */
1253 rdev_info(rdev, "Setting %d-%duV\n",
1254 rdev->constraints->min_uV,
1255 rdev->constraints->max_uV);
1256 _regulator_do_set_voltage(rdev,
1257 rdev->constraints->min_uV,
1258 rdev->constraints->max_uV);
1259 current_uV = regulator_get_voltage_rdev(rdev);
1260 }
1261
1262 if (current_uV < 0) {
1263 if (current_uV != -EPROBE_DEFER)
1264 rdev_err(rdev,
1265 "failed to get the current voltage: %pe\n",
1266 ERR_PTR(current_uV));
1267 return current_uV;
1268 }
1269
1270 /*
1271 * If we're below the minimum voltage move up to the
1272 * minimum voltage, if we're above the maximum voltage
1273 * then move down to the maximum.
1274 */
1275 target_min = current_uV;
1276 target_max = current_uV;
1277
1278 if (current_uV < rdev->constraints->min_uV) {
1279 target_min = rdev->constraints->min_uV;
1280 target_max = rdev->constraints->min_uV;
1281 }
1282
1283 if (current_uV > rdev->constraints->max_uV) {
1284 target_min = rdev->constraints->max_uV;
1285 target_max = rdev->constraints->max_uV;
1286 }
1287
1288 if (target_min != current_uV || target_max != current_uV) {
1289 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1290 current_uV, target_min, target_max);
1291 ret = _regulator_do_set_voltage(
1292 rdev, target_min, target_max);
1293 if (ret < 0) {
1294 rdev_err(rdev,
1295 "failed to apply %d-%duV constraint: %pe\n",
1296 target_min, target_max, ERR_PTR(ret));
1297 return ret;
1298 }
1299 }
1300 }
1301
1302 /* constrain machine-level voltage specs to fit
1303 * the actual range supported by this regulator.
1304 */
1305 if (ops->list_voltage && rdev->desc->n_voltages) {
1306 int count = rdev->desc->n_voltages;
1307 int i;
1308 int min_uV = INT_MAX;
1309 int max_uV = INT_MIN;
1310 int cmin = constraints->min_uV;
1311 int cmax = constraints->max_uV;
1312
1313 /* it's safe to autoconfigure fixed-voltage supplies
1314 * and the constraints are used by list_voltage.
1315 */
1316 if (count == 1 && !cmin) {
1317 cmin = 1;
1318 cmax = INT_MAX;
1319 constraints->min_uV = cmin;
1320 constraints->max_uV = cmax;
1321 }
1322
1323 /* voltage constraints are optional */
1324 if ((cmin == 0) && (cmax == 0))
1325 return 0;
1326
1327 /* else require explicit machine-level constraints */
1328 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1329 rdev_err(rdev, "invalid voltage constraints\n");
1330 return -EINVAL;
1331 }
1332
1333 /* no need to loop voltages if range is continuous */
1334 if (rdev->desc->continuous_voltage_range)
1335 return 0;
1336
1337 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1338 for (i = 0; i < count; i++) {
1339 int value;
1340
1341 value = ops->list_voltage(rdev, i);
1342 if (value <= 0)
1343 continue;
1344
1345 /* maybe adjust [min_uV..max_uV] */
1346 if (value >= cmin && value < min_uV)
1347 min_uV = value;
1348 if (value <= cmax && value > max_uV)
1349 max_uV = value;
1350 }
1351
1352 /* final: [min_uV..max_uV] valid iff constraints valid */
1353 if (max_uV < min_uV) {
1354 rdev_err(rdev,
1355 "unsupportable voltage constraints %u-%uuV\n",
1356 min_uV, max_uV);
1357 return -EINVAL;
1358 }
1359
1360 /* use regulator's subset of machine constraints */
1361 if (constraints->min_uV < min_uV) {
1362 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1363 constraints->min_uV, min_uV);
1364 constraints->min_uV = min_uV;
1365 }
1366 if (constraints->max_uV > max_uV) {
1367 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1368 constraints->max_uV, max_uV);
1369 constraints->max_uV = max_uV;
1370 }
1371 }
1372
1373 return 0;
1374 }
1375
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1376 static int machine_constraints_current(struct regulator_dev *rdev,
1377 struct regulation_constraints *constraints)
1378 {
1379 const struct regulator_ops *ops = rdev->desc->ops;
1380 int ret;
1381
1382 if (!constraints->min_uA && !constraints->max_uA)
1383 return 0;
1384
1385 if (constraints->min_uA > constraints->max_uA) {
1386 rdev_err(rdev, "Invalid current constraints\n");
1387 return -EINVAL;
1388 }
1389
1390 if (!ops->set_current_limit || !ops->get_current_limit) {
1391 rdev_warn(rdev, "Operation of current configuration missing\n");
1392 return 0;
1393 }
1394
1395 /* Set regulator current in constraints range */
1396 ret = ops->set_current_limit(rdev, constraints->min_uA,
1397 constraints->max_uA);
1398 if (ret < 0) {
1399 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1400 return ret;
1401 }
1402
1403 return 0;
1404 }
1405
1406 static int _regulator_do_enable(struct regulator_dev *rdev);
1407
notif_set_limit(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),int limit,int severity)1408 static int notif_set_limit(struct regulator_dev *rdev,
1409 int (*set)(struct regulator_dev *, int, int, bool),
1410 int limit, int severity)
1411 {
1412 bool enable;
1413
1414 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1415 enable = false;
1416 limit = 0;
1417 } else {
1418 enable = true;
1419 }
1420
1421 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1422 limit = 0;
1423
1424 return set(rdev, limit, severity, enable);
1425 }
1426
handle_notify_limits(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),struct notification_limit * limits)1427 static int handle_notify_limits(struct regulator_dev *rdev,
1428 int (*set)(struct regulator_dev *, int, int, bool),
1429 struct notification_limit *limits)
1430 {
1431 int ret = 0;
1432
1433 if (!set)
1434 return -EOPNOTSUPP;
1435
1436 if (limits->prot)
1437 ret = notif_set_limit(rdev, set, limits->prot,
1438 REGULATOR_SEVERITY_PROT);
1439 if (ret)
1440 return ret;
1441
1442 if (limits->err)
1443 ret = notif_set_limit(rdev, set, limits->err,
1444 REGULATOR_SEVERITY_ERR);
1445 if (ret)
1446 return ret;
1447
1448 if (limits->warn)
1449 ret = notif_set_limit(rdev, set, limits->warn,
1450 REGULATOR_SEVERITY_WARN);
1451
1452 return ret;
1453 }
1454 /**
1455 * set_machine_constraints - sets regulator constraints
1456 * @rdev: regulator source
1457 *
1458 * Allows platform initialisation code to define and constrain
1459 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1460 * Constraints *must* be set by platform code in order for some
1461 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1462 * set_mode.
1463 */
set_machine_constraints(struct regulator_dev * rdev)1464 static int set_machine_constraints(struct regulator_dev *rdev)
1465 {
1466 int ret = 0;
1467 const struct regulator_ops *ops = rdev->desc->ops;
1468
1469 ret = machine_constraints_voltage(rdev, rdev->constraints);
1470 if (ret != 0)
1471 return ret;
1472
1473 ret = machine_constraints_current(rdev, rdev->constraints);
1474 if (ret != 0)
1475 return ret;
1476
1477 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1478 ret = ops->set_input_current_limit(rdev,
1479 rdev->constraints->ilim_uA);
1480 if (ret < 0) {
1481 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1482 return ret;
1483 }
1484 }
1485
1486 /* do we need to setup our suspend state */
1487 if (rdev->constraints->initial_state) {
1488 ret = suspend_set_initial_state(rdev);
1489 if (ret < 0) {
1490 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1491 return ret;
1492 }
1493 }
1494
1495 if (rdev->constraints->initial_mode) {
1496 if (!ops->set_mode) {
1497 rdev_err(rdev, "no set_mode operation\n");
1498 return -EINVAL;
1499 }
1500
1501 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1502 if (ret < 0) {
1503 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1504 return ret;
1505 }
1506 } else if (rdev->constraints->system_load) {
1507 /*
1508 * We'll only apply the initial system load if an
1509 * initial mode wasn't specified.
1510 */
1511 drms_uA_update(rdev);
1512 }
1513
1514 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1515 && ops->set_ramp_delay) {
1516 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1517 if (ret < 0) {
1518 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1519 return ret;
1520 }
1521 }
1522
1523 if (rdev->constraints->pull_down && ops->set_pull_down) {
1524 ret = ops->set_pull_down(rdev);
1525 if (ret < 0) {
1526 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1527 return ret;
1528 }
1529 }
1530
1531 if (rdev->constraints->soft_start && ops->set_soft_start) {
1532 ret = ops->set_soft_start(rdev);
1533 if (ret < 0) {
1534 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1535 return ret;
1536 }
1537 }
1538
1539 /*
1540 * Existing logic does not warn if over_current_protection is given as
1541 * a constraint but driver does not support that. I think we should
1542 * warn about this type of issues as it is possible someone changes
1543 * PMIC on board to another type - and the another PMIC's driver does
1544 * not support setting protection. Board composer may happily believe
1545 * the DT limits are respected - especially if the new PMIC HW also
1546 * supports protection but the driver does not. I won't change the logic
1547 * without hearing more experienced opinion on this though.
1548 *
1549 * If warning is seen as a good idea then we can merge handling the
1550 * over-curret protection and detection and get rid of this special
1551 * handling.
1552 */
1553 if (rdev->constraints->over_current_protection
1554 && ops->set_over_current_protection) {
1555 int lim = rdev->constraints->over_curr_limits.prot;
1556
1557 ret = ops->set_over_current_protection(rdev, lim,
1558 REGULATOR_SEVERITY_PROT,
1559 true);
1560 if (ret < 0) {
1561 rdev_err(rdev, "failed to set over current protection: %pe\n",
1562 ERR_PTR(ret));
1563 return ret;
1564 }
1565 }
1566
1567 if (rdev->constraints->over_current_detection)
1568 ret = handle_notify_limits(rdev,
1569 ops->set_over_current_protection,
1570 &rdev->constraints->over_curr_limits);
1571 if (ret) {
1572 if (ret != -EOPNOTSUPP) {
1573 rdev_err(rdev, "failed to set over current limits: %pe\n",
1574 ERR_PTR(ret));
1575 return ret;
1576 }
1577 rdev_warn(rdev,
1578 "IC does not support requested over-current limits\n");
1579 }
1580
1581 if (rdev->constraints->over_voltage_detection)
1582 ret = handle_notify_limits(rdev,
1583 ops->set_over_voltage_protection,
1584 &rdev->constraints->over_voltage_limits);
1585 if (ret) {
1586 if (ret != -EOPNOTSUPP) {
1587 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1588 ERR_PTR(ret));
1589 return ret;
1590 }
1591 rdev_warn(rdev,
1592 "IC does not support requested over voltage limits\n");
1593 }
1594
1595 if (rdev->constraints->under_voltage_detection)
1596 ret = handle_notify_limits(rdev,
1597 ops->set_under_voltage_protection,
1598 &rdev->constraints->under_voltage_limits);
1599 if (ret) {
1600 if (ret != -EOPNOTSUPP) {
1601 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1602 ERR_PTR(ret));
1603 return ret;
1604 }
1605 rdev_warn(rdev,
1606 "IC does not support requested under voltage limits\n");
1607 }
1608
1609 if (rdev->constraints->over_temp_detection)
1610 ret = handle_notify_limits(rdev,
1611 ops->set_thermal_protection,
1612 &rdev->constraints->temp_limits);
1613 if (ret) {
1614 if (ret != -EOPNOTSUPP) {
1615 rdev_err(rdev, "failed to set temperature limits %pe\n",
1616 ERR_PTR(ret));
1617 return ret;
1618 }
1619 rdev_warn(rdev,
1620 "IC does not support requested temperature limits\n");
1621 }
1622
1623 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1624 bool ad_state = (rdev->constraints->active_discharge ==
1625 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1626
1627 ret = ops->set_active_discharge(rdev, ad_state);
1628 if (ret < 0) {
1629 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1630 return ret;
1631 }
1632 }
1633
1634 /*
1635 * If there is no mechanism for controlling the regulator then
1636 * flag it as always_on so we don't end up duplicating checks
1637 * for this so much. Note that we could control the state of
1638 * a supply to control the output on a regulator that has no
1639 * direct control.
1640 */
1641 if (!rdev->ena_pin && !ops->enable) {
1642 if (rdev->supply_name && !rdev->supply)
1643 return -EPROBE_DEFER;
1644
1645 if (rdev->supply)
1646 rdev->constraints->always_on =
1647 rdev->supply->rdev->constraints->always_on;
1648 else
1649 rdev->constraints->always_on = true;
1650 }
1651
1652 /* If the constraints say the regulator should be on at this point
1653 * and we have control then make sure it is enabled.
1654 */
1655 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1656 /* If we want to enable this regulator, make sure that we know
1657 * the supplying regulator.
1658 */
1659 if (rdev->supply_name && !rdev->supply)
1660 return -EPROBE_DEFER;
1661
1662 /* If supplying regulator has already been enabled,
1663 * it's not intended to have use_count increment
1664 * when rdev is only boot-on.
1665 */
1666 if (rdev->supply &&
1667 (rdev->constraints->always_on ||
1668 !regulator_is_enabled(rdev->supply))) {
1669 ret = regulator_enable(rdev->supply);
1670 if (ret < 0) {
1671 _regulator_put(rdev->supply);
1672 rdev->supply = NULL;
1673 return ret;
1674 }
1675 }
1676
1677 ret = _regulator_do_enable(rdev);
1678 if (ret < 0 && ret != -EINVAL) {
1679 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1680 return ret;
1681 }
1682
1683 if (rdev->constraints->always_on)
1684 rdev->use_count++;
1685 } else if (rdev->desc->off_on_delay) {
1686 rdev->last_off = ktime_get();
1687 }
1688
1689 print_constraints(rdev);
1690 return 0;
1691 }
1692
1693 /**
1694 * set_supply - set regulator supply regulator
1695 * @rdev: regulator (locked)
1696 * @supply_rdev: supply regulator (locked))
1697 *
1698 * Called by platform initialisation code to set the supply regulator for this
1699 * regulator. This ensures that a regulators supply will also be enabled by the
1700 * core if it's child is enabled.
1701 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1702 static int set_supply(struct regulator_dev *rdev,
1703 struct regulator_dev *supply_rdev)
1704 {
1705 int err;
1706
1707 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1708
1709 if (!try_module_get(supply_rdev->owner))
1710 return -ENODEV;
1711
1712 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1713 if (rdev->supply == NULL) {
1714 module_put(supply_rdev->owner);
1715 err = -ENOMEM;
1716 return err;
1717 }
1718 supply_rdev->open_count++;
1719
1720 return 0;
1721 }
1722
1723 /**
1724 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1725 * @rdev: regulator source
1726 * @consumer_dev_name: dev_name() string for device supply applies to
1727 * @supply: symbolic name for supply
1728 *
1729 * Allows platform initialisation code to map physical regulator
1730 * sources to symbolic names for supplies for use by devices. Devices
1731 * should use these symbolic names to request regulators, avoiding the
1732 * need to provide board-specific regulator names as platform data.
1733 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1734 static int set_consumer_device_supply(struct regulator_dev *rdev,
1735 const char *consumer_dev_name,
1736 const char *supply)
1737 {
1738 struct regulator_map *node, *new_node;
1739 int has_dev;
1740
1741 if (supply == NULL)
1742 return -EINVAL;
1743
1744 if (consumer_dev_name != NULL)
1745 has_dev = 1;
1746 else
1747 has_dev = 0;
1748
1749 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1750 if (new_node == NULL)
1751 return -ENOMEM;
1752
1753 new_node->regulator = rdev;
1754 new_node->supply = supply;
1755
1756 if (has_dev) {
1757 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1758 if (new_node->dev_name == NULL) {
1759 kfree(new_node);
1760 return -ENOMEM;
1761 }
1762 }
1763
1764 mutex_lock(®ulator_list_mutex);
1765 list_for_each_entry(node, ®ulator_map_list, list) {
1766 if (node->dev_name && consumer_dev_name) {
1767 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1768 continue;
1769 } else if (node->dev_name || consumer_dev_name) {
1770 continue;
1771 }
1772
1773 if (strcmp(node->supply, supply) != 0)
1774 continue;
1775
1776 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1777 consumer_dev_name,
1778 dev_name(&node->regulator->dev),
1779 node->regulator->desc->name,
1780 supply,
1781 dev_name(&rdev->dev), rdev_get_name(rdev));
1782 goto fail;
1783 }
1784
1785 list_add(&new_node->list, ®ulator_map_list);
1786 mutex_unlock(®ulator_list_mutex);
1787
1788 return 0;
1789
1790 fail:
1791 mutex_unlock(®ulator_list_mutex);
1792 kfree(new_node->dev_name);
1793 kfree(new_node);
1794 return -EBUSY;
1795 }
1796
unset_regulator_supplies(struct regulator_dev * rdev)1797 static void unset_regulator_supplies(struct regulator_dev *rdev)
1798 {
1799 struct regulator_map *node, *n;
1800
1801 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1802 if (rdev == node->regulator) {
1803 list_del(&node->list);
1804 kfree(node->dev_name);
1805 kfree(node);
1806 }
1807 }
1808 }
1809
1810 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1811 static ssize_t constraint_flags_read_file(struct file *file,
1812 char __user *user_buf,
1813 size_t count, loff_t *ppos)
1814 {
1815 const struct regulator *regulator = file->private_data;
1816 const struct regulation_constraints *c = regulator->rdev->constraints;
1817 char *buf;
1818 ssize_t ret;
1819
1820 if (!c)
1821 return 0;
1822
1823 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1824 if (!buf)
1825 return -ENOMEM;
1826
1827 ret = snprintf(buf, PAGE_SIZE,
1828 "always_on: %u\n"
1829 "boot_on: %u\n"
1830 "apply_uV: %u\n"
1831 "ramp_disable: %u\n"
1832 "soft_start: %u\n"
1833 "pull_down: %u\n"
1834 "over_current_protection: %u\n",
1835 c->always_on,
1836 c->boot_on,
1837 c->apply_uV,
1838 c->ramp_disable,
1839 c->soft_start,
1840 c->pull_down,
1841 c->over_current_protection);
1842
1843 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1844 kfree(buf);
1845
1846 return ret;
1847 }
1848
1849 #endif
1850
1851 static const struct file_operations constraint_flags_fops = {
1852 #ifdef CONFIG_DEBUG_FS
1853 .open = simple_open,
1854 .read = constraint_flags_read_file,
1855 .llseek = default_llseek,
1856 #endif
1857 };
1858
1859 #define REG_STR_SIZE 64
1860
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1861 static struct regulator *create_regulator(struct regulator_dev *rdev,
1862 struct device *dev,
1863 const char *supply_name)
1864 {
1865 struct regulator *regulator;
1866 int err = 0;
1867
1868 lockdep_assert_held_once(&rdev->mutex.base);
1869
1870 if (dev) {
1871 char buf[REG_STR_SIZE];
1872 int size;
1873
1874 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1875 dev->kobj.name, supply_name);
1876 if (size >= REG_STR_SIZE)
1877 return NULL;
1878
1879 supply_name = kstrdup(buf, GFP_KERNEL);
1880 if (supply_name == NULL)
1881 return NULL;
1882 } else {
1883 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1884 if (supply_name == NULL)
1885 return NULL;
1886 }
1887
1888 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1889 if (regulator == NULL) {
1890 kfree_const(supply_name);
1891 return NULL;
1892 }
1893
1894 regulator->rdev = rdev;
1895 regulator->supply_name = supply_name;
1896
1897 list_add(®ulator->list, &rdev->consumer_list);
1898
1899 if (dev) {
1900 regulator->dev = dev;
1901
1902 /* Add a link to the device sysfs entry */
1903 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1904 supply_name);
1905 if (err) {
1906 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1907 dev->kobj.name, ERR_PTR(err));
1908 /* non-fatal */
1909 }
1910 }
1911
1912 if (err != -EEXIST) {
1913 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1914 if (IS_ERR(regulator->debugfs)) {
1915 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1916 regulator->debugfs = NULL;
1917 }
1918 }
1919
1920 if (regulator->debugfs) {
1921 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1922 ®ulator->uA_load);
1923 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1924 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1925 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1926 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1927 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1928 regulator, &constraint_flags_fops);
1929 }
1930
1931 /*
1932 * Check now if the regulator is an always on regulator - if
1933 * it is then we don't need to do nearly so much work for
1934 * enable/disable calls.
1935 */
1936 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1937 _regulator_is_enabled(rdev))
1938 regulator->always_on = true;
1939
1940 return regulator;
1941 }
1942
_regulator_get_enable_time(struct regulator_dev * rdev)1943 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1944 {
1945 if (rdev->constraints && rdev->constraints->enable_time)
1946 return rdev->constraints->enable_time;
1947 if (rdev->desc->ops->enable_time)
1948 return rdev->desc->ops->enable_time(rdev);
1949 return rdev->desc->enable_time;
1950 }
1951
regulator_find_supply_alias(struct device * dev,const char * supply)1952 static struct regulator_supply_alias *regulator_find_supply_alias(
1953 struct device *dev, const char *supply)
1954 {
1955 struct regulator_supply_alias *map;
1956
1957 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1958 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1959 return map;
1960
1961 return NULL;
1962 }
1963
regulator_supply_alias(struct device ** dev,const char ** supply)1964 static void regulator_supply_alias(struct device **dev, const char **supply)
1965 {
1966 struct regulator_supply_alias *map;
1967
1968 map = regulator_find_supply_alias(*dev, *supply);
1969 if (map) {
1970 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1971 *supply, map->alias_supply,
1972 dev_name(map->alias_dev));
1973 *dev = map->alias_dev;
1974 *supply = map->alias_supply;
1975 }
1976 }
1977
regulator_match(struct device * dev,const void * data)1978 static int regulator_match(struct device *dev, const void *data)
1979 {
1980 struct regulator_dev *r = dev_to_rdev(dev);
1981
1982 return strcmp(rdev_get_name(r), data) == 0;
1983 }
1984
regulator_lookup_by_name(const char * name)1985 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1986 {
1987 struct device *dev;
1988
1989 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1990
1991 return dev ? dev_to_rdev(dev) : NULL;
1992 }
1993
1994 /**
1995 * regulator_dev_lookup - lookup a regulator device.
1996 * @dev: device for regulator "consumer".
1997 * @supply: Supply name or regulator ID.
1998 *
1999 * If successful, returns a struct regulator_dev that corresponds to the name
2000 * @supply and with the embedded struct device refcount incremented by one.
2001 * The refcount must be dropped by calling put_device().
2002 * On failure one of the following ERR-PTR-encoded values is returned:
2003 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2004 * in the future.
2005 */
regulator_dev_lookup(struct device * dev,const char * supply)2006 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2007 const char *supply)
2008 {
2009 struct regulator_dev *r = NULL;
2010 struct device_node *node;
2011 struct regulator_map *map;
2012 const char *devname = NULL;
2013
2014 regulator_supply_alias(&dev, &supply);
2015
2016 /* first do a dt based lookup */
2017 if (dev && dev->of_node) {
2018 node = of_get_regulator(dev, supply);
2019 if (node) {
2020 r = of_find_regulator_by_node(node);
2021 of_node_put(node);
2022 if (r)
2023 return r;
2024
2025 /*
2026 * We have a node, but there is no device.
2027 * assume it has not registered yet.
2028 */
2029 return ERR_PTR(-EPROBE_DEFER);
2030 }
2031 }
2032
2033 /* if not found, try doing it non-dt way */
2034 if (dev)
2035 devname = dev_name(dev);
2036
2037 mutex_lock(®ulator_list_mutex);
2038 list_for_each_entry(map, ®ulator_map_list, list) {
2039 /* If the mapping has a device set up it must match */
2040 if (map->dev_name &&
2041 (!devname || strcmp(map->dev_name, devname)))
2042 continue;
2043
2044 if (strcmp(map->supply, supply) == 0 &&
2045 get_device(&map->regulator->dev)) {
2046 r = map->regulator;
2047 break;
2048 }
2049 }
2050 mutex_unlock(®ulator_list_mutex);
2051
2052 if (r)
2053 return r;
2054
2055 r = regulator_lookup_by_name(supply);
2056 if (r)
2057 return r;
2058
2059 return ERR_PTR(-ENODEV);
2060 }
2061
regulator_resolve_supply(struct regulator_dev * rdev)2062 static int regulator_resolve_supply(struct regulator_dev *rdev)
2063 {
2064 struct regulator_dev *r;
2065 struct device *dev = rdev->dev.parent;
2066 struct ww_acquire_ctx ww_ctx;
2067 int ret = 0;
2068
2069 /* No supply to resolve? */
2070 if (!rdev->supply_name)
2071 return 0;
2072
2073 /* Supply already resolved? (fast-path without locking contention) */
2074 if (rdev->supply)
2075 return 0;
2076
2077 r = regulator_dev_lookup(dev, rdev->supply_name);
2078 if (IS_ERR(r)) {
2079 ret = PTR_ERR(r);
2080
2081 /* Did the lookup explicitly defer for us? */
2082 if (ret == -EPROBE_DEFER)
2083 goto out;
2084
2085 if (have_full_constraints()) {
2086 r = dummy_regulator_rdev;
2087 if (!r) {
2088 ret = -EPROBE_DEFER;
2089 goto out;
2090 }
2091 get_device(&r->dev);
2092 } else {
2093 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2094 rdev->supply_name, rdev->desc->name);
2095 ret = -EPROBE_DEFER;
2096 goto out;
2097 }
2098 }
2099
2100 if (r == rdev) {
2101 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2102 rdev->desc->name, rdev->supply_name);
2103 if (!have_full_constraints()) {
2104 ret = -EINVAL;
2105 goto out;
2106 }
2107 r = dummy_regulator_rdev;
2108 if (!r) {
2109 ret = -EPROBE_DEFER;
2110 goto out;
2111 }
2112 get_device(&r->dev);
2113 }
2114
2115 /*
2116 * If the supply's parent device is not the same as the
2117 * regulator's parent device, then ensure the parent device
2118 * is bound before we resolve the supply, in case the parent
2119 * device get probe deferred and unregisters the supply.
2120 */
2121 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2122 if (!device_is_bound(r->dev.parent)) {
2123 put_device(&r->dev);
2124 ret = -EPROBE_DEFER;
2125 goto out;
2126 }
2127 }
2128
2129 /* Recursively resolve the supply of the supply */
2130 ret = regulator_resolve_supply(r);
2131 if (ret < 0) {
2132 put_device(&r->dev);
2133 goto out;
2134 }
2135
2136 /*
2137 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2138 * between rdev->supply null check and setting rdev->supply in
2139 * set_supply() from concurrent tasks.
2140 */
2141 regulator_lock_two(rdev, r, &ww_ctx);
2142
2143 /* Supply just resolved by a concurrent task? */
2144 if (rdev->supply) {
2145 regulator_unlock_two(rdev, r, &ww_ctx);
2146 put_device(&r->dev);
2147 goto out;
2148 }
2149
2150 ret = set_supply(rdev, r);
2151 if (ret < 0) {
2152 regulator_unlock_two(rdev, r, &ww_ctx);
2153 put_device(&r->dev);
2154 goto out;
2155 }
2156
2157 regulator_unlock_two(rdev, r, &ww_ctx);
2158
2159 /*
2160 * In set_machine_constraints() we may have turned this regulator on
2161 * but we couldn't propagate to the supply if it hadn't been resolved
2162 * yet. Do it now.
2163 */
2164 if (rdev->use_count) {
2165 ret = regulator_enable(rdev->supply);
2166 if (ret < 0) {
2167 _regulator_put(rdev->supply);
2168 rdev->supply = NULL;
2169 goto out;
2170 }
2171 }
2172
2173 out:
2174 return ret;
2175 }
2176
2177 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2178 struct regulator *_regulator_get(struct device *dev, const char *id,
2179 enum regulator_get_type get_type)
2180 {
2181 struct regulator_dev *rdev;
2182 struct regulator *regulator;
2183 struct device_link *link;
2184 int ret;
2185
2186 if (get_type >= MAX_GET_TYPE) {
2187 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2188 return ERR_PTR(-EINVAL);
2189 }
2190
2191 if (id == NULL) {
2192 pr_err("get() with no identifier\n");
2193 return ERR_PTR(-EINVAL);
2194 }
2195
2196 rdev = regulator_dev_lookup(dev, id);
2197 if (IS_ERR(rdev)) {
2198 ret = PTR_ERR(rdev);
2199
2200 /*
2201 * If regulator_dev_lookup() fails with error other
2202 * than -ENODEV our job here is done, we simply return it.
2203 */
2204 if (ret != -ENODEV)
2205 return ERR_PTR(ret);
2206
2207 if (!have_full_constraints()) {
2208 dev_warn(dev,
2209 "incomplete constraints, dummy supplies not allowed\n");
2210 return ERR_PTR(-ENODEV);
2211 }
2212
2213 switch (get_type) {
2214 case NORMAL_GET:
2215 /*
2216 * Assume that a regulator is physically present and
2217 * enabled, even if it isn't hooked up, and just
2218 * provide a dummy.
2219 */
2220 rdev = dummy_regulator_rdev;
2221 if (!rdev)
2222 return ERR_PTR(-EPROBE_DEFER);
2223 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2224 get_device(&rdev->dev);
2225 break;
2226
2227 case EXCLUSIVE_GET:
2228 dev_warn(dev,
2229 "dummy supplies not allowed for exclusive requests\n");
2230 fallthrough;
2231
2232 default:
2233 return ERR_PTR(-ENODEV);
2234 }
2235 }
2236
2237 if (rdev->exclusive) {
2238 regulator = ERR_PTR(-EPERM);
2239 put_device(&rdev->dev);
2240 return regulator;
2241 }
2242
2243 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2244 regulator = ERR_PTR(-EBUSY);
2245 put_device(&rdev->dev);
2246 return regulator;
2247 }
2248
2249 mutex_lock(®ulator_list_mutex);
2250 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2251 mutex_unlock(®ulator_list_mutex);
2252
2253 if (ret != 0) {
2254 regulator = ERR_PTR(-EPROBE_DEFER);
2255 put_device(&rdev->dev);
2256 return regulator;
2257 }
2258
2259 ret = regulator_resolve_supply(rdev);
2260 if (ret < 0) {
2261 regulator = ERR_PTR(ret);
2262 put_device(&rdev->dev);
2263 return regulator;
2264 }
2265
2266 if (!try_module_get(rdev->owner)) {
2267 regulator = ERR_PTR(-EPROBE_DEFER);
2268 put_device(&rdev->dev);
2269 return regulator;
2270 }
2271
2272 regulator_lock(rdev);
2273 regulator = create_regulator(rdev, dev, id);
2274 regulator_unlock(rdev);
2275 if (regulator == NULL) {
2276 regulator = ERR_PTR(-ENOMEM);
2277 module_put(rdev->owner);
2278 put_device(&rdev->dev);
2279 return regulator;
2280 }
2281
2282 rdev->open_count++;
2283 if (get_type == EXCLUSIVE_GET) {
2284 rdev->exclusive = 1;
2285
2286 ret = _regulator_is_enabled(rdev);
2287 if (ret > 0) {
2288 rdev->use_count = 1;
2289 regulator->enable_count = 1;
2290 } else {
2291 rdev->use_count = 0;
2292 regulator->enable_count = 0;
2293 }
2294 }
2295
2296 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2297 if (!IS_ERR_OR_NULL(link))
2298 regulator->device_link = true;
2299
2300 return regulator;
2301 }
2302
2303 /**
2304 * regulator_get - lookup and obtain a reference to a regulator.
2305 * @dev: device for regulator "consumer"
2306 * @id: Supply name or regulator ID.
2307 *
2308 * Returns a struct regulator corresponding to the regulator producer,
2309 * or IS_ERR() condition containing errno.
2310 *
2311 * Use of supply names configured via set_consumer_device_supply() is
2312 * strongly encouraged. It is recommended that the supply name used
2313 * should match the name used for the supply and/or the relevant
2314 * device pins in the datasheet.
2315 */
regulator_get(struct device * dev,const char * id)2316 struct regulator *regulator_get(struct device *dev, const char *id)
2317 {
2318 return _regulator_get(dev, id, NORMAL_GET);
2319 }
2320 EXPORT_SYMBOL_GPL(regulator_get);
2321
2322 /**
2323 * regulator_get_exclusive - obtain exclusive access to a regulator.
2324 * @dev: device for regulator "consumer"
2325 * @id: Supply name or regulator ID.
2326 *
2327 * Returns a struct regulator corresponding to the regulator producer,
2328 * or IS_ERR() condition containing errno. Other consumers will be
2329 * unable to obtain this regulator while this reference is held and the
2330 * use count for the regulator will be initialised to reflect the current
2331 * state of the regulator.
2332 *
2333 * This is intended for use by consumers which cannot tolerate shared
2334 * use of the regulator such as those which need to force the
2335 * regulator off for correct operation of the hardware they are
2336 * controlling.
2337 *
2338 * Use of supply names configured via set_consumer_device_supply() is
2339 * strongly encouraged. It is recommended that the supply name used
2340 * should match the name used for the supply and/or the relevant
2341 * device pins in the datasheet.
2342 */
regulator_get_exclusive(struct device * dev,const char * id)2343 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2344 {
2345 return _regulator_get(dev, id, EXCLUSIVE_GET);
2346 }
2347 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2348
2349 /**
2350 * regulator_get_optional - obtain optional access to a regulator.
2351 * @dev: device for regulator "consumer"
2352 * @id: Supply name or regulator ID.
2353 *
2354 * Returns a struct regulator corresponding to the regulator producer,
2355 * or IS_ERR() condition containing errno.
2356 *
2357 * This is intended for use by consumers for devices which can have
2358 * some supplies unconnected in normal use, such as some MMC devices.
2359 * It can allow the regulator core to provide stub supplies for other
2360 * supplies requested using normal regulator_get() calls without
2361 * disrupting the operation of drivers that can handle absent
2362 * supplies.
2363 *
2364 * Use of supply names configured via set_consumer_device_supply() is
2365 * strongly encouraged. It is recommended that the supply name used
2366 * should match the name used for the supply and/or the relevant
2367 * device pins in the datasheet.
2368 */
regulator_get_optional(struct device * dev,const char * id)2369 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2370 {
2371 return _regulator_get(dev, id, OPTIONAL_GET);
2372 }
2373 EXPORT_SYMBOL_GPL(regulator_get_optional);
2374
destroy_regulator(struct regulator * regulator)2375 static void destroy_regulator(struct regulator *regulator)
2376 {
2377 struct regulator_dev *rdev = regulator->rdev;
2378
2379 debugfs_remove_recursive(regulator->debugfs);
2380
2381 if (regulator->dev) {
2382 if (regulator->device_link)
2383 device_link_remove(regulator->dev, &rdev->dev);
2384
2385 /* remove any sysfs entries */
2386 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2387 }
2388
2389 regulator_lock(rdev);
2390 list_del(®ulator->list);
2391
2392 rdev->open_count--;
2393 rdev->exclusive = 0;
2394 regulator_unlock(rdev);
2395
2396 kfree_const(regulator->supply_name);
2397 kfree(regulator);
2398 }
2399
2400 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2401 static void _regulator_put(struct regulator *regulator)
2402 {
2403 struct regulator_dev *rdev;
2404
2405 if (IS_ERR_OR_NULL(regulator))
2406 return;
2407
2408 lockdep_assert_held_once(®ulator_list_mutex);
2409
2410 /* Docs say you must disable before calling regulator_put() */
2411 WARN_ON(regulator->enable_count);
2412
2413 rdev = regulator->rdev;
2414
2415 destroy_regulator(regulator);
2416
2417 module_put(rdev->owner);
2418 put_device(&rdev->dev);
2419 }
2420
2421 /**
2422 * regulator_put - "free" the regulator source
2423 * @regulator: regulator source
2424 *
2425 * Note: drivers must ensure that all regulator_enable calls made on this
2426 * regulator source are balanced by regulator_disable calls prior to calling
2427 * this function.
2428 */
regulator_put(struct regulator * regulator)2429 void regulator_put(struct regulator *regulator)
2430 {
2431 mutex_lock(®ulator_list_mutex);
2432 _regulator_put(regulator);
2433 mutex_unlock(®ulator_list_mutex);
2434 }
2435 EXPORT_SYMBOL_GPL(regulator_put);
2436
2437 /**
2438 * regulator_register_supply_alias - Provide device alias for supply lookup
2439 *
2440 * @dev: device that will be given as the regulator "consumer"
2441 * @id: Supply name or regulator ID
2442 * @alias_dev: device that should be used to lookup the supply
2443 * @alias_id: Supply name or regulator ID that should be used to lookup the
2444 * supply
2445 *
2446 * All lookups for id on dev will instead be conducted for alias_id on
2447 * alias_dev.
2448 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2449 int regulator_register_supply_alias(struct device *dev, const char *id,
2450 struct device *alias_dev,
2451 const char *alias_id)
2452 {
2453 struct regulator_supply_alias *map;
2454
2455 map = regulator_find_supply_alias(dev, id);
2456 if (map)
2457 return -EEXIST;
2458
2459 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2460 if (!map)
2461 return -ENOMEM;
2462
2463 map->src_dev = dev;
2464 map->src_supply = id;
2465 map->alias_dev = alias_dev;
2466 map->alias_supply = alias_id;
2467
2468 list_add(&map->list, ®ulator_supply_alias_list);
2469
2470 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2471 id, dev_name(dev), alias_id, dev_name(alias_dev));
2472
2473 return 0;
2474 }
2475 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2476
2477 /**
2478 * regulator_unregister_supply_alias - Remove device alias
2479 *
2480 * @dev: device that will be given as the regulator "consumer"
2481 * @id: Supply name or regulator ID
2482 *
2483 * Remove a lookup alias if one exists for id on dev.
2484 */
regulator_unregister_supply_alias(struct device * dev,const char * id)2485 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2486 {
2487 struct regulator_supply_alias *map;
2488
2489 map = regulator_find_supply_alias(dev, id);
2490 if (map) {
2491 list_del(&map->list);
2492 kfree(map);
2493 }
2494 }
2495 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2496
2497 /**
2498 * regulator_bulk_register_supply_alias - register multiple aliases
2499 *
2500 * @dev: device that will be given as the regulator "consumer"
2501 * @id: List of supply names or regulator IDs
2502 * @alias_dev: device that should be used to lookup the supply
2503 * @alias_id: List of supply names or regulator IDs that should be used to
2504 * lookup the supply
2505 * @num_id: Number of aliases to register
2506 *
2507 * @return 0 on success, an errno on failure.
2508 *
2509 * This helper function allows drivers to register several supply
2510 * aliases in one operation. If any of the aliases cannot be
2511 * registered any aliases that were registered will be removed
2512 * before returning to the caller.
2513 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2514 int regulator_bulk_register_supply_alias(struct device *dev,
2515 const char *const *id,
2516 struct device *alias_dev,
2517 const char *const *alias_id,
2518 int num_id)
2519 {
2520 int i;
2521 int ret;
2522
2523 for (i = 0; i < num_id; ++i) {
2524 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2525 alias_id[i]);
2526 if (ret < 0)
2527 goto err;
2528 }
2529
2530 return 0;
2531
2532 err:
2533 dev_err(dev,
2534 "Failed to create supply alias %s,%s -> %s,%s\n",
2535 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2536
2537 while (--i >= 0)
2538 regulator_unregister_supply_alias(dev, id[i]);
2539
2540 return ret;
2541 }
2542 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2543
2544 /**
2545 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2546 *
2547 * @dev: device that will be given as the regulator "consumer"
2548 * @id: List of supply names or regulator IDs
2549 * @num_id: Number of aliases to unregister
2550 *
2551 * This helper function allows drivers to unregister several supply
2552 * aliases in one operation.
2553 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2554 void regulator_bulk_unregister_supply_alias(struct device *dev,
2555 const char *const *id,
2556 int num_id)
2557 {
2558 int i;
2559
2560 for (i = 0; i < num_id; ++i)
2561 regulator_unregister_supply_alias(dev, id[i]);
2562 }
2563 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2564
2565
2566 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2567 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2568 const struct regulator_config *config)
2569 {
2570 struct regulator_enable_gpio *pin, *new_pin;
2571 struct gpio_desc *gpiod;
2572
2573 gpiod = config->ena_gpiod;
2574 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2575
2576 mutex_lock(®ulator_list_mutex);
2577
2578 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2579 if (pin->gpiod == gpiod) {
2580 rdev_dbg(rdev, "GPIO is already used\n");
2581 goto update_ena_gpio_to_rdev;
2582 }
2583 }
2584
2585 if (new_pin == NULL) {
2586 mutex_unlock(®ulator_list_mutex);
2587 return -ENOMEM;
2588 }
2589
2590 pin = new_pin;
2591 new_pin = NULL;
2592
2593 pin->gpiod = gpiod;
2594 list_add(&pin->list, ®ulator_ena_gpio_list);
2595
2596 update_ena_gpio_to_rdev:
2597 pin->request_count++;
2598 rdev->ena_pin = pin;
2599
2600 mutex_unlock(®ulator_list_mutex);
2601 kfree(new_pin);
2602
2603 return 0;
2604 }
2605
regulator_ena_gpio_free(struct regulator_dev * rdev)2606 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2607 {
2608 struct regulator_enable_gpio *pin, *n;
2609
2610 if (!rdev->ena_pin)
2611 return;
2612
2613 /* Free the GPIO only in case of no use */
2614 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2615 if (pin != rdev->ena_pin)
2616 continue;
2617
2618 if (--pin->request_count)
2619 break;
2620
2621 gpiod_put(pin->gpiod);
2622 list_del(&pin->list);
2623 kfree(pin);
2624 break;
2625 }
2626
2627 rdev->ena_pin = NULL;
2628 }
2629
2630 /**
2631 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2632 * @rdev: regulator_dev structure
2633 * @enable: enable GPIO at initial use?
2634 *
2635 * GPIO is enabled in case of initial use. (enable_count is 0)
2636 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2637 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2638 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2639 {
2640 struct regulator_enable_gpio *pin = rdev->ena_pin;
2641
2642 if (!pin)
2643 return -EINVAL;
2644
2645 if (enable) {
2646 /* Enable GPIO at initial use */
2647 if (pin->enable_count == 0)
2648 gpiod_set_value_cansleep(pin->gpiod, 1);
2649
2650 pin->enable_count++;
2651 } else {
2652 if (pin->enable_count > 1) {
2653 pin->enable_count--;
2654 return 0;
2655 }
2656
2657 /* Disable GPIO if not used */
2658 if (pin->enable_count <= 1) {
2659 gpiod_set_value_cansleep(pin->gpiod, 0);
2660 pin->enable_count = 0;
2661 }
2662 }
2663
2664 return 0;
2665 }
2666
2667 /**
2668 * _regulator_delay_helper - a delay helper function
2669 * @delay: time to delay in microseconds
2670 *
2671 * Delay for the requested amount of time as per the guidelines in:
2672 *
2673 * Documentation/timers/timers-howto.rst
2674 *
2675 * The assumption here is that these regulator operations will never used in
2676 * atomic context and therefore sleeping functions can be used.
2677 */
_regulator_delay_helper(unsigned int delay)2678 static void _regulator_delay_helper(unsigned int delay)
2679 {
2680 unsigned int ms = delay / 1000;
2681 unsigned int us = delay % 1000;
2682
2683 if (ms > 0) {
2684 /*
2685 * For small enough values, handle super-millisecond
2686 * delays in the usleep_range() call below.
2687 */
2688 if (ms < 20)
2689 us += ms * 1000;
2690 else
2691 msleep(ms);
2692 }
2693
2694 /*
2695 * Give the scheduler some room to coalesce with any other
2696 * wakeup sources. For delays shorter than 10 us, don't even
2697 * bother setting up high-resolution timers and just busy-
2698 * loop.
2699 */
2700 if (us >= 10)
2701 usleep_range(us, us + 100);
2702 else
2703 udelay(us);
2704 }
2705
2706 /**
2707 * _regulator_check_status_enabled
2708 *
2709 * A helper function to check if the regulator status can be interpreted
2710 * as 'regulator is enabled'.
2711 * @rdev: the regulator device to check
2712 *
2713 * Return:
2714 * * 1 - if status shows regulator is in enabled state
2715 * * 0 - if not enabled state
2716 * * Error Value - as received from ops->get_status()
2717 */
_regulator_check_status_enabled(struct regulator_dev * rdev)2718 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2719 {
2720 int ret = rdev->desc->ops->get_status(rdev);
2721
2722 if (ret < 0) {
2723 rdev_info(rdev, "get_status returned error: %d\n", ret);
2724 return ret;
2725 }
2726
2727 switch (ret) {
2728 case REGULATOR_STATUS_OFF:
2729 case REGULATOR_STATUS_ERROR:
2730 case REGULATOR_STATUS_UNDEFINED:
2731 return 0;
2732 default:
2733 return 1;
2734 }
2735 }
2736
_regulator_do_enable(struct regulator_dev * rdev)2737 static int _regulator_do_enable(struct regulator_dev *rdev)
2738 {
2739 int ret, delay;
2740
2741 /* Query before enabling in case configuration dependent. */
2742 ret = _regulator_get_enable_time(rdev);
2743 if (ret >= 0) {
2744 delay = ret;
2745 } else {
2746 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2747 delay = 0;
2748 }
2749
2750 trace_regulator_enable(rdev_get_name(rdev));
2751
2752 if (rdev->desc->off_on_delay) {
2753 /* if needed, keep a distance of off_on_delay from last time
2754 * this regulator was disabled.
2755 */
2756 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2757 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2758
2759 if (remaining > 0)
2760 _regulator_delay_helper(remaining);
2761 }
2762
2763 if (rdev->ena_pin) {
2764 if (!rdev->ena_gpio_state) {
2765 ret = regulator_ena_gpio_ctrl(rdev, true);
2766 if (ret < 0)
2767 return ret;
2768 rdev->ena_gpio_state = 1;
2769 }
2770 } else if (rdev->desc->ops->enable) {
2771 ret = rdev->desc->ops->enable(rdev);
2772 if (ret < 0)
2773 return ret;
2774 } else {
2775 return -EINVAL;
2776 }
2777
2778 /* Allow the regulator to ramp; it would be useful to extend
2779 * this for bulk operations so that the regulators can ramp
2780 * together.
2781 */
2782 trace_regulator_enable_delay(rdev_get_name(rdev));
2783
2784 /* If poll_enabled_time is set, poll upto the delay calculated
2785 * above, delaying poll_enabled_time uS to check if the regulator
2786 * actually got enabled.
2787 * If the regulator isn't enabled after our delay helper has expired,
2788 * return -ETIMEDOUT.
2789 */
2790 if (rdev->desc->poll_enabled_time) {
2791 int time_remaining = delay;
2792
2793 while (time_remaining > 0) {
2794 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2795
2796 if (rdev->desc->ops->get_status) {
2797 ret = _regulator_check_status_enabled(rdev);
2798 if (ret < 0)
2799 return ret;
2800 else if (ret)
2801 break;
2802 } else if (rdev->desc->ops->is_enabled(rdev))
2803 break;
2804
2805 time_remaining -= rdev->desc->poll_enabled_time;
2806 }
2807
2808 if (time_remaining <= 0) {
2809 rdev_err(rdev, "Enabled check timed out\n");
2810 return -ETIMEDOUT;
2811 }
2812 } else {
2813 _regulator_delay_helper(delay);
2814 }
2815
2816 trace_regulator_enable_complete(rdev_get_name(rdev));
2817
2818 return 0;
2819 }
2820
2821 /**
2822 * _regulator_handle_consumer_enable - handle that a consumer enabled
2823 * @regulator: regulator source
2824 *
2825 * Some things on a regulator consumer (like the contribution towards total
2826 * load on the regulator) only have an effect when the consumer wants the
2827 * regulator enabled. Explained in example with two consumers of the same
2828 * regulator:
2829 * consumer A: set_load(100); => total load = 0
2830 * consumer A: regulator_enable(); => total load = 100
2831 * consumer B: set_load(1000); => total load = 100
2832 * consumer B: regulator_enable(); => total load = 1100
2833 * consumer A: regulator_disable(); => total_load = 1000
2834 *
2835 * This function (together with _regulator_handle_consumer_disable) is
2836 * responsible for keeping track of the refcount for a given regulator consumer
2837 * and applying / unapplying these things.
2838 *
2839 * Returns 0 upon no error; -error upon error.
2840 */
_regulator_handle_consumer_enable(struct regulator * regulator)2841 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2842 {
2843 int ret;
2844 struct regulator_dev *rdev = regulator->rdev;
2845
2846 lockdep_assert_held_once(&rdev->mutex.base);
2847
2848 regulator->enable_count++;
2849 if (regulator->uA_load && regulator->enable_count == 1) {
2850 ret = drms_uA_update(rdev);
2851 if (ret)
2852 regulator->enable_count--;
2853 return ret;
2854 }
2855
2856 return 0;
2857 }
2858
2859 /**
2860 * _regulator_handle_consumer_disable - handle that a consumer disabled
2861 * @regulator: regulator source
2862 *
2863 * The opposite of _regulator_handle_consumer_enable().
2864 *
2865 * Returns 0 upon no error; -error upon error.
2866 */
_regulator_handle_consumer_disable(struct regulator * regulator)2867 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2868 {
2869 struct regulator_dev *rdev = regulator->rdev;
2870
2871 lockdep_assert_held_once(&rdev->mutex.base);
2872
2873 if (!regulator->enable_count) {
2874 rdev_err(rdev, "Underflow of regulator enable count\n");
2875 return -EINVAL;
2876 }
2877
2878 regulator->enable_count--;
2879 if (regulator->uA_load && regulator->enable_count == 0)
2880 return drms_uA_update(rdev);
2881
2882 return 0;
2883 }
2884
2885 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2886 static int _regulator_enable(struct regulator *regulator)
2887 {
2888 struct regulator_dev *rdev = regulator->rdev;
2889 int ret;
2890
2891 lockdep_assert_held_once(&rdev->mutex.base);
2892
2893 if (rdev->use_count == 0 && rdev->supply) {
2894 ret = _regulator_enable(rdev->supply);
2895 if (ret < 0)
2896 return ret;
2897 }
2898
2899 /* balance only if there are regulators coupled */
2900 if (rdev->coupling_desc.n_coupled > 1) {
2901 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2902 if (ret < 0)
2903 goto err_disable_supply;
2904 }
2905
2906 ret = _regulator_handle_consumer_enable(regulator);
2907 if (ret < 0)
2908 goto err_disable_supply;
2909
2910 if (rdev->use_count == 0) {
2911 /*
2912 * The regulator may already be enabled if it's not switchable
2913 * or was left on
2914 */
2915 ret = _regulator_is_enabled(rdev);
2916 if (ret == -EINVAL || ret == 0) {
2917 if (!regulator_ops_is_valid(rdev,
2918 REGULATOR_CHANGE_STATUS)) {
2919 ret = -EPERM;
2920 goto err_consumer_disable;
2921 }
2922
2923 ret = _regulator_do_enable(rdev);
2924 if (ret < 0)
2925 goto err_consumer_disable;
2926
2927 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2928 NULL);
2929 } else if (ret < 0) {
2930 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2931 goto err_consumer_disable;
2932 }
2933 /* Fallthrough on positive return values - already enabled */
2934 }
2935
2936 if (regulator->enable_count == 1)
2937 rdev->use_count++;
2938
2939 return 0;
2940
2941 err_consumer_disable:
2942 _regulator_handle_consumer_disable(regulator);
2943
2944 err_disable_supply:
2945 if (rdev->use_count == 0 && rdev->supply)
2946 _regulator_disable(rdev->supply);
2947
2948 return ret;
2949 }
2950
2951 /**
2952 * regulator_enable - enable regulator output
2953 * @regulator: regulator source
2954 *
2955 * Request that the regulator be enabled with the regulator output at
2956 * the predefined voltage or current value. Calls to regulator_enable()
2957 * must be balanced with calls to regulator_disable().
2958 *
2959 * NOTE: the output value can be set by other drivers, boot loader or may be
2960 * hardwired in the regulator.
2961 */
regulator_enable(struct regulator * regulator)2962 int regulator_enable(struct regulator *regulator)
2963 {
2964 struct regulator_dev *rdev = regulator->rdev;
2965 struct ww_acquire_ctx ww_ctx;
2966 int ret;
2967
2968 regulator_lock_dependent(rdev, &ww_ctx);
2969 ret = _regulator_enable(regulator);
2970 regulator_unlock_dependent(rdev, &ww_ctx);
2971
2972 return ret;
2973 }
2974 EXPORT_SYMBOL_GPL(regulator_enable);
2975
_regulator_do_disable(struct regulator_dev * rdev)2976 static int _regulator_do_disable(struct regulator_dev *rdev)
2977 {
2978 int ret;
2979
2980 trace_regulator_disable(rdev_get_name(rdev));
2981
2982 if (rdev->ena_pin) {
2983 if (rdev->ena_gpio_state) {
2984 ret = regulator_ena_gpio_ctrl(rdev, false);
2985 if (ret < 0)
2986 return ret;
2987 rdev->ena_gpio_state = 0;
2988 }
2989
2990 } else if (rdev->desc->ops->disable) {
2991 ret = rdev->desc->ops->disable(rdev);
2992 if (ret != 0)
2993 return ret;
2994 }
2995
2996 if (rdev->desc->off_on_delay)
2997 rdev->last_off = ktime_get_boottime();
2998
2999 trace_regulator_disable_complete(rdev_get_name(rdev));
3000
3001 return 0;
3002 }
3003
3004 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)3005 static int _regulator_disable(struct regulator *regulator)
3006 {
3007 struct regulator_dev *rdev = regulator->rdev;
3008 int ret = 0;
3009
3010 lockdep_assert_held_once(&rdev->mutex.base);
3011
3012 if (WARN(regulator->enable_count == 0,
3013 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3014 return -EIO;
3015
3016 if (regulator->enable_count == 1) {
3017 /* disabling last enable_count from this regulator */
3018 /* are we the last user and permitted to disable ? */
3019 if (rdev->use_count == 1 &&
3020 (rdev->constraints && !rdev->constraints->always_on)) {
3021
3022 /* we are last user */
3023 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3024 ret = _notifier_call_chain(rdev,
3025 REGULATOR_EVENT_PRE_DISABLE,
3026 NULL);
3027 if (ret & NOTIFY_STOP_MASK)
3028 return -EINVAL;
3029
3030 ret = _regulator_do_disable(rdev);
3031 if (ret < 0) {
3032 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3033 _notifier_call_chain(rdev,
3034 REGULATOR_EVENT_ABORT_DISABLE,
3035 NULL);
3036 return ret;
3037 }
3038 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3039 NULL);
3040 }
3041
3042 rdev->use_count = 0;
3043 } else if (rdev->use_count > 1) {
3044 rdev->use_count--;
3045 }
3046 }
3047
3048 if (ret == 0)
3049 ret = _regulator_handle_consumer_disable(regulator);
3050
3051 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3052 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3053
3054 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3055 ret = _regulator_disable(rdev->supply);
3056
3057 return ret;
3058 }
3059
3060 /**
3061 * regulator_disable - disable regulator output
3062 * @regulator: regulator source
3063 *
3064 * Disable the regulator output voltage or current. Calls to
3065 * regulator_enable() must be balanced with calls to
3066 * regulator_disable().
3067 *
3068 * NOTE: this will only disable the regulator output if no other consumer
3069 * devices have it enabled, the regulator device supports disabling and
3070 * machine constraints permit this operation.
3071 */
regulator_disable(struct regulator * regulator)3072 int regulator_disable(struct regulator *regulator)
3073 {
3074 struct regulator_dev *rdev = regulator->rdev;
3075 struct ww_acquire_ctx ww_ctx;
3076 int ret;
3077
3078 regulator_lock_dependent(rdev, &ww_ctx);
3079 ret = _regulator_disable(regulator);
3080 regulator_unlock_dependent(rdev, &ww_ctx);
3081
3082 return ret;
3083 }
3084 EXPORT_SYMBOL_GPL(regulator_disable);
3085
3086 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)3087 static int _regulator_force_disable(struct regulator_dev *rdev)
3088 {
3089 int ret = 0;
3090
3091 lockdep_assert_held_once(&rdev->mutex.base);
3092
3093 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3094 REGULATOR_EVENT_PRE_DISABLE, NULL);
3095 if (ret & NOTIFY_STOP_MASK)
3096 return -EINVAL;
3097
3098 ret = _regulator_do_disable(rdev);
3099 if (ret < 0) {
3100 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3101 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3102 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3103 return ret;
3104 }
3105
3106 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3107 REGULATOR_EVENT_DISABLE, NULL);
3108
3109 return 0;
3110 }
3111
3112 /**
3113 * regulator_force_disable - force disable regulator output
3114 * @regulator: regulator source
3115 *
3116 * Forcibly disable the regulator output voltage or current.
3117 * NOTE: this *will* disable the regulator output even if other consumer
3118 * devices have it enabled. This should be used for situations when device
3119 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3120 */
regulator_force_disable(struct regulator * regulator)3121 int regulator_force_disable(struct regulator *regulator)
3122 {
3123 struct regulator_dev *rdev = regulator->rdev;
3124 struct ww_acquire_ctx ww_ctx;
3125 int ret;
3126
3127 regulator_lock_dependent(rdev, &ww_ctx);
3128
3129 ret = _regulator_force_disable(regulator->rdev);
3130
3131 if (rdev->coupling_desc.n_coupled > 1)
3132 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3133
3134 if (regulator->uA_load) {
3135 regulator->uA_load = 0;
3136 ret = drms_uA_update(rdev);
3137 }
3138
3139 if (rdev->use_count != 0 && rdev->supply)
3140 _regulator_disable(rdev->supply);
3141
3142 regulator_unlock_dependent(rdev, &ww_ctx);
3143
3144 return ret;
3145 }
3146 EXPORT_SYMBOL_GPL(regulator_force_disable);
3147
regulator_disable_work(struct work_struct * work)3148 static void regulator_disable_work(struct work_struct *work)
3149 {
3150 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3151 disable_work.work);
3152 struct ww_acquire_ctx ww_ctx;
3153 int count, i, ret;
3154 struct regulator *regulator;
3155 int total_count = 0;
3156
3157 regulator_lock_dependent(rdev, &ww_ctx);
3158
3159 /*
3160 * Workqueue functions queue the new work instance while the previous
3161 * work instance is being processed. Cancel the queued work instance
3162 * as the work instance under processing does the job of the queued
3163 * work instance.
3164 */
3165 cancel_delayed_work(&rdev->disable_work);
3166
3167 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3168 count = regulator->deferred_disables;
3169
3170 if (!count)
3171 continue;
3172
3173 total_count += count;
3174 regulator->deferred_disables = 0;
3175
3176 for (i = 0; i < count; i++) {
3177 ret = _regulator_disable(regulator);
3178 if (ret != 0)
3179 rdev_err(rdev, "Deferred disable failed: %pe\n",
3180 ERR_PTR(ret));
3181 }
3182 }
3183 WARN_ON(!total_count);
3184
3185 if (rdev->coupling_desc.n_coupled > 1)
3186 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3187
3188 regulator_unlock_dependent(rdev, &ww_ctx);
3189 }
3190
3191 /**
3192 * regulator_disable_deferred - disable regulator output with delay
3193 * @regulator: regulator source
3194 * @ms: milliseconds until the regulator is disabled
3195 *
3196 * Execute regulator_disable() on the regulator after a delay. This
3197 * is intended for use with devices that require some time to quiesce.
3198 *
3199 * NOTE: this will only disable the regulator output if no other consumer
3200 * devices have it enabled, the regulator device supports disabling and
3201 * machine constraints permit this operation.
3202 */
regulator_disable_deferred(struct regulator * regulator,int ms)3203 int regulator_disable_deferred(struct regulator *regulator, int ms)
3204 {
3205 struct regulator_dev *rdev = regulator->rdev;
3206
3207 if (!ms)
3208 return regulator_disable(regulator);
3209
3210 regulator_lock(rdev);
3211 regulator->deferred_disables++;
3212 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3213 msecs_to_jiffies(ms));
3214 regulator_unlock(rdev);
3215
3216 return 0;
3217 }
3218 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3219
_regulator_is_enabled(struct regulator_dev * rdev)3220 static int _regulator_is_enabled(struct regulator_dev *rdev)
3221 {
3222 /* A GPIO control always takes precedence */
3223 if (rdev->ena_pin)
3224 return rdev->ena_gpio_state;
3225
3226 /* If we don't know then assume that the regulator is always on */
3227 if (!rdev->desc->ops->is_enabled)
3228 return 1;
3229
3230 return rdev->desc->ops->is_enabled(rdev);
3231 }
3232
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3233 static int _regulator_list_voltage(struct regulator_dev *rdev,
3234 unsigned selector, int lock)
3235 {
3236 const struct regulator_ops *ops = rdev->desc->ops;
3237 int ret;
3238
3239 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3240 return rdev->desc->fixed_uV;
3241
3242 if (ops->list_voltage) {
3243 if (selector >= rdev->desc->n_voltages)
3244 return -EINVAL;
3245 if (selector < rdev->desc->linear_min_sel)
3246 return 0;
3247 if (lock)
3248 regulator_lock(rdev);
3249 ret = ops->list_voltage(rdev, selector);
3250 if (lock)
3251 regulator_unlock(rdev);
3252 } else if (rdev->is_switch && rdev->supply) {
3253 ret = _regulator_list_voltage(rdev->supply->rdev,
3254 selector, lock);
3255 } else {
3256 return -EINVAL;
3257 }
3258
3259 if (ret > 0) {
3260 if (ret < rdev->constraints->min_uV)
3261 ret = 0;
3262 else if (ret > rdev->constraints->max_uV)
3263 ret = 0;
3264 }
3265
3266 return ret;
3267 }
3268
3269 /**
3270 * regulator_is_enabled - is the regulator output enabled
3271 * @regulator: regulator source
3272 *
3273 * Returns positive if the regulator driver backing the source/client
3274 * has requested that the device be enabled, zero if it hasn't, else a
3275 * negative errno code.
3276 *
3277 * Note that the device backing this regulator handle can have multiple
3278 * users, so it might be enabled even if regulator_enable() was never
3279 * called for this particular source.
3280 */
regulator_is_enabled(struct regulator * regulator)3281 int regulator_is_enabled(struct regulator *regulator)
3282 {
3283 int ret;
3284
3285 if (regulator->always_on)
3286 return 1;
3287
3288 regulator_lock(regulator->rdev);
3289 ret = _regulator_is_enabled(regulator->rdev);
3290 regulator_unlock(regulator->rdev);
3291
3292 return ret;
3293 }
3294 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3295
3296 /**
3297 * regulator_count_voltages - count regulator_list_voltage() selectors
3298 * @regulator: regulator source
3299 *
3300 * Returns number of selectors, or negative errno. Selectors are
3301 * numbered starting at zero, and typically correspond to bitfields
3302 * in hardware registers.
3303 */
regulator_count_voltages(struct regulator * regulator)3304 int regulator_count_voltages(struct regulator *regulator)
3305 {
3306 struct regulator_dev *rdev = regulator->rdev;
3307
3308 if (rdev->desc->n_voltages)
3309 return rdev->desc->n_voltages;
3310
3311 if (!rdev->is_switch || !rdev->supply)
3312 return -EINVAL;
3313
3314 return regulator_count_voltages(rdev->supply);
3315 }
3316 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3317
3318 /**
3319 * regulator_list_voltage - enumerate supported voltages
3320 * @regulator: regulator source
3321 * @selector: identify voltage to list
3322 * Context: can sleep
3323 *
3324 * Returns a voltage that can be passed to @regulator_set_voltage(),
3325 * zero if this selector code can't be used on this system, or a
3326 * negative errno.
3327 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3328 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3329 {
3330 return _regulator_list_voltage(regulator->rdev, selector, 1);
3331 }
3332 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3333
3334 /**
3335 * regulator_get_regmap - get the regulator's register map
3336 * @regulator: regulator source
3337 *
3338 * Returns the register map for the given regulator, or an ERR_PTR value
3339 * if the regulator doesn't use regmap.
3340 */
regulator_get_regmap(struct regulator * regulator)3341 struct regmap *regulator_get_regmap(struct regulator *regulator)
3342 {
3343 struct regmap *map = regulator->rdev->regmap;
3344
3345 return map ? map : ERR_PTR(-EOPNOTSUPP);
3346 }
3347 EXPORT_SYMBOL_GPL(regulator_get_regmap);
3348
3349 /**
3350 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3351 * @regulator: regulator source
3352 * @vsel_reg: voltage selector register, output parameter
3353 * @vsel_mask: mask for voltage selector bitfield, output parameter
3354 *
3355 * Returns the hardware register offset and bitmask used for setting the
3356 * regulator voltage. This might be useful when configuring voltage-scaling
3357 * hardware or firmware that can make I2C requests behind the kernel's back,
3358 * for example.
3359 *
3360 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3361 * and 0 is returned, otherwise a negative errno is returned.
3362 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3363 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3364 unsigned *vsel_reg,
3365 unsigned *vsel_mask)
3366 {
3367 struct regulator_dev *rdev = regulator->rdev;
3368 const struct regulator_ops *ops = rdev->desc->ops;
3369
3370 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3371 return -EOPNOTSUPP;
3372
3373 *vsel_reg = rdev->desc->vsel_reg;
3374 *vsel_mask = rdev->desc->vsel_mask;
3375
3376 return 0;
3377 }
3378 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3379
3380 /**
3381 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3382 * @regulator: regulator source
3383 * @selector: identify voltage to list
3384 *
3385 * Converts the selector to a hardware-specific voltage selector that can be
3386 * directly written to the regulator registers. The address of the voltage
3387 * register can be determined by calling @regulator_get_hardware_vsel_register.
3388 *
3389 * On error a negative errno is returned.
3390 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3391 int regulator_list_hardware_vsel(struct regulator *regulator,
3392 unsigned selector)
3393 {
3394 struct regulator_dev *rdev = regulator->rdev;
3395 const struct regulator_ops *ops = rdev->desc->ops;
3396
3397 if (selector >= rdev->desc->n_voltages)
3398 return -EINVAL;
3399 if (selector < rdev->desc->linear_min_sel)
3400 return 0;
3401 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3402 return -EOPNOTSUPP;
3403
3404 return selector;
3405 }
3406 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3407
3408 /**
3409 * regulator_get_linear_step - return the voltage step size between VSEL values
3410 * @regulator: regulator source
3411 *
3412 * Returns the voltage step size between VSEL values for linear
3413 * regulators, or return 0 if the regulator isn't a linear regulator.
3414 */
regulator_get_linear_step(struct regulator * regulator)3415 unsigned int regulator_get_linear_step(struct regulator *regulator)
3416 {
3417 struct regulator_dev *rdev = regulator->rdev;
3418
3419 return rdev->desc->uV_step;
3420 }
3421 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3422
3423 /**
3424 * regulator_is_supported_voltage - check if a voltage range can be supported
3425 *
3426 * @regulator: Regulator to check.
3427 * @min_uV: Minimum required voltage in uV.
3428 * @max_uV: Maximum required voltage in uV.
3429 *
3430 * Returns a boolean.
3431 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3432 int regulator_is_supported_voltage(struct regulator *regulator,
3433 int min_uV, int max_uV)
3434 {
3435 struct regulator_dev *rdev = regulator->rdev;
3436 int i, voltages, ret;
3437
3438 /* If we can't change voltage check the current voltage */
3439 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3440 ret = regulator_get_voltage(regulator);
3441 if (ret >= 0)
3442 return min_uV <= ret && ret <= max_uV;
3443 else
3444 return ret;
3445 }
3446
3447 /* Any voltage within constrains range is fine? */
3448 if (rdev->desc->continuous_voltage_range)
3449 return min_uV >= rdev->constraints->min_uV &&
3450 max_uV <= rdev->constraints->max_uV;
3451
3452 ret = regulator_count_voltages(regulator);
3453 if (ret < 0)
3454 return 0;
3455 voltages = ret;
3456
3457 for (i = 0; i < voltages; i++) {
3458 ret = regulator_list_voltage(regulator, i);
3459
3460 if (ret >= min_uV && ret <= max_uV)
3461 return 1;
3462 }
3463
3464 return 0;
3465 }
3466 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3467
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3468 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3469 int max_uV)
3470 {
3471 const struct regulator_desc *desc = rdev->desc;
3472
3473 if (desc->ops->map_voltage)
3474 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3475
3476 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3477 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3478
3479 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3480 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3481
3482 if (desc->ops->list_voltage ==
3483 regulator_list_voltage_pickable_linear_range)
3484 return regulator_map_voltage_pickable_linear_range(rdev,
3485 min_uV, max_uV);
3486
3487 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3488 }
3489
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3490 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3491 int min_uV, int max_uV,
3492 unsigned *selector)
3493 {
3494 struct pre_voltage_change_data data;
3495 int ret;
3496
3497 data.old_uV = regulator_get_voltage_rdev(rdev);
3498 data.min_uV = min_uV;
3499 data.max_uV = max_uV;
3500 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3501 &data);
3502 if (ret & NOTIFY_STOP_MASK)
3503 return -EINVAL;
3504
3505 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3506 if (ret >= 0)
3507 return ret;
3508
3509 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3510 (void *)data.old_uV);
3511
3512 return ret;
3513 }
3514
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3515 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3516 int uV, unsigned selector)
3517 {
3518 struct pre_voltage_change_data data;
3519 int ret;
3520
3521 data.old_uV = regulator_get_voltage_rdev(rdev);
3522 data.min_uV = uV;
3523 data.max_uV = uV;
3524 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3525 &data);
3526 if (ret & NOTIFY_STOP_MASK)
3527 return -EINVAL;
3528
3529 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3530 if (ret >= 0)
3531 return ret;
3532
3533 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3534 (void *)data.old_uV);
3535
3536 return ret;
3537 }
3538
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3539 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3540 int uV, int new_selector)
3541 {
3542 const struct regulator_ops *ops = rdev->desc->ops;
3543 int diff, old_sel, curr_sel, ret;
3544
3545 /* Stepping is only needed if the regulator is enabled. */
3546 if (!_regulator_is_enabled(rdev))
3547 goto final_set;
3548
3549 if (!ops->get_voltage_sel)
3550 return -EINVAL;
3551
3552 old_sel = ops->get_voltage_sel(rdev);
3553 if (old_sel < 0)
3554 return old_sel;
3555
3556 diff = new_selector - old_sel;
3557 if (diff == 0)
3558 return 0; /* No change needed. */
3559
3560 if (diff > 0) {
3561 /* Stepping up. */
3562 for (curr_sel = old_sel + rdev->desc->vsel_step;
3563 curr_sel < new_selector;
3564 curr_sel += rdev->desc->vsel_step) {
3565 /*
3566 * Call the callback directly instead of using
3567 * _regulator_call_set_voltage_sel() as we don't
3568 * want to notify anyone yet. Same in the branch
3569 * below.
3570 */
3571 ret = ops->set_voltage_sel(rdev, curr_sel);
3572 if (ret)
3573 goto try_revert;
3574 }
3575 } else {
3576 /* Stepping down. */
3577 for (curr_sel = old_sel - rdev->desc->vsel_step;
3578 curr_sel > new_selector;
3579 curr_sel -= rdev->desc->vsel_step) {
3580 ret = ops->set_voltage_sel(rdev, curr_sel);
3581 if (ret)
3582 goto try_revert;
3583 }
3584 }
3585
3586 final_set:
3587 /* The final selector will trigger the notifiers. */
3588 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3589
3590 try_revert:
3591 /*
3592 * At least try to return to the previous voltage if setting a new
3593 * one failed.
3594 */
3595 (void)ops->set_voltage_sel(rdev, old_sel);
3596 return ret;
3597 }
3598
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3599 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3600 int old_uV, int new_uV)
3601 {
3602 unsigned int ramp_delay = 0;
3603
3604 if (rdev->constraints->ramp_delay)
3605 ramp_delay = rdev->constraints->ramp_delay;
3606 else if (rdev->desc->ramp_delay)
3607 ramp_delay = rdev->desc->ramp_delay;
3608 else if (rdev->constraints->settling_time)
3609 return rdev->constraints->settling_time;
3610 else if (rdev->constraints->settling_time_up &&
3611 (new_uV > old_uV))
3612 return rdev->constraints->settling_time_up;
3613 else if (rdev->constraints->settling_time_down &&
3614 (new_uV < old_uV))
3615 return rdev->constraints->settling_time_down;
3616
3617 if (ramp_delay == 0)
3618 return 0;
3619
3620 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3621 }
3622
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3623 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3624 int min_uV, int max_uV)
3625 {
3626 int ret;
3627 int delay = 0;
3628 int best_val = 0;
3629 unsigned int selector;
3630 int old_selector = -1;
3631 const struct regulator_ops *ops = rdev->desc->ops;
3632 int old_uV = regulator_get_voltage_rdev(rdev);
3633
3634 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3635
3636 min_uV += rdev->constraints->uV_offset;
3637 max_uV += rdev->constraints->uV_offset;
3638
3639 /*
3640 * If we can't obtain the old selector there is not enough
3641 * info to call set_voltage_time_sel().
3642 */
3643 if (_regulator_is_enabled(rdev) &&
3644 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3645 old_selector = ops->get_voltage_sel(rdev);
3646 if (old_selector < 0)
3647 return old_selector;
3648 }
3649
3650 if (ops->set_voltage) {
3651 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3652 &selector);
3653
3654 if (ret >= 0) {
3655 if (ops->list_voltage)
3656 best_val = ops->list_voltage(rdev,
3657 selector);
3658 else
3659 best_val = regulator_get_voltage_rdev(rdev);
3660 }
3661
3662 } else if (ops->set_voltage_sel) {
3663 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3664 if (ret >= 0) {
3665 best_val = ops->list_voltage(rdev, ret);
3666 if (min_uV <= best_val && max_uV >= best_val) {
3667 selector = ret;
3668 if (old_selector == selector)
3669 ret = 0;
3670 else if (rdev->desc->vsel_step)
3671 ret = _regulator_set_voltage_sel_step(
3672 rdev, best_val, selector);
3673 else
3674 ret = _regulator_call_set_voltage_sel(
3675 rdev, best_val, selector);
3676 } else {
3677 ret = -EINVAL;
3678 }
3679 }
3680 } else {
3681 ret = -EINVAL;
3682 }
3683
3684 if (ret)
3685 goto out;
3686
3687 if (ops->set_voltage_time_sel) {
3688 /*
3689 * Call set_voltage_time_sel if successfully obtained
3690 * old_selector
3691 */
3692 if (old_selector >= 0 && old_selector != selector)
3693 delay = ops->set_voltage_time_sel(rdev, old_selector,
3694 selector);
3695 } else {
3696 if (old_uV != best_val) {
3697 if (ops->set_voltage_time)
3698 delay = ops->set_voltage_time(rdev, old_uV,
3699 best_val);
3700 else
3701 delay = _regulator_set_voltage_time(rdev,
3702 old_uV,
3703 best_val);
3704 }
3705 }
3706
3707 if (delay < 0) {
3708 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3709 delay = 0;
3710 }
3711
3712 /* Insert any necessary delays */
3713 _regulator_delay_helper(delay);
3714
3715 if (best_val >= 0) {
3716 unsigned long data = best_val;
3717
3718 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3719 (void *)data);
3720 }
3721
3722 out:
3723 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3724
3725 return ret;
3726 }
3727
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3728 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3729 int min_uV, int max_uV, suspend_state_t state)
3730 {
3731 struct regulator_state *rstate;
3732 int uV, sel;
3733
3734 rstate = regulator_get_suspend_state(rdev, state);
3735 if (rstate == NULL)
3736 return -EINVAL;
3737
3738 if (min_uV < rstate->min_uV)
3739 min_uV = rstate->min_uV;
3740 if (max_uV > rstate->max_uV)
3741 max_uV = rstate->max_uV;
3742
3743 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3744 if (sel < 0)
3745 return sel;
3746
3747 uV = rdev->desc->ops->list_voltage(rdev, sel);
3748 if (uV >= min_uV && uV <= max_uV)
3749 rstate->uV = uV;
3750
3751 return 0;
3752 }
3753
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3754 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3755 int min_uV, int max_uV,
3756 suspend_state_t state)
3757 {
3758 struct regulator_dev *rdev = regulator->rdev;
3759 struct regulator_voltage *voltage = ®ulator->voltage[state];
3760 int ret = 0;
3761 int old_min_uV, old_max_uV;
3762 int current_uV;
3763
3764 /* If we're setting the same range as last time the change
3765 * should be a noop (some cpufreq implementations use the same
3766 * voltage for multiple frequencies, for example).
3767 */
3768 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3769 goto out;
3770
3771 /* If we're trying to set a range that overlaps the current voltage,
3772 * return successfully even though the regulator does not support
3773 * changing the voltage.
3774 */
3775 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3776 current_uV = regulator_get_voltage_rdev(rdev);
3777 if (min_uV <= current_uV && current_uV <= max_uV) {
3778 voltage->min_uV = min_uV;
3779 voltage->max_uV = max_uV;
3780 goto out;
3781 }
3782 }
3783
3784 /* sanity check */
3785 if (!rdev->desc->ops->set_voltage &&
3786 !rdev->desc->ops->set_voltage_sel) {
3787 ret = -EINVAL;
3788 goto out;
3789 }
3790
3791 /* constraints check */
3792 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3793 if (ret < 0)
3794 goto out;
3795
3796 /* restore original values in case of error */
3797 old_min_uV = voltage->min_uV;
3798 old_max_uV = voltage->max_uV;
3799 voltage->min_uV = min_uV;
3800 voltage->max_uV = max_uV;
3801
3802 /* for not coupled regulators this will just set the voltage */
3803 ret = regulator_balance_voltage(rdev, state);
3804 if (ret < 0) {
3805 voltage->min_uV = old_min_uV;
3806 voltage->max_uV = old_max_uV;
3807 }
3808
3809 out:
3810 return ret;
3811 }
3812
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3813 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3814 int max_uV, suspend_state_t state)
3815 {
3816 int best_supply_uV = 0;
3817 int supply_change_uV = 0;
3818 int ret;
3819
3820 if (rdev->supply &&
3821 regulator_ops_is_valid(rdev->supply->rdev,
3822 REGULATOR_CHANGE_VOLTAGE) &&
3823 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3824 rdev->desc->ops->get_voltage_sel))) {
3825 int current_supply_uV;
3826 int selector;
3827
3828 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3829 if (selector < 0) {
3830 ret = selector;
3831 goto out;
3832 }
3833
3834 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3835 if (best_supply_uV < 0) {
3836 ret = best_supply_uV;
3837 goto out;
3838 }
3839
3840 best_supply_uV += rdev->desc->min_dropout_uV;
3841
3842 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3843 if (current_supply_uV < 0) {
3844 ret = current_supply_uV;
3845 goto out;
3846 }
3847
3848 supply_change_uV = best_supply_uV - current_supply_uV;
3849 }
3850
3851 if (supply_change_uV > 0) {
3852 ret = regulator_set_voltage_unlocked(rdev->supply,
3853 best_supply_uV, INT_MAX, state);
3854 if (ret) {
3855 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3856 ERR_PTR(ret));
3857 goto out;
3858 }
3859 }
3860
3861 if (state == PM_SUSPEND_ON)
3862 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3863 else
3864 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3865 max_uV, state);
3866 if (ret < 0)
3867 goto out;
3868
3869 if (supply_change_uV < 0) {
3870 ret = regulator_set_voltage_unlocked(rdev->supply,
3871 best_supply_uV, INT_MAX, state);
3872 if (ret)
3873 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3874 ERR_PTR(ret));
3875 /* No need to fail here */
3876 ret = 0;
3877 }
3878
3879 out:
3880 return ret;
3881 }
3882 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3883
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3884 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3885 int *current_uV, int *min_uV)
3886 {
3887 struct regulation_constraints *constraints = rdev->constraints;
3888
3889 /* Limit voltage change only if necessary */
3890 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3891 return 1;
3892
3893 if (*current_uV < 0) {
3894 *current_uV = regulator_get_voltage_rdev(rdev);
3895
3896 if (*current_uV < 0)
3897 return *current_uV;
3898 }
3899
3900 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3901 return 1;
3902
3903 /* Clamp target voltage within the given step */
3904 if (*current_uV < *min_uV)
3905 *min_uV = min(*current_uV + constraints->max_uV_step,
3906 *min_uV);
3907 else
3908 *min_uV = max(*current_uV - constraints->max_uV_step,
3909 *min_uV);
3910
3911 return 0;
3912 }
3913
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3914 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3915 int *current_uV,
3916 int *min_uV, int *max_uV,
3917 suspend_state_t state,
3918 int n_coupled)
3919 {
3920 struct coupling_desc *c_desc = &rdev->coupling_desc;
3921 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3922 struct regulation_constraints *constraints = rdev->constraints;
3923 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3924 int max_current_uV = 0, min_current_uV = INT_MAX;
3925 int highest_min_uV = 0, target_uV, possible_uV;
3926 int i, ret, max_spread;
3927 bool done;
3928
3929 *current_uV = -1;
3930
3931 /*
3932 * If there are no coupled regulators, simply set the voltage
3933 * demanded by consumers.
3934 */
3935 if (n_coupled == 1) {
3936 /*
3937 * If consumers don't provide any demands, set voltage
3938 * to min_uV
3939 */
3940 desired_min_uV = constraints->min_uV;
3941 desired_max_uV = constraints->max_uV;
3942
3943 ret = regulator_check_consumers(rdev,
3944 &desired_min_uV,
3945 &desired_max_uV, state);
3946 if (ret < 0)
3947 return ret;
3948
3949 possible_uV = desired_min_uV;
3950 done = true;
3951
3952 goto finish;
3953 }
3954
3955 /* Find highest min desired voltage */
3956 for (i = 0; i < n_coupled; i++) {
3957 int tmp_min = 0;
3958 int tmp_max = INT_MAX;
3959
3960 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3961
3962 ret = regulator_check_consumers(c_rdevs[i],
3963 &tmp_min,
3964 &tmp_max, state);
3965 if (ret < 0)
3966 return ret;
3967
3968 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3969 if (ret < 0)
3970 return ret;
3971
3972 highest_min_uV = max(highest_min_uV, tmp_min);
3973
3974 if (i == 0) {
3975 desired_min_uV = tmp_min;
3976 desired_max_uV = tmp_max;
3977 }
3978 }
3979
3980 max_spread = constraints->max_spread[0];
3981
3982 /*
3983 * Let target_uV be equal to the desired one if possible.
3984 * If not, set it to minimum voltage, allowed by other coupled
3985 * regulators.
3986 */
3987 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3988
3989 /*
3990 * Find min and max voltages, which currently aren't violating
3991 * max_spread.
3992 */
3993 for (i = 1; i < n_coupled; i++) {
3994 int tmp_act;
3995
3996 if (!_regulator_is_enabled(c_rdevs[i]))
3997 continue;
3998
3999 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
4000 if (tmp_act < 0)
4001 return tmp_act;
4002
4003 min_current_uV = min(tmp_act, min_current_uV);
4004 max_current_uV = max(tmp_act, max_current_uV);
4005 }
4006
4007 /* There aren't any other regulators enabled */
4008 if (max_current_uV == 0) {
4009 possible_uV = target_uV;
4010 } else {
4011 /*
4012 * Correct target voltage, so as it currently isn't
4013 * violating max_spread
4014 */
4015 possible_uV = max(target_uV, max_current_uV - max_spread);
4016 possible_uV = min(possible_uV, min_current_uV + max_spread);
4017 }
4018
4019 if (possible_uV > desired_max_uV)
4020 return -EINVAL;
4021
4022 done = (possible_uV == target_uV);
4023 desired_min_uV = possible_uV;
4024
4025 finish:
4026 /* Apply max_uV_step constraint if necessary */
4027 if (state == PM_SUSPEND_ON) {
4028 ret = regulator_limit_voltage_step(rdev, current_uV,
4029 &desired_min_uV);
4030 if (ret < 0)
4031 return ret;
4032
4033 if (ret == 0)
4034 done = false;
4035 }
4036
4037 /* Set current_uV if wasn't done earlier in the code and if necessary */
4038 if (n_coupled > 1 && *current_uV == -1) {
4039
4040 if (_regulator_is_enabled(rdev)) {
4041 ret = regulator_get_voltage_rdev(rdev);
4042 if (ret < 0)
4043 return ret;
4044
4045 *current_uV = ret;
4046 } else {
4047 *current_uV = desired_min_uV;
4048 }
4049 }
4050
4051 *min_uV = desired_min_uV;
4052 *max_uV = desired_max_uV;
4053
4054 return done;
4055 }
4056
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)4057 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4058 suspend_state_t state, bool skip_coupled)
4059 {
4060 struct regulator_dev **c_rdevs;
4061 struct regulator_dev *best_rdev;
4062 struct coupling_desc *c_desc = &rdev->coupling_desc;
4063 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4064 unsigned int delta, best_delta;
4065 unsigned long c_rdev_done = 0;
4066 bool best_c_rdev_done;
4067
4068 c_rdevs = c_desc->coupled_rdevs;
4069 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4070
4071 /*
4072 * Find the best possible voltage change on each loop. Leave the loop
4073 * if there isn't any possible change.
4074 */
4075 do {
4076 best_c_rdev_done = false;
4077 best_delta = 0;
4078 best_min_uV = 0;
4079 best_max_uV = 0;
4080 best_c_rdev = 0;
4081 best_rdev = NULL;
4082
4083 /*
4084 * Find highest difference between optimal voltage
4085 * and current voltage.
4086 */
4087 for (i = 0; i < n_coupled; i++) {
4088 /*
4089 * optimal_uV is the best voltage that can be set for
4090 * i-th regulator at the moment without violating
4091 * max_spread constraint in order to balance
4092 * the coupled voltages.
4093 */
4094 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4095
4096 if (test_bit(i, &c_rdev_done))
4097 continue;
4098
4099 ret = regulator_get_optimal_voltage(c_rdevs[i],
4100 ¤t_uV,
4101 &optimal_uV,
4102 &optimal_max_uV,
4103 state, n_coupled);
4104 if (ret < 0)
4105 goto out;
4106
4107 delta = abs(optimal_uV - current_uV);
4108
4109 if (delta && best_delta <= delta) {
4110 best_c_rdev_done = ret;
4111 best_delta = delta;
4112 best_rdev = c_rdevs[i];
4113 best_min_uV = optimal_uV;
4114 best_max_uV = optimal_max_uV;
4115 best_c_rdev = i;
4116 }
4117 }
4118
4119 /* Nothing to change, return successfully */
4120 if (!best_rdev) {
4121 ret = 0;
4122 goto out;
4123 }
4124
4125 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4126 best_max_uV, state);
4127
4128 if (ret < 0)
4129 goto out;
4130
4131 if (best_c_rdev_done)
4132 set_bit(best_c_rdev, &c_rdev_done);
4133
4134 } while (n_coupled > 1);
4135
4136 out:
4137 return ret;
4138 }
4139
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)4140 static int regulator_balance_voltage(struct regulator_dev *rdev,
4141 suspend_state_t state)
4142 {
4143 struct coupling_desc *c_desc = &rdev->coupling_desc;
4144 struct regulator_coupler *coupler = c_desc->coupler;
4145 bool skip_coupled = false;
4146
4147 /*
4148 * If system is in a state other than PM_SUSPEND_ON, don't check
4149 * other coupled regulators.
4150 */
4151 if (state != PM_SUSPEND_ON)
4152 skip_coupled = true;
4153
4154 if (c_desc->n_resolved < c_desc->n_coupled) {
4155 rdev_err(rdev, "Not all coupled regulators registered\n");
4156 return -EPERM;
4157 }
4158
4159 /* Invoke custom balancer for customized couplers */
4160 if (coupler && coupler->balance_voltage)
4161 return coupler->balance_voltage(coupler, rdev, state);
4162
4163 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4164 }
4165
4166 /**
4167 * regulator_set_voltage - set regulator output voltage
4168 * @regulator: regulator source
4169 * @min_uV: Minimum required voltage in uV
4170 * @max_uV: Maximum acceptable voltage in uV
4171 *
4172 * Sets a voltage regulator to the desired output voltage. This can be set
4173 * during any regulator state. IOW, regulator can be disabled or enabled.
4174 *
4175 * If the regulator is enabled then the voltage will change to the new value
4176 * immediately otherwise if the regulator is disabled the regulator will
4177 * output at the new voltage when enabled.
4178 *
4179 * NOTE: If the regulator is shared between several devices then the lowest
4180 * request voltage that meets the system constraints will be used.
4181 * Regulator system constraints must be set for this regulator before
4182 * calling this function otherwise this call will fail.
4183 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4184 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4185 {
4186 struct ww_acquire_ctx ww_ctx;
4187 int ret;
4188
4189 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4190
4191 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4192 PM_SUSPEND_ON);
4193
4194 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4195
4196 return ret;
4197 }
4198 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4199
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4200 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4201 suspend_state_t state, bool en)
4202 {
4203 struct regulator_state *rstate;
4204
4205 rstate = regulator_get_suspend_state(rdev, state);
4206 if (rstate == NULL)
4207 return -EINVAL;
4208
4209 if (!rstate->changeable)
4210 return -EPERM;
4211
4212 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4213
4214 return 0;
4215 }
4216
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4217 int regulator_suspend_enable(struct regulator_dev *rdev,
4218 suspend_state_t state)
4219 {
4220 return regulator_suspend_toggle(rdev, state, true);
4221 }
4222 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4223
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4224 int regulator_suspend_disable(struct regulator_dev *rdev,
4225 suspend_state_t state)
4226 {
4227 struct regulator *regulator;
4228 struct regulator_voltage *voltage;
4229
4230 /*
4231 * if any consumer wants this regulator device keeping on in
4232 * suspend states, don't set it as disabled.
4233 */
4234 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4235 voltage = ®ulator->voltage[state];
4236 if (voltage->min_uV || voltage->max_uV)
4237 return 0;
4238 }
4239
4240 return regulator_suspend_toggle(rdev, state, false);
4241 }
4242 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4243
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4244 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4245 int min_uV, int max_uV,
4246 suspend_state_t state)
4247 {
4248 struct regulator_dev *rdev = regulator->rdev;
4249 struct regulator_state *rstate;
4250
4251 rstate = regulator_get_suspend_state(rdev, state);
4252 if (rstate == NULL)
4253 return -EINVAL;
4254
4255 if (rstate->min_uV == rstate->max_uV) {
4256 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4257 return -EPERM;
4258 }
4259
4260 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4261 }
4262
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4263 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4264 int max_uV, suspend_state_t state)
4265 {
4266 struct ww_acquire_ctx ww_ctx;
4267 int ret;
4268
4269 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4270 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4271 return -EINVAL;
4272
4273 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4274
4275 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4276 max_uV, state);
4277
4278 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4279
4280 return ret;
4281 }
4282 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4283
4284 /**
4285 * regulator_set_voltage_time - get raise/fall time
4286 * @regulator: regulator source
4287 * @old_uV: starting voltage in microvolts
4288 * @new_uV: target voltage in microvolts
4289 *
4290 * Provided with the starting and ending voltage, this function attempts to
4291 * calculate the time in microseconds required to rise or fall to this new
4292 * voltage.
4293 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4294 int regulator_set_voltage_time(struct regulator *regulator,
4295 int old_uV, int new_uV)
4296 {
4297 struct regulator_dev *rdev = regulator->rdev;
4298 const struct regulator_ops *ops = rdev->desc->ops;
4299 int old_sel = -1;
4300 int new_sel = -1;
4301 int voltage;
4302 int i;
4303
4304 if (ops->set_voltage_time)
4305 return ops->set_voltage_time(rdev, old_uV, new_uV);
4306 else if (!ops->set_voltage_time_sel)
4307 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4308
4309 /* Currently requires operations to do this */
4310 if (!ops->list_voltage || !rdev->desc->n_voltages)
4311 return -EINVAL;
4312
4313 for (i = 0; i < rdev->desc->n_voltages; i++) {
4314 /* We only look for exact voltage matches here */
4315 if (i < rdev->desc->linear_min_sel)
4316 continue;
4317
4318 if (old_sel >= 0 && new_sel >= 0)
4319 break;
4320
4321 voltage = regulator_list_voltage(regulator, i);
4322 if (voltage < 0)
4323 return -EINVAL;
4324 if (voltage == 0)
4325 continue;
4326 if (voltage == old_uV)
4327 old_sel = i;
4328 if (voltage == new_uV)
4329 new_sel = i;
4330 }
4331
4332 if (old_sel < 0 || new_sel < 0)
4333 return -EINVAL;
4334
4335 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4336 }
4337 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4338
4339 /**
4340 * regulator_set_voltage_time_sel - get raise/fall time
4341 * @rdev: regulator source device
4342 * @old_selector: selector for starting voltage
4343 * @new_selector: selector for target voltage
4344 *
4345 * Provided with the starting and target voltage selectors, this function
4346 * returns time in microseconds required to rise or fall to this new voltage
4347 *
4348 * Drivers providing ramp_delay in regulation_constraints can use this as their
4349 * set_voltage_time_sel() operation.
4350 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4351 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4352 unsigned int old_selector,
4353 unsigned int new_selector)
4354 {
4355 int old_volt, new_volt;
4356
4357 /* sanity check */
4358 if (!rdev->desc->ops->list_voltage)
4359 return -EINVAL;
4360
4361 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4362 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4363
4364 if (rdev->desc->ops->set_voltage_time)
4365 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4366 new_volt);
4367 else
4368 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4369 }
4370 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4371
regulator_sync_voltage_rdev(struct regulator_dev * rdev)4372 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4373 {
4374 int ret;
4375
4376 regulator_lock(rdev);
4377
4378 if (!rdev->desc->ops->set_voltage &&
4379 !rdev->desc->ops->set_voltage_sel) {
4380 ret = -EINVAL;
4381 goto out;
4382 }
4383
4384 /* balance only, if regulator is coupled */
4385 if (rdev->coupling_desc.n_coupled > 1)
4386 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4387 else
4388 ret = -EOPNOTSUPP;
4389
4390 out:
4391 regulator_unlock(rdev);
4392 return ret;
4393 }
4394
4395 /**
4396 * regulator_sync_voltage - re-apply last regulator output voltage
4397 * @regulator: regulator source
4398 *
4399 * Re-apply the last configured voltage. This is intended to be used
4400 * where some external control source the consumer is cooperating with
4401 * has caused the configured voltage to change.
4402 */
regulator_sync_voltage(struct regulator * regulator)4403 int regulator_sync_voltage(struct regulator *regulator)
4404 {
4405 struct regulator_dev *rdev = regulator->rdev;
4406 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4407 int ret, min_uV, max_uV;
4408
4409 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4410 return 0;
4411
4412 regulator_lock(rdev);
4413
4414 if (!rdev->desc->ops->set_voltage &&
4415 !rdev->desc->ops->set_voltage_sel) {
4416 ret = -EINVAL;
4417 goto out;
4418 }
4419
4420 /* This is only going to work if we've had a voltage configured. */
4421 if (!voltage->min_uV && !voltage->max_uV) {
4422 ret = -EINVAL;
4423 goto out;
4424 }
4425
4426 min_uV = voltage->min_uV;
4427 max_uV = voltage->max_uV;
4428
4429 /* This should be a paranoia check... */
4430 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4431 if (ret < 0)
4432 goto out;
4433
4434 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4435 if (ret < 0)
4436 goto out;
4437
4438 /* balance only, if regulator is coupled */
4439 if (rdev->coupling_desc.n_coupled > 1)
4440 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4441 else
4442 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4443
4444 out:
4445 regulator_unlock(rdev);
4446 return ret;
4447 }
4448 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4449
regulator_get_voltage_rdev(struct regulator_dev * rdev)4450 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4451 {
4452 int sel, ret;
4453 bool bypassed;
4454
4455 if (rdev->desc->ops->get_bypass) {
4456 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4457 if (ret < 0)
4458 return ret;
4459 if (bypassed) {
4460 /* if bypassed the regulator must have a supply */
4461 if (!rdev->supply) {
4462 rdev_err(rdev,
4463 "bypassed regulator has no supply!\n");
4464 return -EPROBE_DEFER;
4465 }
4466
4467 return regulator_get_voltage_rdev(rdev->supply->rdev);
4468 }
4469 }
4470
4471 if (rdev->desc->ops->get_voltage_sel) {
4472 sel = rdev->desc->ops->get_voltage_sel(rdev);
4473 if (sel < 0)
4474 return sel;
4475 ret = rdev->desc->ops->list_voltage(rdev, sel);
4476 } else if (rdev->desc->ops->get_voltage) {
4477 ret = rdev->desc->ops->get_voltage(rdev);
4478 } else if (rdev->desc->ops->list_voltage) {
4479 ret = rdev->desc->ops->list_voltage(rdev, 0);
4480 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4481 ret = rdev->desc->fixed_uV;
4482 } else if (rdev->supply) {
4483 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4484 } else if (rdev->supply_name) {
4485 return -EPROBE_DEFER;
4486 } else {
4487 return -EINVAL;
4488 }
4489
4490 if (ret < 0)
4491 return ret;
4492 return ret - rdev->constraints->uV_offset;
4493 }
4494 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4495
4496 /**
4497 * regulator_get_voltage - get regulator output voltage
4498 * @regulator: regulator source
4499 *
4500 * This returns the current regulator voltage in uV.
4501 *
4502 * NOTE: If the regulator is disabled it will return the voltage value. This
4503 * function should not be used to determine regulator state.
4504 */
regulator_get_voltage(struct regulator * regulator)4505 int regulator_get_voltage(struct regulator *regulator)
4506 {
4507 struct ww_acquire_ctx ww_ctx;
4508 int ret;
4509
4510 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4511 ret = regulator_get_voltage_rdev(regulator->rdev);
4512 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4513
4514 return ret;
4515 }
4516 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4517
4518 /**
4519 * regulator_set_current_limit - set regulator output current limit
4520 * @regulator: regulator source
4521 * @min_uA: Minimum supported current in uA
4522 * @max_uA: Maximum supported current in uA
4523 *
4524 * Sets current sink to the desired output current. This can be set during
4525 * any regulator state. IOW, regulator can be disabled or enabled.
4526 *
4527 * If the regulator is enabled then the current will change to the new value
4528 * immediately otherwise if the regulator is disabled the regulator will
4529 * output at the new current when enabled.
4530 *
4531 * NOTE: Regulator system constraints must be set for this regulator before
4532 * calling this function otherwise this call will fail.
4533 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4534 int regulator_set_current_limit(struct regulator *regulator,
4535 int min_uA, int max_uA)
4536 {
4537 struct regulator_dev *rdev = regulator->rdev;
4538 int ret;
4539
4540 regulator_lock(rdev);
4541
4542 /* sanity check */
4543 if (!rdev->desc->ops->set_current_limit) {
4544 ret = -EINVAL;
4545 goto out;
4546 }
4547
4548 /* constraints check */
4549 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4550 if (ret < 0)
4551 goto out;
4552
4553 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4554 out:
4555 regulator_unlock(rdev);
4556 return ret;
4557 }
4558 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4559
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4560 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4561 {
4562 /* sanity check */
4563 if (!rdev->desc->ops->get_current_limit)
4564 return -EINVAL;
4565
4566 return rdev->desc->ops->get_current_limit(rdev);
4567 }
4568
_regulator_get_current_limit(struct regulator_dev * rdev)4569 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4570 {
4571 int ret;
4572
4573 regulator_lock(rdev);
4574 ret = _regulator_get_current_limit_unlocked(rdev);
4575 regulator_unlock(rdev);
4576
4577 return ret;
4578 }
4579
4580 /**
4581 * regulator_get_current_limit - get regulator output current
4582 * @regulator: regulator source
4583 *
4584 * This returns the current supplied by the specified current sink in uA.
4585 *
4586 * NOTE: If the regulator is disabled it will return the current value. This
4587 * function should not be used to determine regulator state.
4588 */
regulator_get_current_limit(struct regulator * regulator)4589 int regulator_get_current_limit(struct regulator *regulator)
4590 {
4591 return _regulator_get_current_limit(regulator->rdev);
4592 }
4593 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4594
4595 /**
4596 * regulator_set_mode - set regulator operating mode
4597 * @regulator: regulator source
4598 * @mode: operating mode - one of the REGULATOR_MODE constants
4599 *
4600 * Set regulator operating mode to increase regulator efficiency or improve
4601 * regulation performance.
4602 *
4603 * NOTE: Regulator system constraints must be set for this regulator before
4604 * calling this function otherwise this call will fail.
4605 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4606 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4607 {
4608 struct regulator_dev *rdev = regulator->rdev;
4609 int ret;
4610 int regulator_curr_mode;
4611
4612 regulator_lock(rdev);
4613
4614 /* sanity check */
4615 if (!rdev->desc->ops->set_mode) {
4616 ret = -EINVAL;
4617 goto out;
4618 }
4619
4620 /* return if the same mode is requested */
4621 if (rdev->desc->ops->get_mode) {
4622 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4623 if (regulator_curr_mode == mode) {
4624 ret = 0;
4625 goto out;
4626 }
4627 }
4628
4629 /* constraints check */
4630 ret = regulator_mode_constrain(rdev, &mode);
4631 if (ret < 0)
4632 goto out;
4633
4634 ret = rdev->desc->ops->set_mode(rdev, mode);
4635 out:
4636 regulator_unlock(rdev);
4637 return ret;
4638 }
4639 EXPORT_SYMBOL_GPL(regulator_set_mode);
4640
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4641 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4642 {
4643 /* sanity check */
4644 if (!rdev->desc->ops->get_mode)
4645 return -EINVAL;
4646
4647 return rdev->desc->ops->get_mode(rdev);
4648 }
4649
_regulator_get_mode(struct regulator_dev * rdev)4650 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4651 {
4652 int ret;
4653
4654 regulator_lock(rdev);
4655 ret = _regulator_get_mode_unlocked(rdev);
4656 regulator_unlock(rdev);
4657
4658 return ret;
4659 }
4660
4661 /**
4662 * regulator_get_mode - get regulator operating mode
4663 * @regulator: regulator source
4664 *
4665 * Get the current regulator operating mode.
4666 */
regulator_get_mode(struct regulator * regulator)4667 unsigned int regulator_get_mode(struct regulator *regulator)
4668 {
4669 return _regulator_get_mode(regulator->rdev);
4670 }
4671 EXPORT_SYMBOL_GPL(regulator_get_mode);
4672
rdev_get_cached_err_flags(struct regulator_dev * rdev)4673 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4674 {
4675 int ret = 0;
4676
4677 if (rdev->use_cached_err) {
4678 spin_lock(&rdev->err_lock);
4679 ret = rdev->cached_err;
4680 spin_unlock(&rdev->err_lock);
4681 }
4682 return ret;
4683 }
4684
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4685 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4686 unsigned int *flags)
4687 {
4688 int cached_flags, ret = 0;
4689
4690 regulator_lock(rdev);
4691
4692 cached_flags = rdev_get_cached_err_flags(rdev);
4693
4694 if (rdev->desc->ops->get_error_flags)
4695 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4696 else if (!rdev->use_cached_err)
4697 ret = -EINVAL;
4698
4699 *flags |= cached_flags;
4700
4701 regulator_unlock(rdev);
4702
4703 return ret;
4704 }
4705
4706 /**
4707 * regulator_get_error_flags - get regulator error information
4708 * @regulator: regulator source
4709 * @flags: pointer to store error flags
4710 *
4711 * Get the current regulator error information.
4712 */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4713 int regulator_get_error_flags(struct regulator *regulator,
4714 unsigned int *flags)
4715 {
4716 return _regulator_get_error_flags(regulator->rdev, flags);
4717 }
4718 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4719
4720 /**
4721 * regulator_set_load - set regulator load
4722 * @regulator: regulator source
4723 * @uA_load: load current
4724 *
4725 * Notifies the regulator core of a new device load. This is then used by
4726 * DRMS (if enabled by constraints) to set the most efficient regulator
4727 * operating mode for the new regulator loading.
4728 *
4729 * Consumer devices notify their supply regulator of the maximum power
4730 * they will require (can be taken from device datasheet in the power
4731 * consumption tables) when they change operational status and hence power
4732 * state. Examples of operational state changes that can affect power
4733 * consumption are :-
4734 *
4735 * o Device is opened / closed.
4736 * o Device I/O is about to begin or has just finished.
4737 * o Device is idling in between work.
4738 *
4739 * This information is also exported via sysfs to userspace.
4740 *
4741 * DRMS will sum the total requested load on the regulator and change
4742 * to the most efficient operating mode if platform constraints allow.
4743 *
4744 * NOTE: when a regulator consumer requests to have a regulator
4745 * disabled then any load that consumer requested no longer counts
4746 * toward the total requested load. If the regulator is re-enabled
4747 * then the previously requested load will start counting again.
4748 *
4749 * If a regulator is an always-on regulator then an individual consumer's
4750 * load will still be removed if that consumer is fully disabled.
4751 *
4752 * On error a negative errno is returned.
4753 */
regulator_set_load(struct regulator * regulator,int uA_load)4754 int regulator_set_load(struct regulator *regulator, int uA_load)
4755 {
4756 struct regulator_dev *rdev = regulator->rdev;
4757 int old_uA_load;
4758 int ret = 0;
4759
4760 regulator_lock(rdev);
4761 old_uA_load = regulator->uA_load;
4762 regulator->uA_load = uA_load;
4763 if (regulator->enable_count && old_uA_load != uA_load) {
4764 ret = drms_uA_update(rdev);
4765 if (ret < 0)
4766 regulator->uA_load = old_uA_load;
4767 }
4768 regulator_unlock(rdev);
4769
4770 return ret;
4771 }
4772 EXPORT_SYMBOL_GPL(regulator_set_load);
4773
4774 /**
4775 * regulator_allow_bypass - allow the regulator to go into bypass mode
4776 *
4777 * @regulator: Regulator to configure
4778 * @enable: enable or disable bypass mode
4779 *
4780 * Allow the regulator to go into bypass mode if all other consumers
4781 * for the regulator also enable bypass mode and the machine
4782 * constraints allow this. Bypass mode means that the regulator is
4783 * simply passing the input directly to the output with no regulation.
4784 */
regulator_allow_bypass(struct regulator * regulator,bool enable)4785 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4786 {
4787 struct regulator_dev *rdev = regulator->rdev;
4788 const char *name = rdev_get_name(rdev);
4789 int ret = 0;
4790
4791 if (!rdev->desc->ops->set_bypass)
4792 return 0;
4793
4794 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4795 return 0;
4796
4797 regulator_lock(rdev);
4798
4799 if (enable && !regulator->bypass) {
4800 rdev->bypass_count++;
4801
4802 if (rdev->bypass_count == rdev->open_count) {
4803 trace_regulator_bypass_enable(name);
4804
4805 ret = rdev->desc->ops->set_bypass(rdev, enable);
4806 if (ret != 0)
4807 rdev->bypass_count--;
4808 else
4809 trace_regulator_bypass_enable_complete(name);
4810 }
4811
4812 } else if (!enable && regulator->bypass) {
4813 rdev->bypass_count--;
4814
4815 if (rdev->bypass_count != rdev->open_count) {
4816 trace_regulator_bypass_disable(name);
4817
4818 ret = rdev->desc->ops->set_bypass(rdev, enable);
4819 if (ret != 0)
4820 rdev->bypass_count++;
4821 else
4822 trace_regulator_bypass_disable_complete(name);
4823 }
4824 }
4825
4826 if (ret == 0)
4827 regulator->bypass = enable;
4828
4829 regulator_unlock(rdev);
4830
4831 return ret;
4832 }
4833 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4834
4835 /**
4836 * regulator_register_notifier - register regulator event notifier
4837 * @regulator: regulator source
4838 * @nb: notifier block
4839 *
4840 * Register notifier block to receive regulator events.
4841 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4842 int regulator_register_notifier(struct regulator *regulator,
4843 struct notifier_block *nb)
4844 {
4845 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4846 nb);
4847 }
4848 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4849
4850 /**
4851 * regulator_unregister_notifier - unregister regulator event notifier
4852 * @regulator: regulator source
4853 * @nb: notifier block
4854 *
4855 * Unregister regulator event notifier block.
4856 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)4857 int regulator_unregister_notifier(struct regulator *regulator,
4858 struct notifier_block *nb)
4859 {
4860 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4861 nb);
4862 }
4863 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4864
4865 /* notify regulator consumers and downstream regulator consumers.
4866 * Note mutex must be held by caller.
4867 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4868 static int _notifier_call_chain(struct regulator_dev *rdev,
4869 unsigned long event, void *data)
4870 {
4871 /* call rdev chain first */
4872 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4873 }
4874
_regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers,enum regulator_get_type get_type)4875 int _regulator_bulk_get(struct device *dev, int num_consumers,
4876 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4877 {
4878 int i;
4879 int ret;
4880
4881 for (i = 0; i < num_consumers; i++)
4882 consumers[i].consumer = NULL;
4883
4884 for (i = 0; i < num_consumers; i++) {
4885 consumers[i].consumer = _regulator_get(dev,
4886 consumers[i].supply, get_type);
4887 if (IS_ERR(consumers[i].consumer)) {
4888 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4889 "Failed to get supply '%s'\n",
4890 consumers[i].supply);
4891 consumers[i].consumer = NULL;
4892 goto err;
4893 }
4894
4895 if (consumers[i].init_load_uA > 0) {
4896 ret = regulator_set_load(consumers[i].consumer,
4897 consumers[i].init_load_uA);
4898 if (ret) {
4899 i++;
4900 goto err;
4901 }
4902 }
4903 }
4904
4905 return 0;
4906
4907 err:
4908 while (--i >= 0)
4909 regulator_put(consumers[i].consumer);
4910
4911 return ret;
4912 }
4913
4914 /**
4915 * regulator_bulk_get - get multiple regulator consumers
4916 *
4917 * @dev: Device to supply
4918 * @num_consumers: Number of consumers to register
4919 * @consumers: Configuration of consumers; clients are stored here.
4920 *
4921 * @return 0 on success, an errno on failure.
4922 *
4923 * This helper function allows drivers to get several regulator
4924 * consumers in one operation. If any of the regulators cannot be
4925 * acquired then any regulators that were allocated will be freed
4926 * before returning to the caller.
4927 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)4928 int regulator_bulk_get(struct device *dev, int num_consumers,
4929 struct regulator_bulk_data *consumers)
4930 {
4931 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4932 }
4933 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4934
regulator_bulk_enable_async(void * data,async_cookie_t cookie)4935 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4936 {
4937 struct regulator_bulk_data *bulk = data;
4938
4939 bulk->ret = regulator_enable(bulk->consumer);
4940 }
4941
4942 /**
4943 * regulator_bulk_enable - enable multiple regulator consumers
4944 *
4945 * @num_consumers: Number of consumers
4946 * @consumers: Consumer data; clients are stored here.
4947 * @return 0 on success, an errno on failure
4948 *
4949 * This convenience API allows consumers to enable multiple regulator
4950 * clients in a single API call. If any consumers cannot be enabled
4951 * then any others that were enabled will be disabled again prior to
4952 * return.
4953 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)4954 int regulator_bulk_enable(int num_consumers,
4955 struct regulator_bulk_data *consumers)
4956 {
4957 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4958 int i;
4959 int ret = 0;
4960
4961 for (i = 0; i < num_consumers; i++) {
4962 async_schedule_domain(regulator_bulk_enable_async,
4963 &consumers[i], &async_domain);
4964 }
4965
4966 async_synchronize_full_domain(&async_domain);
4967
4968 /* If any consumer failed we need to unwind any that succeeded */
4969 for (i = 0; i < num_consumers; i++) {
4970 if (consumers[i].ret != 0) {
4971 ret = consumers[i].ret;
4972 goto err;
4973 }
4974 }
4975
4976 return 0;
4977
4978 err:
4979 for (i = 0; i < num_consumers; i++) {
4980 if (consumers[i].ret < 0)
4981 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4982 ERR_PTR(consumers[i].ret));
4983 else
4984 regulator_disable(consumers[i].consumer);
4985 }
4986
4987 return ret;
4988 }
4989 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4990
4991 /**
4992 * regulator_bulk_disable - disable multiple regulator consumers
4993 *
4994 * @num_consumers: Number of consumers
4995 * @consumers: Consumer data; clients are stored here.
4996 * @return 0 on success, an errno on failure
4997 *
4998 * This convenience API allows consumers to disable multiple regulator
4999 * clients in a single API call. If any consumers cannot be disabled
5000 * then any others that were disabled will be enabled again prior to
5001 * return.
5002 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)5003 int regulator_bulk_disable(int num_consumers,
5004 struct regulator_bulk_data *consumers)
5005 {
5006 int i;
5007 int ret, r;
5008
5009 for (i = num_consumers - 1; i >= 0; --i) {
5010 ret = regulator_disable(consumers[i].consumer);
5011 if (ret != 0)
5012 goto err;
5013 }
5014
5015 return 0;
5016
5017 err:
5018 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5019 for (++i; i < num_consumers; ++i) {
5020 r = regulator_enable(consumers[i].consumer);
5021 if (r != 0)
5022 pr_err("Failed to re-enable %s: %pe\n",
5023 consumers[i].supply, ERR_PTR(r));
5024 }
5025
5026 return ret;
5027 }
5028 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5029
5030 /**
5031 * regulator_bulk_force_disable - force disable multiple regulator consumers
5032 *
5033 * @num_consumers: Number of consumers
5034 * @consumers: Consumer data; clients are stored here.
5035 * @return 0 on success, an errno on failure
5036 *
5037 * This convenience API allows consumers to forcibly disable multiple regulator
5038 * clients in a single API call.
5039 * NOTE: This should be used for situations when device damage will
5040 * likely occur if the regulators are not disabled (e.g. over temp).
5041 * Although regulator_force_disable function call for some consumers can
5042 * return error numbers, the function is called for all consumers.
5043 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)5044 int regulator_bulk_force_disable(int num_consumers,
5045 struct regulator_bulk_data *consumers)
5046 {
5047 int i;
5048 int ret = 0;
5049
5050 for (i = 0; i < num_consumers; i++) {
5051 consumers[i].ret =
5052 regulator_force_disable(consumers[i].consumer);
5053
5054 /* Store first error for reporting */
5055 if (consumers[i].ret && !ret)
5056 ret = consumers[i].ret;
5057 }
5058
5059 return ret;
5060 }
5061 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5062
5063 /**
5064 * regulator_bulk_free - free multiple regulator consumers
5065 *
5066 * @num_consumers: Number of consumers
5067 * @consumers: Consumer data; clients are stored here.
5068 *
5069 * This convenience API allows consumers to free multiple regulator
5070 * clients in a single API call.
5071 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)5072 void regulator_bulk_free(int num_consumers,
5073 struct regulator_bulk_data *consumers)
5074 {
5075 int i;
5076
5077 for (i = 0; i < num_consumers; i++) {
5078 regulator_put(consumers[i].consumer);
5079 consumers[i].consumer = NULL;
5080 }
5081 }
5082 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5083
5084 /**
5085 * regulator_notifier_call_chain - call regulator event notifier
5086 * @rdev: regulator source
5087 * @event: notifier block
5088 * @data: callback-specific data.
5089 *
5090 * Called by regulator drivers to notify clients a regulator event has
5091 * occurred.
5092 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5093 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5094 unsigned long event, void *data)
5095 {
5096 _notifier_call_chain(rdev, event, data);
5097 return NOTIFY_DONE;
5098
5099 }
5100 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5101
5102 /**
5103 * regulator_mode_to_status - convert a regulator mode into a status
5104 *
5105 * @mode: Mode to convert
5106 *
5107 * Convert a regulator mode into a status.
5108 */
regulator_mode_to_status(unsigned int mode)5109 int regulator_mode_to_status(unsigned int mode)
5110 {
5111 switch (mode) {
5112 case REGULATOR_MODE_FAST:
5113 return REGULATOR_STATUS_FAST;
5114 case REGULATOR_MODE_NORMAL:
5115 return REGULATOR_STATUS_NORMAL;
5116 case REGULATOR_MODE_IDLE:
5117 return REGULATOR_STATUS_IDLE;
5118 case REGULATOR_MODE_STANDBY:
5119 return REGULATOR_STATUS_STANDBY;
5120 default:
5121 return REGULATOR_STATUS_UNDEFINED;
5122 }
5123 }
5124 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5125
5126 static struct attribute *regulator_dev_attrs[] = {
5127 &dev_attr_name.attr,
5128 &dev_attr_num_users.attr,
5129 &dev_attr_type.attr,
5130 &dev_attr_microvolts.attr,
5131 &dev_attr_microamps.attr,
5132 &dev_attr_opmode.attr,
5133 &dev_attr_state.attr,
5134 &dev_attr_status.attr,
5135 &dev_attr_bypass.attr,
5136 &dev_attr_requested_microamps.attr,
5137 &dev_attr_min_microvolts.attr,
5138 &dev_attr_max_microvolts.attr,
5139 &dev_attr_min_microamps.attr,
5140 &dev_attr_max_microamps.attr,
5141 &dev_attr_under_voltage.attr,
5142 &dev_attr_over_current.attr,
5143 &dev_attr_regulation_out.attr,
5144 &dev_attr_fail.attr,
5145 &dev_attr_over_temp.attr,
5146 &dev_attr_under_voltage_warn.attr,
5147 &dev_attr_over_current_warn.attr,
5148 &dev_attr_over_voltage_warn.attr,
5149 &dev_attr_over_temp_warn.attr,
5150 &dev_attr_suspend_standby_state.attr,
5151 &dev_attr_suspend_mem_state.attr,
5152 &dev_attr_suspend_disk_state.attr,
5153 &dev_attr_suspend_standby_microvolts.attr,
5154 &dev_attr_suspend_mem_microvolts.attr,
5155 &dev_attr_suspend_disk_microvolts.attr,
5156 &dev_attr_suspend_standby_mode.attr,
5157 &dev_attr_suspend_mem_mode.attr,
5158 &dev_attr_suspend_disk_mode.attr,
5159 NULL
5160 };
5161
5162 /*
5163 * To avoid cluttering sysfs (and memory) with useless state, only
5164 * create attributes that can be meaningfully displayed.
5165 */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)5166 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5167 struct attribute *attr, int idx)
5168 {
5169 struct device *dev = kobj_to_dev(kobj);
5170 struct regulator_dev *rdev = dev_to_rdev(dev);
5171 const struct regulator_ops *ops = rdev->desc->ops;
5172 umode_t mode = attr->mode;
5173
5174 /* these three are always present */
5175 if (attr == &dev_attr_name.attr ||
5176 attr == &dev_attr_num_users.attr ||
5177 attr == &dev_attr_type.attr)
5178 return mode;
5179
5180 /* some attributes need specific methods to be displayed */
5181 if (attr == &dev_attr_microvolts.attr) {
5182 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5183 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5184 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5185 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5186 return mode;
5187 return 0;
5188 }
5189
5190 if (attr == &dev_attr_microamps.attr)
5191 return ops->get_current_limit ? mode : 0;
5192
5193 if (attr == &dev_attr_opmode.attr)
5194 return ops->get_mode ? mode : 0;
5195
5196 if (attr == &dev_attr_state.attr)
5197 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5198
5199 if (attr == &dev_attr_status.attr)
5200 return ops->get_status ? mode : 0;
5201
5202 if (attr == &dev_attr_bypass.attr)
5203 return ops->get_bypass ? mode : 0;
5204
5205 if (attr == &dev_attr_under_voltage.attr ||
5206 attr == &dev_attr_over_current.attr ||
5207 attr == &dev_attr_regulation_out.attr ||
5208 attr == &dev_attr_fail.attr ||
5209 attr == &dev_attr_over_temp.attr ||
5210 attr == &dev_attr_under_voltage_warn.attr ||
5211 attr == &dev_attr_over_current_warn.attr ||
5212 attr == &dev_attr_over_voltage_warn.attr ||
5213 attr == &dev_attr_over_temp_warn.attr)
5214 return ops->get_error_flags ? mode : 0;
5215
5216 /* constraints need specific supporting methods */
5217 if (attr == &dev_attr_min_microvolts.attr ||
5218 attr == &dev_attr_max_microvolts.attr)
5219 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5220
5221 if (attr == &dev_attr_min_microamps.attr ||
5222 attr == &dev_attr_max_microamps.attr)
5223 return ops->set_current_limit ? mode : 0;
5224
5225 if (attr == &dev_attr_suspend_standby_state.attr ||
5226 attr == &dev_attr_suspend_mem_state.attr ||
5227 attr == &dev_attr_suspend_disk_state.attr)
5228 return mode;
5229
5230 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5231 attr == &dev_attr_suspend_mem_microvolts.attr ||
5232 attr == &dev_attr_suspend_disk_microvolts.attr)
5233 return ops->set_suspend_voltage ? mode : 0;
5234
5235 if (attr == &dev_attr_suspend_standby_mode.attr ||
5236 attr == &dev_attr_suspend_mem_mode.attr ||
5237 attr == &dev_attr_suspend_disk_mode.attr)
5238 return ops->set_suspend_mode ? mode : 0;
5239
5240 return mode;
5241 }
5242
5243 static const struct attribute_group regulator_dev_group = {
5244 .attrs = regulator_dev_attrs,
5245 .is_visible = regulator_attr_is_visible,
5246 };
5247
5248 static const struct attribute_group *regulator_dev_groups[] = {
5249 ®ulator_dev_group,
5250 NULL
5251 };
5252
regulator_dev_release(struct device * dev)5253 static void regulator_dev_release(struct device *dev)
5254 {
5255 struct regulator_dev *rdev = dev_get_drvdata(dev);
5256
5257 debugfs_remove_recursive(rdev->debugfs);
5258 kfree(rdev->constraints);
5259 of_node_put(rdev->dev.of_node);
5260 kfree(rdev);
5261 }
5262
rdev_init_debugfs(struct regulator_dev * rdev)5263 static void rdev_init_debugfs(struct regulator_dev *rdev)
5264 {
5265 struct device *parent = rdev->dev.parent;
5266 const char *rname = rdev_get_name(rdev);
5267 char name[NAME_MAX];
5268
5269 /* Avoid duplicate debugfs directory names */
5270 if (parent && rname == rdev->desc->name) {
5271 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5272 rname);
5273 rname = name;
5274 }
5275
5276 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5277 if (IS_ERR(rdev->debugfs))
5278 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5279
5280 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5281 &rdev->use_count);
5282 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5283 &rdev->open_count);
5284 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5285 &rdev->bypass_count);
5286 }
5287
regulator_register_resolve_supply(struct device * dev,void * data)5288 static int regulator_register_resolve_supply(struct device *dev, void *data)
5289 {
5290 struct regulator_dev *rdev = dev_to_rdev(dev);
5291
5292 if (regulator_resolve_supply(rdev))
5293 rdev_dbg(rdev, "unable to resolve supply\n");
5294
5295 return 0;
5296 }
5297
regulator_coupler_register(struct regulator_coupler * coupler)5298 int regulator_coupler_register(struct regulator_coupler *coupler)
5299 {
5300 mutex_lock(®ulator_list_mutex);
5301 list_add_tail(&coupler->list, ®ulator_coupler_list);
5302 mutex_unlock(®ulator_list_mutex);
5303
5304 return 0;
5305 }
5306
5307 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5308 regulator_find_coupler(struct regulator_dev *rdev)
5309 {
5310 struct regulator_coupler *coupler;
5311 int err;
5312
5313 /*
5314 * Note that regulators are appended to the list and the generic
5315 * coupler is registered first, hence it will be attached at last
5316 * if nobody cared.
5317 */
5318 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5319 err = coupler->attach_regulator(coupler, rdev);
5320 if (!err) {
5321 if (!coupler->balance_voltage &&
5322 rdev->coupling_desc.n_coupled > 2)
5323 goto err_unsupported;
5324
5325 return coupler;
5326 }
5327
5328 if (err < 0)
5329 return ERR_PTR(err);
5330
5331 if (err == 1)
5332 continue;
5333
5334 break;
5335 }
5336
5337 return ERR_PTR(-EINVAL);
5338
5339 err_unsupported:
5340 if (coupler->detach_regulator)
5341 coupler->detach_regulator(coupler, rdev);
5342
5343 rdev_err(rdev,
5344 "Voltage balancing for multiple regulator couples is unimplemented\n");
5345
5346 return ERR_PTR(-EPERM);
5347 }
5348
regulator_resolve_coupling(struct regulator_dev * rdev)5349 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5350 {
5351 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5352 struct coupling_desc *c_desc = &rdev->coupling_desc;
5353 int n_coupled = c_desc->n_coupled;
5354 struct regulator_dev *c_rdev;
5355 int i;
5356
5357 for (i = 1; i < n_coupled; i++) {
5358 /* already resolved */
5359 if (c_desc->coupled_rdevs[i])
5360 continue;
5361
5362 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5363
5364 if (!c_rdev)
5365 continue;
5366
5367 if (c_rdev->coupling_desc.coupler != coupler) {
5368 rdev_err(rdev, "coupler mismatch with %s\n",
5369 rdev_get_name(c_rdev));
5370 return;
5371 }
5372
5373 c_desc->coupled_rdevs[i] = c_rdev;
5374 c_desc->n_resolved++;
5375
5376 regulator_resolve_coupling(c_rdev);
5377 }
5378 }
5379
regulator_remove_coupling(struct regulator_dev * rdev)5380 static void regulator_remove_coupling(struct regulator_dev *rdev)
5381 {
5382 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5383 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5384 struct regulator_dev *__c_rdev, *c_rdev;
5385 unsigned int __n_coupled, n_coupled;
5386 int i, k;
5387 int err;
5388
5389 n_coupled = c_desc->n_coupled;
5390
5391 for (i = 1; i < n_coupled; i++) {
5392 c_rdev = c_desc->coupled_rdevs[i];
5393
5394 if (!c_rdev)
5395 continue;
5396
5397 regulator_lock(c_rdev);
5398
5399 __c_desc = &c_rdev->coupling_desc;
5400 __n_coupled = __c_desc->n_coupled;
5401
5402 for (k = 1; k < __n_coupled; k++) {
5403 __c_rdev = __c_desc->coupled_rdevs[k];
5404
5405 if (__c_rdev == rdev) {
5406 __c_desc->coupled_rdevs[k] = NULL;
5407 __c_desc->n_resolved--;
5408 break;
5409 }
5410 }
5411
5412 regulator_unlock(c_rdev);
5413
5414 c_desc->coupled_rdevs[i] = NULL;
5415 c_desc->n_resolved--;
5416 }
5417
5418 if (coupler && coupler->detach_regulator) {
5419 err = coupler->detach_regulator(coupler, rdev);
5420 if (err)
5421 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5422 ERR_PTR(err));
5423 }
5424
5425 kfree(rdev->coupling_desc.coupled_rdevs);
5426 rdev->coupling_desc.coupled_rdevs = NULL;
5427 }
5428
regulator_init_coupling(struct regulator_dev * rdev)5429 static int regulator_init_coupling(struct regulator_dev *rdev)
5430 {
5431 struct regulator_dev **coupled;
5432 int err, n_phandles;
5433
5434 if (!IS_ENABLED(CONFIG_OF))
5435 n_phandles = 0;
5436 else
5437 n_phandles = of_get_n_coupled(rdev);
5438
5439 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5440 if (!coupled)
5441 return -ENOMEM;
5442
5443 rdev->coupling_desc.coupled_rdevs = coupled;
5444
5445 /*
5446 * Every regulator should always have coupling descriptor filled with
5447 * at least pointer to itself.
5448 */
5449 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5450 rdev->coupling_desc.n_coupled = n_phandles + 1;
5451 rdev->coupling_desc.n_resolved++;
5452
5453 /* regulator isn't coupled */
5454 if (n_phandles == 0)
5455 return 0;
5456
5457 if (!of_check_coupling_data(rdev))
5458 return -EPERM;
5459
5460 mutex_lock(®ulator_list_mutex);
5461 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5462 mutex_unlock(®ulator_list_mutex);
5463
5464 if (IS_ERR(rdev->coupling_desc.coupler)) {
5465 err = PTR_ERR(rdev->coupling_desc.coupler);
5466 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5467 return err;
5468 }
5469
5470 return 0;
5471 }
5472
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5473 static int generic_coupler_attach(struct regulator_coupler *coupler,
5474 struct regulator_dev *rdev)
5475 {
5476 if (rdev->coupling_desc.n_coupled > 2) {
5477 rdev_err(rdev,
5478 "Voltage balancing for multiple regulator couples is unimplemented\n");
5479 return -EPERM;
5480 }
5481
5482 if (!rdev->constraints->always_on) {
5483 rdev_err(rdev,
5484 "Coupling of a non always-on regulator is unimplemented\n");
5485 return -ENOTSUPP;
5486 }
5487
5488 return 0;
5489 }
5490
5491 static struct regulator_coupler generic_regulator_coupler = {
5492 .attach_regulator = generic_coupler_attach,
5493 };
5494
5495 /**
5496 * regulator_register - register regulator
5497 * @dev: the device that drive the regulator
5498 * @regulator_desc: regulator to register
5499 * @cfg: runtime configuration for regulator
5500 *
5501 * Called by regulator drivers to register a regulator.
5502 * Returns a valid pointer to struct regulator_dev on success
5503 * or an ERR_PTR() on error.
5504 */
5505 struct regulator_dev *
regulator_register(struct device * dev,const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5506 regulator_register(struct device *dev,
5507 const struct regulator_desc *regulator_desc,
5508 const struct regulator_config *cfg)
5509 {
5510 const struct regulator_init_data *init_data;
5511 struct regulator_config *config = NULL;
5512 static atomic_t regulator_no = ATOMIC_INIT(-1);
5513 struct regulator_dev *rdev;
5514 bool dangling_cfg_gpiod = false;
5515 bool dangling_of_gpiod = false;
5516 int ret, i;
5517 bool resolved_early = false;
5518
5519 if (cfg == NULL)
5520 return ERR_PTR(-EINVAL);
5521 if (cfg->ena_gpiod)
5522 dangling_cfg_gpiod = true;
5523 if (regulator_desc == NULL) {
5524 ret = -EINVAL;
5525 goto rinse;
5526 }
5527
5528 WARN_ON(!dev || !cfg->dev);
5529
5530 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5531 ret = -EINVAL;
5532 goto rinse;
5533 }
5534
5535 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5536 regulator_desc->type != REGULATOR_CURRENT) {
5537 ret = -EINVAL;
5538 goto rinse;
5539 }
5540
5541 /* Only one of each should be implemented */
5542 WARN_ON(regulator_desc->ops->get_voltage &&
5543 regulator_desc->ops->get_voltage_sel);
5544 WARN_ON(regulator_desc->ops->set_voltage &&
5545 regulator_desc->ops->set_voltage_sel);
5546
5547 /* If we're using selectors we must implement list_voltage. */
5548 if (regulator_desc->ops->get_voltage_sel &&
5549 !regulator_desc->ops->list_voltage) {
5550 ret = -EINVAL;
5551 goto rinse;
5552 }
5553 if (regulator_desc->ops->set_voltage_sel &&
5554 !regulator_desc->ops->list_voltage) {
5555 ret = -EINVAL;
5556 goto rinse;
5557 }
5558
5559 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5560 if (rdev == NULL) {
5561 ret = -ENOMEM;
5562 goto rinse;
5563 }
5564 device_initialize(&rdev->dev);
5565 dev_set_drvdata(&rdev->dev, rdev);
5566 rdev->dev.class = ®ulator_class;
5567 spin_lock_init(&rdev->err_lock);
5568
5569 /*
5570 * Duplicate the config so the driver could override it after
5571 * parsing init data.
5572 */
5573 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5574 if (config == NULL) {
5575 ret = -ENOMEM;
5576 goto clean;
5577 }
5578
5579 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5580 &rdev->dev.of_node);
5581
5582 /*
5583 * Sometimes not all resources are probed already so we need to take
5584 * that into account. This happens most the time if the ena_gpiod comes
5585 * from a gpio extender or something else.
5586 */
5587 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5588 ret = -EPROBE_DEFER;
5589 goto clean;
5590 }
5591
5592 /*
5593 * We need to keep track of any GPIO descriptor coming from the
5594 * device tree until we have handled it over to the core. If the
5595 * config that was passed in to this function DOES NOT contain
5596 * a descriptor, and the config after this call DOES contain
5597 * a descriptor, we definitely got one from parsing the device
5598 * tree.
5599 */
5600 if (!cfg->ena_gpiod && config->ena_gpiod)
5601 dangling_of_gpiod = true;
5602 if (!init_data) {
5603 init_data = config->init_data;
5604 rdev->dev.of_node = of_node_get(config->of_node);
5605 }
5606
5607 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5608 rdev->reg_data = config->driver_data;
5609 rdev->owner = regulator_desc->owner;
5610 rdev->desc = regulator_desc;
5611 if (config->regmap)
5612 rdev->regmap = config->regmap;
5613 else if (dev_get_regmap(dev, NULL))
5614 rdev->regmap = dev_get_regmap(dev, NULL);
5615 else if (dev->parent)
5616 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5617 INIT_LIST_HEAD(&rdev->consumer_list);
5618 INIT_LIST_HEAD(&rdev->list);
5619 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5620 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5621
5622 if (init_data && init_data->supply_regulator)
5623 rdev->supply_name = init_data->supply_regulator;
5624 else if (regulator_desc->supply_name)
5625 rdev->supply_name = regulator_desc->supply_name;
5626
5627 /* register with sysfs */
5628 rdev->dev.parent = config->dev;
5629 dev_set_name(&rdev->dev, "regulator.%lu",
5630 (unsigned long) atomic_inc_return(®ulator_no));
5631
5632 /* set regulator constraints */
5633 if (init_data)
5634 rdev->constraints = kmemdup(&init_data->constraints,
5635 sizeof(*rdev->constraints),
5636 GFP_KERNEL);
5637 else
5638 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5639 GFP_KERNEL);
5640 if (!rdev->constraints) {
5641 ret = -ENOMEM;
5642 goto wash;
5643 }
5644
5645 if ((rdev->supply_name && !rdev->supply) &&
5646 (rdev->constraints->always_on ||
5647 rdev->constraints->boot_on)) {
5648 ret = regulator_resolve_supply(rdev);
5649 if (ret)
5650 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5651 ERR_PTR(ret));
5652
5653 resolved_early = true;
5654 }
5655
5656 /* perform any regulator specific init */
5657 if (init_data && init_data->regulator_init) {
5658 ret = init_data->regulator_init(rdev->reg_data);
5659 if (ret < 0)
5660 goto wash;
5661 }
5662
5663 if (config->ena_gpiod) {
5664 ret = regulator_ena_gpio_request(rdev, config);
5665 if (ret != 0) {
5666 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5667 ERR_PTR(ret));
5668 goto wash;
5669 }
5670 /* The regulator core took over the GPIO descriptor */
5671 dangling_cfg_gpiod = false;
5672 dangling_of_gpiod = false;
5673 }
5674
5675 ret = set_machine_constraints(rdev);
5676 if (ret == -EPROBE_DEFER && !resolved_early) {
5677 /* Regulator might be in bypass mode and so needs its supply
5678 * to set the constraints
5679 */
5680 /* FIXME: this currently triggers a chicken-and-egg problem
5681 * when creating -SUPPLY symlink in sysfs to a regulator
5682 * that is just being created
5683 */
5684 rdev_dbg(rdev, "will resolve supply early: %s\n",
5685 rdev->supply_name);
5686 ret = regulator_resolve_supply(rdev);
5687 if (!ret)
5688 ret = set_machine_constraints(rdev);
5689 else
5690 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5691 ERR_PTR(ret));
5692 }
5693 if (ret < 0)
5694 goto wash;
5695
5696 ret = regulator_init_coupling(rdev);
5697 if (ret < 0)
5698 goto wash;
5699
5700 /* add consumers devices */
5701 if (init_data) {
5702 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5703 ret = set_consumer_device_supply(rdev,
5704 init_data->consumer_supplies[i].dev_name,
5705 init_data->consumer_supplies[i].supply);
5706 if (ret < 0) {
5707 dev_err(dev, "Failed to set supply %s\n",
5708 init_data->consumer_supplies[i].supply);
5709 goto unset_supplies;
5710 }
5711 }
5712 }
5713
5714 if (!rdev->desc->ops->get_voltage &&
5715 !rdev->desc->ops->list_voltage &&
5716 !rdev->desc->fixed_uV)
5717 rdev->is_switch = true;
5718
5719 ret = device_add(&rdev->dev);
5720 if (ret != 0)
5721 goto unset_supplies;
5722
5723 rdev_init_debugfs(rdev);
5724
5725 /* try to resolve regulators coupling since a new one was registered */
5726 mutex_lock(®ulator_list_mutex);
5727 regulator_resolve_coupling(rdev);
5728 mutex_unlock(®ulator_list_mutex);
5729
5730 /* try to resolve regulators supply since a new one was registered */
5731 class_for_each_device(®ulator_class, NULL, NULL,
5732 regulator_register_resolve_supply);
5733 kfree(config);
5734 return rdev;
5735
5736 unset_supplies:
5737 mutex_lock(®ulator_list_mutex);
5738 unset_regulator_supplies(rdev);
5739 regulator_remove_coupling(rdev);
5740 mutex_unlock(®ulator_list_mutex);
5741 wash:
5742 regulator_put(rdev->supply);
5743 kfree(rdev->coupling_desc.coupled_rdevs);
5744 mutex_lock(®ulator_list_mutex);
5745 regulator_ena_gpio_free(rdev);
5746 mutex_unlock(®ulator_list_mutex);
5747 clean:
5748 if (dangling_of_gpiod)
5749 gpiod_put(config->ena_gpiod);
5750 kfree(config);
5751 put_device(&rdev->dev);
5752 rinse:
5753 if (dangling_cfg_gpiod)
5754 gpiod_put(cfg->ena_gpiod);
5755 return ERR_PTR(ret);
5756 }
5757 EXPORT_SYMBOL_GPL(regulator_register);
5758
5759 /**
5760 * regulator_unregister - unregister regulator
5761 * @rdev: regulator to unregister
5762 *
5763 * Called by regulator drivers to unregister a regulator.
5764 */
regulator_unregister(struct regulator_dev * rdev)5765 void regulator_unregister(struct regulator_dev *rdev)
5766 {
5767 if (rdev == NULL)
5768 return;
5769
5770 if (rdev->supply) {
5771 while (rdev->use_count--)
5772 regulator_disable(rdev->supply);
5773 regulator_put(rdev->supply);
5774 }
5775
5776 flush_work(&rdev->disable_work.work);
5777
5778 mutex_lock(®ulator_list_mutex);
5779
5780 WARN_ON(rdev->open_count);
5781 regulator_remove_coupling(rdev);
5782 unset_regulator_supplies(rdev);
5783 list_del(&rdev->list);
5784 regulator_ena_gpio_free(rdev);
5785 device_unregister(&rdev->dev);
5786
5787 mutex_unlock(®ulator_list_mutex);
5788 }
5789 EXPORT_SYMBOL_GPL(regulator_unregister);
5790
5791 #ifdef CONFIG_SUSPEND
5792 /**
5793 * regulator_suspend - prepare regulators for system wide suspend
5794 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5795 *
5796 * Configure each regulator with it's suspend operating parameters for state.
5797 */
regulator_suspend(struct device * dev)5798 static int regulator_suspend(struct device *dev)
5799 {
5800 struct regulator_dev *rdev = dev_to_rdev(dev);
5801 suspend_state_t state = pm_suspend_target_state;
5802 int ret;
5803 const struct regulator_state *rstate;
5804
5805 rstate = regulator_get_suspend_state_check(rdev, state);
5806 if (!rstate)
5807 return 0;
5808
5809 regulator_lock(rdev);
5810 ret = __suspend_set_state(rdev, rstate);
5811 regulator_unlock(rdev);
5812
5813 return ret;
5814 }
5815
regulator_resume(struct device * dev)5816 static int regulator_resume(struct device *dev)
5817 {
5818 suspend_state_t state = pm_suspend_target_state;
5819 struct regulator_dev *rdev = dev_to_rdev(dev);
5820 struct regulator_state *rstate;
5821 int ret = 0;
5822
5823 rstate = regulator_get_suspend_state(rdev, state);
5824 if (rstate == NULL)
5825 return 0;
5826
5827 /* Avoid grabbing the lock if we don't need to */
5828 if (!rdev->desc->ops->resume)
5829 return 0;
5830
5831 regulator_lock(rdev);
5832
5833 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5834 rstate->enabled == DISABLE_IN_SUSPEND)
5835 ret = rdev->desc->ops->resume(rdev);
5836
5837 regulator_unlock(rdev);
5838
5839 return ret;
5840 }
5841 #else /* !CONFIG_SUSPEND */
5842
5843 #define regulator_suspend NULL
5844 #define regulator_resume NULL
5845
5846 #endif /* !CONFIG_SUSPEND */
5847
5848 #ifdef CONFIG_PM
5849 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5850 .suspend = regulator_suspend,
5851 .resume = regulator_resume,
5852 };
5853 #endif
5854
5855 struct class regulator_class = {
5856 .name = "regulator",
5857 .dev_release = regulator_dev_release,
5858 .dev_groups = regulator_dev_groups,
5859 #ifdef CONFIG_PM
5860 .pm = ®ulator_pm_ops,
5861 #endif
5862 };
5863 /**
5864 * regulator_has_full_constraints - the system has fully specified constraints
5865 *
5866 * Calling this function will cause the regulator API to disable all
5867 * regulators which have a zero use count and don't have an always_on
5868 * constraint in a late_initcall.
5869 *
5870 * The intention is that this will become the default behaviour in a
5871 * future kernel release so users are encouraged to use this facility
5872 * now.
5873 */
regulator_has_full_constraints(void)5874 void regulator_has_full_constraints(void)
5875 {
5876 has_full_constraints = 1;
5877 }
5878 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5879
5880 /**
5881 * rdev_get_drvdata - get rdev regulator driver data
5882 * @rdev: regulator
5883 *
5884 * Get rdev regulator driver private data. This call can be used in the
5885 * regulator driver context.
5886 */
rdev_get_drvdata(struct regulator_dev * rdev)5887 void *rdev_get_drvdata(struct regulator_dev *rdev)
5888 {
5889 return rdev->reg_data;
5890 }
5891 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5892
5893 /**
5894 * regulator_get_drvdata - get regulator driver data
5895 * @regulator: regulator
5896 *
5897 * Get regulator driver private data. This call can be used in the consumer
5898 * driver context when non API regulator specific functions need to be called.
5899 */
regulator_get_drvdata(struct regulator * regulator)5900 void *regulator_get_drvdata(struct regulator *regulator)
5901 {
5902 return regulator->rdev->reg_data;
5903 }
5904 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5905
5906 /**
5907 * regulator_set_drvdata - set regulator driver data
5908 * @regulator: regulator
5909 * @data: data
5910 */
regulator_set_drvdata(struct regulator * regulator,void * data)5911 void regulator_set_drvdata(struct regulator *regulator, void *data)
5912 {
5913 regulator->rdev->reg_data = data;
5914 }
5915 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5916
5917 /**
5918 * rdev_get_id - get regulator ID
5919 * @rdev: regulator
5920 */
rdev_get_id(struct regulator_dev * rdev)5921 int rdev_get_id(struct regulator_dev *rdev)
5922 {
5923 return rdev->desc->id;
5924 }
5925 EXPORT_SYMBOL_GPL(rdev_get_id);
5926
rdev_get_dev(struct regulator_dev * rdev)5927 struct device *rdev_get_dev(struct regulator_dev *rdev)
5928 {
5929 return &rdev->dev;
5930 }
5931 EXPORT_SYMBOL_GPL(rdev_get_dev);
5932
rdev_get_regmap(struct regulator_dev * rdev)5933 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5934 {
5935 return rdev->regmap;
5936 }
5937 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5938
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)5939 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5940 {
5941 return reg_init_data->driver_data;
5942 }
5943 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5944
5945 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)5946 static int supply_map_show(struct seq_file *sf, void *data)
5947 {
5948 struct regulator_map *map;
5949
5950 list_for_each_entry(map, ®ulator_map_list, list) {
5951 seq_printf(sf, "%s -> %s.%s\n",
5952 rdev_get_name(map->regulator), map->dev_name,
5953 map->supply);
5954 }
5955
5956 return 0;
5957 }
5958 DEFINE_SHOW_ATTRIBUTE(supply_map);
5959
5960 struct summary_data {
5961 struct seq_file *s;
5962 struct regulator_dev *parent;
5963 int level;
5964 };
5965
5966 static void regulator_summary_show_subtree(struct seq_file *s,
5967 struct regulator_dev *rdev,
5968 int level);
5969
regulator_summary_show_children(struct device * dev,void * data)5970 static int regulator_summary_show_children(struct device *dev, void *data)
5971 {
5972 struct regulator_dev *rdev = dev_to_rdev(dev);
5973 struct summary_data *summary_data = data;
5974
5975 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5976 regulator_summary_show_subtree(summary_data->s, rdev,
5977 summary_data->level + 1);
5978
5979 return 0;
5980 }
5981
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)5982 static void regulator_summary_show_subtree(struct seq_file *s,
5983 struct regulator_dev *rdev,
5984 int level)
5985 {
5986 struct regulation_constraints *c;
5987 struct regulator *consumer;
5988 struct summary_data summary_data;
5989 unsigned int opmode;
5990
5991 if (!rdev)
5992 return;
5993
5994 opmode = _regulator_get_mode_unlocked(rdev);
5995 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5996 level * 3 + 1, "",
5997 30 - level * 3, rdev_get_name(rdev),
5998 rdev->use_count, rdev->open_count, rdev->bypass_count,
5999 regulator_opmode_to_str(opmode));
6000
6001 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6002 seq_printf(s, "%5dmA ",
6003 _regulator_get_current_limit_unlocked(rdev) / 1000);
6004
6005 c = rdev->constraints;
6006 if (c) {
6007 switch (rdev->desc->type) {
6008 case REGULATOR_VOLTAGE:
6009 seq_printf(s, "%5dmV %5dmV ",
6010 c->min_uV / 1000, c->max_uV / 1000);
6011 break;
6012 case REGULATOR_CURRENT:
6013 seq_printf(s, "%5dmA %5dmA ",
6014 c->min_uA / 1000, c->max_uA / 1000);
6015 break;
6016 }
6017 }
6018
6019 seq_puts(s, "\n");
6020
6021 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6022 if (consumer->dev && consumer->dev->class == ®ulator_class)
6023 continue;
6024
6025 seq_printf(s, "%*s%-*s ",
6026 (level + 1) * 3 + 1, "",
6027 30 - (level + 1) * 3,
6028 consumer->supply_name ? consumer->supply_name :
6029 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6030
6031 switch (rdev->desc->type) {
6032 case REGULATOR_VOLTAGE:
6033 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6034 consumer->enable_count,
6035 consumer->uA_load / 1000,
6036 consumer->uA_load && !consumer->enable_count ?
6037 '*' : ' ',
6038 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6039 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6040 break;
6041 case REGULATOR_CURRENT:
6042 break;
6043 }
6044
6045 seq_puts(s, "\n");
6046 }
6047
6048 summary_data.s = s;
6049 summary_data.level = level;
6050 summary_data.parent = rdev;
6051
6052 class_for_each_device(®ulator_class, NULL, &summary_data,
6053 regulator_summary_show_children);
6054 }
6055
6056 struct summary_lock_data {
6057 struct ww_acquire_ctx *ww_ctx;
6058 struct regulator_dev **new_contended_rdev;
6059 struct regulator_dev **old_contended_rdev;
6060 };
6061
regulator_summary_lock_one(struct device * dev,void * data)6062 static int regulator_summary_lock_one(struct device *dev, void *data)
6063 {
6064 struct regulator_dev *rdev = dev_to_rdev(dev);
6065 struct summary_lock_data *lock_data = data;
6066 int ret = 0;
6067
6068 if (rdev != *lock_data->old_contended_rdev) {
6069 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6070
6071 if (ret == -EDEADLK)
6072 *lock_data->new_contended_rdev = rdev;
6073 else
6074 WARN_ON_ONCE(ret);
6075 } else {
6076 *lock_data->old_contended_rdev = NULL;
6077 }
6078
6079 return ret;
6080 }
6081
regulator_summary_unlock_one(struct device * dev,void * data)6082 static int regulator_summary_unlock_one(struct device *dev, void *data)
6083 {
6084 struct regulator_dev *rdev = dev_to_rdev(dev);
6085 struct summary_lock_data *lock_data = data;
6086
6087 if (lock_data) {
6088 if (rdev == *lock_data->new_contended_rdev)
6089 return -EDEADLK;
6090 }
6091
6092 regulator_unlock(rdev);
6093
6094 return 0;
6095 }
6096
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)6097 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6098 struct regulator_dev **new_contended_rdev,
6099 struct regulator_dev **old_contended_rdev)
6100 {
6101 struct summary_lock_data lock_data;
6102 int ret;
6103
6104 lock_data.ww_ctx = ww_ctx;
6105 lock_data.new_contended_rdev = new_contended_rdev;
6106 lock_data.old_contended_rdev = old_contended_rdev;
6107
6108 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6109 regulator_summary_lock_one);
6110 if (ret)
6111 class_for_each_device(®ulator_class, NULL, &lock_data,
6112 regulator_summary_unlock_one);
6113
6114 return ret;
6115 }
6116
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)6117 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6118 {
6119 struct regulator_dev *new_contended_rdev = NULL;
6120 struct regulator_dev *old_contended_rdev = NULL;
6121 int err;
6122
6123 mutex_lock(®ulator_list_mutex);
6124
6125 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6126
6127 do {
6128 if (new_contended_rdev) {
6129 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6130 old_contended_rdev = new_contended_rdev;
6131 old_contended_rdev->ref_cnt++;
6132 old_contended_rdev->mutex_owner = current;
6133 }
6134
6135 err = regulator_summary_lock_all(ww_ctx,
6136 &new_contended_rdev,
6137 &old_contended_rdev);
6138
6139 if (old_contended_rdev)
6140 regulator_unlock(old_contended_rdev);
6141
6142 } while (err == -EDEADLK);
6143
6144 ww_acquire_done(ww_ctx);
6145 }
6146
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)6147 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6148 {
6149 class_for_each_device(®ulator_class, NULL, NULL,
6150 regulator_summary_unlock_one);
6151 ww_acquire_fini(ww_ctx);
6152
6153 mutex_unlock(®ulator_list_mutex);
6154 }
6155
regulator_summary_show_roots(struct device * dev,void * data)6156 static int regulator_summary_show_roots(struct device *dev, void *data)
6157 {
6158 struct regulator_dev *rdev = dev_to_rdev(dev);
6159 struct seq_file *s = data;
6160
6161 if (!rdev->supply)
6162 regulator_summary_show_subtree(s, rdev, 0);
6163
6164 return 0;
6165 }
6166
regulator_summary_show(struct seq_file * s,void * data)6167 static int regulator_summary_show(struct seq_file *s, void *data)
6168 {
6169 struct ww_acquire_ctx ww_ctx;
6170
6171 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6172 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6173
6174 regulator_summary_lock(&ww_ctx);
6175
6176 class_for_each_device(®ulator_class, NULL, s,
6177 regulator_summary_show_roots);
6178
6179 regulator_summary_unlock(&ww_ctx);
6180
6181 return 0;
6182 }
6183 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6184 #endif /* CONFIG_DEBUG_FS */
6185
regulator_init(void)6186 static int __init regulator_init(void)
6187 {
6188 int ret;
6189
6190 ret = class_register(®ulator_class);
6191
6192 debugfs_root = debugfs_create_dir("regulator", NULL);
6193 if (IS_ERR(debugfs_root))
6194 pr_debug("regulator: Failed to create debugfs directory\n");
6195
6196 #ifdef CONFIG_DEBUG_FS
6197 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6198 &supply_map_fops);
6199
6200 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6201 NULL, ®ulator_summary_fops);
6202 #endif
6203 regulator_dummy_init();
6204
6205 regulator_coupler_register(&generic_regulator_coupler);
6206
6207 return ret;
6208 }
6209
6210 /* init early to allow our consumers to complete system booting */
6211 core_initcall(regulator_init);
6212
regulator_late_cleanup(struct device * dev,void * data)6213 static int regulator_late_cleanup(struct device *dev, void *data)
6214 {
6215 struct regulator_dev *rdev = dev_to_rdev(dev);
6216 struct regulation_constraints *c = rdev->constraints;
6217 int ret;
6218
6219 if (c && c->always_on)
6220 return 0;
6221
6222 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6223 return 0;
6224
6225 regulator_lock(rdev);
6226
6227 if (rdev->use_count)
6228 goto unlock;
6229
6230 /* If reading the status failed, assume that it's off. */
6231 if (_regulator_is_enabled(rdev) <= 0)
6232 goto unlock;
6233
6234 if (have_full_constraints()) {
6235 /* We log since this may kill the system if it goes
6236 * wrong.
6237 */
6238 rdev_info(rdev, "disabling\n");
6239 ret = _regulator_do_disable(rdev);
6240 if (ret != 0)
6241 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6242 } else {
6243 /* The intention is that in future we will
6244 * assume that full constraints are provided
6245 * so warn even if we aren't going to do
6246 * anything here.
6247 */
6248 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6249 }
6250
6251 unlock:
6252 regulator_unlock(rdev);
6253
6254 return 0;
6255 }
6256
regulator_init_complete_work_function(struct work_struct * work)6257 static void regulator_init_complete_work_function(struct work_struct *work)
6258 {
6259 /*
6260 * Regulators may had failed to resolve their input supplies
6261 * when were registered, either because the input supply was
6262 * not registered yet or because its parent device was not
6263 * bound yet. So attempt to resolve the input supplies for
6264 * pending regulators before trying to disable unused ones.
6265 */
6266 class_for_each_device(®ulator_class, NULL, NULL,
6267 regulator_register_resolve_supply);
6268
6269 /* If we have a full configuration then disable any regulators
6270 * we have permission to change the status for and which are
6271 * not in use or always_on. This is effectively the default
6272 * for DT and ACPI as they have full constraints.
6273 */
6274 class_for_each_device(®ulator_class, NULL, NULL,
6275 regulator_late_cleanup);
6276 }
6277
6278 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6279 regulator_init_complete_work_function);
6280
regulator_init_complete(void)6281 static int __init regulator_init_complete(void)
6282 {
6283 /*
6284 * Since DT doesn't provide an idiomatic mechanism for
6285 * enabling full constraints and since it's much more natural
6286 * with DT to provide them just assume that a DT enabled
6287 * system has full constraints.
6288 */
6289 if (of_have_populated_dt())
6290 has_full_constraints = true;
6291
6292 /*
6293 * We punt completion for an arbitrary amount of time since
6294 * systems like distros will load many drivers from userspace
6295 * so consumers might not always be ready yet, this is
6296 * particularly an issue with laptops where this might bounce
6297 * the display off then on. Ideally we'd get a notification
6298 * from userspace when this happens but we don't so just wait
6299 * a bit and hope we waited long enough. It'd be better if
6300 * we'd only do this on systems that need it, and a kernel
6301 * command line option might be useful.
6302 */
6303 schedule_delayed_work(®ulator_init_complete_work,
6304 msecs_to_jiffies(30000));
6305
6306 return 0;
6307 }
6308 late_initcall_sync(regulator_init_complete);
6309